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Abstract: The commercial availability of many real-life smart sensors, wearables, and mobile apps 
provides a valuable source of information about a wide range of human behavioral, physiological, 
and social markers that can be used to infer the user’s mental state and mood. However, there are 
currently no commercial digital products that integrate these psychosocial metrics with the real-
time measurement of neural activity. In particular, electroencephalography (EEG) is a well-
validated and highly sensitive neuroimaging method that yields robust markers of mood and 
affective processing, and has been widely used in mental health research for decades. The 
integration of wearable neuro-sensors into existing multimodal sensor arrays could hold great 
promise for deep digital neurophenotyping in the detection and personalized treatment of mood 
disorders. In this paper, we propose a multi-domain digital neurophenotyping model based on the 
socioecological model of health. The proposed model presents a holistic approach to digital mental 
health, leveraging recent neuroscientific advances, and could deliver highly personalized diagnoses 
and treatments. The technological and ethical challenges of this model are discussed. 
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1. Introduction 

One of the most prominent characteristics of the current environment is high digital 
connectivity. This connectivity enables a moment-by-moment quantification of individual-level 
human phenotypes in situ using data from personal digital devices, both passively and actively. The 
phrase digital phenotyping has been coined for this process [1]. The rapid growth of embedded smart 
sensors that are located in wearable technologies and mobile devices allows for the unobtrusive 
collection of behavioral (e.g., speech patterns), physiological (e.g., heart rate variability), and social 
activity (e.g., social media use) markers [2,3]. This integrated sensor-based data can be used for the 
early diagnosis and continuous monitoring of mental health conditions in real-time. Deep digital 
phenotyping (i.e., in the diagnosis phase) may pave the way for personalized treatment interventions 
that comprehensively create a full patient journey throughout the care stages (i.e., during the 
treatment phase). Many of these interventions could be delivered digitally, using one or more of the 
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following techniques: self-help apps, digital cognitive-behavioral therapy, relaxation tools, video-
based guidance, virtual-reality, brain–computer interface (BCI) technology, and others [4–6]. A better 
fit between the patient’s unique profile (e.g., sociodemographic factors, clinical characteristics, 
personality) and treatment enhances the patient’s adherence and therefore maximizes 
treatmenteffectiveness. Machine learning techniques could contribute to the establishment of a 
positive feedback circle that enables the constant improvement of treatment interventions for a 
specific individual [7]. 

The digital phenotyping approach has been widely applied to the field of mood disorders, such 
as depression, stress, and anxiety [8,9]. For example, depressive symptoms were found to be 
correlated with low mobility, as indicated by Global Positioning System (GPS) signals [10], visual 
cues as indicated by cameras [11], and low social communication patterns as indicated by the 
frequency of sending messages and phone calls [12]. Most current applications aim to diagnose and 
deliver treatments in real life, typically using personal devices such as smartphones and wearable 
devices. However, the current digital phenotyping approach is limited in several ways, as follows. 

First, mood fluctuates frequently across time and situations. Hence, reliable real-life diagnoses 
of mood states must capture within-context and cross-context variability appropriately (e.g., using 
within and across context (WAC) variability models [13]). The exclusive use of personal devices for 
digital phenotyping focuses solely on intra-individual variability but neglects the effects of social 
interactions. Even the social signals that are already obtained (i.e., calls, messages, and social media 
use) are limited to the communication patterns captured by an individual device, while they 
disregard other social interactions (e.g., face-to-face conversations). Second, many digital apps for 
treating mood disorders typically rely on patients to self-report their symptoms. These self-report 
data are subjective and may be inaccurate due to patient recall bias and compliance issues [14]. 
Therefore, for accurate diagnosis and treatment, more objective and reliable measures of mental states 
must be used. For example, according to the electronic ecological momentary assessment approach, 
continuous, real-time monitoring of various mood biomarkers using sensors and neuroimaging 
data—particularly electroencephalography (EEG)—can inform a reliable comprehensive clinical 
diagnosis [15]. Going beyond the clinic, brain–computer interface (BCI) neurotechnology has also 
been suggested for use in everyday contexts, such as in car emergency braking systems, airplanes, 
ATM interfaces, and other safety-critical situations [16,17]. Third, the use of smartphones and other 
wearable devices usually begins in early adolescence. Hence, data from earlier crucial stages of 
psychological development rely exclusively on self-reports from parents and/or the individual later 
in life. These significant limitations require a reconsideration of a better digital phenotyping model. 

2. Moving Beyond the Individual to a Multi-Domain Neurophenotyping Model 

According to the socioecological model of health [18,19], in order to understand patient behavior 
and implement effective interventions, three levels should be taken into consideration: (1) Patient-
level factors, which relate to the patient’s attitudes regarding health, in addition to clinical and 
demographic characteristics; (2) Micro-level factors, which relate to interpersonal relationships with 
health care professionals and social support; (3) Meso-level factors, which refer to the characteristics of 
the health care organization where the patient is being treated; and (4) Macro-level factors, which 
include the characteristics of the health care ecosystem in which a patient lives. Applying and 
expanding the theoretical framework of the socioecological model, we argue that in order to increase 
the accuracy of mood trajectory detection, and to improve the personalization of digital treatment, a 
broader perspective of digital phenotyping must be employed. Thus, we suggest that digital 
phenotyping should include five complementary domains of data collection and analysis: (1) 
individual, (2) social, (3) neural, (4) environmental, and (5) life-span domains (see Figure 1): 

2.1. Individual (Patient) 

This level refers to electronic self-reports, behavioral data, and physiological measures gathered 
from personal devices. These metrics are used not only to detect mood trajectories, but also to 
understand them in the context of personality traits. Personality is defined as characteristic patterns 
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of thoughts, feelings, and behaviors that a person displays over time and across situations [20]. 
Personality traits play an important role in predicting mood disorders, as well as the compliance and 
effectiveness of treatments [21]. Therefore as detected by individual digital footprints, personality 
traits could serve as a top-down organizing system to improve the personalization of psychological 
interventions [22,23]. 

2.2. Social 

Humans are social creatures, and therefore the interpersonal environment has a major influence 
on individual affective experience and well-being. Specifically, changes in the frequency and quality 
of social interactions are strong indicators for mood trajectories [24]. Hence, the inclusion of social 
indicators in any diagnostic schedule is important in order to establish a broader view of an 
individual’s affective state. Recent technological and theoretical advancements in social neuroscience 
have significantly improved our understanding of and ability to measure concurrent social behavior 
of interacting partners using a sociometric approach [25]. Data from social communication and 
interaction patterns (e.g., gaze, posture, arousal, speech) may significantly improve the predictive 
power of digital phenotyping in ecological and naturalistic settings. 

 
Figure 1. Multi-domain digital neurophenotyping model for sensor-based data collection, analysis, 
and integration using individual, social, neural, environmental, and life-span domains. 

2.3. Neural 

Electroencephalography (EEG) has emerged as a promising objective biomarker for a wide 
spectrum of psychiatric disorders, including depression [26], bipolar disorder [27], anxiety [28], and 
obsessive–compulsive disorders [29], among others. The diagnostic potential of EEG signals has 
already been demonstrated in adults [30], and more recently in children and adolescents [31]. 
Traditionally, lab-based EEG measurements have relied on the use of simple but well-validated 
neural markers of mood and affective processing such as frontal alpha power asymmetry [32,33], 
which is known to index the neural processing of positive/negative emotional stimuli as well as 
approach/withdrawal behavior. However, recent advances in affective brain computing have 
increasingly demonstrated the power of deep learning methods to uncover complex patterns in 
neural activation that can sensitively distinguish between different affective states [34]. This new 
generation of affective brain–computer interface (BCI) technology can be implemented in wearable 
EEG systems to monitor emotions in real time while watching a video, listening to music, or 
experiencing virtual reality, and could be used to inform home-assisting technologies that provide 
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feedback to the user [35,36]. Another potential use of affective BCIs is in emotion regulation, such as 
the use of music to modulate or enhance one’s mood [37,38]. Some commercially available devices 
already implement this technology, such as the ‘Mico LTD’, a headphone from the company 
Neurowear that selects music based on the wearer’s mood. 

Furthermore, in the fast-advancing field of social neuroscience, dual-EEG (concurrent neural 
recording from two interacting individuals) is increasingly being used in naturalistic settings to track 
dynamic changes in interpersonal neural coupling, even between infants and adult caregivers [39–
41]. Although there are unique technical challenges associated with the collection and interpretation 
of naturalistic dual-EEG data, particularly with infant participants [42], the mother–infant 
interpersonal neural network has been found to be exquisitely sensitive to changes in maternal 
emotional state [43] or parenting stress [44], and also predicts the likelihood of infant social learning 
from their parent [41]. Dual-EEG studies with adults have demonstrated that interpersonal neural 
coupling may also index empathy, differentiate the emotional tone of the conversation [45], and 
signify the degree of cooperation between interacting members of a dyad [46,47]. There is immense 
potential for these frontier technologies in social and affective neuroscience to be harnessed to 
enhance the detection and personalized treatment of mood disorders, and to be deployed in closed-
loop BCI systems that could function as “emotional prostheses”. 

2.4. Environmental 

Rapid technological progress in the internet of things (IoT), the automobile industry, and in 
smart cities has created a fabulously rich sensor environment which gathers vast amounts of 
information that could be associated with mood trajectories. The IoT has especially revolutionized 
human–computer interactions in indoor settings, by improving sensing and responding to the user. 
Today, many home products (e.g., refrigerators, home audio systems) include sensitive sensors that 
measure light, temperature, voice and other bio-physiological metrics. These indicators go far beyond 
the embedded sensors of personal devices, and therefore provide additional data that indicate the 
behavioral and emotional states of the user. Initial findings show that dynamically adapting the 
house environment in response to the individual’s mental state could increase their well-being [48]. 
In addition, sensors embedded in vehicles constantly measure both active (e.g., reaction time) and 
passive (e.g., temperature) metrics, which could be linked to the driver’s emotional state [49]. Several 
studies have already indicated the feasibility of integrating physiological and environmental data to 
improve the characterization and monitoring of the user’s mental state [50–52], or even shape it by 
delivering in-vehicle interventions [53]. Taking this approach one step further, smart cities could 
leverage the deployment of a connected network of physical sensors embedded in the environment. 
This network could provide a novel framework feeding end-users with innovative, smart and 
efficient services. Further, the large number of behavioral indicators gathered via these sensors (e.g., 
walking speed, frequency, and quality of social interaction) could support the individual and social 
domains toward more accurate digital phenotyping. 

2.5. Life-Span 

As mental health is influenced by life events across time, a holistic model of digital phenotyping 
must include a life-span layer. Applying a developmental approach, a centralized monitoring system 
that tracks the individual across very long time periods could effectively learn the factors that 
influence developmental changes in mood trajectories. Specifically, analyzing markers of cognitive, 
emotional, and social development in the early years could help to more accurately predict the onset 
of social difficulties and emotional instability in real-life settings [25]. 

The need for effective mental illness surveillance to improve individual coping, in addition to 
reducing public burden, has been widely discussed [54,55]. The proposed multi-domain system 
addresses existing gaps in the detection, monitoring, and treatment of individuals who suffer from 
mood disorders, and who do not yet receive appropriate mental health support. Specifically, three 
main populations are expected to significantly benefit from such a system. First, individuals who are 
not diagnosed with mood disorders due to low accessibility to mental health services or low 
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awareness of the symptoms of mood disorders (estimated at 66% of individuals in the community 
who suffer from depression [55]). The proposed system could track individual behavioral and 
physiological signs and prompt the individual when necessary to seek treatment. Second, individuals 
who suffer from mood disorders and do not receive any treatment (estimated at 35% of adults with 
a major depressive episode [56]). The system is designed to tailor digital treatments that could be 
delivered through smartphones and other personal devices, in order to be immediately accessible to 
these individuals. Third, individuals who were diagnosed and previously received a treatment 
(pharmacological or psychological) but demonstrated low adherence to the treatment (estimated at 
50% of patients receiving antidepressant therapy that discontinue medications in the first four 
months [57]). Creating personalized treatment interventions could significantly increase patient 
adherence and thereby improve treatment effectiveness at both individual and public levels. 

3. Challenges and Considerations 

The multi-domain approach that we have proposed will exponentially increase the amount of 
data collected and analyzed about each individual. This brings with it attendant challenges. With the 
proliferation of data dimensions and complexity, big data and machine learning analytical methods 
will become necessary to mine datasets for indicator variables. The big data approach permits the 
emergence of data-driven discoveries, rather than relying solely on (more limited) theory-driven 
methods. A strength of this approach is its avoidance of confirmation bias effects; however, there are 
still important limitations. First, the large amounts of data can lead to the identification of minor 
effects that only explain a small fraction of variance in the data and are not functionally meaningful. 
Another problem of high data dimensionality is the presence of confounding factors. For example, 
variables believed to be independent may not in fact be independent because of the presence of 
common noise or other factors that generate false associations [58]. To avoid these pitfalls, different 
sources of data (e.g., neural and behavioral data) can be jointly modeled in order to reduce the 
number of output variables and increase interpretability. 

Furthermore, the use of machine learning for classification of affective states brings particular 
challenges on top of habitual problems such as the optimization of feature selection to avoid 
overfitting. The major problem is that the annotation of emotional states in most cases depends on 
participant self-assessment, which raises issues with validity and bias. Recent studies have proposed 
different models to improve the emotional labeling of real-life affective situations [59,60] in contrast 
to single labeling from the valence–arousal space. Other studies have appropriated well-defined 
classification algorithms from motor imagery and applied these to the identification of emotions, 
specifically using EEG oscillations (which are not affected by rater bias) to improve feature selection 
and accuracy [61]. These approaches have included the use of common spatial patterns [62] or 
Riemannian geometry [63]. 

The current proposed framework and its eventual deployment in real-life settings relies on the 
availability of smart, wearable, and comfortable sensor devices—particularly wearable EEG sensors. 
Although there has been momentum in the so-called “dry revolution” movement toward the use of 
dry EEG sensors for this purpose [64], the goal of a truly wearable EEG device that delivers high 
signal quality without compromising user comfort is still some distance from being achieved [65,66]. 
There are further challenges pertaining to the integration and storage of data. Different sensors may 
sample information at different timescales and record data in different formats. The integration of 
information across different sensors will require a data architecture that synchronizes and aligns the 
various inputs and allows the sensors to work in combination. In addition, the enormous amounts of 
data that must be stored and managed will require smart storage solutions. 

Alongside the technological barriers, three important ethical concerns need to be addressed. 
First, the process of reliable digital phenotyping requires that at least part of the gathered data must 
be personally identifiable. Second, the collection and handling of such personally identifiable and 
sensitive data presents the possibility for abuse and exploitation, by parties that may include 
commercial companies and governmental agencies. Finally, despite efforts to implement learning via 
a neutral artificial intelligence that would be guided by ethical considerations, social inequalities and 
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exclusions may inadvertently be perpetuated due to human biases embedded in the algorithms. The 
serious ethical concerns of digital health systems have been highlighted before [67]. Among these 
solutions, we suggest employing robust encryption protocols throughout sensors, data storage, and 
management systems, in addition to building a decentralized  system architecture that might mitigate 
the risk of information exploitation. 

Despite these significant challenges, a multi-domain digital neurophenotyping model holds 
great promise for the future of mental health, particularly for the diagnosis of mood disorders and 
promotion of mental well-being. Applying a holistic approach and integrating the available data 
sources across domains could contribute to early and more accurate diagnostic procedures and 
provide personalized and therefore more effective treatment interventions. 
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