51 research outputs found

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Statistical Analysis of the Consistency of HRV Analysis Using BCG or Pulse Wave Signals

    Get PDF
    Ballistocardiography (BCG) is considered a good alternative to HRV analysis with its non-contact and unobtrusive acquisition characteristics. However, consensus about its validity has not yet been established. In this study, 50 healthy subjects (26.2 ± 5.5 years old, 22 females, 28 males) were invited. Comprehensive statistical analysis, including Coefficients of Variation (CV), Lin’s Concordance Correlation Coefficient (LCCC), and Bland-Altman analysis (BA ratio), were utilized to analyze the consistency of BCG and ECG signals in HRV analysis. If the methods gave different answers, the worst case was taken as the result. Measures of consistency such as Mean, SDNN, LF gave good agreement (the absolute value of CV difference 0.99, BA ratio 0.95, BA ratio < 0.2), while RMSSD, HF, LF/HF indicated poor agreement (the absolute value of CV difference ≥ 5% or LCCC ≤ 0.95 or BA ratio ≥ 0.2). Additionally, the R-R intervals were compared with P-P intervals extracted from the pulse wave (PW). Except for pNN50, which exhibited poor agreement in this comparison, the performances of the HRV indices estimated from the PW and the BCG signals were similar

    Development of a bed-based nighttime monitoring toolset

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringSteven WarrenA movement is occurring within the healthcare field towards evidence-based or preventative care-based medicine, which requires personalized monitoring solutions. For medical technologies to fit within this framework, they need to adapt. Reduced cost of operation, ease-of-use, durability, and acceptance will be critical design considerations that will determine their success. Wearable technologies have shown the capability to monitor physiological signals at a reduced cost, but they require consistent effort from the user. Innovative unobtrusive and autonomous monitoring technologies will be needed to make personalized healthcare a reality. Ballistocardiography, a nearly forgotten field, has reemerged as a promising alternative for unobtrusive physiological monitoring. Heart rate, heart rate variability, respiration rate, movement, and additional hemodynamic features can be estimated from the ballistocardiogram (BCG). This dissertation presents a bed-based nighttime monitoring toolset designed to monitor BCG, respiration, and movement data motivated by the need to quantify the sleep of children with severe disabilities and autism – a capability currently unmet by commercial systems. A review of ballistocardiography instrumentation techniques (Chapter 2) is presented to 1) build an understanding of how the forces generated by the heart are coupled to the measurement apparatus and 2) provide a background of the field. The choice of sensing modalities and acquisition hardware and software for developing the unobtrusive bed-based nighttime monitoring platform is outlined in Chapters 3 and 4. Preliminary results illustrating the system’s ability to track physiological signals are presented in Chapter 5. Analyses were conducted on overnight data acquired from three lower-functioning children with autism (Chapters 6 and 9) who reside at Heartspring, Wichita, KS, where results justified the platform’s multi-sensor architecture and demonstrated the system’s ability to track physiological signals from this sensitive population over many months. Further, this dissertation presents novel BCG signal processing techniques – a signal quality index (Chapter 7) and a preprocessing inverse filter (Chapter 8) that are applicable to any ballistocardiograph. The bed-based nighttime monitoring toolset outlined in this dissertation presents an unobtrusive, autonomous, robust physiological monitoring system that could be used in hospital-based or personalized, home-based medical applications that consist of short or long-term monitoring scenarios

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    Unobtrusive Monitoring of Heart Rate and Respiration Rate during Sleep

    Get PDF
    Sleep deprivation has various adverse psychological and physiological effects. The effects range from decreased vigilance causing an increased risk of e.g. traffic accidents to a decreased immune response causing an increased risk of falling ill. Prevalence of the most common sleep disorder, insomnia can be, depending on the study, as high as 30 % in adult population. Physiological information measured unobtrusively during sleep can be used to assess the quantity and the quality of sleep by detecting sleeping patterns and possible sleep disorders. The parameters derived from the signals measured with unobtrusive sensors may include all or some of the following: heartbeat intervals, respiration cycle lengths, and movements. The information can be used in wellness applications that include self-monitoring of the sleep quality or it can also be used for the screening of sleep disorders and in following-up of the effect of a medical treatment. Unobtrusive sensors do not cause excessive discomfort or inconvenience to the user and are thus suitable for long-term monitoring. Even though the monitoring itself does not solve the sleeping problems, it can encourage the users to pay more attention on their sleep. While unobtrusive sensors are convenient to use, their common drawback is that the quality of the signals they produce is not as good as with conventional measurement methods. Movement artifacts, for example, can make the detection of the heartbeat intervals and respiration impossible. The accuracy and the availability of the physiological information extracted from the signals however depend on the measurement principle and the signal analysis methods used. Three different measurement systems were constructed in the studies included in the thesis and signal processing methods were developed for detecting heartbeat intervals and respiration cycle lengths from the measured signals. The performance of the measurement systems and the signal analysis methods were evaluated separately for each system with healthy young adult subjects. The detection of physiological information with the three systems was based on the measurement of ballistocardiographic and respiration movement signals with force sensors placed under the bedposts, the measurement of electrocardiographic (ECG) signal with textile electrodes attached to the bed sheet, and the measurement of the ECG signal with non-contact capacitive electrodes. Combining the information produced by different measurement methods for improving the detection performance was also tested. From the evaluated methods, the most accurate heartbeat interval information was obtained with contact electrodes attached to the bed sheet. The same method also provided the highest heart rate detection coverage. This monitoring method, however, has a limitation that it requires a naked upper body, which is not necessarily acceptable for everyone. For respiration cycle length detection, better results were achieved by using signals recorded with force sensors placed under a bedpost than when extracting the respiration information from the ECG signal recorded with textile bed sheet electrodes. From the data quality point of view, an ideal night-time physiological monitoring system would include a contact ECG measurement for the heart rate monitoring and force sensors for the respiration monitoring. The force sensor signals could also be used for movement detection

    Quality of heart rate variability features obtained from ballistocardiograms

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringDavid E. ThompsonHeartbeat intervals (HBIs) vary over time, and that variance can be quantified as heart rate variability (HRV). HRV has several health-related applications including long-term health monitoring and sleep quality assessment. The focus of this research is obtaining HRV from ballistocardiograms (BCGs), force signals caused by micro-movements of the human body in response to blood ejections. This method of HRV estimation is attractive because it does not require direct attachment of any sensor to the body. However, the HBIs and corresponding HRV measured with BCGs are different than those obtained via electrocardiograms (ECGs), signals obtained by attaching electrodes to the body to detect electrical heart activity. Because ECG-based HRV is typically considered ground truth, differences in BCG-based versus ECG-based parameters are referred to as HBI and HRV errors. This research investigates the effects of HBI error on HRV feature quality. While a few studies have used BCG-based HBIs to estimate HRV features for sleep staging, the effects of HBI error on the quality of the resulting HRV features seem to have been overlooked. As a result, an acceptable HBI error range has not been defined. One contribution of this work is the development of such an acceptable error range. This dissertation work (i) develops a hardware and software system necessary to record BCGs and to perform BCG peak detection to obtain HBIs with the least possible error, (ii) determines an allowable range for HBI error by studying the effects of this error on HRV quality in the context of HRV-based sleep staging, and (iii) compares the determined acceptable HBI error range to the HBI error of our final system. The inherent error in BCG-based HBI determination due to physiological and platform effects is also taken into account in this comparison. A minimum HBI error of 20 ms was obtained from the system developed in (i), and the allowable error range was determined to be 30 ms based on the investigations conducted in (ii). The combined physiological and platform effects led to an error of 8.8 ms on average. Based on the comparisons conducted in (iii), the developed system is suitable for long-term sleep quality assessment. In addition, the effects of the HBI errors introduced by this system on the resulting HRV features are negligible in the sleep staging context

    VOLUNTARY CONTROL OF BREATHING ACCORDING TO THE BREATHING PATTERN DURING LISTENING TO MUSIC AND NON-CONTACT MEASUREMENT OF HEART RATE AND RESPIRATION

    Get PDF
    We investigated if listening to songs changes breathing pattern which changes autonomic responses such as heart rate (HR) and heart rate variability (HRV) or change in breathing pattern is a byproduct of listening to songs or change in breathing pattern as well as listening to songs causes changes in autonomic responses. Seven subjects (4 males and 3 females) participated in a pilot study where they listened to two types of songs and used a custom developed biofeedback program to control their breathing pattern to match the one recorded during listening to the songs. Coherencies between EEG, breathing pattern and RR intervals (RRI) were calculated to study the interaction with neural responses. Trends in HRV varied only during listening to songs, suggesting that autonomic response was affected by listening to songs irrespective of control of breathing. Effective coherence during songs while spontaneously breathing was more than during silence and during control of breathing. These results, although preliminary, suggest that listening to songs as well as change in breathing patterns changes the autonomic response but the effect of listening to songs may surpass the effect of changes in breathing. We explored feasibility of using non-contact measurements of HR and breathing rate (BR) by using recently developed Facemesh and other methods for tracking regions of interests from videos of faces of subjects. Performance was better for BR than HR, and over currently used methods. However, refinement of the approach would be needed to get the precision required for detecting subtle changes

    Characterization, Classification, and Genesis of Seismocardiographic Signals

    Get PDF
    Seismocardiographic (SCG) signals are the acoustic and vibration induced by cardiac activity measured non-invasively at the chest surface. These signals may offer a method for diagnosing and monitoring heart function. Successful classification of SCG signals in health and disease depends on accurate signal characterization and feature extraction. In this study, SCG signal features were extracted in the time, frequency, and time-frequency domains. Different methods for estimating time-frequency features of SCG were investigated. Results suggested that the polynomial chirplet transform outperformed wavelet and short time Fourier transforms. Many factors may contribute to increasing intrasubject SCG variability including subject posture and respiratory phase. In this study, the effect of respiration on SCG signal variability was investigated. Results suggested that SCG waveforms can vary with lung volume, respiratory flow direction, or a combination of these criteria. SCG events were classified into groups belonging to these different respiration phases using classifiers, including artificial neural networks, support vector machines, and random forest. Categorizing SCG events into different groups containing similar events allows more accurate estimation of SCG features. SCG feature points were also identified from simultaneous measurements of SCG and other well-known physiologic signals including electrocardiography, phonocardiography, and echocardiography. Future work may use this information to get more insights into the genesis of SCG
    • …
    corecore