657 research outputs found

    SOLITARY WAVE SOLUTIONS FOR SPACE-TIME FRACTIONAL COUPLED INTEGRABLE DISPERSIONLESS SYSTEM VIA GENERALIZED KUDRYASHOV METHOD

    Get PDF
    In this article, space-time fractional coupled integrable dispersionless system is considered, and we use fractional derivative in the sense of modified Riemann-Liouville. The fractional system has reduced to an ordinary differential system by fractional transformation and the generalized Kudryashov method is applied to obtain exact solutions. We also testify performance as well as precision of the applied method by means of numerical tests for obtaining solutions. The obtained results have been graphically presented to show the properties of the solutions

    Homotopy perturbation method-based soliton solutions of the time-fractional (2+1)-dimensional Wu–Zhang system describing long dispersive gravity water waves in the ocean

    Get PDF
    Physical phenomena and natural disasters, such as tsunamis and floods, are caused due to dispersive water waves and shallow waves caused by earthquakes. In order to analyze and minimize damaging effects of such situations, mathematical models are presented by different researchers. The Wu–Zhang (WZ) system is one such model that describes long dispersive waves. In this regard, the current study focuses on a non-linear (2 + 1)-dimensional time-fractional Wu–Zhang (WZ) system due to its importance in capturing long dispersive gravity water waves in the ocean. A Caputo fractional derivative in the WZ system is considered in this study. For solution purposes, modification of the homotopy perturbation method (HPM) along with the Laplace transform is used to provide improved results in terms of accuracy. For validity and convergence, obtained results are compared with the fractional differential transform method (FDTM), modified variational iteration method (mVIM), and modified Adomian decomposition method (mADM). Analysis of results indicates the effectiveness of the proposed methodology. Furthermore, the effect of fractional parameters on the given model is analyzed numerically and graphically at both integral and fractional orders. Moreover, Caputo, Caputo–Fabrizio, and Atangana–Baleanu approaches of fractional derivatives are applied and compared graphically in the current study. Analysis affirms that the proposed algorithm is a reliable tool and can be used in higher dimensional fractional systems in science and engineering

    On new and improved semi-numerical techniques for solving nonlinear fluid flow problems.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.Most real world phenomena is modeled by ordinary and/or partial differential equations. Most of these equations are highly nonlinear and exact solutions are not always possible. Exact solutions always give a good account of the physical nature of the phenomena modeled. However, existing analytical methods can only handle a limited range of these equations. Semi-numerical and numerical methods give approximate solutions where exact solutions are impossible to find. However, some common numerical methods give low accuracy and may lack stability. In general, the character and qualitative behaviour of the solutions may not always be fully revealed by numerical approximations, hence the need for improved semi-numerical methods that are accurate, computational efficient and robust. In this study we introduce innovative techniques for finding solutions of highly nonlinear coupled boundary value problems. These techniques aim to combine the strengths of both analytical and numerical methods to produce efficient hybrid algorithms. In this work, the homotopy analysis method is blended with spectral methods to improve its accuracy. Spectral methods are well known for their high levels of accuracy. The new spectral homotopy analysis method is further improved by using a more accurate initial approximation to accelerate convergence. Furthermore, a quasi-linearisation technique is introduced in which spectral methods are used to solve the linearised equations. The new techniques were used to solve mathematical models in fluid dynamics. The thesis comprises of an introductory Chapter that gives an overview of common numerical methods currently in use. In Chapter 2 we give an overview of the methods used in this work. The methods are used in Chapter 3 to solve the nonlinear equation governing two-dimensional squeezing flow of a viscous fluid between two approaching parallel plates and the steady laminar flow of a third grade fluid with heat transfer through a flat channel. In Chapter 4 the methods were used to find solutions of the laminar heat transfer problem in a rotating disk, the steady flow of a Reiner-Rivlin fluid with Joule heating and viscous dissipation and the classical von Kάrmάn equations for boundary layer flow induced by a rotating disk. In Chapter 5 solutions of steady two-dimensional flow of a viscous incompressible fluid in a rectangular domain bounded by two permeable surfaces and the MHD viscous flow problem due to a shrinking sheet with a chemical reaction, were solved using the new methods

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 2 and reports on eighteen research projects.National Science Foundation (Grant EET 87-00474)Joint Services Electronics Program (Contract DAAL03-86-K-0002)Joint Services Electronics Program (Contract DAALO3-89-C-0001)Charles Stark Draper Laboratory (Grant DL-H-285408)Charles Stark Draper Laboratory (Grant DL-H-2854018)National Science Foundation (Grant EET 87-03404)National Science Foundation (Grant ECS 84-06290)U.S. Air Force - Office of Scientific Research (Contract F49620-88-C-0089)AT&T Bell FoundationNational Science Foundation (Grant ECS 85-52701)National Institutes of Health (Grant 5-RO1-GM35459)Massachusetts General Hospital (Office of Naval Research Contract N00014-86-K-0117)Lawrence Livermore National Laboratory (Subcontract B048704

    Geometric Numerical Integration

    Get PDF
    The subject of this workshop was numerical methods that preserve geometric properties of the flow of an ordinary or partial differential equation. This was complemented by the question as to how structure preservation affects the long-time behaviour of numerical methods

    Mathematical Theory of Water Waves

    Get PDF
    The water-wave problem is the study of the two- and threedimensional irrotational flow of a perfect fluid bounded above by a free surface subject to the forces of gravity and surface tension. It is a paradigm for most modern methods in nonlinear functional analysis and nonlinear dispersive wave theory. Its mathematical study calls upon many different approaches, as iteration methods, bifurcation theory, dynamical systems theory, complex variable methods, PDE methods, the calculus of variations, positive operator theory, topological degree theory, KAM theory, and symplectic geometry

    Adomian decomposition method, nonlinear equations and spectral solutions of burgers equation

    Get PDF
    Tese de doutoramento. Ciências da Engenharia. 2006. Faculdade de Engenharia. Universidade do Porto, Instituto Superior Técnico. Universidade Técnica de Lisbo
    corecore