13 research outputs found

    Design and Gait Control of a Rollerblading Robot

    Get PDF
    We present the design and gait generation for an experimental ROLLERBLADER1. The ROLLERBLADER is a robot with a central platform mounted on omnidirectional casters and two 3 degree-of-freedom legs. A passive rollerblading wheel is attached to the end of each leg. The wheels give rise to nonholonomic constraints acting on the robot. The legs can be picked up and placed back on the ground allowing a combination of skating and walking gaits. We present two types of gaits for the robot. In the first gait, we allow the legs to be picked up and placed back on the ground while in the second, the wheels are constrained to stay on the ground at all times. Experimental gait results for a prototype robot are also presented

    Dynamics and Generation of Gaits for a Planar Rollerblader

    Get PDF
    We develop the dynamic model for a planar ROLLERBLADER. The robot consists of a rigid platform and two planar, two degree-of-freedom legs with in-line skates at the foot. The dynamic model consists of two unicycles coupled through the rigid body dynamics of the planar platform. We derive the Lagrangian reduction for the ROLLERBLADING robot. We show the generation of some simple gaits that allow the platform to move forward and rotate by using cyclic motions of the two legs

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/

    Design and gait control of a rollerblading robot

    Full text link

    Sélection et contrôle de modes de déplacement pour un robot mobile autonome en environnements naturels

    Get PDF
    Le déplacement entièrement autonome d'un robot mobile en environnements naturels est un problème encore loin d'être résolu. Il nécessite la mise en oeuvre de fonctionnalités permettant de réaliser le cycle perception/décision/action, que nous distinguons en deux catégories : navigation (perception et décision sur le mouvement à réaliser) et locomotion (réalisation du mouvement). Pour pouvoir faire face à la grande diversité de situations que le robot peut rencontrer en environnement naturel, il peut être primordial de disposer de plusieurs types de fonctionnalités complémentaires, constituant autant de modes de déplacement possibles. En effet, de nombreuses réalisations de ces derniers ont été proposées dans la littérature ces dernières années mais aucun ne peut prétendre permettre d'exécuter un déplacement autonome en toute situation. Par conséquent, il semble judicieux de doter un robot mobile d'extérieur de plusieurs modes de déplacement complémentaires. Dès lors, ce dernier doit également disposer de moyens de choisir en ligne le mode le plus approprié. Dans ce cadre, cette thèse propose une mise en oeuvre d'un tel système de sélection de mode de déplacement, réalisée à partir de deux types de données : une observation du contexte pour déterminer dans quel type de situation le robot doit réaliser son déplacement et une surveillance du comportement du mode courant, effectuée par des moniteurs, et qui influence les transitions vers d'autres modes lorsque le comportement du mode actuel est jugé non satisfaisant. Ce manuscrit présente donc : un formalisme probabiliste d'estimation du mode à appliquer, des modes de navigation et de locomotion exploités pour réaliser le déplacement autonome, une méthode de représentation qualitative du terrain (reposant sur l'évaluation d'une difficulté calculée après placement de la structure du robot sur un modèle numérique de terrain), et des moniteurs surveillant le comportement des modes de déplacement utilisés (évaluation de l'efficacité de la locomotion par roulement, surveillance de l'attitude et de la conguration du robot...). Quelques résultats expérimentaux de ces éléments intégrés à bord de deux robots d'extérieur différents sont enfin présentés et discutés. ABSTRACT : Autonomous navigation and locomotion of a mobile robot in natural environments remain a rather open issue. Several functionalities are required to complete the usual perception/decision/action cycle. They can be divided in two main categories : navigation (perception and decision about the movement) and locomotion (movement execution). In order to be able to face the large range of possible situations in natural environments, it is essential to make use of various kinds of complementaryfunctionalities, defining various navigation and locomotion modes. Indeed, a number of navigation and locomotion approaches have been proposed in the litterature for the last years, but none can pretend being able to achieve autonomous navigation and locomotion in every situation. Thus, it seems relevant to endow an outdoor mobile robot with several complementary navigation and locomotion modes. Accordingly, the robot must also have means to select the most appropriate mode to apply. This thesis proposes the development of such a navigation/locomotion mode selection system, based on two types of data : an observation of the context to determine in what kind of situation the robot has to achieve its movement and an evaluation of the behavior of the current mode, made by monitors which inuence the transitions towards other modes when the behavior of the current one is considered as non satisfying. Hence, this document introduces a probabilistic framework for the estimation of the mode to be applied, some navigation and locomotion modes used, a qualitative terrain representation method (based on the evaluation of a diculty computed from the placement of the robot's structure on a digital elevation map), and monitors that check the behavior of the modes used (evaluation of rolling locomotion efficiency, robot's attitude and conguration watching. . .). Some experimental results obtained with those elements integrated on board two different outdoor robots are presented and discussed

    A review on challenges of autonomous mobile robot and sensor fusion methods

    Get PDF
    Autonomous mobile robots are becoming more prominent in recent time because of their relevance and applications to the world today. Their ability to navigate in an environment without a need for physical or electro-mechanical guidance devices has made it more promising and useful. The use of autonomous mobile robots is emerging in different sectors such as companies, industries, hospital, institutions, agriculture and homes to improve services and daily activities. Due to technology advancement, the demand for mobile robot has increased due to the task they perform and services they render such as carrying heavy objects, monitoring, search and rescue missions, etc. Various studies have been carried out by researchers on the importance of mobile robot, its applications and challenges. This survey paper unravels the current literatures, the challenges mobile robot is being faced with. A comprehensive study on devices/sensors and prevalent sensor fusion techniques developed for tackling issues like localization, estimation and navigation in mobile robot are presented as well in which they are organised according to relevance, strengths and weaknesses. The study therefore gives good direction for further investigation on developing methods to deal with the discrepancies faced with autonomous mobile robot.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639pm2021Electrical, Electronic and Computer Engineerin

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Study on biped foot systems and controls adaptable to various terrains

    Get PDF
    制度:新 ; 報告番号:甲2842号 ; 学位の種類:博士(工学) ; 授与年月日:2009/3/15 ; 早大学位記番号:新506

    Study on Roller-Walker. Multi-mode Steering Control and Self-contained Locomotion.

    No full text
    corecore