38 research outputs found

    Development of track-driven agriculture robot with terrain classification functionality / Khairul Azmi Mahadhir

    Get PDF
    Over the past years, many robots have been devised to facilitate agricultural activities (that are labor-intensive in nature) so that they can carry out tasks such as crop care or selective harvesting with minimum human supervision. It is commonly observed that rapid change in terrain conditions can jeopardize the performance and efficiency of a robot when performing agricultural activity. For instance, a terrain covered with gravel produces high vibration to robot when traversing on the surface. In this work, an agricultural robot is embedded with machine learning algorithm based on Support Vector Machine (SVM). The aim is to evaluate the effectiveness of the Support Vector Machine in recognizing different terrain conditions in an agriculture field. A test bed equipped with a tracked-driven robot and three types o f terrain i.e. sand, gravel and vegetation has been developed. A small and low power MEMS accelerometer is integrated into the robot for measuring the vertical acceleration. In this experiment, the vibration signals resulted from the interaction between the robot and the different type of terrain were collected. An extensive experimental study was conducted to evaluate the effectiveness of SVM. The results in terms of accuracy of two machine learning techniques based on terrain classification are analyzed and compared. The results show that the robot that is equipped with an SVM can recognize different terrain conditions effectively. Such capability enables the robot to traverse across changing terrain conditions without being trapped in the field. Hence, this research work contributes to develop a self-adaptive agricultural robot in coping with different terrain conditions with minimum human supervision

    Snake Robots for Surgical Applications: A Review

    Get PDF
    Although substantial advancements have been achieved in robot-assisted surgery, the blueprint to existing snake robotics predominantly focuses on the preliminary structural design, control, and human–robot interfaces, with features which have not been particularly explored in the literature. This paper aims to conduct a review of planning and operation concepts of hyper-redundant serpentine robots for surgical use, as well as any future challenges and solutions for better manipulation. Current researchers in the field of the manufacture and navigation of snake robots have faced issues, such as a low dexterity of the end-effectors around delicate organs, state estimation and the lack of depth perception on two-dimensional screens. A wide range of robots have been analysed, such as the i2Snake robot, inspiring the use of force and position feedback, visual servoing and augmented reality (AR). We present the types of actuation methods, robot kinematics, dynamics, sensing, and prospects of AR integration in snake robots, whilst addressing their shortcomings to facilitate the surgeon’s task. For a smoother gait control, validation and optimization algorithms such as deep learning databases are examined to mitigate redundancy in module linkage backlash and accidental self-collision. In essence, we aim to provide an outlook on robot configurations during motion by enhancing their material compositions within anatomical biocompatibility standards

    A comparison study of biologically inspired propulsion systems for an autonomous underwater vehicle

    Get PDF
    The field of Autonomous Underwater Vehicles (AUVs) has increased dramatically in size and scope over the past two decades. Application areas for AUVs are numerous and varied; from deep sea exploration, to pipeline surveillance to mine clearing. However, one limiting factor with the current technology is the duration of missions that can be undertaken and one contributing factor to this is the efficiency of the propulsion system, which is usually based on marine propellers. As fish are highly efficient swimmers greater propulsive efficiency may be possible by mimicking their fish tail propulsion system. The main concept behind this work was therefore to investigate whether a biomimetic fish-like propulsion system is a viable propulsion system for an underwater vehicle and to determine experimentally the efficiency benefits of using such a system. There have been numerous studies into biomimetic fish like propulsion systems and robotic fish in the past with many claims being made as to the benefits of a fish like propulsion system over conventional marine propulsion systems. These claims include increased efficiency and greater manoeuvrability. However, there is little published experimental data to characterise the propulsive efficiency of a fish like propulsive system. Also, very few direct experimental comparisons have been made between biomimetic and conventional propulsion systems. This work attempts to address these issues by directly comparing experimentally a biomimetic underwater propulsion system to a conventional propulsion system to allow for a better understanding of the potential benefits of the biomimetic system. This work is split into three parts. Firstly, the design and development of a novel prototype vehicle called the RoboSalmon is covered. This vehicle has a biomimetic tendon drive propulsion system which utilizes one servo motor for actuation and has a suite of onboard sensors and a data logger. The second part of this work focuses on the development of a mathematical model of the RoboSalmon vehicle to allow for a better understanding of the dynamics of the system. Simulation results from this model are compared to the experimental results and show good correlation. The final part of the work presents the experimental results obtained comparing the RoboSalmon prototype with the biomimetic tail system to the propeller and rudder system. These experiments include a study into the straight swimming performance, recoil motion, start up transients and power consumption. For forward swimming the maximum surge velocity of the RoboSalmon was 0.18ms-1 and at this velocity the biomimetic system was found to be more efficient than the propeller system. When manoeuvring the biomimetic system was found to have a significantly reduced turning radius. The thesis concludes with a discussion of the main findings from each aspect of the work, covering the benefits obtained from using the tendon drive system in terms of efficiencies and manoeuvring performance. The limitations of the system are also discussed and suggestions for further work are included

    A serpentine robot designed for efficient rectilinear motion

    Get PDF
    Robots that mimic the natural motions of animals have long been of interest in science and engineering. The primary engineering interest in such robots is in having them conduct tasks that require complicated locomotion and cognition. The biological creatures after which the human-made robots are designed manifest a remarkable degree of efficiency and agility when compared to what we have been able to mimic so far in human-made designs. For example, the small cross-section and low center of gravity of most biological snakes, coupled with their large repertoire of possible motion sequences, make their bodies very efficient when navigating confined spaces and rough terrains. To date, no β€œartificial” snake has been able to come close to duplicating these navigational characteristics.In this study we concentrate on a set of motions observed in medium size (1-4m) iological snakes. There are currently several robot designs that attempt to reproduce the movements of such snakes. Almost all of these designs require the robot to articulate segments of its body in a repetitive sequence to achieve locomotion, and some even attach passive wheels to the snake’s body in order to facilitate movement. As a result of these design decisions, the artificial snakes are generally slow and most (especially those with wheels) are not well suited for travel over rough terrain. We offer an alternative design that propels the snake using many small feet attached to disk-like body units (β€œribs”). Due to the superior flexibility that this design provides, the resulting robot, which we have built and tested, can actually β€œwalk” over obstacles and therefore will be much more maneuverable than existing prototypes.M.S., Electrical Engineering -- Drexel University, 200

    Robot kinematics: applications in virtual reality based pedagogy and sensor calibration

    Get PDF
    Conventions exist to describe the kinematics of a robot concisely, providing information about both its form and pose (position and orientation). Although mathematically convenient, the physical correlation between the parameters of these conventions and the robot that they represent is not necessarily intuitively obvious. Those who are new to the field of robotics may find it especially difficult to visualize these relationships. After presenting relevant background information on kinematics, robotics, virtual reality, and inertial sensors, this thesis investigates the effectiveness of using desktop virtual reality tools to help university-level students with the visualization of fundamental concepts in robot kinematics. Specifically, it examines how the new β€œRotation Tool” assists students in the visualization of fixed and mobile frame compound rotations while verifying their non-commutative nature. It also explains how the new β€œBuild-A-Robot” aids students in identifying the role that each of the Denavit-Hartenberg parameters plays in the description of the position and orientation of a serial manipulator’s component links. To enable flexible, real-time user interaction, Build-A-Robot employed a novel approach wherein MATLAB was used to directly manipulate the fundamental geometry of Virtual Reality Modeling Language (VRML) objects. Survey feedback and examination results are presented which indicate the students’ increased understanding that resulted after using both of these tools. This improvement was especially apparent among students who struggled to understand the concepts when traditional teaching methods alone were used. Tolerances in the manufacturing and assembly of robot arms introduce errors to the nominal kinematic models specified by manufacturers. This thesis also considers the impact of non-ideal kinematic parameters on the motion of the end-effector of a SCARA robot, which was used to calibrate an attached dual-axis accelerometer. Two novel, in-place calibration routines that employ dynamic accelerations are presented and validated using experimental data

    Collaborative human-machine interfaces for mobile manipulators.

    Get PDF
    The use of mobile manipulators in service industries as both agents in physical Human Robot Interaction (pHRI) and for social interactions has been on the increase in recent times due to necessities like compensating for workforce shortages and enabling safer and more efficient operations amongst other reasons. Collaborative robots, or co-bots, are robots that are developed for use with human interaction through direct contact or close proximity in a shared space with the human users. The work presented in this dissertation focuses on the design, implementation and analysis of components for the next-generation collaborative human machine interfaces (CHMI) needed for mobile manipulator co-bots that can be used in various service industries. The particular components of these CHMI\u27s that are considered in this dissertation include: Robot Control: A Neuroadaptive Controller (NAC)-based admittance control strategy for pHRI applications with a co-bot. Robot state estimation: A novel methodology and placement strategy for using arrays of IMUs that can be embedded in robot skin for pose estimation in complex robot mechanisms. User perception of co-bot CHMI\u27s: Evaluation of human perceptions of usefulness and ease of use of a mobile manipulator co-bot in a nursing assistant application scenario. To facilitate advanced control for the Adaptive Robotic Nursing Assistant (ARNA) mobile manipulator co-bot that was designed and developed in our lab, we describe and evaluate an admittance control strategy that features a Neuroadaptive Controller (NAC). The NAC has been specifically formulated for pHRI applications such as patient walking. The controller continuously tunes weights of a neural network to cancel robot non-linearities, including drive train backlash, kinematic or dynamic coupling, variable patient pushing effort, or slope surfaces with unknown inclines. The advantage of our control strategy consists of Lyapunov stability guarantees during interaction, less need for parameter tuning and better performance across a variety of users and operating conditions. We conduct simulations and experiments with 10 users to confirm that the NAC outperforms a classic Proportional-Derivative (PD) joint controller in terms of resulting interaction jerk, user effort, and trajectory tracking error during patient walking. To tackle complex mechanisms of these next-gen robots wherein the use of encoder or other classic pose measuring device is not feasible, we present a study effects of design parameters on methods that use data from Inertial Measurement Units (IMU) in robot skins to provide robot state estimates. These parameters include number of sensors, their placement on the robot, as well as noise properties on the quality of robot pose estimation and its signal-to-noise Ratio (SNR). The results from that study facilitate the creation of robot skin, and in order to enable their use in complex robots, we propose a novel pose estimation method, the Generalized Common Mode Rejection (GCMR) algorithm, for estimation of joint angles in robot chains containing composite joints. The placement study and GCMR are demonstrated using both Gazebo simulation and experiments with a 3-DoF robotic arm containing 2 non-zero link lengths, 1 revolute joint and a 2-DoF composite joint. In addition to yielding insights on the predicted usage of co-bots, the design of control and sensing mechanisms in their CHMI benefits from evaluating the perception of the eventual users of these robots. With co-bots being only increasingly developed and used, there is a need for studies into these user perceptions using existing models that have been used in predicting usage of comparable technology. To this end, we use the Technology Acceptance Model (TAM) to evaluate the CHMI of the ARNA robot in a scenario via analysis of quantitative and questionnaire data collected during experiments with eventual uses. The results from the works conducted in this dissertation demonstrate insightful contributions to the realization of control and sensing systems that are part of CHMI\u27s for next generation co-bots

    Characterisation and State Estimation of Magnetic Soft Continuum Robots

    Get PDF
    Minimally invasive surgery has become more popular as it leads to less bleeding, scarring, pain, and shorter recovery time. However, this has come with counter-intuitive devices and steep surgeon learning curves. Magnetically actuated Soft Continuum Robots (SCR) have the potential to replace these devices, providing high dexterity together with the ability to conform to complex environments and safe human interactions without the cognitive burden for the clinician. Despite considerable progress in the past decade in their development, several challenges still plague SCR hindering their full realisation. This thesis aims at improving magnetically actuated SCR by addressing some of these challenges, such as material characterisation and modelling, and sensing feedback and localisation. Material characterisation for SCR is essential for understanding their behaviour and designing effective modelling and simulation strategies. In this work, the material properties of commonly employed materials in magnetically actuated SCR, such as elastic modulus, hyper-elastic model parameters, and magnetic moment were determined. Additionally, the effect these parameters have on modelling and simulating these devices was investigated. Due to the nature of magnetic actuation, localisation is of utmost importance to ensure accurate control and delivery of functionality. As such, two localisation strategies for magnetically actuated SCR were developed, one capable of estimating the full 6 degrees of freedom (DOFs) pose without any prior pose information, and another capable of accurately tracking the full 6-DOFs in real-time with positional errors lower than 4~mm. These will contribute to the development of autonomous navigation and closed-loop control of magnetically actuated SCR

    λΆ„μ‚°λœ λ‘œν„°λ‘œ κ΅¬λ™λ˜λŠ” λΉ„ν–‰ μŠ€μΌˆλ ˆν†€ μ‹œμŠ€ν…œμ˜ λ””μžμΈ μƒνƒœμΆ”μ • 및 μ œμ–΄

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ³΅κ³ΌλŒ€ν•™ 기계항곡곡학뢀,2020. 2. 이동쀀.In this thesis, we present key theoretical components for realizing flying aerial skeleton system called LASDRA (large-size aerial skeleton with distributed rotor actuation). Aerial skeletons are articulated aerial robots actuated by distributed rotors including both ground connected type and flying type. These systems have recently attracted interest and are being actively researched in several research groups, with the expectation of applying those for aerial manipulation in distant/narrow places, or for the performance with entertaining purpose such as drone shows. Among the aerial skeleton systems, LASDRA system, proposed by our group has some significant advantages over the other skeleton systems that it is capable of free SE(3) motion by omni-directional wrench generation of each link, and also the system can be operated with wide range of configuration because of the 3DOF (degrees of freedom) inter-link rotation enabled by cable connection among the link modules. To realize this LASDRA system, following three components are crucial: 1) a link module that can produce omni-directional force and torque and enough feasible wrench space; 2) pose and posture estimation algorithm for an articulated system with high degrees of freedom; and 3) a motion generation framework that can provide seemingly natural motion while being able to generate desired motion (e.g., linear and angular velocity) for the entire body. The main contributions of this thesis is theoretically developing these three components, and verifying these through outdoor flight experiment with a real LASDRA system. First of all, a link module for the LASDRA system is designed with proposed constrained optimization problem, maximizing the guaranteed feasible force and torque for any direction while also incorporating some constraints (e.g., avoiding inter-rotor air-flow interference) to directly obtain feasible solution. Also, an issue of ESC-induced (electronic speed control) singularity is first introduced in the literature which is inevitably caused by bi-directional thrust generation with sensorless actuators, and handled with a novel control allocation called selective mapping. Then for the state estimation of the entire LASDRA system, constrained Kalman filter based estimation algorithm is proposed that can provide estimation result satisfying kinematic constraint of the system, also along with a semi-distributed version of the algorithm to endow with system scalability. Lastly, CPG-based motion generation framework is presented that can generate natural biomimetic motion, and by exploiting the inverse CPG model obtained with machine learning method, it becomes possible to generate certain desired motion while still making CPG generated natural motion.λ³Έ λ…Όλ¬Έμ—μ„œλŠ” λΉ„ν–‰ μŠ€μΌˆλ ˆν†€ μ‹œμŠ€ν…œ LASDRA (large-size aerial skeleton with distributed rotor actuation) 의 κ΅¬ν˜„μ„ μœ„ν•΄ μš”κ΅¬λ˜λŠ” 핡심 기법듀을 μ œμ•ˆν•˜λ©°, 이λ₯Ό μ‹€μ œ LASDRA μ‹œμŠ€ν…œμ˜ μ‹€μ™Έ 비행을 톡해 κ²€μ¦ν•œλ‹€. μ œμ•ˆλœ 기법은 1) μ „λ°©ν–₯으둜 힘과 토크λ₯Ό λ‚Ό 수 있고 μΆ©λΆ„ν•œ κ°€μš© λ ŒμΉ˜κ³΅κ°„μ„ 가진 링크 λͺ¨λ“ˆ, 2) 높은 μžμœ λ„μ˜ λ‹€κ΄€μ ˆκ΅¬μ‘° μ‹œμŠ€ν…œμ„ μœ„ν•œ μœ„μΉ˜ 및 μžμ„Έ μΆ”μ • μ•Œκ³ λ¦¬μ¦˜, 3) μžμ—°μŠ€λŸ¬μš΄ μ›€μ§μž„μ„ λ‚΄λŠ” λ™μ‹œμ— 전체 μ‹œμŠ€ν…œμ΄ 속도, 각속도 λ“± μ›ν•˜λŠ” μ›€μ§μž„μ„ 내도둝 ν•  수 μžˆλŠ” λͺ¨μ…˜ 생성 ν”„λ ˆμž„μ›Œν¬λ‘œ κ΅¬μ„±λœλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μš°μ„  링크 λͺ¨λ“ˆμ˜ λ””μžμΈμ„ μœ„ν•΄ μ „λ°©ν–₯으둜 보μž₯λ˜λŠ” 힘과 ν† ν¬μ˜ 크기λ₯Ό μ΅œλŒ€ν™”ν•˜λŠ” ꡬ속 μ΅œμ ν™”λ₯Ό μ‚¬μš©ν•˜κ³ , μ‹€μ œ μ μš©κ°€λŠ₯ν•œ ν•΄λ₯Ό μ–»κΈ° μœ„ν•΄ λͺ‡κ°€μ§€ ꡬ속쑰건(λ‘œν„° κ°„ 곡기 흐름 κ°„μ„­μ˜ νšŒν”Ό λ“±)을 κ³ λ €ν•œλ‹€. λ˜ν•œ μ„Όμ„œκ°€ μ—†λŠ” μ•‘μΈ„μ—μ΄ν„°λ‘œ μ–‘λ°©ν–₯ μΆ”λ ₯을 λ‚΄λŠ” κ²ƒμ—μ„œ μ•ΌκΈ°λ˜λŠ” ESC 유발 특이점 (ESC-induced singularity) μ΄λΌλŠ” 문제λ₯Ό 처음으둜 μ†Œκ°œν•˜κ³ , 이λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•΄ 선택적 맡핑 (selective mapping) μ΄λΌλŠ” 기법을 μ œμ‹œν•œλ‹€. 전체 LASDRA μ‹œμŠ€ν…œμ˜ μƒνƒœμΆ”μ •μ„ μœ„ν•΄ μ‹œμŠ€ν…œμ˜ 기ꡬ학적 ꡬ속쑰건을 λ§Œμ‘±ν•˜λŠ” κ²°κ³Όλ₯Ό 얻을 수 μžˆλ„λ‘ ꡬ속 칼만 ν•„ν„° 기반의 μƒνƒœμΆ”μ • 기법을 μ œμ‹œν•˜κ³ , μ‹œμŠ€ν…œ ν™•μž₯성을 κ³ λ €ν•˜μ—¬ 반 λΆ„μ‚° (semi-distributed) κ°œλ…μ˜ μ•Œκ³ λ¦¬μ¦˜μ„ ν•¨κ»˜ μ œμ‹œν•œλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μžμ—°μŠ€λŸ¬μš΄ μ›€μ§μž„μ˜ 생성을 μœ„ν•˜μ—¬ CPG 기반의 λͺ¨μ…˜ 생성 ν”„λ ˆμž„μ›Œν¬λ₯Ό μ œμ•ˆν•˜λ©°, 기계 ν•™μŠ΅ 방법을 톡해 CPG μ—­μ—°μ‚° λͺ¨λΈμ„ μ–»μŒμœΌλ‘œμ¨ 전체 μ‹œμŠ€ν…œμ΄ μ›ν•˜λŠ” μ›€μ§μž„μ„ λ‚Ό 수 μžˆλ„λ‘ ν•œλ‹€.1 Introduction 1 1.1 Motivation and Background 1 1.2 Research Problems and Approach 3 1.3 Preview of Contributions 5 2 Omni-Directional Aerial Robot 7 2.1 Introduction 7 2.2 Mechanical Design 12 2.2.1 Design Description 12 2.2.2 Wrench-Maximizing Design Optimization 13 2.3 System Modeling and Control Design 20 2.3.1 System Modeling 20 2.3.2 Pose Trajectory Tracking Control 22 2.3.3 Hybrid Pose/Wrench Control 22 2.3.4 PSPM-Based Teleoperation 24 2.4 Control Allocation with Selective Mapping 27 2.4.1 Infinity-Norm Minimization 27 2.4.2 ESC-Induced Singularity and Selective Mapping 29 2.5 Experiment 38 2.5.1 System Setup 38 2.5.2 Experiment Results 41 2.6 Conclusion 49 3 Pose and Posture Estimation of an Aerial Skeleton System 51 3.1 Introduction 51 3.2 Preliminary 53 3.3 Pose and Posture Estimation 55 3.3.1 Estimation Algorithm via SCKF 55 3.3.2 Semi-Distributed Version of Algorithm 59 3.4 Simulation 62 3.5 Experiment 65 3.5.1 System Setup 65 3.5.2 Experiment of SCKF-Based Estimation Algorithm 66 3.6 Conclusion 69 4 CPG-Based Motion Generation 71 4.1 Introduction 71 4.2 Description of Entire Framework 75 4.2.1 LASDRA System 75 4.2.2 Snake-Like Robot & Pivotboard 77 4.3 CPG Model 79 4.3.1 LASDRA System 79 4.3.2 Snake-Like Robot 80 4.3.3 Pivotboard 83 4.4 Target Pose Calculation with Expected Physics 84 4.5 Inverse Model Learning 86 4.5.1 LASDRA System 86 4.5.2 Snake-Like Robot 89 4.5.3 Pivotboard 90 4.6 CPG Parameter Adaptation 93 4.7 Simulation 94 4.7.1 LASDRA System 94 4.7.2 Snake-Like Robot & Pivotboard 97 4.8 Conclusion 101 5 Outdoor Flight Experiment of the F-LASDRA System 103 5.1 System Setup 103 5.2 Experiment Results 104 6 Conclusion 111 6.1 Summary 111 6.2 Future Works 112Docto
    corecore