927 research outputs found

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Towards a Personalized Multi-Domain Digital Neurophenotyping Model for the Detection and Treatment of Mood Trajectories

    Get PDF
    The commercial availability of many real-life smart sensors, wearables, and mobile apps provides a valuable source of information about a wide range of human behavioral, physiological, and social markers that can be used to infer the user’s mental state and mood. However, there are currently no commercial digital products that integrate these psychosocial metrics with the real-time measurement of neural activity. In particular, electroencephalography (EEG) is a well-validated and highly sensitive neuroimaging method that yields robust markers of mood and affective processing, and has been widely used in mental health research for decades. The integration of wearable neuro-sensors into existing multimodal sensor arrays could hold great promise for deep digital neurophenotyping in the detection and personalized treatment of mood disorders. In this paper, we propose a multi-domain digital neurophenotyping model based on the socioecological model of health. The proposed model presents a holistic approach to digital mental health, leveraging recent neuroscientific advances, and could deliver highly personalized diagnoses and treatments. The technological and ethical challenges of this model are discussed

    Identifying Ketamine Responses in Treatment-Resistant Depression Using a Wearable Forehead EEG

    Full text link
    This study explores the responses to ketamine in patients with treatment-resistant depression (TRD) using a wearable forehead electroencephalography (EEG) device. We recruited fifty-five outpatients with TRD who were randomised into three approximately equal-sized groups (A: 0.5 mg/kg ketamine; B: 0.2 mg/kg ketamine; and C: normal saline) under double-blind conditions. The ketamine responses were measured by EEG signals and Hamilton Depression Rating Scale (HDRS) scores. At baseline, responders showed a significantly weaker EEG theta power than did non- responders (p < 0.05). Responders exhibited a higher EEG alpha power but lower EEG alpha asymmetry and theta cordance at post-treatment than at baseline (p < 0.05). Furthermore, our baseline EEG predictor classified responders and non-responders with 81.3 +- 9.5% accuracy, 82.1 +- 8.6% sensitivity and 91.9 +- 7.4% specificity. In conclusion, the rapid antidepressant effects of mixed doses of ketamine are associated with prefrontal EEG power, asymmetry and cordance at baseline and early post-treatment changes. The prefrontal EEG patterns at baseline may account for recognising ketamine effects in advance. Our randomised, double- blind, placebo-controlled study provides information regarding clinical impacts on the potential targets underlying baseline identification and early changes from the effects of ketamine in patients with TRD.Comment: This revised article is submitting to IEEE TBM

    Protocol of the SOMNIA project : an observational study to create a neurophysiological database for advanced clinical sleep monitoring

    Get PDF
    Introduction Polysomnography (PSG) is the primary tool for sleep monitoring and the diagnosis of sleep disorders. Recent advances in signal analysis make it possible to reveal more information from this rich data source. Furthermore, many innovative sleep monitoring techniques are being developed that are less obtrusive, easier to use over long time periods and in the home situation. Here, we describe the methods of the Sleep and Obstructive Sleep Apnoea Monitoring with Non-Invasive Applications (SOMNIA) project, yielding a database combining clinical PSG with advanced unobtrusive sleep monitoring modalities in a large cohort of patients with various sleep disorders. The SOMNIA database will facilitate the validation and assessment of the diagnostic value of the new techniques, as well as the development of additional indices and biomarkers derived from new and/or traditional sleep monitoring methods. Methods and analysis We aim to include at least 2100 subjects (both adults and children) with a variety of sleep disorders who undergo a PSG as part of standard clinical care in a dedicated sleep centre. Full-video PSG will be performed according to the standards of the American Academy of Sleep Medicine. Each recording will be supplemented with one or more new monitoring systems, including wrist-worn photoplethysmography and actigraphy, pressure sensing mattresses, multimicrophone recording of respiratory sounds including snoring, suprasternal pressure monitoring and multielectrode electromyography of the diaphragm

    Emotion Detection Research: A Systematic Review Focuses on Data Type, Classifier Algorithm, and Experimental Methods

    Get PDF
    There is a lot of research being done on detecting human emotions. Emotion detection models are developed based on physiological data. With the development of low-cost wearable devices that measure human physiological data such as brain activity, heart rate, and skin conductivity, this research can be conducted in developing countries like Southeast Asia. However, as far as the author's research is concerned, a literature review has yet to be found on how this research on emotion detection was carried out in Southeast Asia. Therefore, this study aimed to conduct a systematic review of emotion detection research in Southeast Asia, focusing on the selection of physiological data, classification methods, and how the experiment was conducted according to the number of participants and duration. Using PRISMA guidelines, 22 SCOPUS-indexed journal articles and proceedings were reviewed. The review found that physiological data were dominated by brain activity data with the Muse Headband, followed by heart rate and skin conductivity collected with various wristbands, from around 5-31 participants, for 8 minutes to 7 weeks. Classification analysis applies machine learning, deep learning, and traditional statistics. The experiments were conducted primarily in sitting and standing positions, conditioned environments (for developing research), and unconditioned environments (applied research). This review concluded that future research opportunities exist regarding other data types, data labeling methods, and broader applications. These reviews will contribute to the enrichment of ideas and the development of emotion recognition research in Southeast Asian countries in the future

    Experimental study for determining the parameters required for detecting ECG and EEG related diseases during the timed-up and go test

    Get PDF
    The use of smartphones, coupled with different sensors, makes it an attractive solution for measuring different physical and physiological features, allowing for the monitoring of various parameters and even identifying some diseases. The BITalino device allows the use of different sensors, including Electroencephalography (EEG) and Electrocardiography (ECG) sensors, to study different health parameters. With these devices, the acquisition of signals is straightforward, and it is possible to connect them using a Bluetooth connection. With the acquired data, it is possible to measure parameters such as calculating the QRS complex and its variation with ECG data to control the individual’s heartbeat. Similarly, by using the EEG sensor, one could analyze the individual’s brain activity and frequency. The purpose of this paper is to present a method for recognition of the diseases related to ECG and EEG data, with sensors available in off-the-shelf mobile devices and sensors connected to a BITalino device. The data were collected during the elderly’s experiences, performing the Timed-Up and Go test, and the different diseases found in the sample in the study. The data were analyzed, and the following features were extracted from the ECG, including heart rate, linear heart rate variability, the average QRS interval, the average R-R interval, and the average R-S interval, and the EEG, including frequency and variability. Finally, the diseases are correlated with different parameters, proving that there are relations between the individuals and the different health conditions.info:eu-repo/semantics/publishedVersio

    How Does Technology Development Influence the Assessment of Parkinson’s Disease? A Systematic Review

    Get PDF
    abstract: Parkinson’s disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The pathology for PD is difficult and expensive. Furthermore, it depends on patient diaries and the neurologist’s subjective assessment of clinical scales. Objective, accurate, and continuous patient monitoring have become possible with the advancement in mobile and portable equipment. Consequently, a significant amount of work has been done to explore new cost-effective and subjective assessment methods or PD symptoms. For example, smart technologies, such as wearable sensors and optical motion capturing systems, have been used to analyze the symptoms of a PD patient to assess their disease progression and even to detect signs in their nascent stage for early diagnosis of PD. This review focuses on the use of modern equipment for PD applications that were developed in the last decade. Four significant fields of research were identified: Assistance diagnosis, Prognosis or Monitoring of Symptoms and their Severity, Predicting Response to Treatment, and Assistance to Therapy or Rehabilitation. This study reviews the papers published between January 2008 and December 2018 in the following four databases: Pubmed Central, Science Direct, IEEE Xplore and MDPI. After removing unrelated articles, ones published in languages other than English, duplicate entries and other articles that did not fulfill the selection criteria, 778 papers were manually investigated and included in this review. A general overview of PD applications, devices used and aspects monitored for PD management is provided in this systematic review.Dissertation/ThesisMasters Thesis Computer Engineering 201
    • 

    corecore