897 research outputs found

    Contributions to autonomous robust navigation of mobile robots in industrial applications

    Get PDF
    151 p.Un aspecto en el que las plataformas móviles actuales se quedan atrás en comparación con el punto que se ha alcanzado ya en la industria es la precisión. La cuarta revolución industrial trajo consigo la implantación de maquinaria en la mayor parte de procesos industriales, y una fortaleza de estos es su repetitividad. Los robots móviles autónomos, que son los que ofrecen una mayor flexibilidad, carecen de esta capacidad, principalmente debido al ruido inherente a las lecturas ofrecidas por los sensores y al dinamismo existente en la mayoría de entornos. Por este motivo, gran parte de este trabajo se centra en cuantificar el error cometido por los principales métodos de mapeado y localización de robots móviles,ofreciendo distintas alternativas para la mejora del posicionamiento.Asimismo, las principales fuentes de información con las que los robots móviles son capaces de realizarlas funciones descritas son los sensores exteroceptivos, los cuales miden el entorno y no tanto el estado del propio robot. Por esta misma razón, algunos métodos son muy dependientes del escenario en el que se han desarrollado, y no obtienen los mismos resultados cuando este varía. La mayoría de plataformas móviles generan un mapa que representa el entorno que les rodea, y fundamentan en este muchos de sus cálculos para realizar acciones como navegar. Dicha generación es un proceso que requiere de intervención humana en la mayoría de casos y que tiene una gran repercusión en el posterior funcionamiento del robot. En la última parte del presente trabajo, se propone un método que pretende optimizar este paso para así generar un modelo más rico del entorno sin requerir de tiempo adicional para ello

    Algorithm for path recognition in-between tree rows for agricultural wheeled-mobile robots

    Get PDF
    Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.This study is within the activities of project PrunusBot - Sistema robótico aéreo autónomo de pulverização controlada e previsão de produção frutícola (autonomous unmanned aerial robotic system for controlled spraying and prediction of fruit production), Operation n.º PDR2020-101-031358 (líder), Consortium n.º 340, Initiative n.º 140 promoted by PDR2020 and co-financed by FEADER under the Portugal 2020 initiative.info:eu-repo/semantics/publishedVersio

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Navigation of Autonomous Light Vehicles Using an Optimal Trajectory Planning Algorithm

    Full text link
    [EN] Autonomous navigation is a complex problem that involves different tasks, such as location of the mobile robot in the scenario, robotic mapping, generating the trajectory, navigating from the initial point to the target point, detecting objects it may encounter in its path, etc. This paper presents a new optimal trajectory planning algorithm that allows the assessment of the energy efficiency of autonomous light vehicles. To the best of our knowledge, this is the first time in the literature that this is carried out by minimizing the travel time while considering the vehicle's dynamic behavior, its limitations, and with the capability of avoiding obstacles and constraining energy consumption. This enables the automotive industry to design environmentally sustainable strategies towards compliance with governmental greenhouse gas (GHG) emission regulations and for climate change mitigation and adaptation policies. The reduction in energy consumption also allows companies to stay competitive in the marketplace. The vehicle navigation control is efficiently implemented through a middleware of component-based software development (CBSD) based on a Robot Operating System (ROS) package. It boosts the reuse of software components and the development of systems from other existing systems. Therefore, it allows the avoidance of complex control software architectures to integrate the different hardware and software components. The global maps are created by scanning the environment with FARO 3D and 2D SICK laser sensors. The proposed algorithm presents a low computational cost and has been implemented as a new module of distributed architecture. It has been integrated into the ROS package to achieve real time autonomous navigation of the vehicle. The methodology has been successfully validated in real indoor experiments using a light vehicle under different scenarios entailing several obstacle locations and dynamic parameters.This work has been partially funded by FEDER-CICYT project with reference DPI2017-84201-R financed by Ministerio de Economia, Industria e Innovacion (Spain).Valera Fernández, Á.; Valero Chuliá, FJ.; Vallés Miquel, M.; Besa Gonzálvez, AJ.; Mata Amela, V.; Llopis-Albert, C. (2021). Navigation of Autonomous Light Vehicles Using an Optimal Trajectory Planning Algorithm. Sustainability. 13(3):1-23. https://doi.org/10.3390/su1303123312313

    Autonomous navigation with ROS for a mobile robot in agricultural fields

    Get PDF
    Autonomous monitoring of agricultural farms and fields has recently become feasible due to continuing advances in robotics technology, but many notable challenges remain. In this paper, we describe the state of ongoing work to create a fully autonomous ground rover platform for monitoring and intervention tasks on modern farms that is built using inexpensive and off the shelf hardware and Robot Operating System (ROS) software so as to be affordable to farmers. The hardware and software architectures used in this rover are described along with challenges and solutions in odometry and localization, object recognition and mapping, and path planning algorithms under the constraints of the current hardware. Results obtained from laboratory and field testing show both the key challenges to be overcome, and the current successes in applying a low-cost rover platform to the task of autonomously navigating the outdoor farming environment

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Proceedings of the 4th field robot event 2006, Stuttgart/Hohenheim, Germany, 23-24th June 2006

    Get PDF
    Zeer uitgebreid verslag van het 4e Fieldrobotevent, dat gehouden werd op 23 en 24 juni 2006 in Stuttgart/Hohenhei

    Autonomous navigation of a wheeled mobile robot in farm settings

    Get PDF
    This research is mainly about autonomously navigation of an agricultural wheeled mobile robot in an unstructured outdoor setting. This project has four distinct phases defined as: (i) Navigation and control of a wheeled mobile robot for a point-to-point motion. (ii) Navigation and control of a wheeled mobile robot in following a given path (path following problem). (iii) Navigation and control of a mobile robot, keeping a constant proximity distance with the given paths or plant rows (proximity-following). (iv) Navigation of the mobile robot in rut following in farm fields. A rut is a long deep track formed by the repeated passage of wheeled vehicles in soft terrains such as mud, sand, and snow. To develop reliable navigation approaches to fulfill each part of this project, three main steps are accomplished: literature review, modeling and computer simulation of wheeled mobile robots, and actual experimental tests in outdoor settings. First, point-to-point motion planning of a mobile robot is studied; a fuzzy-logic based (FLB) approach is proposed for real-time autonomous path planning of the robot in unstructured environment. Simulation and experimental evaluations shows that FLB approach is able to cope with different dynamic and unforeseen situations by tuning a safety margin. Comparison of FLB results with vector field histogram (VFH) and preference-based fuzzy (PBF) approaches, reveals that FLB approach produces shorter and smoother paths toward the goal in almost all of the test cases examined. Then, a novel human-inspired method (HIM) is introduced. HIM is inspired by human behavior in navigation from one point to a specified goal point. A human-like reasoning ability about the situations to reach a predefined goal point while avoiding any static, moving and unforeseen obstacles are given to the robot by HIM. Comparison of HIM results with FLB suggests that HIM is more efficient and effective than FLB. Afterward, navigation strategies are built up for path following, rut following, and proximity-following control of a wheeled mobile robot in outdoor (farm) settings and off-road terrains. The proposed system is composed of different modules which are: sensor data analysis, obstacle detection, obstacle avoidance, goal seeking, and path tracking. The capabilities of the proposed navigation strategies are evaluated in variety of field experiments; the results show that the proposed approach is able to detect and follow rows of bushes robustly. This action is used for spraying plant rows in farm field. Finally, obstacle detection and obstacle avoidance modules are developed in navigation system. These modules enables the robot to detect holes or ground depressions (negative obstacles), that are inherent parts of farm settings, and also over ground level obstacles (positive obstacles) in real-time at a safe distance from the robot. Experimental tests are carried out on two mobile robots (PowerBot and Grizzly) in outdoor and real farm fields. Grizzly utilizes a 3D-laser range-finder to detect objects and perceive the environment, and a RTK-DGPS unit for localization. PowerBot uses sonar sensors and a laser range-finder for obstacle detection. The experiments demonstrate the capability of the proposed technique in successfully detecting and avoiding different types of obstacles both positive and negative in variety of scenarios

    Localization, Navigation and Activity Planning for Wheeled Agricultural Robots – A Survey

    Get PDF
    Source at:https://fruct.org/publications/volume-32/fruct32/High cost, time intensive work, labor shortages and inefficient strategies have raised the need of employing mobile robotics to fully automate agricultural tasks and fulfil the requirements of precision agriculture. In order to perform an agricultural task, the mobile robot goes through a sequence of sub operations and integration of hardware and software systems. Starting with localization, an agricultural robot uses sensor systems to estimate its current position and orientation in field, employs algorithms to find optimal paths and reach target positions. It then uses techniques and models to perform feature recognition and finally executes the agricultural task through an end effector. This article, compiled through scrutinizing the current literature, is a step-by-step approach of the strategies and ways these sub-operations are performed and integrated together. An analysis has also been done on the limitations in each sub operation, available solutions, and the ongoing research focus

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots
    corecore