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ABSTRACT

LINKING MULTIVARIATE OBSERVATIONS OF THE LAND SURFACE TO 

VEGETATION PROPERTIES AND ECOSYSTEM PROCESSES

by

Stephen C. Hagen 

University of New Hampshire, December, 2006

Remotely sensed images from satellites and aircrafts, as well as regional networks and 

monitoring stations such as eddy flux towers, are collecting large volumes of multivariate 

data that contain information about the land surface and ecosystem processes. To derive 

from these systems information and knowledge relevant to how the Earth system 

functions and how it is changing, we need tools that to filter and mine the large data 

streams currently being acquired at different spatial and temporal scales. A challenge for 

Earth System Science lies in accurately identifying and portraying the relationships 

between the measurements at the sensor and quantity o f interest (i.e. ecosystem process 

or land surface property).

In this document, topics in the modeling of multivariate data sets are explored in four 

independent studies. These studies use a range of process-based and statistical modeling 

techniques to relate remote observations to ecologically relevant attributes. Each study 

also includes an analysis of factors contributing to uncertainty. The first three studies

x
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examine issues related to the remote sensing of land surface properties in the Brazilian 

Amazon, including the effect of phenology and seasonality on the monitoring of 

regenerating vegetation (Chapter 2), mapping large-scale human land cover change 

(Chapter 3), and coarse resolution sub-pixel unmixing of land cover types (Chapter 4). 

The fourth study proposes a broadly applicable technique for quantifying the statistical 

uncertainty involved in estimating gross ecosystem exchange from an eddy flux tower 

(Chapter 5).
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CHAPTER 1

INTRODUCTION

Remotely sensed images from satellites and aircrafts, as well as regional networks and 

monitoring stations such as eddy flux towers, are collecting large volumes of multivariate 

data that contain information about the land surface and ecosystem processes. To derive 

from these systems information and knowledge relevant to how the Earth system 

functions and how it is changing, we need tools that to filter and mine the large data 

streams currently being acquired at different spatial and temporal scales.

Observation systems often measure proxies. For instance, expensive satellites are in orbit 

overhead not because the spectral radiance of the land surface as seen through a variable 

atmosphere is of particular interest, in itself. Instead, of interest to us is what we can 

derive from those raw measurements. For earth scientists, these derivatives include the 

presence or absence of a geological formation or vegetation type; a quantitative estimate 

of an ecosystem process like photosynthesis; or, with multiple images in time, the rate of 

change of a land surface property. The challenge lies in accurately identifying and 

portraying the relationships between the measurements at the sensor and quantity of 

interest (i.e. ecosystem process or land surface property).
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The relation o f indirect measurements to ecosystem attributes is most often accomplished 

with models. These models can be process-based or statistical. Process-based models rely 

on known physical, biological, chemical, or mechanical interactions occurring within a 

system. Statistical models are a mathematical framework consisting of a set of 

parameters, usually lacking an interpretable meaning, that are adjusted to best relate 

independent observations to dependent observations.

Whether one employs process-based or statistical models or a combination of the two to 

connect independent measurements to ecologically meaningful estimates, uncertainty will 

be a by-product of the modeling process and estimates of this uncertainty are valuable. 

Most statistical models, such as linear regression, have simple mathematical techniques 

for estimating uncertainty in parameters and predictions. Most process-based modeling 

techniques require more creative methods o f estimating uncertainty, such as Monte Carlo 

techniques. A Bayesian modeling framework is useful for incorporating many different 

sources of uncertainty.

In this document, topics in the modeling o f multivariate data sets are explored in four 

independent studies. These studies use a range of process-based and statistical modeling 

techniques to relate remote observations to ecologically relevant attributes. Each study 

also includes an analysis of factors contributing to uncertainty. The first three studies 

examine issues related to the remote sensing of land surface properties in the Brazilian 

Amazon, including the effect of phenology and seasonality on the monitoring of 

regenerating vegetation (Chapter 2), mapping large-scale human land cover change
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(Chapter 3), and coarse resolution sub-pixel unmixing of land cover types (Chapter 4). 

The fourth study proposes a broadly applicable technique for quantifying the statistical 

uncertainty involved in estimating gross ecosystem exchange from an eddy flux tower 

(Chapter 5). Each chapter begins with a review of relevant literature.
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CHAPTER 2

THE EFFECT OF SEASONALITY AND TIMING OF IMAGE ACQUISITION 

ON THE REMOTE SENSING OF REGENERATING VEGETATION IN THE 

SEASONALLY-DRY TROPICAL RAINFORESTS OF BRAZIL1

2.1 Introduction

Forests in the tropics continue to be cut at a rapid rate, primarily for use in agriculture, 

releasing carbon into the atmosphere in the form of CO2 . On a global scale, land cover 

change, primarily conversion of tropical forest, accounts for approximately 25% of all 

anthropogenic carbon release, with fossil fuel emissions and cement manufacturing 

making up the remaining 75% (Houghton, 2003). Often, these tropical agricultural areas 

are abandoned after a short duration due to poor soils or shifts in economic conditions, 

and forests regenerate on this land. Depending on the amount of time these forests are 

allowed to regenerate, as well as the rate at which they assimilate carbon, secondary 

forests can act as a carbon sink that offsets some deforestation carbon emissions.

This chapter is based on and contains material from a manuscript submitted for publication in 2006: 
S.C. Hagen, W.A. Salas, S. Frolking, M.J. Ducey, and B.H.. Braswell (submitted). Effects of seasonality 
and timing of Landsat image acquisition on remote observation of tropical regenerating vegetation in 
Rondonia, Brazil. Submitted to Remote Sensing o f  Environment.
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As the conversion of primary forest to agriculture continues, regenerating forests will 

likely represent a larger portion of the tropical landscape (Feamside, 1996; Laurance et 

al. 2001). Therefore, understanding the biophysical properties of secondary vegetation 

has been an issue of growing interest. Field research has focused on identifying 

successional changes in species composition (e.g. Mesquita et al., 2001), rates of biomass 

accumulation (e.g. Uhl, 1987, Nepstad et al. 1991), and other structural changes in 

regenerating forests (e.g. Feldpausch et al., 2005).

Remote sensing imagery allows scientists and policy makers to evaluate this important 

dynamic process at regional to continental scales. Many studies have been devoted to 

mapping the presence and rate of clearing primary forest (Skole and Tucker, 1993). The 

importance of monitoring this rapidly changing landscape is clear and the process is 

straightforward because cleared land, as viewed from satellite sensors, is spectrally 

distinct from primary forest.

Other remote sensing studies have focused on the more nuanced task of mapping the 

extent, as well as the structural properties of regenerating forests. Moderate to high 

resolution (~30 m) optical data, such as the data provided through the Landsat program, 

are well suited for mapping the extent of young regenerating vegetation in the tropics. As 

confirmed by ground observations, high accuracies in mapping the extent of secondary 

vegetation have been reported (e.g. Mausel et al., 1993; Lucas et al., 1993; Nelson et al., 

2000). However, regenerating forests eventually become spectrally indistinguishable 

from mature forest. The age at which this convergence occurs is reported to be between
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15 years (Steininger, 1996; Moran et al., 1994a) and 30 years (Lucas et al. 1996) for 

single image multispectral remote sensing data, depending on environmental factors as 

well as analytical methodology.

Frequently cloudy conditions and the optically thick atmosphere in the tropics, combined 

with constraints from the satellite sensor, severely limit the number of clear images 

available (Asner, 2001), which complicates the process of monitoring land cover. In 

many areas of tropical South America, acquiring even a single cloud-free Landsat image 

in a year is not guaranteed. When assembling images from multiple years for analysis, 

one cannot expect to acquire imagery from the same time of year each year, and often 

one has to accept a clear image from any time of the year (e.g. Alves & Skole, 1996; 

Roberts et al., 2002). For monitoring and research projects such as mapping the changing 

extent of regenerating vegetation or the biophysical properties of regenerating vegetation, 

the effects of comparing images acquired at different times of the year are unclear. There 

have been only a few studies that examine seasonal reflectance differences in tropical 

ecosystems, such as those by Frietas et al. (2003), which examined the relationship 

between reflectances derived from two Landsat scenes and vegetation structure in Rio de 

Janeiro State, Brazil, Bohlman et al. (1998), which identified seasonal foliage changes in 

tropical vegetation using Landsat, and Kalacska et al (2005), which relates vegetation 

indices to forest structure in the wet and dry seasons. The effects of image timing on 

rainforest vegetation spectral reflectances from high to moderate (~30 m) resolution data 

has not been fully explored.
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Over the course of a year, the biophysical properties of the vegetation and, 

correspondingly, the spectral signature of the vegetation can change for many reasons; 

e.g. human directed land use change, as well as seasonal phenology, growth, mortality, 

and stress of vegetation. Studies conducted on the ground, and more recently with high 

temporal resolution (e.g. MODIS) data, have documented phenological changes in 

tropical vegetation from the wet to dry season. Aide (1993) conducted a leaf census at a 

tropical site, measuring seasonality o f leaf flush and leaf fall of understory vegetation, 

and noted two peaks of leaf production. Xiao et al. (2006), in a broad study of tropical 

South America using MODIS data, identified evidence o f significant phenological 

patterns.

In this paper, we examine how the timing of the remote sensing observations affects the 

resultant land cover characterizations. Specifically, we document the spectral properties 

of the land surface in a dynamic area of the Brazilian tropical rainforest at the beginning 

and end of the dry season. The analysis is separated into two parts. In the first part, using 

atmospherically corrected Landsat reflectance data acquired over Rondonia, Brazil in 

May and August 2003, we analyze the spectral dynamics of several land cover features, 

with a focus on regenerating vegetation. In the second part, we extend this analysis by 

exploring the consequences that seasonal differences in spectral signatures have on 

thematic land cover mapping.

7
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2.2 Study area and data

The area o f study is approximately 19 km x 13 km centered around the coordinates 9.80° 

S, 63.37° W, west and slightly north of the city of Ariquemes in Rondonia, Brazil (Figure 

1). The region has experienced rapid expansion in human settlement since the late 1960s 

when highway BR364 was paved (Dale et al. 1994). The cleared area in this region is 

primarily used as cattle pasture (Browder, 1994). There are also areas of annual (e.g. 

upland rice, beans) and perennial (e.g. coffee, bananas) crops, as well as areas of mining 

and logging (Browder, 1994, Dale et al., 1994, Alves et al., 2003).

In Rondonia, Brazil, the dry season (defined here as sequential months with <100 mm 

month'1 of precipitation) generally begins in May and ends in September (Figure 2). 

Cloud-free Landsat images are therefore most frequently available in these dry season 

months. Station precipitation data acquired for 2003 for the city o f Ariquemes 

(approximately 25 km east-southeast of the study area) show that 2003 was a typical year 

(i.e. heavy rains ended in May and began again by October).

We geo-referenced and atmospherically corrected two Landsat ETM+ images acquired 

over this area in 2003. One image was acquired during the transition from wet season to 

dry season (20 May) while the other was acquired well into the dry season (24 August). 

To atmospherically correct these images, we used 6S software (Vermote et al., 1997) 

with estimates o f the atmospheric optical depth derived from Aeronet data 

(http://aeronet.gsfc.nasa.gOv/l acquired on the ground (Rio Bronco station). To validate

8
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the estimate of atmospheric optical depth, we examined MODIS (MYD08) estimates 

acquired daily at a one degree resolution. These estimates from the independent sources 

were similar, which increased our confidence in the atmospheric corrections.

7 5 °W 70°W 6 5 °W 60°W 55°W 50°W 45°W .

Figure 2.1. The area of study lies in the south western Amazonian state of Rondonia. The 19x13 
km area is about 25 km west northwest of the city of Ariquemes.

9
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Ariquemes, Rondonia 
(-9.95, -63.05)

500

400 -

Field Visit Dates

I I
Landsat Image Dates

Figure 2.2. Long term average monthly precipitation (1960-1990; ± one standard deviation) for 
Ariquemes, Rondonia from a climate reconstruction (Willmott and Webber, 2003). The 2003 
image acquisitions occurred at the beginning of the dry season (20 May) and at the end of the dry 
season (24 August). We visited the area and photographed the land cover about 30 days after each 
image was acquired (~20 June and ~25 September).

Additionally, we acquired and geo-referenced one Landsat image of this area for each 

year between 1989 to 2002 (Table 1). Each image was screened for cloud, cloud shadow, 

and water and the remaining pixels were classified, using an unsupervised classification 

technique (ISODATA), into three broad land cover types of interest: mature forest, 

cleared area, and regenerating vegetation (Figure 3). By stacking these fourteen images, 

we assembled a land cover transition matrix that contained a detailed land cover 

transition sequence for each 30 x 30m pixel (Skole et al. 1994; Kimes et al., 1999). We

10
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used this land cover transition sequence to identify forest stands for further study.

Because the classified images are subject to the biases of seasonality studied in this 

manuscript, we selected regenerating vegetation stands for study only if a manual re­

inspection of the time series of radiances yielded high confidence in the land cover 

transition sequence.

While the 1989-2001 imagery are used only for identifying areas for further examination, 

we used the two 2003 images to conduct the first part o f our analysis (spectral) and added 

the classified 2002 image (05 August) for the second part of our analysis (thematic). The 

220 km2 study area is effectively reduced to 154 km2 because of missing data due to 

Landsat 7 scan line corrector problems (SLC-off) in the August 2003 image and clouds in 

the August 2002 image.

Year Satellite
08 Jul 1989 TM
02 Dec 1990 TM
12 Jun 1991 TM
22 Jun 1992 TM
10 Jul 1993 TM

04 Jun 1994 TM
25 Jul 1995 TM
25 Jun 1996 TM
28 Jun 1997 TM
17 Jul 1998 TM
20 Jul 1999 ETM+
28 Jun 2000 ETM+
02 Aug 2001 ETM+
05 Aug 2002 ETM+
20 May 2003 ETM+
24 Aug 2003 ETM+

Table 2.1. List of Landsat imagery

11
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We made two field trips to the region in 2003, once in mid-June and once in late- 

September. During the initial visit, we identified the land cover type and photographed 

with a digital camera over two-hundred randomly chosen points, each identified with a 

GPS. On the return visit in September, we re-photographed each random point and 

identified any change in the land cover.

Figure 2.3. A three-class land cover map for the study area in the beginning of the dry season (20 
May 2003) shows this area of the Amazonian rainforest has experience extensive conversion. 
Brown is cleared area, dark green is mature forest, and green is regenerating vegetation.

2.3 Methods

2.3.1 Spectral analysis of seasonal timing effect

To gain an understanding of how the spectral properties of tropical vegetation change 

over the course of the dry season, we extracted reflectance data for 83 areas of one

12
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hectare or more. These areas include 67 stands of regenerating vegetation comprised of 

contiguous pixels with identical land cover histories, ten contiguous cleared areas, and 

six contiguous mature forest areas. These areas were identified using the historical land 

cover transition matrix. We extracted six reflectance bands and four vegetation indices 

(Table 2) for all 83 stands and the stand mean and the stand variance for all reflectances

and indices.

Band (Index) W avelegth (Index Formula)
BLU 0.45-0.52 um
GRN 0.53-0.61 pm
RED 0.63-0.69 um
NIR 0.78-0.90 um
SWIR1 1.55-1.75 um
SWIR2 2.09-2.35 um
NDVI (NIR-RED)/(NIR+RED)
EVI 2.5 * (NIR-RED) / (NIR + 6*RED - 7.5*BLU + 1)
LSWI (SWIR1 -NIRV(SWIR1 +NIR)
NIR:RED NIR/RED

Table 2.2. List of bands and indices

We used these aggregated stand reflectance data to explore three issues related to land 

cover discrimination and seasonality. First, we examined the separability in spectral 

space of the three main land cover classes within a single time period (for both the May 

2003 and the August 2003 image) using linear discriminant analysis. Then, we identified 

the change in the spectral signature of the three main land cover classes from the 

beginning of the dry season to the end of the dry season (May to August 2003). We also 

looked closely at the effect of two factors on the spectral signatures of regenerating 

vegetation: the time since abandonment (in years) for the stands of regenerating 

vegetation in the study area and the amount of time (in years) these abandoned areas 

stayed in the cleared class before they were abandoned (i.e. duration of use), using the

13
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fifteen-year land cover transition matrix. Duration of use may correlate with total 

intensity of use.

2.3.2 Thematic analysis of seasonal timing affect

The thematic land cover change analysis is intended to identify the effects of timing of 

imagery on classification of the land surface. Many monitoring studies and programs, 

such as Roberts et al. (2002), Ferraz et al. (2005), and PRODES, the Brazilian 

government’s program for monitoring land cover change in the tropics, involve 

classifying Landsat images in areas known to be experiencing transition. These studies 

are limited by the availability of cloud-free images. Often, the option of examining 

images from the same week, month, or even quarter in two consecutive years does not 

exist, due to cloudiness. So, when assessing land cover and land cover change from one 

year to the next, it is common to have the time elapsed between image acquisitions range 

from 6 months to over two years. In this part o f the analysis, we quantify the effect of the 

non-uniform intervals on estimates of land cover change.

The land cover change analysis involves looking at three land cover classifications of the 

study area: August 2002, May 2003, and August 2003. For the purposes of this analysis, 

we define the standard year for land cover change as beginning in August (end of dry 

season) and ending the following August. We define baseline changes as those occurring 

between August 2002 and August 2003. To quantify the effect of cutting the year short 

(i.e. the second image is acquired earlier in the dry season), we looked at the changes

14
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occurring between August 2002 and May 2003 (beginning of the dry season).

Specifically, we are interested in the dynamic areas (e.g. areas that change from mature 

forest!regenerating vegetation to cleared area or from cleared area to regenerating 

vegetation).

2.4 Results and discussion

2.4.1 Spectral analysis

The three main land cover classes, primary forest, regenerating vegetation, and cleared 

area were most spectrally distinct in the NIR and SWIR1 bands (Table 2.3 and Figure 

2.4). As other studies have shown (e.g. Steininger, 1996), primary forest and cleared area 

are spectrally distinct in most bands and indices. Using a combination of NIR and 

SWIR1, a linear discriminant analysis successfully classified 98% of the stands in the 

May 2003 image and 92% of the stands in the August 2003 image. These accuracies are 

similar to those reported in other similar studies (e.g. Roberts et al. 2002; Mausel et al. 

1993). The separation in spectral space between regenerating vegetation and primary 

forest is clearer in the early dry season, while the separation between regenerating 

vegetation and cleared area is clearer in the late dry season (Figure 2.5). One potential 

explanation for the late dry season separation between cleared area and regenerating 

vegetation could be that secondary vegetation quickly establishes a deep enough rooting 

system to protect them from water stress during the dry season, while vegetation in 

pastures do not (Nepstad et al. 1994; Jipp et al. 1998). The different responses to reduced
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rainfall are most apparent in the SWIR band, which is known to be sensitive to leaf water 

content.

NIR SWIR1 EVI RATIO s td  RATIO
Mature Forest 0.272 ±0.013 0.120 ±0.002 0.509 ± 0.023 13.9 ±1 .0 2.13 ±0 .17
Regen. Veg. 0.367 ± 0.030 0.154 ±0.012 0.641 ± 0.040 16.5 ± 2 .2 2.42 ± 0.65
Cleared Area 0.318 ±0.046 0.202 ± 0.030 0.476 ± 0.076 6.0 ± 1.6 0.67 ± 0.50

Table 2.3. Class means and standard deviations of most distinct bands and indices

The spectral signatures of most cleared areas change drastically over the course o f the dry 

season (Figure 5). At the beginning of the dry season (May-June in the study area), 

grasses tend to be lush and thick, often completely covering the soil. These cleared areas 

have spectral signatures closer to regenerating forests, with high NIR reflectance (around 

30%) and moderate SWIR reflectance (around 20%). As the dry season progresses and 

the grasses dry out and are eaten by cows, revealing more soil, the NIR reflectance 

decreases to 25% and the SWIR reflectance increases to around 25%. NIR reflectance 

decreases for regenerating vegetation (from about 37% to about 32% on average), but the 

SWIR reflectance changes very little. The late dry season reflectances observed in this 

study are similar to the late dry season reflectances observed in another study (Steineger, 

2000). The mature forests change veiy little from the beginning of the dry season to the 

end of the dry season. The only significant change is an increase in EVI. A study by Xiao 

et al. (2006) show maximum EVI levels occur in the dry season across much of the 

Amazon River basin, including Rondonia, and hypothesized that this peak is caused by 

leaf flush. Other studies also have shown that tropical primary forests often produce new 

leaves in the dry season (Aide, 1993; Haugaasen and Peres, 2005).
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Figure 2.4. The mean spectral signals for the three vegetation classes are most distinct in the NIR 
and SWIR wavelengths.

We examined regenerating vegetation of different ages that were identified as having 

been cleared for only one year (i.e. short duration of use) to partially isolate the effect of 

age on the spectral signature o f secondary vegetation. As briefly-used pastures begin the 

regeneration process from two years after abandonment up to sixteen years following 

abandonment, they show a clear general trend of decreasing NIR and SWIR reflectance 

(Figure 6). The decrease in SWIR with increasing age has been observed in other studies 

(Nelson et al. 2000, Steiniger, 1996, Lucas et al. 2002). The decrease in NIR with 

increasing age observed here is at odds with other study results. We note a peak in NIR 

reflectance before three years old, while some other studies have observed later peak in 

NIR (around seven years; Nelson et al 2000). Mausel et al. (1993) note a NIR peak 

during the “intermediate secondary succession”, which is characterized by some larger 

trees (8-12 m). We observe decreasing NIR and SWIR with stand age nearly equally at
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the beginning and end of the dry season. Age, however, is an insufficient metric by which 

to classify regenerating vegetation because regeneration rate is affected by edaphic 

conditions, climate, land use history, and topography. As an alternative to age, Arroyo- 

Mora et al. (2005) proposed well defined successional stages, related to phenology, 

vertical and horizontal structure for classifying regenerating vegetation.

We also looked at 17 stands of four-year-old regenerating vegetation with mixed 

histories of duration in pasture before abandonment, in an attempt to isolate the effect of 

duration of agricultural use on the spectral properties. We could not identify any 

relationship between the spectral properties of these stands and the duration of 

agricultural use (from one year as cleared area up to five years), either at the beginning of 

the dry season or at the end of the dry season.

The accuracy of the spectral signature comparison between the May imagery and August 

imagery is directly dependent on the quality of the atmospheric correction procedure. 

Using the 6S atmospheric correction software (Vermote et al. 1997), we performed a 

simple sensitivity analysis on the atmospheric correction by estimating the effect that a 

change in atmospheric thickness has on the reflectances in each band. The May image is 

very clear and, according to both the MODIS data and AERONET station data, has a 

very low atmospheric thickness. Therefore, a ±10% change in the estimated atmospheric 

thickness parameter in the 6S model has a small effect on the reflectances in all bands in 

the May imagery. The August image has some visible clouds and an overall thicker 

atmosphere. A ±10% change in the estimated atmospheric thickness results in a 10 to
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30% relative change in the visible reflectance, and approximately 5% relative change in 

the SWIR2 band. The NIR and SWIR1 bands we focus on in this study are the least 

sensitive to small changes in atmospheric thickness, changing around 1%.

0.25

0.2

5

5
CO

0.15

0.1

Figure 2.5. The SWIR 1-NIR spectral space shows that cleared area (squares), regenerating 
vegetation (circles), and mature forest (stars) have distinguishable signatures in both the end of 
the wet season (green) and the dry season (red). The separation in two-dimensional spectral space 
between regenerating vegetation and primary forest is clearer in the early dry season, while the 
separation between cleared area and regenerating vegetation is clearer in the late dry season. As 
regenerating vegetation matures (light circles to dark circles, both green and red), NIR and SWIR 
reflectance decreases. This age-related dynamic, combined with the fact that regenerating 
vegetation show reduced NIR reflectance in the dry season, can complicate analysis using 
multiple images from different parts of the dry season. (Note the spectral similarity between 
moderately-aged secondary vegetation in the dry season and the oldest secondary vegetation in 
the wet season).
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The fact that the spectral properties of regenerating vegetation change significantly over 

the course of the dry season complicates the process of relating single image optical 

reflectance data to vegetation structural properties and, in turn, affects thematic 

interpretation of the data, as has been noted by Roberts et al. (2002). The optimal 

parameters and architecture of a statistical model relating remote sensing reflectance to 

vegetation structure will change significantly from the beginning to the end of the dry 

season, making a generalizible model of vegetation structure unrealistic. Changes in the 

biochemical properties of the vegetation over the course of a season can affect the 

observed reflectances enough to obscure any relationship with vegetation structure. This 

general effect is demonstrated in our examination of different stages of regenerating 

vegetation (Figure 5). In particular, the medium age class at the end of the wet season is 

nearly spectrally indistinguishable from the older age class during dry season. Therefore, 

when relating tropical vegetation structure to remotely observed reflectances across 

multiple images (either in space or time), researchers should note that the date of image 

acquisition with respect to seasonality of precipitation can add an additional complication 

to the transferability of vegetation structural models beyond the complications already 

documented (e.g. constancies in biophysical environments and atmospheric correction; 

Foody et al., 2003; Lu, 2006).
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Figure 2.6. There is a general relationship between spectral reflectance and age of secondary 
vegetation in this area. The SWIR 1-NIR spectral space, focused on regenerating vegetation at the 
end of the wet season, reveals a trend of decreasing NIR and SWIR reflectance as regenerating 
vegetation stands develop (a) (circles radius is proportional to age). Vegetation stands shown here 
were all in use as pasture for less than two years before they were abandoned. Aggregating into 
three age classes confirms this observation (b). The mean of each age class is statistically 
different from both other age classes. However, classifying individual regenerating vegetation 
stands into these age classes results in low accuracy.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4.2 Thematic analysis

Quite different conclusions will be inferred about the changing land surface if  one 

examines a short year (AUG to MAY) as opposed to a complete year (AUG to AUG) 

(Table 4). Of the 74.6 km2 of mature forest in the August 2002 image, 6.5 km2 (or 9%) is 

cleared by May 2003, while an additional 3.2 km2 is cleared by August 2003 (for a total 

of 13% of mature forest being cleared in the standard year). If examining a short year, 

one would miss one-third of all clearing of primary forest occurring in the complete year. 

If conducting repeated annual estimates, this missed clearing likely would be lumped 

together with the following year’s totals, making rates that year appear significantly 

higher. The rate of clearing observed in this small study region is much higher than 

observed in other studies of Rondonia (e.g. Roberts et al. 2002, Skole and Tucker, 1993)

The August 2002 to May 2003 change analysis shows that 17.9 km2 of August 2002 

pasture (of 32% of the pasture) is abandoned to regenerating vegetation and 2.9 km2 of 

August 2002 regenerating vegetation (or 12%) is recleared by May 2003. The August 

2002 to August 2003 analysis shows a significantly different pattern. Only 12.3 km2 of 

cleared land is abandoned to regenerating vegetation, while 4.2 km2 o f regenerating 

vegetation is recleared. These differences are due to seasonal changes in the vegetation 

structure and biochemical properties in addition to the timing of human activities, such as 

the clearing of forests. As noted above, in the May imagery when the grasses and small 

shrubs are the least water stressed, cleared area is more likely to be confused with
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regenerating vegetation than in an August image when some vegetation experiences 

more water stress.

Pixels A rea (km 2) Fraction C hange
Forest AUG 2002 90657.6 73.64 —

Cleared AUG 2002 69048 56.08 —

Secondary AUG 2002 27531.4 22.36 —

Cleared Primary Forest MAY 2003 7985.4 6.49 0.088
Abandoned Pasture MAY 2003 21973 17.85 0.318
Recleared Secondary MAY 2003 3521 2.86 0.128

Cleared Primary Forest AUG 2003 11944.1 9.70 0.132
Abandoned Pasture AUG 2003 15183 12.33 0.220
Recleared Secondary AUG 2003 5935 4.82 0.216

Table 2.4. A summary of the thematic results show that quite different conclusions can be 
inferred about the changing land surface if one examines a short year (AUG to MAY) as 
opposed to a complete year (AUG to AUG)

The pixels that follow the classification sequence of cleared in August 2002, 

regenerating vegetation in May 2003, and cleared in August 2003 make up 8.6 km2 or 

20% of land classified as cleared in August 2002. There are two potential sources of 

confusion that arise from this particular land cover transition sequence. The first is a 

definitional issue. Defining regenerating vegetation is problematic, as others have noted 

(e.g. Feldspauch et al., 2005). How long does a period of inactivity have to last before an 

area is considered regenerating? If cows are removed from a plot o f land for nine months, 

has the pasture been abandoned and should the plot now be considered regenerating 

vegetation? There is no agreed upon answer to this question. The other source of 

potential confusion is not definitional, but is related to the reflectance data. In the May 

2003 image, these cleared-regenerating-cleared pixels have the same spectral signature
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as regenerating vegetation of two to four years old, indicating that this is not simply a 

matter of classification inaccuracies.

We compared the extended land cover history of the pixels with the peculiar land cover 

sequence cleared (AUG 02), regenerating (MAY 03), cleared (AUG 03) to the history of 

those that remained in the cleared class between 2002 and 2003. Cleared pixels that 

briefly appeared as regenerating vegetation in the MAY image had more often been 

originally cleared from forest more recently than those that remain cleared in all three 

images. Sixty-one percent of the cleared pixels that appear to be regenerating in MAY 

were originally converted from forest sometime after 1989, whereas 63% of the pixels 

that remain in the cleared class in 2002 and 2003 were originally converted from forest 

sometime before 1989. When tropical forest is converted to pasture, some of the original 

vegetation and seed stock typically survives the clearing and burning process (Nepstad et 

al., 1991). Repeated maintenance and reclearing of the pasture destroys the remaining 

original vegetation and seed stock. We hypothesize that the residual vegetation found in 

many newer pastures (i.e. recently converted from tropical forest) greens up in the wet 

season more than the grasses found in older, more established pastures that have been 

repeatedly cleared and maintained.

These results indicate that the timing of image acquisition can affect ones perspective 

when examining a dynamic tropical landscape. When examining an image from the early 

dry season in an effort to understand how the landscape is changing, one is more likely to 

get the impression that pasture land is being abandoned at an inflated rate and that the
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clearing of primary forest and regenerating vegetation is occurring more slowly than if 

one were to examine an image from the late dry season.

2.5 Conclusions and future work

The timing of image acquisition has a significant influence on the spectral appearance of 

the land surface and, therefore, on the conclusions one makes about the state and 

dynamics of the land cover. This is important to note in an area where the acquisition of 

clear moderate resolution images such as Landsat (30 m) is limited due to frequent cloud 

cover and an optically thick atmosphere. The spectral properties of cleared land and 

regenerating vegetation change significantly as the dry season progresses, while mature 

forest remains nearly spectrally constant.

Multiple images within a single year could add significant information useful for 

classification or for mapping biophysical properties. The availability of multiple Landsat 

or Aster images within a year, however, is rare. High temporal, coarse spatial resolution 

(~500m) data, such as MODIS can provide time series reflectance information useful in 

identifying seasonal changes related to phenology. It may be possible to combine this 

coarser resolution data with temporally limited Landsat imagery to improve classification 

accuracy or the mapping of biophysical properties.

This research identifies and quantifies a seasonal differences in tropical vegetation 

reflectance observations. With a better understanding of the seasonal dynamics of the
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tropical land surface, specifically regenerating vegetation, we can improve our ability to 

monitor changes in this ecologically important region.
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CHAPTER 3

MULTI-RESOLUTION REMOTE OBSERVATIONS OF DEFORESTATION IN

RONDONIA, BRAZIL2

3.1 Introduction

The direct alteration of terrestrial ecosystems by humans has played a significant role in 

the changing global carbon cycle (Schimel, 1995; Houghton et al., 2000). Principal 

driving forces behind these land cover changes, such as population dynamics and 

institutional economic and political factors, have been identified (Allen and Barnes,

1985; Hecht and Cockbum, 1989; Turner et al., 1994; Skole et al., 1994) and some 

integrative models exist (e.g., Frohn et al., 1996; Pfaff, 1999). However, prediction of 

large-scale socioeconomic systems is difficult and current land cover change research 

relies principally on monitoring via inventory and satellite imagery.

In tropical South America, political and economic pressures have combined to create 

sustained but variable impacts on the land cover (Feamside, 1990; Houghton, 1991). The

2
This chapter is based on and contains material from a paper published in 2002:

Hagen, S.C., B.H. Braswell, S. Frolking, W.A. Salas, and X. Xiao (2002). Determination of subpixel 
fractions of nonforested area in the Amazon using multiresolution satellite sensor data. Journal o f  
Geophysical Research, 107, D20, 8049, doi:10.1029/2000JD000255. Reproduced by permission of 
American Geophysical Union.
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dynamics of land cover change in this region can be described by a simple conceptual 

model with three (or more) possible land cover states and the corresponding sequence of 

transitions between them (Feamside, 1996). A fraction of primary forest in a given region 

of interest can be cleared for pasture or cultivation. The cleared areas can then be 

maintained as agricultural land or abandoned. Secondary vegetation may also be subject 

to cyclical land-use patterns and are often returned to pasture or agriculture before 

reaching maturity (Feamside, 1996; Salas, 2001). The resulting patches of forest 

regrowth on abandoned land (secondary vegetation) form a mosaic of vegetation types 

and structure. This situation is further complicated in some regions by partial clearing 

associated with logging, which is difficult to assess completely with any existing 

monitoring method, but is believed to be significant (Nepstad et al., 1999).

Satellite remote sensing has been used to document the transitions between tropical 

forest, agricultural land, and secondary vegetation (Skole and Tucker, 1993; 

Chomentowski et al., 1994; Stone et al., 1991). Many of these analyses are limited by 

uncertainties in the observations and the intrinsic trade-off between spatial and temporal 

resolution of the data.

A significant amount of research has focused on using coarse resolution remote sensing 

data, such as the Advanced Very High Resolution Radiometer (AVHRR), for mapping 

deforestation because of its broad spatial coverage, frequent overpass time, and low cost. 

These studies classify whole pixels (at a minimum resolution of 1.1 km) as a single land 

cover class. For example, Tucker et al. (1985) used AVHRR Local Area Coverage (LAC)
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data to map land cover in Africa, and Woodwell et al. (1987) mapped deforestation in the 

Amazon Basin with AVHRR LAC data. Also, Nelson and Holben (1986) examined the 

utility of coarser spatial resolution AVHRR Global Area Coverage (GAC) data for 

identifying clearings in Rondonia and determined that, while the high temporal resolution 

of the instrument (almost daily) is desirable, the clearings were too small to be resolved at 

the 4 km AVHRR GAC resolution. From these studies, we see that coarse to moderate 

resolution remote sensing alone cannot resolve many of the important details o f land 

cover dynamics in tropical forests because these details occur at scales smaller than the 

resolution of the instrument. On the other hand, it is desirable to exploit the high temporal 

frequency and broad spatial coverage of global (coarse resolution) remote sensing data 

sets. High temporal frequency is advantageous, not because land cover is likely to change 

significantly in the nominal 16-day gap between Landsat images, but because an 

instrument that gathers images daily is much more likely to capture cloud-free glimpses 

of regional land cover on a consistent basis. This is particularly true in the humid tropics, 

where cloud cover is persistent (Asner, 2001).

Many studies have used fine spatial resolution data (e.g. Landsat MSS and TM) to 

classify land cover in the tropics for localized areas the size of a TM scene or smaller 

(e.g. Li et al., 1994, Steininger, 2000). Additionally, times series of land cover change 

have been assembled for similarly small regions in the Amazon using multiple 

acquisitions of fine resolution data (Mausel et al., 1993; Lucas et al. 1993; Alves and 

Skole, 1996; Kimes et al., 1999). Nelson et al. (2000) constructed a 7-year annual time 

series for a single TM scene in Rondonia with no temporal gaps (longer than one year) in
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a study of secondary forest age. Skole and Tucker (1993) completed a broader spatial 

analysis by assembling a land cover classification for the entire Amazon Basin for 1978 

and 1988 using Landsat imagery. The studies that use fine resolution remote sensing 

exclusively have been limited either in their spatial coverage, usually to a single Landsat 

TM scene, or in their temporal resolution (i.e. they contain gaps longer than one year). 

Covering the Brazilian Legal Amazon requires over 200 Landsat scenes. Given this high 

data volume, in combination with the persistence of clouds in the tropics and low 

overpass frequency (16 days) o f Landsat, mapping large regions like the Amazon Basin 

on an annual basis with Landsat imagery alone is prohibitive (Tucker and Townshend, 

2000).

Woodwell et al. (1987) suggested that a more efficient and economical approach than 

using AVHRR or Landsat data alone would be to integrate the two products by using 

calibration factors that take advantage o f both the finer resolution of Landsat and the 

more complete spatial and temporal coverage of AVHRR. Many studies have combined 

fine and coarse spatial resolution data for multi-resolution analysis (e.g., Nelson, 1989; 

Holben and Shimabukuro, 1993; Foody and Cox, 1994; Puyou-Lascassies et al., 1994; 

Oleson et al., 1995; Kerdiles and Grondona, 1995; Mayaux and Lambin, 1995; Atkinson 

et al., 1997; Asner et al., 1997). For example, Foody et al. (1997) used Landsat TM data 

and an artificial neural network to unmix fractional land cover within AVHRR pixels. 

Iverson (1989, 1994) used Landsat TM data to create a regression model to estimate the 

fraction of forest cover within an AVHRR pixel instead of classifying whole AVHRR 

pixels as a single land cover. Others (e.g. Zhu and Evans, 1994; Ripple, 1994, Hlavka and
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Spanner, 1995) have used Iverson’s approach for regional assessments of land cover in a 

variety of locations. In this paper, we extend this approach from single-year calibrated 

unmixing analysis to a time series of annual land cover assessments. We explore the 

potential of using multi-resolution remote sensing data in a generalizable way to monitor 

year-to-year changes in nonforested area o f tropical regions at coarse spatial scales 

appropriate for use with climate and terrestrial models.

3.2 Site description and methods

This study focuses on approximately 30,000 km2 of land surrounding the city of 

Ariquemes in Rondonia, Brazil (Figure 3.1). Several other tropical land cover change 

studies focused on this area (e.g. Stone et al., 1991; Alves et al., 1999; Nelson et al., 

2000). The native vegetation in the area is predominantly dense tropical forest, with 

smaller areas of savanna, grassland, and alluvial vegetation (Alves and Skole, 1996). 

Rondonia has been the site of some of the fastest rates o f land clearing and population 

growth in the tropical world. Before 1960, the area was sparsely populated, but since the 

early 1970’s, Rondonia has experienced a tremendous rate of immigration and land use 

change (Stone et al., 1991).

We used two spatially and temporally coincident data sets for this study: a fine resolution 

time series of land cover for one TM scene and AVHRR GAC reflectance observations 

for the same area. Data pre-processing included degrading the fine resolution land cover 

data to fractional cover at an 8 km resolution, which results in a single data-layer for each
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class. Then, using the geolocation information provided with the data and ground control 

points identifiable in both data sets (e.g. large clearings associated with highways and 

cities), we coregistered the data sets with image visualizing software. Because alignment 

of the data features is difficult at the 8 km scale, we evaluated the co-registration by 

shifting the data one 8 km pixel at a time in each direction and noting the correlation 

between reflectance (AVHRR) and land cover fraction (TM). The test indicated no 

significant improvement in co-registration would result from a whole-pixel shift, so we 

conclude that the co-registration is accurate to within one 8 km pixel.

Figure 3.1. The region of study (white rectangle) is located in Rondonia, Brazil, in the 
southwestern portion of the Legal Amazon (comprised of the states in the dark outline). The color 
of 8-km pixels in the Legal Amazon represent the magnitude of the first principle component of 
channels 1,2, and 3 in the 13-year averaged AVHRR data. This view, which combines all the 
available AVHRR reflectance data for each pixel, reveals details of land cover such as the cleared 
area in Rondonia and along the Trans-Amazon Highway (orange-pink-red coloring) and suggests 
usefulness of AVHRR time series data in identifying nonforested areas.

4# -m

TM Scene 
Study Area
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The land cover data were derived from a sequence of 30 m resolution Landsat TM 

images (Salas, 2001). The data set consists of 10 classified scenes, one per year from 

1989 through 1998, for the same area around the city of Ariquemes in Rondonia, Brazil 

(Nelson et al., 2000; Salas, 2001). Each 30 m pixel is classified as mature forest, cleared 

area, secondary forest, cerrado, water, or cloud (see Nelson et al. [2000] for details o f the 

classification procedure). The resulting product is a time series of land cover for each 30 

m pixel in the scene. The total area cleared for pasture and agriculture within the region 

of this TM scene roughly doubled between 1989 and 1998, while the majority of the 

scene remained forested (Figures 3.2 and 3.3).

a. 1989 1998

* ■ •

Figure 3.2. Land cover maps of the area around Ariquemes in Rondonia, Brazil for 1989 (a) and 
1998 (b), derived from TM imagery [Nelson et al., 2000], Classes of land cover include forest 
(white), cleared area (red), secondary growth (green), water (blue), and cerrado (red). The grids 
overlaid on the land cover data indicate the resolution of the aggregations, 8 km (small grid) and 
48 km (bold grid). These figures show an increase in cleared area at the expense o f  secondary 
growth and forest between 1989 and 1998.

Ten years (1989-1998) of AVHRR GAC data (10-day maximum NDVI value composite 

at 8 km resolution) were acquired from NASA's Pathfinder AVHRR Land (PAL)
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reprocessing effort [Janies and Kalluri, 1994], In this study, we used Channel 1 (red, 

0.58-0.68 pm), Channel 2 (near infrared, 0.725-1.1 pm), and Channel 3 (mid-infrared to 

thermal, 3.55 - 3.93 pm) data. We used Channel 1 and Channel 2 reflectance values to 

calculate the Normalized Difference Vegetation Index (NDVI = [(Ch2 - Chi) / (Ch2 + 

Chi)]). This index has been shown both in theory and in observations to be related to the 

amount of photosynthetic material in a canopy volume (Myneni et al., 1995; Asrar et al., 

1984). Therefore, we assumed it is a good indicator of the amount of forest and nonforest 

area within a pixel because of their highly contrasting foliage density. We used Channel 3 

data because it has also been shown to be sensitive to this contrast (Malingreau et al., 

1996).
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Figure 33. Land cover dynamics between 1989 and 1998 over the area covered by TM-derived 
land cover maps, showing a decrease in forested area over time. The sharp decline (1996-1997) 
then increase (1997-1998) in forested area is mostly due to significant cloud cover (~15%) in the 
1997 TM scene rather than deforestation and near-instantaneous regrowth. The scene remains 
mostly forested throughout the time series.

To further reduce the effects of the atmosphere (e.g., spatial and temporal variations in
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water column vapor, clouds, aerosols) that tend to decrease the measured NDVI, we 

recomposited the AVHRR data to generate monthly data by extending the NDVI 

maximum-value compositing (Holben 1986; Asner et al. 2000). We selected the Channel 

3 value from the 10-day composite associated with the maximum-value NDVI. These 

monthly values were subsequently averaged over the dry season (May to September) of
4

each year (1989-1998). This resulted in annual NDVI and Channel 3 time series at 8 km 

for the area defined by the TM time series (smaller grid overlay in Figure 2).

We created a second, coarser resolution product for this analysis by aggregating the 8 km 

AVHRR data to 48 km. Our reasons for this were three-fold. First, each 8 km AVHRR 

GAC pixel is comprised of an irregular sub-sampling of 1.1 km LAC pixels, not an 

average of all of the 1.1 km pixels. Aggregating to 48 km likely produces a more 

representative average of the reflectance from the land cover, due to the larger sample 

size. Second, aggregating to 48 km reduces the effects of sub-8 km co-registration errors 

which would be apparent at the 8 km scale. Finally, at a 48 km resolution, pixels are 

commensurate with the spatial resolution of regional to global scale biogeochemical 

models (0.5° latitude/longitude near the equator) (e.g. Tian et al., 1998).

Using the spatially coregistered AVHRR and TM data, we determined the fractional 

cover of land cover types at the 8 km and 48 km scales based on the classified 30 m TM 

data. We combined the classes of cleared area and cerrado into a single nonforest class 

because these classes are spectrally indistinguishable at all AVHRR wavelengths. 

Secondary forest was defined in the Landsat classification as those areas abandoned and
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supporting forest after the original vegetation has been cleared (Nelson et al. 2000). 

Spectrally, regenerating forests exhibit reflectances somewhere between cleared land and 

mature forest, depending on the structure of the forest, which varies with age and 

regeneration stage (Uhl et al., 1988; Brown and Lugo, 1990).

After temporal recompositing and spatial aggregation, substantial interannual variability 

was apparent in the AVHRR data (Figure 3.4) in excess of variability that could 

reasonably be attributed to changes in vegetation cover alone. This spurious variability, 

linked to year-to-year clustering, is most likely due to changes in column water vapor, 

satellite drift, and aerosol optical depth, although sensor degradation and geolocation 

issues are also likely to play some role (Asner et al., 2000). We reasoned that a change in 

the relative location of a pixel within its annual cluster in NDVI/Channel 3 space was 

related to a change in the nonfbrest fraction in that cell, while year-to-year changes in the 

location of the clusters were due to non-vegetation effects. Therefore, to minimize this 

interannual noise and to preserve the relative location of a pixel within its annual cluster, 

we standardized the data by subtracting the mean values for "reference" pixels that 

remained dominated by forest (> 95% mature forest, about 1/5 of all 8 km pixels) over 

the 10-year time series and dividing this difference by the standard deviation of the 

reference pixels. We assumed there is no interannual variability in undisturbed forest 

pixels, averaged over the dry season. Some climate-driven effects related to moisture 

constraints on phenology may exist (Batista et al., 1997; Asner et al., 2000), but we 

assume that this variability would not be large enough to interfere with the discrimination 

between forest and nonforest. The standardization necessarily eliminated interannual drift
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(Figure 3.4 and 3.5) and allowed us to focus on changes in nonforested area. After 

aggregating the original PAL 8 km AVHRR data to 48 km, we performed the same 

standardization procedure with the 48 km values, requiring that reference pixels always 

contain at least 90% mature forest (about 1/5 of the 48 km pixels).
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Figure 3.4. AVHRR data at (a) 8 km and (b) 48 km resolution in NDVI/Channel 3 space. The 
annual clustering of the data is due primarily to non-vegetation related artifacts.

Data from two of the original ten years were excluded from the analysis: 1995, because 

the AVHRR observations were incomplete due to satellite malfunction; and 1997, 

because of an excessive amount of cloud cover (~15%) in the classified TM scene 

(Nelson et al., 2000). With these years removed, the 8 km standardized data from the 

remaining eight years consisted of 3760 data points (470 grid cells x 8 years; Figure 

3.5a). The 48 km data set consisted of 120 data points (15 pixels x 8 years; Figure 3.5b). 

The grid cell in the Southeast comer was left out of this analysis because the majority its 

area falls out of the TM scene most years (Figure 3.2).
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We analyzed the sets of "data pairs" (i.e. the standardized values from AVHRR and the 

nonforested area from TM for each pixel) by fitting a linear model for the amount of 

nonforested area (A ^) within a pixel as a function of the AVHRR data:

A'nf = PQ + Pj*(NDVI) + P2*(Channel 3) = Anf + £ (3.1)

where the coefficients P0, Pj, and P2are estimated by regression, and e is the residual 

error.

Estimates of nonforested area were then produced and examined at both the 8 km and 48 

km resolution. The regression model in Equation (3.1) was fit using all the years of data 

grouped together, generating one set of coefficients (p). Additionally, lacking 

independent data for validation of the model, we performed a cross-validation. The cross- 

validation involved fitting a model iteratively using all the data points except one year’s 

data, which was set aside for testing. The cross validation process generated eight sets of 

coefficients, one for each year.

As an exploration into the spectral characteristics of secondary forest, we added a free 

param eter,/ where 0 < /<  1, indicating the fraction of secondary forest included in the 

nonforest class. Adjusting this fraction between zero (i.e. include all secondary forest in 

the forest class) and one (i.e. include all secondary forest in the nonforest class) could 

provide an information about the signature of secondary forest (i.e. its similarity to 

nonforest and forest). The effective nonforest area (A ^) is given by:
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Anf ^cleared ^cerredo +f  Asf (3.2)

where Acleared is the area classified as cleared (according to the 30 m classification), 

ACerrado *s t^e area classified as cerrado, and Asf is the area classified as secondary forest. 

We began our analysis by assuming that secondary forest does not contribute to the 

nonforest signal (f=  0) and examined the effects of this assumption later in our analysis. 

Finally, we considered in a stepwise fashion the necessity of using both NDVI and 

Channel 3 terms in Equation (3.1) and the relative value of using NDVI versus the red 

and near infrared reflectances in the regression.

3.3 Results and discussion

After standardization, the mean location of forest-dominated pixels (arbitrarily defined as 

< 25% nonforest with f=0) and nonforested pixels (>25% nonforest with f=0) in Channel 

3-NDVI phase space were significantly different (p < 0.05) in both the 8 km and 48 km 

analysis (Figure 3.5). This result indicates that standardization reduced the effects of 

many nonvegetation-related artifacts and that the AVHRR data contain information that 

will help resolve the amount of nonforested area within a pixel.

We included both NDVI and Channel 3 in the regression model, in part, because both 

variables, individually, are more significantly correlated with nonforested area (at the 48 

km scale, Persons correlation coefficient R=0.84 and -0.57, respectively) than with each
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other (R=-0.46), suggesting that they may contain independent information. Additionally, 

several studies have suggested that both NDVI and Channel 3 are related to the disturbed 

area, though it is not clear whether they contain independent information (Woodwell, 

1987; Malingreau et al., 1996; Di Maio Mantovani and Setzer, 1997). The analysis of 

variance for the regression model also indicated that both Channel 3 and NDVI 

significantly captured variation in nonforested arete. The results from these preliminary 

investigations are not strongly suggestive of independence between Channel 3 and NDVI, 

so it remains unclear whether Channel 3 is needed for unmixing fractions of nonforested 

area within large grid cells. We proceeded conservatively by employing a model 

containing both variables.
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Figure 3.5. AVHRR standardized data at (a) 8 km and (b) 48 km resolution in NDVI/Channel 3 
space. The annual clusters evident in non-standardized data (Figure 3.4) are not identifiable here. 
The data are split into two groups using the TM land cover data. Forested pixels (+) are those
with more than 75% forested area. Significantly nonforested pixels ( ) are those with at least 25% 
nonforested area. The figure also shows the means and standard deviations of the groups of pixels 
along the NDVI and Channel 3 axis.

The relationship between AVHRR NDVI and TM nonforested area was stronger at the 48 

km resolution than at the 8 km resolution (R=0.84 vs. 0.56). The same results are seen in
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the relationship between Channel 3 and TM nonforested area for the two resolutions (R= 

-0.57 vs. -0.37). The results from the regression model, of the form given in Equation

(3.1), that combines NDVI and Channel 3, reveal the same improvement o f the 48 km 

resolution data over the 8 km data. The coefficient of determination (R2) was 0.75 for the 

48 km regression model and 0.35 for the 8 km model. The residual errors, e, for the 48 

km model were approximately normally distributed, while the 8 km model showed 

heteroscedasticity (visual inspection).

An analysis of how to account for secondary forest class gave no decisive answers. At

both the 8 km and 48 km resolution, the coefficient of determination (R^) of the model 

was relatively insensitive to the fraction of secondary forest included in the nonforest 

class (Figure 3.6). To simplify the analysis,/was fixed at a single value (/=0), thereby 

including all of the regenerating forest in the forest class and none in the nonforest class. 

We examined other potential models by including AVHRR Channel 1 and Channel 2 in 

place of NDVI. Studies have shown that near infrared reflectance (Channel 2) is strongly 

related to tropical forest regeneration stage (e.g. Lucas et al., 2000). In this study, these 

alternative models showed no improvement and were similarly unaffected by a change in

f

The results of the iterative cross-validation procedure also depended upon the scale 

considered (Figure 3.7). At the 8 km scale, the R^ was 0.32 and the root mean squared 

error (RMSE) was 7.1 km^ (11% of the grid cell area). At the 48 km scale the model 

produced an R^ value of 0.64 and a RMSE of 146.6 km^ (6% of the grid cell area). Using
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NDVI only, the results were not significantly different than the model that includes 

Channel 3 (not shown). To establish the extent to which the model captured changes in 

land cover over time, we grouped the cross-validation results by year and summed to the 

TM scene level. This process produced a single time series with an annual time step for 

the TM observed values of nonforest and for the AVHRR cross-validated predictions 

derived from each resolution (Figure 3.8). We found the model derived using 48 km 

aggregated AVHRR data captures most of the interannual fluctuations in nonforested 

area (R=0.91) while the 8 km data is less successful (R=0.73).
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Figure 3.6. The coefficient of determination (R^) of the model (Equation [3.1]) as a function of 
the free parameter/ or fraction of secondary forest included in the nonforest class (Equation
[3.2]), at 8 km and 48 km resolutions. Correlations had little sensitivity to secondary forest 
fraction.

To evaluate whether this model could recreate interannual dynamics of land cover at the 

pixel level, we compared the time series predictions of the cross-validation model to the 

observed nonforest fraction at each pixel. The results of this comparison were very poor
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at the 8 km resolution (not shown) and leave little hope of reconstructing a time series at 

this scale. At the 48 km scale, however, the results were noticeably improved (Figure 

3.9). The predicted time series for the pixels that did not change considerably over the ten 

years o f this analysis (the four pixels having a net change in the nonforested area from

1989 to 1998 of less than 30 km^ [2% of the pixel]) show no relationship to the TM 

observed time series. The six pixels that underwent a moderate change of between 30

km^ and 350 km^ (1% to 15% of the pixel) have a moderate relationship between time 

series of predicted and observed nonforest fraction (R=0.38 to 0.66). The five pixels that 

experienced the largest changes over the study period (>350 km2) have the strongest 

relationship (R=0.81 to 0.97) between predicted and observed nonforest fraction. 

Therefore, fine resolution data about changes in land cover at a decadal time step (Skole 

and Tucker, 1993) could be used to pre-select pixels for an analysis of the type presented 

here. Pixels that change little in a ten-year time period could be omitted from the 

analysis.
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Figure 3.7. AVHRR predicted vs. TM observed nonforested area based on cross-validation data 
at (a) 8 km and (b) 48 km resolution. Both figures include the one-to-one line.
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Figure 3.8. Time series o f  nonforested area summed over TM scene using the cross-validation 
data at the 8 km and 48 km resolution. The time series o f AVHRR predicted area in the 48 km 
resolution model (dotted line, circles) more accurately follows the TM observed area (solid line, 
squares) than the AVHRR predicted area in the 8 km resolution model (dotted line, triangles).
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Figure 3.9. Temporal correlation (R) vs. change in nonforested area between 1989 and 1998 by 
pixel at the 48 km  resolution. At the 8 km resolution (not shown), there was no relationship 
between temporal correlation and change in nonforested area. At the 48 km  resolution, the level 
o f correlation between the predicted and observed data at the pixel scale is related to the amount 
o f land cover change over the 10-year time series. Pixels that change significantly over the time 
period are accurately predicted by the AVHRR model.
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3.4 Conclusions

Given the rapid and significant changes in tropical ecosystems associated with human 

disturbance, it is desirable to use existing remote sensing data to produce historical 

reconstructions of disturbed areas over time. The fine resolution Landsat data acquired 

since the 1970s represent a valuable store of information. This massive amount of data 

has been effectively transformed into usable products (e.g. Chomentowski et al., 1994; 

Townshend et al., 1995) describing the state of ecosystems in the region. On their own, 

however, these fine resolution data are not adequate to ascertain the transitions of land 

cover at a time scale relevant for modeling global biogeochemistry, ecology or land- 

atmosphere interactions. Similarly, the global AVHRR data (1982-present) are the only 

terrestrial observations available at spatial and temporal intervals that are regular and 

compatible with the scales of regional and global modeling. Technical complications and 

the coarse resolution of the observations, however, make interpretation difficult.

Currently, terrestrial ecosystem models that consider distributions of land cover classes 

within relatively large grid cells (e.g. Moorcroft et al., 2001, Tian et al., 1998) are limited 

by a dearth of temporally and spatially rich land cover data. For this reason, a historical 

land use product derived from a statistical combination of TM and AVHRR may be 

valuable to the modeling community. The unmixing method detailed here could be useful 

in interpolating annual estimates between the decadal estimates that are based solely on 

fine resolution data (e.g. Skole and Tucker, 1993). This study demonstrates that annual 

estimates based on this unmixing approach are an improvement over a strictly linear
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interpolation between decadal products in this region of the tropics.

The analyses conducted1 in this paper demonstrate that reconstructions of changes in land 

cover distributions may be possible, but with limited accuracy at the 8 km spatial 

resolution o f the AVHRR Pathfinder product. It is clear that the maximum-value- 

compositing and standardization employed here were not sufficient to account for effects 

caused by water vapor, aerosols, GAC sampling, and geo-registration complications. It is 

therefore likely that GAC-based AVHRR observations of the Amazon Basin are too 

noisy to extract reliable biophysical information about the land cover at the 8 km 

resolution.

The retrievals at 48 km were much more successful. These noted improvements likely 

result from two features o f the aggregation process. First, aggregating the 8 km data 

dilutes the effect of co-registration errors. Second, each aggregated 48 km pixel has a 

larger sample size than the 8 km PAL AVHRR GAC pixels. The 8 km reflectances are 

averages of an irregular sub-sampling o f the original LAC 1.1 km reflectances, not a 

measure of the reflectance from the entire 8 km pixel. Aggregating up to 48 km increases 

the number of 1.1 km LAC pixels that comprise the average and, therefore, produces 

reflectance values that are more representative of the actual land cover. Thus, the power 

of a regression-based unmixing approach, such as the one presented in this paper, is most 

appropriately measured at spatial scales much larger than the single grid cell level (8 km 

in our case).
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Our results suggest that fine resolution remote sensing data can be combined successfully 

with moderate resolution data to provide accurate estimates of land cover distributions at 

a combined spatial and temporal resolution that is a compromise between the two types 

o f data. This general approach is not necessarily limited to the use of parametric statistics 

or the assumption of linear relationships between reflectances (or indices) and land cover 

fractions (Braswell et al., 2000). Despite its name, Advanced Very High Resolution 

Radiometer, AVHRR can no longer be considered advanced or very high resolution.

With new moderate remote sensing data that are designed to observe the terrestrial 

biosphere (e.g. MODIS), and fine resolution data (e.g. ASTER) that are designed to be 

. used with their moderate resolution counterparts, we expect improvements in regression- 

based unmixing approaches due to improved atmospheric correction calibration and 

improved knowledge of bidirectional reflectance distribution functions (BRDF), not to 

mention the finer spatial resolution of the global datasets.
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CHAPTER 4

MAPPING SUB-PIXEL LAND COVER DISTRIBUTIONS USING MODIS AND 

MISR IN THE BRAZILIAN AMAZON3

4.1 Introduction

The Brazilian Amazon region consists of over 4,000,000 km2 of tropical forest, 

representing one of the largest and most diverse contiguous ecosystems in the world. 

Over the past two decades, dramatic land cover changes in Amazonia have resulted in a 

wide variety of ecological and biogeochemical impacts, ranging in scale from local to 

global, and including changes in forest productivity and composition, nutrient dynamics, 

species diversity, stream chemistry and atmospheric carbon dioxide (Houghton et al., 

2000; Potter et al., 2001). Furthermore, alterations in forest structure are thought to 

impact regional climate via biophysical feedbacks between the atmosphere and biosphere 

(Costa & Foley, 2000; Walker et al., 1995). Therefore, quantification of the magnitude, 

timing, and spatial extent of human modification of the landscape in this region is 

currently an important Earth science research topic.

This chapter is based on and contains material from a paper published in 2003:
Braswell, B.H., S.C. Hagen, S. Frolking, and W.A. Salas (2003). A multivariable approach for mapping 
sub-pixel land cover distributions using MISR and MODIS: Applications in the Brazilian Amazon region. 
Remote Sensing o f Environment, 87, 243-256.
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While deforestation-related land cover changes are widespread, affecting nearly 600,000 

km in the Brazilian Amazon region alone, they occur at small spatial scales and exhibit 

highly dynamic interannual variability (INPE, 2000). The affected areas are thus a 

constantly evolving mosaic of cleared land and secondary vegetation fragments of 

varying size and age, woven into a background of relatively undisturbed forest. Because 

the underlying causes and resulting patterns of land use activity in Amazonian forests 

depend upon a variety of economic, social, and ecological factors that are extremely 

difficult to document, quantifying disturbance and recovery of Amazonian forests is 

typically addressed with satellite remote sensing techniques.

The objective of this paper is to present an approach for mapping land cover distributions 

using data from multiple-scale satellite observations, with specific application to 

estimating patterns of deforestation and recovery in Brazil. We present and evaluate a 

method for estimating sub-pixel land cover fractions that is unique in the following ways: 

(1) the scaling between Landsat ETM+ and Terra (MISR and MODIS) data is 

accomplished using an artificial neural network method that is designed to prevent

overfitting; and (2) we combine multiangle and multispectral data from the two Terra
(

sensors and compare the utility of various band-angle combinations. In the following 

section we will review some of the strategies that have been previously used, and briefly 

discuss the surrounding analytical and remote sensing issues that form the foundation of 

our approach.
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4.2 Background

4.2.1 Resolving land cover change patterns

The availability of wide-swath, coarse spatial resolution data from polar-orbiting 

instruments (e.g., AVHRR, MODIS, and MISR) allows classification of large regions at 

kilometer scales and greater. A number o f these products exist (e.g., Loveland et al.,

2000, DeFries et al., 1998), and they are often intercalibrated with one another or linked 

to field data and censuses (e.g. Cardille et al., 2002; Frolking et al., 2002). These data sets 

have been useful in a wide variety of applications, particularly those involving global 

models of climate and ecosystems. The main drawback to this approach is that the scale 

of land use and land cover change in Amazonia is usually smaller than the ~1 km 

resolution of these instruments. Classifying coarse resolution pixels as a single type of 

land cover will result generally in poor accuracy and specifically in an overall 

underestimation of non-dominant classes (Nelson & Holben, 1986).

An alternative approach to regional land cover assessment in Amazonia involves the 

construction of spatially comprehensive maps at high-resolution, by classifying and 

mosaicking the hundreds of Landsat Thematic Mapper (TM) scenes that are necessary to 

cover the region (e.g. Skole & Tucker, 1993). The advantage of this approach is its 

potential accuracy, because of the high degree o f detail provided by the 30m resolution 

TM pixels. Many land cover and land use patterns in tropical Brazil are larger than the 30
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m resolution of this data, have relatively distinct spectral signatures, and thus can be 

resolved very well in this approach. The disadvantages of this strategy involve the great 

deal of money and effort to acquire and analyze the TM imagery. Also, for this area, the 

16-day repeat overpass frequency of Landsat will fail in most years to collect completely 

cloud-free imagery over the entire Basin (Asner, 2001). These constraints make the 

production of high-resolution basin-wide products at an annual temporal resolution 

difficult.

A compromise solution, capitalizing on the advantages of the first two approaches, can be 

achieved by combining high resolution and coarse resolution data. This family of 

techniques attempts to preserve detailed land cover information available at small spatial 

scales, while extending the spatial and temporal coverage using coarse resolution data. 

Typically, a subset of possible high-resolution data (e.g., TM) within the region is 

obtained, classified, and coregistered with the coarser scale data (e.g. AVHRR). An 

empirical relationship between the two data sets is then derived for the sampled areas and 

applied to the larger region, resulting in maps of fractional coverage o f the specified 

surface types. Research in this area has primarily involved using one of two classes of 

techniques: linear spectral unmixing or multivariate regression methods. We discuss 

these approaches in the remainder of this Section.

In linear spectral unmixing, spectral endmembers (reflectance profiles for pure classes) 

are identified or prescribed, and spectral endmember libraries are assembled that contain 

the reflectance properties of each end-member. The spectral library is then used to
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estimate the class composition of every pixel. This process is frequently referred to as 

unmixing. Unmixing has been applied to both fine and coarse resolution data, with the 

same principles, though the end-member sets often change at different scales. For 

example, Adams et al. (1995) used fine resolution data to unmix proportions of sub­

canopy components such as photosynthetic vegetation, woody vegetation, soil, and shade 

within Landsat TM pixels (30 m). A number o f studies using coarse resolution data have 

demonstrated the feasibility of unmixing sub-pixel land cover types from AVHRR pixels 

(1000 m) (Atkinson et al. 1997; Hlavka & Spanner, 1995; Kerdiles & Grondona, 1995; 

Cross et al., 1991). The main advantage of this method, besides its potential for efficient 

use of costly high-resolution data, is that it requires only the assumption that different 

land cover mixtures exhibit more or less unique spectral signatures in the large-scale data.

Several studies have demonstrated the applicability of a linear regression-based scaling 

approach to land cover fraction estimation in the US (e.g. Iverson et al, 1994; Zhu & 

Evans, 1994) and in Amazonia (e.g. Hagen et al., 2002). Non-linear regression, in the 

form of artificial neural networks (ANN), is also gaining popularity as tool in remote 

sensing land cover mapping. Several studies have shown ANNs to be at least as effective 

as other sub-pixel fractional estimation methods due to their ability to adapt to non-linear 

relationships between the data sets (e.g. Atkinson et al., 1997; Foody et al., 1997). Most 

of these applications of neural networks involve fixed parameters for learning rate and 

iterations. The optimal values for these parameters will vary depending of specific 

applications. More recently, MacKay (1994) has proposed a technique from Bayesian 

statistics for selecting optimal network parameters. The technique minimizes over-fitting
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by penalizing large network weights. The Bayesian modification to the artificial neural 

network also provides a framework for estimating uncertainty associated with each 

estimate. Uncertainty estimates are increasingly recognized as an important component of 

land cover analysis.

4.2.2 Data sets for regional land cover mapping

Two instruments aboard the NASA Terra satellite platform, MISR and MODIS, have the 

appropriate spatial and temporal coverage for large-scale land cover analyses. 

Furthermore, they have observational characteristics that likely provide complementary 

information about land surface characteristics: (1) near simultaneous multi-angular 

sampling of MISR, and (2) multiple shortwave-infrared bands of MODIS. In this section 

we discuss the relevance of these two aspects

Studies involving the use of multiangle remote sensing data in regional-scale terrestrial 

analyses are relatively scarce, though the potential for capitalizing on these data for land 

cover and biophysical retrieval has been demonstrated both in theory and in the field (e.g. 

Asner et al. 1998; Deering, 1989). The observed dependence of surface reflectance on 

sun-sensor geometry provides a discrete sampling of the bidirectional reflectance 

distribution function (BRDF). The BRDF is analogous to a spectral signature, and is 

known to be sensitive to land surface properties, including the three-dimensional 

structure of vegetation canopies (Grant, 2000). Several studies have used multi-angular 

observations for resolving structural properties of vegetation using POLDER data (e.g.,
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Grant, 2000; Lovell & Graetz, 2002). Other researchers have created synthetic BRDFs by 

assembling multiangular observations from successive overpasses of single view angle 

instruments like AVHRR (e.g., Privette et al., 1996, Braswell et al., 1996). With the 

launch of the EOS Terra satellite, multi-angle data with regional coverage is now 

available from MISR, which images each location on Earth from nine angles, with a 

sixteen day ground track repeat cycle and nine day repeat global coverage.

The utility of shortwave-infrared (SWIR) (1.2 to 2.5 pm) bands for land cover 

characterization is now apparent based on many studies using ETM and SPOT-VGT. 

These mapping efforts, as well as successful application of SWIR-based indices like the 

Normalized Difference Water Index (NDWI; Gao et al., 1996), illustrate the unique 

sensitivity of SWIR reflectance to canopy structure and moisture content. In the tropics, a 

decrease in SWIR reflectance has been correlated with increasing canopy diversity and 

foliar structure changes that are associated with aging of secondary vegetation 

(Steinenger, 2000; Lucas et al., 2002). The MODIS instrument aboard Terra measures 

surface reflectance in three SWIR bands.

4.3 Methods

In this study, we produced a set of sub-pixel land cover fraction estimates at a moderate 

spatial scale (~1 km) in two heavily impacted regions of the Brazilian Amazon region. 

The estimates were predicted using reflectance data from MODIS and MISR, based on 

known land cover estimates derived from unsupervised classification of ETM+ with
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manual image editing. Thus, the coarse resolution observations, derived from the 

available bands and view angles, are treated as independent variables in a top-down 

statistical approach. We compared the relative utility of two estimation techniques, and 

explored the effects of data characteristics by analyzing the output of 11 cases (Table

4.1). In all cases we measured the accuracy using the observed land cover fractions from 

ETM+.

4.3.1 Study sites and data sets

We selected a pair of sites in Amazonia, separated by over 700 kilometers (Figure 4.1), 

which are the subject of a detailed analysis o f land cover conversion and recovery 

(Nelson et al., 2000; Salas, 2001). One study area is in the Brazilian state of Para along 

the Trans-Amazon Highway. This region is characterized by a moderately undulating 

terrain, and intensive land use that extends away from the highway. The native vegetation 

in this area is moist evergreen tropical forest, except in some small patches along the Iriri 

River where the natural land cover is relatively sparse vegetation and flooded forest. The 

city of Ruropolis is near the center of this scene (Figure 4.2b). The other study area is in 

the state of Rondonia, near the city of Ariquemes (Figure 4.2a). The native vegetation in 

this region is also dense tropical forest. These two sites were chosen primarily because of 

their climatic and edaphic differences, which are assumed to affect vegetation structure 

and function. It is also possible that their unique land-use histories have led to differences 

in biophysical characteristics (Stone et al., 1991).
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We used satellite data from three sensors in this analysis: Landsat ETM+, MODIS 

(MOD43), and MISR (MISR LIB and L2). We use the 30 m resolution Landsat ETM+ 

reflectance data to classify land cover into five broad types: (1) mature forest, (2) cleared 

land (for pasture, roads, or cultivation), (3) secondary vegetation, (4) water, and (5) 

cloud/cloud shadow (Figure 4.3). We conducted the unsupervised classification using the 

ISODATA technique (Jensen, 1996). The ETM+ reflectance data were initially grouped 

into 50 clusters, and subsequently assigned to one of the five main classes based on field 

data and knowledge of the region. Some manual editing of the classified scenes was also 

required. The Ruropolis scene was acquired on 30 July 2001. The two Ariquemes scenes 

were acquired about a year apart, 28 June 2000 and 02 August 2001. In the Ariquemes 

area, we are able to disaggregate the secondary vegetation in 2001 into two additional 

classes by overlaying the 2000 land cover data: (1) secondary vegetation older than one 

year and (2) secondary vegetation younger than one year (also referred to as “dirty 

pasture”). This disaggregation is not based on an existing biogeographical scheme, rather 

is intended to allow us to test the ability of the Terra data to resolve differences in 

secondary age using a single image.
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Figure 4.1. The Brazilian Amazon region, and two sub-regions used in this study (rectangles). 
Each sub-region is defined by separate Landsat ETM+ scenes and is approximately 10000 km2 in 
size: (1) near the city of Ruropolis in the State of Para; and (2) near the city of Ariquemes in the 
state of Rondonia. Both areas are undergoing significant conversion of natural forest land for 
agricultural use, but have somewhat different climate, soils, and land use histories. The dark 
shaded area is the “Legal Amazon”, the portion of Amazonia in Brazil. Dark lines are national 
boundaries, and light lines are Brazilian state boundaries.

We acquired 2001 MISR data (L1B2 Terrain Data for Ariquemes and Ruropolis; L2 

Land Surface Data for Ruropolis) over the same areas and from the same orbital paths as 

the 2001 ETM+ acquisitions. The MISR instrument images the Earth in four spectral 

bands [blue (centered at 446 nm), green (558 nm), red (672 nm), and near infrared (867 

nm)] and from nine angles (±70.5°, ±60.0°, ±45.6°, ±26.1°, and 0° from nadir). The MISR 

L1B2 data are top-of- atmosphere, terrain corrected reflectance. This data set is 

atmospherically corrected using parameters derived from 17.2 km blocks of data to create 

the MISR L2 data set. This use of discrete 16 x 16 blocks o f pixels occasionally causes a 

quilted or patchy effect, which we minimize by interpolating the difference between 

corrected and uncorrected data to the 1.1 km pixel level. The MISR atmospheric
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correction routine is performed only if data are collected in all bands and cameras. 

Occasionally, data gaps in one camera or band prohibit atmospheric corrections and thus 

production of level two data. This is the case for the Ariquemes site.

Ruropolis 07/30/2001Ariquemes 08/02/2001

Figure 4.2. A view of the two study areas provided by a MISR false color composite (NIR, red, 
and green reflectance bands from the nadir camera). We used all nine angles and four spectral 
bands of this 1-km resolution data, combined with reflectances from MODIS, to infer subpixel 
patterns of land cover. The area covered by the ETM+ data is shown in yellow. All data used in 
this exercise are from July and August of 2001.

We wished to use the multiple reflectance values associated with the nine nadir and off- 

nadir cameras of MISR as statistical independent variables in a set o f scaling analyses. 

Therefore, it is an important assumption that view angle be the only source of variability 

in data associated with the camera geometries. To help satisfy this assumption, we 

adjusted the surface reflectance values for cross-track effects using a simple radiative 

transfer model according to the method of Rojean et al. (1999). We also created an
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extended cloud mask using thresholded surface reflectance values together with the 

MISR Stereo Cloud product.

35 km

50 km
Figure 4.3. The 30 meter ETM+ data were classified and aggregated to 1.1 km to be used as 
training data for the MISR and MODIS reflectances. The black grid lines indicate the coarsened 
resolution. Within each 1.1 km cell, the fractional area of each class is calculated and assigned to 
a new data layer. For our reference case, three classes are used: forest (green), cleared land (tan), 
and secondary vegetation (red and blue). We also attempt to estimate fractional coverage of two 
secondary vegetation age classes: (red) less than one year since abandonment; and (blue) greater 
than or equal to one year since abandonment.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

CASE A B C D E F G H I J K
Estimation method B-ANN LU B-ANN B-ANN B-ANN B-ANN B-ANN B-ANN B-ANN B-ANN B-ANN
Instrument MISR MISR MISR MISR & 

MODIS
MODIS MODIS MISR MISR MISR MISR MISR

Spectral bands all all All all & 
swir

Vis+nir+
swir

vis+nir all all all all all

Angular bands all all Nadir all nadir nadir all all all all all
Training site Rurop. Rurop. Rurop. Rurop. Rurop. Rurop. Rurop. Ariq. Ariq. Ariq. Rurop.
Testing site Rurop. Rurop. Rurop. Rurop. Rurop. Rurop. Rurop. Ariq. Ariq. Rurop. Ariq.
Atmospheric correction Yes Yes Yes Yes Yes Yes No No No No No
Disaggregation No No No No No No No Yes No No No

ANALYSIS
1. Estimation method X X
2. View angles X X
3. Spectral bands X X X X
4. Atmospheric correction X X
5. Secondary disaggregation X X
6. Spatial extrapolation X X X X

RESULTS
Forest rmse 0.10 0.27 0.14 0.09 0.14 0.15 0.11 0.06 0.06 0.13 0.13
Cleared rmse 0.07 0.20 0.09 0.07 0.09 0.09 0.07 0.05 0.05 0.09 0.11
Secondary rmse 0.06 0.16 0.08 0.06 0.08 0.08 0.06 0.03 0.07 0.04
Young secondary rmse 0.03
Old secondary rmse 0.04

Forest r* 0.78 0.44 0.59 0.80 0.57 0.55 0.73 0.91 0.91 0.62 0.67
Cleared r1 0.72 0.43 0.56 0.74 0.57 0.54 0.76 0.93 0.93 0.58 0.66
Secondary r2 0.63 0.33 0.46 0.61 0.35 0.35 0.64 0.52 0.47 0.28
Young secondary r2 0.34
Old secondary r2 0.40

LU: linear unmixing, B-ANN: Bayesian artificial neural network; mir: mid-infrared; vis: visible; nir: near-infrared; Rurop.: Ruropolis; Ariq.: Ariquemes; 
rmse: root mean square error; std. err.: standard error
Table 4.1. The results of our analysis, performing land cover fraction estimation at two sites and under various condition



MISR radiance data are acquired at a spatial resolution of 275 m, but due to limits on data 

transmission rates, the data for most bands are degraded onboard to a lower (“global 

mode”) resolution of 1100 m. The higher resolution is preserved for the red band and 

nadir view reflectances. For those 12 data layers, we averaged the 275 m data to 1100 m, 

and retained the standard deviation for each o f the 275 m pixels (16 observations per 

1100 km) as textural data layers.

The MISR data are distributed in the Space Oblique Mercator (SOM) projection, and the 

geographic coordinates o f each pixel center point is included in the data set. Using these 

values, we coregistered the ETM+ data, calculating the land cover fraction associated 

with each 1100 m grouping o f ETM+ land cover. This is an approximation due to the 

non-rectangular nature of pixel point spread functions (Fisher, 1997), but we assume this 

is not a serious problem if the land cover mixtures are relatively spatially coherent (e.g., 

Braswell et al., 1996).

We used the nadir-corrected MODIS 16-day composite data set (MOD43) from NASA 

(Wanner et al., 1997). MODIS observes reflectance in seven spectral bands [blue (0.46 

0.48pm), green (0.55 0.57 pm), red (0.62 0.67 pm), near infrared (0.84 0.88pm) and 

shortwave-infrared (1.23 1.25 pm, 1.63 1.65 pm, and 2.11 2.16 pm)] at a resolution of 

approximately 1000 m. MODIS data are collected in large 2330 km swaths, resulting in 

single view angles as large as 50 degrees off nadir. Reflectance artifacts associated with 

sun sensor geometry have been minimized in this data set by normalization of each 

observation to nadir view angles using the radiative transfer model of Li & Strahler
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(1992). We reprojected the MODIS data to the 1.1 km resolution Space Oblique Mercator 

grid of MISR, using nearest-neighbor resampling. A common SOM grid was chosen for 

convenience, because of the availability of a reliable reprojection tool optimized for the 

MODIS data sets (USGS EROS Data Center, 2002).

We selected a spatial subset o f pixels from each of the two study areas that was: (a) 

mostly water-free (< 10% water), (b) cloud-free in ETM+, MODIS, and MISR, and (c) of 

highest quality according to the MISR and MODIS ancillary data (e.g., Figure 4.4). We 

also required that all the data selected for training and testing o f the procedure contain 

mixtures o f vegetation classes. This effectively reduced data volume and increased the 

efficiency of our analyses by excluding a number of 100 % forested 1.1 km pixels. Note 

that there were no 100% secondary pixels or 100% cleared pixels in either of these areas.

4.3.2 Analytical approach

We performed a multivariate analysis to investigate the relative accuracy of two sub-pixel 

land cover estimation approaches, using data from two instruments (Table 4.1). The 11 

cases enabled investigation o f six issues that are listed in the Analysis group o f Table 1 

and discussed in this Section. For most cases, an optimal subset of the independent 

variables was selected that best estimates each land cover fraction through application of 

a stepwise regression procedure (Chaterjee & Price, 1991). Two o f the cases (Case C and 

Case D) required the bands to be pre-selected without the stepwise regression routine. We 

evaluated the accuracy associated with methodology and with independent variable using
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two elementary statistical measures: coefficient of correlation (R2) and root mean squared 

error (RMSE).

mixed land cover 
forest

ETM no data 
water
MISR cloud 
MISR bad data

Figure 4.4. We superimposed a mask of all areas that contained (1) no mixed 1.1 km pixels, (2) 
clouds, (3) water, or (4) bad data, based on inspection of all data sets (compare with Figure 4.2b). 
Clearing and secondaiy areas always covered less than 100% of a MISR/MODIS pixel, so the 
areas in green are undisturbed forest areas. We assume that traditional pixel-based clustering 
algorithms are able to separate homogeneous forest areas from mixed areas prior to an unmixing 
analysis like those presented in this paper.

Our first case comparison involves sub-pixel estimation methods (Analysis 1 in Table

4.1). We compared two mathematical techniques for estimating sub-pixel land cover 

fraction: linear unmixing and artificial neural networks. In linear unmixing (LU), each 

land cover class is assumed to have a unique spectral signature, or endmember 

reflectance. Given data from N  pixels and M  bands, the observed reflectance is assumed
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to be a linear superposition o f the reflectance from each o f the C subpixel endmember 

classes.

R  = E F ,  (4.1)

where R  is an M xN  matrix o f measured reflectance, E is an MxC  matrix of end-member 

reflectance and F is a CxN matrix o f land cover fractions. Using a library of endmember 

reflectance (E), one can solve for F  by inverting Equation 4.1 for each pixel n, solving 

for the fractions f„ within that pixel:

r „ = E- f „ ,  (4.2)

where rn is an M x 1 array of measured reflectances for pixel n, and E is an MxC  matrix of

end-member reflectances. In solving for the land cover fractions within each pixel, there 

are M  equations and C unknowns. Therefore, to find a unique solution, we will need at 

least as many bands as land cover types.

The matrix of end-member reflectances E is typically assembled using field observations 

of reflectance, or by identifying a sample o f pure pixels in the scene for each cover type. 

Alternatively, when pure pixels are not available, endmember signatures can be estimated 

by inversion o f Equation 4.1 with a set of training data (Oleson et al., 1995) (Section 

4.3.3). For each band, mean endmember reflectance values em ( lx Q  are given by
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i* = e„ • F ,m m * (4.3)

where rm is a \xN  array of measurements from band m, and F is the CxN  matrix o f land

cover fractions. In solving for the end-member reflectances, there are N  equations and C 

unknowns. Using a data set of known land cover fractions (e.g., based on ETM+) in 

combination with observed reflectances in several bands (e.g., from MISR or MODIS), 

the unknown spectral signature for each land cover class can be estimated using this 

method. In this case, the problem is highly overdetermined because the number of bands 

is much smaller than the number of pixels.

Artificial neural network (ANN) approaches represent another set of tools for relating 

reflectance values to fractional land cover. In contrast to the inverse procedure of 

unmixing, the ANN is used to perform direct nonlinear regression using pairs o f r„ and f„ 

values from observational and training data. The discussion of ANNs in this section 

follows the notation and logic o f MacKay (1994) who pioneered the development of 

Bayesian ANNs in statistical analysis. An ANN can be thought of as consisting o f a 

number o f “layers”, each having J  “nodes”. A node is a weighted sum of inputs followed 

by application o f a prescribed function. The outputs of all nodes in a layer are collected 

into a new vector and fed into the next layer. Using a two-layer network, fractional cover 

estimation for each land cover class k is defined as

(4.4)
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where g  is typically a linear function (e.g., g(a)=a), g  is a different function that is 

usually nonlinear (e.g., tanh(a)), and M  is the number of bands. The two matrices w(1) and 

w(2) represent the free parameters in the regression and include bias terms for j =0 and i-O. 

In this formulation we reference the elements of r„ and /, and drop the subscript n for 

convenience.

The function in Equation 4.4 is referred to as a network because all inputs can influence 

all outputs, depending upon the values of the weights. Determining the network 

architecture (e.g., choosing a value fo r/)  and using the available data to estimate weights 

and biases are the basic problems o f ANN theory. There is a very large amount of 

literature on this subject and we use one o f the most elementary network types. For 

parameter estimation we use the standard backpropagation algorithm, which updates the 

weights and biases w for each pair o f data vectors r  and f, given a prediction f , in order 

to minimize the error

£ ( w) = £ ( / * ( w) - / * ) 2 (4-5)
k = 1

by estimating the derivative o f E  with respect to w (using Equation 4.1).

Foody et al. (1997) previously used an ANN to map proportions of different land cover 

classes in an area of the Brazilian Amazon region. Our approach differs in one major 

respect: we avoid issues related to model overfitting by including a regularization term in
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the cost function (MacKay, 1994; Bishop, 1995). This Bayesian modification of artificial 

neural networks (B-ANN) effectively limits model complexity to that which is evidenced 

in the data itself. In the Bayesian framework, model parameters are treated as probability 

distributions, and the posterior probability o f the network weights given the set of 

observed outputs/) s 'f n; (« = 1,...,TV) is:

(„ | D) = M O i ^ 0 £ (w )  (4 6 )
p(D)

where /?(D|w) is the probability of the observations given a choice o f weights (the 

likelihood), p{w) is a prior distribution of weight values, and the denominator is a 

normalization constant. Assuming Gaussian distributions for both the likelihood and the 

prior, the posterior distribution is given by

P(™ I D) = ~ e x p ( - ^ E D -ocEw) = ^ -ex p (-S (w )) (4.7)

where Zs is a constant and S  can be written as:

s = p f d'Z(fk(n)(™)-fk(n))2+ « i> ,2 (4-g)
n = l £=1 i= l

The parameters a  and /? represent the variance of the weights and the noise in the data, 

respectively. Thus, maximizing the posterior probability with respect to w, or
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equivalently by minimizing the negative log of the probability S, yields a solution to the 

problem. This amounts to minimizing the modified error function of Equation 4.8 

(compare with Equation 4.5).

4.3.3 Experimental design

We tested the accuracy o f our land cover fraction estimates under various conditions, 

using different input data, and both modeling techniques. The objective o f the 11 cases, 

shown in Table 4.1, was to evaluate the dependence o f results to a number o f factors 

relative to a base case. The base case (A) refers to the within-scene retrieval using the B- 

ANN regression method and all available MISR bands (wavelength and angle) in the 

Ruropolis area. The following sections describe the six questions addressed by the results 

of the various cases.

Estimation method. Land cover fractions from linear unmixing (Case B) were compared 

with results o f the nonlinear regression for the base case (A), both in the Ruropolis area. 

The spectral-directional endmembers (Figure 4.5) for the linear unmixing were derived 

from the ETM-derived fractions and the MISR reflectances by inversion of Equation 4.3 

using a constrained gradient-based optimization procedure.

View angles. We investigated the potential for multiple view angles to improve the 

estimation of land cover class fractions by comparing two estimates for the Ruropolis
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area: using all the available MISR data (Case A), and using only the four MISR nadir 

bands (visible-NIR) (Case C).

Spectral bands. We examined the importance o f wavelength dependence relative to 

angular dependence, and in particular the usefulness of SWIR bands from MODIS for 

modeling land cover fractions. This exercise involved four configurations o f the available 

data: MISR nadir bands, visible to near-infrared (Case A), MODIS visible and near 

infrared bands (Case D), MODIS visible, near infrared, and middle infrared bands (Case 

E), and the combination of MISR bands and MODIS middle infrared bands (Case F).

Atmospheric correction. Tropical atmospheres present numerous challenges to 

atmospheric correction. To examine the effect of unavailable or poor atmospheric 

correction on subpixel land cover estimation accuracy, we estimate fractional land cover 

using Ruropolis data with atmospheric correction (MISR L2) (Case A) and the same 

Ruropolis data set without atmospheric correction (MISR LIB) (Case G).

Secondary vegetation age class. We examined the potential for resolving a greater level 

of detail in our land cover classification. Using classified ETM data from the previous 

year (available for Ariquemes), we were able to disaggregate the secondary vegetation 

class into two sub-classes: greater than one year, and less than one year since 

abandonment. We then used the neural network regression to estimate land cover 

fractions in the Ariquemes area with one secondary class (Case H) and with two 

secondary classes (Case I).

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Spatial extrapolation. For operational mapping of land cover across the entire Brazilian 

Amazon region, an appropriate number of training sites would be selected that samples 

the variability of the desired land cover types. For Ruropolis (Case G) and Ariquemes 

(Case I), we selected 50% of the valid data at random for training, and withheld the rest 

for testing. In order to evaluate our ability to extrapolate, we trained the model at each 

study site and tested the model at the other (Cases J and K). Since MISR data for 

Ariquemes were not atmospherically corrected (LIB), we also used uncorrected MISR 

data (LIB) for Ruropolis.

Whole pixel vs. sub-pixel classification. Finally, we examined the importance of small 

scale heterogeneity in this study by examining the Ruropolis ETM+ based fractional data, 

relative to our base case estimates, in two ways. First, we calculated the actual area in 

each class at the Landsat scene level (about 180x180 km) using the fractional land cover 

data. Then we assigned each 1.1 km pixel into a single class based on the dominant land 

cover class, and recalculated the total area in each land cover class for the entire scene. 

We also examined the estimation results from Case A, comparing the predicted area in 

each class using the sub-pixel estimation results to the actual area in each class.

4.4 Results and discussion

The results o f the 11 cases reveal a large range in ability to estimate sub pixel land cover 

fractions (Table 4.1; note that the following section numbers correspond to the Analysis
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section numbers in Table 4.1). The sub-pixel fraction estimates for our base case (Case 

A; using the B-ANN, and trained and tested in Ruropolis) show good reproduction of 

spatial land cover distribution patterns. However, some overestimates o f secondary 

vegetation, and corresponding underestimates of forest, are evident throughout the scene. 

A view o f the area around the city of Ruropolis reveals the details (Figure 4.6). The 

model accurately predicts the heavy concentration of cleared area directly along the 

roads, as well as the large secondary vegetation patch south of the intersection o f two 

main roads. Estimation error is distributed approximately randomly throughout the area 

of concentrated land use along the Trans-Amazon Highway.

Overall, the predicted spatial patterns of the forest and cleared classes are consistently 

better than results for the secondary class, as captured by explained variance (R ). The 

secondary vegetation class encompasses the greatest variation in vegetation structure and 

in foliar properties associated with successional stage. This class also represents the least 

total land area in both scenes (Table 4.2).

4.4.1 Sub-pixel estimation method

Non-linear regression using Bayesian artificial neural networks (B-ANN) (Case A) was 

considerably more successful than linear unmixing (LU) (Case B) at estimating sub-pixel 

land cover fraction near Ruropolis (Table 4.1). For all three land cover types, the root 

mean squared error (RMSE) associated with the B-ANN results was less than half that for 

the LU-derived fractions. The correlation coefficients (R ) for both techniques were
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significant, but the B-ANN allowed a better fit to the data, for all land cover classes in 

these two cases.

4.4.2 Multiple vs. single view angles

The results from the linear estimation of endmember signatures using Equation 4.3 

showed that each vegetation class has a more or less unique spectral-bidirectional 

signature (Figure 4.5). These signatures show dependence on both wavelength and 

camera view angle, with the strongest angular variation occurring in the NIR bands. 

Lower error and better model fit diagnostics were obtained by using all possible MISR 

bands (Case A) as opposed to using only the nadir camera MISR bands (Case C). The B- 

ANN regression method was used in both cases.

4.4.3 Visible and NIR vs. Visible. NIR. and SWIR

We observed a slight improvement in estimation of sub-pixel fraction when incorporating 

the MODIS SWIR bands (Case F) into the possible set o f variables, compared to the base 

case with visible and NIR reflectance and all angles from MISR (Case A). For the 

Ruropolis region, MISR performed slightly better than MODIS in a head-to-head 

comparison (Cases A and E). In another analysis, using the four visible and near infrared 

spectral bands from MODIS and the MISR nadir view (Cases C and D, respectively), we 

see little difference. Previous tropical vegetation remote sensing studies have shown that 

SWIR reflectance is sensitive to canopy water content and gap fraction, and is potentially
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useful for detecting changes associated with forest regeneration (e.g., Lucas et al., 2002). 

For the broadly defined classes in this study, this sensitivity apparently leads to large 

within-class variability in reflectance and lower than expected ability to resolve 

distributions of class mixtures.
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Figure 4.5. (a) Mean reflectance in all M ISR bands and nominal view angles for the Ruropolis 
study area, (b-d) Angular-spectral endmembers for the three main land cover classes, estimated 
by assuming linear mixing across the entire Ruropolis study area. These values are estimated by 
inverting the mixture equation (Equation 4.3) for the endmember reflectance, one band at a time, 
using all the reflectance data R  and all the fraction data F  for the scene. The endmembers are 
presented as differences from the mean reflectance profile.
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Forest Secondary Cleared

ETM+
observed

MISR
predicted

absolute
error 0.13

F igure 4.6. Observed and predicted values o f forest, secondary, and cleared fractional areas for 
the reference case in Ruropolis (Case A, Table 4.1). Note the differences in scale associated with 
natural distributions o f these classes within 1.1 km pixels. Grey areas are pixels with missing 
ETM+ or M ISR data. This is close-up o f an approximately 80 km square area around the city o f 
Ruropolis (broader region shown in Figure 4.2b), revealing good representation o f spatial patterns 
for the fractions, especially edge effects, and very little spatial structure in the residuals o f  the 
estimation (bottom three panels).

Ruropolis scene-level landcover area km2

landcover ETM+ observed 
fractional pixel whole pixel

MISR 
predicted 

fractional pixel
forest 24,561 25,206 24,157
cleared 1,029 870 1,038
secondary 799 318 1,041

Table 4.2. Observed and predicted regional estimates o f  total area in a given class for the 
Ruropolis scene, based on using the subpixel fractions and, for the observed data set, assigning 
the pixel to 100% o f the dominant class.
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4.4.4 Atmospheric correction

Despite obvious atmospheric effects in both data sets, our results using MISR were not 

sensitive to atmospheric correction. The estimation results from the Ruropolis data set 

with atmospheric correction (Case A) were not very different from the results using the 

same Ruropolis observations with no atmospheric correction applied (Case G). Based on 

the weighting of the bands in the regressions, we suggest that the availability o f blue and 

green visible bands in the analysis allowed for an automatic adjustment for atmospheric 

optical depth, similar to that employed in the widely used enhanced vegetation index 

(EVI) (Huete et al., 1997).

4.4.5 Secondary vegetation age class discrimination

In Ariquemes, we were able to test the ability of the model to discriminate between two 

age classes of secondary vegetation (Cases H and I). The results from these two cases 

were similar for forest and pasture fractions, but with lower accuracy for the 

disaggregated secondary vegetation classes. The model only captured about one third of 

the variance (R of 0.34 and 0.40) in the two secondary age classes. Despite the poorer 

model fit, RMSE values were relatively unaffected relative to the case of a single 

secondary class. This result is encouraging, given the potentially subtle radiometric 

differences associated with different aged stands, and the fact that several other land 

cover transitions could give rise to both sub-classes. For example, a one year old
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secondary pixel could have contained pasture or forest (rapidly cleared and abandoned) in 

the previous year.

4.4.6 Spatial extrapolation

The comparison of the results obtained from training and testing in Ruropolis (Case F) to 

the results from training in Ariquemes and testing in Ruropolis (Case I) show somewhat 

poorer results for the spatial extrapolation. The comparison of the results obtained from 

the training and testing in Ariquemes (Case H) to the results from the model trained in 

Ruropolis and tested in Ariquemes (Case J) also show reduced accuracy in estimating 

sub-pixel land cover fraction due to extrapolation. Despite the degraded results, this 

exercise demonstrates that the B-ANN approach combined with MISR data creates a 

model general enough to extrapolate results to new areas. These results give us an 

indication of some of the difficulties introduced by extrapolating a model that is trained 

in a location with different land cover distributions, vegetation structure, topographic 

conditions, atmospheric conditions, and angular effects, among other difference. Also, 

inconsistencies in manual editing o f ETM+ classifications contributed to the error.

4.4.7 Whole pixel vs. sub-pixel classification

O u r exam ination  o f  sm all-scale he terogeneity  effec ts on  estim ates o f  to ta l land cover area 

illustrates the fact tha t w hole p ixel classification  can  resu lt in a  significant 

underestim ation  o f  non-dom inan t classes (e .g ., clea red  and  secondary), and an
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overestimation o f the dominant class (e.g., forest) (Table 4.2). The results also show that 

sub-pixel fractional estimates using MISR result in good agreement in total area for each 

type at the scene level. Totals of predicted forest and cleared areas are each accurate to 

within 2% of observed values, and total secondary area is 26% greater than observed 

area. This relatively large error is not surprising given the highly fragmented and broadly 

defined nature of this class, but it compares quite favorably to the 43% under-prediction 

that would result from using an ideal whole pixel classification (Table 4.2) based on 

known dominant fractions.

4.5 Conclusions

The results presented in previous sections suggest that nonlinear regression offers 

significant improvement relative to linear unmixing for estimation of sub-pixel land 

cover fractions in the heterogeneous disturbed areas of Brazilian Amazonia. This 

improvement is likely due to the fact that linear unmixing assumes the existence of pure 

sub-pixel classes with fixed reflectance signatures (endmembers). In this application, two 

of the land cover classes (cleared land and secondary vegetation) are comprised of areas 

with very different biophysical characteristics. Thus, the endmembers are relatively 

poorly resolved despite our ability to manually assign ETM+ pixels to these classes. The 

B-ANN approach estimates nonlinear relationships between each land cover fraction and 

reflectances, without making assumptions about the physics of sub-pixel mixing. With 

respect to the observed cross-validation accuracy, the neural network formulation we
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used included a Bayesian regularization term, and is therefore designed to generalize 

well.

Both moderate resolution Terra data sets (MODIS and MISR) provide similar 

information for resolution of land cover types in this study, though MISR does 

marginally better. Results using the merged data (MISR plus MODIS SWIR) suggest 

potential synergistic gains in accuracy, which warrants evaluation in future studies. 

Comparison of the full set o f regression results suggests that discrimination o f diverse 

land cover types is aided by both angular and spectral information, and that the critical 

independent variables may be different for different types. In general, we conclude that 

multivariate approaches that utilize a large number of bands and view angles allow for 

the selection of the critical independent variables for a given application.

It is important to evaluate potential extrapolation errors for a procedure that ultimately 

would be used for large-scale analysis. In this preliminary study, RMSE increased from 

the base case by 18% to 100% depending on location and land cover type. These results 

are encouraging, given that only two sites were used, and that they are over 700 

kilometers apart. Future analyses will incorporate a denser sampling of ETM sites for 

training and testing. We were not able to explore the interaction between atmospheric 

correction effects and extrapolation error due to limitations in data availability for our 

study sites, but expect differences in atmospheric optical depth to be a primary source of 

extrapolation error. On the other hand, the selection o f blue bands in the cross-validation 

regressions suggests that the statistical models exhibit some degree of self-correction.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Quantitative interpretation of satellite data at the pixel level is potentially confounded by 

errors in registration as well as from adjacency effects (Fisher, 1997, Townshend et al., 

2000). Spatial averaging can minimize these problems (e.g., Hagen et al. 2002), trading 

off resolution for overall accuracy. Therefore, the fractional cover estimates in this study 

represent an extreme test o f the data and methods. Evaluation of estimated total class 

areas for the entire scene (Table 4.2) supports this notion. The size of an ETM scene 

(-10,000 km ) is comparable to, or smaller than most global climate model grid cells. In 

fact, many modeling applications that utilize land cover information could tolerate some 

degree of spatial degradation in exchange for improved estimates of energy, moisture, 

and carbon exchange.

Multiangle observations from MISR are relatively untested in terrestrial applications, and 

in this study they provided significant resolving power for estimation of sub-pixel 

vegetation fractions. There are theoretical and empirical reasons to expect the view angle 

dependence of land surface reflectance to be governed by variations in canopy structure, 

and though some satellite studies exist, the full potential of multiangle remote sensing for 

ecological studies using global scale satellite data is not known. In this study we have 

taken an additional step toward broad exploitation of multiple view angle remote sensing 

in terrestrial research.
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CHAPTER 5

STATISTICAL UNCERTAINTY OF EDDY FLUX BASED ESTIMATES OF 

GROSS ECOSYSTEM CARBON EXCHANGE AT HOWLAND FOREST,

MAINE4

5.1 Introduction

Efforts to accurately predict patterns of carbon dioxide exchange between terrestrial 

ecosystems and the atmosphere are currently limited by our ability to represent the 

relevant biogeochemical processes in unifying models, which typically parameterize 

fluxes as a function of environmental variables. Models of the global carbon cycle need 

to accurately capture the dynamics of terrestrial biosphere-atmosphere exchange at a 

range of time scales, because forcings and responses occur across a broad temporal 

spectrum, from seconds (e.g., light capture by leaves) to years (e.g., community 

dynamics). Field biometric studies have historically been used to validate model 

predictions at long time scales, and evaluation o f the rapid ecophysiological mechanisms

4
This chapter is based on and contains material from a paper published in 2006:

Hagen, S.C., B.H. Braswell, E. Linder, S. Frolking, A.D. Richardson, and D.Y. Hollinger (2006) Statistical 
uncertainty of eddy flux-based estimates of gross ecosystem carbon exchange at Howland Forest, Maine. 
Journal o f Geophysical Research-Atmospheres, (111): D08S03, doi:10.1029/2005JD006154. Reproduced 
by permission of American Geophysical Union.
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has been limited to important, but temporally sparse, leaf and soil chamber 

measurements.

In the past decade, at several hundred locations around the world, eddy flux tower 

measurement programs have been established to quantify ecosystem-atmosphere CO2 

exchange with high frequency, near-continuous, multi-year measurements. These net 

ecosystem exchange (NEE) measurements provide another data source for ecosystem 

model evaluation. One primary advantage of using eddy flux data for process studies and 

model evaluation is the continuity of the measurements, with time intervals typically 0.5- 

1 hour. Many time series are now between 5 and 15 years in duration (e.g., Harvard 

Forest, Wofsy et al., 1993; Walker Branch Watershed, Balddocchi & Vogel, 1996; 

Howland Forest, Hollinger et al., 2004). Another advantage is that the measurements are 

associated with a growing and coordinated effort (e.g., AmeriFlux) to establish networks 

of towers that span a range of ecosystem types and environmental conditions. Also, eddy 

flux sites tend to be foci for a suite of other measurements including meteorological 

variables, biometry, and other types of flux measurements. The primary disadvantage, 

with respect to understanding terrestrial biogeochemistry, is that measurements of eddy 

flux do not themselves directly quantify specific ecosystem processes but rather the net 

result o f several processes. O f secondary concern are occasional instrument failures and 

other normal data collection gaps and errors.

Net ecosystem exchange observations record the typically small imbalances between the 

gross component fluxes of ecosystem respiration and photosynthesis (Wofsy et al., 1993),
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and while NEE data can be compared to model predictions, it is often more desirable to 

validate modeled component fluxes independently. The gross fluxes individually reflect 

distinct sets of processes whose mechanisms might influence one another but are largely 

separable. The net flux does not constrain the overall dynamics as well as the component 

fluxes because the net flux could be mistakenly modeled by gross fluxes having large 

compensating errors. Furthermore, some models, for example those driven by remote 

sensing observations, focus on uptake by photosynthesis, also known as gross ecosystem 

exchange (GEE), with little or no attempt to predict respiration (e.g. Prince & Goward, 

1995, Xiao et al., 2004). Models such as these require independent GEE estimates for 

validation, and eddy flux observations o f NEE can be useful in estimating these 

independent GEE data sets.

In principle, the eddy flux data, along with associated meteorological drivers (e.g. 

temperature, solar radiation, humidity) contain enough information that will allow 

separation of the net flux into its gross components (Goulden et al., 1996a), though there 

is currently no agreed upon approach for doing so, and the underlying uncertainties are 

not well quantified. The basis for this disaggregation is the fact that nighttime NEE 

reflects respiration processes only, and to the extent that respiration can be predicted 

during the day based on relationships with predictor variables at night, daytime GEE can 

be estimated essentially as the difference between NEE and modeled respiration. Thus, 

GEE estimates rely heavily on model predictions for large contiguous intervals (i.e. all 

daylight hours). Like any statistical inference, this process carries with it some prediction
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uncertainty that should be quantified in order to compare tower-based GEE with 

independent observations or model predictions.

An additional factor that must be considered in utilizing eddy flux data is the existence of 

missing data resulting from inevitable instrumental lapses. Also, periods of low 

atmospheric turbulence result in CO2 flux measurements that are not representative o f the 

actual ecosystem-atmosphere exchange, and these data typically are removed prior to 

analysis (Goulden et al., 1996b). Altogether, the resulting gaps can be extensive and non- 

randomly distributed in time. The implication for estimating GEE is that an additional 

model to fill daytime NEE gaps must be defined and parameterized, which adds some 

amount of quantifiable prediction uncertainty.

One possible framework for constructing a time series of ecosystem uptake (GEE), given 

the data and a choice of models, is

G =
0 Night

R - F  Day, No Gap}-, (5.1)
R - F  Day,Gap

where G is GEE, F  is the observed net flux (NEE), and R and F  are the modeled 

respiration and daytime NEE, respectively. Several previous studies have focused 

separately on issues related to “gap filling” (e.g. Falge et al., 2001), i.e. defining and

evaluating the model F , as well as the general problems of disaggregating NEE into 

component fluxes, which has focused principally on choosing an appropriate regression
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model for/? (e.g. Goulden et al., 1996a). More recently, however, data assimilation 

techniques have been used to both fill gaps in flux records and disaggregate NEE into 

component fluxes (Jarvis et al., 2004, Gove and Hollinger, 2006).

To most appropriately use eddy flux derived GEE for comparison with process models, 

satellite data, or other field observations, the statistical uncertainties associated with the 

inference of daytime respiration and NEE during gaps should be quantified so that error 

bars can be applied at any given choice of time scale. Commonly used statistical 

approaches for providing error bounds using analytical formulas, such as the formula 

used to estimate the prediction interval for least squares regression predictions, are not 

applicable to these data because the underlying assumptions of these approaches do not 

hold (Hollinger and Richardson, 2005). For example, eddy flux CO2 data and the 

predictions obtained from regressions using these data have (1) non-constant variance, (2) 

non-independence o f residuals, (3) non-Gaussian noise, and (4) potential sampling bias 

due to the non-random distribution of data gaps. Hollinger and Richardson (2005) 

conclude that the first three properties listed above result from a combination of the 

stochastic nature of turbulence, occasional large instrument errors, and the non-uniform 

occurrences of environmental driving conditions (e.g. over 24 hours, there are far more 

instances of zero solar radiation than higher values).

Monte Carlo based statistical techniques such as resampling with replacement 

(“bootstrapping”) (Robert & Casella, 1999) provide a computational solution to the 

problem of estimating statistical uncertainty in nonlinear model predictions and data with
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complicating features such as severe heteroscedasticity. Previous studies have utilized ad 

hoc approaches inspired by bootstrapping to estimate uncertainties of net CO2 exchange. 

Often, the technique is used to estimate uncertainty in a sum of flux estimates over time. 

The most common application includes the random simulation and filling o f additional 

data gaps (Falge et al., 2001, Griffis et al., 2003). Another Monte-Carlo technique applied 

to net flux data involves modeling and repeatedly resampling residuals to estimate 

uncertainty (Saleska et al., 2003). Uncertainty due to gaps has also been estimated by 

creating seasonal populations o f daily carbon balance that are randomly sampled for 

comparison with actual fluxes (Goulden et al., 1996b). Quantification of the measurement 

uncertainty in flux observations has recently been addressed (this includes defining a 

suitable probability density function and some measure of the variance) (e.g. Hollinger 

and Richardson, 2005). Following model parameter optimization using maximum 

likelihood techniques, random noise with the same statistical characteristics as the 

measurement uncertainty of the original data can be added back to the model output 

(Press et al., 1993). By using repeated simulation, as in a Monte Carlo approach, 

uncertainty limits can be estimated for model parameters, gap-filled values, or annual 

sums (e.g. Richardson and Hollinger, 2005).

In this paper, we present an example o f statistical uncertainty estimation and error 

analysis for a GEE time series, based on eddy flux data from the Howland Forest in 

Howland, Maine, USA. Our analysis differs from previous work in several ways. First, 

we are focusing on gross ecosystem exchange, a component flux that reflects a distinct 

set of ecosystem processes, as opposed to ecosystem respiration or net flux. Second, we
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account for uncertainty due to model parameterization as well as the uncertainty 

associated with the random nature of the flux observations (earlier studies have focused 

on one or the other). We recognize that uncertainty in ecosystem flux arises from sources 

other than the statistical modeling, including different choices of friction velocity 

thresholds for filtering, variability in tower footprint, and changes in the system (i.e. 

insect infestations, large tree blow downs, etc.). In this analysis, we estimate patterns of 

uncertainty that are related only to statistical inference. Third, our method does not 

require the generation of additional gaps; and, therefore allows us to estimate statistical 

uncertainty at any time scale, from half-hour to multi-year. Lastly, we perform a 

sensitivity analysis of the uncertainty o f half-hourly to annual GEE estimates using 

different modeling approaches and different statistical assumptions, in an attempt to 

understand the effect of model choice on the estimates. We examine and quantify the 

90% prediction intervals for one site, but our discussion of the general implications of our 

results for the role of data and models in understanding ecosystem processes is not site 

specific.

5.2 Data

Howland Forest is an AmeriFlux research site located at 45.20°N and 68.74°W, about 35 

miles north o f Bangor, ME. The site is dominated by red spruce and eastern hemlock.

The vegetation, soils, and climate o f this site have been thoroughly described elsewhere 

(Hollinger et al., 1999). The main eddy-flux research tower has been operational since 

1995.
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We examined seven years of C 0 2 flux data (NEE) measured half-hourly from 1996 

through 2002 (Figure 5.1a). We screened out flux data with low friction velocity (u* < 

0.25 m s'1; Hollinger et al., 2004). The friction velocity screening, primarily, and the 

occasional instrument failure, secondarily, combine to reduce the amount of available 

data. There are also other periods when data don’t meet quality standards and are 

rejected. The resulting time series of NEE data contain available observations for 49% of 

all half-hour intervals (Figure 5.1b). To compute GEE for each of the 61,362 daytime 

half-hours in 1996-2002, we need to model all 61,362 (100%) respiration values and 

24,295 (40%) missing daytime NEE values. The NEE time series is missing 39,382 

(64%) nighttime observations. While the nighttime measurements are not used directly in 

the GEE estimates because we assume no photosynthesis occurs in the dark, the valid 

nighttime NEE observations are used fit the respiration model.

Half-hourly meteorological data (including air temperature, soil temperature, solar PPFD, 

and vapor pressure deficit) from the Howland tower were used as driving variables for 

the GEE modeling.
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Figure 5.1. (a) Time series o f  valid observations o f  NEE at Howland Forest, Maine, and (b) the 
fraction available data per week. In this study we used half-hourly data for intervals in which u* 
> 0.25. Overall, the remaining observations amounted to 49% o f the total time intervals.
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5.3 Methods

To estimate GEE and the associated uncertainty range given an observed NEE time 

series, the following components are needed: (1) a statistical regression model, (2) an 

expression for the likelihood of the data given a model (which implicitly provides a cost 

function), and (3) a strategy for calculating distributions that represent the probability that 

a missing flux observation would have taken a certain value. From these distributions, 

attributes such as the mean and variance (i.e. uncertainty) of the GEE estimates can be 

derived for any desired time scale.

Our goal is to present a general analysis framework to bracket GEE estimates, rather than 

to present a comprehensive exploration o f all possible model formulations that could be 

used in this context. Therefore, we chose two previously employed models for respiration 

and daytime NEE, one physiologically based (Hollinger et al. 2004), and the other a 

fully-empirical, nonlinear regression model (e.g. Papale & Valentini 2003). Our priority 

is to evaluate the magnitude and uncertainties associated with each approach, but not to 

compare the relative usefulness o f the two approaches, primarily because they utilize 

different amounts of information from independent variables. We also evaluate two 

assumptions about the underlying error distribution o f the modeled flux (i.e. the 

likelihood of the data given the model). One is a Gaussian error distribution, giving rise 

to least-squares estimates; the other is a two-sided exponential error distribution, giving 

rise to minimization of absolute differences.
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We disaggregated the valid half-hourly CO2 flux measurements into nighttime (PAR < 5 

pmol m'2 s '1) and daytime (PAR > 5 pmol m'2 s '1) periods. To model daytime respiration, 

we fit both a typical physiological ecosystem respiration model and an artificial neural 

network to the observed nighttime flux data. These models, which relate ecosystem 

respiration to observed biophysical variables (e.g., nighttime soil temperature), are then 

used to estimate daytime ecosystem respiration based on daytime observations o f the 

same variables. To fill gaps in daytime NEE data, we again fit the same two types of 

models to the observed daytime flux data, based on environmental drivers (e.g., daytime 

air temperature and PAR), and then used the model to estimate daytime NEE based on 

the available data. We then estimated GEE using Equation 5.1, and calculated the 

uncertainty associated with the modeling using a bootstrapping approach, which produces 

empirical distribution functions for the modeled missing data.

We examined the influence o f three factors on GEE estimates, resulting in eight sets o f 

model results, parameters, and posterior distributions. We used two different models 

(physiological and neural network), assumed two different error models (Gaussian and 

two-sided exponential), and applied the method to the two flux data sets (respiration and 

daytime NEE) (Equation 5.1). In the following sections we discuss the details of these 

cases, and of the bootstrap algorithm.
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5.3.1 Phvsiologicallv-based (PBt model

5.3.1.1 Respiration component

For respiration modeling, we used available nighttime respiration data to train a simple 

physiological model o f respiration—a three-parameter exponential function of soil 

temperature at 5 cm depth, Tsoa (Lloyd & Taylor, 1994; Hollinger et al., 2004), with one 

set of parameters, regardless of season:

-£q
R = A e{T'°"~T{>) (5.2)

where A is a scaling factor, Eo is the soil temperature-adjusted activation energy (in 

degrees Kelvin), and To is a reference soil temperature between 0° K and Tsoii. Because A 

and Eo are highly correlated parameters (Richardson and Hollinger, 2005), we fixed the 

value of Eo at 113.4 K (Hollinger et al., 2004) and optimized the two remaining 

independent parameters, using a constrained minimization algorithm.

5.3.1.2 Daytime Net Ecosystem Exchange component

The physiological model we used to fill gaps in daytime NEE combines the respiration 

component above with a rectangular hyperbolic equation that relates photosynthesis to 

PAR, regulated by an optimum air temperature. This Michaelis-Menten type functional

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



relationship requires fitting three additional parameters, for a total o f five independent 

parameters:

   p  J  (  ’T ' l  r> rp  \

^ e (T,o i i - T o )  m PAR 1 air  _  air

I  p a r  v  a

Tair > 0andTsoiI > 0
(5.3)

where Ipar is the incident horizontal photosynthetically active radiation and Tair is the air

temperature. The parameters are Pm, the maximum rate of photosynthesis, a, the 

normalized parabolic air temperature response with an intercept of zero, and Km, the 

photosynthetic half-saturation constant. We used the previously optimized nighttime 

values for A and To (Section 5.3.1.1). When Tair or Tsoii is less than 0°C we assume that 

GEE = Oand F =  R .

The PB model was chosen for its simple representation of the system (i.e. five 

parameters) and its relatively wide use in the forest ecosystem community. For additional 

simplicity, the parameters are assumed constant across the years. Other analyses with 

Howland data suggest that fitted parameters o f similar models change seasonally and 

between years (e.g. Hollinger et al., 2004; Gove and Hollinger, 2006).
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5.3.2 Artificial Neural Network (ANN') model

The physiological models used here represent a family of functions whose characteristic 

shapes are constrained by prior knowledge of, or assumptions about, the relationships 

between a set of independent variables and the response (e.g. the soil temperature control 

of respiration). In contrast, the ANN approach focuses solely on characterizing the 

relationship between the valid NEE measurements and the climate measurements, 

making no assumptions about physiological processes, so the functional dependence of 

daytime NEE and respiration on biophysical predictor variables is not prescribed. Other 

studies have used this modeling approach for the purpose of gap filling flux data (e.g., 

Papale & Valentini, 2003).

We apply essentially the same ANN architecture separately to valid nighttime NEE data 

for modeling ecosystem respiration, and to valid daytime NEE data to model NEE where 

it is unavailable. The respiration model is driven by soil temperature, air temperature, 

surface soil moisture, and a seasonal indicator in the form of sine and cosine functions of 

the day of the year. The daytime NEE model adds photosynthetically active radiation 

(PAR), vapor pressure deficit (VPD), and sine and cosine functions of the hour of the day 

as additional input drivers.

An artificial neural network model is a multi-stage nonlinear regression function where 

the intermediate values are called hidden nodes. For example, with two stages y=f(g(x)), 

or more specifically:
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y k = f
M  (  D

2H2)4 z
v./=0 \ » = o

(5.4)

where x  represents the collection of independent variables in the regression (in our case 

the biophysical drivers). The outer function^-) is usually linear and the inner function 

g(-) is a nonlinear, typically sigmoidal function, such as the hyperbolic tangent. The free 

parameters in this regression are “weights” wp and w*,, which represent the strength of 

the connection between the i* input and the intermediate value (represented by the M  

evaluations of g ) and also between the j*  intermediate value and the k*11 output value y  (in 

our case NEE or respiration). This ANN has D  inputs and M  hidden nodes.

This regression approach is referred to as a network because all inputs can influence all 

outputs, depending upon the values of the weights. For estimating the parameters, we use 

the standard backpropagation algorithm (Bishop, 1995), which updates the weights for 

each pair of {yt, x,} data vectors in order to minimize the error. We also incorporate a 

Bayesian modification of artificial neural networks (MacKay, 1994) that limits the 

complexity o f the model to that which is supported by the data, avoiding the common 

neural network problem of overfitting. In our study, we independently verified that the 

models do not overfit (as part o f the K-fold validation exercise below) and, therefore, that 

the  results are no t dependen t on  the  choice o f  the num ber o f  h idden  nodes M .
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5.3.3 Error distribution

There is evidence that errors associated with eddy flux observation are better represented 

by a two-sided exponential distribution than a Gaussian distribution, i.e. they are 

leptokurtic with outliers (Figure 5.2) (Hollinger and Richardson, 2005; Richardson and 

Hollinger, 2005). We performed a multi-part analysis with the two types o f regression 

models, considering in each case both an underlying Gaussian and an underlying two- 

sided exponential distribution. We evaluated the assumptions of underlying error 

distribution by posterior analysis of the model residuals.

We alter our assumption of how the error is distributed by specifying the form of the cost 

function that is minimized in the optimization routine. When assuming a Gaussian error 

distribution, we minimized the usual least-squares error function. In the case o f the two- 

sided exponential distribution assumption, we minimized the weighted absolute value of 

the residuals. We used weights based on the recommendation of Richardson and 

Hollinger (2005) that the intrinsic observational uncertainty is well represented by an 

exponential function of soil temperature. More specifically, as can be seen in the data, the 

uncertainty in flux observations scales with the magnitude of the flux (i.e. absolute error 

is larger when the absolute flux is larger), and to obtain an independent estimate of that 

uncertainty, we express the uncertainty as a function of soil temperature
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5.3.4 Uncertainty analysis

Ecosystem carbon flux is an aggregate property of a system containing many physical, 

chemical, and biological interactions. For example, nighttime NEE generally increases 

exponentially with increasing soil temperature, and a simple physiological model 

captures the basic relationship (Figure 5.3a). However, substantial noise (i.e. model 

residuals) remains after this simple relationship has been accounted for (Figure 5.3b). 

This residual noise is due to both measurement uncertainty and model uncertainty (i.e. 

noisy data and an imperfect model), with model uncertainty potentially due to both 

parameterization and choice of functional form. In addition, the variance of these 

residuals can be heteroscedastic (i.e. not constant with respect to one or more o f the 

independent variables); in this case, the residual variance varies with soil temperature 

(Fig 5.2b).

Many approaches to uncertainty estimation (e.g. least squares regression) assume that the 

data have constant variance and Gaussian noise, and that the regression model has 

independent identically distributed residuals. Eddy flux observations and associated 

models generally do not conform to these assumptions, but computational solutions exist. 

The bootstrapping approach (resampling with replacement) to uncertainty assessment is 

one of several techniques more appropriate than conventional analytic methods for data 

with heteroscedastic and non-normally distributed errors. This method assumes that the 

observed data represent only one possible realization out of many, and reconstructs a 

large number of alternate realizations based on random resampling of residuals.
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Bootstrapping brackets the range of unobserved values conditioned on the assumption of 

the model and its associated likelihood function (Efron & Tibshirani, 1993).

12000

10000

8000

2. 6000

u_

4000

2000

-15 -10 -5
R esidual Flux (pm ol C nrf2 s  1)

Figure 5.2. The residuals of a model fit to nighttime NEE, or ecosystem respiration, (shaded 
bars) are distributed with a kurtotic peak around zero. This distribution resembles a two-sided 
exponential distribution (dashed line) more than a normal distribution (solid line).

Previous studies have used Monte Carlo analyses for estimating modeling uncertainty in 

NEE and GEE, but most provide a measure o f variability centered on the mean response 

of a model prediction at a point in time, and do not consider the additional uncertainty 

due to the random deviations from the mean response o f any individual eddy flux 

observation (e.g. Griffis et al., 2003; Richardson & Hollinger, 2005). Other studies have 

accounted for the random processes associated with NEE, but have not considered the 

uncertainty in the mean response (e.g. Saleska et al., 2003). Uncertainty about the mean
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response is known as the confidence interval, while this same uncertainty plus the

additional uncertainty due to inherent variations in the data is called the prediction

interval.
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Figure 5.3. (a) Nighttime flux (respiration) was fit using an Arrhenius function (Lloyd & Taylor, 
1994) of soil temperature (gray line; see Equation 5.2 in text), (b) The variance of the residuals 
from this model is heteroscedastic, with variance increasing at higher temperatures, (c) One 
example of the 1000 artificial data sets, constructed by randomly adding residuals (bootstrapping) 
to the simple fitted function in panel (a), (d) A histogram of soil temperature for the entire time 
period. Each bar is split into fraction of half-hours having a valid respiration observation (dark 
gray) and fraction needing modeled respiration (light gray). Bin locations and sizes from this 
histogram (d) were used to construct the artificial data sets (c).

In this study, we present uncertainty as a 90% prediction interval, which brackets 

uncertainty about an estimate based on new data (i.e. gap filling), which is an appropriate
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statistical measure o f our knowledge (or lack of knowledge) about predicted values. 

Below, we outline our implementation of the non-parametric resampling approach 

(bootstrapping), which is based on the statistical theory of Efron & Tibshirani (1993) and 

recent algorithms described by others (e.g. Robert & Casella, 1999).

The bootstrap is a simulation based calculation o f the properties o f an arbitrary estimator, 

typically the bias or the standard error, and can also be used to calculate confidence and 

prediction intervals. Since in the bootstrap algorithm the data are resampled, there is no 

underlying assumption about the statistical distribution. In regression models, where the 

statistical assumptions pertain to the model errors, the residuals are resampled and added 

back to the fitted values to create bootstrap replicates of the data. The regression model is 

then refit to each replicate, and the resulting empirical distribution o f the recalculated 

estimators provides the desired properties. In our case we evaluate the statistical 

properties (90% prediction intervals) o f the estimators for the response where the original 

data were missing. This procedure makes no assumptions of the statistical distribution of 

the residuals. To account for heteroscedasticity as a function of a covariate variable we 

propose a simple residual binning (Step 3 below). The text below outlines the bootstrap 

algorithm:

Step 1. The regression model (either PB or ANN) is fit to the valid observations (e.g.

Figure 5.3a).
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Step 2. The residuals from this fit are calculated (e.g. Figure 5.3b), and the variance of the 

residuals is examined for a significant dependence on the driving variables (e.g. soil 

temperature).

Step 3. If there is significant heteroscedasticity, the main driver of the non-constant. 

variance is identified. The range o f this driving variable is divided into several 

intervals, and the residuals are binned based on the value of the driving variable at the 

time of measurement (e.g. Figure 5.3d). In the analysis, both daytime NEE and 

respiration residuals, for both the PB and ANN models, were divided into eight bins 

based on soil temperature.

Step 4. An artificial data set (e.g. Figure 5.3c) is created by adding the "model fit" 

predicted values (the line in Figure 3a) to random residuals drawn with replacement 

from the correct bin (Figure 5.3b).

Step 5. A revised PB or ANN model is fit to the bootstrapped data set (e.g. Figure 5.3c).

Step 6. This bootstrap model is used to predict flux values for the gap points (e.g. Figure 

5.3d).

Step 7. A residual (from Step 2) is added to the predicted value (from Step 6) in the same 

manner as described in Step 4, to simulate the effect of random noise on any predicted 

or gap filled point. This step ensures that we capture the statistical prediction error, not 

just the uncertainty due to model parameterization.

Step 8. Repeat Steps 4-7 above N  times (we used #=1000).

Step 9. Predicted values and prediction intervals are calculated using the empirical 

distributions o f the results (e.g. Figure 5.4a). Every gap point in the time series will 

have N  estimated values from N realizations of the resampled and re-fit time series.
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Calculation of the quantiles of these values yields many metrics, including the median 

and 90% prediction limits.

Step 10. N  complete component flux time series are generated by using the measured 

value at every point in the time series where there is an observation and by using a 

bootstrap-predicted value for those time steps with no measurement. Expected values 

and prediction limits for sums of fluxes are estimated from these N  synthetic time series 

(Figure 5.4b).

5.3.5 Validation

We used two measures of performance to evaluate both the PB and the ANN models both 

for filling unavailable daytime flux and for estimating daytime respiration. First, we 

conducted a standard K-fold cross validation of the nighttime respiration models and 

daytime NEE models (Hastie et al. 2001), which allowed us to quantify out-of-sample 

model error. We split all the valid data into K  randomly distributed groups. Initially, 

group 1 is set aside for testing, while the models are parameterized based on groups 2 

through K. The fitted models are then used to predict the group 1 observations. Next, 

group 2 is set aside for testing, while groups 1 and 3 through K  are used for training. This 

pattern proceeds until all K  groups have been withheld for testing. We then computed the 

root mean squared error (RMSE), the weighted absolute value o f the error (WAD), the 

correlation coefficient (R2), and mean bias as measures of model performance.
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A second evaluation o f model performance allows us to investigate the accumulation of 

uncertainty as model predictions are aggregated (by summing) into longer temporal 

intervals. There are few long periods without missing observations (Figure 5.1b), but we 

identified in the 7-year Howland NEE time series 13 days having zero gaps and 73 days 

having only one gap. We compared the observed 48 half-hour total NEE to the 1000 

model predicted NEE values for these 86 complete and near-complete days. While the 

models used in this analysis were generated without the data from the 86 days o f interest, 

the uncertainty estimates were taken from the bootstrapping analysis described in Section 

5.3.5.

5.4 Results and discussion

5.4.1 Half-hourly time step

5.4.1.1 Parameter optimization

The physiological parameter values that minimize the cost functions applied to the 

observed data are similar to the parameter values fit by Hollinger et al. (2004) in their 

analysis (Table 5.1), though they used a different subset o f the data (1996 only). The 

artificial neural network used four hidden nodes (M = 4; Equation 5.4) for both the 

respiration model and the daytime NEE model. The optimized neural network parameters 

(i.e. weights) are not physiologically meaningful and therefore their values cannot be 

compared with other studies.
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Respiration Gaussian Exponential

A 149.1 149.9

Eo 113.4 113.4

To 251.8 252.8

DayNEE

Pm 22.3 18.8

Km 344.8 300.1

a 22.4 24.4

Table 5.1. Optimal parameter values for the physiological models. E0 is fixed in this exercise.

The residuals generated from the respiration model fit resembled a two-sided exponential 

error distribution more than a Gaussian distribution (Figure 5.2), which is in agreement 

with the observation that flux measurement uncertainty follows a Laplace rather than a 

Gaussian distribution (Hollinger & Richardson, 2005). This was also true for residuals 

from other models’ fits (not shown). By changing the assumption o f how the error is 

distributed, one changes the optimal parameters. There are many combinations of 

parameter values that fit the data nearly equally well. The flatness of the cost function 

near the optimum has been described thoroughly elsewhere (Radtke et al., 2002; 

Hollinger et al., 2004; Hollinger and Richardson, 2005).

5.4.1.2 Model validation

The K-fold cross validation results show that both modeling approaches (ANN and PB) 

reproduce observed daytime NEE and nighttime respiration reasonably well at the half- 

hourly time scale, with all correlation values (R2) greater than or equal to 0.49 (Table
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5.2). For respiration, the ANN and PB models fit the data approximately equally well, 

probably because both models are based primarily on soil temperature (with the addition 

of the time variables in the ANN approach). However, there is a larger discrepancy 

between the ANN and PB model fits to the daytime NEE observations.

The ANN modeling approach has a lower mean error than the PB approach in every case, 

expressed either as root mean squared error (RMSE) or weighted absolute deviation 

(WAD). This is expected because ANN provides more flexible choices for the functional 

dependence than the physiological model and a larger set o f input variables. The daytime 

NEE models are less accurate (i.e. they have higher RMSE or WAD) than the respiration 

models, likely because daytime NEE observations have higher variance than nighttime 

respiration observations.

G aussian  Error

R2 Bias RMSE
R espiration (um ols m '2 s '1)

Artificial Neural Net 0.53 ± 0.01 0.00 ± 0.02 2.21 ± 0.04
Physiological 0.51 ±0.01 -0.03 ± 0.02 2.28 ± 0.03

DayNEE
Artificial Neural Net 0.75 ± 0.01 -0.00 ±0.01 3.12 ±0 .04
Physiological 0.50 ± 0.01 -0.01 ± 0.03 4.56 ± 0.04

Two-sided Exponential Error
R2 Bias WAD

R espiration (um ols m"2 s '1)
Artificial Neural Net 0.52 ± 0.01 0.27 ± 0.02 0.67 ± 0.01
Physiological 0.50 ± 0.01 0.28 ± 0.01 0.71 ±0.01

DavNEE
Artificial Neural Net 0.70 ± 0.01 0.16 ±0 .03 1.31 ±0.02
Physiological 0.49 ± 0.00 -1.04 ±0 .03 2.86 ± 0.02

Table 5.2. K-fold validation results for all of the modeling filling approaches
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Changing the assumption of error distribution has a small effect on the cross-validation 

results of the respiration model, increasing the error (e.g. RMSEgauss-RMSEexpor 

WADexp-WADgauss) by at most 5%. This change has a slightly larger effect on the 

daytime NEE models, increasing the error by up to 10%. The magnitude of change in this 

K-fold error statistic is an indication of the model’s sensitivity to assumptions about the 

error distribution and the daytime NEE models are more sensitive to this assumption.

The cross-validation results indicate that all models assuming a Gaussian error 

distribution have no statistically significant model bias (Table 5.2). The models using 

weighted observations and a two-sided exponential distribution in the cost function, 

however, all show a significant bias. This bias is an expected by-product of the model 

assumptions, particularly the weighting o f observations. The weighting scheme assumes 

that the observations taken during high soil temperatures are less reliable and, therefore, 

the influence of residuals taken at high soil temperatures is reduced. These assumptions 

reflect a belief about how best to accommodate heteroscedastic data and occasional large 

instrumentation errors (Richardson and Hollinger, 2005).

5.4.1.3 GEE estimates

Each modeling approach (PB/ANN and Gaussian/Exponential) produces one time series 

of daytime NEE and a second of daytime respiration, both at half-hour intervals. The 

daytime NEE time series contains observed fluxes where data are available, and modeled 

fluxes where they are not. The daytime respiration time series has only modeled fluxes.
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By applying the bootstrapping algorithm, we generate one thousand time series, each 

representing a simulated potential time series that includes uncertainty in the model 

parameters as well as uncertainty due to the random nature of the flux observation. One 

thousand GEE time series are estimated by subtracting the 1000 daytime NEE time series 

from the 1000 respiration time series (Equation 5.1). Thus, each daytime half-hour has 

1000 simulated GEE estimates that approximate the distribution of values that could have 

been observed given the data and the modeling assumptions. The simulated GEE 

estimates for any half-hour can be displayed as a histogram (Figure 5.4a). From this 

histogram, we can extract several statistics of interest, including the mean, median, upper 

90% value, and lower 90% value.

At the half-hour time scale, the GEE estimates generated from the bootstrapping 

algorithm are often skewed (Figure 5.4a). This skewness reflects a skewness in the model 

residuals and, ultimately, in the flux observations themselves. The nighttime flux (i.e. 

respiration) record contains more unusually high flux measurements (i.e. positive; flux 

out of the canopy and into the atmosphere) than unusually low (i.e. negative) flux 

measurements, while the daytime flux record is skewed in the opposite direction. To 

estimate GEE, we subtract daytime NEE flux from respiration, which magnifies the 

skewness in the GEE estimates.

At the half-hour scale, the GEE estimates generated from the four approaches are never 

significantly different at the 90% prediction limit level. While the median bootstrapped 

estimates predicted from any approach at any half-hour are different, the statistical
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uncertainty reflected by the 90% prediction limits is large relative to this difference. The 

ANN models generally predict slightly higher GEE during half-hours with high IPAR than 

the PB models. During low IPAR levels, the PB models predict higher GEE than the ANN 

models.

5.4.2 Daily time step: validation of complete-dav NEE

Both model approaches validate reasonably well using the 86 complete-day data points 

(all R2 > 0.48), though the ANN has a higher correlation and a lower RMSE and mean 

bias (Table 5.3, Figure 5.5). In the context o f this analysis, changing the assumption of 

normally distributed residuals to an assumption o f two-sided exponentially distributed 

residuals does not improve the accuracy of the predictions. The 90% prediction limits 

around each daily prediction in this small sample are apparently underestimates of the 

actual uncertainty, as only about 70% of the prediction limits touch the 1:1 line.

5.4.3 Annual time step: GEE estimates and 90% prediction limits

Annual GEE estimates for each modeling approach are generated by aggregating each of 

the 1000 individual GEE time series to the annual scale. At this scale, annual GEE 

estimates are approximately normally distributed (Figure 5.4b). They are no longer 

sign ifican tly  skew ed o r kurto tic, so tha t the  m ean  estim ates and the m edian  estim ates are 

effectively equal.
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F igure 5.4. (a) The bootstrapping algorithm produces empirical probability distributions for each 
daytime half-hour. Most half-hourly distributions o f simulated GEE are leptokurtic and skewed, 
like the example displayed here (4:30-5:00PM on June 28, 1997). (b) Aggregating (by summing) 
the half-hour GEE simulations to the annual scale, for each bootstrapped data set produces an 
annual empirical distribution. These predictions are generally approximately normally distributed.
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R2 RMSE

(g C m'2 day'1)

Daily Mean Bias 

(g C m'2 day'1)

Gaussian Error

Artificial Neural Net 0.75 0.74 -0.23

Physiological 0.53 1.15 -0.50

Two-sided Exponential Error

Artificial Neural Net 0.72 0.74 -0.05

Physiological 0.48 1.16 -0.52

Table 5 J . Complete day validation results for the NEE gap filling approaches, based on 86 days 
with fewer than 2 missing half-hour intervals.

The annual GEE sums estimated in this analysis (Figure 5.6) are generally consistent with 

previous estimates for the Howland site using the same data (Hollinger et al. 2004), and 

with those based on mechanistic model predictions (e.g. PnET model; Aber et al., 1992). 

This similarity includes the overall absolute values of the magnitude of the flux as well as 

the rank order of annual values. However, focusing especially on interannual patterns, 

there is a consistent offset between the modeling approaches.

The bootstrapped estimates of the annual 90% prediction intervals average 40 g C m"2 

year'1 for the ANN approach and 30 g C m'2 year'1 for the PB approach. The year-to-year 

variability in GEE is smaller than the magnitude o f uncertainty at the annual time scales 

in at least three of the six pairs o f adjacent years (i.e. three of six pairs in the PB and four 

o f six pairs in the ANN). Changing the cost function to reflect the assumption of 

exponentially distributed error slightly reduces our estimates of statistical uncertainty 

(Figure 5.6). All methods agree in predicting higher GEE at Howland over the 1998-2001 

period than before or after this time.
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Figure 5.5. Modeled versus measured daily NEE for 86 complete or nearly complete days in the 
Howland Forest time series, using four model and error distribution combinations: (a) PB 
Gaussian; (b) PB exponential; (c) ANN Gaussian; (d) ANN exponential. Error bars represent 
90% bootstrap intervals.

5.4.4 Statistical uncertainty in GEE estimates across time

The 90% annual prediction intervals from the different methods are generally offset from 

one another and in many cases do not overlap. This may be due to the fact that our 

analysis accounts only for uncertainties associated with statistical modeling, and is 

consistent with the likely influence of other external factors. The offset of prediction 

intervals within a year also shows that uncertainty related to model selection contributes
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Figure 5.6. Time series o f annual GEE. The panels show the same data at different scales, (a) 
The difference in estimates o f  annual total GEE from the four modeling approaches is small 
relative to the magnitude o f  GEE, as is the statistical uncertainty, (b) The annual GEE estimates 
do exhibit dependence on the method chosen for gap filling daytime NEE and respiration 
modeling. The statistical uncertainty due to model fitting and the random variability o f the 
observations is comparable to the uncertainty due to model selection. Interannual variability in 
GEE is partially masked by statistical uncertainty and nearly completely masked by model 
selection uncertainty, but the overall patterns are almost identical (i.e. the rank correlation is very 
high).
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considerably to the overall range of possible GEE estimates. This overall range is 

difficult to quantify comprehensively because the total number of models that can be 

used is not finite. However, the two models used here represent two extremes, both in 

terms of the number of variables and the way in which the variables are used.

Though the nonlinear regressions are quantitatively more accurate than the 

physiologically based regression, there is no objective basis for choosing one approach 

over the other. A process-oriented model (e.g. Equations 5.2 and 5.3) may contain useful 

prior functional constraints about ecosystem carbon fluxes. Alternatively, a regression 

model that synthesizes the data record most accurately (e.g. Equation 5.4) may be the 

best choice if we desire estimates that mimic the behavior of the data rather than provide 

insights about the processes or capacity for extrapolation.

5.5 Conclusions

Tower-based estimates of GEE represent a potentially important source of ecosystem 

information that is derived by a combination o f data and models. As such, they require 

more analytical processing than most data sets that are considered "observations", but 

they also are likely to be used as data to a greater extent than most quantities that are 

considered "model outputs". The objective o f this analysis was to provide a framework 

for estimation o f uncertainty in tower-based GEE time series. Specifically, we are 

interested in quantifying the prediction intervals associated with regression models that
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are needed to (1) extrapolate respiration into the day, and (2) fill missing NEE values in 

the day. These prediction intervals correspond to the range of values we would likely 

observe, given the valid data and the model assumptions. We have used a computational 

technique that is intended to bracket the range of likely observations, but it is not 

guaranteed to bracket the unknown “true” values of GEE flux. We did not explore a large 

number of different regression models, but instead illustrated the issue by using two 

different modeling approaches. Valid arguments could be made for the use of either 

approach, and we do not recommend one over the other.

The statistical uncertainty in annual GEE estimates at Howland Forest associated with 

each model type, is about 30-40 g C m'2 y ear1 (90% prediction limit). Our results 

indicate that the uncertainty due to model assumptions is greater than the statistical 

uncertainty associated with any particular model. The combined uncertainty due to 

modeling in the GEE estimates is nearly the same magnitude as the interannual 

variability. These estimates are similar in magnitude to the uncertainty in NEE arising 

from systematic errors associated with choice o f nocturnal u* threshold (Hollinger et al. 

2004).

While our analysis indicates a relatively small amount of uncertainty in the absolute 

value of GEE at the annual scale, this relative uncertainty is much larger at shorter time 

scales and is a dominant feature when considering half-hourly to daily fluxes (Figure 

5.7). Furthermore, the interannual variability of the GEE flux, which is a key focus point 

for research into process controls linking environment and ecosystems, is often masked
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by the uncertainty from one year to the next. The implications of this result are 

potentially significant, and should be investigated independently at other sites and with 

other methods. On the other hand, the consistent patterns of the variability between 

model types indicate that some insight can still be gained about larger trends without 

considering explicitly the absolute magnitude of the GEE flux (Figure 5.6b).
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Figure 5.7. The relative uncertainty, expressed as the magnitude of the mean 90% prediction 
interval divided by the mean prediction value, of the ANN-modeled Gaussian GEE as a function 
of time step on a log scale. This relative uncertainty, as with the other approaches (not shown) 
drops dramatically as GEE is aggregated over time (half-hourly, daily, monthly, annually). This 
result is attributable to the fact that the statistical uncertainty adds approximately in quadrature 
and reflects the law of large numbers in estimating mean quantities (i.e., standard errors shrink 
with increasing sample size).
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The complexity o f this data set and the nature o f the GEE calculation make error 

estimation sensitive to statistical assumptions. The impact of our choice of underlying 

error distribution assumption was significant, but less so than the differences associated 

with the selection of a model. While future work is needed to further integrate sources of 

uncertainty, evaluate alternate modeling techniques, and generalize results across 

multiple sites, this paper represents an initial step in the characterization of uncertainty in 

gross ecosystem fluxes from the bottom-up (e.g. in-situ observations) and is useful in 

conjunction with top-down estimates (e.g. satellite observations, model inversions).
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CHAPTER 6

CONCLUSIONS

The process of translating raw mechanical observations into ecologically relevant 

attributes is likely to become the focus of more intense research in the coming years and 

decades, as more sophisticated means o f Earth observation are designed and 

implemented. The design of new observing instrumentation is not likely to render optical 

reflectance satellite systems obsolete, however. Optical reflectance data provide critical 

information related to the land surface. There is still a need for improving the translation 

of optical reflectances obtained from satellites into information about land cover at a 

regional scale.

Today, limitations in the satellite overpass frequency combined with frequent cloud- 

cover and a thick atmosphere, make annual mapping of the Amazonian land surface with 

Landsat-type data alone infeasible. If annual land surface information is desired at the 

regional to continental scale, coarser resolution reflectance data, such as MODIS, must be 

used. Techniques for extracting sub-pixel information from MODIS data have improved 

and the practice o f quantifying and reporting uncertainty in these data is more common. 

Examples of these improved techniques are featured in the research presented here.
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We have made strides in the process of deriving useful information about the Brazilian 

Amazonian land surface from coarse resolution optical reflectance data. By combining 

information from Landsat-scale data with coarser resolution data, such as MODIS, it is 

now possible to derive a spatially and temporally complete map of land cover. Coarser 

resolution maps derived from MODIS-like data are improved with information from 

higher resolution Landsat data. Deriving changes in the land cover on a regional scale 

with coarse resolution data remains a challenge. Uncertainty in MODIS estimates of sub­

pixels land cover fraction are often the same order of magnitude as annual changes in 

land cover fractions, making it difficult to identify changes in all but the most dynamic 

pixels. Until efforts to isolate the signal from the noise are more fruitful, alternative 

methods to estimating changes in land cover should be pursued.

By sub-sampling a large region with Landsat-type data over multiple consecutive years, 

one can follow land cover transitions o f individual parcels of land with high certainty. 

This sub-sampling is cost effective and not likely to be limited by cloudiness or the 

atmosphere, as long as one is flexible as to which areas are sampled. Rates o f land cover 

change in the sub-sampled areas can then be interpolated across the larger region. On 

potential means o f interpolation would be to identify a relationship between the rate of 

change and a static feature that is measurable at the larger region. For example, if one 

identifies a relationship between persistence of secondary vegetation and the fraction of 

cleared area with in a region, then persistence can be estimated over a larger region using 

coarse resolution maps o f fraction of cleared area. A second method for interpolation 

could be spatial statistics, such as kriging. This method assumes that rates of change are
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spatially dependent. The land cover transition rates can be used in conjunction with a 

coarse resolution map (i.e. MODIS-based) to identify the extent and dynamics o f land 

cover at a regional scale.

Whether the translation to ecologically relevant information has as its source remote 

sensing-based or ground-based observations, accurate estimates o f uncertainty remain 

vital. Increasingly complex modeling and estimation techniques require flexible and 

robust uncertainty estimation methods. The Monte Carlo bootstrapping approach and 

other non-parametric approaches provide the flexibility to estimate prediction intervals 

while making minimal assumptions. While more research is needed to incorporate 

additional potential sources of uncertainty and improve efficiency in the bootstrapping 

algorithm, this document presents a viable approach to estimating uncertainty that is 

applicable across a wide array of ecological applications.
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