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The paper focuses on the design and nonlinear control of the humanoid wrist/shoulder joint based on the cable-driven parallel
mechanismwhich can realize roll and pitchmovement. In view of the existence of the flexible parts in themechanism, it is necessary
to solve the vibration control of the flexible wrist/shoulder joint. In this paper, a cable-driven parallel robot platform is developed for
the experiment study of the humanoid wrist/shoulder joint. And the dynamic model of the mechanism is formulated by using the
coupling theory of the flexible body’s large global motion and small flexible deformation. Based on derived dynamics, antivibration
control of the joint robot is studied with a nonlinear control method. Finally, simulations and experiments were performed to
validate the feasibility of the developed parallel robot prototype and the proposed control scheme.

1. Introduction

Live working is a better option for executing related tasks
of the electric system. In consideration of the fact that
traditional live working ismainly accomplished by the labour,
it is dangerous and easy to cause personal casualty accidents.
In order to avoid the accident in the artificial live working,
it has urgent realistic meaning and important research value
that the robot replaces the labour to execute live working.The
traditional live working robot [1] has some drawbacks such
as low ratio of load to mass and high insulation cost mainly
due to the serial mechanism of the robot armwith embedded
electrical driving parts, respectively. It is suggested to develop
a self-insulated robot arm without embedded electric parts.
Inspired by human arm’s anatomical structure, the robot arm
with cable-driven joints in parallel arrangement has already
been studied [2]. According to the study, wrist/shoulder joint
is the key module of the humanoid robot arm. Aiming at
self-insulated requirement, the wrist/shoulder joint in [2]
is simplified and redesigned as shown in Figure 1. The
wrist/shoulder joint mechanism is in parallel arrangement
with flexible spine and driven by three motors via three
cables mimicking human muscles. Because of the existence
of flexible parts in the mechanism which will cause vibration
during motion control, it is necessary to study the problem

of dynamics and vibration control for the wrist/shoulder
joint. Figure 2 shows the developed robot prototype for
the experimental study of the flexible wrist/shoulder joint
mechanism in this paper.

Due to large workspace, high quality of load ratio, and
small inertia, the cable-driven robot technology which stems
from the crane system has become a research hot spot in
the field of the robot [3, 4]. The cable-driven parallel robots
include the cable-driven planar robots and the cable-driven
space robots. However, the cable-driven space robots are
mostly cable-suspended parallel robots. The cable-driven
parallel robots which have successful application have early
RoboCrane [5] and SkyCam [6] which has an extensive
application in television at present. A 500m aperture spher-
ical telescope (FAST) which performs the coarse position-
ing scheme by six driving cables is developed in China.
Through the relevant research, the researchers obtain a series
of research results [7, 8]. Because the cables are soft and
light and transmit the powerful action force, the cables are
often used to actuate the bionic elephant-trunk [9] and
the bionic cephalopods [10] which belong to cable-driven
continuous/soft-bodied bionic robots [11].

The designed cable-driven parallel robot with a flexible
spring belongs to the cable-driven parallel robot with an
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Figure 1: Structure design of the cable-driven wrist/shoulder joint.
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Figure 2: Prototype of the cable-driven parallel robot with a flexible
spring.

upholder. Little research highlights how to design and control
a robotic wrist/shoulder joint which moves smoothly like
the people’s wrist/shoulder joint. In light of the inspiration
of people’s wrist/shoulder joint structure, we elaborate a
2-DOF (roll and pitch) cable-driven parallel robot with a
flexible spring. It includes a cable-driven parallel mecha-
nism and the auxiliary mechanisms which consist of three
guide mechanisms, four pillars, three driving mechanisms,
a pedestal, an attitude measuring mechanism, three cable
force measuring mechanisms, three cable length measuring
mechanisms, and so on.The cable-driven parallelmechanism
is the key mechanism of the proposed parallel robot. The

spring replaces the articular bone in people’s wrist/shoulder
joint to support the moving platform and bends to one side
to produce 2-DOF (roll and pitch) movements.Three driving
cables are equally spaced at 120∘ on both the fixed base and the
moving platform. The wrist/shoulder joint’s 2-DOF (roll and
pitch) movements are actuated by three cables which replace
people’s wrist/shoulder joint muscle. Three cables are pulled
by three driving mechanisms mounted on the pedestal via
three guide mechanisms on the pedestal.

Seeing that the proposed parallel robot has some flexible
bodies such as the cylindrical compression spring and three
cables, the moving platform must generate the flexible vibra-
tion during the parallel robot moves. In view of short length,
light weight, and small diameter of the cables, cables are
assumed to be linear elements that can only work in tension
and the dynamical characteristics of cables themselves, such
as the vibration and elongation, can be neglected [12, 13]. As a
result, the proposed parallel robot’s vibration ismainly caused
through the flexible cylindrical spring. Some researchers [14]
studied the flexible system’s kinematics and statics. However,
they did not study the flexible body’s vibration control
problem.Therefore, we need to formulate a proper dynamical
model of the parallel robot to establish a reasonable controller
which can suppress the spring’s vibration and enhance the
parallel robot’s location precision.

The issues of the flexible body’s dynamics attract the
researchers’ attentions [15, 16]. The dynamical modeling of
the flexible body is usually formulated by the finite element
method (FEM), the lumped mass method (LMM), and the
assumed mode method (AMM). AMM has better computa-
tional efficiency and can establish more convenient control
model than FEM and LMM. As a result, we establish the
dynamic model of the parallel robot through AMM in this
paper. Some researchers [17, 18] focus on the vibration control
of the flexible mechanism. In [19], the research of Moallem et
al. shows that the nonlinear control method based on inverse
dynamics can effectively accomplish a trajectory tracking
control with a small error of the flexible mechanism. Thus,
we use nonlinear control method to design the vibration
controller of the parallel robot in this paper.

The rest of this paper is organized as follows. In Section 2,
the parallel robot design is presented. Then, the dynamic
model of the parallel robot is established in Section 3. In
Section 4, a nonlinear controller is designed based on the
derived dynamical model. Next, the results of the simulation
and the experiment are presented to validate the rationality of
the robot prototype and the proposed control method in Sec-
tion 5. Finally, conclusions and future work are summarized
in Section 6.

2. Robot Design

This section will elaborate the parallel robot design which
includes mechanical design and electrical design.

2.1. Mechanical Design. The solid model of the parallel robot
is illustrated in Figure 3. As shown in Figures 2 and 3,
the whole parallel robot mainly consists of the cable-driven
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Figure 3: Solid model of the cable-driven parallel robot with a flexible spring.
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Figure 4: Localmechanical design of the parallel robot: (a) cable force transmissionmechanism, (b) perspective 1 of the cable forcemeasuring
mechanism, and (c) perspective 2 of the cable force measuring mechanism.

parallel mechanism, the driving mechanism, and the cable
force measuring mechanism. The local mechanical design of
the parallel robot is depicted in Figure 4.

As shown in Figure 3, the cable-driven parallel mech-
anism consists of the moving platform, the fixed base, the
flexible spring, and three cables. The aluminium alloy is
applied in the moving platform and the fixed base. The
cotton rope of 3mm diameter is used as the cable material.

The top and the bottom of the helical compression spring
are all planar. The moving platform and the fixed base are
connected by the flexible spring. The power epoxy is used in
the interfaces of the flexible spring and the moving platform
and the fixed base; namely, the connection types between the
spring and themoving platform and the fixed based are rigid-
jointed free end and rigid-jointed fixed end, respectively.
Each cable and the moving platform are connected by the
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Table 1: Parameters of the DC gear motor.

Parameter (units) Value Description𝑃𝑟 (W) 40 Rated power of DC motor𝑈𝑟 (V) 24 Rated voltage of DC motor𝐼𝑟 (A) 2.1 Rated current of DC motor𝑛𝑟 (r/min) 1800 Rated speed of DC motor𝑖̂𝑟 180 : 1 Reduction ratio of the reducer

knot. The friction force between each cable and the fixed
base is reduced using the fillet in each hole in the fixed base.
The whole weight of the cable-driven parallel mechanism is
supported by four pillars.

Each driving mechanism is made up of a direct current
(DC) motor and a reducer. The parameters of the DC gear
motor are given in Table 1. The assembly diagram of the DC
motor and the reducer is shown in Figure 3.

Each cable force is a very important measurand in cable-
based architectures. In order to perform a measurement, a
low-cost mechanism is presented for the cable force measur-
ing in the proposed parallel robot. The mechanical design
of the cable force measuring mechanism is illustrated in
Figures 4(b) and 4(c). The cable force measuring mechanism
mainly includes the nylon pulleys, the brackets, and the
force transducer. Each cable’s winding direction is shown in
Figure 4(c). The cables between nylon pulley 1 and nylon
pulley 2 on the force transducer’s both sides are all vertical.𝑇𝑐
denotes the cable force at a given time 𝑡𝑒,𝑊 denotes the gross
weight of the bracket 1, nylon pulley 1, and the shaft, and 𝐹
represents the force transducer’s measuring value at a given
time 𝑡𝑒. We assume that the cable’s deformation, the cable’s
weight, and the friction force between the cable and the nylon
pulleys can be neglected. Therefore, 𝑇𝑐 can be given as𝑇𝑐 = 12 (𝐹 −𝑊) . (1)

Each cable length is also such an important measurand
in cable-based architectures. To perform a measurement, a
simple mechanism is presented for the cable length measur-
ing in the proposed parallel robot. The cable transmission
system is depicted in Figure 4(a). 𝑛𝑒 is the resolution of the
incremental encoder. 𝑝𝑒 is the number of pulses, output for
the incremental encoder at a given time 𝑡𝑒. 𝑑𝑠 is the diameter
of the wire spool. 𝐿 denotes the original length of the spring.
If we neglect the deformation of the cable, the cable length𝑙𝑐 between the moving platform and the fixed base at a given
time 𝑡𝑒 can be expressed as𝑙𝑐 = 𝐿 − 𝜋𝑑𝑠𝑝𝑒𝑛𝑒 . (2)

For such a cable force transmission system which is
shown in Figure 4(a), the relation of 𝑇𝑐 and the armature
current of the motor (𝐼𝑎) at a given time 𝑡𝑒 is certain. The
detailed process of derivation of the theoretical relationship
is as follows.

TheDCmotor’s electromagnetic torque 𝑇̂𝑒 at a given time𝑡𝑒 is given as 𝑇̂𝑒 = 𝐶𝑇Φ𝐼𝑎, (3)

where 𝐶𝑇 denotes the DC motor’s torque constant and Φ
denotes the DC motor’s main magnetic flux.

If we neglect the DC motor’s friction torque and the
reducer’s friction torque, the reducer’s output torque 𝑇̂𝑟 at a
given time 𝑡𝑒 can be expressed as𝑇̂𝑟 = 𝑖̂𝑟𝑇̂𝑒. (4)𝑇𝑐 is given as 𝑇𝑐 = 2𝑇̂𝑟𝑑𝑠 . (5)

Based on (3), (4), and (5), 𝑇𝑐 can be expressed as𝑇𝑐 = 2𝑖̂𝑟𝐶𝑇Φ𝐼𝑎𝑑𝑠 . (6)

Considering that 𝑖̂𝑟, 𝐶𝑇,Φ, and 𝑑𝑠 are all constant, 𝑇𝑐 and𝐼𝑎 at a given time 𝑡𝑒 are in a directly proportional relationship.
2.2. Electrical Design. The architecture of the control system
for the parallel robot is shown in Figure 5. The whole control
system mainly consists of six parts: the main computer, the
motion control card, the data acquisition card, the sensors,
the motor drivers, and the power supply modules.

The motion control card (USB9010) which is powered by
the main computer can control three motor drivers through
the analog output mode and collect the data from three
incremental encoders. The data acquisition card (USB 8AD)
which is powered by the main computer can capture the data
from three current sensors and three force transducers.

The sensors contain three incremental encoders, three
current sensors, three force transducers, and an AHRS
(attitude heading reference system) module. The resolution
of each incremental encoder which is powered by the motion
control card is 1000 lines per rev. The incremental encoder
resolution denotes the output pulse number of the encoder
during each rev. Each current sensor is powered by a switch-
ing power supply whose output voltage is 5 V. Each force
transducer is powered by a signal amplifier (DYBSQ-001)
which can be powered by a switching power supply whose
output voltage is 24V. The AHRS module contains a control
chip (STM32F103T8), a MPU6050 (a triaxis accelerometer
and a triaxis gyroscope), a HMC5883 (a triaxis magnetome-
ter), and a BMP180 (an atmospheric pressure altimeter). The
AHRS module which is powered by the main computer can
measure the moving platform’s posture.

Each motor driver which is powered by a switching
power supply whose output voltage is 24V can drive a DC
motor through the torque controlmode.The switching power
supply can power the objects within the dashed box in
Figure 5.



Shock and Vibration 5

Incremental encoder

Incremental encoder

Incremental encoder

Main
computer

Motion
control card
USB9010

Data
acquisition
card
USB 8AD

Motor driver
AQMD3610NS

Motor driver
AQMD3610NS

Motor driver
AQMD3610NS

Current sensor
ACS712

Current sensor
ACS712

Current sensor
ACS712

DC gear motor

DC gear motor

DC gear motor

Signal amplifier
DYBSQ-001

Signal amplifier
DYBSQ-001

Signal amplifier
DYBSQ-001 Force transducer

Force transducer

Force transducer

AHRS module

Sw
itc

hi
ng

 p
ow

er
 su

pp
ly

Figure 5: Architecture of the control system.
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Figure 6: Schematic of the cable-driven parallel mechanism.

3. Dynamics Model

3.1. System Definition. This part illustrates the cable-driven
parallel mechanism’s schematic which is depicted in Figure 6.
A local-coordinate system 𝑜𝑥𝑦𝑧 is attached to the moving
platform with origin 𝑜 located at its center. The 𝑦-axis is

along the vector 󳨀󳨀→𝑜𝐵1. A global-coordinate system 𝑂𝑋𝑌𝑍
whose origin 𝑂 is located at the bottom center of the
flexible spring is attached to the fixed base. The 𝑌-axis is
along the vector 󳨀󳨀󳨀→𝑂𝐴1. The crooked flexible spring which is
denoted by the curve 𝑂𝑜 can manufacture a force/torque to
sustain the moving platform. Three cables whose diameter
size and mass can be neglected are connected to the points𝐵𝑖 (𝑖 = 1, 2, 3) which are located at the moving platform
and pulled by three DC motors from the points 𝐴 𝑖 (𝑖 =1, 2, 3) which are located at the fixed base. The points 𝐵𝑖
and 𝐴 𝑖 are located at equal arc length on both the moving
platform and the fixed base, respectively. The moving plat-
form’s radius is |󳨀󳨀→𝑜𝐵𝑖| = 𝑏. |󳨀󳨀󳨀→𝑂𝐴 𝑖| = 𝑎 is the fixed base’s
radius. The homogeneous coordinates of 𝐵𝑖 in the local-
coordinate system 𝑜𝑥𝑦𝑧 can be described, respectively, as
𝑜b1 = (0 𝑏 0 1)T, 𝑜b2 = (−(√3/2)𝑏 −(1/2)𝑏 0 1)T,
and 𝑜b3 = ((√3/2)𝑏 −(1/2)𝑏 0 1)T; the homoge-
neous coordinates of 𝐴 𝑖 in the global-coordinate sys-
tem 𝑂𝑋𝑌𝑍 can be described, respectively, as 𝑂a1 =(0 𝑎 0 1)T, 𝑂a2 = (−(√3/2)𝑎 −(1/2)𝑎 0 1)T, and
𝑂a3 = ((√3/2)𝑎 −(1/2)𝑎 0 1)T. We denote the unit
vector along the vectors 󳨀󳨀󳨀→𝐵𝑖𝐴 𝑖 (𝑖 = 1, 2, 3) as u𝑖 (𝑖 = 1, 2, 3),
the norm of the vectors󳨀󳨀󳨀→𝐵𝑖𝐴 𝑖 (𝑖 = 1, 2, 3) as 𝑙𝑖 (𝑖 = 1, 2, 3), and
the cable force as 𝑇𝑖 (𝑖 = 1, 2, 3).

The flexible spring is supposed to crook in the same
lateral plane and the moving platform will have no torsional
behavior with respect to the 𝑧-axis in the local-coordinate
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Figure 7: Deformation principle and force equivalent.

system 𝑜𝑥𝑦𝑧. Moreover, a rectangular coordinate system𝑂𝑆𝐻 is attached to the plane 𝑂𝑜𝑜󸀠. The 𝑆-axis is along the

vector
󳨀󳨀→𝑂𝑜󸀠. The 𝐻-axis is along the 𝑍-axis. We denote the

angle between the𝑋-axis and the 𝑆-axis as 𝜃𝑠. We denote the
three-dimensional coordinates of the point 𝑜 in the global-
coordinate system 𝑂𝑋𝑌𝑍 as 𝑥, 𝑦, 𝑧, the moving platform’s
rotation with respect to the 𝑋-axis as 𝛼, and the moving
platform’s rotation with respect to the 𝑌-axis as 𝛽. The
orientation matrix of the local-coordinate system 𝑜𝑥𝑦𝑧 with
respect to the global-coordinate system 𝑂𝑋𝑌𝑍 is described
as

R̂ = ( cos𝛽 sin𝛼 sin𝛽 cos𝛼 sin𝛽0 cos𝛼 − sin𝛼− sin𝛽 sin𝛼 cos𝛽 cos𝛼 cos𝛽) . (7)

3.2. Dynamics Equation. The workspace analysis of the pro-
posed flexible parallel humanoid arm joint robot is presented
in [20]. In this paper, the deformation of lateral dynamic bend
for the spring is described by using the coupling theory of the
flexible body’s large global motion and small flexible defor-
mation. By trial and error method, we pick a suitable modal
function to guarantee that the deformation of lateral dynamic
bend for the spring is within the scope of the workspace
of the proposed flexible parallel humanoid arm joint robot.
Moreover, the spring’s deformation belongs to millimeter
level. Therefore, the following analysis for the spring is valid
for small deformation. The deformation principle and force
equivalent are illustrated in Figure 7. We denote an arbitrary
point in the flexible spring 𝑂𝑁 as 𝑁. In view of the short
length of the flexible spring, we only consider the spring’s
transverse deformation displacement𝑤𝑙. Due to the deforma-
tion, the straight spring 𝑂𝑁 will become the crooked spring𝑂𝑁󸀠. The norm of the vector

󳨀󳨀󳨀→𝑁𝑁󸀠 is equal to |𝑤𝑙|. We denote

the angular displacement of the crooked spring 𝑂𝑁 as 𝜃 and
the norm of the vector 󳨀󳨀→𝑂𝑁 as ℎ. The transverse deformation
displacement of any point 𝑁 in the spring is described as𝑤𝑙(ℎ, 𝑡) = 𝛿(ℎ)d(𝑡). 𝛿(ℎ) = (𝛿1(ℎ), 𝛿2(ℎ), . . . , 𝛿𝑛(ℎ)) denotes
the transverse vibration’s modal function of the flexible
spring. In view of the theory of mechanical vibration, we
can get a fact that the deformation of the flexible spring in
Figure 7 is similar to the first-order modal deformation of
the inverted vertical beam. Hence, the spring’s deformation
can be described through the coupling theory of the flexible
body’s large-scale motion and small deformation. In [21], the
spring is regarded as Euler-Bernoulli beam which is used to
model the transverse deformation. However, the simulation
results show that the spring’s deformation could be beyond
the workspace of the proposed flexible parallel humanoid
arm joint robot. Therefore, the modal function selection of
the transverse deformation for the spring is unreasonable.
As mentioned above, we give a relatively suitable modal
function (𝛿𝑖(ℎ) = sin(𝑖𝜋ℎ/2𝐿), 𝑖 = 1, 2, . . . , 𝑛) after repeated
correction and revision. d(𝑡) = (𝑑1(𝑡), 𝑑2(𝑡), . . . , 𝑑𝑛(𝑡))T
represents the transverse vibration’s modal coordinate of the
flexible spring.

The velocity of the point𝑁 along the 𝑆-axis can be given
by Ṽ𝑠(𝑁) = ̇𝜃ℎ + 𝑤̇𝑙(ℎ, 𝑡), where ̇𝜃 denotes the first derivative
of 𝜃 and 𝑤̇𝑙(ℎ, 𝑡) represents the first derivative of 𝑤𝑙(ℎ, 𝑡).

The velocity of the point𝑁 along the 𝐻̃-axis can be given
by Ṽℎ(𝑁) = − ̇𝜃𝑤𝑙(ℎ, 𝑡).

Therefore, the energy of the flexible springwhich includes
the kinetic energy 𝑇𝑠 and the potential energy𝑉𝑠 is described
as

𝑇𝑠 = 12𝜌𝑠 ∫𝐿0 (Ṽ2𝑠 (𝑁) + Ṽ2ℎ (𝑁)) dℎ, (8)

𝑉𝑠 = 12 ∫𝐿
0
𝐸𝐼(𝜕2𝑤𝑙 (ℎ, 𝑡)𝜕ℎ2 )2 dℎ, (9)

where 𝜌𝑠 represents the flexible spring’s linear density, 𝐸
represents the flexible spring’s modulus of elasticity, and𝐼 denotes the flexible spring’s cross-sectional moment of
inertia.

The energy of the moving platform containing the kinetic
energy 𝑇𝑑 and the potential energy 𝑉𝑑 is expressed as

𝑇𝑑 = 12𝑚𝑑 (Ṽ2𝑠 (𝑜) + Ṽ2ℎ (𝑜)) + 12 𝜔̂TR̂ÎR̂T
𝜔̂, (10)𝑉𝑑 = −𝑚𝑑𝑔 (𝐿 − 𝐿 cos 𝜃) , (11)

where𝑚𝑑 denotes themoving platform’s mass, 𝜔̂ = (𝛼̇, ̇𝛽, 0)T,
Ṽℎ(𝑜) = − ̇𝜃𝑤𝑙(𝐿, 𝑡) denotes the velocity of the point 𝑜 along
the 𝐻̃-axis, Ṽ𝑠(𝑜) = ̇𝜃𝐿 + 𝑤̇𝑙(𝐿, 𝑡) denotes the velocity of the
point 𝑜 along the 𝑆-axis, 𝑔 is the acceleration of gravity and
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is equal to 9.8m/s2, and Î represents the moving platform’s
inertia moment, and it can be described as

Î = (14𝑚𝑑𝑏2 0 00 14𝑚𝑑𝑏2 00 0 12𝑚𝑑𝑏2). (12)

Based on (8) and (10), the parallel robot system’s kinetic
energy is 𝑇 = 𝑇𝑠 +𝑇𝑑; based on (9) and (11), the parallel robot
system’s potential energy is 𝑉 = 𝑉𝑠 + 𝑉𝑑.

As described in Figure 7, because of the spring’s flexibility,𝑜 point will run to 𝑜󸀠󸀠 point at a given time. We denote the
angle between the horizontal line and the moving platform
as 𝜃𝑝 at a given time. Because the flexible spring is always
assumed to crook in the lateral plane 𝑂𝑆𝐻, the effect of all
cable forces is equal to the effect of the moment 𝑀 which
is vertical to the lateral plane 𝑂𝑆𝐻 and the forces 𝐹1 and 𝐹2
which are vertical to each other in the lateral plane 𝑂𝑆𝐻. We
hypothesize that the vector 󳨀→𝑂𝑜 and the moving platform are
always orthogonal; hence we have an inference of 𝜃𝑝 = 𝜃.
Considering that the potential energy of gravity of themoving
platform has been taken into consideration in the system, the
effect of gravity is overlooked. Hence we have

3∑
𝑖=1

𝑇𝑖𝑂u𝑖 = (𝐹1 cos 𝜃𝑠 𝐹1 sin 𝜃𝑠 −𝐹2)T ,
3∑
𝑖=1

𝑂r𝑖 × 𝑇𝑖𝑂u𝑖 = (−𝑀 sin 𝜃𝑠 𝑀 cos 𝜃𝑠 0)T , (13)

where 𝑂u𝑖 = (𝑂a𝑖 − T̂𝑜𝑡b𝑖)/|𝑂a𝑖 − T̂𝑜𝑡b𝑖| and 𝑂r𝑖 = R̂ ⋅ 󳨀󳨀→𝑜𝐵𝑖; we
denote the homogeneous transformation matrix of the local-
coordinate system 𝑜𝑥𝑦𝑧with respect to the global-coordinate
system 𝑂𝑋𝑌𝑍 as T̂𝑡, which can be expressed as

T̂𝑡 = ( cos𝛽 sin𝛼 sin𝛽 cos𝛼 sin𝛽 𝑥0 cos𝛼 − sin𝛼 𝑦− sin𝛽 sin𝛼 cos𝛽 cos𝛼 cos𝛽 𝑧0 0 0 1), (14)

where 𝑥 = 𝐿 sin 𝜃 cos 𝜃𝑠, 𝑦 = 𝐿 sin 𝜃 sin 𝜃𝑠, and 𝑧 = 𝐿 cos 𝜃.
We denote 𝑜󸀠󸀠 point’s spatial coordinates in the global-

coordinate system 𝑂𝑋𝑌𝑍 as 𝑥󸀠, 𝑦󸀠, 𝑧󸀠. The bending moment
of the flexible spring in the point 𝑜󸀠󸀠 is denoted as𝑀𝑜󸀠󸀠 , which
is given as𝑀𝑜󸀠󸀠 = 𝑀+𝐹1(𝑧−𝑧󸀠)+𝐹2(√𝑥󸀠2 + 𝑦󸀠2−√𝑥2 + 𝑦2),
where 𝑧 − 𝑧󸀠 = 𝑒1 ≈ ∫𝐿

0
𝑤𝑙(ℎ, 𝑡) sin 𝜃 dℎ and √𝑥󸀠2 + 𝑦󸀠2 −√𝑥2 + 𝑦2 = 𝑒2 ≈ ∫𝐿

0
𝑤𝑙(ℎ, 𝑡) cos 𝜃 dℎ.

In conclusion, the system’s Lagrange function is given as𝐿 = 𝑇 − 𝑉 = 𝑇𝑠 + 𝑇𝑑 − 𝑉𝑠 − 𝑉𝑑. As previously mentioned, the
lateral bending deformation of the flexible spring is described
by the coupling theory of the flexible body’s large overall
motion and small deformation. Hence, the crooked spring’s
angular displacement 𝜃 and the transverse deformation’s

modal coordinate of the spring d(𝑡) are selected as the
generalized coordinate of the system. We denote the system’s
generalized coordinate as 𝜂 = (𝜃 d(𝑡))T and the system’s
generalized force as Q = (𝑀𝑜󸀠󸀠 0𝑛×1)T. Therefore, the
system’s Lagrangian equation can be expressed as𝑑𝑑𝑡 (𝜕𝐿𝜕 ̇𝜂) − 𝜕𝐿𝜕𝜂 = Q. (15)

We denote the generalizedmassmatrix asM, Coriolis and
centripetal term asH(𝜂, ̇𝜂), the generalized stiffness matrix as
K, and the gravity term asG. According to the above analysis,
the dynamics equation of the system can be expressed as

M ̈𝜂 +H (𝜂, ̇𝜂) + K𝜂 + G = Q. (16)

In view of the existence of the system damping, we add
Rayleigh viscous dampingmodelC = 𝛼M+𝛽K to the system,
where 𝛼 and 𝛽 are Rayleigh damping scale coefficients.
Therefore, the dynamics equation of the system is revised as

M ̈𝜂 + C ̇𝜂 +H (𝜂, ̇𝜂) + K𝜂 + G = Q. (17)

4. Nonlinear Controller Design

This part aims to design a nonlinear controller which can
be used to track the position of the center for the moving
platform while suppressing vibration of the flexible spring
and to validate the effectiveness of the design for the cable-
driven parallel robot and the proposed control strategy.

4.1. Nonlinear Control Model. Equation (17) can be expressed
as (𝑀11 M12

M21 M22
)( ̈𝜃̈

d
) + C( ̇𝜃̇

d
) + (𝐻1

H2
)

+ (𝐾11 K12
K21 K22

)(𝜃
d
) + (𝐺1

G2
) = (𝑀𝑜󸀠󸀠

0𝑛×1
) , (18)

where

M = (𝑀11 M12
M21 M22

) ,
H (𝜂, ̇𝜂) = (𝐻1

H2
) ,

K = (𝐾11 K12
K21 K22

) ,
G = (𝐺1

G2
) ,

(19)

where the detailed expressions of M, H(𝜂, ̇𝜂), K, and G are
given in Appendix.
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Equation (18) is expressed as

M( ̈𝜃̈
d
) + ( 𝑔1 (𝜃, ̇𝜃, d, ḋ)

g2 (𝜃, ̇𝜃, d, ḋ) + K22d
) = ( ĴT

0𝑛×1
) , (20)

where ĴT = 𝑀𝑜󸀠󸀠 , Ĵ = (𝐽1 𝐽2 𝐽3), and T = (𝑇1 𝑇2 𝑇3)T. The
detailed expressions of Ĵ are given in Appendix.

Referring to (20), we define

Z = M−1 = (𝑍11 Z12
Z21 Z22

) . (21)

Multiplying (21) by both sides of (20), we havë𝜃 = 𝑍11 (𝑀𝑜󸀠󸀠 − 𝑔1) + Z12 (−g2 − K22d) , (22)

d̈ = Z21 (𝑀𝑜󸀠󸀠 − 𝑔1) + Z22 (−g2 − K22d) . (23)

Our main goal is to achieve a small tracking error at
the moving platform while suppressing the vibration in the
flexible spring. To this end, we define the output as𝑘 = 𝜃 + 𝛿 (𝐿) d𝐿 . (24)

As shown in Figure 7, (24) represents the angle between
the straight line 𝑂𝑜󸀠󸀠 and the𝐻-axis.

Substituting (22) and (23) into the second derivative of
(24), we have𝑘̈ = 𝐵 (𝜃, d, 𝑡)𝑀𝑜󸀠󸀠 − 𝑐 (𝜃, ̇𝜃, d, ḋ, 𝑡) , (25)

where 𝐵 (𝜃, d, 𝑡) = 𝑍11 + 𝛿 (𝐿)𝐿 Z21, (26)𝑐 (𝜃, ̇𝜃, d, ḋ, 𝑡) = 𝐵 (𝜃, d, 𝑡) 𝑔1+ (Z12 + 𝛿 (𝐿)𝐿 Z22) (g2 + K22d) . (27)

Let𝑀𝑜󸀠󸀠 take the following form:𝑀𝑜󸀠󸀠 = 𝐵−1 (V + 𝑐) ; (28)

namely,

ĴT = 𝐵−1 (V + 𝑐) , (29)

where V is a variable which depends on the desired output
trajectory and the tracking error as defined later. We denote
the desired output trajectory as 𝑘𝑑 and define𝑒 = 𝑘𝑑 − 𝑘, (30)̇𝑒 = 𝑘̇𝑑 − 𝑘̇. (31)

We choose

V = 𝑘̈𝑑 + 𝐶𝑝𝑒 + 𝐶𝑑 ̇𝑒, (32)

where 𝐶𝑝 and 𝐶𝑑 are the control gains.

Substituting (28) into (25), we have𝑘̈ = V. (33)

Based on (31), (32), and (33), we haveΔ̇ = AΔΔ, (34)

where Δ = (𝑒̇𝑒) ,
AΔ = ( 0 1−𝐶𝑝 −𝐶𝑑) . (35)

Based on (23), (27), and (28), we have

d̈ = −PK22d − Pg2 + Z21𝐵−1V, (36)

where

P = Z22 − Z21𝐵−1 (Z12 + 𝛿 (𝐿)𝐿 Z22) . (37)

We define Θ = (d
ḋ
) . (38)

Based on (36), we haveΘ̇ = ÂΘ + ĉ, (39)

where

Â = ( 0𝑛×𝑛 I𝑛×𝑛−PK22 0𝑛×𝑛
) ,

ĉ = ( 0𝑛×1−Pg2 + Z21𝐵−1V) . (40)

Considering that each cable only produces pull force,
each element in T of the controller given by (29) must be
of positive value. It is impossible to solve T by (29), because
ĴT = 𝑀𝑜󸀠󸀠 is a scalar and T is a three-dimensional column
vector.Therefore, the additional constraint conditions should
be given to successfully solveT of the controller given by (29);
namely, in order to solve the third cable force, the other two
cable forces are given.Theother two cable forces are chosen as
two constant positive valueswhich are convenient to calculate
the third cable force. Therefore, the two elements in T are
adopted as two constant positive values and subsequently
used to solve the residual element in T by (29). It depends
on how we choose the control gains 𝐶𝑝 and 𝐶𝑑 to ensure that
the residual element in T of the controller given by (29) is of
positive value. Local asymptotic stability of the closed-loop
system is proven by using a Lyapunov stability analysis and
an approach similar to that in [22].
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4.2. Mode Coordinate’s Estimation. The controller given in
(29) is the function with respect to the flexible spring’s modal
coordinate variable and the modal velocity variable which
are unable to be directly obtained through the sensors. The
flexible spring’s modal coordinate variable and the modal
velocity variable need to be estimated by the measured
values of the sensors and then used for calculating the
controller given by (29). The spring’s first 𝑛 modes are used
for expressing the system’s actual response. We denote the
flexible spring’s modal number to be controlled as 𝑚1. The
spring’s first 𝑚2 modes are estimated where 𝑚1 < 𝑚2 <𝑛. Hence, we require that the sensors be mounted on the
flexible spring’s 𝑚2 points to obtain physical displacements
and velocities. The required modal coordinate variable and
modal velocity variable of the transverse vibration’s𝑓thmode
of the flexible spring are gained on the basis of the following
equation [23]: 𝑑𝑓 (𝑡) = 𝑚2∑

𝑞=1

(Π−1)
𝑓𝑞
𝑤𝑙 (ℎ𝑞, 𝑡) ,

̇𝑑𝑓 (𝑡) = 𝑚2∑
𝑞=1

(Π−1)
𝑓𝑞
𝑤̇𝑙 (ℎ𝑞, 𝑡) , (41)

where 𝑓 = 1, 2, . . . , 𝑚1 and ℎ𝑞 is the 𝑓th sensor’s location on
the flexible spring for 𝑞 = 1, 2, . . . , 𝑚2, 𝑑𝑓(𝑡) is the transverse
vibration’s𝑓th modal coordinate for the flexible spring, ̇𝑑𝑓(𝑡)
is the transverse vibration’s𝑓thmodal velocity for the flexible
spring, 𝑤𝑙(ℎ𝑞, 𝑡) is the transverse deformation of point ℎ𝑞
on the flexible spring, and 𝑤̇𝑙(ℎ𝑞, 𝑡) is the first derivative of
the transverse deformation of point ℎ𝑞 on the flexible spring.𝑤𝑙(ℎ𝑞, 𝑡) = ∑𝑛𝑓=1 𝛿𝑓(ℎ)𝑑𝑓(𝑡) is employed from AMM for the
flexible spring. (Π−1)𝑓𝑞 in (41) denotes the element of the 𝑓th
row and the 𝑞th column ofΠ−1.The transformationmatrixΠ
is𝑚2 × 𝑚2 matrix given by [23]

Π = (
(

𝛿1 (ℎ1) 𝛿2 (ℎ1) ⋅ ⋅ ⋅ 𝛿𝑚
2

(ℎ1)𝛿1 (ℎ2) 𝛿2 (ℎ2) ⋅ ⋅ ⋅ 𝛿𝑚
2

(ℎ2)... ... ⋅ ⋅ ⋅ ...𝛿1 (ℎ𝑚
2

) 𝛿2 (ℎ𝑚
2

) ⋅ ⋅ ⋅ 𝛿𝑚
2

(ℎ𝑚
2

)))
. (42)

Afterwe obtain the flexible spring’smode coordinates and
the mode velocities, the controller given by (29) is able to
be calculated. In view of the inconvenience of the sensors’
installation, we are unable to obtain the values of 𝑤𝑙(ℎ𝑞, 𝑡).
Hence, we employ the corresponding open-loop system’s
simulation values to substitute the values of𝑤𝑙(ℎ𝑞, 𝑡).We only
use the transverse vibration’s first mode for the flexible spring
to denote the response of the system because the flexible
spring’s length is short.

5. Simulation and Experiment

We provide simulation and experimental results to illustrate
the practical feasibility of the design for the cable-driven

Table 2: Simulation and experimental parameters of the moving
platform and the fixed base.𝑏 (m) 𝑚𝑑 (kg) 𝑎 (m)
0.09 0.43 0.09

Table 3: Simulation and experimental parameters of the spring.𝜌𝑠 (kg/m) 𝐿 (m) 𝐸 (GPa) 𝐼 (m4)
1.095 0.1016 196.5 9.811 × 10−12
parallel robot and to test the effectiveness of the dynamical
model for control and the proposed control scheme in this
section. The simulation and experimental parameters of the
moving platform and the fixed base are given in Table 2. The
simulation and experimental parameters of the cylindrical
compression spring are given in Table 3.

During the flexible spring crooks in the lateral plane,
the flexible vibration of 𝜃𝑠 is so small because of the large
elastic modulus of the spring. Therefore, our main research
is the flexible vibration control of 𝜃𝑝 in the lateral curvature
plane. The trajectory tracking control of the center of the
moving platform is set as an example to study the effect of the
controller given by (29).The center of the moving platform is
assumed to move in the lateral curvature plane of 𝜃𝑠 = 210∘.
The desired trajectory of 𝜃 is given by the following equation:𝜃𝑑

= {{{{{{{{{{{{{
2𝜃𝑖𝑡2𝑖 𝑡2, 𝑡 ≤ 𝑡𝑖2 ,𝜃𝑖2 + 2𝜃𝑖𝑡𝑖 (𝑡 − 𝑡𝑖2 ) − 2𝜃𝑖𝑡2𝑖 (𝑡 − 𝑡𝑖2 )2 , 𝑡𝑖2 < 𝑡 ≤ 𝑡𝑖,𝜃𝑖, 𝑡 > 𝑡𝑖.

(43)

In (43), we assume that 𝜃𝑖 = 18.6∘ and 𝑡𝑖 = 1.2 s. The
desired trajectory of 𝜃 is shown in Figure 8. We control the
transverse vibration’s first mode for the flexible spring. For
the sake of ensuring the control system’s stability and all
positive cable forces, the control gains𝐶𝑝 and𝐶𝑑 are selected,
respectively, as 𝐶𝑝 = 250, (44)𝐶𝑑 = 23. (45)

The results of the simulation and the experiment are
shown in Figures 9–12.

The system responses under open-loop are shown in
Figure 9. Figure 9(a) illustrates the theoretical results of all
cable forces without control. Figure 9(b) shows the experi-
mental results of all cable forces without control. Figure 9(c)
shows the experimental results of allmotor armature currents
without control. The image change trend of Figures 9(a)
and 9(b) and the image change trend of Figure 9(c) are
approximately unanimous.This change rule is consistentwith
the theoretical derivation given by (6). Figures 9(b) and
9(c) have the phenomena of burr which are caused by the
sensors noises. Figure 9(d) shows the theoretical transverse
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Figure 8: Desired trajectory of 𝜃.
deformation displacement of 𝑜 point without control. Figures
9(e) and 9(f) show the theoretical and experimental results
of 𝜃𝑝 without control. As seen from Figures 9(e) and 9(f), 𝜃𝑝
performs a wide range of movement while maintaining the
vibration because the spring is flexible without control.

The system responses under closed-loop are shown in
Figure 10. Figure 10(a) illustrates the theoretical results of
all cable forces with control. Figure 10(b) shows the exper-
imental results of all cable forces with control. Figure 10(c)
illustrates the experimental results of all motor armature
currents with control. The image change trend of Figures
10(a) and 10(b) and the image change trend of Figure 10(c)
are approximately unanimous. This change rule matches the
theoretical derivation given in (6). Figures 10(b) and 10(c)
have the phenomena of burr which are caused by the sensors
noises. Figure 10(d) shows the experimental results of all cable
lengths with control. From Figure 10(d), we can observe the
following rules: 𝑙2 shortens its length when 𝑙1 and 𝑙3 stretch
their lengths; 𝑙2 stretches its length when 𝑙1 and 𝑙3 shorten
their lengths. These features fit the objective law. As can be
seen from Figures 10(e) and 10(f), the controller given by (29)
can successfully reduce the vibration of the flexible spring.

Figure 11 illustrates the variation results of 𝜃𝑠. As can be
seen from Figure 11, the experimental vibration of 𝜃𝑠 is small
during the flexible spring’s lateral curvature planemovement.
Figure 12 shows a comparison of 𝜃𝑝 values for the desired
trajectory, the simulation, and the experiment during the
lateral curvature plane movement. As we can observe from
Figure 12, the controller given by (29) meets a relatively good
performance in the arrival index of the desired position and
the desired time for the center of the moving platform.

It can be concluded that we validate the robot prototype,
the theoretical model for control, and the proposed control
method by the simulation and experiment results.

6. Conclusions and Future Work

This paper carries out the mechanical design and electrical
design of the cable-driven parallel robot. Meanwhile, the

theoretical and experimental studies on the vibration control
of the center of the moving platform for the trajectory
tracking movement are executed. First, we elaborate a cable-
driven parallel robot device that can efficiently be applied
to the experimental research. Then, the dynamic model of
the system is derived by AMM and Lagrange’s equation.
After that, system nonlinear controller is designed to con-
trol the spring-induced vibration of the moving platform’s
trajectory tracking. Eventually, we provide the simulation
study and analyze the experiment result of the vibration
control to validate the usability of the cable-driven parallel
robot prototype and to verify the proposed control scheme.
The approximate consistency for the vibration control results
of the simulation and experiment in Section 5 verifies the
feasibility of the designed cable-driven parallel robot system
and the proposed control project. In addition, the proposed
nonlinear controller can be applied in other similar flexible
parallel systems.

Based on the study of the design and control of a 2-DOF
flexible parallel humanoid arm joint robot, our future work
will focus on the experimental study of antivibration control
of the whole humanoid arm system.

Appendix𝑀11 = 13𝜌𝑠𝐿3 + 𝑚𝑑ℎ2 + 𝑚𝑑dT (𝛿T𝛿) d
+ dT (𝜌𝑠 ∫𝐿

0
𝛿T𝛿 dℎ) d,

M12 = 𝜌𝑠 ∫𝐿
0
ℎ𝛿 dℎ + 𝑚𝑑ℎ𝛿,

M21 = 2 ̇𝜃 (𝜌𝑠 ∫𝐿
0
𝛿T𝛿 dℎ) ḋ + 𝜌𝑠 ∫𝐿

0
ℎ𝛿Tdℎ+ 𝑚𝑑ℎ𝛿T,

M22 = ̇𝜃2𝜌𝑠 ∫𝐿
0
𝛿T𝛿 dℎ + 𝜌𝑠 ∫𝐿

0
𝛿T𝛿 dℎ + 𝑚𝑑𝛿T𝛿,

𝐻1 = 2 ̇𝜃𝑚𝑑dT (𝛿T𝛿) ḋ + 2 ̇𝜃dT (𝜌𝑠 ∫𝐿
0
𝛿T𝛿 dℎ) ḋ,

H2 = 0𝑛×1,𝐾11 = 0,
K12 = 01×𝑛,
K21 = 0𝑛×1,
K22 = 𝐸𝐼∫𝐿

0

̈𝛿T ̈𝛿 dℎ − ̇𝜃2𝜌𝑠 ∫𝐿
0
𝛿T𝛿 dℎ − 𝑚𝑑 ̇𝜃2𝛿T𝛿,𝐺1 = 𝑚𝑑𝑔 (𝐿 + 𝐿 sin 𝜃) ,
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Figure 9: Responses of the system under open-loop: (a) theoretical results of all cable forces under open-loop, (b) experimental results of all
cable forces under open-loop, (c) experimental results of all motor armature currents under open-loop, (d) theoretical transverse deformation
result of the point 𝑜 under open-loop, (e) theoretical result of 𝜃𝑝 under open-loop, and (f) experimental result of 𝜃𝑝 under open-loop.
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Figure 10: Responses of the system under closed-loop: (a) theoretical results of all cable forces under closed-loop, (b) experimental results
of all cable forces under closed-loop, (c) experimental results of all motor armature currents under closed-loop, (d) experimental results of
all cable lengths under closed-loop, (e) theoretical result of 𝜃𝑝 under closed-loop, and (f) experimental result of 𝜃𝑝 under closed-loop.
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Figure 11: Variation results of 𝜃𝑠.
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Figure 12: Variation results of 𝜃𝑝.
G2 = 0𝑛×1,𝐽1 = 1𝑠𝜃𝑠 (𝑏𝑧𝑝1𝑐𝛼 + 𝑎𝑏𝑝1𝑠𝛼𝑐𝛽 − 𝑏𝑦𝑝1𝑠𝛼𝑐𝛽 + 𝑎𝑝1𝑒1− 𝑏𝑝1𝑒1𝑐𝛼 − 𝑦𝑝1𝑒1) + 𝑏𝑝1𝑒2𝑠𝛼𝑐𝛽 + 𝑧𝑝1𝑒2,𝐽2 = 1𝑠𝜃𝑠 (−12𝑏𝑧𝑝2𝑐𝛼 − √34 𝑎𝑏𝑝2𝑠𝛽 − √32 𝑏𝑦𝑝2𝑠𝛽

+ 14𝑎𝑏𝑝2𝑠𝛼𝑐𝛽 + 14𝑏𝑦𝑝2𝑠𝛼𝑐𝛽 − 12𝑎𝑝2𝑒1

+ 12𝑏𝑝2𝑒1𝑐𝛼 − 𝑦𝑝2𝑒1) + √32 𝑏𝑝2𝑒2𝑠𝛽 − 12⋅ 𝑏𝑝2𝑒2𝑠𝛼𝑐𝛽 + 𝑧𝑝2𝑒2,𝐽3 = 1𝑠𝜃𝑠 (−12𝑏𝑧𝑝3𝑐𝛼 + √34 𝑎𝑏𝑝3𝑠𝛽 + √32 𝑏𝑦𝑝3𝑠𝛽+ 14𝑎𝑏𝑝3𝑠𝛼𝑐𝛽 + 12𝑏𝑦𝑝3𝑠𝛼𝑐𝛽 − 12𝑎𝑝3𝑒1+ 12𝑏𝑝3𝑒1𝑐𝛼 − 𝑦𝑝3𝑒1) − √32 𝑏𝑝3𝑒2𝑠𝛽 − 12⋅ 𝑏𝑝3𝑒2𝑠𝛼𝑐𝛽 + 𝑧𝑝3𝑒2,𝑝1 = 1√𝑤1 ,𝑤1 = (𝑏𝑠𝛼𝑠𝛽 + 𝑥)2 + (𝑎 − 𝑏𝑐𝛼 − 𝑦)2 + (𝑏𝑠𝛼𝑐𝛽 + 𝑧)2 ,𝑝2 = 1√𝑤2 ,𝑤2 = (√32 𝑎 − √32 𝑏𝑐𝛽 − 12𝑏𝑠𝛼𝑠𝛽 + 𝑥)2 + (12𝑎− 12𝑏𝑐𝛼 + 𝑦)2 + (√32 𝑏𝑠𝛽 − 12𝑏𝑠𝛼𝑐𝛽 + 𝑧)2 ,
𝑝3 = 1√𝑤3 ,𝑤3 = (√32 𝑎 − √32 𝑏𝑐𝛽 + 12𝑏𝑠𝛼𝑠𝛽 − 𝑥)2 + (12𝑎− 12𝑏𝑐𝛼 + 𝑦)2 + (√32 𝑏𝑠𝛽 + 12𝑏𝑠𝛼𝑐𝛽 − 𝑧)2 ,𝑠𝜃𝑠 = sin 𝜃𝑠,𝑠𝛼 = sin𝛼,𝑐𝛼 = cos𝛼,𝑠𝛽 = sin𝛽,𝑐𝛽 = cos𝛽.
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