752 research outputs found

    Receiver Architectures for MIMO-OFDM Based on a Combined VMP-SP Algorithm

    Get PDF
    Iterative information processing, either based on heuristics or analytical frameworks, has been shown to be a very powerful tool for the design of efficient, yet feasible, wireless receiver architectures. Within this context, algorithms performing message-passing on a probabilistic graph, such as the sum-product (SP) and variational message passing (VMP) algorithms, have become increasingly popular. In this contribution, we apply a combined VMP-SP message-passing technique to the design of receivers for MIMO-ODFM systems. The message-passing equations of the combined scheme can be obtained from the equations of the stationary points of a constrained region-based free energy approximation. When applied to a MIMO-OFDM probabilistic model, we obtain a generic receiver architecture performing iterative channel weight and noise precision estimation, equalization and data decoding. We show that this generic scheme can be particularized to a variety of different receiver structures, ranging from high-performance iterative structures to low complexity receivers. This allows for a flexible design of the signal processing specially tailored for the requirements of each specific application. The numerical assessment of our solutions, based on Monte Carlo simulations, corroborates the high performance of the proposed algorithms and their superiority to heuristic approaches

    Robust frequency-domain turbo equalization for multiple-input multiple-output (MIMO) wireless communications

    Get PDF
    This dissertation investigates single carrier frequency-domain equalization (SC-FDE) with multiple-input multiple-output (MIMO) channels for radio frequency (RF) and underwater acoustic (UWA) wireless communications. It consists of five papers, selected from a total of 13 publications. Each paper focuses on a specific technical challenge of the SC-FDE MIMO system. The first paper proposes an improved frequency-domain channel estimation method based on interpolation to track fast time-varying fading channels using a small amount of training symbols in a large data block. The second paper addresses the carrier frequency offset (CFO) problem using a new group-wise phase estimation and compensation algorithm to combat phase distortion caused by CFOs, rather than to explicitly estimate the CFOs. The third paper incorporates layered frequency-domain equalization with the phase correction algorithm to combat the fast phase rotation in coherent communications. In the fourth paper, the frequency-domain equalization combined with the turbo principle and soft successive interference cancelation (SSIC) is proposed to further improve the bit error rate (BER) performance of UWA communications. In the fifth paper, a bandwidth-efficient SC-FDE scheme incorporating decision-directed channel estimation is proposed for UWA MIMO communication systems. The proposed algorithms are tested by extensive computer simulations and real ocean experiment data. The results demonstrate significant performance improvements in four aspects: improved channel tracking, reduced BER, reduced computational complexity, and enhanced data efficiency --Abstract, page iv

    Advanced Equalization Techniques for Digital Coherent Optical Receivers

    Get PDF

    Low-complexity iterative receiver algorithms for multiple-input multiple-output underwater wireless communications

    Get PDF
    This dissertation proposes three low-complexity iterative receiver algorithms for multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications. First is a bidirectional soft-decision feedback Turbo equalizer (Bi-SDFE) which harvests the time-reverse diversity in severe multipath MIMO channels. The Bi-SDFE outperforms the original soft-decision feedback Turbo equalizer (SDFE) while keeping its total computational complexity similar to that of the SDFE. Second, this dissertation proposes an efficient direct adaptation Turbo equalizer for MIMO UWA communications. Benefiting from the usage of soft-decision reference symbols for parameter adaptation as well as the iterative processing inside the adaptive equalizer, the proposed algorithm is efficient in four aspects: robust performance in tough channels, high spectral efficiency with short training overhead, time efficient with fast convergence and low complexity in hardware implementation. Third, a frequency-domain soft-decision block iterative equalizer combined with iterative channel estimation is proposed for the uncoded single carrier MIMO systems with high data efficiency. All the three new algorithms are evaluated by data recorded in real world ocean experiment or pool experiment. Finally, this dissertation also compares several Turbo equalizers in single-input single-output (SISO) UWA channels. Experimental results show that the channel estimation based Turbo equalizers are robust in SISO underwater transmission under harsh channel conditions --Abstract, page iv

    Temporal and spatial combining for 5G mmWave small cells

    Get PDF
    This chapter proposes the combination of temporal processing through Rake combining based on direct sequence-spread spectrum (DS-SS), and multiple antenna beamforming or antenna spatial diversity as a possible physical layer access technique for fifth generation (5G) small cell base stations (SBS) operating in the millimetre wave (mmWave) frequencies. Unlike earlier works in the literature aimed at previous generation wireless, the use of the beamforming is presented as operating in the radio frequency (RF) domain, rather than the baseband domain, to minimise power expenditure as a more suitable method for 5G small cells. Some potential limitations associated with massive multiple input-multiple output (MIMO) for small cells are discussed relating to the likely limitation on available antennas and resultant beamwidth. Rather than relying, solely, on expensive and potentially power hungry massive MIMO (which in the case of a SBS for indoor use will be limited by a physically small form factor) the use of a limited number of antennas, complimented with Rake combining, or antenna diversity is given consideration for short distance indoor communications for both the SBS) and user equipment (UE). The proposal’s aim is twofold: to solve eroded path loss due to the effective antenna aperture reduction and to satisfy sensitivity to blockages and multipath dispersion in indoor, small coverage area base stations. Two candidate architectures are proposed. With higher data rates, more rigorous analysis of circuit power and its effect on energy efficiency (EE) is provided. A detailed investigation is provided into the likely design and signal processing requirements. Finally, the proposed architectures are compared to current fourth generation long term evolution (LTE) MIMO technologies for their anticipated power consumption and EE

    Performance comparison of multi-user detectors for the downlink of a broadband MC-CDMA system

    Get PDF
    In this paper multi-user detection techniques, such as Parallel and Serial Interference Cancellations (PIC & SIC), General Minimum Mean Square Error (GMMSE) and polynomial MMSE, for the downlink of a broadband Multi-Carrier Code Division Multiple Access (MCCDMA) system are investigated. The Bit Error Rate (BER) and Frame Error Rate (FER) results are evaluated, and compared with single-user detection (MMSEC, EGC) approaches, as well. The performance evaluation takes into account the system load, channel coding and modulation schemes

    Signal Processing in Flarion System

    Get PDF
    Cílem bakalářské práce Zpracování signálů v systému Flarion bylo prostudovat způsoby zpracování signálu ve fyzické vrstvě a architekturu sítě Flarion. Na základě získaných poznatků při studiu fyzické vrstvy bylo za úkolem sestavit v prostředí Matlab model systému a simulace BER v závislosti na poměr vysílaného výkonu a výkonu rušivého signálu. V první části práce je detailní popis fyzické vrstvy Flarionu, probrána je baseband a OFDM modulace, LDPC kódování a frekvenční skákání. V druhém části práce je prostudována architektura sítě, ekvalizace, řízení výkonu, radiových zdrojů, a způsob handoffu. Ve třetí části práce je vytvoření downlink a uplink modelu v Matlab, dále je provedena simulace BER v závislosti na poměr vysílaného výkonu a výkonu rušivého signálu.The aim of the bachelor’s thesis Signal processing in Flarion System was to examine the signal processing methodsin physical layer and Flarion‘s network architecture. A communication channel was created in Matlab environment, based on the knowledges acquired in the study of the physical layer and the system behaviour was simulated by transmitting data through a noisy channel.
    corecore