515 research outputs found

    マルチ スケール キノウ ヲ ユウスル コウソク ジドウ マイクロ マニピュレーション システム

    Full text link
    Ebubekir Avci, Chanh-Nghiem Nguyen, Kenichi Ohara, Yasushi Mae, Tatsuo Arai, Analysis and suppression of residual vibration in microhand for high-speed single-cell manipulation, International Journal of Mechatronics and Automation, 2013-Vol.3, No.2, pp.110-11

    Identifying and mitigating residual vibrations in wave-based control of lumped, flexible systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Wave-based control (WBC) is a technique for motion control of under-actuated flexible sys-tems. It envisages actuator motion as launching a motion wave into the system, while simulta-neously absorbing any wave returning from the system. For rest-to-rest motion the net launch displacement is set at half the target displacement. In absorbing the returning wave and vibra-tions, WBC moves the system the remaining distance to the target, with zero steady-state error. The focus of this paper is on very small residual vibrations around the target position which can endure for a long time after arrival at target. This issue was discovered through a recent devel-opment within WBC context on controlling complex two-dimensional, mass-spring, beam-like arrays. To date their existence has been unidentified. This paper investigates and interprets the nature of these vibrations, explains and identifies them based on wave ideas, and finally offers a new wave-based approach to mitigate or suppress them. It also discusses their implication, not just for WBC but for the general problem of control of flexible systems

    Experimental Study of Active Vibration Control of Planar 3- R

    Get PDF

    Design and Nonlinear Control of a 2-DOF Flexible Parallel Humanoid Arm Joint Robot

    Get PDF

    Data-driven mode shape selection and model-based vibration suppression of 3-RRR parallel manipulator with flexible actuation links

    Full text link
    The mode shape function is difficult to determine in modeling manipulators with flexible links using the assumed mode method. In this paper, for a planar 3-RRR parallel manipulator with flexible actuation links, we provide a data-driven method to identify the mode shape of the flexible links and propose a model-based controller for the vibration suppression. By deriving the inverse kinematics of the studied mechanism in analytical form, the dynamic model is established by using the assumed mode method. To select the mode shape function, the software of multi-body system dynamics is used to simulate the dynamic behavior of the mechanism, and then the data-driven method which combines the DMD and SINDy algorithms is employed to identify the reasonable mode shape functions for the flexible links. To suppress the vibration of the flexible links, a state observer for the end-effector is constructed by a neural network, and the model-based control law is designed on this basis. In comparison with the model-free controller, the proposed controller with developed dynamic model has promising performance in terms of tracking accuracy and vibration suppression

    Applied Mathematics to Mechanisms and Machines

    Get PDF
    This book brings together all 16 articles published in the Special Issue "Applied Mathematics to Mechanisms and Machines" of the MDPI Mathematics journal, in the section “Engineering Mathematics”. The subject matter covered by these works is varied, but they all have mechanisms as the object of study and mathematics as the basis of the methodology used. In fact, the synthesis, design and optimization of mechanisms, robotics, automotives, maintenance 4.0, machine vibrations, control, biomechanics and medical devices are among the topics covered in this book. This volume may be of interest to all who work in the field of mechanism and machine science and we hope that it will contribute to the development of both mechanical engineering and applied mathematics

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Nonlinear control for Two-Link flexible manipulator

    Get PDF
    Recently the use of robot manipulators has been increasing in many applications such as medical applications, automobile, construction, manufacturing, military, space, etc. However, current rigid manipulators have high inertia and use actuators with large energy consumption. Moreover, rigid manipulators are slow and have low payload-to arm-mass ratios because link deformation is not allowed. The main advantages of flexible manipulators over rigid manipulators are light in weight, higher speed of operation, larger workspace, smaller actuator, lower energy consumption and lower cost. However, there is no adequate closed-form solutions exist for flexible manipulators. This is mainly because flexible dynamics are modeled with partial differential equations, which give rise to infinite dimensional dynamical systems that are, in general, not possible to represent exactly or efficiently on a computer which makes modeling a challenging task. In addition, if flexibility nature wasn\u27t considered, there will be calculation errors in the calculated torque requirement for the motors and in the calculated position of the end-effecter. As for the control task, it is considered as a complex task since flexible manipulators are non-minimum phase system, under-actuated system and Multi-Input/Multi-Output (MIMO) nonlinear system. This thesis focuses on the development of dynamic formulation model and three control techniques aiming to achieve accurate position control and improving dynamic stability for Two-Link Flexible Manipulators (TLFMs). LQR controller is designed based on the linearized model of the TLFM; however, it is applied on both linearized and nonlinear models. In addition to LQR, Backstepping and Sliding mode controllers are designed as nonlinear control approaches and applied on both the nonlinear model of the TLFM and the physical system. The three developed control techniques are tested through simulation based on the developed dynamic formulation model using MATLAB/SIMULINK. Stability and performance analysis were conducted and tuned to obtain the best results. Then, the performance and stability results obtained through simulation are compared. Finally, the developed control techniques were implemented and analyzed on the 2-DOF Serial Flexible Link Robot experimental system from Quanser and the results are illustrated and compared with that obtained through simulation

    Intelligent manipulator with flexible link and joint: modeling and vibration control

    Get PDF
    This paper presents a finite-element (FE) model of a manipulator with a flexible link and flexible joint as well as embedded PZT actuators and proposes a corrected rebuilt reduced model (CRRM) to make its dynamic characteristics more consistent with reality and facilitate control design. The CRRM considers the holding torque of the manipulator driving motor and eliminates the response divergence induced by a fault of the mass matrix of the FE model. In order to reduce the dimensions and maintain the precision of the model, an iterated improved reduction system (IIRS) method is adopted. Additionally, a LQR controller is designed based on the output function of the improved model. The simulation results demonstrate that the CRRM is consistent with reality and the active controller has good performance in suppressing vibration of the manipulator with both the flexible link and the flexible joint
    corecore