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Physical phenomena and natural disasters, such as tsunamis and floods, are
caused due to dispersive water waves and shallow waves caused by
earthquakes. In order to analyze and minimize damaging effects of such
situations, mathematical models are presented by different researchers. The
Wu–Zhang (WZ) system is one such model that describes long dispersive
waves. In this regard, the current study focuses on a non-linear (2 + 1)-
dimensional time-fractional Wu–Zhang (WZ) system due to its importance in
capturing long dispersive gravity water waves in the ocean. A Caputo fractional
derivative in the WZ system is considered in this study. For solution purposes,
modification of the homotopy perturbation method (HPM) along with the Laplace
transform is used to provide improved results in terms of accuracy. For validity and
convergence, obtained results are compared with the fractional differential
transform method (FDTM), modified variational iteration method (mVIM), and
modified Adomian decomposition method (mADM). Analysis of results
indicates the effectiveness of the proposed methodology. Furthermore, the
effect of fractional parameters on the given model is analyzed numerically and
graphically at both integral and fractional orders. Moreover, Caputo,
Caputo–Fabrizio, and Atangana–Baleanu approaches of fractional derivatives
are applied and compared graphically in the current study. Analysis affirms that
the proposed algorithm is a reliable tool and can be used in higher dimensional
fractional systems in science and engineering.
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1 Introduction

The study of differential equations (DEs) is a pivotal topic as
they capture most of the real-world phenomena, i.e., earthquakes [1,
2], natural gas consumption [3, 4], current flow [5], and cooking [6].
These equations can additionally be characterized into linear and
non-linear differential equations. Many important and interesting
phenomena like electrical circuits [7, 8], DNA sequencing [9, 10],
disease modeling and analysis [11, 12], and food chain models [13,
14] are captured through differential equations. Since the order of a
DE describes the nature and scope of the captured phenomena, it is
therefore important for researchers to cater fractional-order
derivatives for a more general study of the physical aspects of the
considered phenomena. Fractional models allow better
understanding of model dynamics and facilitate researchers to
accurately predict changes in the physical systems. The chaos
theory [15], nanotechnology [16], fluid flow [17], cosmology
[18], and robotics [19] use differential equations for problem
formulation. These equations also frequently appear in many
branches of mathematics [20, 21], finance [22], economy [23],
and biology [24].

The phrase “fractal” was first created in 1975 by mathematician
Benoit Mandelbrot [25]. It is a geometric shape that exhibits the
same level of non-regularity on all scales. Fractals are infinite
patterns, which we frequently see in nature. Snowflakes, trees,
mountains, clouds, and coastlines represent fractals as they are
highly uneven at both large and small scales. Many important
models including the diffusion model of red ink [26] and thin
films [27], the vibration model for a concrete beam [28] and
electronic devices [29], and the COVID-19 mathematical model
[30] contain fractal geometry. The distinction between fractional
and fractal is that the former is a statement of a fractional number,
while the latter is a geometric figure that is similar at all scales.

The Wu–Zhang system [31] contains non-linear partial
differential equations (PDEs) and deals with the motion of water
waves in oceans. In 1996, three sets of model equations were first
derived by Wu and Zhang and named the Wu–Zhang system of
PDEs [31]. This system is used to customize several harbor and
coastal designs. This non-linear (2 + 1)-dimensional fractional
system describes shallow water dispersive long gravity waves in
two horizontal directions, which are given as
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(1)
where U and V represent the velocities at the surface of water in x and y
directions, while W depicts the elevation of water waves. The
aforementioned WZ system is a time fraction, while Wang and He
[32] concluded that when time is fractional, space must also be
fractional. This is called Wang–He’s spatiotemporal fractional
relationship (for more details see [32]). Due to the substantial
importance of WZ systems, many scholars have attempted to solve
and analyze these systems through variety of methodologies like mVIM

[33], ADM [34, 35], extended tanh and exp–function method [36], and
dynamical analysis method [37]. Recently, for more generalized
solutions and predictions, the WZ systems are also attempted
fractionally by few of the scientists. Kaur and Gupta discussed
dispersion analysis of the (2 + 1)-dimensional time-fractional WZ
system [38]. Patel and Patel investigated the fractional-order WZ
system analytically [39]. Different approaches of fractional
derivatives can be utilized, such as Caputo [40], Atangana–Baleanu
[41], Caputo–Fabrizio [42], and He’s fractional derivative [43].

In order to solve such highly non-linear fractional systems, many
analytical and numerical methodologies are utilized by different
researchers. Anjum et al. [44] applied Li–He’s modified homotopy
perturbation approach to solve the microelectromechanical system.
Baitiche et al. [45] used the monotone iterative method for fractional
DEs with non-linearity at the boundary. Do et al. [46] extended
Chebyshev wavelets to two-dimensional fractional DEs. Hashemi
et al. [47] investigated multi-term FDEs using minimization
techniques. Tian and Liu utilized the modified exp-function to
fractional PDEs in [48]. Furthermore, to solve complex problems, the
enhanced homotopy methods can be found in [49, 50]. In this study, a
hybrid algorithm is proposed by mixing the classical homotopy
perturbation method [51, 52] with the Laplace transform [53] along
with different fractional derivatives (Atangana–Baleanu,
Caputo–Fabrizio, and Caputo) for a highly non-linear time-fractional
(2 + 1)-dimensional WZ system. In the rest of the paper, Section
2 contains preliminary definitions. Section 3 contains the proposed
methodology for handling time-fractional (2 + 1)-dimensional WZ
system, whereas proof of convergence and error analysis are given in
Section 4. Solution and results and discussion are given in Sections 5 and
6, respectively, while a conclusion is given in Section 7.

2 Basic definitions

Definition 1: For a function U(t, x, y), the Caputo’s time-fractional
derivative CDζ

t is [54]

CDζ
tU t, x, y( ) � 1

Γ q − ζ( )∫
t

0
t − G( )q−ζ−1U q( ) G, x, y( )dG,

q − 1< ζ ≤ q. (2)

Definition 2: According to [55], one can express the Laplace
transform L of the function U(t, x, y) that has been subjected to
the Caputo’s time-fractional derivative CDζ

t .

L CDζ
tU t, x, y( ){ } � sζL U t, x, y( ){ } − ∑q−1

p�0
sζ−p−1U p( ) 0, x, y( ),

q − 1< ζ ≤ q. (3)

Definition 3: The Caputo–Fabrizio’s time-fractional derivative
CFDζ

t of a function U(t, x, y) is [42]

CFDζ
tU t, x, y( ) � 1

1 − ζ
∫t

0
e
−ζ t−G( )
1−ζ

zU G, x, y( )
zG

dG, 0< ζ < 1. (4)
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Definition 4: The Laplace transform L of the Caputo–Fabrizio’s
time-fractional derivative CFDζ

t of a function U(t, x, y) is given
as [56]

L CFDζ+q
t U t, x, y( ){ } �

sq+1L U t, x, y( ){ } − ∑q
p�0

sq−pU p( ) 0, x, y( )
s + ζ 1 − s( ) , 0< ζ ≤ 1.

(5)

Definition 5: A function U(t, x, y) in the sense of
Atangana–Baleanu’s time-fractional derivative ABDζ

t is stated
as [41]

ABDζ
tU t, x, y( ) � K ζ( )

1 − ζ
∫t

0
Eζ −ζ t − G( )ζ

1 − ζ
[ ] zU G, x, y( )

zG
dG, 0< ζ ≤ 1.

(6)

Here, K(ζ) is a normalization function with properties K(0) =
K(1) = 1.

Definition 6: The Laplace transform L connected with
Atangana–Baleanu time-fractional derivative ABDζ

t of a function
U(t, x, y) can be described as [57]

L ABDζ
tU t, x, y( ){ } � AB ζ( ).s

ζL U t, x, y( ){ } − sζ−1U 0, x, y( )
sζ 1 − ζ( ) + ζ

, 0≤ ζ ≤ 1.

(7)

Here, AB(ζ) is a normalization function.

Definition 7: He’s fractional derivative of a function U(t, x, y) can
be defined by [43]

Dζ
tU t, x, y( ) � 1

Γ q − ζ( )
dq

dtq
∫t

t0

G − t( )q−ζ−1 U0 G, x, y( ) − U G, x, y( )[ ]dG,
q − 1< ζ ≤ q. (8)

Definition 8: The core idea behind the two-scale dimension [58,
59], which commonly arises in the non-linear problem, is that while
self-similarity is difficult to uncover in practical applications, fractal
structures self-assemble on all scales. Creating models with the two-
scale dimension allows for the successful description of various
physical events.

Definition 9: A Banach space B is a normed space ‖. ‖, which is
complete with respect to the metric derived from its norm.

3 Hybrid algorithm for (2 + 1)-
dimensional time-fractional systems

Consider a (2 + 1)-dimensional, time-fractional system as

Dζ
tA1 t, x, y( ) + L Ar t, x, y( )[ ] +N Ar t, x, y( )[ ] − l t, x, y( ) � 0,

Dζ
tA2 t, x, y( ) + L Ar t, x, y( )[ ] +N Ar t, x, y( )[ ] −m t, x, y( ) � 0,

Dζ
tA3 t, x, y( ) + L Ar t, x, y( )[ ] +N Ar t, x, y( )[ ] − n t, x, y( ) � 0,
r � 1, 2, 3, t> 0,
q − 1< ζ ≤ q,

(9)
that has initial conditions

A1 0, x, y( ) � J 1,
A2 0, x, y( ) � J 2,
A3 0, x, y( ) � J 3,

(10)

where the unknown functionsA1(t, x, y),A2(t, x, y), andA3(t, x, y)
have time-fractional derivatives, and Dζ

t , l(t, x, y), m(t, x, y), and
n(t, x, y) are some of its known functions. The symbols N and L
represent non-linear and linear operators, respectively.

The procedure will start by applying the Laplace transform on
(9), which gives

L Dζ
t A1 t,x,y( )[ ]{ }+L L Ar t,x,y( )[ ]+N Ar t,x,y( )[ ]{

− l t,x,y( )} � 0,L Dζ
t A2 t,x,y( )[ ]{ }+L L Ar t,x,y( )[ ]{

+N Ar t,x,y( )[ ]−m t,x,y( )}� 0,L Dζ
t A3 t,x,y( )[ ]{ }

+L L Ar t,x,y( )[ ]+N Ar t,x,y( )[ ]−n t,x,y( ){ } � 0.

(11)
Now, by utilizing the basic definitions given in Section 2, we can find the
Laplace transform of the fractional derivative. Definition (2) gives

L A1 t,x,y( )[ ]− 1

sζ
( )∑q−1

p�0
sζ−p−1A1 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar t,x,y( )[ ]{ +N Ar t,x,y( )[ ]− l t,x,y( )}� 0,

L A2 t,x,y( )[ ]− 1

sζ
( )∑q−1

p�0
sζ−p−1A2 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar t,x,y( )[ ]{ +N Ar t,x,y( )[ ]−m t,x,y( )}� 0,

L A3 t,x,y( )[ ]− 1

sζ
( )∑q−1

p�0
sζ−p−1A3 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar t,x,y( )[ ]{ +N Ar t,x,y( )[ ]−n t,x,y( )}� 0.

(12)
The homotopy of the system is

H1 � 1− s( ) L A1 t,x,y( ){ }−A10 t,x,y( )( )+ s(L A1 t,x,y( ){ }
− 1

sζ
( )∑q−1

p�0
sζ−p−1A1 p( ) 0,x,y( )+ 1

sζ
( )L L Ar t,x,y( )[ ]+N Ar t,x,y( )[ ]{

− l t,x,y( )}),H2 � 1− s( ) L A2 t,x,y( ){ }−A20 t,x,y( )( )
+ s(L A2 t,x,y( ){ }− 1

sζ
( )∑q−1

p�0
sζ−p−1A2 p( ) 0,x,y( )+ 1

sζ
( )L L Ar t,x,y( )[ ]{

+N Ar t,x,y( )[ ]−m t,x,y( )}),H3 � 1− s( ) L A3 t,x,y( ){ }(
−A30 t,x,y( ))+ s(L A3 t,x,y( ){ }− 1

sζ
( )∑q−1

p�0
sζ−p−1A3 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar t,x,y( )[ ]+N Ar t,x,y( )[ ]−n t,x,y( ){ }),

(13)

where A10, A20, and A30 are initial guesses. Expansion of
A1(t, x, y), A2(t, x, y), and A3(t, x, y) in power series with
respect to s leads to

A1 t, x, y( ) � A10 t, x, y( ) + s1A11 t, x, y( ) + s2A12 t, x, y( ) + . . .
A2 t, x, y( ) � A20 t, x, y( ) + s1A21 t, x, y( ) + s2A22 t, x, y( ) + . . .
A3 t, x, y( ) � A30 t, x, y( ) + s1A31 t, x, y( ) + s2A32 t, x, y( ) + . . .

(14)
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After substituting Eq. 14 in (13) and then comparing similar
coefficients of s, we obtainAt s1

L A11 t,x,y( ){ }+A10 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A1 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar0 t,x,y( )[ ]{ +N Ar0 t,x,y( )[ ]− l t,x,y( )}� 0,

L A21 t,x,y( ){ }+A20 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A2 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar0 t,x,y( )[ ]{ +N Ar0 t,x,y( )[ ]−m t,x,y( )}� 0,

L A31 t,x,y( ){ }+A30 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A3 p( ) 0,x,y( )

+ 1

sζ
( )L L Ar0 t,x,y( )[ ]{ +N Ar0 t,x,y( )[ ]−n t,x,y( )}� 0.

(15)
The inverse Laplace transform leads to

A11 t,x,y( )+L−1 A10 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A1 p( ) 0,x,y( )⎧⎨⎩ ⎫⎬⎭+L−1{ 1

sζ
( )

L{L Ar0 t,x,y( )[ ]+N Ar0 t,x,y( )[ ]− l t,x,y( )}� 0,

A21 t,x,y( )+L−1 A20 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A2 p( ) 0,x,y( )⎧⎨⎩ ⎫⎬⎭+L−1{ 1

sζ
( )

L L Ar0 t,x,y( )[ ]+N Ar0 t,x,y( )[ ]−m t,x,y( ){ }� 0,

A31 t,x,y( )+L−1 A30 t,x,y( )− 1

sζ
( )∑q−1

p�0
sζ−p−1A3 p( ) 0,x,y( )⎧⎨⎩ ⎫⎬⎭+L−1{ 1

sζ
( )

L L Ar0 t,x,y( )[ ]+N Ar0 t,x,y( )[ ]−n t,x,y( ){ }� 0.
(16)

At sk

L A1k t, x, y( ){ } + 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ } � 0,

L A2k t, x, y( ){ } + 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ } � 0,

L A3k t, x, y( ){ } + 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ } � 0.

(17)
Operating the inverse Laplace transform gives the following:

A1k t, x, y( )+L−1 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ }{ } � 0,

A2k t, x, y( )+L−1 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ }{ } � 0,

A3k t, x, y( )+L−1 1

sζ
( )L L Ark−1 t, x, y( )[ ] +N Ark−1 t, x, y( )[ ]{ }{ } � 0.

(18)
The approximate solution of the given general time-fractional, (2 +
1)-dimensional PDE system is

~A1�A10 t,x,y( )+A11 t,x,y( )+A12 t,x,y( )+A13 t,x,y( )+/ ,
~A2�A20 t,x,y( )+A21 t,x,y( )+A22 t,x,y( )+A13 t,x,y( )+/ ,
~A3�A30 t,x,y( )+A31 t,x,y( )+A32 t,x,y( )+A33 t,x,y( )+/ .

(19)
Residual errors of the system are

Res1 � Dζ
t

~A1[ ] + L ~Ar[ ] +N ~Ar[ ] − l t, x, y( ),
Res2 � Dζ

t
~A2[ ] + L ~Ar[ ] +N ~Ar[ ] −m t, x, y( ),

Res3 � Dζ
t

~A3[ ] + L ~Ar[ ] +N ~Ar[ ] − n t, x, y( ).
(20)

The same procedure can be extended to a system that comprises
more than three equations.

4Convergence and error analysis of the
hybrid algorithm for (2 + 1)-dimensional
fractional systems

4.1 Convergence

Theorem 1: If a Banach space has Arn(t, x, y) and Ar(t, x, y)
defined in it for r = 1, 2, 3, then, the series solution of a fractional (2 +
1)-D system in Eq. 19 converges to the solution of (9) for a constant
μ ϵ (0,1).

Proof: Let us define the sequence of partial sums of Eq. 19 as Qrn.
To demonstrate that Qrn(t, x, y) forms a Cauchy sequence in the
Banach space, we can proceed by using

‖Qrn+1 t, x, y( ) − Qrn t, x, y( )‖ � ‖Arn+1 t, x, y( )‖
≤ μ‖Arn t, x, y( )‖
≤ μ2‖Arn−1 t, x, y( )‖
≤ . . . ≤ μn+1‖Ar0 t, x, y( )‖.

(21)

If Qrn and Qrm are partial sums with n ≥ m and n, m ϵ N, then
utilization of triangle inequality gives

‖Qrn − Qrm‖ � ‖ Qrn t, x, y( ) − Qrn−1 t, x, y( )( ) + Qrn−1 t, x, y( )(
− Qrn−2 t, x, y( )) +/ + Qrm+1 t, x, y( )(
− Qrm t, x, y( ))‖≤ ‖Qrn t, x, y( ) − Qrn−1 t, x, y( )‖
+ ‖Qrn−1 t, x, y( ) − Qrn−2 t, x, y( )‖
+/ + ‖Qrm+1 t, x, y( ) − Qrm t, x, y( )‖.

(22)

From Eq. 21, we get

‖Qrn −Qrm‖≤μn‖Ar0 t,x,y( )‖+μn−1‖Ar0 t,x,y( )‖
+/+μm+1‖Ar0 t,x,y( )‖≤ μn +μn−1 +/+μm+1( )
‖Ar0 t,x,y( )‖≤μm+1 μn−m−1 +μn−m−2 +/+μ+1( )
‖Ar0 t,x,y( )‖≤μm+1 1−μn−m

1−μ( )‖Ar0 t,x,y( )‖.
(23)

Given 0 < μ< 1, hence, 1 − μn−m < 1. Thus, we have

‖Qrn − Qrm‖≤ μm+1

1 − μ
max |Ar0 t, x, y( )|, ∀ t ϵ 0, T[ ].

(24)
Since Ar0 is bounded, so

lim
n,m→∞

‖Qrn t, x, y( ) − Qrm t, x, y( )‖ � 0. (25)

Thus, Qrn(t, x, y) is a Cauchy sequence in the Banach space, and
hence, the given statement is proved.

4.2 Error estimation

Theorem 1: One can determine the maximum absolute truncation
error of the solution (19) for a fractional (2 + 1)-dimensional system
(9) by using the following expression:
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Ar t, x, y( ) −∑m
j�0

Arj t, x, y( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣≤
μm+1

1 − μ
‖Ar0 t, x, y( )‖. (26)

Proof: From Eq. 23, we have

‖Ar t, x, y( ) − Qrm‖≤ μm+1 1 − μn−m

1 − μ
( )‖Ar0 t, x, y( )‖. (27)

Since 0 < μ< 1, therefore, 1 − μn−m < 1. Thus, we have

Ar t, x, y( ) −∑m
j�0

Arj t, x, y( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣≤
μm+1

1 − μ
‖Ar0 t, x, y( )‖. (28)

5 Solution and analysis of the time-
fractional Wu–Zhang system

Consider the following coupled time-fractional (2 + 1)-
dimensional WZ system [39]:

zζU
ztζ

+U zU
zx

+V zU
zy

+ zW
zx

� 0,
zζV
ztζ

+U zV
zx

+V zV
zy

+ zW
zy

� 0,

zζW
ztζ

+ z UW( )
zx

+ z VW( )
zy

+ 1
3

z3U
zx3 +

z3U
zxzy2 +

z3V
zx2zy

+ z3V
zy3( )� 0,

0<ζ ≤1
(29)

that has the initial conditions

U 0, x, y( ) � −d + ac

b
+ 2

 
3

√
3

b tanh bx + cy( ),
V 0, x, y( ) � a + 2

 
3

√
3

c tanh bx + cy( ),
W 0, x, y( ) � 2

3
b2 + c2( )sech2 bx + cy( ),

(30)

where U and V represent the velocity at the surface of water in the x
and y directions, respectively, and W depicts the elevation of the
water waves. a, b, c, and d are the non-zero arbitrary constants. The
exact solution of (29) at ζ = 1 is

U t, x, y( ) � −d + ac

b
+ 2

 
3

√
3

b tanh bx + cy + dt( ),
V t, x, y( ) � a + 2

 
3

√
3

c tanh bx + cy + dt( ),
W t, x, y( ) � 2

3
b2 + c2( )sech2 bx + cy + dt( ).

(31)

Solution: The initial step of the He–Laplace procedure is the
applicationof theLaplace transformonbothsidesofEq.29,whichgives

L
zζU
ztζ

{ } + L U zU
zx

+ V zU
zy

+ zW
zx

{ } � 0, L
zζV
ztζ

{ }
+ L U zV

zx
+ V zV

zy
+ zW

zy
{ } � 0, L

zζW
ztζ

{ }
+ L

z UW( )
zx

+ z VW( )
zy

+ 1
3

z3U
zx3 +

z3U
zxzy2({

+ z3V
zx2zy

+ z3V
zy3)} � 0.

(32)

Utilization of the Laplace transform on the Caputo’s time-fractional
derivative (2) leads to

L U t, x, y( ){ } − 1
s

−d + ac

b
+ 2

 
3

√
3

b tanh bx + cy( )( )
+ 1

sζ
( )L U zU

zx
+ V zU

zy
{ +zW

zx
} � 0,

L V t, x, y( ){ } − 1
s

a + 2
 
3

√
3

c tanh bx + cy( )( )
+ 1

sζ
( )L U zV

zx
+ V zV

zy
+ zW

zy
{ } � 0,

L W t, x, y( ){ } − 1
s

2
3

b2 + c2( )sech2 bx + cy( )( ) + 1

sζ
( )

× L
z UW( )

zx
+ z VW( )

zy
+ 1
3

{ z3U
zx3 +

z3U
zxzy2 +

z3V
zx2zy

+ z3V
zy3( )} � 0.

(33)
We construct homotopies of the aforementioned system as

TABLE 1 He–Laplace errors for different values of ζ,when a = d = 0.13, b = 0.11,
c = 0.12, x = 3, and y = 6. Here,Ru,Rv ,Rw , andR represent residual errors of
U, V, W, and system errors, respectively.

ζ t Ru Rv Rw R
0.1 0.1 9.81 × 10−7 1.07 × 10−6 1.95 × 10−6 1.33 × 10−6

0.3 1.69 × 10−6 1.84 × 10−6 3.38 × 10−6 2.30 × 10−6

0.5 2.17 × 10−6 2.37 × 10−6 4.36 × 10−6 2.97 × 10−6

0.7 2.56 × 10−6 2.80 × 10−6 5.16 × 10−6 3.51 × 10−6

0.9 2.90 × 10−6 3.17 × 10−6 5.86 × 10−6 3.98 × 10−6

0.1 8.75 × 10−9 9.54 × 10−9 9.87 × 10−9 9.39 × 10−9

0.3 1.02 × 10−7 1.11 × 10−7 1.17 × 10−7 1.10 × 10−7

0.45 0.5 3.19 × 10−7 3.48 × 10−7 3.71 × 10−7 3.46 × 10−7

0.7 6.76 × 10−7 7.37 × 10−7 7.94 × 10−7 7.36 × 10−7

0.9 1.18 × 10−6 1.29 × 10−6 1.40 × 10−6 1.29 × 10−6

0.1 1.27 × 10−10 1.39 × 10−10 6.70 × 10−11 1.11 × 10−10

0.3 6.22 × 10−9 6.78 × 10−9 3.34 × 10−9 5.45 × 10−9

0.71 0.5 3.78 × 10−8 4.12 × 10−8 2.06 × 10−8 3.23 × 10−8

0.7 1.23 × 10−7 1.35 × 10−7 6.87 × 10−8 1.09 × 10−7

0.9 2.99 × 10−7 3.27 × 10−7 1.68 × 10−7 2.65 × 10−7

0.1 1.48 × 10−12 1.62 × 10−12 9.78 × 10−14 1.06 × 10−12

0.3 2.87 × 10−10 3.13 × 10−10 2.03 × 10−11 2.07 × 10−10

0.96 0.5 3.31 × 10−9 3.61 × 10−9 2.49 × 10−10 2.39 × 10−9

0.7 1.65 × 10−8 1.80 × 10−8 1.32 × 10−9 1.19 × 10−8

0.9 5.48 × 10−8 5.98 × 10−8 4.63 × 10−9 3.98 × 10−8
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FIGURE 1
Graphical illustration of the He–Laplace solution at ζ = 1, a = c = 2, b = d = 1, and t = 2.

FIGURE 2
Error analysis at different values of the fractional parameter ζ, when a = c = 0.2, b = d = 0.1, and t = 2.

Frontiers in Physics frontiersin.org06

Qayyum et al. 10.3389/fphy.2023.1178154

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1178154


TABLE 2 Error comparison of the He–Laplace algorithm with other methods, when ζ = 1, a = b = 0.1, c = d = 0.01, t = 5, and y = 20.

Exact HLM HLM FRDTM mADM mVIM

x Sol Sol Error Error [39] Error [39] Error [39]

U −40 −0.22534 −0.22534 0 0 4.33 × 10−10 1.21 × 10−5

−30 −0.22453 −0.22453 1.38 × 10−17 1.00 × 10−10 3.59 × 10−9 8.93 × 10−5

−20 −0.21870 −0.21870 0 2.00 × 10−10 2.44 × 10−8 6.36 × 10−4

−10 −0.18334 −0.18334 1.38 × 10−17 2.30 × 10−9 1.02 × 10−7 3.60 × 10−3

0 −0.08171 −0.08171 3.46 × 10−18 3.23 × 10−9 3.04 × 10−7 6.44 × 10−3

10 −0.01204 −0.01204 1.38 × 10−17 8.30 × 10−10 8.92 × 10−3 1.91 × 10−4

20 0.00293 0.00293 0 1.00 × 10−10 5.19 × 10−9 2.91 × 10−4

30 0.00512 0.00512 0 0 1.37 × 10−9 4.01 × 10−5

40 0.00542 0.00542 0 0 2.07 × 10−10 5.44 × 10−6

−40 0.08846 0.08846 0 0 6.33 × 10−11 5.96 × 10−8

−30 0.08854 0.08854 1.73 × 10−18 1.00 × 10−11 3.39 × 10−10 4.34 × 10−7

−20 0.08912 0.08912 0 2.00 × 10−11 2.43 × 10−9 2.91 × 10−6

−10 0.09266 0.09266 4.33 × 10−19 2.30 × 10−10 1.02 × 10−8 1.07 × 10−5

V 0 0.10282 0.10282 1.73 × 10−18 3.00 × 10−10 3.05 × 10−8 5.87 × 10−6

10 0.10979 0.10979 1.73 × 10−18 0 8.96 × 10−9 7.18 × 10−6

20 0.11129 0.11129 0 0 5.39 × 10−10 1.30 × 10−6

30 0.11151 0.11151 0 0 1.07 × 10−10 1.84 × 10−7

40 0.11154 0.11154 0 0 2.07 × 10−11 2.50 × 10−8

−40 0.00001 0.00001 2.87 × 10−21 1.11 × 10−12 5.70 × 10−11 2.73 × 10−6

−30 0.00010 0.00010 8.01 × 10−20 6.50 × 10−12 4.11 × 10−10 1.98 × 10−5

−20 0.00076 0.00076 1.57 × 10−19 1.85 × 10−11 2.63 × 10−9 1.30 × 10−4

−10 0.00401 0.00401 1.77 × 10−19 6.20 × 10−11 8.87 × 10−11 4.14 × 10−4

W 0 0.00632 0.00632 2.11 × 10−18 7.96 × 10−10 3.83 × 10−8 1.15 × 10−4

10 0.00188 0.00188 6.50 × 10−20 2.07 × 10−10 1.48 × 10−8 2.26 × 10−5

20 0.00029 0.00029 2.70 × 10−20 8.60 × 10−12 5.89 × 10−11 6.97 × 10−7

30 0.00004 0.00004 1.68 × 10−20 3.31 × 10−12 1.52 × 10−10 1.99 × 10−7

40 5.4 × 10−6 5.4 × 10−6 3.53 × 10−21 4.90 × 10−13 2.41 × 10−11 2.87 × 10−8

FIGURE 3
Effect of the fractional parameter ζ on the water surface level, when a = 0.8, c = 0.9, b = d = 0.7, y = 3, and x = 2.
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H1 � 1 − p( ) L U t, x, y( ){ } − U0 t, x, y( )( )
+ p L U t, x, y( ){ } − 1

s
−d + ac

b
+ 2

 
3

√
3

(( b tanh bx + cy( ))
+ 1

sζ
( )L U zU

zx
+ V zU

zy
+ zW

zx
{ }), H2 � 1 − p( ) L V t, x, y( ){ }(

− V0 t, x, y( )) + p L V t, x, y( ){ } − 1
s

a + 2
 
3

√
3

c(( tanh bx + cy( ))
+ 1

sζ
( )L U zV

zx
+ V zV

zy
+ zW

zy
{ }), H3 � 1 − p( ) L W t, x, y( ){ }(

−W0 t, x, y( )) + p L W t, x, y( ){ } − 1
s

2
3

b2 + c2( )(( sech2 bx + cy( ))
+ 1

sζ
( )L z UW( )

zx
+ z VW( )

zy
+ 1
3

z3U
zx3({ + z3U

zxzy2 +
z3V
zx2zy

+ z3V
zy3)}),

(34)

where U0(t, x, y), V0(t, x, y), and W0(t, x, y) are the initial
guesses.

U0 t, x, y( ) � −d + ac

b
+ 2

 
3

√
3

b tanh bx + cy( ),
V0 t, x, y( ) � a + 2

 
3

√
3

c tanh bx + cy( ),
W0 t, x, y( ) � 2

3
b2 + c2( )sech2 bx + cy( ).

(35)

In the next step, we will expand U(t, x, y), V(t, x, y), andW(t, x, y)
in Taylor’s series form with respect to p as

U t, x, y( ) � ∑∞
m�1

pmUm,

V t, x, y( ) � ∑∞
m�1

pmVm,

W t, x, y( ) � ∑∞
m�1

pmWm.

(36)

Substitution of Eq. 36 into Eq. 34 and then comparison of a similar
coefficient with respect to p givesthe first-order problem

L U1 t,x,y( ){ }+U0 t,x,y( )− 1
s

−d+ac
b

+ 2
 
3

√
3

btanh bx+cy( )( )
+ 1

sζ
( )L U0

zU0

zx
+V0

zU0

zy
+ zW0

zx
{ }�0,L V1 t,x,y( ){ }−V0 t,x,y( )

− 1
s

a+ 2
 
3

√
3

ctanh bx+cy( )( )+ 1

sζ
( )L U0

zV0

zx
{ +V0

zV0

zy
+ zW0

zy
}

�0,L W1 t,x,y( ){ }−W0 t,x,y( )− 1
s

2
3

b2+c2( )sech2 bx+cy( )( )
+ 1

sζ
( )L zU0W0

zx
{ + zV0W0

zy
+ 1
3

z3U0

zx3 + z3U0

zxzy2+
z3V0

zx2zy
+ z

3V0

zy3( )}�0,
(37)

with the condition

U1 0, x, y( ) � 0,
V1 0, x, y( ) � 0,
W1 0, x, y( ) � 0.

(38)

By operating the inverse Laplace transform, the solution at first
order is

U1 t, x, y( ) � −4bd
2t2ζ tanh bx + cy( )sech2 bx + cy( ) 

3
√

Γ 2ζ + 1( ) ,

V1 t, x, y( ) � −4cd
2t2ζ tanh bx + cy( )sech2 bx + cy( ) 

3
√

Γ 2ζ + 1( ) ,

W1 t, x, y( ) � 4 b2 + c2( )d2t2ζ cosh 2 bx + cy( )( ) − 2( )sech4 bx + cy( )
3Γ 2ζ + 1( ) .

(39)
The second-order problem is

L U2 t,x,y( ){ }+ 1

sζ
( )L U1

zU1

zx
+V1

zU1

zy
+ zW1

zx
{ }� 0,

L V2 t,x,y( ){ }+ 1

sζ
( )L U1

zV1

zx
+V1

zV1

zy
+ zW1

zy
{ }� 0,

L W2 t,x,y( ){ }+ 1

sζ
( )L zU1W1

zx
+ zV1W1

zy
+ 1
3

z3U1

zx3 + z3U1

zxzy2 +
z3V1

zx2zy
+ z3V1

zy3( ){ }� 0

(40)

that has the condition

U2 0, x, y( ) � 0,
V2 0, x, y( ) � 0,
W2 0, x, y( ) � 0.

(41)

FIGURE 4
Comparison of Caputo, Caputo–Fabrizio, and Atangana–Baleanu fractional derivative approaches on the solution profile, when a = 0.6, b = 0.8, c =
0.9, d = 0.7, y = 2, and x = 5.
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The inverse of the Laplace transform gives

U2 t, x, y( ) � 2bdtζ sech2 bx + cy( ) 
3

√
Γ ζ + 1( ) ,

V2 t, x, y( ) � 2cdtζ sech2 bx + cy( ) 
3

√
Γ ζ + 1( ) ,

W2 t, x, y( ) � −tζ 4
3
db2 tanh bx + cy( )sech2 bx + cy( ) + 4

3
c2(

d tanh bx + cy( )sech2 bx + cy( ))/Γ ζ + 1( ).

(42)

The same procedure is applied for higher-order problems. Thus, the
approximate solution at the higher order of the (2 + 1)-dimensional
Wu–Zhang system can be obtained by

~U � ∑∞
m�0

Um t, x, y( ),
~V � ∑∞

m�0
Vm t, x, y( ),

~W � ∑∞
m�0

Wm t, x, y( ).
(43)

By replacing the approximate solutions (43) in the given system (29),
we obtain residual errors

R1� zζ ~U
ztζ

+ ~U z ~U
zx

+ ~V z ~U
zy

+ z ~W
zx

,

R2� zζ ~V
ztζ

+ ~U z~V
zx

+ ~V z~V
zy

+ z ~W
zy

,

R3� zζ ~W
ztζ

+ z ~U ~W
zx

+ z~V ~W
zy

+ 1
3

z3 ~U
zx3 +

z3 ~U
zxzy2 +

z3 ~V
zx2zy

+ z3 ~V
zy3( ).

(44)

6 Results and discussion

The objective of this study is to propose a new soliton solution of
the non-linear time-fractional Wu–Zhang system. This (2 + 1)-
dimensional system describes the phenomena of long dispersive
waves. The current section is focused on the numerical and graphical
results of the WZ system through a hybrid approach by using
homotopy perturbation with the Laplace transform, which is
known as the He–Laplace algorithm (method). Initially, solutions
are captured through the He–Laplace algorithm, considering the
fractional derivative in Caputo sense. The obtained results are then
analyzed at both fractional and integral orders. Table 1 depicts the
residual error at U ,V,W along with overall system errors at various
fractional parameter values. These errors clearly indicate the
reliability of proposed methodology across the complete
fractional domain. It is also observed that error is reduced when
fractional parameter approaches one.

Table 2 shows the comparison of results obtained through
He–Laplace and other methods at the integer order that is ζ = 1.
This numerical comparison indicates that He–Laplace
surpasses other mentioned schemes in terms of accuracy.
Figure 1 depicts the He–Laplace solution of the WZ system

in 3D at the integer order. This graphical illustration confirms
that in the WZ system, surface water velocities in x and y
directions are very high, while elevation in water waves
decreases with time. Error analysis at ζ = 0.4, 0.8, and 1 as
3D structures can be seen from Figure 2 for U , V, and W,
respectively. At ζ = 1, the errors are lesser than ζ = 0.8, and the
same can be observed in case of ζ = 0.4.

The impact of the fractional parameter on the water surface is
depicted in Figure 3. Research findings indicate that a rise in ζ

results in a reduction of the water surface velocity, in both the x
and y directions. However, water wave elevation (W) shows
inverse behavior in this case. Comparative analysis of different
fractional derivative approaches (Atangana–Baleanu,
Caputo–Fabrizio, and Caputo) on the solution profile can be
seen in Figure 4. Analysis of this figure shows that water surface
velocities are highest in the Atangana–Baleanu fractional
approach as compared to Caputo and Caputo–Fabrizio
fractional approaches. On the other hand, W depicts opposite
behavior as compared to U and V.

7 Conclusion

In this article , a hybrid approach is proposed to solve and
analyze the highly non-linear time-fractional (2 + 1)-
dimensional WZ system, which is famous for capturing long
dispersive waves. A hybrid approach in which homotopy
perturbation is combined with the Laplace transform along
with different fractional derivatives is proposed for the
solution and analysis of the fractional WZ system. Efficiency
of the obtained solution is checked over the entire fractional
domain to show the validity and convergence of the proposed
methodology. Error analysis is also performed in comparison
with other well-known numerical methods, which confirms the
efficiency of the proposed approach. Graphical analysis shows
that water surface velocities increase, while surface elevation
decreases, when fractional parameter increases. Also, it is
noted that the Atangana–Baleanu approach uplifts water
velocities in x and y directions more than Caputo and
Caputo–Fabrizio approaches. Analysis of the results also
concludes that the proposed method is a reliable technique,
which can be extended to more complex fractional systems.
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Nomenclature

Parameter Description

U Velocity in the x direction

V Velocity in the y direction

W Elevation of water waves

ζ Fractional parameter

x, y Dimensions

t Time

a, b, c, d Non-zero arbitrary constants

L Laplace transform

R Residual errors
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