554 research outputs found

    A Framework for Gamification of Human Joint Remote Rehabilitation, Incorporating Non-Invasive Sensors

    Get PDF
    Patients who have suffered soft tissue injuries or undergone surgery often experience reduced muscle strength, flexibility, and pain in the affected area, which can interfere with daily activities. Rehabilitation exercises are crucial in reducing symptoms and returning patients to normal activities. This research presents a framework for human joint rehabilitation that enables clinicians to set engaging gamified rehabilitation tasks for their patients utilising non-invasive sensors and machine learning algorithms

    Multi-modal usability evaluation.

    Get PDF
    Research into the usability of multi-modal systems has tended to be device-led, with a resulting lack of theory about multi-modal interaction and how it might differ from more conventional interaction. This is compounded by a confusion over the precise definition of modality between the various disciplines within the HCI community, how modalities can be effectively classified, and their usability properties. There is a consequent lack of appropriate methodologies and notations to model such interactions and assess the usability implications of these interfaces. The role of expertise and craft skill in using HCI techniques is also poorly understood. This thesis proposes a new definition of modality, and goes on to identify issues of importance to multi-modal usability, culminating in the development of a new methodology to support the identification of such usability issues. It additionally explores the role of expertise and craft skill in using usability modelling techniques to assess usability issues. By analysing the problems inherent in current definitions and approaches, as well as issues relevant to cognitive science, a clear understanding of both the requirements for a suitable definition of modality and the salient usability issues are obtained. A novel definition of modality, based on the three elements of sense, information form and temporal nature is proposed. Further, an associated taxonomy is produced, which categorises modalities within the sensory dimension as visual, acoustic and haptic. This taxonomy classifies modalities within the information form dimension as lexical, symbolic or concrete, and classifies the temporal form dimension modalities as discrete, continuous, or dynamic. This results in a twenty-seven cell taxonomy, with each cell representing one taxon, indicating one particular type of modality. This is a faceted classification system, with the modality named after the intersection of the categories, building the category names into a compound modality name. The issues surrounding modality are examined and refined into the concepts of modality types, properties and clashes. Modalities are identified as belonging to either the system or the user, and being expressive or receptive in type. Various properties are described based on issues of granularity and redundancy. The five different types of clashes are described. Problems relating to the modelling of multi-modal interaction are examined by means of a motivating case study based on a portion of an interface for a robotic arm. The effectiveness of five modelling techniques, STN, CW, CPM-GOMS, PUM and Z, in representing multi-modal issues are assessed. From this, and using the collated definition, taxonomy and theory, a new methodology, Evaluating Multi-modal Usability (EMU), is developed. This is applied to a previous case study of the robotic arm to assess its application and coverage. Both the definition and EMU are used by students in a case study to test the definition and methodology's effectiveness, and to examine the leverage such an approach may give. The results shows that modalities can be successfully identified within an interactive context, and that usability issues can be described. Empirical video data of the robotic arm in use is used to confirm the issues identified by the previous analyses, and to identify new issues. A rational re-analysis of the six approaches (STN, CW, CPM-GOMS, PUM, Z and EMU) is conducted in order to distinguish between issues identified through craft skill, based on general HCI expertise and familiarity with the problem, and issues identified due to the core of the method for each approach. This is to gain a realistic understanding of the validity of claims made by each method, and to identify how else issues might be identified, and the consequent implications. Craft skill is found to have a wider role than anticipated, and the importance of expertise in using such approaches emphasised. From the case study and the re-analyses the implications for EMU are examined, and suggestions made for future refinement. The main contributions of this thesis are the new definition, taxonomy and theory, which significantly contribute to the theoretical understanding of multi-modal usability, helping to resolve existing confusion in this area. The new methodology, EMU, is a useful technique for examining interfaces for multi-modal usability issues, although some refinement is required. The importance of craft skill in the identification of usability issues has been explicitly explored, with implications for future work on usability modelling and the training of practitioners in such techniques

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    Designing for Effective Freehand Gestural Interaction

    Get PDF

    Directing animated creatures through gesture and speech

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1995.Includes bibliographical references (leaves 71-75).by Joshua Bers.M.S

    Real-time Immersive human-computer interaction based on tracking and recognition of dynamic hand gestures

    Get PDF
    With fast developing and ever growing use of computer based technologies, human-computer interaction (HCI) plays an increasingly pivotal role. In virtual reality (VR), HCI technologies provide not only a better understanding of three-dimensional shapes and spaces, but also sensory immersion and physical interaction. With the hand based HCI being a key HCI modality for object manipulation and gesture based communication, challenges are presented to provide users a natural, intuitive, effortless, precise, and real-time method for HCI based on dynamic hand gestures, due to the complexity of hand postures formed by multiple joints with high degrees-of-freedom, the speed of hand movements with highly variable trajectories and rapid direction changes, and the precision required for interaction between hands and objects in the virtual world. Presented in this thesis is the design and development of a novel real-time HCI system based on a unique combination of a pair of data gloves based on fibre-optic curvature sensors to acquire finger joint angles, a hybrid tracking system based on inertia and ultrasound to capture hand position and orientation, and a stereoscopic display system to provide an immersive visual feedback. The potential and effectiveness of the proposed system is demonstrated through a number of applications, namely, hand gesture based virtual object manipulation and visualisation, hand gesture based direct sign writing, and hand gesture based finger spelling. For virtual object manipulation and visualisation, the system is shown to allow a user to select, translate, rotate, scale, release and visualise virtual objects (presented using graphics and volume data) in three-dimensional space using natural hand gestures in real-time. For direct sign writing, the system is shown to be able to display immediately the corresponding SignWriting symbols signed by a user using three different signing sequences and a range of complex hand gestures, which consist of various combinations of hand postures (with each finger open, half-bent, closed, adduction and abduction), eight hand orientations in horizontal/vertical plans, three palm facing directions, and various hand movements (which can have eight directions in horizontal/vertical plans, and can be repetitive, straight/curve, clockwise/anti-clockwise). The development includes a special visual interface to give not only a stereoscopic view of hand gestures and movements, but also a structured visual feedback for each stage of the signing sequence. An excellent basis is therefore formed to develop a full HCI based on all human gestures by integrating the proposed system with facial expression and body posture recognition methods. Furthermore, for finger spelling, the system is shown to be able to recognise five vowels signed by two hands using the British Sign Language in real-time

    3-D Interfaces for Spatial Construction

    Get PDF
    It is becoming increasingly easy to bring the body directly to digital form via stereoscopic immersive displays and tracked input devices. Is this space a viable one in which to construct 3d objects? Interfaces built upon two-dimensional displays and 2d input devices are the current standard for spatial construction, yet 3d interfaces, where the dimensionality of the interactive space matches that of the design space, have something unique to offer. This work increases the richness of 3d interfaces by bringing several new tools into the picture: the hand is used directly to trace surfaces; tangible tongs grab, stretch, and rotate shapes; a handle becomes a lightsaber and a tool for dropping simple objects; and a raygun, analagous to the mouse, is used to select distant things. With these tools, a richer 3d interface is constructed in which a variety of objects are created by novice users with relative ease. What we see is a space, not exactly like the traditional 2d computer, but rather one in which a distinct and different set of operations is easy and natural. Design studies, complemented by user studies, explore the larger space of three-dimensional input possibilities. The target applications are spatial arrangement, freeform shape construction, and molecular design. New possibilities for spatial construction develop alongside particular nuances of input devices and the interactions they support. Task-specific tangible controllers provide a cultural affordance which links input devices to deep histories of tool use, enhancing intuition and affective connection within an interface. On a more practical, but still emotional level, these input devices frame kinesthetic space, resulting in high-bandwidth interactions where large amounts of data can be comfortably and quickly communicated. A crucial issue with this interface approach is the tension between specific and generic input devices. Generic devices are the tradition in computing -- versatile, remappable, frequently bereft of culture or relevance to the task at hand. Specific interfaces are an emerging trend -- customized, culturally rich, to date these systems have been tightly linked to a single application, limiting their widespread use. The theoretical heart of this thesis, and its chief contribution to interface research at large is an approach to customization. Instead of matching an application domain's data, each new input device supports a functional class. The spatial construction task is split into four types of manipulation: grabbing, pointing, holding, and rubbing. Each of these action classes spans the space of spatial construction, allowing a single tool to be used in many settings without losing the unique strengths of its specific form. Outside of 3d interface, outside of spatial construction, this approach strikes a balance between generic and specific suitable for many interface scenarios. In practice, these specific function groups are given versatility via a quick remapping technique which allows one physical tool to perform many digital tasks. For example, the handle can be quickly remapped from a lightsaber that cuts shapes to tools that place simple platonic solids, erase portions of objects, and draw double-helices in space. The contributions of this work lie both in a theoretical model of spatial interaction, and input devices (combined with new interactions) which illustrate the efficacy of this philosophy. This research brings the new results of Tangible User Interface to the field of Virtual Reality. We find a space, in and around the hand, where full-fledged haptics are not necessary for users physically connect with digital form.</p

    Bringing the Physical to the Digital

    Get PDF
    This dissertation describes an exploration of digital tabletop interaction styles, with the ultimate goal of informing the design of a new model for tabletop interaction. In the context of this thesis the term digital tabletop refers to an emerging class of devices that afford many novel ways of interaction with the digital. Allowing users to directly touch information presented on large, horizontal displays. Being a relatively young field, many developments are in flux; hardware and software change at a fast pace and many interesting alternative approaches are available at the same time. In our research we are especially interested in systems that are capable of sensing multiple contacts (e.g., fingers) and richer information such as the outline of whole hands or other physical objects. New sensor hardware enable new ways to interact with the digital. When embarking into the research for this thesis, the question which interaction styles could be appropriate for this new class of devices was a open question, with many equally promising answers. Many everyday activities rely on our hands ability to skillfully control and manipulate physical objects. We seek to open up different possibilities to exploit our manual dexterity and provide users with richer interaction possibilities. This could be achieved through the use of physical objects as input mediators or through virtual interfaces that behave in a more realistic fashion. In order to gain a better understanding of the underlying design space we choose an approach organized into two phases. First, two different prototypes, each representing a specific interaction style – namely gesture-based interaction and tangible interaction – have been implemented. The flexibility of use afforded by the interface and the level of physicality afforded by the interface elements are introduced as criteria for evaluation. Each approaches’ suitability to support the highly dynamic and often unstructured interactions typical for digital tabletops is analyzed based on these criteria. In a second stage the learnings from these initial explorations are applied to inform the design of a novel model for digital tabletop interaction. This model is based on the combination of rich multi-touch sensing and a three dimensional environment enriched by a gaming physics simulation. The proposed approach enables users to interact with the virtual through richer quantities such as collision and friction. Enabling a variety of fine-grained interactions using multiple fingers, whole hands and physical objects. Our model makes digital tabletop interaction even more “natural”. However, because the interaction – the sensed input and the displayed output – is still bound to the surface, there is a fundamental limitation in manipulating objects using the third dimension. To address this issue, we present a technique that allows users to – conceptually – pick objects off the surface and control their position in 3D. Our goal has been to define a technique that completes our model for on-surface interaction and allows for “as-direct-as possible” interactions. We also present two hardware prototypes capable of sensing the users’ interactions beyond the table’s surface. Finally, we present visual feedback mechanisms to give the users the sense that they are actually lifting the objects off the surface. This thesis contributes on various levels. We present several novel prototypes that we built and evaluated. We use these prototypes to systematically explore the design space of digital tabletop interaction. The flexibility of use afforded by the interaction style is introduced as criterion alongside the user interface elements’ physicality. Each approaches’ suitability to support the highly dynamic and often unstructured interactions typical for digital tabletops are analyzed. We present a new model for tabletop interaction that increases the fidelity of interaction possible in such settings. Finally, we extend this model so to enable as direct as possible interactions with 3D data, interacting from above the table’s surface

    Graphics Technology in Space Applications (GTSA 1989)

    Get PDF
    This document represents the proceedings of the Graphics Technology in Space Applications, which was held at NASA Lyndon B. Johnson Space Center on April 12 to 14, 1989 in Houston, Texas. The papers included in these proceedings were published in general as received from the authors with minimum modifications and editing. Information contained in the individual papers is not to be construed as being officially endorsed by NASA
    • 

    corecore