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Abstract

In this thesis, we present key theoretical components for realizing flying aerial

skeleton system called LASDRA (large-size aerial skeleton with distributed rotor ac-

tuation). Aerial skeletons are articulated aerial robots actuated by distributed rotors

including both ground connected type and flying type. These systems have recently

attracted interest and are being actively researched in several research groups, with

the expectation of applying those for aerial manipulation in distant/narrow places,

or for the performance with entertaining purpose such as drone shows. Among the

aerial skeleton systems, LASDRA system, proposed by our group has some signif-

icant advantages over the other skeleton systems that it is capable of free SE(3)

motion by omni-directional wrench generation of each link, and also the system

can be operated with wide range of configuration because of the 3DOF (degrees of

freedom) inter-link rotation enabled by cable connection among the link modules.

To realize this LASDRA system, following three components are crucial: 1) a

link module that can produce omni-directional force and torque and enough feasible

wrench space; 2) pose and posture estimation algorithm for an articulated system

with high degrees of freedom; and 3) a motion generation framework that can pro-

vide seemingly natural motion while being able to generate desired motion (e.g.,

linear and angular velocity) for the entire body. The main contributions of this the-

sis is theoretically developing these three components, and verifying these through

outdoor flight experiment with a real LASDRA system. First of all, a link module

for the LASDRA system is designed with proposed constrained optimization prob-

lem, maximizing the guaranteed feasible force and torque for any direction while

also incorporating some constraints (e.g., avoiding inter-rotor air-flow interference)

to directly obtain feasible solution. Also, an issue of ESC-induced (electronic speed

control) singularity is first introduced in the literature which is inevitably caused

by bi-directional thrust generation with sensorless actuators, and handled with a

novel control allocation called selective mapping. Then for the state estimation of

i



the entire LASDRA system, constrained Kalman filter based estimation algorithm

is proposed that can provide estimation result satisfying kinematic constraint of the

system, also along with a semi-distributed version of the algorithm to endow with

system scalability. Lastly, CPG-based motion generation framework is presented

that can generate natural biomimetic motion, and by exploiting the inverse CPG

model obtained with machine learning method, it becomes possible to generate cer-

tain desired motion while still making CPG generated natural motion.

Keywords: aerial skeleton, design optimization, ESC-induced singularity, scal-

ability, constrained Kalman filter, central pattern generator, machine learning

Student Number: 2013-20672
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Chapter 1

Introduction

1.1 Motivation and Background

Large-size robots are systems that people have always dreamed of, as we can fre-

quently see those in various sci-fi movies, animations, or rarely as real robots in

[1, 2]. However, it is still challenging to realize those kind of systems, because of the

scalability issue with conventional actuators including electric motors and hydraulic

actuators. Namely, as the length or the number of articulated links of a robot in-

creases, the mass of links are accumulated as load along the system requires the size

of the base actuator to grow exponentially to endure and control all the system, as

addressed in [3].

Meanwhile, in recent years, a novel platform named as “aerial skeleton” has

been an interest of several research groups, such as [3, 4, 5, 6, 7, 8]. Aerial skeleton

refers to an aerial robot with articulated structure which is mainly actuated by

the thrust of distributed rotors (may contain additional actuators to rotate the

rotors with respect to the link and/or to directly produce inter-link relative motion),

and this platform is expected to overcome the aforementioned scalability issue by

compensating load of each link with thrusters, while being actuated by pushing

the surrounding air (or also dubbed as external actuation [3]). In [5], the Hiryu-I

1



system is constructed with parallel link mechanism and 2-DOF (degree-of-freedom)

joints actuated by thrusters attached on each link, in [6, 7], a two dimensional

multi-link aerial robot is propose with servo motors for each 1-DOF joint, while

modified design is proposed in [7] to guarantee full actuation using tilted rotors,

and in [8], the DRAGON (dual-rotor multi-link robot with ability of multi-DOF

aerial transformation) system is developed utilizing servo-motors to generate both

rotor-link and link-link motions. With the size-scalable property, these systems are

envisioned to realize such new applications as mechanical operations at high-rise

building or in a narrow/long space; or articulated flying characters in amusement

parks. However, the aforementioned systems have some limitations that the degree

of freedom of each joint in [6, 7] is limited to one limiting the possible range of

motion or configuration, and the systems in [5, 8] have singularity issue that those

cannot be controlled at upright configuration because of the under-actuation at each

link.

In this context, a novel aerial robot called LASDRA [3], [4] (Large-size Aerial

Skeleton with Distributed Rotor Actuation) is developed in our research group,

which is constructed with link modules that can generate omni-directional wrench,

enabling free SE(3)-motion of each link. Also, each link of LASDRA is connected

with its neighbouring links via cable, so that wide range of posture becomes available

with 3 DOF inter-link rotation. We developed two types of LASDRA system, one is

the ground-connected type called o-LASDRA (operation-LASDRA) system [3], and

the other is the free flying type called f-LASDRA (flying LASDRA) system [4] . The

former type can be exploited for manipulation tasks at places where mobile robots

or conventional manipulators cannot reach, with almost unlimited operating time

enabled by continuous supply of power, and the latter type system is expected to be

successfully applied for entertainment purpose such as drone shows [9]. It is notable

here that, drone shows are performing with individual dots while the f-LASDRA

system can perform with connected lines using its own skeleton structure, which

makes it look much more natural and gratifying.
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1.2 Research Problems and Approach

In this thesis, we first focus on the development of the link module called ODAR

(omni-directional aerial robot) that can be used for constructing both types of LAS-

DRA system. To freely operate the LASDRA system in three dimensional space

while always compensating for the load of each link, we design each link of the

system or ODAR to be able to generate omni-directional wrench. Since the omni-

directional wrench generation can be achieved by attaching rotors non-colinearly

with the sacrifice of the force generation efficiency, it requires more thrust to fly

compare to typical multi-rotor platforms with same mass, and it becomes crucial

to maximize the wrench space with given number of rotors. Here, we do not adapt

the concept of adding servo motors to tilt the rotors to guarantee full actuation

[10, 11, 12, 13], since it reduces already tight payload with additional actuators, and

it cannot generate desired wrench immediately due to the limited bandwidth of servo

motors. To resolve this issue, we formulated constrained optimization problem to

decide the attached position and direction of the rotors maximizing the guaranteed

minimum control force and torque for any direction. Also, we consider constraints

including volume constraint for the position of rotors, self weight compensation, and

avoidance of inter-rotor air flow interference for the optimization, so that feasible

and directly implementable solution can be obtained from the optimization.

Although with the design optimized ODAR system, there exists an hardware

issue when we truly operate this system omni-directionally. From the experiment

of rotating motion in pitch direction, we found out that the system shows shaky

motion and even results in fall down. This phenomenon appears when some of

rotors are commanded to change their rotating direction, and we found that reason

of the shaky motion is the hesitating behaviour of the motor when it changes the

rotating direction. This behaviour is inevitable with common sensorless motors

used for drones since the motor relies on back-EMF (electromotive force) signal for

commutation and the motor lacks this signal at low RPM, so the motor needs to stop

3



first and reaccelerate to the other direction to change the rotating direction, causing

delayed thrust output. In this thesis, we name this phenomenon as “ESC-induced

(electronic speed control) singularity”, and we propose a novel control allocation

method to overcome this issue, the idea of which is not using the rotor that originally

generate near-zero thrust, exploiting redundancy of actuation given by 8 rotors.

Now, let us describe some issues of operating the f-LASDRA system in the out-

door environment. For the system modularity and scalability, the f-LASDRA system

is equipped with IMU and GPS module for each link, and distributed impedance

control is applied for all the links, so that pose sensing and control can be done

independently. Then, there exists issue on position sensing of each link which is

important for the distributed impedance control. When we use IMU attitude esti-

mate and forward kinematics for a position estimation of each link, attitude error

and noise are accumulated throughout the skeleton making the estimate unreliable.

Also, the GPS sensor is well known for its poor accuracy and slow rate, so if we

only rely on the IMU/GPS based pose estimation on each link, the estimated result

would not satisfy the kinematic constraint given by 3 DOF joints between the links.

This will cause excessive internal force for joints, and it can lead to a saturation of

rotor thrust or also a self-collision and fall down. Therefore, it is critical to have

pose estimation result of each link that is coherent to the kinematic structure of the

system. To deal with this issue, we propose a novel estimation framework exploit-

ing individual IMU/GPS sensors and kinematic constraints of the system together,

which is based on SCKF (smoothly constrained Kalman filter) [14].

Considering that the major application of the f-LASDRA system would be a

performance with entertaining purpose similar to drone shows, generating natural

motion is another important goal for the system. To achieve this goal, we first

define the motion naturalness of the f-LASDRA system as a combination of natural

biomimetic shape motion and the entire body motion that matches the physics

that people expect. We denote the shape motion and the body motion here as a

link motion seen from the body frame, and the motion of body frame seen from the
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inertial frame where the body frame is the representative frame of the whole system.

The natural shape motion is then provided from CPG (central pattern generator)

model [15] which is formulated to generate the biomimetic motion referring to a

biological experiment data. Here, we adapted CPG model for the motion generation

as it can provide coordinated shape motion with high DOF only with few parameters,

and continuous/differentiable rhythmic motion can be obtained even with parameter

transition. Then, the motion generated from CPG model is simulated with the

expected physics and the resultant motion becomes the final target pose for each

link of the system. Lastly, we learn the inverse map of CPG parameter to generated

motion using MLP (multi layer perceptron) and autoencoder, so that we can directly

generate some target motion while incorporating motion naturalness from CPG-

based motion generation.

1.3 Preview of Contributions

The main contribution of this thesis can be summarized as developing key compo-

nents required for realizing outdoor flying LASDRA system, and those key compo-

nents include: 1) developing a link module called ODAR that can produce omni-

directional force and torque; 2) proposing a constrained Kalman filter based pose

estimation algorithm for an articulated system with high degrees of freedom; and

3) proposing a CPG based motion generation framework that can provide natural

biomimetic motion.

There have been abundant research about designing fully actuated aerial vehi-

cles as in [16, 17, 18, 19, 20], but there are no other works except for this thesis

that optimize both location and direction of rotors while properly considering con-

straints for the feasibility of a solution. In addition, in this thesis, the problem

of ESC-induced singularity is first introduced in the literature, and handled with

a novel control allocation called selective mapping. The CPG based motion gen-

eration framework along with the inverse CPG model from machine learning and
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the parameter adaptation is also a new approach that has never been presented by

others.

The contributions presented in this thesis are not limited to be used for flying

LASDRA system, but can be extended to other robotic systems. First of all, the

design optimization framework can be applied for other thrust propelled systems

such as AUVs (autonomous underwater vehicle). The constrained Kalman filter

based state estimation algorithm can be also applied for articulated system with

high degrees of freedom including humanoid, hyper-redundant manipulators, and

so on. Furthremore, CPG based motion generation framework can be extended to

other robotic systems which is addressed and verified with simulation in this thesis.

The outline of this thesis is as follows. In chapter 2, we describe the design and

control problems of an omni-directional aerial robot, which is exploited as a single

link for constructing the LASDRA system. Then in chapter 3, pose and posture esti-

mation framework for LASDRA system is presented enforcing kinematic coherency.

Motion generation method for motion naturalness based on CPG is described in

chapter 4, and in chapter 5, experiment results of outdoor flying LASDRA system

are presented. Lastly in chapter 6, we summarize the contributions of this thesis,

and conclude with description of some possible future works.
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Chapter 2

Omni-Directional Aerial Robot

2.1 Introduction

Multi-rotor unmanned aerial vehicles (UAVs) or simply drones have received boom-

ing interests from the research community and the general public alike due to their

capacity/promise to extend our sensory and manipulation ability to the 3D-space

without being bound to the ground. This flourishing field of drones is enabled

by the recent advancement and maturation of many background technologies, in-

cluding material/manufacturing (e.g., carbon fiber, magnesium alloy), sensors (e.g.,

MEMs (micro-electromechanical systems) IMU (inertial measurement unit), sonar,

cameras, etc.), actuators (e.g., BLDC (brush-less direct-current) motors), onboard

computing and communication, and algorithms (e.g., sensor fusion, localization,

control, image processing, etc.), to name just few.

The most successful applications of the drones so far are mostly “seeing” applica-

tions, including aerial photography, geo-surveying, traffic monitoring, etc. However,

to truly extend the usefulness of the drones to the 3D-space, it is necessary to en-

dow them with the ability of aerial manipulation, and for that, drone-manipulator

systems (i.e., drone with multi-degree-of-freedom (DOF) robotic arm) are most in-

tensively investigated (e.g., [21, 22, 23, 24, 25]). This drone-manipulator system,
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Figure 2-1: ODAR (omni-directional aerial robot) system with eight non-aligned
bi-directional rotors as obtained from the design optimization (2.4). Also shown are
the inertial, body and 𝑖-th rotor coordinate frames, {𝑂} := {𝑋𝑂, 𝑌 𝑂, 𝑍𝑂}, {𝐵} :=
{𝑋𝐵, 𝑌 𝐵, 𝑍𝐵} and {𝑈𝑖} := {𝑋𝑈𝑖 , 𝑌 𝑈𝑖 , 𝑍𝑈𝑖}, 𝑖 ∈ {1, ..., 8}; and the orientation,
position and reaction momentum vectors of 𝑖-th rotor, 𝑢𝑖 ∈ S2, 𝑟𝑖 ∈ ℜ3 and 𝛾𝜎𝑖𝑢𝑖 ∈
ℜ3.
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yet, suffers from the following two crucial limitations stemming from the under-

actuation of the drone (i.e., cannot control its position and orientation at the same

time with all axes of rotors parallel): 1) it would not be able to maintain contact

or continue manipulation task when there blows side-way gust, since it cannot hold

its orientation in the presence of lateral disturbance, particularly given that the at-

tached robotic arm is typically of only low-DOF due to the payload limitation of

the drone; and 2) it cannot exert downward force larger than its own weight and

can do so only by turning off its rotors, since, for typical drones, all the rotors are

aligned upward and driven by uni-directional ESCs, although this downward force

is very important for many practical applications. These limitations, we believe, are

because the multi-rotor drone platforms are designed/optimized for ease of flying,

not for manipulation.

To overcome these limitations of the conventional multi-rotor drones, in this

thesis, we propose a novel flying platform for aerial manipulation, ODAR (omni-

directional aerial robot), as shown in Fig. 2-1. By utilizing opportunistically

aligned/distributed bi-directional rotors (with reversible ESC and bi-directional

props), this system can attain omni-directional motion (i.e., arbitrary position/ori-

entation) or produce omni-directional wrench (i.e., arbitrary force/torque). This

full-actuation in SE(3) allows for such practically useful behaviors not possible with

other typical aerial operation systems: 1) exerting force/torque in all directions,

particularly pushing from the top (e.g., structure maintenance/repair); 2) pointing

to any direction, while maintaining its posture against side-way wind (e.g., 360∘

camera shooting, fire-fighting hose operation); and 3) flying while adjusting its at-

titude at the same time (e.g., navigation in a pipe-cluttered environment). The key

challenge for this system is the very tight thrust margin and weight budget under

the currently-available motor and battery technologies, while being required to be

fully-functioning with all the components on-board and no power cable tethered to

the ground. For this, on top of using light-weight/stiff carbon-fiber structures and

weight-reducing 3D-printed parts, we propose a general design optimization frame-
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work for the ODAR system, which optimizes the pose of the rotors to maximize the

minimum-guaranteed omni-directional force and torque generation with such an im-

portant aspect as inter-rotor aero-dynamic interference and task-specific anisotropy

incorporated. We also propose a novel selective mapping algorithm to substantially

subdue the destabilizing effect of “ESC-induced singularity”, i.e., temporary loss of

thrust when the reversible rotor changes its rotating direction due to the lack of po-

sition sensing (i.e., sensor-less BLDC), which, if not treated properly, can render the

ODAR system behavior fairly shaky, unstable, and even resulting in crash. With all

these implemented, we also perform experiments, in which our eight-rotor ODAR

system can exert downward force larger than 60N much larger than its own weight

(around 2.6kg); can control its tip position and force at the same time (i.e., hybrid

position/force control) while fixing its attitude; and can even attain peg-in-hole

task of its circular bar-end of 20mm diameter into 21mm diameter hole via bilateral

teleoperation. All these levels of aerial manipulation performance, we believe, are

reported by us in [26] for the first time.

There have been proposed several new designs of flying platforms to overcome

the issue of under-actuation (e.g., [10, 11, 12, 13, 27, 16, 17, 18, 19, 20]). The

works of [10, 11, 12, 13] advocate the use of extra actuators to tilt the direction of

some or all of the rotors to overcome the issue of under-actuation. However, adding

those extra actuators, possibly as many as the rotors, can substantially increase

the system complexity and also result in further reduction of the already fairly-

tight payload of the systems. The work of [27] presents a new aerial platform, so

called, SmQ (spherically-connected multi-quadrotor) system, which is actuated by

multiple drones connected by passive spherical joints to the platform, thereby, can

deal with both the under-actuation and payload problems. This SmQ system, yet,

still cannot exert downward force larger than its own weight due to the uni-lateral

thrust generation of the standard drones. More closely related to our proposed

ODAR system are the designs of [16, 17, 18, 19, 20], where rotors attached with

non-parallel directions are used to attain the full-actuation on SE(3) with no extra
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actuation. The works of [16, 17, 18] however optimize (or adjust) only the direction

of the six rotors in S1, while leaving their positions to be the same as those of the

standard hexarotors. Although their designs achieve the full-actuation on SE(3),

since their search space (i.e., S1 of each rotor) is much narrower than ours (i.e., ℜ3×S2

of each rotor), given the tight weight budget and thrust margin of currently-available

motor and battery technologies, they would generate much less force/thrust omni-

directionally than our ODAR system, which may be adequate for just standalone

flying in mild environment (e.g., micro-gravity [18]), yet, likely substantially lacking

for the manipulation tasks as demonstrated in this thesis. The work of [19] optimizes

both the S2-orientation and the position of the rotors as done here, yet, their goal

is not to maximize the wrench generation, but to minimize the system size under

the full-actuation constraint. Thus, similar as for [16, 17, 18], its wrench generation

would be likely deficient for the manipulation tasks of this thesis. In fact, the

implementation of this design [19] (and also [17, 18]) has not been reported yet.

Most closely-related to our ODAR system is the design of [20], which also maximizes

the omni-directional wrench generation. However, they do not take into account

the inter-rotor aerodynamic interference, which not only significantly affects the

rotor performance, but also results in infeasibility of their design, i.e., positions

of some rotors are overlapped, thus, heuristically relocated to some vertices of a

cube in [20]. In contrast, we optimize both the position and the orientation of

each rotor, while fully incorporating such important aspects as the inter-rotor aero-

interference and gravity compensation. Furthermore, to our knowledge, the level

of performance of the aerial manipulation tasks demonstrated in this thesis (e.g.,

maximum downward force larger than 60N; aerial peg-in-hole with radial tolerance of

0.5mm) is unprecedented. We also believe that the issue of ESC-induced singularity

is addressed by us in [26] for the first time with the selective mapping algorithm to

substantially alleviate its destabilizing effect.
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2.2 Mechanical Design

2.2.1 Design Description

We design the ODAR system to be of the bar shape (see Fig. 2-1), since: 1) it can

conveniently hold or attach on itself tools commonly-used for many operation and

manipulation tasks (e.g., screw-driver, drill, inspection probe, etc.) while effectively

resisting the reaction moment of the tool through its longitudinal length; and 2) it

can also mitigate the ground effect stemming from the fluid-structure interaction

when the task takes place in a proximity of structures (e.g., close to wall, under the

bridge girder, etc.), as the half of the actuators are located far from the interacting

plane, thus, can still produce ample correcting wrench to subdue such ground effect

(see Sec. 2.5.2). Of course, depending on task objectives, other shapes (e.g., spher-

ical or disc shapes) would be desirable, for which the framework proposed in this

chapter can also be applied.

To construct the ODAR system, with an inspiration from the design of conven-

tional drones, we adopt each pair of two symmetrically-attached rotors as the basic

actuator unit. More precisely, see Fig. 2-1, where the rotors 1 and 5 constitute such

an actuator unit, with their rotor directions 𝑢1 = 𝑢5 ∈ S2 to be the same and their

attachment locations 𝑟1 = −𝑟5 ∈ ℜ3 symmetric w.r.t. the mainframe origin, while

they rotate in different direction (e.g., their rotor types 𝜎1 = 1 and 𝜎5 = −1). With

this symmetry, each rotor pair can then generate one-dimensional control force (e.g.,

(𝜆1 +𝜆5)𝑢1, where 𝜆𝑖 is the rotor thrust output) and one-dimensional control torque

(e.g., (𝜆1 − 𝜆5)[𝑟1 × 𝑢1 + 𝛾𝜎1𝑢1], where 𝛾 > 0 is the thrust-yaw ratio caused by the

drag force), independently and separately. This then implies that we can render the

ODAR system fully-actuated on SE(3) by using the three rotor pairs. This adoption

of the rotor pairs as actuator units turns out to significantly simplify the process of

design optimization (Sec. 2.2.2).

For the ODAR system to be omni-directional, we also adopt reversible ESCs
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(electronic speed controllers) with the reversible propellers composed of two uni-

directional props (i.e., with four blades) stacked together in the opposite direction

(see Fig. 2-1). We also experimentally checked (see Fig. 2-9) that our stacked

props, even with the inter-props flow interference, can still retain about 92% of the

thrust production capability of a single uni-directional prop (with two blades). This

reversible thrust generation is crucial particularly for aerial manipulation, since,

only with that, we can exert downward pushing force larger than the weight of the

system itself, an impossible feat with typical multi-rotor drones with uni-directional

rotors.

One of the foremost challenges of the ODAR design is that, under the current

available motor and battery technologies, the weight-thrust budget of the ODAR is

fairly tight, particularly for untethered operation. This in fact spurs us to adopt

the eight-rotor design of Fig. 2-1 for untethered operation instead of the six-rotor

design for tethered operation in [28], since, with batteries, electronics, cables, etc., all

on-board, we could not find some commercially available rotor-battery combination

to fly our ODAR system with enough omni-directional wrench-exerting capability.

This eight-rotor design provides the actuation redundancy, which can be utilized,

e.g., to better allocate control actuation to each rotor or to ameliorate the issue of

zero-crossing of the reversible ESC (see Sec. 2.4). With this tight weight-thrust

budget constraint, it turns out to be of paramount importance to optimize the pose

of the rotors as best as possible to maximize omni-directional wrench generation,

which is the topic of the next Sec. 2.2.2.

2.2.2 Wrench-Maximizing Design Optimization

The goal of our design optimization here is to decide the attaching location 𝑟𝑖 ∈ ℜ3

and the thrust generation direction 𝑢𝑖 ∈ S2 of each rotor, 𝑖 = 1, .., 𝑛, all expressed

in the body frame {𝐵} (see Fig. 2-1 for a frame definition), to maximize omni-

directional wrench generation. See Fig. 2-1. Using each pair of symmetrically-
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attached rotors as an actuator unit as stated in Sec. 2.2.1, we first define the sets

of 𝑢𝑖 and 𝑟𝑖 s.t.,

𝒰 := {𝑢𝑖 ∈ S2 | 𝑢𝑗 = 𝑢
𝑗+

𝑛
2
, 𝑖 = 1, ..., 𝑛, 𝑗 = 1, ..., 𝑛

2
}

ℛ := {𝑟𝑖 ∈ ℛmax | 𝑟𝑗 = −𝑟
𝑗+

𝑛
2
, 𝑖 = 1, ..., 𝑛, 𝑗 = 1, ..., 𝑛

2
}

where 𝑛 is the total number of rotors, which is assumed to be even; and ℛmax is the

maximum allowable volume for all the rotor locations defined by

ℛ𝑚𝑎𝑥 := {𝑟 ∈ ℜ3 |
√︁
𝑟2𝑦 + 𝑟2𝑧 ≤ 𝑅max, |𝑟𝑥| ≤ 𝐿max

2
}

where 𝑟 = [𝑟𝑥; 𝑟𝑦; 𝑟𝑧] expressed in {𝐵}, and 𝑅max and 𝐿max are the maximum radius

and length of the bar shape ODAR system. The type of rotors (i.e., left-handed

or right-handed) is also considered as the optimization variable, since it affects the

control torque generation via drag-induced reaction moment. For this, we define the

set of rotor types as the optimization variable s.t.,

𝒮 := {𝜎𝑖 ∈ {1,−1}| 𝜎𝑗 = −𝜎𝑗+𝑛
2
, 𝑖 = 1, ..., 𝑛, 𝑗 = 1, ..., 𝑛

2
}

where 𝜎𝑖 = 1 means that the rotor generates upward thrust when rotating in clock-

wise direction (i.e., left-handed); and 𝜎𝑖 = −1 when in counter-clockwise direction

(i.e., right-handed). The search space of our design optimization is then given by

𝒰 ×ℛ× 𝒮.

Let us denote the torque generation of the 𝑗-th rotor with the unit thrust gen-

eration (i.e., 𝜆𝑗 = 1) by

𝑡𝑗 := 𝑟𝑗 × 𝑢𝑗 + 𝛾𝜎𝑗𝑢𝑗 ∈ ℜ3 (2.1)

where 𝛾 ≈ 0.02 for our case, according to experiments. We can then see that, under

the definitions of (𝒰 ,ℛ,𝒮) above, 𝑡𝑗 = −𝑡𝑗+𝑛/2, implying that each pair of the rotors
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𝑗 and 𝑗 + 𝑛
2

can produce the one-dimensional control force (𝜆𝑗 + 𝜆𝑗+𝑛
2
) · 𝑢𝑗 and the

one-dimensional control torque (𝜆𝑗 − 𝜆𝑗+𝑛
2
) · 𝑡𝑗 independently by adjusting their

thrust outputs 𝜆𝑗 and 𝜆𝑗+𝑛
2
, as stated in Sec. 2.2.1. With this design symmetry, the

search space for the optimization becomes square root of the non-symmetric one,

thereby, substantially reducing the complexity of solving the design optimization.

Our design optimization then boils down to the problem of finding (𝑢𝑗, 𝑟𝑗, 𝜎𝑗) of

each rotor pair to maximize the feasible control force volume 𝒱ℱ and feasible control

torque volume 𝒱ℳ defined as follows:

𝒱ℱ := {𝑓 ∈ ℜ3 | 𝑓 =
𝑛∑︁

𝑖=1

𝜆𝑖𝑢𝑖 , 𝜆min ≤ 𝜆𝑖 ≤ 𝜆max}

𝒱ℳ := {𝜏 ∈ ℜ3 | 𝜏 =
𝑛∑︁

𝑖=1

𝜆𝑖𝑡𝑖 , 𝜆min ≤ 𝜆𝑖 ≤ 𝜆max}

where 𝜆𝑖 is the thrust output of the 𝑖-th rotor; 𝜆min, 𝜆max ∈ ℜ are the minimum and

maximum thrust for each rotor with 𝜆max = −𝜆min ≥ 0. Here, we assume uniformity

among all the rotors. The sets 𝒱ℱ and 𝒱ℳ are both convex, since 𝜆𝑖𝑢𝑖 and 𝜆𝑖𝑡𝑖 each

constitutes a convex set. See Fig. 2-2.

The ODAR system is purposed to be omni-directional. Thus, it is desired to

maximize the minimum force and torque generation by the system for any attitude.

Of particular importance is to generate force for any attitude larger than its own

weight so that the system can fly in any attitude. For this, we define the guaranteed

minimum control force for any orientation (generated collectively by all the rotors)

s.t., with 𝒩ℎ := {1, 2, ..., 𝑛/2},

ℱmin(𝒰) := min
𝑖,𝑗∈𝒩ℎ

∑︁
𝑘∈𝒩ℎ

2𝜆max
|(𝑢𝑖 × 𝑢𝑗)𝑇𝑢𝑘|
||𝑢𝑖 × 𝑢𝑗||

(2.2)

which is the maximum radius of spheres centered at the origin and fully contained

within the volume 𝒱ℱ . More specifically, consider the plane on 𝒱ℱ spanned by 𝑢𝑖, 𝑢𝑗.

Then, similar to the procedure developed for cable-driven robots in [29], the distance
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Figure 2-2: Feasible control force and torque volume (𝒱ℱ ,𝒱ℳ) of the optimally
designed eight-rotor ODAR system in Fig. 2-1.

from the origin to this plane along its normal vector 𝑢𝑖×𝑢𝑗 can be written as: with

𝑖, 𝑗 ∈ 𝒩ℎ,

𝑑ℱ𝐹𝑖𝑗
=
∑︁
𝑘∈𝑆𝑖𝑗

2𝜆max
(𝑢𝑖 × 𝑢𝑗)𝑇𝑢𝑘
||𝑢𝑖 × 𝑢𝑗||

+
∑︁
𝑘∈𝑆𝑖𝑗

2𝜆min
(𝑢𝑖 × 𝑢𝑗)𝑇𝑢𝑘
||𝑢𝑖 × 𝑢𝑗||

where 𝑆𝑖𝑗, 𝑆𝑖𝑗 are defined by

𝑆𝑖𝑗 := {𝑘|(𝑢𝑖 × 𝑢𝑗)𝑇𝑢𝑘 ≥ 0 , 𝑘 ∈ 𝒩ℎ}, 𝑆𝑖𝑗 := 𝒩ℎ ∖ 𝑆𝑖𝑗

and the multiplication by 2 of the RHS (right hand side) in the expression of 𝑑ℱ𝐹𝑖𝑗

is from our adoption of the rotor pairs. Then, since 𝒱ℱ is convex with the origin

in its interior as stated above, and further, symmetric w.r.t. the origin due to

𝜆max = −𝜆min, we have ℱmin(𝒰) = min𝑖,𝑗∈𝒩ℎ
𝑑ℱ𝐹𝑖𝑗

, from which (2.2) follows.

Nominally, the ODAR system is aimed to be omni-directional. However, depend-

ing on task objectives or its shape, it may be more advantageous to endow it with the

ability of anisotropic force/torque generation ability so that its performance along

the more often-used attitude is enhanced while that for the less-trotted attitude re-

laxed. For instance, the bar shape of our ODAR system naturally leads to the idea

of using it more often with its pitch-yaw rotations (i.e., orientation about 𝑌 -axis or
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𝑍-axis in Fig. 2-1) instead of with its roll-rotation. In this case, it would be more

desirable to “shape” the force generation capability in such a way that the force

generation is maximized in the 𝑋𝑍-plane (i.e., sagittal plane), while relaxing along

the 𝑌 -axis expressed in {𝐵}. Note that, even so, such roll-directional operations

as screw-driver or drilling can still (and more conveniently) be achieved by simply

attaching a rotating-tool with reaction moment succumbed by the ODAR control

torque generation.

This “anisotropic shaping” of the force generation can be attained by using the

following weighted ℱ𝑊
min(𝒰) in the place of ℱmin(𝒰) in (2.2):

ℱ𝑊
min(𝒰) := min

𝑖,𝑗∈𝒩ℎ

∑︁
𝑘∈𝒩ℎ

2𝜆max
|(𝑊−1𝑢𝑖 ×𝑊−1𝑢𝑗)

𝑇𝑊−1𝑢𝑘|
||𝑊−1𝑢𝑖 ×𝑊−1𝑢𝑗||

where 𝑊 := diag[𝑊𝑥,𝑊𝑦,𝑊𝑧] is the weight matrix with 0 < 𝑊⋆ ≤ 1 (with (𝑥, 𝑦, 𝑧)

corresponding to (𝑋, 𝑌, 𝑍) of {𝐵}). Here, note that, if 𝑊⋆ < 1, 𝒱ℱ will be stretched

by 1/𝑊⋆ along that direction, thus, ℱ𝑊
min(𝒰) will be strengthened along that direction

as compared to ℱmin(𝒰), thereby, relaxing the force generation requirement along

that direction. For instance, for our bar shape ODAR, we choose 𝑊 = [1, 0.4, 1]

(see Table 1) so that the force generation requirement along the body-fixed 𝐸-axis

is relaxed, while retaining that for the 𝑋𝑍-plane. Although the ODAR system can

still operate with 𝑊 = [1, 1, 1], we however found this 𝑊 = [1, 0.4, 1] provides us

a better-tuned ODAR system for the operations with more pitch/yaw-rotations as

experimented in Sec. 2.5.2.

On the other hand, for the control torque generation optimization, similar to

(2.2), we can define the guaranteed minimum control torque for all the orientation

(generated collectively by all the rotors) s.t.,

ℳmin(𝒰 ,ℛ,𝒮) := min
𝑖,𝑗∈𝒩ℎ

∑︁
𝑘∈𝒩ℎ

2𝜆max
|(𝑡𝑖 × 𝑡𝑗)𝑇 𝑡𝑘|
||𝑡𝑖 × 𝑡𝑗||

(2.3)

or its weighted versionℳ𝑉
min(𝒰 ,ℛ,𝒮) similar to ℱ𝑊

min above with the weight matrix
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Figure 2-3: Anemometer measurement of wind velocity distribution downstream the
rotor generating thrust required for hovering with the rest pose (𝑅𝑂𝐵 = 𝐼) with the
𝑟𝑎-function also marked with interference-threshold wind speed to be 4m/s.

𝑉 := diag[𝑉𝑥, 𝑉𝑦, 𝑉𝑧] to attain the anisotropic torque generation capability. For our

design below, we choose 𝑉 = [1, 1, 1].

We can then formulate the design optimization problem as a constrained opti-

mization problem for (𝑢𝑖, 𝑟𝑖, 𝜎𝑖) s.t.,

max
ℛ,𝒮

ℳ𝑉
min(arg max

𝒰
ℱ𝑊

min(𝒰),ℛ,𝒮) (2.4)

subj. to 𝑢𝑇𝑖 𝑢𝑖 = 1, 𝑟𝑖 ∈ ℛ𝑚𝑎𝑥 (2.5)

ℱ𝑊
min(𝒰) ≥ 𝑚𝑔, 𝑑aero(𝒰 ,ℛ) ≥ 𝐷 (2.6)

where (2.5) are to constrain 𝑢𝑖 ∈ S2 and to constrain the volume of the ODAR

system; (2.6) are to ensure that the ODAR system can fly while overcoming its own

weight (with the relaxation endowed by𝑊 = [𝑊𝑥,𝑊𝑦,𝑊𝑧] as discussed above), while

reducing the inter-rotor aerodynamic interference by ensuring that the gap between

the flow stream of each rotor (i.e., 𝒞𝑎,𝑖) to other rotors (i.e., 𝑟𝑗) be larger than a

certain value 𝐷, i.e., 𝑑aero(𝒰 ,ℛ) := min𝑖,𝑗 ||𝑐𝑎,𝑖 − 𝑟𝑗|| ≥ 𝐷, 𝑐𝑎,𝑖 ∈ 𝒞𝑎,𝑖, where 𝑖, 𝑗 ∈

{1, 2, ..., 𝑛}, 𝑖 ̸= 𝑗 and 𝒞𝑎,𝑖(𝑟𝑖, 𝑅𝐵𝑈𝑖
) := {𝑐 ∈ ℜ3|𝑐 = 𝑅𝐵𝑈𝑖

𝑣+ 𝑟𝑖,
√︀
𝑣2𝑥 + 𝑣2𝑦 ≤ 𝑟𝑎(𝑣𝑧)}

is the flow stream volume of the 𝑖-th rotor, with 𝑅𝐵𝑈𝑖
∈ SO(3) being the rotation

matrix from {𝐵} to {𝑈𝑖} (see Fig. 2-1), 𝑣 := [𝑣𝑥; 𝑣𝑦; 𝑣𝑧] ∈ ℜ3 a position vector

in {𝑈𝑖}, and 𝑟𝑎 : ℜ → ℜ being the axial shape function of the aerodynamic space

also similarly used in [19]. To identify this flow-axial function 𝑟𝑎, we perform an

experiment to measure wind velocity distribution downstream the rotor generating
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Table 2.1: Design optimization parameters & optimized values

Symbols Values Units
𝑛 8 -

𝑅max 0.24 m
𝐿max 0.8 m
𝑊 diag[1, 0.4, 1] -
𝑉 diag[1, 1, 1] -
𝐷 0.12 m

ℱmin(𝒰) 2.04𝜆max N
ℱ𝑥𝑧

min(𝒰) 3.85𝜆max N
ℳmin(𝒰 ,ℛ,𝒮) 0.894𝜆max Nm
𝑑aero(𝒰 ,ℛ) 0.125 m

𝒰

𝑢1 = [0.68; 0.28; 0.68]
𝑢2 = [0.68; 0.28;−0.68]
𝑢3 = [0.68;−0.28; 0.68]
𝑢4 = [0.68;−0.28;−0.68]

-

ℛ

𝑟1 = [0.40;−0.17; 0.17]
𝑟2 = [0.40; 0.17; 0.17]
𝑟3 = [0.40;−0.17;−0.17]
𝑟4 = [0.40; 0.17;−0.17]

m

𝒯

𝑡1 = [−0.15;−0.15; 0.24]
𝑡2 = [−0.18; 0.38; 0.01]
𝑡3 = [−0.18;−0.38;−0.01]
𝑡4 = [−0.18; 0.16;−0.21]

m

𝒮 𝜎1 = +1, 𝜎2 = −1,
𝜎3 = −1, 𝜎4 = −1

-

thrust required for hovering with the rest pose (𝑅𝑂𝐵 = 𝐼). See Fig. 2-3, from

which we obtain 𝑟𝑎-function to be a tapered cylinder as marked therein. For this,

we choose the interference-threshold wind velocity to be 4 m/s (i.e., gentle breeze

according to Beaufort scale, known to be adequate for drone flying).

We solve this constrained optimization (2.4)-(2.6) and the obtained optimal

ODAR design is illustrated in Fig. 2-1 with its feasible control force and torque

volumes 𝒱ℱ and 𝒱ℳ also shown in Fig. 2-2. Since the optimization problem (2.4)-

(2.6) is non-convex and has complex form of objective and constraints, the solution
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is obtained with the grid search method. Note also from (2.4) that we first deter-

mine the thrust directions 𝑢𝑖 ∈ S2 of all the rotors, and then solve for their attaching

location 𝑟𝑖 ∈ ℜ3 and their types 𝜎𝑖 given the obtained 𝑢𝑖 ∈ S2. This sequential for-

mulation turns out to significantly speed up the solving process of the optimization

(2.4)-(2.6) while still providing an adequate design as experimentally validated in

Sec. 2.5.

Design parameters and optimized design variables are summarized in Table 2.1,

where only those of the rotors 1, 2, 3, 4 are given due to the symmetric design of the

ODAR system. For this optimization, we also assume 𝜆max = 9.7N according to the

specification of the rotors used in the implementation (see Sec. 2.5.1). With this

rotor thrust, the ODAR system can overcome its weight along the 𝑋𝑍-plane, as

the minimum guaranteed control force within this sagittal 𝑋𝑍-plane is 𝐹 𝑥𝑧
min(𝒰) =

37.35N, whereas the weight of the ODAR system is 25.48N (i.e., 2.6kg - see Sec.

2.5.1). Here, note that the omni-directionally guaranteed minimum force 𝐹min(𝒰) =

17.97N is less than the weight of the system, even if we enforce (2.6). This is because

we use the weight 𝑊 = [1, 0.4, 1] to relax the force generation along the body-fixed

𝑌 -axis as our ODAR system will be used mostly with minimal roll-rotation as stated

above and also experimentally validated in Sec. 2.5.2. With 𝑊 = [1, 1, 1], we can

ensure 𝐹min(𝒰) > 25.48N, yet, with deterioration of the force generating capability

in the sagittal plane. See Fig. 2-2 also for the feasible control force and torque

volumes 𝒱ℱ and 𝒱ℳ with the metric information endowed by 𝜆max with the omni-

directionally guaranteed minimum control torque to be 8.67Nm.

2.3 System Modeling and Control Design

2.3.1 System Modeling

With the design optimization of Sec. 2.2.2, that determines 𝑢𝑖, 𝑟𝑖, 𝜎𝑖 to guarantee

the minimum force ℱmin and torqueℳmin for any attitude, we can model the ODAR

20



system as a fully-actuated rigid body s.t.,

𝑚𝑝 = 𝑅𝑂𝐵𝐵𝑓𝜆−𝑚𝑔𝑒3 + 𝑓𝑒

𝐽�̇� + 𝜔 × 𝐽𝜔 = 𝐵𝜏𝜆+ 𝜏𝑒

(2.7)

where 𝑚 > 0 is the mass with 𝑝 ∈ ℜ3 being the center-of-mass position expressed

in {𝑂}, 𝐽 ∈ ℜ3×3 is the inertia matrix with 𝜔 ∈ ℜ3 being the angular velocity

expressed in {𝐵}, 𝑅𝑂𝐵 ∈ SO(3) is the rotation matrix from {𝑂} to {𝐵}, and 𝑔 is the

gravitational constant with 𝑒3 = [0; 0; 1]. See Fig. 2-1. Also, 𝜆 = [𝜆1;𝜆2; · · · ;𝜆𝑛] ∈

ℜ𝑛 is the collection of the thrust inputs of all rotors, and 𝐵𝑓 , 𝐵𝜏 ∈ ℜ3×𝑛 are the

mapping matrices from the thrust inputs to the control force and control torque,

with their 𝑖-th column respectively specified by

𝐵𝑖
𝑓 := 𝑢𝑖, 𝐵𝑖

𝜏 := 𝑡𝑖, 𝑖 = 1, ..., 𝑛

where 𝑢𝑖, 𝑡𝑖 ∈ ℜ3 are the one-dimensional space of the thrust and torque generation

of the 𝑖-th rotor - see Sec. 2.2.2.

For notational convenience, we define⎛⎝ 𝑓

𝜏

⎞⎠ :=

⎡⎣ 𝑅𝑂𝐵 0

0 𝐼3×3

⎤⎦⎡⎣ 𝐵𝑓

𝐵𝜏

⎤⎦𝜆 =: �̃�𝐵𝜆 (2.8)

where 𝑓, 𝜏 ∈ ℜ3 are the translation and orientation controls respectively expressed

in {𝑂} and {𝐵}, �̃� := diag[𝑅𝑂𝐵, 𝐼3×3] ∈ ℜ6×6, and 𝐵 := [𝐵𝑓 ;𝐵𝜏 ] ∈ ℜ6×𝑛 is the

mapping matrix, which is to be full row rank, as the design optimization in Sec.

2.2.2 enforces the full-actuation of the ODAR system. Thus, from now on, we

directly design (𝑓, 𝜏) for various control objectives assuming that they are arbitrarily

assignable.
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2.3.2 Pose Trajectory Tracking Control

For the pose tracking control of the ODAR system in SE(3), we design 𝑓, 𝜏 to be

proportional-integral-derivative (PID) controls in E(3) and SO(3) as follows:

𝑓 = 𝑚𝑝𝑑 − 𝑘𝑑�̇�𝑝 − 𝑘𝑝𝑒𝑝 − 𝑘𝐼
∫︁ 𝑡

0

𝑒𝑝𝑑𝑠+𝑚𝑔𝑒3

𝜏 = 𝐽�̇�′
𝑑 + 𝜔′

𝑑 × 𝐽𝜔′
𝑑 − 𝑘𝜔(𝜔 − 𝜔′

𝑑)− 𝑘𝑅𝑒𝑅 − 𝑘𝑅,𝐼𝑒𝑅,𝐼

where 𝑝𝑑(𝑡) ∈ ℜ3 and 𝑅𝑑(𝑡) ∈ SO(3) are the desired position and attitude trajectory

expressed in {𝑂}; 𝑒𝑝 := 𝑝− 𝑝𝑑 ∈ ℜ3; 𝜔𝑑 := (𝑅𝑇
𝑑 �̇�𝑑)

∨ is the desired angular velocity

expressed in 𝑅𝑑(𝑡)-frame, where (∙)∨ is the vee operator, that maps so(3) to ℜ3 [30];

𝜔′
𝑑 := 𝑅𝑇

𝑂𝐵𝑅𝑑𝜔𝑑 ∈ ℜ3 and �̇�′
𝑑 := 𝑅𝑇

𝑂𝐵𝑅𝑑�̇�𝑑 ∈ ℜ3 are the desired angular velocity and

acceleration expressed in {𝐵}; 𝑒𝑅 := 1
2
𝑘𝑅(𝑅𝑇

𝑑𝑅𝑂𝐵 − 𝑅𝑇
𝑂𝐵𝑅𝑑)

∨ ∈ ℜ3 is the attitude

error vector; 𝑒𝑅,𝐼 :=
∫︀ 𝑡

0
(𝜔−𝜔′

𝑑+𝑐2𝑒𝑅)𝑑𝑠 ∈ ℜ3 is the error integral in SO(3) following

[31] with 𝑐2 also decided as in [31]; and 𝑘𝑑, 𝑘𝑝, 𝑘𝐼 ∈ ℜ3×3, 𝑘𝜔, 𝑘𝑅, 𝑘𝑅,𝐼 ∈ ℜ are the

diagonal positive-definite and positive control gains. Here, we adopt the attitude

PID-control in SO(3) of [31] instead of that based on the Euler angle representation,

since the ODAR system is omni-directional and can assume large rotation, thus, it

is important to avoid singularity in SO(3). This pose tracking control can also be

serve as the basis for impedance control, as the ODAR system is back-drivable.

2.3.3 Hybrid Pose/Wrench Control

For a manipulation to the external environment using the ODAR system, hybrid

position/force controller is designed which enables the contact force in constrained

space and position in unconstrained space independently, while exploiting momentum-

based observer [32, 33] to estimate the external force applied to the system. Also,

as the system has back-drivable property with thrust-propelled actuators, a compli-

ance given by this property can be exploited for the interaction/compliant control

as well.
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In case of a certain kinematic constraint applied to the system, the dynamics

(2.7) can be rewritten with a combined form as

𝑀𝑞 + 𝐶(𝑞, 𝑞)𝑞 +𝐺(𝑞) + 𝐴𝑇 (𝑞)𝜆𝑐 = 𝑤 + 𝑤𝑒

𝐴(𝑞)𝑞 = 0

(2.9)

where 𝑞 := [�̇�;𝜔] ∈ ℜ6, 𝑀 := diag[𝑚𝐼3×3, 𝐽 ], 𝐶 := diag[03×3,−(𝐽𝜔)∧], (∙)∧ is a

map from ℜ3 to so(3), 𝐺(𝑞) := [𝑚𝑔𝑒3; 03×1], 𝐴(𝑞) ∈ ℜ𝑛𝑝×6 is a Pfaffian constraint

matrix, 𝑛𝑝 is the number of constraint, 𝑤 := �̃�𝐵𝜆 = [𝑓 ; 𝜏 ] is the control wrench,

𝑤𝑒 := [𝑓𝑒; 𝜏𝑒] ∈ ℜ6 is the external wrench and 𝜆𝑐 ∈ ℜ𝑛𝑝 is a lagrange multiplier that

physically means contact force for each constrained direction. Then with the new

variable 𝜑 ∈ ℜ6−𝑛𝑝 defined as 𝑞 = ∆(𝜑)�̇� where ∆(𝜑) ∈ ℜ6×(6−𝑛𝑝) is a matrix that

satisfies 𝐴(𝑞)∆(𝜑), reduced dynamics can be written as below

𝐷𝜑(𝜑)𝜑+𝑄𝜑(𝜑, �̇�)�̇�+𝐺𝜑(𝜑) = ∆𝑇𝑤 + ∆𝑇𝑤𝑒

where𝐷𝜑(𝜑) := ∆𝑇𝑀∆ ∈ ℜ(6−𝑛𝑝)×(6−𝑛𝑝), 𝑄𝜑(𝜑, �̇�) := ∆𝑇 (𝑀∆̇+𝐶∆) ∈ ℜ(6−𝑛𝑝)×(6−𝑛𝑝)

are inertia and coriolis matrix of the reduced dynamics, 𝐺𝜑(𝜑) := ∆𝑇𝐺(𝑞) ∈ ℜ6−𝑛𝑝 .

With this dynamics, a hybrid position/force controller that achieves the control

objective of 𝑒𝜑(𝑡)→ 0, 𝜆𝑐 → 𝜆𝑐,𝑑(𝑡) can be designed as following

𝑤 = 𝑀∆(𝜑)(𝜑𝑑 −𝐾𝑑�̇�𝜑 −𝐾𝑝𝑒𝜑 −𝐾𝑖𝑒𝜑,𝑖)

+[𝑀∆̇(𝜑) + 𝐶(𝑞, 𝑞)∆(𝜑)]�̇�+𝐺(𝑞)

+𝐴𝑇 (𝑞)[𝜆𝑐,𝑑 −𝐾𝑓

∫︁ 𝑡

0

(�̂�𝑐 − 𝜆𝑐,𝑑)𝑑𝑠]

where 𝜑𝑑 := Ω([𝑝𝑑; �̇�
′
𝑑]−∆̇�̇�), �̇�𝜑 := Ω[�̇�𝑥;𝜔−𝜔′

𝑑], 𝑒𝜑 := Ω[𝑒𝑥; 𝑒𝑅], 𝑒𝜑,𝑖 := Ω[
∫︀ 𝑡

0
𝑒𝑥𝑑𝑠; 𝑒𝑅,𝑖] ∈

ℜ6−𝑛𝑝 , Ω := (∆𝑇𝑀∆)−1∆𝑇𝑀 ∈ ℜ(6−𝑝)×6 is the matrix that annihilates the orthog-

onal complement of ∆(𝜑) w.r.t. 𝑀 -metric, and 𝐾𝑑, 𝐾𝑝, 𝐾𝑖 ∈ ℜ, 𝐾𝑓 ∈ ℜ𝑝×𝑝 are

the control gains. Here, for the estimate of the lagrange multiplier 𝜆𝑐, momentum-
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based observer [32, 33] is used with unconstrained dynamics considering the contact

wrench 𝐴𝑇 (𝑞)𝜆𝑐 also as an external wrench. Then, the estimate �̂�𝑐 can be obtained

by projecting the estimated external wrench to the constrained space as the equation

below.

�̂�𝑒 = 𝑘𝑒

(︂
𝑀𝑞 −

∫︁ 𝑡

0

(𝑤 − 𝐶𝑞 −𝐺+ �̂�𝑒)𝑑𝑠

)︂
�̂�𝑐 = −(𝐴𝐴𝑇 )−1𝐴�̂�𝑒

where �̂�𝑒 ∈ ℜ6 is the estimated external wrench, 𝑘𝑒 ∈ ℜ6×6 is the observer gain.

2.3.4 PSPM-Based Teleoperation

Although the motion and interaction controller in SE(3) is developed in previous

subsections, it is still challenging to conduct complex or precision-requiring tasks

(e.g., peg-in-hole) in a fully autonomous way. Therefore in this work, bilateral

teleoperation is considered for the ODAR system so that the human sensory system

can be utilized to enable tasks that are difficult with autonomous control. During

the teleoperation, the command from the operator is not guaranteed to be always

smooth, and some undesired command such as an abrupt change can even make the

system unstable. To prevent this issue, the command from operator is modulated

through the passive set-position modulation (PSPM) algorithm in [34, 35] with the

extension to be used in SE(3). By the PSPM, the set pose given by the operator

is modulated to the extent of satisfying passivity of the slave side while minimizing

the difference with the original set pose.

First of all, when the desired position 𝑥𝑑(𝑘) and attitude 𝑅𝑑(𝑘) are given by the

master device, the actuation of the slave or the ODAR system is defined as following.

𝑓 = −𝐾𝑣�̇�−𝐾𝑝(𝑝− 𝑝𝑑(𝑘))

𝜏 = −𝐾𝜔𝜔 −𝐾𝑅
𝜃𝑡𝑅

2 sin 𝜃𝑡𝑅

(︀
�̄�𝑇

𝑑 (𝑘)𝑅𝑂𝐵 −𝑅𝑇
𝑂𝐵�̄�𝑑(𝑘)

)︀∨
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where 𝐾𝑣, 𝐾𝑝, 𝐾𝜔, 𝐾𝑅 ∈ ℜ3×3 are the positive-definite diagonal gain matrices, and

𝑝𝑑(𝑘) ∈ ℜ3 is the modulated desire position from 𝑥𝑑(𝑘) obtained by PSPM. Also,

�̄�𝑑(𝑘) ∈ SO(3) is the modulated desired attitude from 𝑅𝑑(𝑘) and 𝜃𝑡𝑅 :=

cos−1 1
2

(︀
tr(�̄�𝑇

𝑑 (𝑘)𝑅𝑂𝐵)− 1
)︀
. Here, to obtain �̄�𝑑(𝑘), PSPM algorithm is extended

to be also used in SO(3).

At each time when the desired position 𝑥𝑑(𝑘) is given, modulated position 𝑝𝑑(𝑘)

is defined by

min
𝑦(𝑘)
||𝑝𝑑(𝑘)− 𝑝𝑑(𝑘)||

subj. to 𝐸𝑡(𝑘) = 𝐸𝑡(𝑘 − 1) +𝐷𝑡,min(𝑘 − 1)−∆𝑃𝑡(𝑘) ≥ 0

where 𝐸𝑡(𝑘) ≥ 0 is the virtual energy reservoir for translation; 𝐷𝑡,min(𝑘) :=

1
𝑇𝑘+1−𝑇𝑘

∑︀3
𝑖=1𝐾𝑣,𝑖

(︀
𝑝max
𝑖 (𝑘)− 𝑝min

𝑖 (𝑘)
)︀2

is the conservative approximation of dissi-

pated energy by the damping 𝐾𝑣, 𝐾𝑣,𝑖 is the 𝑖-th diagonal element of 𝐾𝑣, and

𝑝max
𝑖 (𝑘), 𝑝min

𝑖 (𝑘) are the maximum and minimum of 𝑝𝑖(𝑡) during [𝑇𝑘, 𝑇𝑘+1); and with

||𝑥||2𝐴 := 𝑥𝑇𝐴𝑥, ∆𝑃𝑡(𝑘) := 1
2
||𝑝(𝑇𝑘) − 𝑝𝑑(𝑘)||2𝐾𝑝

− 1
2
||𝑝(𝑇𝑘) − 𝑝𝑑(𝑘 − 1)||2𝐾𝑝

is the

energy jump caused by the change of set position. The optimization formulation

means that 𝑝𝑑(𝑘) is chosen to be as close as possible to 𝑝𝑑(𝑘) while satisfying the

passivity constraint.

For the modulation of the desired attitude, similar procedure is conducted by

extending the PSPM algorithm to SO(3) using the notion of SO(3) spring. When

the desired attitude 𝑅𝑑(𝑘) is given, the modulated set rotation �̄�𝑑(𝑘) is defined by

min
�̄�𝑑(𝑘)

||
(︀
log{�̄�𝑇

𝑑 (𝑘)𝑅𝑑(𝑘)}
)︀∨ ||

subj. to 𝐸𝑟(𝑘) = 𝐸𝑟(𝑘 − 1) +𝐷𝑟(𝑘 − 1)−∆𝑃𝑟(𝑘) ≥ 0

where log{𝑅} = 𝜃
2 sin 𝜃

(𝑅 − 𝑅𝑇 ) and 𝜃 = cos−1
(︁

tr(𝑅)−1
2

)︁
; 𝐸𝑟(𝑘) ≥ 0 is the virtual

energy reservoir for rotation; 𝐷𝑟(𝑘) :=
∑︀3

𝑖=1𝐾𝜔,𝑖|𝜔𝑖|2(𝑇𝑘+1 − 𝑇𝑘) is the dissipated
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energy by the damping 𝐾𝜔, 𝐾𝜔,𝑖 is the 𝑖-th diagonal element of 𝐾𝜔; and ∆𝑃𝑟(𝑘) :=

1
2
||
(︀
log{�̄�𝑇

𝑑 (𝑘)𝑅(𝑇𝑘)}
)︀∨ ||2𝐾𝑅

− 1
2
||
(︀
log{�̄�𝑇

𝑑 (𝑘 − 1)𝑅(𝑇𝑘)}
)︀∨ ||2𝐾𝑅

is the jump of SO(3)

spring energy caused by the change of set rotation. Here, to prevent the excessive

cumulation of the energy which can be a potential danger, we make 𝐸𝑡(𝑘), 𝐸𝑟(𝑘)

cannot be greater than certain limit value 𝐸max
𝑡 , 𝐸max

𝑟 by discarding the energy over

the limit.

In this work, the PSPM algorithm is applied only for the slave side of the system.

This application is sufficient for the system since: 1) we assume here that the time

delay or data loss between master and slave is almost negligible (e.g., master and

slave that located adjacently), the stability issue from the delay is not critical; 2) the

stability of the master side can still be enforced by suitable selection of the feedback

gains. Yet, in case that the delay/loss is not negligible, the PSPM can be applied for

both master and slave side, guaranteeing passivity of the closed-loop system [34].

Then from the master side, the desired position and attitude can be mapped

such as,

𝑝𝑑(𝑘) = 𝜂𝑝ℎ(𝑘) + 𝑝0

𝑅𝑑(𝑘) = 𝑅ℎ(𝑘)

where 𝜂 ∈ ℜ is the scale factor between the master device and the slave robot,

𝑝ℎ ∈ ℜ3, 𝑅ℎ ∈ SO(3) are the position and the orientation of the master device, and

𝑝0 ∈ ℜ3 is the position offset. Also, the haptic feedback for the operator is designed

to be exerted with spring-damper connection and additional force feedback as

𝑓ℎ = −𝐵ℎ,𝑡�̇�ℎ −𝐾ℎ,𝑡(𝑝𝑑 − 𝑝𝑑) +𝐾ℎ,𝑓𝑓𝑒

𝜏ℎ = −𝐵ℎ,𝑟𝜔ℎ −𝐾ℎ,𝑟

(︀
�̄�𝑇

𝑑𝑅𝑑 −𝑅𝑇
𝑑 �̄�𝑑

)︀∨
+𝐾ℎ,𝜏𝜏𝑒

where 𝐵ℎ,𝑡, 𝐾ℎ,𝑡, 𝐵ℎ,𝑟, 𝐾ℎ,𝑟, 𝐾ℎ,𝑓 , 𝐾ℎ,𝜏 ∈ ℜ3×3 are diagonal gain matrices, 𝑓ℎ, 𝜏ℎ ∈ ℜ3

are the force/torque feedback realized at the haptic device, and 𝑓𝑒, 𝜏𝑒 ∈ ℜ3 are the
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estimated or measured external force and torque applied to the system.

2.4 Control Allocation with Selective Mapping

2.4.1 Infinity-Norm Minimization

Once the desired control wrench 𝑤 := [𝑓 ; 𝜏 ] ∈ ℜ6 is calculated as stated in Sec. 2.3,

it needs to be distributed among the 𝑛-rotor commands 𝜆 = (𝜆1, 𝜆2, ..., 𝜆𝑛) ∈ ℜ𝑛 to

produce 𝑈 = 𝐵𝜆, where 𝑈 := [𝑅𝑇
𝑂𝐵𝑓 ; 𝜏 ] = �̄�−1𝑤 ∈ ℜ6 from (2.8). Here, we assume

𝑛 ≥ 8 as stated in Sec. 2.2.1, thus, the actuation redundancy should be addressed as

well. Most commonly-used method for this is to minimize the two norm of 𝜆 ∈ ℜ𝑛

i.e., 𝜆𝑜 = 𝐵†𝑈 , where 𝐵† := 𝐵𝑇 (𝐵𝐵𝑇 )−1 ∈ ℜ𝑛×6. Although also adopted in [20]

and relevant to power efficiency to some extent, this two norm optimization is not so

suitable for the ODAR system, since, with the rotor actuation margin fairly tight,

only one rotor saturation can simply result in instability and even crash, which is

not captured by the two norm optimization. To address this issue, here, we adopt

the infinity-norm optimization for (2.8), which can be written by

𝜆𝛼 := 𝐵†𝑈 +𝑁𝐵𝜉
′

𝜉′ := arg min
𝜉∈ℜ𝑛−6

||𝐵†𝑈 +𝑁𝐵𝜉||∞ (2.10)

where 𝜆𝛼 ∈ ℜ𝑛 is the thrust vector to be used, 𝑁𝐵 ∈ ℜ𝑛×(𝑛−6) is the kernel of the

mapping matrix 𝐵, and 𝜉′ ∈ ℜ𝑛−6 is the null vector component. This infinity-norm

optimization has been extensively studied for many applications (e.g., for robot

manipulators [36]), yet, is known in general not to assume a closed-form solution.

For the eight-rotor ODAR system optimally designed as shown in Fig. 2-1,

it turns out that we can attain the closed-form of the infinity-norm optimization

(2.10) with a slight modification of the design. More precisely, we change 𝜎1 in

Table 1 from 𝜎1 = 1 to 𝜎1 = −1. With this 𝜎1 = −1, we then have the same op-
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timal design of Table 1 for (2.4)-(2.6) , except 𝒯 = {𝑡1 = [−0.18;−0.16; 0.21], 𝑡2 =

[−0.18; 0.38; 0.01], 𝑡3 = [−0.18;−0.38;−0.01], 𝑡4 = [−0.18; 0.16;−0.21]}. With this

modified design, the minimum guaranteed control force remains the same (since

𝒰 is not changed), whereas the minimum guaranteed control torque is reduced

only by 3.6%. Further, the design then satisfies the following condition with 𝜈 =

[1;−1;−1; 1], which is used for the computation of a closed-form solution as sum-

marized in the next Prop. 1:

𝐵𝑓,⋆𝜈 = 0, 𝐵𝜏,⋆𝜈 = 0, 𝐵𝑓,𝑟 = 𝐵𝑓,𝑙, 𝐵𝜏,𝑟 = −𝐵𝜏,𝑙

𝜈 := [𝜈1; 𝜈2; 𝜈3; 𝜈4] , |𝜈𝑖| = 1 , 𝑖 ∈ 𝒩ℎ

(2.11)

where ⋆ ∈ {𝑟, 𝑙} (with 𝑟-side with rotors 1-4 and 𝑙-side with rotors 5-8: see Fig. 2-1)

and 𝐵 =: [𝐵𝑓,𝑟 𝐵𝑓,𝑙;𝐵𝜏,𝑟 𝐵𝜏,𝑙], 𝐵𝑓,⋆, 𝐵𝜏,⋆ ∈ ℜ3×4.

Proposition 1. Consider the mapping matrix 𝐵 ∈ ℜ6×8 of (2.8) for the ODAR

system with 𝑛 = 8. If this 𝐵-matrix satisfies the properties (2.11), the solution of

the infinity-norm optimization (2.10) is given by

𝜆𝛼 = 𝐵†𝑈 +𝑁𝐵

⎡⎣ 𝜉′𝑟

𝜉′𝑙

⎤⎦
𝜉′⋆ = −1

2
(𝜆𝜈⋆,max + 𝜆𝜈⋆,min)

(2.12)

where ⋆ ∈ {𝑟, 𝑙}, 𝜆𝜈⋆ := diag(𝜈)𝜆𝑜,⋆ ∈ ℜ4 with 𝜆𝑜 := 𝐵†𝑈 = [𝜆𝑜,𝑟;𝜆𝑜,𝑙] ∈ ℜ8; and

𝜆𝜈⋆,max, 𝜆
𝜈
⋆,min are the maximum and minimum component of 𝜆𝜈⋆.

Proof. Under the properties of (2.11), the kernel matrix of the 𝐵-matrix can be

written as:

𝑁𝐵 =

⎡⎣ 𝜈 0

0 𝜈

⎤⎦ ∈ ℜ8×2 (2.13)
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where 𝜈 = [1;−1;−1; 1] ∈ ℜ4. We can then attain, from (2.12), that:

|𝜆𝛼,⋆,𝑖| = |𝜆𝑜,⋆,𝑖 + 𝜈𝑖𝜉
′
⋆| = |𝜈𝑖𝜆𝑜,⋆,𝑖 + 𝜉′⋆| (2.14)

where ⋆ ∈ {𝑟, 𝑙}, 𝑖 ∈ 𝒩ℎ, 𝜉′⋆ ∈ ℜ, and 𝜆𝛼 =: [𝜆𝛼,𝑟;𝜆𝛼,𝑙]. Then, the infinity-norm of

𝜆𝛼,⋆ is given by

||𝜆𝛼,⋆||∞ = max(|max(𝜆𝛼,⋆)|, |min(𝜆𝛼,⋆)|)

= max(|𝜆𝜈⋆,max + 𝜉′⋆|, |𝜆𝜈⋆,min + 𝜉′⋆|)

which is minimized when 𝜉′⋆ is selected s.t.,

𝜆𝜈⋆,max + 𝜉′⋆ = −(𝜆𝜈⋆,min + 𝜉′⋆)

Finally, note that ||𝜆𝛼||∞ = max(||𝜆𝛼,𝑟||∞, ||𝜆𝛼,𝑙||∞), which is also minimized with

the above selection of 𝜉′⋆, since the kernel matrix 𝑁𝐵 has the block-diagonal structure

and 𝜉′𝑟, 𝜉
′
𝑙 only affects ||𝜆𝛼,𝑟||∞, ||𝜆𝛼,𝑙||∞, respectively.

We will use this solution of (2.12) as a basis of the control allocation for further

adjustment of 𝜆𝑖 to mitigate the issue arising from the zero-crossing of the rotor as

stated in the next Sec. 2.4.2.

2.4.2 ESC-Induced Singularity and Selective Mapping

Once we applied the allocated thrust input 𝜆𝛼 of (2.12) to the ODAR system for

the hovering, at certain attitudes, the system behavior becomes fairly shaky and,

in some cases, even goes unstable and results in crash. This we found stems from

the phenomenon that the BLDC motors of the rotors slow-down and re-rotate when

they are commanded to suddenly change their rotation direction - see Fig. 2-4,

where the rotors “hesitate” when changing their rotating directions (around 9.5sec

and 14.5sec). This hesitation is due to the lack of position sensing of the BLDC rotor

29



Figure 2-4: (Left) Plot of input PWM to the ESC and resultant force generated by
bi-directional rotor when desired direction of force is suddenly changed (around 9sec
and 14.5sec); (Right) Slicing of S2-sphere by the zero-thrust lines of the rotor pairs
of the eight-rotor ODAR system. Note that two pairs of the rotors simultaneously
become zero-thrust only at certain points on S2.

motors, that is, typical off-the-shelf drone rotor ESCs are not equipped with position

sensors (e.g., hall sensor) and instead, rely on the back-EMF (electromotive force)

to estimate the rotor position for their control, which becomes not so useful when

the rotor speed gets close to zero. Typical ESCs in fact utilize their own certain

“bootstrapping” algorithm to start rotation due to this lack of position sensing.

Even though position sensors can be embedded into the rotor BLDC motors, in this

thesis, we consider the case of the sensor-less BLDC rotors, since, to our knowledge,

all the commercially-available drone ESCs are all sensor-less, likely due to the added

complexity and cost of extra hall sensors.

Shown in Fig. 2-4 is the slicing of S2 (pitch and yaw) by the zero-thrust lines

of some rotor pairs when the eight-rotor ODAR of Fig. 2-1 stays hovering quasi-

statically while changing its attitude, where the two rotors of each pair experience

the zero thrust at the same time due to the symmetry of the ODAR design and the

hovering operation. This Fig. 2-4 then shows that the zero-crossing of some rotors is

likely inevitable for any omni-directional operation of the ODAR system, since the

system needs to sweep through arbitrarily on this S2-sphere. When the system pass

through these zero-thrust lines, some of its rotors would not be properly functioning,

possibly resulting in deterioration of the performance, loss of full-actuation on SE(3)
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and even unstable behavior as stated above. Due to this reason, given a task, we call

the zero-thrust points on SO(3) of the ODAR system as “ESC-induced singularity”.

Now, for this ESC-induced singularity, we propose a novel selective mapping

algorithm, which, by exploiting the actuation redundancy of the ODAR system, can

“propel” at least six rotors far from this singularity and map the desired control

wrench 𝑈 ∈ ℜ6 of (2.12) to these six rotors to maintain the full-actuation on SE(3),

while deactivating the control mapping to the (at most) two rotors, that are allowed

to be close to the zero-thrust point by the algorithm with some interpolation to

enhance the smoothness of this process. Here, we choose to propel only the six

rotors away from the singularity rather than all the eight rotors, since: 1) pushing all

the eight rotors away from the zero-thrust point necessitates more thrust generation

of all the rotors, which turns out too large to accommodate by our ODAR system

with its rotor thrust-generation margin already so tight; and 2) six-rotors can still

provide the full-actuation on SE(3).

More precisely, for the modified eight-rotor ODAR system as stated in Sec. 2.4.1,

we first modulate 𝜆𝛼 of (2.12) such that the thrust magnitude of at least three rotor

pairs is larger than a certain thrust margin 𝜖1 > 0 from the zero-thrust line:

𝜆𝛽 := 𝐵†𝑈 +𝑁𝐵 (𝜉′ + 𝜉′′(𝜆𝛼)) (2.15)

𝜉′′⋆ (𝜆𝛼) = arg min
𝜉′′⋆∈ℜ

|𝜉′′⋆ − 𝜉′′⋆,pre|

subj. to
4∑︁

𝑖=1

sgn (|𝜆𝑜,⋆,𝑖 + 𝜈𝑖(𝜉
′
⋆ + 𝜉′′⋆ )| − 𝜖1) ≥ 3 (2.16)

where ⋆ ∈ {𝑟, 𝑙}, 𝜉′′(𝜆𝛼) := [𝜉′′𝑟 ; 𝜉′′𝑙 ] ∈ ℜ2, 𝜉′′⋆,pre ∈ ℜ is the solution from the

previous step, and the expression (2.16) comes from the structure of (2.14) with

𝜈 = [1;−1;−1; 1]. Here, note that the modulation of 𝜉′′ is done along the column

space of the null matrix 𝑁𝐵, which has the form of (2.13) with 𝜈 = [1;−1;−1; 1] for

the modified ODAR system of Sec. 2.4.1. This then implies that the optimization of

(2.15) is always feasible, since, by increasing |𝜉′′⋆ |, we can always “propel” 𝜆𝛼,⋆ along
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Figure 2-5: (Left) Geometric structure of the 𝜆𝛽-modulation (2.15): the 𝑟-side 𝜆𝛽,𝑟 =
(𝜆𝛽,1, 𝜆𝛽,2, 𝜆𝛽,3, 𝜆𝛽,4) is propelled from the black dots along 𝜈𝑟 = [1;−1] and 𝜈𝑙 =
[−1; 1] so that only |𝜆𝛽,3| < 𝜖1 with the other three larger than 𝜖1; (Right) Thrust
thresholds 0 < 𝜖0 < 𝜖1 to gradually switch from the full-use if |𝜆𝛽,𝑗| > 𝜖1 to the
complete-disuse if |𝜆𝛽,𝑗| < 𝜖0 with a linear interpolation between them.

the lines specified by 𝜈𝑟 = [1;−1] and 𝜈𝑙 = [−1; 1] outside the set |𝜆𝛼,⋆,𝑖| < 𝜖1. See

Fig. 2-5 for an illustration of this. This optimization (2.15) can be quickly solved,

since the objective function and the constraint are all based on linear functions.

Once the 𝜆𝛽-modulation of (2.15) is performed, for each 𝑟-side and 𝑙-side of

the ODAR system, we have at most one rotor with its thrust magnitude less than

𝜖1, while the other (at least) three rotors guaranteed to be away from the zero-

thrust point farther than 𝜖1. To avoid the ESC-induced singularity, it is then better

to stop using those rotors with near-zero thrust, yet, it is not desirable either to

suddenly stop using them in view of control smoothness. For this, we define 𝜖0 with

0 < 𝜖0 < 𝜖1 to gradually switch from the full-utilization of the 𝑗-th rotor if |𝜆𝛽,𝑗| ≥ 𝜖1

to its complete-disuse if |𝜆𝛽,𝑗| < 𝜖0, with a smooth interpolation between them. See

Fig. 2-5.

For the modified eight-rotor ODAR system as stated in Sec. 2.4.1, this gradually-

switching selective mapping can be written as follows. For this, suppose first that

the 𝑗-th and 𝑘-th rotor, respectively in the 𝑟-side and the 𝑙-side of the ODAR system

in Fig. 2-1, are designated as the “near-zero” rotors via (2.15), that is, |𝜆𝛽,𝑗| < 𝜖1

and |𝜆𝛽,𝑘| < 𝜖1 with the thrust magnitude of all the other six rotors larger or equal
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to 𝜖1. Here, we allow 𝑗 = ∅ or 𝑘 = ∅. Then, we further modulate 𝜆𝛽 of (2.15) s.t.,

𝜆𝛾 := �̄�†(𝜆𝛽)𝑈 + �̄�𝐵(𝜆𝛽)(𝜉′ + 𝜉′′(𝜆𝛼)) (2.17)

with

�̄�†(𝜆𝛽) :=

⎡⎣ 𝑒𝑟𝐵
†
𝑟 + (1− 𝑒𝑟)𝐵†

𝑟∖{𝑗,𝑘}

𝑒𝑙𝐵
†
𝑙 + (1− 𝑒𝑙)𝐵†

𝑙∖{𝑗,𝑘}

⎤⎦ ∈ ℜ8×6

�̄�𝐵(𝜆𝛽) :=

⎡⎣ 𝑒𝑟𝜈 0

0 𝑒𝑙𝜈

⎤⎦ ∈ ℜ8×2

and

𝑒⋆ :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if |min

𝑖∈𝒩ℎ

(|𝜆𝛽,⋆,𝑖|)| > 𝜖1
min
𝑖∈𝒩ℎ

(|𝜆𝛽,⋆,𝑖|)−𝜖0

𝜖1−𝜖0
if 𝜖1 ≥ |min

𝑖∈𝒩ℎ

(|𝜆𝛽,⋆,𝑖|)| > 𝜖0

0 if 𝜖0 ≥ |min
𝑖∈𝒩ℎ

(|𝜆𝛽,⋆,𝑖|)|

for ⋆ ∈ {𝑟, 𝑙}, where 𝐵†
𝑟 , 𝐵

†
𝑙 ∈ ℜ4×6 are defined by [𝐵†

𝑟 ;𝐵
†
𝑙 ] := 𝐵† ∈ ℜ8×6, and

𝐵†
𝑟∖{𝑗,𝑘}, 𝐵

†
𝑙∖{𝑗,𝑘} ∈ ℜ4×6 by 𝐵†

∖{𝑗,𝑘} =:
[︁
𝐵†

𝑟∖{𝑗,𝑘};𝐵
†
𝑙∖{𝑗,𝑘}

]︁
∈ ℜ8×6 where 𝐵†

∖{𝑗,𝑘} :=

𝐼∖{𝑗,𝑘}𝐵
𝑇 (𝐵𝐼∖{𝑗,𝑘}𝐵

𝑇 )−1 is the reduced mapping matrix excluding the 𝑗-th and 𝑘-th

rotors with 𝐼∖{𝑗,𝑘} ∈ ℜ8×8 being the identity matrix with the 𝑗-th and 𝑘-th diagonal

elements set to be zero. Here, (𝐵𝐼∖{𝑗,𝑘}𝐵
𝑇 )−1 is non-singular from the structure of

𝐵𝑟, 𝐵𝑙 ∈ ℜ3×4 and 𝐵𝐵†
∖{𝑗,𝑘} = 𝐼.

When the properties of (2.11) are granted, as true for the modified eight-rotor

ODAR system explained in Sec. 2.4.1, we then have the following “decoupling”

property, i.e.,

𝐵†
𝑟∖{𝑗,𝑘} = 𝐵†

𝑟∖𝑗, 𝐵†
𝑙∖{𝑗,𝑘} = 𝐵†

𝑙∖𝑘 (2.18)
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where 𝐵†
𝑟∖𝑗, 𝐵

†
𝑙∖𝑘 ∈ ℜ4×6 are defined by

𝐵†
∖𝑗 =:

[︁
𝐵†

𝑟∖𝑗;𝐵
†
𝑙

]︁
, 𝐵†

∖𝑘 =:
[︁
𝐵†

𝑟 ;𝐵
†
𝑙∖𝑘

]︁
(2.19)

where 𝐵†
∖𝑖 := 𝐼∖𝑖𝐵

𝑇 (𝐵𝐼∖𝑖𝐵
𝑇 )−1. Here, if 𝑗 = ∅ or 𝑘 = ∅, 𝐵†

𝑟∖𝑗 = 𝐵†
𝑟 (with 𝑒𝑟 = 1) or

𝐵†
𝑙∖𝑘 = 𝐵†

𝑙 (with 𝑒𝑙 = 1). This then means that the selective mapping matrix 𝐵†
⋆∖{𝑗,𝑘}

for (2.17) can be computed for the 𝑟-side (i.e., 𝐵†
𝑟∖𝑗) and the 𝑙-side (i.e., 𝐵†

𝑙∖𝑘) as

if they are decoupled from each other. This decoupling property (2.18)-(2.19) also

turns out crucial to render the gradually-switching selective mapping (2.17) to be

exact (i.e., produce the desired control wrench 𝑈 regardless of 𝑒𝑟, 𝑒𝑙), as summarized

in the next Prop. 2.

Proposition 2. Consider the mapping matrix 𝐵 ∈ ℜ6×8 of (2.8) for the eight-rotor

ODAR system. Then, if the properties of (2.11) are satisfied:

1. The decoupling property (2.18)-(2.19) is granted; and

2. The mapping (2.17) is exact, i.e., 𝐵𝜆𝛾 = 𝑈 , ∀𝑒𝑟, 𝑒𝑙.

Proof. Write 𝐵† = [𝐵†
𝑟,𝑓 𝐵

†
𝑟,𝜏 ;𝐵†

𝑙,𝑓 𝐵
†
𝑙,𝜏 ], where 𝐵†

⋆,* ∈ ℜ4×3, ⋆ ∈ {𝑟, 𝑙} and * ∈ {𝑓, 𝜏}.

By using the Sherman-Morrison formula, 𝐵†
∖{𝑗,𝑘} in (2.18)-(2.19) can be expanded

s.t.,

𝐵†
∖{𝑗,𝑘} = 𝐼∖{𝑗,𝑘}𝐵

𝑇 (𝐵𝐼∖{𝑗,𝑘}𝐵
𝑇 )−1

= 𝐼∖{𝑗,𝑘}
(︀
𝐵† −𝐵†𝐵𝐼{𝑗,𝑘}𝑆

−1𝐼{𝑗,𝑘}𝐵
†)︀ (2.20)

where 𝐼{𝑗,𝑘} := 𝐼8×8 − 𝐼∖{𝑗,𝑘} ∈ ℜ8×8 and 𝑆 := 𝐼8×8 + 𝐼{𝑗,𝑘}𝐵
†𝐵𝐼{𝑗,𝑘}.

Here, we first show that 𝐵†𝐵 is block diagonal. For this, we write

𝐵†𝐵 =
1

2

⎡⎣ 𝐵†
⋆,𝑓𝐵𝑓,⋆ +𝐵†

⋆,𝜏𝐵𝜏,⋆ 𝐵†
⋆,𝑓𝐵𝑓,⋆ −𝐵†

⋆,𝜏𝐵𝜏,⋆

𝐵†
⋆,𝑓𝐵𝑓,⋆ −𝐵†

⋆,𝜏𝐵𝜏,⋆ 𝐵†
⋆,𝑓𝐵𝑓,⋆ +𝐵†

⋆,𝜏𝐵𝜏,⋆

⎤⎦
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due to the property of (2.11), where ⋆ ∈ {𝑟, 𝑙}. Further, since they share the same

null-vector 𝜈 ∈ ℜ4 in (2.11), we can write

𝐵𝑓,⋆ = 𝐵𝑓,⋆∖𝑎𝐿, 𝐵𝜏,⋆ = 𝐵𝜏,⋆∖𝑎𝐿

where 𝑎 ∈ 𝒩ℎ is an index s.t., 𝜈𝑎 ̸= 0, 𝐵𝑓,⋆∖𝑎, 𝐵𝜏,⋆∖𝑎 ∈ ℜ3×3 are matrices obtained

by discarding the 𝑎-th column from 𝐵𝑓,⋆, 𝐵𝜏,⋆, and 𝐿 ∈ ℜ3×4 is the constant matrix

specified by 𝜈 of (2.11). Here, since 𝐵𝑓,⋆, 𝐵𝜏,⋆ are designed to be full row-rank (i.e.,

3) for the full-actuation on SE(3), 𝐵𝑓,⋆∖𝑎 and 𝐵𝜏,⋆∖𝑎 are also full rank and invertible.

We can then obtain 𝐵†
⋆,𝑓𝐵𝑓,⋆ = 𝐵†

⋆,𝜏𝐵𝜏,⋆ = = 𝐿𝑇 (𝐿𝐿𝑇 )−1𝐿, and further

𝐵†𝐵 = diag[𝐿𝑇 (𝐿𝐿𝑇 )−1𝐿,𝐿𝑇 (𝐿𝐿𝑇 )−1𝐿]

Then, since 𝐵†𝐵 is block diagonal and also only the 𝑗-th and 𝑘-th rows of

𝐼{𝑗,𝑘}𝑆
−1𝐼{𝑗,𝑘}𝐵

† are non-zero, the upper four rows of 𝐵†
∖{𝑗,𝑘} in (2.20) are the same

as those of 𝐵†
∖𝑗, whereas its lower four rows the same as those with 𝐵†

∖𝑘. If we set

𝑘 = ∅ or 𝑗 = ∅, 𝐵†
∖{𝑗,𝑘} = 𝐵†

∖𝑗 or 𝐵†
∖{𝑗,𝑘} = 𝐵†

∖𝑘, which still retain the same structure

of 𝐵†
∖{𝑗,𝑘}. This complete the proof of the first item.

For the second item, recall that 𝐵𝐵† = 𝐵𝑟𝐵
†
𝑟 + 𝐵𝑙𝐵

†
𝑙 = 𝐼. Also, from the

decoupling property (2.18)-(2.19), we have

𝐵𝐵†
∖𝑗 = 𝐵𝑟𝐵

†
𝑟∖𝑗 +𝐵𝑙𝐵

†
𝑙 = 𝐼

where 𝐵†
∖𝑗 = 𝐼∖𝑗𝐵

𝑇 (𝐵𝐼∖𝑗𝐵
𝑇 )−1 with (𝐵𝐼∖𝑗𝐵

𝑇 )−1 being invertible from the structure

of 𝐵𝑟, 𝐵𝑙 as stated above for 𝐵†
∖{𝑗,𝑘}. This, and the similar derivation for 𝐵𝐵†

∖𝑘,

imply that

𝐵𝑟𝐵
†
𝑟 = 𝐵𝑟𝐵

†
𝑟∖𝑗, 𝐵𝑙𝐵

†
𝑙 = 𝐵𝑙𝐵

†
𝑙∖𝑘
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Figure 2-6: Selective mapping process: 𝜆𝛼,𝑖 (thrust value after infinity-norm min-
imization), 𝜆𝛽,𝑖 (thrust value after full-actuation preserving modulation) and 𝜆𝛾,𝑖
(thrust value after excluding zero-crossing rotors) during the pitching rotation mo-
tion. Only 𝜆⋆,𝑖 of the 𝑟-side rotors are shown for brevity.

with which we have

𝐵�̄�† = 𝑒𝑟𝐵𝑟𝐵
†
𝑟 + (1− 𝑒𝑟)𝐵𝑟𝐵

†
𝑟∖𝑗 + 𝑒𝑙𝐵𝑙𝐵

†
𝑙 + (1− 𝑒𝑙)𝐵𝑙𝐵

†
𝑙∖𝑘

= 𝐼 + 𝑒𝑟(𝐵𝑟𝐵
†
𝑟 −𝐵𝑟𝐵

†
𝑟∖𝑗) + 𝑒𝑙(𝐵𝑙𝐵

†
𝑙 −𝐵𝑙𝐵

†
𝑙∖𝑘) = 𝐼

completing the proof of the second item.

The infinity-norm optimization (2.12) and the selective mapping process (2.15)

and (2.17) are shown in Fig. 2-6, where 𝜆𝛼,𝑖, 𝜆𝛽,𝑖 and 𝜆𝛾,𝑖 are plotted during a

pitching rotation simulation of the modified eight-rotor ODAR system, which in

fact passes through the intersection of the two zero-thrust lines in Fig. 2-4. Only

those for the 𝑟-side rotors are shown here with that of the 𝑙-side omitted for brevity.

From Fig. 2-6, we can then see that: 1) (𝜆𝛽,1, 𝜆𝛽,3) split around 3sec and 14sec,

whereas (𝜆𝛽,2, 𝜆𝛽,4) around 8sec, preventing simultaneous zero-crossing of multiple

rotors and allowing only for one rotor thrust magnitude to be less than 𝜖1, while that

of the other three larger than 𝜖1, thereby, ensuring the full-actuation on SE(3); and
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2) through the process of (2.17), the 𝜆𝛾,𝑖 behaves around near-zero boundary more

smoothly than 𝜆𝛽,𝑖, while the rotors with near-zero thrust are gradually switched

to disuse and, when |𝜆𝛽,𝑖| < 𝜖𝑜, their thrust is set to zero according to (2.17) (e.g.,

𝜆𝛾,1 = 0 around 3sec and 16sec). See also Fig. 2-14 for the experimental result of

this selective mapping.

We also perform the simulation of hovering with the fixed 45∘ pitch angle, which

causes four rotors to be simultaneously near zero-thrust. For this, we model the

ESC-induced singularity s.t., given the command thrust 𝜆𝑑𝑖 , the real thrust output

𝜆𝑖 is given by

�̇�𝑖 =

⎧⎨⎩ 𝑘(0− 𝜆𝑖) (𝜆𝑑𝑖𝜆𝑖 < 0 and |𝜆𝑖| > 𝜖)

𝑘(𝜆𝑑𝑖 − 𝜆𝑖) (otherwise)

so that, when the rotor is commanded to reverse its rotating direction, it approaches

to zero-thrust first, then, re-accelerate after staying there for some time specified by

𝑘 > 0. We use the same parameters and control gains, yet, one with the selective

mapping while the other not. The results shown in Fig. 2-7, where we can clearly

see that, without the selective mapping, the ODAR system behavior becomes fairly

shaky with 𝜆𝑖 swaying back and forth from 𝜆𝑑𝑖 whenever it crosses zero-thrust, and,

consequently, cannot maintain the hovering, whereas, with the selective mapping, it

can attain the hovering with the full-actuation in SE(3) guaranteed while also sub-

stantially subduing the frequency of (severely performance-degrading) zero-crossing

as compared to the case of the no selective mapping.

It is yet worthwhile to mention that, even if it is exact as proved in Prop. 2

and also its efficacy manifested in Fig. 2-7, the selective mapping, in general, can

only alleviate the ESC-induced singularity, not completely eliminate it. This is

because the selective mapping formulates “dynamic” ESC-induced singularity as

“static” entities (i.e., conditions on thrust magnitude). Due to this reason, the

ODAR system should be designed in such a way that: 1) the target operations mostly
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take place as far from the ESC-induced singularity as possible; and 2) crossing zero-

thrust lines is permitted with the selective mapping, yet only in a reserved manner.

Open-loop control with a proper motion planning may also be used together with

the (closed-loop) selective mapping, although the behavior attainable by this open-

loop approach complying with the ESC-induced singularity is rather limited and its

analysis typically complicated (e.g., fast rotation quickly passing through singularity

[20]). How to incorporate the ESC-induced singularity with its full dynamics and

nonlinearity is a topic of active research by itself (i.e., control optimization with

dynamic constraint) and is a topic of our future research as well.

2.5 Experiment

2.5.1 System Setup

As stated in Sec. 2.2.2 and Sec. 2.4.1, we implement the modified eight-rotor

ODAR as shown in Fig. 2-1, whose main bar-frame is constructed by using a

commercial carbon fiber pipe with 20mm diameter and 1.5mm thickness, making

the length of the total system to be 1.2m. Eight BLDC motors (MN3508-KV700

from T-Motor) are attached to the mainframe via 3D-printed parts according to

the design optimization of Sec. 2.2.2. To achieve bi-directional rotors, we stack

two uni-directional props (each with two blades, diameter 10”, pitch 4.7”) in the

opposite direction as shown in Fig. 2-8 and drive them together by a reversible ESC

(DYS-XMS30A with BLHeli firmware). We also perform an experiment to check

the thrust generation of this bi-directional rotor and achieve the result as in Fig.

2-9, which shows that this bi-directional rotor can produce thrust about 92% of

that of the single prop, which is up to 9.7 N for both the upward and downward

directions. To provide enough current all to the eight rotors, we adopt a 4-cell Li-

Po battery (14.8V, 4000mAh, 45C) along with SBEC (switching battery eliminator

circuit) to power up other modules (e.g., computing, communication, etc.) with 5V.
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Figure 2-7: Simulation of the ODAR system hovering with fixed pitch angle 45∘

without the selective mapping (top) and with the selective mapping (bottom).
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Figure 2-8: Prototype of the eight-rotor ODAR system and description of each
component

Figure 2-9: Thrust generation of rotor with one single uni-directional prop (dashed
line) and with two uni-directional props stacked in opposite direction (solid line).
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For the computing, an MCU (micro controller unit) board equipped with Cortex-M4

CPU (STM32F429IG from STMicroelectronics) is used. The central vacancy of the

mainframe contains these battery, MCU and other modules to make the geometric

center coincident to the mass center as close as possible. With all these, the final

ODAR system is achieved as shown in Fig. 2-1 with the weight of 2.6kg. See also

Sec. 2.2.2 for the other system specifications.

The MCU board then receives the pose data from a motion capture system (VI-

CON Bonita-B3) via Wi-Fi (2.4GHz) with 125Hz, which is fused with the gyroscope

measurement of an IMU sensor (MPU-9250) with 200 Hz via I2C to obtain the at-

titude of the ODAR system through the SO(3) nonlinear complementary filter [37].

The desired pose for the control is computed in the MCU board, or, in the case of

teleoperation, received from a 6-DOF haptic device (Phantom Premium 6DOF) via

Wi-Fi with 125Hz. External wrench is estimated with the wrench estimator [38]

and also measured with a 6-axis F/T sensor (RFT40-SA01, Robotous) as ground

truth for the hybrid pose/wrench control. For teleoperation, we use the F/T sensor

to avoid the implementation issue of communication (i.e., sending estimated wrench

from MCU to the master device significantly slows down Wi-Fi from MOCAP to

MCU as well). With all the information as stated above, the MCU board calculates

the desired control wrench (𝑓, 𝜏) as stated in Sec. 2.3 and allocates it to the eight

rotors via the infinity-norm optimization (Sec. 2.4.1) modulated by the selective

mapping (Sec. 2.4.2) with 1kHz, which is then converted to PWM (pulse width

modulation) signal and sent to each reversible ESC.

2.5.2 Experiment Results

Using the ODAR system constructed as in Sec. 2.5.1, we conduct the validating

experiments of the three control laws of Sec. 2.3: 1) pose trajectory tracking; 2)

hybrid pose/wrench control; and 3) PSPM-based peg-in-hole teleoperation. We also

perform an experiment to show the efficacy of the selective mapping of Sec. 2.4.2
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for the pitching rotation with four rotors experiencing the ESC-induced singularity.

Due to the page limit, here, we only present the (partial) results of the experi-

ments mentioned above, compressively showing the indispensable results to explain

the contributed works. We then refer readers to the accompanied video for full

experimental results1 including results of pose trajectory tracking, hybrid control

and peg-in-hole teleoperation with other attitude to thoroughly demonstrate the

performance of the system.

First of all, motion control in SE(3) designed in Sec. 2.3.2 is evaluated by circular

trajectory tracking with horizontal/vertical (pitch angle 0∘ and 90∘) attitude. A

trajectory of a circle with 1.0 m diameter is given and the system is required to track

the trajectory with its center of mass and rotate with 36∘/s maintaining the attitude

to be [𝜙𝑑; 𝜃𝑑;𝜓𝑑] = [0; 0; 0] [deg] and [𝜙𝑑; 𝜃𝑑;𝜓𝑑] = [0; 90; 0] [deg] where 𝜙𝑑, 𝜃𝑑, 𝜓𝑑 are

desired roll, pitch, and yaw angle in {𝑂}. The results of the experiment are shown in

Fig. 2-10. The RMS error with horizontal attitude is 6.69 cm, 3.04∘ for position and

attitude respectively, and 5.83 cm, 2.03∘ with vertical attitude. The results show

that the position and attitude of the ODAR system can be controlled simultaneously

with small enough error using full-DOF actuation.

Then, the results of the hybrid pose/wrench control are shown in Fig. 2-11,

where the modified eight-rotor ODAR system tracks the circular trajectory of 60cm

diameter with the angle-sweeping rate of 9∘/s, while maintaining the vertical attitude

and pushing down the horizontal board with 10N. The RMS errors of the position,

angle and force tracking are obtained to be 3.04cm, 1.01∘ and 0.82N. For this, we can

clearly see that the ODAR system is fully-actuated on SE(3). We also find that the

system can fairly stably interact with the board even with substantial ground-flow

effect, which we believe is due to its bar-shape.

For more accurate assessment of the wrench control performance in constrained

space designed in Sec. 2.3.3, supplementary experiments are done along with force/-

torque measurement. First, an experiment of checking the external wrench estimator

1Also, available at https://youtu.be/S3i9NspWtr0.
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Figure 2-10: Circular trajectory tracking: position and attitude error while main-
taining the attitude to be (1st & 2nd) [𝜙𝑑; 𝜃𝑑;𝜓𝑑] = [0; 0; 0] [deg], and (3rd & 4th)
[𝜙𝑑; 𝜃𝑑;𝜓𝑑] = [0; 90; 0] [deg] in euler angles.
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Figure 2-11: Hybrid pose/wrench control: pose tracking error and contact force reg-
ulation performance (𝑓𝑒,𝑧, 𝑓𝑑,𝑧: measured and desired applying force in 𝑧-direction)
while drawing the circle on the horizontal plane.
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Figure 2-12: (Top) Estimated, desired and measured contact force (�̂�𝑐, 𝜆𝑐,𝑑, 𝜆𝑐)
during the downward pushing on the ground; (Bottom) Measured contact force
while strongly pushing down with vertical attitude.

and wrench control is done. In the experiment, the system is required to push down-

ward on the F/T sensor with vertical attitude ([𝜙𝑑; 𝜃𝑑;𝜓𝑑] = [0; 90; 0] [deg]) while

controlling the contact wrench so that the wrench can be measured and compared

with the desired, estimated one. As you can see from the plot in the top of the

Fig. 2-12, the desired, estimated and measured contact force are almost coinciding

within the force range of 5 N to 40 N. Though, there exists a slight error when the

contact force is far from the 25 N which is the weight of the system itself, and this

error is supposed to be caused by the model uncertainty of the actuator. Also, the

similar experiment is done again to check the manipulation capability of the ODAR

system, by strongly pushing down on the F/T sensor with vertical attitude. The

result of sensor measurement is demonstrated in the bottom of Fig. 2-12, and the

system turned out to be able to push down upto 64 N (39 N excluding weight of the

system) which is large enough manipulation force much larger than its own weight,

impossible for common uni-directional rotor-based aerial manipulation systems.

The results of the PSPM-based peg-in-hole teleoperation are shown in Fig. 2-13,

where the ODAR system is teleoperated by a human user in such a way that the
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end of its carbon-fiber tube with the diameter of 20mm is inserted into a 3D-printed

hole of the diameter of 21mm. This level of task precision (i.e., radial tolerance

of 0.5mm) is by far beyond the achievable by some fully autonomous control as

demonstrated in the above hybrid control experiment (i.e., RMS positioning error of

3.04cm). This we believe is because the system dynamics with rotor aerodynamics,

fluid-structure interaction, motor dynamics, unmodeled structural dynamics, etc.

is too complicated to be modeled in a mathematically tractable way. Even so,

with the teleoperation, the human user can succeed this precision peg-in-hole task

from the first contact (around 22sec) to its full insertion (around 36sec). This

we believe is because human users somehow can “learn” those complicated physics

and incorporate that into their commanding strategy to properly react to those

complicated physics of the system, thereby, successfully guiding its dynamics into

the peg-in-hole completion. For this, we also find the 3D visual information and the

force feedback are imperative, without which the human users find it very difficult

to achieve this task.

The last experiment is to show the efficacy of the selective mapping in Sec.

2.4.2 to subdue the instability stemming from the ESC-induced singularity. For

this, the ODAR system is controlled to rotate from 90∘ pitch angle (i.e., vertical

posture) to 0∘ pitch angle (i.e., horizontal posture), while maintaining its center-of-

mass position and other attitude angles stationary, inducing the zero-thrust crossing

of four rotors at the same time as shown in Fig. 2-4. The experiment results in

Fig. 2-14 show that: 1) without the selective mapping, the behavior of the ODAR

systems becomes so shaky (e.g., wobbling around 17sec and 21sec), resulting in the

failure of the pitching rotation experiment (eventually unstable crash if not stopped

by hands); and 2) with the selective mapping, this shaky and unstable behavior

is successfully subdued and the ODAR system can finish the vertical-to-horizontal

pitching rotation.
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Figure 2-13: Peg-in-hole teleoperation: (Top) system position 𝑥 and human com-
mand 𝑥𝑑; (Bottom) measured external force 𝑓𝑒 and haptic force feedback 𝑓ℎ.
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Figure 2-14: Pitching-rotation with the center-of-mass position and other attitudes
hold: without selective mapping (top two plots) and with selective mapping (bottom
two plots).
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2.6 Conclusion

In this chapter, we propose a new aerial manipulation platform, ODAR (omni-

directional aerial robot), which can produce omni-directional motion and wrench

(i.e., full-actuation in SE(3)). To address the tight thrust margin and weight budget

of current motor and battery technologies, we present a design optimization frame-

work, which incorporate such important aspects as inter-rotor aero-interference,

anisotropic task requirement, etc. Closed-form infinity-norm optimal control al-

location and selective mapping algorithm are also proposed to address the tight

thrust saturation margin and the ESC-induced singularity of sensor-less BLDC ro-

tors. With all these, the ODAR system exhibits the following unprecedented level of

performance and capability: 1) separate position and orientation control on SE(3);

2) hybrid pose/wrench control with downward force of 60N much larger than its own

weight (2.6kg); and 3) peg-in-hole force feedback teleoperation with radial tolerance

of 0.5mm.
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Chapter 3

Pose and Posture Estimation of an

Aerial Skeleton System

3.1 Introduction

In this chapter, we consider the onboard pose and posture estimation problem of

the LASDRA system [3, 4] particularly for its outdoor flying (see Fig. 3-1). This

problem is challenging for the following reason. First, to maximize system dexterity,

the LASDRA system connects two links via a cable. This then allows for full 3-DOF

inter-link rotation, which is difficult to measure by (accurate, yet, axis-demanding)

encoders, and instead, IMUs (inertial measurement units) are more suitable (or of-

ten only viable) option for that as so for our LASDRA system. This IMU however

exhibits non-negligible (yet, still bounded) link absolute attitude estimation error,

which can be accumulated to a rather very large link position estimation error as

propagated toward the end of the aerial skeleton system. This can pose a serious

problem, since, e.g., if the skeleton is supposed to fly with a certain posture, this de-

sired behavior essentially needs to be decoded into the position and attitude controls

of each link, and, with the (accumulated) link position estimation error becoming

very large (e.g., skeleton with large number of links), the link position control can
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Figure 3-1: Aerial skeleton system: three link LASDRA system for outdoor flying.
Also shown are the inertial and link coordinate frames, {𝑂} := {𝑋𝑂, 𝑌 𝑂, 𝑍𝑂},
{𝐿𝑖} := {𝑋𝐿𝑖 , 𝑌 𝐿𝑖 , 𝑍𝐿𝑖}.

be excessively erroneous, which may contradict/conflict with the attitude/position

control of its own or other neighboring links and possibly result in collapsing and

falling-down of the skeleton (with excessive internal force at some joints) particularly

with the typical rotors prone to saturate. We may attach a GPS (global positioning

system) module on each link to correct its position estimation error, which is still

not so promising either, since the accuracy of typical GPS is too poor (i.e., meter-

level accuracy) to reclaim the kinematic coherency of the aerial skeleton system as

stated above.

To overcome this challenge, in this thesis, we propose a novel pose and posture

estimation framework for the aerial skeleton system based on IMU and GPS sen-

sors for its outdoor flying. More precisely, we attach an IMU sensor and a GPS

module on each link and estimate their state via standard SE(3)-motion EKF (ex-

tended Kalman filtering) [39], [40]. We choose this (distributed) sensor configuration

to render the skeleton system “modular” while also significantly enhancing position

sensing accuracy with redundant/independent GPS sensors (via the constraints - see

Sec. 3.5). We then apply the kinematic constraints of the aerial skeleton system (i.e.,

point-constraint between two links via the cable) to these EKF-estimates of all the
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links to enforce the kinematic coherency and, consequently, (significantly) improve

the estimation accuracy. For this, we adopt the framework of smoothly constrained

Kalman filtering (SCKF) [14], where nonlinear constraint is linearized and applied

repeatedly as measurement updates with some artificial noise. We choose SCKF

here is because it is known of its superior performance of constraint error conver-

gence as compared to other constrained KF techniques (see [41]), which is crucial for

this thesis as it can directly translate to the performance of enforcing the kinematic

coherency of the skeleton system. We also extend the standard SCKF in this thesis

to incorporate the multi-dimensional kinematic constraints, error-state formulation

and some suitable manifold structure common in SE(3)-motion estimation. We fur-

ther devise a scalable semi-distributed version of the estimation algorithm, which

can substantially speed up the computation speed by dividing the skeleton into sev-

eral groups, locally-performing full-SCKF for each group, and globally-performing

partial-SCKF among the groups. The presented estimation frameworks are then

verified with real outdoor flying experiments and simulation studies of our LAS-

DRA system. To our knowledge, we presents the very first result on the onboard

estimation framework of the aerial skeleton system and its real outdoor flying demon-

stration.

3.2 Preliminary

A general aerial skeleton system can be modelled with Newton-Euler dynamics as

following,

𝑚𝑖𝑝𝑖 +𝑚𝑖𝑔𝑒3 = 𝑅𝑖𝑢𝑖 +𝑅𝑖𝑓𝑖 −𝑅𝑖+1𝑓𝑖+1

𝐽𝑖�̇�𝑖 + 𝑆(𝜔𝑖)𝐽𝑖𝜔𝑖 = 𝜏𝑖 + 𝑆(𝑟𝑐𝑖,𝑖)𝑓𝑖 − 𝑆(𝑟𝑐𝑖,𝑖+1)𝑅𝑖+1𝑓𝑖+1

where 𝑚𝑖 ∈ ℜ, 𝐽𝑖 ∈ ℜ3×3 are the mass and inertia matrix of 𝑖-th link, 𝑝𝑖, 𝜔𝑖 ∈ ℜ3

are the position and angular velocity vector of 𝑖-th link expressed in inertial frame
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{𝑂} and link frame {𝐿𝑖} respectively (see Fig. 3-1 for the definition of frames),

𝑅𝑖 ∈ SO(3) is the rotation matrix of 𝑖-th link, 𝑢𝑖, 𝜏𝑖 ∈ ℜ3 are force and torque

input applied to 𝑖-th link in {𝐿𝑖}, 𝑓𝑖, 𝑓𝑖+1 ∈ ℜ3 are the force applied at left and

right side joint of the 𝑖-th link (here, right side means positive 𝑥 direction in link

frame {𝐿𝑖}), 𝑔 ∈ ℜ is the gravitational constant with 𝑒3 := [0; 0; 1], and 𝑆(⋆) is the

skew-symmetric matrix mapping.

In this thesis, the LASDRA system [3] is exploited as an aerial skeleton, each

link module of which is comprised of ODAR [26], [28] system. Each link modules

can generate omni-directional force and torque with the non-aligned bi-directional

rotors, and IMU, GPS modules are attached on the center of each link for the pose

estimation of the system. The link modules of the system are connected each other

using compliant cable, enabling to be acting as a 3DOF joint with wide range of

motion. As the system has fully-actuated link modules, various control methods

are available and one of the possible controller would be a decentralized impedance

controller [3] as following

𝑢𝑖 = 𝑅𝑇
𝑖 (𝑚𝑖𝑔𝑒3 +𝑚𝑖𝑝𝑖,𝑑 + 𝑘𝑑�̇�𝑝,𝑖 + 𝑘𝑝𝑒𝑝,𝑖) (3.1)

𝜏𝑖 = 𝑆(𝜔𝑖)𝐽𝑖𝜔𝑖 − 𝑘𝑅𝑒𝑅,𝑖 − 𝑘𝜔𝑒𝜔,𝑖 − 𝑘𝐼𝑒𝐼,𝑖

− 𝐽𝑖(𝑆(𝜔𝑖)𝑅𝑖,𝑑𝜔𝑖,𝑑 −𝑅𝑖,𝑑�̇�𝑖,𝑑)

where 𝑝𝑖,𝑑, 𝜔𝑖,𝑑, �̇�𝑖,𝑑 ∈ ℜ3 are desired acceleration, angular velocity and angular ac-

celeration, 𝑒𝑝,𝑖 := 𝑝𝑖 − 𝑝𝑖,𝑑 ∈ ℜ3,�̇�𝑝,𝑖 := �̇�𝑖 − �̇�𝑖,𝑑 ∈ ℜ3 are position and velocity error,

𝑒𝑅,𝑖 := (𝑅𝑇
𝑖,𝑑𝑅𝑖−𝑅𝑇

𝑖 𝑅𝑖,𝑑)
∨ ∈ ℜ3, 𝑒𝜔,𝑖 := 𝜔𝑖−𝑅𝑇

𝑖 𝑅𝑖,𝑑𝜔𝑖,𝑑 ∈ ℜ3, 𝑒𝐼,𝑖 :=
∫︀
𝑒𝜔,𝑖+𝛾𝐼𝑒𝑅,𝑖𝑑𝑡 ∈

ℜ3 are rotation, angular velocity and integral error, (⋆)∨ is the mapping from skew-

symmetric matrix to a vector, and 𝑘𝑑, 𝑘𝑝, 𝑘𝑅, 𝑘𝜔, 𝑘𝐼 , 𝛾𝐼 ∈ ℜ are control gains. Here,

notice that the position estimation is taking an important role for the control, which

also leads to the motivation of the estimation framework in this work. Also, the con-

troller provides an error-tolerant property, since it is an impedance control having

some extent of compliancy.
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3.3 Pose and Posture Estimation

3.3.1 Estimation Algorithm via SCKF

For the state estimation of the f-LASDRA system, in this thesis, the SCKF algorithm

in [14] is modified and extended to be used for multi dimensional constraint, and

the constraint is applied using error-state kinematics to deal with quaternion states.

The developed pose estimation algorithm is composed of two steps, a standard EKF

and constraint application step, and both steps are described respectively in the

following paragraphs.

Extended Kalman Filter

In the standard EKF step, the EKF state and covariance is updated with the mea-

surement which can be expressed as

�̂�𝐸𝑖,𝑘, 𝑃
𝐸
𝑖,𝑘 ← EKF(�̂�𝐸𝑖,𝑘−1, 𝑃

𝐸
𝑖,𝑘−1, 𝑦𝑖,𝑘) (3.2)

where we denote that the subscript 𝑖 ∈ {1, ..., 𝑛} is the link index, 𝑘 is the step

number of the filter, �̂�𝑖,𝑘 ∈ ℜ10 is the estimate of the state defined as

𝑥𝑖,𝑘 := [𝑝𝑖,𝑘; 𝑣𝑖,𝑘; 𝑞𝑖,𝑘] ∈ ℜ10

where 𝑝𝑖,𝑘, 𝑣𝑖,𝑘, 𝑞𝑖,𝑘 ∈ ℜ3 are position, velocity and quaternion vector, and the su-

perscript 𝐸 means the variable resulting from the EKF. Also, 𝑃𝑖,𝑘 ∈ ℜ9×9 is the

covariance matrix of �̃�𝑖,𝑘, where �̃�𝑖,𝑘 := [𝑝𝑖,𝑘; 𝑣𝑖,𝑘; 𝛿𝜃𝑖,𝑘] ∈ ℜ9 is the error state for the

EKF [39], [42], and 𝑝𝑖,𝑘 := 𝑝𝑖,𝑘 − 𝑝𝑖,𝑘, 𝑣𝑖,𝑘 := 𝑣𝑖,𝑘 − 𝑣𝑖,𝑘, and 𝛿𝜃𝑖,𝑘 ∈ ℜ3 is the attitude

error represented with angle vector which has relation of 𝑞𝑖,𝑘 ⊗ 𝑞−1
𝑖,𝑘 ≃ [1; 1

2
𝛿𝜃𝑖,𝑘], ⊗

is a quaternion multiplication operator, and 𝑦𝑖,𝑘 is the measurement (e.g., GPS and

IMU). Although there can be more state variables for the EKF state in (3.2) such

as sensor biases, magnetic field vector, and so on, here we only consider position,
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velocity, and quaternion vectors as those are the variables to be updated by the

constraint applying process.

Constraint Application

In this step, the estimate result of EKF and the constraint information is used to

obtain the estimation result coherent with the kinematic constraint given by the

system configuration. The constraint application process can be described with

pseudo-code as following where

Algorithm 1: Constraint application process

𝑗 ← 0, x̂𝐶
𝑘,𝑗 ← x̂𝐸

𝑘 , P
𝐶
𝑘,𝑗 ← P𝐸

𝑘

while ||c𝑘,𝑗(x̃𝐶
𝑘,𝑗)||2 > 𝜖 do

(x̂𝐶
𝑘,𝑗+1,P

𝐶
𝑘,𝑗+1)← CA(x̂𝐶

𝑘,𝑗,P
𝐶
𝑘,𝑗, c𝑘,𝑗(x̂

𝐶
𝑘,𝑗))

𝑗 ← 𝑗 + 1

x̂𝑘 := [�̂�1,𝑘; �̂�2,𝑘; · · · ; �̂�𝑛,𝑘] ∈ ℜ10𝑛

is the stacked vector, 𝑛 is the number of links of the system, P𝑘 ∈ ℜ9𝑛×9𝑛 is the

stacked block diagonal matrix of covariance matrices 𝑃𝑖,𝑘, c𝑘(x̂𝐸
𝑘 ) ∈ ℜ6(𝑛−1) is the

constraint error with the state estimate x̂𝐸
𝑘 , CA() is the abbreviation of “Constraint

Apply”, the superscript 𝐶 means the state and covariance resulting from the con-

straint application process, and the subscript 𝑗 is the step index that is initialized

with 0 and added 1 after every loop. For the aerial skeleton system, the constraint

error c𝑘(x̂𝑘) is defined as

c𝑘(x̂𝑘) = [𝑐1,𝑘; 𝑐2,𝑘; · · · ; 𝑐𝑛−1,𝑘] (3.3)
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where the element 𝑐𝑖,𝑘 is meaning the difference of position and velocity estimate at

the point of joint between 𝑖-th and (𝑖+ 1)-th links, and can be expressed as

𝑐𝑖,𝑘(�̂�𝑖,𝑘, �̂�𝑖+1,𝑘) =

⎡⎣ 𝑝𝑖,𝑘 + �̂�𝑖,𝑘𝑑𝑖

𝑣𝑖,𝑘 + �̂�𝑖,𝑘𝑆(�̂�𝑖,𝑘)𝑑𝑖

⎤⎦−
⎡⎣ 𝑝𝑖+1,𝑘 − �̂�𝑖+1,𝑘𝑑𝑖+1

𝑣𝑖+1,𝑘 − �̂�𝑖+1,𝑘𝑆(�̂�𝑖+1,𝑘)𝑑𝑖+1

⎤⎦
where 𝑖 ∈ {1, ..., 𝑛−1}, 𝑝𝑖,𝑘, 𝑣𝑖,𝑘, �̂�𝑖,𝑘 ∈ ℜ3 are position, velocity, and angular velocity

estimate of 𝑖-th link at 𝑘-th step, �̂�𝑖,𝑘 ∈ SO(3) is the rotation matrix estimate, and

𝑑𝑖 ∈ ℜ3 is the position vector from the 𝑖-th link center of mass to the right side

joint. With an assumption of the symmetry of each link, the position vector to the

left side joint can also be denoted as −𝑑𝑖.

For the constraint application process, we also exploit the error state and error

covariance as in usual EKF algorithms. The main advantage of using the error state

in this work is the simple calculation of the constraint Jacobian which is described

below the (3.4). By subtracting c𝑘(x̂𝑘) to the constraint error with nominal state

c𝑘(x𝑘), and with the small angle approximation of 𝛿𝜃𝑖,𝑘, the constraint equation can

be expressed with the error state as following,

c̃𝑘(x̃𝑘) = [𝑐1,𝑘; 𝑐2,𝑘; · · · ; 𝑐𝑛−1,𝑘] (3.4)

dimension of which is c̃𝑘(x̃𝑘) ∈ ℜ6(𝑛−1) and the each element 𝑐𝑖,𝑘 is defined as

𝑐𝑖,𝑘(�̃�𝑖,𝑘, �̃�𝑖+1,𝑘) =

⎡⎣ 𝑝𝑖,𝑘 − 𝑆(�̂�𝑖,𝑘𝑑𝑖)𝛿𝜃𝑖,𝑘

𝑣𝑖,𝑘 − 𝑆(�̂�𝑖,𝑘𝑆(�̂�𝑖,𝑘)𝑑𝑖)𝛿𝜃𝑖,𝑘

⎤⎦−
⎡⎣ 𝑝𝑖+1,𝑘 + 𝑆(�̂�𝑖+1,𝑘𝑑𝑖+1)𝛿𝜃𝑖+1,𝑘

𝑣𝑖+1,𝑘 + 𝑆(�̂�𝑖+1,𝑘𝑆(�̂�𝑖+1,𝑘)𝑑𝑖+1)𝛿𝜃𝑖+1,𝑘

⎤⎦
where 𝑖 ∈ {1, ..., 𝑛 − 1}, x̃𝑘 := [�̃�1,𝑘; �̃�2,𝑘; · · · ; �̃�𝑛,𝑘] ∈ ℜ9𝑛 is the stacked error state
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vector, and it can be expressed again as 𝜕c̃𝑘
𝜕x̃𝑘
· x̃𝑘 = 0. Here, we define the constraint

Jacobian C̃𝑘(x̂𝑘) := 𝜕c̃𝑘
𝜕x̃𝑘
∈ ℜ6(𝑛−1)×9𝑛 which can be easily obtained as the c̃𝑘 has a

form of analytic product with the error states.

We can now describe the function “ConstraintApply()” in the pseudo-code as

following equations.

P𝑤
𝑘,𝑗 = 𝛼𝑒−𝑗C̃𝑘,𝑗P

𝐸
𝑘 C̃

𝑇
𝑘,𝑗

K𝑘,𝑗 = P𝐶
𝑘,𝑗C̃

𝑇
𝑘,𝑗(C̃𝑘,𝑗P

𝐶
𝑘,𝑗C̃

𝑇
𝑘,𝑗 + P𝑤

𝑘,𝑗)
−1

x̃𝐶
𝑘,𝑗+1 = −K𝑘,𝑗c𝑘,𝑗(x̂

𝐶
𝑘,𝑗)

P𝐶
𝑘,𝑗+1 = (I−K𝑘,𝑗C̃𝑘,𝑗)P

𝐶
𝑘,𝑗(I−K𝑘,𝑗C̃𝑘,𝑗)

𝑇

+ K𝑘,𝑗P
𝑤
𝑘,𝑗K

𝑇
𝑘,𝑗

where P𝑤
𝑘,𝑗 ∈ ℜ6(𝑛−1)×6(𝑛−1) is the weakening covariance, an artificial noise for the

constraint application that designed to decrease exponentially as the loop goes on,

K𝑘,𝑗 ∈ ℜ9𝑛×6(𝑛−1) is the kalman gain, C̃𝑘,𝑗 := C̃𝑘(x̂𝑘,𝑗), 𝛼 is a constant parameter

which is set to be 0.01 as in [14]. Then the error state is update by the product of

kalman gain and the constraint error, and the covariance matrix is also updated to

be used for the next loop. Then, the state x̂𝑘,𝑗 is updated with the error state as

𝑝𝐶𝑖,𝑘,𝑗+1 = 𝑝𝐶𝑖,𝑘,𝑗 + 𝑝𝐶𝑖,𝑘,𝑗+1

𝑣𝐶𝑖,𝑘,𝑗+1 = 𝑣𝐶𝑖,𝑘,𝑗 + 𝑣𝐶𝑖,𝑘,𝑗+1

𝑞𝐶𝑖,𝑘,𝑗+1 = 𝑞𝐶𝑖,𝑘,𝑗 ⊗ 𝛿𝑞𝑖,𝑘,𝑗+1

where 𝛿𝑞𝑖,𝑘,𝑗+1 ≃ [1; 1
2
𝛿𝜃𝑖,𝑘,𝑗+1] is a quaternion error vector and normalized be-

fore the multiplication. The loop is continued while the constraint error satisfies

||c𝑘,𝑗(x̃𝐶
𝑘,𝑗)||2 < 𝜖 where 𝜖 is a small enough number. After the termination of the

constraint application loop (suppose that 𝑗 = 𝑡), the resultant state estimate x̂𝐶
𝑘,𝑡

can be exploited as the final pose estimation x̂𝑘 used for the control.
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Figure 3-2: Illustrative figure of the notations for the semi-distributed version algo-
rithm.

In this work, the result of constraint application is not fed back to the next

step EKF state again, since with the original algorithm: 1) when the measurement

data has large deviation from the constraint, measurement update and the con-

straint application process can conflict each other causing state updates with large

magnitude and also can harm the stability of the estimation; 2) there exists an im-

plementation issue that the EKF and constraint application for multiple links need

to be synchronized at every time step, and it is not simply applicable for the sys-

tem with distributed computing modules as the case of our system. Our estimation

algorithm, then can be also interpreted as a projection of the EKF estimate result

to the constraint using nonlinear constrained optimization problem similar to [43],

where the constraint in this work is coming from the 3DOF joints of the system.

The main difference of our proposed algorithm from the work in [43] is the concept

of weakening covariance from SCKF, which enables systematically considering the

linearization error by applying a vanishing artificial noise.

3.3.2 Semi-Distributed Version of Algorithm

In this work, a semi-distributed version of the algorithm in Sec. 3.3.1 is also pre-

sented to deal with the scalability issue when the number links is extremely large.

In the semi-distributed algorithm, the entire links of the system are divided into

several groups which contains some number of links where the number depends on
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the computing performance of the on-board PC used for the system. Then, the con-

straint application process is performed for each group of links and the kinematic

constraint can be obeyed at least among the links in a same group. To describe the

proposed estimation scheme, let us define some notations (also refer to Fig. 3-2).

First of all, each group of links are defined as a set and the 𝛾-th group can be writ-

ten as G𝛾 = GΓ(𝑖) = {𝑙Γ(𝑖), · · · , 𝑖, 𝑖+ 1, · · · , 𝑟Γ(𝑖)} where 𝛾 is the index of the group

increasing through the positive 𝑥 direction in frame {𝐿𝑖} of each link, Γ(𝑖) is the

index of the group that contains the 𝑖-th link, 𝑙Γ(𝑖), 𝑟Γ(𝑖) are the indices of the most

left and the most right link of the 𝛾-th group which contains 𝑖-th link, the number

of elements in the set G𝛾 is denoted as |G𝛾| := 𝑛𝛾, and the number of the groups

in the entire system is denoted as 𝑠.

Then, the semi-distributed pose estimation algorithm, as a substitute for the

constraint application process in Sec. 3.3.1, can be divided into local and global

estimation steps, each will be explained in the paragraphs below.

Local Constraint Application

The local constraint application step shares the same function “CA()” in Algorithm

1, whereas the input for the function is changed as in Algorithm 2, where 𝛾 =

Algorithm 2: Local constraint application process

foreach 𝛾 ∈ {1, · · · , 𝑠} do
𝑗 ← 0, x̂𝐶

G𝛾 ,𝑘,𝑗
← x̂𝐸

G𝛾 ,𝑘
, P𝐶

G𝛾 ,𝑘,𝑗
← P𝐸

G𝛾 ,𝑘

while ||cG𝛾 ,𝑘,𝑗(x̃
𝐶
G𝛾 ,𝑘,𝑗

)||2 > 𝜖 do

(x̂𝐶
G𝛾 ,𝑘,𝑗+1,P

𝐶
G𝛾 ,𝑘,𝑗+1)←

CA(x̂𝐶
G𝛾 ,𝑘,𝑗

,P𝐶
G𝛾 ,𝑘,𝑗

, cG𝛾 ,𝑘,𝑗(x̂
𝐶
G𝛾 ,𝑘,𝑗

))
𝑗 ← 𝑗 + 1

Γ(𝑖) ∈ {1, ..., 𝑠}, x̂𝐸
G𝛾 ,𝑘

:= [�̂�𝐸𝑙𝛾 ,𝑘; · · · ; �̂�𝐸𝑟𝛾 ,𝑘] ∈ ℜ10𝑛𝛾 is the stacked vector of EKF pose

estimates of links in 𝛾-th group, P𝐸
G𝛾 ,𝑘

∈ ℜ9𝑛𝛾×9𝑛𝛾 is the covariance matrix of the

error state x̃𝐸
G𝛾 ,𝑘

:= [�̃�𝐸𝑙𝛾 ,𝑘; · · · ; �̃�𝐸𝑟𝛾 ,𝑘], similarly x̂𝐶
G𝛾 ,𝑘
∈ ℜ10𝑛𝛾 and P𝐶

G𝛾 ,𝑘
∈ ℜ9𝑛𝛾×9𝑛𝛾

are the stacked state and covariance of pose estimates after constraint application,
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cG𝛾 ,𝑘(x̂𝐸
G𝛾 ,𝑘

) ∈ ℜ6(𝑛𝛾−1) is the kinematic constraint error among the links in 𝛾-th

group, c𝐺𝑘 (x̂𝐶
𝑘 ) ∈ ℜ6(𝑠−1) is the constraint error vector defined as

c𝐺𝑘 (x̂𝐶
𝑘 ) := [𝑐𝐺1,𝑘(�̂�𝑟1,𝑘, �̂�𝑙2,𝑘); · · · ; 𝑐𝐺𝑠−1,𝑘(�̂�𝑟𝑠−1,𝑘, �̂�𝑙𝑠,𝑘)]

which is required to be zero, and 𝑐𝐺𝛾,𝑘(�̂�𝑟𝛾 ,𝑘, �̂�𝑙𝛾+1,𝑘) is the position and velocity differ-

ence between the right side tip of the most right link in the 𝛾-th group and left side

tip of the most left link in the (𝛾 + 1)-th group, similarly defined as 𝑐𝑖,𝑘(�̂�𝑖,𝑘, �̂�𝑖+1,𝑘)

in (3.3).

Global Constraint Application

After the local constraint application process in Algorithm 2, the kinematic con-

straint is satisfied within a group, but there still exist inconsistencies between the

tips of the neighbouring group of links. To resolve these inconsistencies, the global

constraint application process is executed which is expressed as following

x̂𝑘 ← GCA(x̂𝐶
𝑘 ,P

𝐶
𝑘 , c

𝐺
𝑘 (x̂𝐶

𝑘 )) (3.5)

where GCA() is the abbreviation of the “Global Constraint Application”.

Since the computation amount of the global constraint application process is

directly related with the number of link of the system, the highest priority of this

process would be reducing the computation to achieve the system scalability. As

the main cause of computation load in the constraint application process is the

nonlinear kinematic constraint coming from the attitude vectors, in this process,

we consider the attitude estimates 𝑞𝐶𝑖,𝑘 as given values and only update the posi-

tion and velocity estimate. Then, the global constraint application process can be

thought of as shifting the position and velocity vectors of each group to match the

given kinematic constraint, that is, c𝐺𝑘 (x̂𝐶
𝑘 ) = 0. Let us define the shifting vector

∆𝑥GΓ(𝑖)
:= [∆𝑝GΓ(𝑖)

; ∆𝑣GΓ(𝑖)
] ∈ ℜ6 for each link, and the vector share same values
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Table 3.1: Parameters used for the simulation

Descriptions Values
Link length 1 [m]

Process noise ∼ 𝒩 (0, diag[0.1𝐼3, 0.1𝐼3, 0.01𝐼3])
Measurement noise ∼ 𝒩 (0, diag[0.1𝐼3, 0.1𝐼3, 0.01𝐼4])

Constraint apply stop condition ||c𝑘,𝑗(x̃𝐶
𝑘,𝑗)||2 < 0.01 [m]

if the links are in the same group. To decide these shifting vectors, we solve for

following constrained optimization

min
Δ𝑥GΓ(𝑖),𝑘

𝑛∑︁
𝑖=1

(∆𝑥GΓ(𝑖),𝑘)𝑇𝑃−1
𝑖,𝑘 (∆𝑥GΓ(𝑖),𝑘) (3.6)

s.t. c𝐺𝑘 (x̂𝑘) = 0

where 𝑃𝑖,𝑘 ∈ ℜ6×6 is the covariance of [𝑝𝐶𝑖,𝑘; 𝑣𝐶𝑖,𝑘] which discarded quaternion vector

from 𝑥𝐶𝑖,𝑘, x̂𝑘 is the stacked vector of the final estimate element of which is calculated

as �̂�𝑖,𝑘 = �̂�𝐶𝑖,𝑘 +[∆𝑥GΓ(𝑖)
; 0] ∈ ℜ10. The objective function means minimizing the Ma-

halanobis distance from the estimation x̂𝐶
𝑘 to the x̂𝑘. Since (3.6) is the quadratic

program with linear constraint, closed form solution can be easily obtained. Al-

though this scheme is less optimal than the process in Sec. 3.3.1 as the attitude is

not updated with the constraint apply, it does not need multiple loops of constraint

application and can obtain updated estimate with a closed form solution.

3.4 Simulation

In this thesis, we perform simulation to verify the scalability issue of the devised

estimation framework. In the simulation, 12 link aerial skeleton system is simulated

with artificial measurements of IMU and GPS. The parameters used for the artificial

measurements, EKF, and SCKF are summarized in Table 3.1. In addition to a white

Gaussian measurement noise, we also applied bias with low frequency oscillation
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Figure 3-3: Comparison of computing time according to the link number increase
and the usage of semi-distributed algorithm

(< 0.1Hz) for position and quaternion measurement with amplitude of 0.5m and 5∘

in axis angle, respectively, to emulate the GPS drift, biases of IMU.

Then, first of all, computing time increase with respect to the link number in-

crease is checked with simulation, while comparing the semi-distributed version of

the algorithm with non-applied algorithm. For both cases, simulation is conducted

for 20 seconds, size of the group 𝑛𝛾 is set to be 2 for the semi-distributed algo-

rithm, and the information of the whole links are insulted to the “CA()” function

in Algorithm 1. The result is depicted in Fig. 3-3 and we can clearly see that the

computation time of the semi-distributed algorithm grows much slower than the

other, implying that the advantage of the algorithm further increases for the aerial

skeleton with very large number of links.

For the second simulation, computation time and the accuracy of the estimation

result are compared together, for the semi-distributed algorithm with different group

sizes 𝑛𝛾 ∈ {2, 3, 4, 6, 12}. An illustrative figure of 12 link aerial skeleton during

the algorithm is shown in Fig. 3-4 at simulation time 5, 10, 15s, where each link

module is drawn with a line segment. The figure shows the entire process of the

proposed estimation framework from EKF to the final estimate after the global

estimation process, and each case of 𝑛𝛾 = 2, 12 shows distinguishable difference

of local estimation result (blue narrow dotted line), where two combined links are

shown in the left column of figures. Then, the results of computation time and the
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Figure 3-4: Illustrative figure of the process of the semi-distributed version of the
constraint application algorithm.

Table 3.2: Computation time & estimation accuracy according to the group size
increase

Group Size (𝑛𝛾) Computing time [s] Pos. error [m] Quat. error
2 13.753 0.0377 0.0026
3 15.496 0.0370 0.0025
4 16.356 0.0369 0.0025
6 20.900 0.0360 0.0023
12 29.041 0.0322 0.0023

accuracy of estimation are presented in Table 3.2. Position and quaternion error

in the table are meaning the two norm of the error (from the true value) average

throughout the all links and all time steps in the simulation. The result shows that

a slight increase of the estimation accuracy (about 15% and 12% for position and

quaternion error respectively, from 𝑛𝛾 = 2 to 𝑛𝛾 = 12) is obtained with the increase

of the group size, while sacrificing the computation time (more than twice from

𝑛𝛾 = 2 to 𝑛𝛾 = 12). This trade-off relation can be a reference for selecting the group

size 𝑛𝛾 for the semi-distributed algorithm, considering the computing performance

of the system and the desired extent of estimation accuracy.
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3.5 Experiment

3.5.1 System Setup

To verify the proposed estimation framework, we implement the outdoor flight using

the LASDRA system [3] containing three ODAR [26] system (1m length, 1.8kg

weight for each) as link modules. The link modules are connected each other using

a compliant PVC (polyvinyl chloride) cable which can provide high operation range.

For the actuation of the system, DJI snail propulsion system is exploited with 6048-

3D propeller that can generate bi-directional thrust upto about 8N. In the LASDRA

system, both Raspberry Pi 3 and Pixhawk 2.4.8 are used as computing modules, one

Raspberry Pi mounted on the middle link and three Pixhawks are attached on the

center of every link modules. The Raspberry Pi takes a role of the main PC of the

system, sending desired pose command, and collecting all the state and covariance

information from the EKF running on each Pixhawks for the computation of SCKF

algorithm. Due to the limited computing power of the onboard PC, the update

rate is set to be 20Hz, yet, for the result of SCKF algorithm, only a difference

from the EKF result is transferred to the Pixhawk so that the fast update rate of

the EKF is not harmed while relatively slowly applying the constraint information.

Then, on each Pixhawk, desired pose command and the updated state estimate with

constraint application are received, EKF and controller are calculated with 500Hz

and finally PWM signal is generated to run the rotors. For the power supply of

motors, 4S LiPo battery attached on each link is exploited and the battery is also

used to supply power for all the computing modules after stepdowning the voltage

to 5V using the battery eliminator circuit (BEC). For the sensing modules of the

system, IMU’s inside the Pixhawk and GPS modules (U-blox NEO-M8) are used and

those are mounted on every links of the system. Here, RTK (real-time kinematic)

GPS can be another option for a sensing module which provides much more accurate

position measurement than a general GPS, yet, as the main purpose of the system
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Figure 3-5: Snapshots and position tracking result of 3 link LASDRA outdoor flying
experiment. Solid line: estimated position, dashed line: desired position.

prototype is verifying the performance of the proposed estimator, not achieving the

best flight performance, we do not consider using of it. Exploiting the RTK-GPS

and implementing the aerial skeleton with further accurate and agile motion would

be one of our future work.

3.5.2 Experiment of SCKF-Based Estimation Algorithm

Then, with the constructed system above, outdoor flight experiment is performed

as depicted in Fig. 3-5. After hovering for a few seconds, a pose trajectory is given

to the system so that the system behaves like bending its configuration in forward
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Figure 3-6: Constraint error (position and velocity difference between tips of neigh-
bouring links) before the constraint application process.

Figure 3-7: Constraint error (position and velocity difference between tips of neigh-
bouring links) after the constraint application process, and the number of the con-
straint application loop run.
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Figure 3-8: Position estimation result (4th link) while keeping the system static on
the ground: (top) estimation result with individual EKF; (middle) estimation result
via local constraint application; (bottom) final estimation result via semi-distributed
algorithm.

and backward direction. The result of the flight is shown in the bottom of the Fig.

3-5. The RMS error between the desired and estimated position of each link is

11.61cm, 13.40cm, 12.57cm respectively. Although the position tracking error is not

small, there was no issue at generating desired pose and posture, due to the error-

tolerant property of the impedance control. Also in Fig. 3-6 and 3-7, the constraint

errors before and after the SCKF algorithm are described, and these show that

the constraint error is well regulated under 5cm and 2cm/s while there exist large

constraint errors before the algorithm due to the inaccuracy of the GPS, and gyro

noise. There are small jump and peak in the position constraint error near 42, 50s

and this happened due to the change of the loop number of constraint application

process as shown in the bottom plot in Fig. 3-7. This can be alleviated if the loop

stop condition ||c𝑘,𝑗(x̃𝐶
𝑘,𝑗)||2 < 𝜖 is set much tightly, where the 𝜖 in the experiment

is set to be 0.05 to avoid an excessive computation.

We also tested the proposed estimation algorithm for a system with fixed position

and identical attitudes for all links, so that the performance of the estimation can
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be observed with the knowledge of true pose and posture. Here, we exploited seven

link f-LASDRA system for the experiment, and {1, 2}, {3, 4, 5}, {6, 7} links are

comprising each local group for the semi-distributed algorithm. The experiment

results are shown in Fig. 3-8, where the estimated position of the 4th link is shown

as a representative, and the estimated position via individual EKF, local constraint

application, and the final result through the semi-distributed version of the algorithm

are depicted in order. The standard deviations of each estimation result of 𝑥, 𝑦, 𝑧

position are turned out to be [0.558; 0.542; 0.098] m, [0.194; 0.311; 0.052] m, and

[0.081; 0.125; 0.046] m, respectively. We can see that as the number of link engaged

for the estimation is increased, the estimated position of the link remained more

closely to the initial position, which means a better estimation performance.

3.6 Conclusion

In this chapter, we present a novel pose and posture estimation framework of aerial

skeleton system for outdoor flying only using IMU and GPS sensors. To enforce the

kinematic coherency of the individual EKF estimates, we apply the kinematic con-

straints of the aerial skeleton system to the EKF estimates of all the links through

SCKF-based constraint application process, thereby, enforcing the kinematic co-

herency of the skeleton system. Also, a semi-distributed version of the obtained

estimation framework is presented to address the issue of scalability, so that re-

quired computation amount for the algorithm can be less affected by the increase

of the link number. The proposed estimation framework is then verified with real

outdoor flying experiments and simulation studies.
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Chapter 4

CPG-Based Motion Generation

4.1 Introduction

Since one of the primary motivation of the flying LASDRA system is entertainment,

it is important how its flying motion looks to the people, and our another goal

would be generating motion that seems natural to spectators. In this chapter, we

describe about the natural motion generation framework for the LASDRA system,

and also expand and generalize it to apply for other robotic systems conducting

complex environmental interaction. First, before describing about what is a natural

motion generation, we divide the system motion into “shape motion” and “body

motion” where the former is a motion seen from the system body frame, the latter

is the motion of the system body frame seen from the inertial frame, and the sum

of these motions can describe the entire motion of each link of the system. Then,

we define a “natural motion” for the LASDRA system as a motion comprised of a

shape motion that can be observed from similar counterpart of living creatures, and

the body motion in accord with an expected physics with the given shape motion.

To generate shape motion of the system, we adapted central pattern gen-

erator (CPG), which is defined as a biological neural circuit that can produce

coordinated motoneuron activities without sensory feedback [15]. CPG has been ex-
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tensively used for controlling biomimetic robots including biped [44, 45], quadruped

[46, 47], crawling [48, 49] and swimming robots [50], while being also used for other

robots that requires rhythmic motion such as industrial robots [51], promoted by

such a nice properties as robust limit cycle behaviour against perturbation, mod-

ulation of the motion using only a few parameters, smooth gait transition, and

feasibility of distributed implementation, to list a few. These are also considered

as good properties to be used as a tool for motion generation of LASDRA system,

which has high degree of freedom and requires motion smoothness for the flight sta-

bility. Especially for the LASDRA system, we formulated a CPG model to mimic

anguilliform motion (e.g., eel or lamprey-like swimming motion), since the shape

of those species is most similar to that of the LASDRA system, and their main

habitat is underwater which enables free 6DOF motion unlike the species on the

ground. The information of anguilliform motion is obtained from biological experi-

ments [52, 53], and the CPG model is formulated based on phase oscillator [54, 48].

In addition, to generate body motion endowed with naturalness, we simulated the

system conducting anguilliform shape motion in the underwater environment with

simple drag force model, and we obtain the body motion from the simulated pose

and linear/angular velocity. Then, the combined motion of the shape and body

motion produces final target pose for each link of the system, endowing it with a

natural biomimetic motion.

For the CPG controlled robot, the CPG parameters and the resulting body mo-

tion from that parameter is connected via rather complicated dynamics and envi-

ronmental interaction. Therefore, it is typically impossible to directly encode given

body motion into CPG parameters. To resolve this issue, in this chapter, inverse

CPG model is obtained so that it is possible to directly decide CPG parameters

that generate desired resultant motion while incorporating complex environmental

interaction. The inverse model, which takes desired motion as an input and provides

CPG parameter set as an output, is obtained by data-driven approach with numer-

ous simulation, and the model is constructed based on neural network. However,
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Figure 4-1: Two robotic systems, snake-like robot (left) and pivotboard (right) sys-
tem, considered to develop and verify proposed CPG-based control framework. Also
shown are the inertial and body coordinate frames, {𝒪} := {𝑋𝒪, 𝑌 𝒪, 𝑍𝒪}, {ℬ} :=
{𝑋ℬ, 𝑌 ℬ, 𝑍ℬ}; and horizontal, vertical, right and left joint angles, 𝜃ℎ,𝑖, 𝜃𝑣,𝑗, 𝜃𝑟, 𝜃𝑙.

obtaining this inverse model is not quite straightforward, as there exist dimension

change between the desired motion and the CPG parameter causing information

loss, and also, for some robots, neither body velocity nor acceleration of the robot is

statically related with CPG parameters. Therefore, in this thesis, the inverse model

is constructed along with stacked autoencoder to efficiently deal with the dimension

decrease from input to output of the inverse model.

In this thesis, we also consider expanding and generalizing the proposed CPG-

based motion generation framework including inverse CPG model to other robotic

systems. To do so, we additionally consider two other robotic systems, snake-like

robot [55] and pivotboard [56] (see Fig. 4-1). To explain the reason of selecting

these systems, first, snake-like robot is operated using complex contact with the

floor, and the pivotboard is operated with constraint force from the nonholonomic

constraint. Both systems are operated by complex environmental interaction, which

makes these systems not easy to apply direct motion planning or control design.

The other point is that motion primitives to operated both systems are well known

by biological inspection or human experience, and those are oscillating motion, be-

ing nice properties for CPG-based motion generation. Therefore, we believe that

these systems would be nice examples to test our inverse CPG model based motion

generation. Also, the fundamental relation of CPG parameters and the resultant
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body motion is different for each system, i.e., parameters are almost statically re-

lated with body velocity of snake-like robot, but not for the pivotboard system, so

the inverse model learning should be done differently. We will show that our con-

cept of framework can be applied for various systems having fundamentally different

relation with CPG parameter.

In case of using CPG-based motion generation framework for a robot in real

world out of simulation, there might be model error or the change of the environ-

ment, and the generated motion can be different from expected. To overcome this

issue, we propose a CPG parameter adaptation law based on backpropagation,

so that the desired motion can be precisely generated even with the error of the

obtained model or the environment change. The parameter adaptation using back-

propagation is enabled by smooth neural network structure of the obtained inverse

model. As a result, the combination of the inverse CPG model and the CPG pa-

rameter adaptation behaves as feedforward and feedback control for the system,

enabling fast and robust generation of a desired motion.

There have been ample research of CPG modulation to modulate the resul-

tant body motion, such as using sensory feedback [57, 58], parameter optimization

[59, 60, 61], or other works surveyed in [62, 63], but only a few research consid-

ered modulating CPG parameters to produce a certain desired resultant motion

(e.g., velocity or acceleration of the system center of mass), especially for a robot

experiencing complex interaction with the environment. In [49], spine angles are

controlled to fit to the desired trajectory using inverse kinematics, and made the

robot to track the trajectory. However, the system capability is limited to following

only desired curvature of the trajectory, and does not include direct modulation of

CPG for forward speed modulation. Most recently in [45], optimal CPG parameter

sets are found for some range of forward velocities, and enabled modulating the for-

ward velocity using interpolated CPG parameters. However, as the parameters are

optimized at a specific environment and did not consider adaptation of parameters,

the desired speed generation is not robust against the change of the environment.
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Figure 4-2: Inertial, body, and link coordinate frames defined for a description
of CPG-based motion generation, {𝑂} := {𝑋𝑂, 𝑌 𝑂, 𝑍𝑂}, {𝐵} := {𝑋𝐵, 𝑌 𝐵, 𝑍𝐵},
{𝐿𝑖} := {𝑋𝐿𝑖 , 𝑌 𝐿𝑖 , 𝑍𝐿𝑖}.

4.2 Description of Entire Framework

4.2.1 LASDRA System

The major application of the flying LASDRA system is the entertainment, being

look natural and gratifying. This leads to the problem of how to make the system to

generate a natural motion. Given this goal of motion generation, we set the motion

naturalness as two elements, natural and biomimetic shape motion and accordance

of the entire body motion to the expected physics.

Before the description, we define frames for the system as in Fig. 4-2. The link

frame {𝐿𝑖} is the frame attached to 𝑖-th link, the body frame {𝐵} is a frame that

represents the entire LASDRA system with its origin located at the center of mass

of the system, and {𝑂} is the inertial frame. Then, we denote shape motion as the

relative motion of LASDRA links in body frame {𝐵}, and body motion as the motion

of the body frame {𝐵} with respect to the inertial frame {𝑂}. For the generation

of natural and biomimetic shape motion, we adapt central pattern generator (CPG)

which is frequently used in biomimetic robot control. The CPG is considered as a

proper tool for the motion generation of f-LASDRA having high-DOF, since CPG

can generate high DOF motion with few parameters, and also it provides robust

limit cycle behavior, smooth motion modulation during the parameter transition. By
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Figure 4-3: Block diagram of the control system of the flying LASDRA system
including CPG-based motion generation.

using CPG, biomimetic motion is generated, in this work, eel-like undulating motion

is selected regarding the serially linked system shape and its free flying property in

3D space. Then, the generated shape motion is simulated in some expected physics,

which can be a water environment for our system, and the resultant system pose of

the simulation becomes target trajectory pose. Although with the CPG model and

the simulation, we do not know how to decide CPG parameters to generate desired

velocity of the entire body. To deal with this issue, we learn the model from the

generated body velocity to the CPG parameters using machine learning approach,

and exploit it for generation of desired body velocity while conducting biomimetic

undulatory motion. The entire framework of the motion generation for the system

is depicted as block diagram in Fig. 4-3, and details will be described in following

sections.
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Figure 4-4: Block diagram of the entire control framework for snake-like robot and
pivotboard based on CPG and inverse CPG model.

4.2.2 Snake-Like Robot & Pivotboard

Now let us describe mechanical construction of two robotic systems, snake-like robot

[55] and pivotboard [56], that will be studied in this thesis for the generalization

of the motion generation framework. The snake-like robot in this work consists

of 15 link modules as in the left of Fig. 4-1. Each module is serially connected

through revolute joints, axes of which are alternately directed toward horizontal and

vertical direction. This design enables the system to mimic snake motion using well

synchronized horizontal and vertical joint motion. The other system, pivotboard

system (also known as snake board) is composed of one main deck and two foot

plates, both foot plates are connected to tips of the main deck through revolute

joints (see right of the Fig. 4-1). Two wheels are attached to each foot plate as

usual skateboard, and by oscillating each foot plate with proper phase difference,

the system can move using nonholonomic constraint.

The entire control framework is described as in Fig. 4-4, which has hierarchical

structure composed of high-level and low-level controllers. Here, the main difference

of the motion generation framework for general robotic systems (including the snake-

like robot and pivotboard) from that of the LASDRA system is the existence of the

simulation process. In contrast to the LASDRA system, both snake-like robot and

pivotboard have real life counterpart to mimic (real snake and pivotboard driven by

human), and motion naturalness can be achieved only by generating natural shape
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motion. Therefore, the simulation process is no longer needed, and the expected

natural body motion can be directly given by the interaction with real environment.

First of all, for the high-level controller, desired body motion command (e.g.,

body velocity or acceleration) is given as an input, and the inverse CPG block

computes for the CPG parameters that can generate this desired body motion.

Then, the system state or the information of the resultant body motion is fed back

to the inverse CPG block again, and by doing so, CPG parameter adaptation is

conducted enabling robust generation of the desired body motion. This adaptation

is done using backpropagation law, which becomes possible due to our adoption

of smooth MLP (multi layer perceptron) structure of the inverse CPG model. In

the low-level controller, the motor control is done to track the desired joint angles

computed from high-level controller using simple PD control. In this work, we are

focusing on high-level controller, especially on the construction of the inverse CPG

model, and CPG parameter adaptation law, which will be described in the following

sections in detail.

This control framework has property of incorporating already known motion

primitives that can operate the system, which could be given by living creatures,

skills learnt by human, or by reinforcement learning. Therefore, this framework

enables to achieve a control objective by exploiting motion primitives and feedback,

although the system experiences complex environmental interaction and direct mo-

tion planning or control design to operate the system is not easy. Also, our pro-

posed framework can be also applied nicely to the teleoperation, as the operator

can provide command directly in desired motion which is much more intuitive than

modulating CPG parameters leaving the process of learning the complex dynamics

and environmental interaction for the operator.

78



4.3 CPG Model

In this section, CPG models designed for each robotic system are delineated. CPG

models for all systems are formulated based on phase oscillator [54], and modified to

control amplitude and bias of the oscillators as in [48]. We decided to choose CPG

model of coupled oscillator type, which is the most abstract type among various

models [62], as the main focus of this work is not on the study of neuron-wise

behaviour and biology, and also the phase difference and topology made by connected

oscillator units mainly affects the behaviour of the system. Details on CPG model

of each robot will be explained in following subsections.

4.3.1 LASDRA System

Firstly, we describe the CPG model formulated for the natural biomimetic motion

generation, and in this work we selected to mimic the eel-like undulating motion.

CPG model is formulated based on phase oscillator [54] with several modifications

for amplitude control [48] and 3D motion generation as following.

�̈�𝑖 = 𝑘𝑎

(︂
𝑘𝑎
4

(𝜎𝑎,𝑖𝐴− 𝑎𝑖)− �̇�𝑖
)︂

�̈�𝑖 = 𝑘𝑏

(︂
𝑘𝑏
4

(𝜎𝑏,𝑖𝐵 − 𝑏𝑖)− �̇�𝑖
)︂

�̇�𝑖 = 2𝜋𝑓 +
∑︁
𝑗

𝑘𝜑 sin(𝜑𝑗 − 𝜑𝑖 − 𝜑𝑖𝑗)

𝑤𝑖 = 𝑆(𝑒1)

⎡⎣ 0

𝑏𝑖 + 𝑎𝑖 sin(𝜑𝑖)

⎤⎦
𝑅𝐵𝐿𝑖

= 𝑒𝑆(𝑤𝑖)

where 𝐴,𝐵 ∈ ℜ2 are the input parameters of the model meaning target oscillating

amplitude and bias; 𝜎𝑎,𝑖, 𝜎𝑏,𝑖, 𝜙𝑖𝑗 ∈ ℜ are input shaping parameters that decides

undulating shape given by experimental observation of eel swimming motion [52],
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Figure 4-5: Diagram of CPG model for snake-like robot including oscillators and
coupling topology depicted with wave patterns and arrows.

[53]; 𝑎𝑖, 𝑏𝑖 ∈ ℜ2 are the intermediate parameters of amplitude and bias; 𝜑𝑖 ∈ ℜ is

the intermediate parameter meaning phase of the undulation; 𝑓 ∈ ℜ is the given

oscillating frequency; 𝑘𝑎, 𝑘𝑏, 𝑘𝜑 ∈ ℜ are gain parameters; 𝑤𝑖 ∈ ℜ3 is the axis angle to

formulate the desired attitude; 𝑅𝐵𝐿𝑖
∈ SO(3) is the desired attitude matrix being the

final output of the proposed CPG model. In this work, 𝑓 is not considered as an input

parameter but set to be a constant value to avoid its redundancy with parameter

𝐴, since both parameters mainly affect for the forward velocity of the system. The

formulated CPG model geometrically means rotation of 𝑖-th link through the axis of

𝑤𝑖 and with the angle of |𝑤𝑖|, resulting in horizontal undulation and bending with

the first component of 𝑎𝑖, 𝑏𝑖 and vertical undulation and bending with the second

component of those states.

4.3.2 Snake-Like Robot

For the snake-like robot system, CPG model is formulated as following based on

amplitude controlled phase oscillator [48] with modifications of adding a new state

for bias modulation, and the topology change between oscillators for the synchro-
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nization of horizontal and vertical joint angles,

𝜃ℎ,𝑖 = 𝑎𝑖 cos(𝜑ℎ,𝑖) + 𝑏𝑖

𝜃𝑣,𝑖 = − 𝐴𝑣,𝑖 sin(𝜑𝑣,𝑖)

�̈�𝑖 = 𝑘𝑎

(︂
𝑘𝑎
4

(𝜎𝑎,𝑖𝐴− 𝑎𝑖)− �̇�𝑖
)︂

�̈�𝑖 = 𝑘𝑏

(︂
𝑘𝑏
4

(𝜎𝑏,𝑖𝐵 − 𝑏𝑖)− �̇�𝑖
)︂

�̇�ℎ,𝑖 = 2𝜋𝑓 +
∑︁

𝑗∈𝒩ℎ,𝑖

𝑤ℎ sin(𝜑ℎ,𝑗 − 𝜑ℎ,𝑖 − 𝜙ℎ,𝑖𝑗)

+ 𝑤ℎ𝑣 sin(𝜑𝑣,𝑖 − 2𝜑ℎ,𝑖 − 𝜙ℎ𝑣(𝐴,𝐵))

�̇�𝑣,𝑖 = 4𝜋𝑓 +
∑︁

𝑗∈𝒩𝑣,𝑖

𝑤𝑣 sin(𝜑𝑣,𝑗 − 𝜑𝑣,𝑖 − 𝜙𝑣,𝑖𝑗)

− 𝑤ℎ𝑣 sin(𝜑𝑣,𝑖 − 2𝜑ℎ,𝑖 − 𝜙ℎ𝑣(𝐴,𝐵))

where 𝐴,𝐵 ∈ ℜ are the input parameters of the model meaning horizontal oscillating

amplitude and bias; 𝜃ℎ,𝑖, 𝜃𝑣,𝑖 are the output parameters of the model meaning joint

angles of horizontal and vertical joints; 𝑖 ∈ {1, ..., 7} is the index of horizontal or

vertical joints; 𝑎𝑖, 𝑏𝑖 ∈ ℜ are states meaning amplitude and bias; 𝜑ℎ,𝑖, 𝜑𝑣,𝑖 ∈ ℜ

are states meaning phase of oscillation for horizontal and vertical joints; 𝐴𝑣,𝑖 ∈ ℜ

is a given parameter meaning amplitude for vertical direction; 𝜎𝑎,𝑖, 𝜎𝑏,𝑖 ∈ ℜ are

given input shaping parameters that decides undulating shape; 𝑓 ∈ ℜ is the given

oscillating frequency; 𝜙ℎ,𝑖𝑗, 𝜙𝑣,𝑖𝑗 ∈ ℜ are the given targeting phase difference among

horizontal joints and vertical joints that also decides undulating shape; 𝜙ℎ𝑣(𝐴,𝐵) ∈

ℜ is the targeting phase difference between horizontal and vertical joints which is

a function of the input parameters 𝐴,𝐵; 𝒩ℎ,𝑖,𝒩𝑣,𝑖 are the sets of neighbouring

joints of the 𝑖-th horizontal and vertical joints; and 𝑘𝑎, 𝑘𝑏, 𝑤ℎ, 𝑤𝑣, 𝑤ℎ𝑣 ∈ ℜ are gain

parameters. In this work, 𝑓 is not considered as an input parameter but set to be

a constant value to avoid its redundancy with parameter 𝐴, since both parameters

mainly affect for the forward velocity of the system.
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Figure 4-6: Optimal phase difference 𝜙ℎ𝑣(𝐴,𝐵) and 𝜙(𝐴,𝐵, �̇�𝑑) (�̇�𝑑 ≥ 0) providing
maximum forward velocity for the snake-like robot (left) and the pivotboard (right).

The CPG model written above is designed to mimic serpentine motion of the

snake, which conduct undulation mainly in horizontal direction and oscillate also in

vertical direction to mimic ‘sinus lifting’ motion of snakes that controls the contact

point of the body to maximize locomotion efficiency [55]. To do so, joint angles for

horizontal and vertical joints are calculated separately with different frequencies,

twice frequency for the vertical undulation. Couplings among horizontal joints or

vertical joints are modelled with gain 𝑤ℎ, 𝑤𝑣, and also couplings between horizontal

and vertical joints are modelled with gain 𝑤ℎ𝑣, so that oscillation of all joints can

be synchronized with desired phase differences. The topology of the designed CPG

model is described in Fig. 4-5.

From the simulation, we found out that the parameter 𝜙ℎ𝑣, or the phase difference

between horizontal and vertical joints behaves as a key parameter that critically

affects the performance of locomotion, which implies that this value is required to

be set carefully. To decide this parameter, we temporarily consider 𝜙ℎ𝑣 as an input

parameter just as 𝐴,𝐵, and simulation is conducted with gridded parameter sets

of 𝐴,𝐵, 𝜙ℎ𝑣, slightly changing the value of each parameter. Then, the steady state

body velocity is obtained for each parameter set, and from the simulated data, we

get the function as below

𝜙ℎ𝑣(𝐴,𝐵) := arg max
𝜙ℎ𝑣

𝑣𝑥(𝐴,𝐵, 𝜙ℎ𝑣) (4.1)
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that selects 𝜙ℎ𝑣 ∈ ℜ maximizing 𝑣𝑥, where 𝑣𝑥 ∈ ℜ is the averaged steady state

velocity in 𝑋ℬ (or forward) direction. By learning (𝐴,𝐵) to 𝜙ℎ𝑣 model that maxi-

mizes the forward velocity from the simulation, we finally get an analytic function

𝜙ℎ𝑣(𝐴,𝐵) that can be used directly. Here, we note that this function 𝜙ℎ𝑣(𝐴,𝐵) is

just part of the CPG model and not related with the inverse CPG model learning.

The result of the obtained 𝜙ℎ𝑣(𝐴,𝐵) function is depicted in the left of Fig. 4-6.

4.3.3 Pivotboard

Similar CPG model is formulated for the pivotboard system, also based on amplitude

controlled phase oscillator [48] with additional state for bias modulation as following

𝜃𝑖 = 𝑎𝑖 cos(𝜑𝑖) + 𝑏𝑖

�̈�𝑖 = 𝑘𝑎

(︂
𝑘𝑎
4

(𝐴− 𝑎𝑖)− �̇�𝑖
)︂

�̈�𝑖 = 𝑘𝑏

(︂
𝑘𝑏
4

(𝜎𝑏,𝑖𝐵 − 𝑏𝑖)− �̇�𝑖
)︂

�̇�𝑟 = 2𝜋𝑓 + 𝑤 sin(𝜑𝑙 − 𝜑𝑟 − 𝜙(𝐴,𝐵, �̇�𝑑))

�̇�𝑙 = 2𝜋𝑓 − 𝑤 sin(𝜑𝑙 − 𝜑𝑟 − 𝜙(𝐴,𝐵, �̇�𝑑))

where 𝐴,𝐵 ∈ ℜ are the input parameters meaning target amplitude and bias; 𝜃𝑖 ∈ ℜ

is the output parameter meaning desired joint angle of the revolute joints; the index

𝑖 ∈ {𝑟, 𝑙} denotes right and left foot plate; 𝜑𝑖 ∈ ℜ is a state meaning oscillation

phase; 𝜎𝑏,𝑟 := 1 and 𝜎𝑏,𝑙 := 0 are given input shaping parameters; 𝜙(𝐴,𝐵, �̇�𝑑) ∈ ℜ

is the targeting phase difference which is the function of 𝐴,𝐵 and �̇�𝑑; �̇�𝑑 ∈ ℜ is the

desired forward acceleration purpose of which will be explained below; 𝑘𝑎, 𝑘𝑏, 𝑤 ∈ ℜ

are gain parameters; and other parameters have same definition with those in the

snake-like robot CPG model.

The CPG model above is designed based on oscillating motion primitives learnt

and conducted by human. As the board can move forward by oscillating two foot
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plates with slight phase difference, CPG model is formulated to mimic that motion.

The target amplitude and bias of oscillation 𝐴,𝐵 are set to be input parameters

for the model, and coupling between two revolute joint angles is modelled with the

gain 𝑤, so that oscillation can be synchronized. The parameter 𝜙(𝐴,𝐵, �̇�𝑑), meaning

phase difference between left and right joint, is decided by CPG parameters and also

by the desired acceleration �̇�𝑑. When desired motion is to speed up, i.e., �̇�𝑑 ≥ 0, the

parameter is selected to maximize the forward velocity of the system using the same

approach with (4.1), and the result is show in the right of the Fig. 4-6. Meanwhile,

it is found out from the simulations that when 𝜙 = 0, with any values of 𝐴,𝐵, the

velocity of the forgoing pivotboard converges to almost zero. Therefore, in case of

deceleration or �̇�𝑑 < 0, 𝜙(𝐴,𝐵, �̇�𝑑) is set to be zero, so that the system can quickly

slow down, and the range of deceleration can be enlarged without bringing another

input parameter for the CPG model. This kind of mode transition, or parameter

modulation can be done smoothly thanks to the limit cycle property of the CPG.

4.4 Target Pose Calculation with Expected Physics

For the LASDRA system, the expected resulting body motion (eel-like swimming

motion in water environment) from the CPG-generated shape motion is different

from the motion resulting from real environment interaction (air environment), and

no real life counterpart exists that can swim in the air (such as dragon). In this

section, we describe the method of obtaining target pose through the simulation of

the system in the expected physics, so that motion naturalness can be achieved by

“acting” like interacting with an imaginary expected environment.

With the obtained shape motion given by the CPG model, the entire body

motion is calculated by simulating the given shape motion in an expected physical

environment, a water environment in this work. Assuming that inertial forces are

dominant and fluid is stationary, simple water force model [64] is simulated, and
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with the model, the force and torque applied to each link can be calculated as

𝑓𝐿𝑖
𝑖 =

1

2
𝜌𝐴𝑡𝐶𝐷,𝑡||𝑣⊤𝑖 || · 𝑣⊤𝑖 +

1

2
𝜌𝐴𝑛𝐶𝐷,𝑛||𝑣⊥𝑖 || · 𝑣⊥𝑖

= 𝑓⊤
𝑖 + 𝑓⊥

𝑖

where 𝑣⊤𝑖 = 𝐼1𝑣
𝐿𝑖
𝑂𝐿𝑖

, 𝑣⊥𝑖 = 𝐼23𝑣
𝐿𝑖
𝑂𝐿𝑖
∈ ℜ3 are the velocity elements of axial and perpen-

dicular direction in the link frame; 𝐼1 := diag(1, 0, 0), and 𝐼23 := diag(0, 1, 1). Then,

force and torque applied to entire system can be obtained by summation as

𝑓𝐵
cpg =

∑︁
𝑖

𝑅𝐵𝐿𝑖
𝑓𝐿𝑖
𝑖

𝜏𝐵cpg =
∑︁
𝑖

(𝑟𝐵𝐵𝐿𝑖
×𝑅𝐵𝐿𝑖

𝑓𝐿𝑖
𝑖 )

where 𝑓𝐵
cpg, 𝜏

𝐵
cpg ∈ ℜ3 are force and torque applied to the entire system in body

frame. Then the calculated force and torque is exploited for rigid body simulation

as following,

𝑚exp𝑝
𝑂
𝑂𝐵 = 𝑅𝑂𝐵𝑓

𝐵
cpg

𝐽exp�̇�
𝐵
𝑂𝐵 + 𝑆(𝜔𝐵

𝑂𝐵)𝐽exp𝜔
𝐵
𝑂𝐵 = 𝜏𝐵cpg

�̇�𝑂𝐵 = 𝑅𝑂𝐵𝑆(𝜔𝐵
𝑂𝐵)

where 𝑚exp ∈ ℜ and 𝐽exp ∈ ℜ3×3 are mass and inertia matrix of the expected

dynamics of the system. Here, numerical integration for the dynamics simulation

is done by partially (not including the external wrench) exploiting PMI (passive

midpoint integrator) [65] to enforce the stability of the simulation. Then, the final

target pose of each link can be obtained as below, by combining the shape motion
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by CPG, and the simulated body motion

𝑅𝑂𝐿𝑖
= 𝑅𝑂𝐵𝑅𝐵𝐿𝑖

𝜔𝐿𝑖
𝑂𝐿𝑖

= 𝑅𝑇
𝐵𝐿𝑖

𝜔𝐵
𝑂𝐵 + 𝜔𝐿𝑖

𝐵𝐿𝑖

= 𝑅𝑇
𝐵𝐿𝑖

𝜔𝐵
𝑂𝐵 + (𝑅𝑇

𝐵𝐿𝑖
�̇�𝐵𝐿𝑖

)∨

𝑝𝑂𝑂𝐿𝑖
=

⎧⎨⎩ −𝑝1,𝐶𝑜𝑀 + 𝑝𝑂𝑂𝐵 (𝑖 = 1)∑︀𝑖−1
𝑗=1(𝑅𝑗 +𝑅𝑗+1)𝑙ℎ − 𝑝1,𝐶𝑜𝑀 + 𝑝𝑂𝑂𝐵 (𝑖 ≥ 2)

𝑣𝑂𝑂𝐿𝑖
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝑣1,𝐶𝑜𝑀 + �̇�𝑂𝑂𝐵 (𝑖 = 1)∑︀𝑖−1

𝑗=1(𝑅𝑗𝑆(𝜔𝑗) +𝑅𝑗+1𝑆(𝜔𝑗+1))𝑙ℎ

− 𝑣1,𝐶𝑜𝑀 + �̇�𝑂𝑂𝐵 (𝑖 ≥ 2)

𝑝1,𝐶𝑜𝑀 =
1

𝑛

𝑛∑︁
𝑖=2

(︃
𝑖−1∑︁
𝑗=1

(𝑅𝑗 +𝑅𝑗+1)𝑙ℎ

)︃

𝑣1,𝐶𝑜𝑀 =
1

𝑛

𝑛∑︁
𝑖=2

(︃
𝑖−1∑︁
𝑗=1

(𝑅𝑗𝑆(𝜔𝑗) +𝑅𝑗+1𝑆(𝜔𝑗+1))𝑙ℎ

)︃

where 𝑅𝑗 = 𝑅𝑂𝐿𝑗
, 𝜔𝑗 = 𝜔

𝐿𝑗

𝑂𝐿𝑗
for simplicity; 𝑙ℎ is the center to tip (positive x) vector

in link frame; 𝑛 ≥ 2 is the number of links of the system. Here �̇�𝐵𝐿𝑖
can be obtained

analytically with Rodrigues’ formula as in [66].

4.5 Inverse Model Learning

For each three rototic systems, inverse CPG model is learnt considering different

relation properties of parameter to resultant body motion. Detailed explanation on

inverse model learning is described in following subsections.

4.5.1 LASDRA System

In this subsection, the process of obtaining inverse CPG model is described which is

required for the desired body velocity generation while conducting the biomimetic
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Figure 4-7: Diagram of inverse CPG model for (A) LASDRA and snake-like robot;
and (B) pivotboard.

undulatory motion. From the simulation of the body motion in the expected physics

environment, we found out that the velocity of the system in body frame converges

to a certain value with a given set of CPG parameter. Considering this property, it

is natural to obtain model between steady state body velocity and CPG parameters

so that when learning the inverse model, we can get a CPG parameter set that

generates certain desired body velocity. The diagram of the proposed inverse model

is described in (A) of the Fig. 4-7. The target motion 𝜉𝑑 := [𝑣𝑑;𝜔𝑑; 𝜃𝑑] ∈ ℜ7 is

given as input for an autoencoder, where 𝑣𝑑, 𝜔𝑑 ∈ ℜ3 are desired linear and angular

velocity in frame {𝐵}, and 𝜃𝑑 ∈ ℜ is the desired undulating direction. Then, hidden

layer variable with dimension of ℜ4 is obtained through the encoder which can be

accounted as four extracted features from the input variable [67], and finally CPG

parameters are provided through the ‘hidden layer to CPG model’.

Here, let us explain about the reason and role of using autoencoder for the pro-
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posed inverse model. For the simplicity of description, we define following variables

𝜂 := [𝐴;𝐵] ∈ ℜ4

𝜉(𝜂) := [𝑣;𝜔; 𝜃] ∈ ℜ7

where 𝜂 is the vector of CPG parameters; and 𝜉(𝜂) is the averaged linear/angu-

lar velocity and undulating direction at steady state in {𝐵} coming out from the

CPG generated motion with parameter 𝜂. Then, let us denote the inverse model

that we want to get as Ξ−1(𝜉(𝜂)) ≈ 𝜂. However, as the dimension is decreasing

with the inverse model Ξ−1(·), the model will cause loss of information. Therefore,

𝜉(Ξ−1(𝜉𝑑)) ̸≈ 𝜉𝑑 which means that even though we have CPG parameter from the

inverse model with input 𝜉𝑑, the regenerated motion with the parameter does not

always follows 𝜉𝑑. We believe that it is suitable to deal this kind of issue with the

autoencoder, as it resembles the process of encoding and decoding of the autoen-

coder.

Then, in this work, autoencoder is learnt for the dataset 𝜉(𝜂) obtained by simu-

lating the f-LASDRA system with uniformly sampled CPG parameters, with hidden

layer in ℜ4. When we denote regenerated vector of 𝜉𝑑 through encoding and decod-

ing as AE(𝜉𝑑), it can be interpreted as a projection of 𝜉𝑑 to the feasible motion set,

since the autoencoder is learnt with the real generated motion 𝜉(𝜂) from the robot,

and AE(𝜉𝑑) will be on the same manifold with the distribution of 𝜉(𝜂). The value

of AE(𝜉𝑑), which is explicitly obtained by autoencoder, can be usefully exploited for

higher level controller, or also for the teleoperation noticing the operator of the gap

of desired and feasible command.

After obtaining the autoencoder model and hidden layer variable using the en-

coder, a model of the hidden layer variable to CPG parameters is learnt using MLP

with the hyperbolic tangent activation function, and then the whole inverse CPG

model can be constructed. The result of the inverse model learning is described in

the Fig. 4-8 showing input CPG parameter sets and the recovered parameter sets.
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Figure 4-8: Comparison of input CPG parameter set and recovered CPG parameter
set from the simulated velocity and the inverse model.
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Figure 4-9: Autoencoder learning result of snake-like robot showing desired, sim-
ulated and decoded velocity (left); comparison of input CPG parameter set and
recovered CPG parameter set from the simulated velocity and the inverse model.

Here, the recovered parameter sets are obtained by simulating with the input param-

eter sets, and deriving the CPG parameter sets that can regenerate the simulated

motion using the inverse CPG model. Lastly in this work, CPG parameter sets with

positive values of 𝐵𝑥, 𝐵𝑦 are only used for learning thanks to the symmetry, so that

required data and time for learning can be significantly reduced.

4.5.2 Snake-Like Robot

In case of snake-like robot simulation, velocity of the system in body frame converges

to a certain value fast enough with a given set of CPG parameter. Considering this
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Figure 4-10: Velocity and curvature profile from the pivotboard simulation with
𝐴 = 20∘, 𝐵 = 10∘, and curve fitting result for DA model parameters.

property, it is natural to obtain model between steady state body velocity and CPG

parameters so that when learning the inverse model, we can get a CPG parameter set

that generates certain desired body velocity. The diagram of the proposed inverse

model is described in (A) of Fig. 4-7. The desired linear and angular velocity

𝑣𝑑 ∈ ℜ2, 𝜔𝑑 ∈ ℜ are given as input for an autoencoder, hidden layer variables are

obtained through the encoder, and finally CPG parameters are provided through

the ‘hidden layer to CPG model’.

The framework of obtaining inversion model is same with that of LASDRA sys-

tem. Here, it is nice to describe and visualize the result of the inversion model

learning with plots as in Fig. 4-9, since the dimension of the input, hidden and

output layer of the stacked autoencoder is all less than or equal to three. The result

of autoencoder model is depicted in the left of Fig. 4-9, showing that regenerated

vector AE(𝜉𝑑) from gridded 𝜉𝑑 is projected on the plane of simulated velocity distri-

bution, which means feasible velocity set. The result of the inverse model learning

is described in the right of the Fig. 4-9 showing input CPG parameter sets and the

recovered parameter sets obtained from inverse model and the simulated velocity

with the input CPG parameter sets.

4.5.3 Pivotboard

Contrary to the LASDRA and the snake-like robot, from the pivotboard simula-

tion, we observed that the body velocity of the system cannot be related statically

with CPG parameters. To explain the simulated behaviour in more detail, with a
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positive value of amplitude parameter 𝐴 for the CPG model, the stationary pivot-

board is first accelerated and the acceleration decays while forward velocity profile

shows exponential convergence to certain value. Also, the bias parameter 𝐵 for the

CPG model is found out to be strongly and statically related with the curvature of

the system position profile, and velocity in 𝑌 ℬ direction is almost negligible. The

described behaviour is depicted as dotted blue line in Fig. 4-10.

Since we need to find parameters that can have static relation with CPG param-

eters, we choose to use following model from the simulation, and we call it ‘decaying

acceleration model’ or simply a DA model,

�̇�(𝑡) = −𝑑(𝑣(𝑡)− 𝑣𝑠)

𝑣(𝑡) = (𝑣(𝑡0)− 𝑣𝑠)𝑒−𝑑(𝑡−𝑡0) + 𝑣𝑠 (4.2)

𝜔(𝑡) = 𝑐𝑣(𝑡)

where 𝑣𝑠, 𝑑, 𝑐 ∈ ℜ are DA model parameters meaning steady-state converging veloc-

ity, exponential decay rate, and curvature; 𝑣(𝑡), 𝜔(𝑡) ∈ ℜ are the averaged forward

velocity and angular velocity during time [𝑡 − ∆𝑡, 𝑡] in frame {ℬ}; ∆𝑡 is the time

period of the CPG oscillation; and 𝑡0 is the time at the beginning of simulation with

given CPG parameter set. Here, we use the averaged value during one period of

the oscillation for 𝑣(𝑡), 𝜔(𝑡) to get rid of the fluctuation of the value caused by the

oscillation. Considering this model, simulations are conducted with both accelera-

tion and deceleration cases, also with gridded CPG parameter sets slightly changing

each values. Then, DA model parameters are obtained for each simulation using

least square fitting for the velocity profile. A sample result of least square fitting

with the DA model is shown as red line in Fig. 4-10.

What we ultimately want for the inverse model is the desired motion to CPG

parameters relation, and the model can be divided into two steps: 1) desired motion

to DA model parameters; and 2) DA model parameters to CPG parameters (see

bottom of Fig. 4-7). Since the DA model parameters are known to have static
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relation with CPG parameters and its dimension is three, model for the second step

can be obtained with the same method as in Sec. 4.5.2.

Then the remaining problem is the model for the first step, i.e., the model of

desired motion to DA model parameters. Here, the desired motion is defined by

�̇�𝑑, 𝜔𝑑 ∈ ℜ, the desired acceleration and angular velocity. First of all, the parameter 𝑐

can be easily obtained from 𝑣, 𝜔𝑑 ratio referring to (4.2). Also, from (4.2), parameters

𝑣𝑠 and 𝑑 have relation of 𝑣𝑠 = 𝑣 + �̇�
𝑑
. Then, 𝑣𝑠, 𝑑 relation with a given 𝑣, �̇�𝑑 and

already obtained parameter 𝑐 form a curved line (hyperbola) on a 3D space. From

the autoencoder learnt with the parameter set of 𝑣𝑠, 𝑑, 𝑐, we know the feasible plane

of the parameter set in 3D, so there would be a crossing point of the plane and the

line (see Fig. 4-11). This point is the DA model parameter set that satisfies desired

motion and feasibility of the parameter set itself, and can be simply obtained by

common line search methods. The result of finding DA model parameter set with

line search method is shown in Fig. 4-11. The red dots in the figure are the output

of the autoencoder learnt with the DA model parameters from simulation, and

the distributed plane means the feasible set of DA model parameters. Then, we

finally obtain the whole inverse CPG model from the desired motion to the CPG

parameters.
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4.6 CPG Parameter Adaptation

Although we have inverse CPG model, in case of direct generation of the CPG-

generated shape motion in real environment, it is inevitable to have model error for

the learnt models or change of the environment, making it unable to precisely gen-

erate the desired motion with CPG parameters and the inverse model. Therefore,

it is desirable to apply feedback or adaptation law for the parameters to generate

desired velocity precisely. Since we have inverse CPG model constructed with MLP,

the gradient of the parameter which is denoted as 𝜕𝜂
𝜕ℎ

in (4.3) below can be analyt-

ically known. Also, as we use smooth hyperbolic tangent as an activation function

of the MLP, the gradient 𝜕𝜂
𝜕ℎ

is always smooth, and it helps the adaptation to be

done smoothly by updating parameters using backpropagation. The equation for

the CPG parameter adaptation can be written as following

∆𝜂 = −𝜕𝜂
𝜕ℎ

(︂
𝑘𝑝(ℎ− ℎ𝑑) + 𝑘𝑖

∫︁
(ℎ− ℎ𝑑)𝑑𝜏

)︂
(4.3)

𝜂 = 𝜂raw + ∆𝜂

where ℎ, ℎ𝑑 ∈ ℜ2 are the hidden layer variables that encoded the current and desired

DA model parameters; 𝑘𝑝, 𝑘𝑖 ∈ ℜ are proportional and integral gains; ∆𝜂 ∈ ℜ2 is the

change of parameter set for the PI-like (proportional-integral) adaptation; 𝜂raw ∈ ℜ2

is the raw parameter set given by the inverse model; and 𝜂 ∈ ℜ2 is the final output

CPG parameter set. In case of the pivotboard system, where the autoencoder input

is the DA model parameter set, model parameter regarding current state of the

system need to be obtained. To do so, the line search method in Sec. 4.5.3 is used

again that finds DA model parameter satisfying constraints given by current state

𝑣, �̇� and its own feasibility. Then the rest of the adaptation process can be done

same with (4.3).

There is another option for the adaptation law of the CPG parameters, directly

using the error from the desired motion (velocity or acceleration) for the parameter
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Figure 4-12: Snapshots of the simulation of CPG-based motion generation for 7-link
f-LASDRA system.

update. Although this method is much more intuitive compared to (4.3), the error

should be projected from ℜ3 to ℜ2 and there would be null component in the error.

The integrated error in the null space would not affect the parameter update, but

when the null space is changed with state change, the hidden accumulated error

can pop out causing undesired motion. Therefore, we conduct parameter adapta-

tion using the hidden layer variable which has the same dimension with the CPG

parameter set, so that the risk stated above can be prevented.

4.7 Simulation

4.7.1 LASDRA System

To verify the newly devised CPG-based motion generation framework, simulation is

conducted using 5-link and 7-link f-LASDRA system. A snapshot of the simulation

of an horizontal undulatory motion is depicted as an example in Fig. 4-12. First

of all, modulation of CPG parameters and the resulting target pose of each link is

observe to verify the formulated CPG model in Sec. 4.3. From the plots in Fig. 4-13,

we can check that with the modulation of CPG parameter 𝐴𝑥 and 𝐵𝑥, amplitude

or offset of the oscillating desired yaw angle of each link is smoothly changed. Also,
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Figure 4-13: Simulation results of CPG-based motion generation: desired yaw angle
for each link with (top) parameter 𝐴𝑥 modulation; and (bottom) parameter 𝐵𝑥

modulation.
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Figure 4-14: Simulation results of target motion generation with CPG-based motion
generation framework including CPG inverse model
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to verify the inverse CPG model learnt with MLP and autuencoder, simulation of

generating target motion is conducted where the result is described in Fig. 4-14. We

can see from the plot that CPG parameters are calculated by the inversion model,

and the simulated body velocity follows the target motion in average, where the

oscillating data plot is due to the undulatory motion from CPG.

4.7.2 Snake-Like Robot & Pivotboard

To check if the proposed CPG-based control framework can be properly extended to

other general robotic systems, simulations with snake-like robot and pivotboard are

also conducted using the open-source robot simulator V-REP with Vortex physics

engine. Also, Matlab is exploited along with the simulator communicating through

the remote API (application programming interface), for the control computation

and data logging. The CPG model of each robot is simulated in the V-REP through

the embedded script, and numerical update is done by PMI (passive midpoint in-

tegrator) [65] to enforce the stability of the simulation. Then in the Matlab script,

state information of the CPG model is received, CPG parameter that achieves de-

sired motion is computed with the inverse model and the adaptation law, and finally

the parameter is sent back to V-REP embedded script. V-REP simulation runs with

the rate of 100Hz, and the CPG parameter update is done at the same rate as the

oscillation (1Hz for both systems).

First of all, to check the performance of our proposed framework, simulations

of desired linear and angular velocity generation with CPG controlled snake-like

robot are conducted. For the simulation of desired linear velocity generation, 𝑦

(lateral) position is regulated to be zero, and the simulation result is shown in top

of the Fig. 4-15, where the RMS (root mean square) error of the generated linear

velocity and 𝑦 position are 0.030 m/s and 0.140 m. Also for the simulation of desired

angular velocity generation, linear velocity is maintained to be constant, and the

simulation result is shown in bottom of the Fig. 4-15, where the RMS error of
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Figure 4-15: Simulation results of snake-like robot with various linear velocity (top)
and angular velocity (bottom) command.
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Figure 4-16: Simulation results of pivotboard with various linear acceleration (top)
and angular velocity (bottom) command.
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Figure 4-17: Snapshots of the simulation of snake-like robot crawling on an inclined
plane (A) and pivotboard rotating on planes with different friction coefficients (B).

Figure 4-18: Simulation results of parameter adaptation with snake-like robot (top)
and pivotboard (bottom).
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the generated linear and angular velocity are 0.017 m/s and 0.063 rad/s. Similarly,

simulations of desired acceleration and angular velocity generation are performed for

CPG controlled pivotboard. For the simulation of desired acceleration, 𝑦 (lateral)

position is regulated to be zero, and the simulation result is shown in top of the

Fig. 4-16, where the RMS error of the generated linear acceleration and 𝑦 position

are 0.013 m/s2 and 0.071 m. Also for the simulation of desired angular velocity

generation, linear velocity is maintained to be constant, and the simulation result is

shown in bottom of the Fig. 4-16, where the RMS error of the generated linear and

angular velocity are 0.018 m/s and 0.041 rad/s. Then, we also perform simulations

to verify the CPG parameter adaptation law for two robotic systems. The snake-like

robot is ordered to go through a 5∘ inclined plane as in the snapshot in (A) of Fig.

4-17, and the result in the top of Fig. 4-18 shows that with parameter adaptation,

the generated velocity can be recovered to the desired value while being on the

inclined plane. Also, the pivotboard is commanded to run and rotate on the planes

with different friction coefficient (normal plane: 1.0, slippery plane: 0.3) as in (B) of

Fig. 4-17, and the result is depicted in the bottom of Fig. 4-18 from which we can

see that without the adaptation, the angular velocity is slightly below the desired

value due to the slip, yet the angular velocity converges to desired value with the

adaptation.

4.8 Conclusion

In this chapter, we present a new CPG-based motion generation framework to pro-

vide natural motion for f-LASDRA system and also for two other robotic systems

operated with complex environmental interaction. For a natural motion generation,

CPG models are formulated for each system based on phase oscillator mimicking

the natural biomimetic or human generated motion. Especially for the f-LASDRA

system, the CPG-generated motion is simulated with the simple water force model

that brings a final target pose for each link of the system, which consequently makes
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it act as if it is in water, which is an expected physical environment. We also present

the acquisition of the inverse CPG model by machine learning for direct decision of

CPG paramters that can generate desired motion. The proposed motion generation

framework is then verified with simulations of three different robotic systems.

102



Chapter 5

Outdoor Flight Experiment of the

F-LASDRA System

5.1 System Setup

To realize and verify the proposed CPG-based motion generation framework for

the LASDRA system, we constructed a seven link LASDRA system as depicted in

Fig. 5-1 so that much more natural motion can be realized with much increased

degree of freedom (24 DOF). The design of link modules including actuators, joints

are same with the system constructed in Sec. 3.5. For the onboard computation

of semi-distributed state estimation algorithm and CPG based motion generation,

Figure 5-1: Seven link LASDRA system composed of Pixhawks on each link module
and three Raspberry Pi’s.
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Figure 5-2: Diagram of command lines among computing modules exploited for
seven link LASDRA system.

three Raspberry Pi’s are used, each are controlling 2, 3, and 2 link modules. These

onboard PCs send and receive required information each other through wired UDP

communication with the rate of 50 Hz, and three PCs can be combined to a single

network by exploiting network bridging. Among the onboard PCs, the central one

takes a role of leader, conducting main computation of both semi-distributed esti-

mation algorithm and CPG based motion generation by gathering information from

the other PCs. The entire diagram depicting command line among the computing

modules is show in Fig. 5-2.

5.2 Experiment Results

Using the flying LASDRA system constructed as in the previous section, we con-

ducted several experiments in the outdoor environment to verify the CPG-based

motion generation framework along with the state estimation algorithm both pro-

posed in this thesis. First of all, an experiment of forward speed modulation is

conducted through the CPG-based motion generation framework and the system
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Figure 5-3: Snapshots of seven link LASDRA outdoor flying experiment with CPG-
based motion generation.

is commanded to generate different forward velocities while undulating in horizon-

tal direction. The result is shown in Fig. 5-4. The averaged values of RMS (root

mean square) error magnitude of position and attitude with respect to the estimated

pose were 15.79 cm and 7.74∘ respectively, and the plot at the bottom show that

the entire body motion can track the target linear velocity using the inverse CPG

model. The pose tracking error of each link, we believe, is mainly due to the low con-

trol gain, and the absence of the integral control by using decentralized impedance

control. However, this performance is still tolerable by the compliant property of

the controller. Also, the experiment of angular velocity generation is conducted for

both yaw and pitch direction. The system is first made to follow different target

yaw orientations with simple high-level proportional controller while undulating in

vertical direction. The result is depicted in Fig. 5-5 where the average of RMS error

magnitude of the seven links indicating the low-level pose tracking performance were

20.42 cm and 9.01∘. Also, we can see that the desired linear and angular velocities

are properly generated with the proposed CPG-based motion generation framework.

Lastly, the experiment of gait transition is also conducted that the system is com-

105



Figure 5-4: Forward speed modulation with CPG-based motion generation: (top)
low-level attitude tracking performance at each link; (bottom) high-level CPG-based
motion generation result.
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Figure 5-5: Yawing motion while undulating with vertical direction: (top) low-level
attitude tracking performance at each link; (bottom) high-level CPG-based motion
generation result.
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manded to undulate alternately in horizontal and vertical direction. The experiment

result is shown in Fig. 5-6 and we can see that the gait transition can be smoothly

done by proposed motion generation framework. The averaged values of RMS error

magnitude of pose tracking were 18.57 cm and 7.64∘ respectively.

108



Figure 5-6: Gait transition between vertical undulation mode and horizontal undu-
lation mode: (top) low-level attitude tracking performance at each link; (bottom)
high-level CPG-based motion generation result.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we present the contributions of developing key theoretical components

for realizing a novel articulated aerial robotic system called f-LASDRA. We first de-

velop an aerial robot called ODAR that can generate omni-directional wrench. To

maximize the thrust margin of the ODAR system, we conduct design optimization

that maximizes guaranteed minimum force and torque for any direction, while also

considering some constraints including system volume, self weight compensation,

and inter-rotor airflow avoidance to get a feasible solution. In addition, we pro-

pose a new control allocation method for the ODAR system to overcome the issue

of delayed thrust output when changing the rotating direction (ESC-singularity)

stemming from the sensorless motor and bi-directional thrust generation. Then, for

the outdoor flight of the LASDRA system using IMU/GPS sensors on each link,

we develop constrained Kalman filter based estimation framework along with its

semi-distributed version of algorithm so that we can obtain pose estimation results

satisfying kinematic constraint, while maintaining system scalability. Lastly, we

propose a CPG-based motion generation framework that generates target pose of

each link through a CPG model mimicking biomimetic motion and its simulation

111



with expected dynamic environment, and also incorporate inverse CPG model to

enable direct generation of desired body motion while also maintaining the CPG

generated natural motion.

6.2 Future Works

Some possible future research topics are as follows. Firstly, as the thrust is optimally

allocated with infinity norm minimization in a single link ODAR system, we can

also consider optimal wrench allocation for a group of links in LASDRA system by

exploiting actuation redundancy (or physically appear as internal forces between

the links). By doing so, a LASDRA link that demands more thrust than the other

would be able to get help of neighbouring links.

Furthermore, teleoperation of the whole LASDRA system would be another in-

teresting topic. Since we already have motion generation framework including CPG

model, motion can be generated only using few parameters, and this can be a nice ba-

sis for a simple and intuitive teleoperation. Also, the information of the autoencoder

output in the motion generation framework, meaning the nominal target motion,

might be efficiently used for the user information, such as giving an information of

difference between original and feasible target motion.
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초 록

분산된 로터로 구동되는 비행 스켈레톤 시스템의

디자인, 상태추정 및 제어

박 상 율

기계항공공학부

서울대학교

본 논문에서는 비행 스켈레톤 시스템 LASDRA (large-size aerial skeleton with

distributed rotor actuation) 의 구현을 위해 요구되는 핵심 기법들을 제안하며, 이를

실제 LASDRA 시스템의 실외 비행을 통해 검증한다. 제안된 기법은 1) 전방향으로

힘과 토크를 낼 수 있고 충분한 가용 렌치공간을 가진 링크 모듈, 2) 높은 자유도의

다관절구조시스템을위한위치및자세추정알고리즘, 3)자연스러운움직임을내는

동시에 전체 시스템이 속도, 각속도 등 원하는 움직임을 내도록 할 수 있는 모션 생성

프레임워크로 구성된다.

본 논문에서는 우선 링크 모듈의 디자인을 위해 전방향으로 보장되는 힘과 토

크의 크기를 최대화하는 구속 최적화를 사용하고, 실제 적용가능한 해를 얻기 위해

몇가지 구속조건(로터 간 공기 흐름 간섭의 회피 등)을 고려한다. 또한 센서가 없는

액츄에이터로 양방향 추력을 내는 것에서 야기되는 ESC 유발 특이점 (ESC-induced

singularity) 이라는 문제를 처음으로 소개하고, 이를 해결하기 위해 선택적 맵핑 (se-

lective mapping)이라는기법을제시한다.전체 LASDRA시스템의상태추정을위해

시스템의 기구학적 구속조건을 만족하는 결과를 얻을 수 있도록 구속 칼만 필터 기반

의 상태추정 기법을 제시하고, 시스템 확장성을 고려하여 반 분산 (semi-distributed)

개념의 알고리즘을 함께 제시한다. 마지막으로 본 논문에서는 자연스러운 움직임의

생성을 위하여 CPG 기반의 모션 생성 프레임워크를 제안하며, 기계 학습 방법을 통

해 CPG역연산모델을얻음으로써전체시스템이원하는움직임을낼수있도록한다.



주요어: 비행 스켈레톤, 디자인 최적화, ESC 유발 특이점, 확장성, 구속 칼만 필터,

중심 패턴 발생기, 기계 학습
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