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Abstract 

Patients who have suffered soft tissue injuries or undergone surgery often 

experience reduced muscle strength, flexibility, and pain in the affected area, which 

can interfere with daily activities such as eating, showering, and working. 

Rehabilitation exercises are crucial in reducing symptoms and returning patients to 

normal activities. However, performing exercises at home can be challenging without 

the supervision of a clinician to ensure the safety, efficacy, and correctness. 

Furthermore, patients may lose motivation due to the repetitive nature of the exercises 

and lack of feedback outside clinical environments. This research presents a 

framework for human joint rehabilitation that enables clinicians to set engaging 

rehabilitation tasks for their patients. The developed framework utilises non-invasive 

sensors and machine learning algorithms to precisely measure and document joint 

movements by providing real time feedback on the progress of the exercises for 

patients and clinicians. The implementation of gamification will add an entertaining 

and interactive dimension to the rehabilitation process, helping to increase patient 

engagement, which is a vital component of long-term rehabilitation success that will 

reduce the risk of exercises being abandoned. 
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Chapter 1: Introduction 

1.1 BACKGROUND 

 Within rehabilitation programs, patients are required to engage in a sequence of 

repetitive exercises as part of a timely intervention strategy. This approach aids them 

in recovering, enhancing, or maintaining their usual functional capabilities [1]. 

Patients in rehabilitation performing repetitive movements often find them tedious and 

increasingly frustrating. Ultimately, making the rehabilitation less effective as the 

patient becomes more un-motived and discouraged throughout their exercise program 

[2]. Increasingly, home-based rehabilitation therapy for patients focused on 

performance through a goal-orientated task to maximise results and minimising long-

term disability is becoming more relevant in today’s circumstances [3]. Due to 

increasing demands for rehabilitation services, medical staff reduction, and rising 

costs, clinicians have limited availability to monitor and provide  high levels of care 

to patients, resulting in longer recovery times [4]. Available clinical tools such as 

goniometers are the most common method to measure the baseline limitations of the 

range of motion for joint angles [5]. However, clinical supervision is required for using 

goniometers. The problem here is that as a patient progresses through their exercise 

program, they will need to visit their therapist to validate and monitor their progress. 

With this method, feedback to patients is limited by the therapist’s availability rather 

than meeting the needs of the patient’s requirements.  The lack of supervision and 

limited feedback may lead to a reduction in patient motivation for long conditioning 

programs and has a negative impact of the effectiveness of the rehabilitation exercises. 

However, the introduction of non-invasive sensors and movement tracking devices can 

provide a new method to capture home-based rehabilitation exercises performed by 

the patient in real-time. Devices such as Microsoft Kinect and Leap Motion controller 

utilise infrared sensors and structured light technology, whereas video game 

controllers contain Inertial Measurement units (IMU) that can assist in extrapolating 

data for clinicians. This allows for opportunities to analyse patient movement data, 

while incorporating an environment for video games in which the patient can perform 

exercises movements in an engaging  and enjoyable way [6]. Rehabilitation exercise 
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programs already utilise physical games and activities throughout an exercise program 

so use of technology in the space is a worthwhile effort[7].  

1.2 SCOPE AND OBJECTIVES 

This thesis provides a framework for gamification of human joint remote 

rehabilitation exercises utilising non-invasive sensors. This framework provides 

guidelines on how a given rehabilitation program can be enhanced with inclusion of 

gamification and how it can be adapted such that the data provided by the framework 

is clinically reliable. The main aim of this framework is to provide an environment 

where both clinicians and patients undertaking a rehabilitation exercise program can 

benefit from the inclusion of technology and gamified concepts as a means of 

generating greater motivation and engagement with the program.  To Achieve this, 

non-invasive sensors and machine learning algorithms were utilised to capture human 

joint movement. This movement data facilitated engagement with the designed 

gamified rehabilitation exercises where information regarding the joint movements 

and correctness of the exercises is documented.  

The developed framework provides live feedback to the user on how accurately 

they are engaging in the rehabilitation exercises and keeps a record of number of 

repetitions, range of joint movements, smoothness of movements, and correctness of 

exercises for each session.  Clinicians can utilise this data as a metric to gauge the 

user's progress and engagement with the rehabilitation program, The data can also 

provide insight into why an exercise program is not working since movement over 

time is measured and logged through the framework.  

Different elements of the developed framework were validated through clinical 

trials and pilot studies to ensure its clinical usability. Additionally, several use cases 

were considered and published in peer review journals to demonstrate the utility of the 

framework in different areas. It is important to highlight that due to inclusion of human 

participants in this research, human ethics approvals were attained, and participants 

provided informed consent when engaging with this research. Since the research 

included multiple use cases, where relevant, separate ethics approvals were attained.   

The gamified elements of the framework will promote further engagement with 

the rehabilitation program and encourages the user to maintain participation in the 

required exercises.  Numerous exercise templates and adaptable mini games have been 
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supplied as examples of aligning rehabilitation exercises with gamified encounters, all 

while preserving the integrity of the exercises. Additionally, guidelines have been 

provided on customising the gamified elements, so they meet rehabilitation 

requirements on a user-to-user basis.  

1.3 THESIS OUTLINE 

This thesis is presented into six main chapters that explain key aspects of this 

research. The thesis structure and a small summary of the content for each chapter has 

been explained below: 

• Chapter 2, Literature Review:

This chapter provides and in-depth analysis of the literature by analysing 

different methods of capturing human movements that is relevant to 

rehabilitation. Both clinical and on clinical environments are review as part 

of this chapter. After reviewing the technology, key elements in analysis of 

human movement technologies are reviewed. Finally, this chapter provides 

a review on current practices in human movement rehabilitation both using 

traditional methods and gamified approaches.

• Chapter 3, Experiment Design:

This chapter provides an overview on the methodology for design of 

different technologies required for defining the framework. In this chapter, 

hardware and machine learning requirements for development of the 

framework have been detailed followed by design of human computer 

interface components of the frame through visualisation in the Unity game 

engine. This chapter also highlights how joint and smoothness 

measurements are conducted. Finally, this chapter provides design 

templates for developing gamified exercises in such a way that the games 

are replicating gamification exercises and the data collected during the 

exercises is clinically valid and is relevant to the user and the clinician.

• Chapter 4, Use Case Examples:

This chapter contains four different use cases as published peer assessed 

journal articles that evaluate different elements related to the development 

of the framework. The evaluation techniques of both sensor and machine
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learning elements of the paper can also be read in this chapter. All the 

published papers in this chapter are available in open access journals so the 

reader my choose to read the article on the journals website if they wish.  

• Chapter 5, Analysis of Results and System Testing:

This chapter provides and in-depth details on analysis of results and system 

testing for this research. The evaluation of results is provided from both 

engineering perspectives as well as clinical perspectives. The engineering 

perspectives include result of different quantitative analysis methods for 

evaluating the data provided by the framework and details the details of 

relevant verification procedures. The second part of this chapter contains the 

qualitative analysis of a focus group discussion held with experts in field of 

rehabilitation.

• Chapter 6, Conclusions:

This chapter contains a summary of contributions of this thesis and provides 

guidelines for future development and directions for implementation of 

gamified concepts in rehabilitation settings.
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Chapter 2: Literature Review 

2.1 LIMITATION AND SCOPE OF LITERATURE REVIEW 

This section provides an in-depth literature review on the topic of gamification 

of rehabilitation. The review will cover a summary of selected human motion capture 

technologies use in the context of rehabilitation. The technologies are categorized 

primarily into sensor-based and optical motion capture technologies, serving as the 

primary approaches for capturing human movement intended for integration into a 

gamified environment. As mentioned in Chapter 1, one of the objectives of the 

developed framework is to provide a low-cost solution that would be viable for most 

people so the most accurate solution may not be the best solution as the mechanism 

for capturing human movement. The requirement of low cost and accessibility of the 

solution exclude the study or technologies such as Virtual Reality (VR) or Augment 

Reality (AR).  

After reviewing the technology, key elements in analysis of the human 

movement data are explored. This section will also provide an in depth look at one of 

the more complex aspects of human motion capture which is gesture control.  

Finally, the review will focus on current practices in human joint rehabilitation 

both in clinical settings and gamified settings. This section will also provide a look at 

game design theories and how it has been applied to rehabilitation in the past.  

2.2 SUMMARY OF SELECTED HUMAN MOTION CAPTURE 

TECHNOLOGIES 

2.2.1  Human Motion Capture Technologies in Clinical Environments  

Goniometers and inclinometers are the main tools used in clinical research to 

measure joint angles [8]. A goniometer is an instrument that can be used for measuring 

joint angles and the available range of motion at a joint and monitoring changes in 

joint angles in clinical settings,  [9]. Inclinometers are specific types of goniometers 

dependent on gravity and are used to measure motion in the spine by placing the device 

on the neck or spine and reading the angle at different positions. This use of 

goniometers requires precision for an accurate reading which is achieved through 

skilful observation and practice, with human error being a major factor that leads to 
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them being inaccurate and unreliable, according to [10] and [11]. The accuracy of 

range of motion measurement is a crucial part of clinical assessment since this 

information is used as a guide for treatment plans, evaluating the effectiveness of 

treatments, and monitoring an individual’s response to the treatments [12]. The 

reliance on the ability of the clinicians to accurately palpate bony landmarks and 

visually estimate the alignment of the axis of the body part and goniometer can cause 

issues. Goniometers are reliable, versatile, and widely used, even with measurement 

errors of up to 15 degrees. The issue lies when the dynamic range of movement needs 

to be measured, especially when dealing with a younger age group [13] [14]. 

In some instances, other clinical tools need to be utilised when there is a 

requirement to get a better understanding of overall posture rather than joint 

measurements. X-rays are used to determine spinal health and to evaluate the 

alignment of bones, and magnetic resonance imaging (MRI) or CT scans are used to 

determine any issues with nerves, muscles, tissues, tendons, bones, ligaments, etc [15]. 

Furthermore, nerve studies utilising electromyography (EMG) are used to measure 

electrical impulses produced by the nerve in response to muscles. This is done with 

the aim of determining nerve compressions caused by a herniated disk or diagnosing 

spinal stenosis [15].  

2.2.2 Sensor-Based Motion Capture Technologies 

There are several sensor-based approaches available such as use of Infrared (IR) 

LEDs, Fiber-Optic Sensors, E-Textile Sensors, and Inertial Measurement Units (IMU). 

These technologies are explored in the following subchapters [14] [16].  

Infrared and Near Infrared Based Hand Tracking Technologies 

Infrared cameras (IR) than detect light emitted from a surface within set 

temperature ranges can be utilised for capturing hand movements [17]. IR cameras 

allow segmentation techniques to be run on items within a similar temperature to the 

human body. This reduction in areas required for segmentation, the computational 

requirements are greatly reduced compared to methods that use colour-based hand 

tracking techniques [17] [14].  

A study conducted in [17] demonstrates the ease of implementing segmentation 

in body temperature range of 30°C-37°C where the regions in this range provide a 

higher pixel value compared to the remaining pixels. The algorithm removes the other 
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objects detected within this range by omitting the smallest regions first followed by 

selecting 2 of the largest regions. The algorithm assumes a single arm if only one 

region has been detected [17]. The operator’s hand and arms are extracted from an 

image followed by a search window to determine the orientation of each arm. The 

search window looks for fingertips in smaller windows which lowers the 

computational requirements. Finger approximation of a rectangle with a semicircle tip 

is then utilised for each finger. This method utilises the approximation mentioned 

before to search for semicircles in the segmented image. The study in [17] shows that 

20 candidates with the highest ratings are utilised before removal of false positives 

from the sample. False positives on multiple matches around a candidate are removed, 

which means the neighbours with lower scored around the highest score candidate will 

be removed. Another approach removes false candidates by reviewing pixels 

surrounding the centre of a matching template. Multiple pixels are checked in a 

diagonal direction inside the hand region and the candidate is removed if they are 

found. After removal of the false positives, the system is able to correctly identify the 

fingertips in the captured in image [17].  

One of the uses of IR techniques can be seen in Leap Motion Controller (LMC) 

which is small optical hand tracking module. LMC can track hands within 3D areas up 

to 110cm from the device in a field view of 160x160° [18]. LMC uses two near infrared 

cameras with 115 frames per second. Early testing results of LMC can be seen in [19] 

where static and dynamic hand tracking can be measured. However, the joint angles 

calculated via this device have not been clinically validated.  

Active Sonar Finger Tracking 

Sonar methods are commonly used to detect and determine the distance and 

direction of objects underwater utilising acoustics. An interesting use of sonar can be 

seen in FingerIO a project taking place at Washington University. This project aims to 

use active sonar for finger tracking. The study conducted by [20] utilises mobile 

devices such as smart phones and smart watches as active sonar tracking beacons. The 

system provides inaudible soundwave in 18 to 20 kHz sample rates couples with speed 

of sound in the air which provides an error of 2.1-2.8cm in finger position. FingerIO 

uses Orthogonal Frequency Division Multiplexing (OFDM) to compute cyclic suffix 

of S samples and uses it to calculate sample error. The sample error is then utilised to 

correct incoming signals to achieve fine grain finger tracking with 8mm accuracy [20]. 
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The system is currently under development and there is relatively high errors in finger 

position which makes it not ideal for clinical applications. 

Fiber-Optic Sensing for Posture Monitoring 

Fiber-optic sensors utilise measurements of light traveling through an optical 

fibre system which can be in form of light intensity, phase, and polarization [21]. The 

advantage of this technique is the  immunity to electromagnetic interference, radio 

frequency interference, and lack of effects from corrosive environments [22]. Fiber-

optic sensors can withstand high temperatures, provide a wide dynamic range, and 

contain large bandwidths [22]. Study conducted by Roehampton University [23] 

provide a dynamic method in measuring lumbar curvature via Fiber-optic sensors. This 

study, 8 Fiber-optic sensors are paired in series and attached to a ribbon of sprung steel 

in an elastic housing which allowed the ribbon to slide freely during spinal movement. 

The measurements were compared to optical motion capture technologies for 

validation with the conclusion that these sensors can be used for sagittal lumber 

curvature measurements across time [23]. This method is not suitable in clinical setting 

due to the high cost of the sensor implementation and lack of clinical validation of the 

sensor data [16].  

E-Textile Sensors for Posture Monitoring

E-textile sensors commonly refers to electronic textiles which are fabrics that

incorporate electronics woven within them [24]. The sensors within the fabrics are 

interconnected which will lead into a less invasive design, tangle free, and cannot be 

snagged by other objects. A review conducted by [25] mentions the human skin and 

the clothes as the inspiration behind the invention of textile sensors. Similar to human 

skin’s reaction to stimuli, electronic textiles will react to the environment through 

transfer of energy through material [16].  

As a part of the study conducted by [26], a wireless wearable T-shirt for posture

monitoring of rehabilitation exercises has been developed. This solution is made of 

stretchable fabric containing wireless sensors that operate as textile substrate. The 

inductive sensors were sewn in a zigzag pattern to front and back of the shirt leading 

to a lightweight design. The sensors measured deformation as the shirt lengthens and 

shortens in the sagittal plane of the body utilising inductive impedance measurements. 

The results were validated against optical motion capture technologies to show the 

reliability of the techniques. The limitation of this design is the notion that the subject 
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seating is minimal, and it will not interfere with parasitic capacitance. This limitation 

as well as relaxation of the tight stretchable shirt worn our due to use and washes makes 

this design unreliable in clinical settings.  

Inertial Measurement Unit (IMU) 

 Inertial measurement units (IMU) are among the most popular methods for 

capturing movement and position of objects. IMUs include an accelerometer, 

gyroscope, and magnetometer usually connected to microcontroller module to transfer 

orientation information[16]. IMUs  are well-developed, non-invasive, affordable with 

long battery life [25]. IMUs require minimal computational power and have been 

implemented in wide range of application as reviewed by [27]. In recent years there 

has been a number of IMU based motion capture research studies such as studies of 

gait modulation in patients with foot drop problems [28] and human activity 

recognition using thigh angle derived from single thigh mounted IMU data [29]. The 

use of IMUs for hand movement in free space is currently underdeveloped primarily 

due to the lack of a clear calibration reset point compared to gait analysis. Later in 

Chapter 4 of this thesis, use of IMUs in classification of movement associated with 

Cerebral Palsy will be discussed [16] [14].  

Depending on the application of IMUs, a relevant signal-processing pipeline 

needs to be used so that the data can be sent to an external computer accurately without 

any loss. It is also important to calibrate the device to find an initial position for the 

sensor [30].  Kalman filter, complementary filter and sensor fusion techniques are 

common filtering approaches when working with IMUs. IMUs provide a full 

orientation frame and position for the wrist which can be used to for the gamification 

of the rehabilitation exercises. The issue with using IMUs in free space is the lack of 

initial starting position for initialization which needs to be determined as a part of this 

research. The use of IMUs within the designed framework will further be discussed in 

Chapter 3. 

2.2.3 Optical Motion Capture Technologies 

The use of digital technology is another appropriate method for human motion 

capture. Motion capture (also known as mo-cap) refers to a group of technology where 

the movement of people is recorded digitally [31]. The history of motion capture dates 

to the 1960s, when Lee Harrison III, who was an American animator, used the 
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recording of real-time human movement for animation. This recording was done via a 

series of adjustable resistors, cathode ray tubes, and analogue circuits [32] [14]. 

Motion capture is used in sports, medical applications, entertainment, 

ergonomics, and robotics. When used in filmmaking and game development, it is 

combined with the recording of actions of actors for animations and visual effects. 

Additionally, full body movement, face tracking, facial expression, and finger 

movements are combined together to create performance capture [31]. In health care, 

motion capture is used for gait analysis which is to analyse an individual’s walking 

pattern or for kinematic modelling in biomechanics.  

Optical passive motion capture technologies use retro-reflective markers 

attached to the body parts of the individual that reflects light onto a nearby camera 

lens. From this reflection, the position of the marker is calculated within three-

dimensional space and recorded. Optical active motion capture uses the same 

technique, but rather than reflecting light; the light is emitted [32]. 

The equipment required for motion capture is extremely costly and is not 

commonly available in a typical hospital; for example, according to Thewlis et al. [33], 

a simple Vicon system [34] cost approximately AUD $250,000 (US $268,605.52) in 

2011 [33]. Even if the equipment is available, it would be difficult to utilise this 

technology outside research contexts as participants will need to be moved to these 

motion analysis laboratories to conduct measurements. Another limitation is the need 

for additional expert staff to run the laboratories for the motion analysis [14]. 

2.3 REVIEW OF KEY ELEMENTS IN ANALYSIS OF HUMAN MOTION 

CAPTURE  

2.3.1 Use of Coordinate Systems in Human Motion Capture 

The orientation of a rigid body with respect to a fixed coordinate system can be 

described using three angles, referred to as the Euler angles. These angles which have 

been illustrated in Figure 1 are defined as the roll, pitch, and yaw (𝜙, 𝜃, 𝜓). It is not 

important what order these angles are represented; however, the order of rotation is 

crucial. The rotation matrix for each individual Euler angle is shown in Eq 1 to Eq 3. 

The ZYX order of rotation evaluated in this study was used to generate the equivalent 

rotation matrix in Eq 4 describing the three consecutive rotations in Matlab. Note that 

the individual rotations are applied in reverse order. The order of rotations is critical, 
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and thus, there exist twelve possible sequences of rotation axis that can be divided into 

two groups: 

1) Proper Euler angles: zxz, xyx, yzy, zyz, xzx, yxy. 

2) Tait- Bryan Angles: xyz, yzx, zxy, xzy, zyx, yxz. 

The most common combination used to re-orientate the body from an initial frame at 

XYZ is using Tait-Bryan angles, namely combination zyx, which consist of a rotation 

the previously mentioned Pitch, Roll, and Yaw values [35].  

 

Figure 1: Euler angles using an aircraft [36] 

 

Eq 1 
 

𝑅(𝜓) = [

1 0 0
0 cos(𝜓) −sin(𝜓)
0 sin(𝜓) cos(𝜓)

] 

Eq 2 
 

𝑅(𝜃) = [
cos(𝜃) 0 −sin(𝜃)

0 1 0
sin(𝜃) 0 cos(𝜃)

] 

Eq 3 

 
 

𝑅(𝜙) = [
cos⁡(𝜙) sin(𝜙) 0
−sin⁡(𝜙) cos(𝜙) 0

0 0 1

] 

Eq 4 
 

𝑅(𝜙, 𝜃, 𝜓) = [
cos⁡(𝜙) sin(𝜙) 0
−sin⁡(𝜙) cos(𝜙) 0

0 0 1

] [
cos(𝜃) 0 −sin(𝜃)

0 1 0
sin(𝜃) 0 cos(𝜃)

] [

1 0 0
0 cos(𝜓) −sin(𝜓)
0 sin(𝜓) cos(𝜓)

] 

 

Advantages to using Euler angles are that it is easier to visualize and can describe 

rotation and orientation in a precise manner, but a significant disadvantage is that of 

the occurrence of gimbal lock which results in the loss of a degree of freedom. Gimbal 

lock occurs when two out of three gimbals are aligned, this can be translated to a pitch 
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of ±90 degrees in the ZYX order of rotation. An example of gimbal lock is shown in 

Figure 2. 

 

Figure 2: Example of gimbal Lock [37] 

 

Setting 𝜃 = 90 and applying basic trigonometric identities to the rotation matrix 

of Eq 3 results in Eq 4. From this equation it can be observed that changing the roll 

and yaw values will yield the same rotation matrix. To interpret the raw numerical 

data, a 3D animation has been developed by [37] which uses a unit sphere to represent 

the orientation of the wearable device. The orientation of the sphere is constantly 

updated using consecutive Euler angle measurements and synchronised using their 

corresponding timestamps. Layout of the orientation frame can be seen in Figure 3. 

 

Figure 3: Layout of the orientation frame [37] 

 

The fixed coordinate system is represented by the black lines originating from 

the centre of the sphere labelled x, y and z which point to north, east and down 

respectively. The sphere representing the orientation of the wearable device contains 
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three red markers labelled f(i), f(j) and f(k) which point in the positive x-axis, y-axis 

and z-axis of an example sensor as illustrated in Figure below. The time corresponding 

to the orientation is displayed in the top corner of the plot. The basic operating 

principal behind the Matlab code  is application of the rotation matrix described in Eq 

5 to a set of coordinates that define a unit sphere [37]. 

Eq 5 
 

𝑅(𝜙, 𝜃, 𝜓) = [
0 −𝑠𝑖𝑛(𝜙 − 𝜓) 𝑐𝑜𝑠(𝜙 − 𝜓)
0 cos(𝜙 − 𝜓) 𝑠𝑖𝑛(𝜙 − 𝜓)
−1 0 0

] 

 

Quaternions can represent the orientation of a rigid body with respect to a fixed 

coordinate frame without the added limitation of gimbal lock observed using Euler 

angles. Quaternions consist of four values, one real component 𝑞0 and three imaginary 

components 𝑞1, 𝑞2, 𝑞3 as shown in Eq 6. A unit quaternion is defined as an ordinary 

quaternion with a magnitude of one. 

Eq 6 
 

𝑞̂ = ⁡ 𝑞0 +⁡𝑞1𝒊 +⁡𝑞2𝒋 + 𝑞3𝒌 

 

The symbols 𝑖, 𝑗, 𝑘 in the quaternion expression are unit vectors pointing along 

the three perpendicular spatial axes. The fundamental formula describing quaternion 

algebra is shown in Eq 7.  

Eq 7 
 

𝒊2 = 𝒋2 = 𝒌2 = 𝒊𝒋𝒌 = −1 

 

The quaternion notation used to represent a rotation of 𝜃 degrees about an axis 

defined by the vector 𝑢̂ = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) is shown in Eq 8. 

Eq 8 
 

𝑞̂ = cos (
𝜃

2
) + (𝑢𝑥𝒊 + 𝑢𝑦𝒋 + 𝑢𝑧𝒌) sin (

𝜃

2
) 

 

2.3.2 Calculation of Smoothness Measurements in Human Motion Capture 

In addition to capturing orientation of an object, the captured IMU data can be 

utilised to provide a smoothness measurement of human movement. Research 

presented in [38] advises that measuring and quantifying smoothness provides a great 

merit to rehabilitation as it represents how much control the participants have had on 
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their movement. According to [39], smoothness of movement in each rehabilitation 

exercises demonstrates how uninterrupted the movement was given that the following 

attributes are taken place when considering smoothness: 

• Being dimensionless 

• Being consistent 

• Being sensitive to change in movement. 

• Being practical  

Smoothness of movement is typically represented by a bell-shape speed provide 

where movements that lack this kinematic pattern are considered as less smooth [38]. 

Less smooth movement tens to have multiple peaks so a single observed peak would 

demonstrate smooth movement. These peaks are referred to as intermittencies and can 

occur due capability of the performer and nature of the tasks. Intermittency is created 

by impairments such as a deficiency in motor control or result of an injury. The 

exercises them can also form intermittencies for instance in point to point reaching 

where the smoothness is highly dependent on the activity. This means the smoothness 

of different tasks cannot be compared to each other [38]. Smoothness can be calculated 

utilising Log Dimension Less Jerk (LDLG) and spectral Arc Length (SPARC) as stated 

in [39]. 

There are several methods for capturing how much jerk exists in a movement as 

represented by [38] and [40]. Jerk-based calculations are usually not dimensionless, 

however [40] defines dimensionless jerk (DLJ) and log dimensionless jerk (LDLJ) 

which both meant the validation criteria mentioned above. Eq 9 shows LDLJ-V as a 

velocity-based equation derived from [39] which itself is derived from the equation to 

determine LDJ. The main different here is the fact that LDLJ-V utilises the negative 

natural log of the absolute value that is provided by LDJ. LDLJ-V uses a normalisation 

factor captured from the peach velocity to make results dimensionless. In Eq 9, 𝑡1 and 

𝑡2 represent the time period of the movement, 𝑣(𝑡) is the velocity of the movement in 

the time domain, and 𝑣𝑝𝑒𝑎𝑘 is the max velocity.  
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Eq 9 

𝜆𝐿
𝑣(𝒗) ≜ − ln(

(𝑡2 − 𝑡1)
3

𝑣𝑝𝑒𝑎𝑘
2 ∫ ‖

𝑑2

𝑑𝑡2
𝑣(𝑡)‖

2

𝑑𝑡
𝑡2

𝑡1

) 

 

𝑣𝑝𝑒𝑎𝑘 ≜ max‖𝒗(𝑡)‖ , 𝑡𝜖[𝑡1, 𝑡2] 
 

 

SPARC is another method for smoothness measurement which is dependent on 

the movement arrest periods (MAP). MAP is defined at the period with no movement 

and a period with movement is one where some velocity is experienced. This period 

of movement is the loss in measurements of higher derivatives such as acceleration 

and jerk as stated in [39]. SPARC uses sub movements across a period to model the 

movement which can be seen in Eq 10 [39].  

Eq 10 

𝜆𝑆
𝑣(𝒗) ≜ −∫ [(

1

𝜔𝑐
)
2
+ (

𝑑𝑉̂(𝜔)

𝑑𝜔
)
2

]

1

2

𝑑𝜔
𝜔𝑐

0
  

 

𝑉̂(𝜔) =
𝑉(𝜔)

𝑉(0)
; 𝑉(𝜔) = |𝐹(‖𝒗(𝑡)‖)| 

 

 

In Eq 10, 𝑉(𝜔) is the Fourier magnitude of 𝒗(𝑡), 𝑉̂(𝜔) is the normalised 

magnitude spectrum. 𝜔𝑐 is the adaptive cut off frequency which differentiates Spectral 

Arc Length (SAL) from SPARC. SAL utilises 40π, but SPARC uses an adaptive range 

as its cut of point. This is to reduce the sensitivity to temporal scaling up to the 

determined cut-off frequency as seen in Eq 11. 

 

Eq 11 𝜔𝑐 = 𝑚𝑖𝑛 {𝜔𝑐
𝑚𝑎𝑥, 𝑚𝑖𝑛{𝜔, 𝑉̂(𝑟) < 𝑉̅∀𝑟 > 𝜔}} 

 

Research found in [38] recommends 𝑉̅ to be 0.05 and 𝜔𝑐
𝑚𝑎𝑥 to be 20π or 40π as 

the range keeps segments small enough to be sensitive to intermittency which leads to 

reliability. Setting 40π as the frequency cut off provides a band that is used to cover 

the full range of motion from a person’s normal and abnormal movement and 

corresponds to 20Hz.   
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2.3.3 Gesture Recognition Approaches 

Gesture recognition is defined as the mechanism for a system to recognise a 

physical and predefined action [41]. The predefined actions are known as gestures that 

can be used to the classy expressive and purposeful motion of the human body [41, 

42]. This literature review focused on hand gesture recognition (HGR) which restricts 

the description above to physical movement of the fingers and hand with the aim of 

conveying information [41]. This means the definition describes the sole observation 

of the movement of the human hand irrespective of the human body [42]. HGR has 

become a staple of the Human Computer Interface (HCI) development environment 

and has been a highly researched topic over the past 40 years [43] [42].   

The primary motivation driving the development of HGR algorithms has been 

its applicability as a fast, natural, and accurate source of HCI [44]. As HGR is a branch 

of the general study of human activity recognition [45], it has had applications ranging 

from simple alternative control use cases to complex human-robot collaboration [46]. 

Development of hand gesture recognition algorithms began in the 1980s and has 

continued to be refined and diversified into a range of unique approaches. Modern 

approaches utilise machine learning to aid in the recognition process [43] [47].  

Machine Learning Pipeline 

Machine learning is defined as an algorism capable of making decisions outside 

of the literal definition by an adoption process called training [48]. In the case of 

classification, machine learning algorithms consist of the following components: data 

acquisition method, data pre-processing, feature extraction and object classification. 

These components form the machine learning pipeline, which is the basis for most 

modern HGR algorithms [43] [48]. The purpose of each individual stage has been 

explained below: 

1. Data Acquisition Method. Data acquisition is the first step of the machine 

learning pipeline and refers to the collection of raw data from a source external 

to the algorithm [46, 48].  

2. Data Pre-processing. Typically, the data provided by the data acquisition 

method is rife with noise and low-value data. To perform feature extraction on 

such a data sample would be inefficient, and as such, data pre-processing is 
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used to remove ‘low value’ data from the provided raw data, refining it such 

that it can be more efficiently used by future algorithm components [48].  

3. Feature Extraction. Feature extraction further refines the inputted data such 

that it becomes consistent in shape, irrespective of the supplied image. The 

purpose of this method is to further reduce the inputted data into a single 

constant form ‘feature’ where a feature can be described as a meaningful 

template of data that will be used in the classification process [48]. 

Object Classification 

Classification is the process by which the algorithm generates an educated 

prediction based upon the inputted data and a pre-trained model. The aim of this 

prediction is to classify the data as a single element from a pre-defined set. The 

methods in which a model is trained and from which a model makes its prediction vary 

based on the application [43]  [48]. 

Gesture Recognition Pipeline 

The machine learning pipeline is a general description of how machine learning 

can be applied to a classification problem. Review documents [46, 47, 49] redefine the 

above components to make them more specific to the structure of an HGR algorithm. 

This redefined HGR-specific component list is as follows [43]. 

1. Gesture Acquisition. This is simply the data acquisition method used by a HGR 

algorithm.  

2. Gesture Description. This defines the type of gestures being recognised and 

the primary method in which gestures will be distinguished from one another.   

3. Gesture Identification. This defines the pre-processing data algorithm, the 

feature extraction algorithms and gesture tracking components that are used 

with an HGR algorithm. 

Gesture Classification. This defines the object classification algorithm that will 

transform the gesture data returned by the gesture identification component 

into a selected gesture.  

2.3.4 Data Acquisition Methods  

The data acquisition source utilised by HGR algorithms can be defined into two 

governing categories, these being image and non-image based [46]. These two 

categories can be further subdivided into the sub-categories illustrated in Figure 4. The 

image-based category has the following subcategories, marker, depth camera, stereo 
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camera, and single camera. The non-image-based category has the following 

subcategories, glove, band, and non-wearable. Non-wearable technologies have been 

omitted from this investigation as they are an emergent technology with limited 

implementations available[43] [46] [50].  

 

Figure 4: HGR Data Acquisition Categories [43] 

 

Use of Single Camera for Data Acquisition 

Single-camera approaches use a single viewpoint RGP camera to monitor the 

human hand. HGR algorithms that utilise single camera inputs are a mature technology 

[47] and have been implemented since the early 1990s [46]. The primary drawback for 

this method is the single viewpoint restriction of the camera which reduces the 

robustness of the system. This reduction is due to the fact that algorithm cannot directly 

observe components of the hand that are obscured from the camera’s single viewpoint. 

This source of error is commonly referred to as occlusion and self-occlusion [46]. 

Furthermore, single-camera approaches cannot directly observe the depth of hand 

components making 3D modelling more difficult. The advantages of single camera 

method is the high observational speed of the camera which requires limited 

processing to get observational data, natural operation, readily available components, 

and high-resolution data  which reduces the restrictions on range [43] [47] [42, 47].  

Use of Stereo Camera for Data Acquisition 

Stereo camera HGR refers to any solution that utilises two or more receivers 

with the aim of producing stereoscopic vision for generating a three dimensional 

module of the environment [46, 47] [46, 47]. There are different operational 

wavelengths for these receivers depending on their implementation where the key 

attribute that separates the approaches is the use of multiple optical receivers. For 
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example, leap motion is one of the example of the input medium which utilises infrared 

receivers to capture skeletonised hand models [43] [44].  

Advantages of stereo camera approaches are high accuracy, fidelity, and 

robustness due to use of multiple viewpoint modelling. It is important to highlight that 

self-occlusion cannot be totally avoided and will still affect the accuracy of the 

modelling in different positions. This effect is less prevalent compared to single 

camera approaches. Other restrictions of stereo camera systems are their high 

computational requires for triangulation of the 3D environment, limited range due to 

need of focal point of observation, and calibration difficulties [43] [46, 47] [46, 47].  

Use of Depth Camera for Data Acquisition 

Depth camera HGR approaches are described as any method that utilises non-

stereoscopic vision for direct observation of the depth of an environment [46]. The 3D 

environment can be directly quantified by utilising depth information from a single 

sensor rather than RGB colour data [51]. Use of depth information is considered as an 

emergent sector of HGR development with common methodologies such as Time of 

Flight precepts (ToF) and light coding where light travel time is utilised to ascertain 

depth information [51]. As example use of this technology can be seen in Microsoft 

Kinect V2 [43]  [44].  

Advantages of depth camera approaches is in the removal of lighting, shading, 

and colour contrast in the data acquisition process which removes the common sources 

of inaccuracy [51]. The disadvantages of depth camera approaches are in their high 

cost and range restrictions which reduces the fidelity of available data at extended 

range. Depth cameras remain applicable for full body gesture recognition at range of 

0.5m but they cannot be used in HGR [46] [51]. Occlusion and self-occlusion remain 

the source of error in depth cameras.  

Glove-Based Data Acquisition 

Glove based HGR approaches are defined as methods that require the use of 

sensors directly to the user’s hand or a glove for data acquisition [52]. Sensors are used 

to measure the flexion of the human hand and fingers directly which were the original 

form of HGR first appearing in 1983 [52]. This method is more matured compared to 

the others and have an array of implementation scaled for a range of applications [42]. 

The advantage of glove-based approaches include high accuracy, high data rates, and 
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fast computational speeds [50]. The disadvantage of the glove-based approach 

includes being cumbersome, restrictive of the human hand, and relatively long pre-test 

tuning times [43] [46].  

Band Based Data Acquisition 

Band based approaches are defined as HGR systems that requires mounts the 

sensors to the forearm of the user for data collection [46]. This approach utilises 

electrical and optical sensor to observe the movement of human man using in direct 

methods [50]. These approaches are a modern implementation of the glove-based 

approach due to the advancement of surface electromyography [46]. There are several 

advantages in band based methods such as fast response times, low computational 

requirements, and not being tied to the hand which makes them less restrictive 

compared to glove-based approaches [50]. There are still some disadvantages in band 

based methods such as the need for directly mounting to the user which makes it more 

restrictive than the visual methods, lower resolution and weaker input signals 

compared to other HGR approaches, and they are affected by differing location of the 

sensor attachment [43] [50].  

2.3.5 Gesture Description Overview 

Gesture description refers to the information represented by gesture and the 

method for modulating within the HGR algorithm [53]. There are three categories in 

gesture description which are physiological scope, the information interpreted from 

the gesture, and the model used for representing the gesture [54]. There are different 

considerations to be made on each of factors which has been explored below [43].  

Physiological scope refers to the pre-set taxonomy used to determine the 

physical nature of the gestures [54]. Upon review of the literature, the use of static or 

dynamic gesture sets, the inclusion of wrist motion, and the number of hands used to 

form the single gesture has been noted as the main distinction factor.  

The information interpretation based on HGR algorism can be divided into 

spatial information, temporal or pathic information, and symbolic information [41]. 

Spatial information consists of the position of the gestures within the environment. 

Temporal or pathic information is interpreted from velocity and the path an observed 

gesture takes within the environment. It is important to highlight that spatial 

information is typically observed utilising the world coordinates of the observed 
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gesture similar to spatial information. Symbolic information refers to the shape of the 

observed gesture and is usually interpreted utilising joint angle calculations or shape 

matching methods [41].  

The model used to represent an observed hand varies depending on the desired 

scope of input gestures [54]. Depending on the increase of number, complexity, and 

information density of the gesture, the model becomes more complex, and a relevant 

modelling method will also need to be implemented. The complexity of the mode is 

proportional to the to the number of classifiable landmarks that has been provided 

within the model. HGR modelling can be categorized as 3D based modelling and 

appearance-based modelling as scene in Figure 5 [43] [54].  

 

Figure 5: Summary of Hand-gesture modelling methods [43]   

 

There are models with less complexity such as the silhouette geometry model, 

which is used for simple HGR applications, but they offer few classifiable landmarks. 

This model is appearance based which lowers the computational requirements and can 

be extracted directly from the image with little intermittent computation. These models 

are better suited for low response time algorithms that focus on being lightweight with 

fast operating applications [55, 56] [55, 56]. More complex models such as 3D 

skeleton model could offer up to 21 landmarks for classification and require more 

computational power to be accurately generated. Due this this higher computational 

power, they are usually utilised in control applications where accuracy and reliance on 

more expansive data sets are required [55, 56] [55, 56].  

2.3.6 Application of Machine Learning in Gesture Identification 

Gesture identification refers to methods for detecting human hand apart from its 

background with the aim of generating a computer model for classification also known 
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as feature extraction  [42, 46, 48] [42, 46, 48] [42, 46, 48]. The following sections 

focuses on single camera visual observation methods, 3D skeleton representation, and 

2D silhouette models [43] [44].  

Use of OpenCV in Gesture Identification 

Colour segmentation and shape or colour feature extraction are among the most 

basic form of feature extraction for single camera RGB data [54].  Colour segmentation 

method utilises the unique consistency of the human hand colour to differentiate the 

hand from the background. The advantage of segmentation is the low computational 

requirements, however, only 2D models can be produced such as silhouette geometry 

models. Additionally, the accuracy is negatively affected due to self-occlusion and 

variances in the background, skin tone, and lighting conditions [57]. The unique shape 

of human hand is used in shape analysis to aid in the detection and is usually achieve 

by contour or edge detection methods such as Fourier Descriptors, pr histograms of 

oriented gradients. Similar to segmentation, shape analysis can only be used for 

calculating a 2D model however, it is more resilient against background, operator, and 

lighting variances [57, 58]. Shape analysis methods require more computational power 

compared to colour segmentation and still have self-occlusion and robustness issues 

[43].  

As mentioned above, these methods cannot be utilised for generation of 3D 

models, however, their low computational requirements make them still viable in 

modern HGR algorithms. For example, colour segmentation can be used to locate areas 

of interest within the image, followed by more robust algorithms for pre-processing 

which can lead to a reduction in the amount of data sent to the more complex identifiers 

[57, 58] [57, 58]. The existence of opensource libraries such as OpenCV has also 

helped in widespread application of these algorithms. OpenCV contains python 

modules capable of performing the aforementioned feature extraction methods 

efficiently and can be used as the building blocks for many other approaches as seen 

in [44].  

Use of MediaPipe Hands in Gesture Identification 

Media Pipe Hands (MPH) is an on device real time hand identification solution 

designed to operate using data from a single RGB camera [55]. The output of MPH is 

a list of 2.5D, 21 landmark skeleton model for each observed hand within the frame. 

MPH contains a 2-stage pipeline with the first stage being a palm detector, followed 
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by the second stage which is the hand landmark extraction model. This pipeline 

minimises the computational load of 3D skeleton identification process in two key 

methods. First method uses a light computational algorithm to locate areas if the 

interest in the image and then applies the landmark model on the located areas. The 

second method uses the tracking of identified hands between frames which reduces the 

computational power needed to identify subsequent frames [43].  

BlazePalm detector is the first stage of the MPH pipeline which detects the hand 

locations and deals with challenges such as: variability of hand physical appearance 

(colour, size, pose), large scale span, occlusion issues due to use of single perspective, 

and low contrast patterns within the hand. To solve these issues, the BlazePalm 

detector utilises 3 unique strategies. The first strategy is the utilisation of palm and fist 

detection over whole-hand detection which addresses the issue of self-occlusion and 

pose variation. It is important to know that whilst fingers are commonly self-occluded, 

fist and palms cannot be. The second strategy is the use of an encoder-decoder 

extraction method such as FPN which addresses the problem of low contract patterns 

and colour variation. The final strategy is the minimisation of focal loss during training 

with the aim of combatting the high variance in scale and hand size. The combination 

of these strategies provides an accuracy of 95.7% for palm detection followed by 

placing a bounding box around the wider 2D silhouette feature surrounding the palm 

[59, 60] [59, 60]. 

The second stage of MPH pipeline applies regression algorithms on the image 

encapsulated within the bounding box to locate the previously mentioned 21, 2.5D 

joint landmarks. 2.D here refers to the use of x and y coordinate taken relative to the 

image’s orthogonal frame and calculation of the z coordinate relative to depth for the 

landmarks. The relative depth values are acquired based on perspective angle of the 

camera. perceived distance of the new landmark and the palm of the hand. The 21 

landmarks provide the estimated joint calculation of the hand. MDP can provide 

outputs representing probability values for the confidence of the algorithm on the 21 

landmark prediction and binary classification values to the hand being left or right. 

The regression model is used via real world data and synthetically generated images 

to improve accuracy in different environments and relative depth calculations [59, 60].  

Reports provided by [60] indicate average precision of 93.33% for the MPH 

pipeline which is very promising considering the straight forward installation of MPH 
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via pip or official webpage. MPH has some key issues such as, decreased accuracy 

when palms are placed together and rotational inconsistencies [59, 60].   

Use of InterHand2.6M in Gesture Identification 

InterHand2.6M (IHM) is a relatively new algorithm that uses single RGP camera 

alongside a pre-trained convolution neural network (CNN) which has been labelled as 

ResNet and provides highly accurate feature extraction [56]. The output of IHM is a 

normalised 3D, 21 landmark skeleton model for 2 hands which is tuned to detect left 

and right hand a single operator [43] [56].  

The previously mentioned ResNet can be trained using an application specific 

data set or using the extensive data set labelled InterHand2.6M provided by IHM. This 

data set contains annotated data which can be utilised for training ResNET. The trained 

model has provided high accuracy when observing gestures involving two 

interconnected hands [56]. The InterHand2.6M dataset was collected in a multi camera 

studio consisting of 140 cameras and 450 bidirectional LEDs. 26 unique set of human 

hands were observed while performing 53 total gestures per person. This data was then 

annotated with the 3D landmarks using a semi-autonomous approach. The extensive 

nature of this data collection process is one of the reasons contributing to the high 

observational accuracy of the mode [56].  

A ResNet model is placed within an InterNet wrapper after being trained. 

InterNet utilises a single frame of RGB as its input and sends it to ResNet for feature 

extraction and outputs the initial hand features. InterNet then uses the features to 

generate a 2D coordinate set and the relative depth of each of the 21 landmarks that 

have been previously mentioned. Camera back projections and an inverse affine 

transformation which is a transformation that preserves lines and parallelism are then 

applied to the coordinates to create the final normalised 3D list of landmarks. The 3D 

coordinates are transposed onto an image window so visual validation can be 

conducted [56].  

Both InterNet and InterHand2.6M datasets are open source and readily available 

on PyTorch and github. There is some fine tuning required as the initial download of 

the data bases are tuned for static image recognition. To be able to utilise InterNet for 

real-time video up to 30 frames per second, ResNet will need to be re-trained. InterNet 

has shown 99% accuracy across several indoor and outdoor environments for gesture 
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sets which includes 2 hand interactions [56]. Due to high computational requirements 

for InterNet, there is limited literature available covering its use in applications.  

2.3.7 Gesture Classification 

Gesture classification is the process where features are extracted by gesture-

identification algorithms and classified within a pre-defined list of gestures [42, 61]. 

To classify input-gesture models typical machine learning techniques can be utilised. 

Among the widespread approaches are decision trees, K-nearest neighbours (KNN), 

Hidden Markov model (HMM), Artificial Neural Networks (ANN), Naïve Bayes 

(NB), Linear Regression bounds, Support Vector Machines (SVMs), and 

Convolutional Neural Networks (CNN). The use of classifiers that can hand high 

dimensionality features spaces and classification of element into distinct non-linear 

classes are more desirable [61]. These algorithms are further explored in the following 

paragraphs [43]. 

Use of Decision Trees in Gesture Classification 

Decision trees operate via a tree like structure which consists of decision nodes 

that represent points of classification and leaf nodes that represent classifiable classes. 

Decision trees are typically implemented via intuitive, light weight, white box methods 

where simple, high-level comparisons are utilised at each node level to classify the 

given data. Decision trees are best used for simple classification problems and small 

gestures such as the ones mentioned in [62]. More complex variants of decisions trees 

which are known as random forest classifiers can be utilised for classifying 

multidimensional landmark models without overfitting [43] [44, 62] [44, 62]. 

Overfitting happens when ML algorithms produce accurate results for training data set 

but not for new data sets.  

Use of Decision SVM in Gesture Classification 

SVM methods use a trained hyperplane as a binary classifier to separate the 

classifiable classes. The hyperplanes can be utilised to separate large number of 

classifiable classes across multi-dimensional space even in non-linearly separable 

cases [62]. The hyperplanes are generated while training the model by utilising the 

closest values between neighbouring classes and defining the hyperplane to separate 

the values [42]. The dimensionality of the data is increased until the linear separation 

of the points is possible [42]. SVM classifiers have high classification speeds 
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considering their utility for multiple-dimensional data classification. It is important to 

note that SVM methods are prone to overfitting so the training needs to be done with 

care [43]  [42].  

Use of CNN in Gesture Classification 

CNN methods are becoming more popular even outside HGR applications [62]. 

CNN methods operate on neural network models where a given feature is passed 

through a various interconnected hidden layers, which uses confidence value 

calculations to build up confidence value for the final classicisation [42]. CNN 

algorithms can recognise subcomponents of the gesture and use them to provide 

accurate predictions for the gesture. As mentioned in [62] and [44], carefully trained 

CNN can achieve classification accuracies close to 100%. The issue with CNN is the 

reliance on large training data sets and hyper parameter training [46, 57] [46, 57]. The 

Hawks Harris algorithm detailed in [57] can nullify the hyper parameter tuning in HGR 

applications [43].  

2.4 CURRENT PRACTICES IN HUMAN JOINT REHABILITATION 

UTILISING TRADITIONAL METHODS AND GAMIFIED 

APPROACHES   

2.4.1 Current Clinical Approaches for Human Joint Rehabilitation    

Before exploring gamification in rehabilitation, current human joint 

rehabilitation methods need to be investigated. Rehabilitation is defined as set of 

exercises that reduces disability in individuals with respect to their muscles to allow 

them to interact with their environment effectively in their day-to-day activities [1]. 

There are multiple reasons where individuals may require rehabilitation such as pre-

existing conditions, surgery, old age, after injury. It is estimated that 2.4 billion people 

worldwide have conditions that would benefit from rehabilitation based on articles by 

World Health Organization [1]. This large number highlights the importance 

improvements to medical processes for rehabilitation, which is a difficult challenge 

due to varying nature of rehabilitation requirement going from person to person [1]. 

The person going through rehabilitation may need to receive assistance in moving a 

body part with the presence of a qualified clinicians and often there is a requirement 

to complete exercises outside of clinical environments [1]. To better understand 

different requirements for rehabilitation, wrist rehabilitation for people recovering 
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from injuries and people with chronic conditions have been reviewed in the literature 

below.  

Rehabilitation for Paediatric Wrist Impairments and Injuries  

Paediatric patients in Australia are classified as age range of 4 months to 17 years 

old [63]. Rehabilitation for chronic or short-term wrist injuries or impairments are a 

common issue for children. For example, a 10-year study in Sweden [64] defines upper 

extremity fractures are among 68% for the age of 0 to 18 years old. These fractures are 

often treated in a short time frame but are followed by physical therapy to improve 

strength, flexibility, achieve the required range of movement, and to prevent further 

re-injury [64].  

The issue becomes more complex with longer term and chronic patients that 

suffer from neurological conditions such as Cerebral Palsy (CP) or joint inflammation 

such as Juvenile Arthritis. These conditions can affect mobility in the upper limbs and 

would require longer term rehabilitations. Some of these conditions such as CP are 

either lifelong or can become chronic such as Arthritis which means the long-term 

conditioning programs need to be utilised to maintain and improve ROM (range of 

motion). Approximately 1 in every 1000 children develop a type of chronic condition 

in case of Arthritis [65]. CP is one of the most common motor disabilities in children 

and it affects 1 in 1000 births [64]. It is reported that spastic limb movement accounts 

for 82.9% of all CP cases which affects the range of motion in joints and very common 

for wrist joint of many patients [66]. The limited range of motion caused by muscle 

stiffness and tightness of the wrist joint will lead to other problems such as weakness 

in grip strength [66]. These statistics highlight the importance of maintaining 

rehabilitation and therapy intervention where the symptoms need to be maintained and 

managed by the therapist, leading to ease of participation in day-to-day activities.  

Physical Therapy and Hand Rehabilitation  

As earlier in this chapter, rehabilitation is needed to maintain function, 

flexibility, strength and range of motion after an injury or in presence of a movement 

disorder such as CP [1]. Conditioning programs in rehabilitation usually contain a set 

of exercises for patient to repeat over a period to improve or maintain their 

functionality. The exercises related to improving range of motion, two categories a 

defined which are passive and active [67].  
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Passive exercises are assisted by another person, for example a wrist maybe held 

to its maximum extension angle with the clinician physically pushing the patient’s 

wrist and holding it at this point. These exercises will improve blood flow and sensory 

stimulation and prevent muscle stiffness [66].  

Active exercises involve the patient performing the exercise without the 

clinicians physically participating. The benefits of these exercises are stimulating 

neuroplasticity which helps with rewiring of the brain more compared to passive 

exercises, strengthens the muscle, and improves ROM [67].  

Both passive and active exercises are required for full recovery, and they need 

to be performed consistently. The exercises will need to take place at home outside the 

clinical settings and the repetitive nature of the exercises sometimes leads to lack of 

motivation by the engagement. The lack of feedback received outside clinical settings 

are also a factor leading to abandonment of exercises [68, 69]. That is why the idea of 

gamification has risen to popularity in the past couple of years as it aims to utilise 

games to increase engagement in rehabilitation exercises. Gamification is further 

explored in Chapter 2.4.2.  

 As example of rehabilitation exercises can be seen in hand exercises for wrist 

movement given below: 

• Flexion and Extension (moving the hand down and up) 

• Ulnar deviation and Radial deviation (tilting the wrist side to side) 

• Supination and Pronation (rotating the palm to be positioned up and down) 

The therapist may provide a specific type and length of exercises depending to 

the impairment of injury to the wrist joint. For example, Figure 6 and Figure 7, show 

example set of exercises to improve ROM and strengthen wrist muscles. In case of 

injuries, medical professionals need to ensure the tissue is healing correctly and the 

bones are healed from the fracture before offering rehabilitation exercises.   
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Figure 6: Active Wrist Exercises Examples (Provided by Royal Perth Hospital in 

Western Australia) 
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Figure 7: Wrist Strengthening Exercises Examples (Provided by Royal Perth 

Hospital in Western Australia) 
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2.4.2 Review of Existing Methods for Gamification of Rehabilitation  

Gamification in rehabilitation has become popular in the past decade with 

advancement of technology [70]. It is becoming more and more important for develop 

and facilitate rehabilitation in home-based therapy system and provide hands off 

approaches for example people in remote areas [68]. Games developed for upper-limb 

rehabilitation can produce greater functional outcomes compared to the typical home-

based therapy sessions as represented reported in [71]. Gamification is capable of 

providing an engaging experience by providing challenges to be solved by the patient, 

leading to an increase in the motivation and more successful completion of the 

rehabilitation program at home [65].  

Study by [72] provides a patient-centred serious game utilising a leap motion 

controller incorporating hand movement exercises. In this implementation, the game 

was developed for patients who had physical impairments which took effect in 

personalization of the experience. The game it was consisted of a flying style game 

where wrist exercises were mapped to fly high, low, left, and right on a given pathway. 

Predefined routs would be followed using hand gestures while receiving visual and 

auditory feedback depending on capabilities of their participant. Patients real time 

movement parameters would be displayed such as ROM and joint angles with 

capability of playing back the session data. The session included leap motion data, 

player data, and generated path data. The study had five female patients in age range 

of 18 to 30 years. One of the participants had CP with others recovering from finger 

or wrist trauma. Patients found the game to lack engagement due to a single navigation 

style and existence of a single game. The game was also designed for wide range of 

ages, so the younger patients did not find the game entertaining. This study showed 

movement data in all direction as X, Y, and Z orientation. The clinicians suggested 

hiding unused directions so more focus can be given to the active axis of movement. 

relevant to the current exercise. [72].  

Fruit Catcher is another rehabilitation game with the objective to get fruits in a 

basket developed by [73]. This game was designed for people who have recently been 

discharged from the hospital and require home based rehabilitation. The game utilises 

a Nintendo Wii Balance Board as the sensor for capturing movement. Difficulty 

parameters were designed for the game such as size, number, and fall frequency of the 

fruit. Number of repetition and time could be set by the therapists which provided 
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useful for adaptability of the game. This solution could detect if the patient was 

compensating for the lack of ROM and adjust the gameplay accordingly. The game 

provided instant feedback if it detected improper movements, but it still needed to be 

closely monitored by the clinicians. The issue with the Wii board is not being capable 

of capturing accurate data from the wrist joint application and enjoyment was limited 

to a single game [73].   

Another gamified example can be seen in in the work done by [69] for Juvenile 

Idiopathic Arthritis with wrist inflammation. A series of mini games were developed 

using leap motion sensors as the input measure. The developed solution provides input 

parameters, track actions, and data recording to the clinicians. The patient sessions 

could be replied, and the levels were divided into two categories:  

• Random game levels with specified constrains for the player.  

• Creation of set game levels via clinician input  

The games targeted wrist exercises such as flexion, extension, radial and ulnar 

deviation. The game consisted of rhythm games, flabby bird clone, skiing game, and 

plane simulator [69]. The mini-game aspect was found to be intuitive since patients 

required very few trials to interact and perform exercises to match the gameplay. The 

rhythm game and skilling game were the most difficult requiring more tunning such 

as widening the flags in the skiing game depending the patient’s ROM [69].  

These solution highlights some of the benefits and challenges of designing 

games for rehabilitation purposes. As it was observed, all solutions point to increase 

in engagement with exercises given the correct targeting of the age group. Also, the 

importance of more simple mini game collections has been demonstrated so the 

exercises can be done in quick sessions. The issue with the current solutions is the lack 

of clinical validity of the data provided during or after the play sessions.  Even through 

improvement trends can be monitoring via the solution provided by [72] and [69], data 

captured from motion leap devices have not been clinically validated meaning the 

joints angles reported with these solutions are not representative of the actual wrist or 

finger joints angles. The framework developed for this thesis will provide guidelines 

of designing exercises specific games focusing on a target rehabilitation goal with the 

aim of clinically validated movement information to be provided to the clinicians.  
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2.4.3 Fundamentals of Game Design Principles for Rehabilitation  

Gamification is defined as the application of game principles and game design 

elements in non-game situations [74]. The framework of the game design has many 

popular theories and fundamentals however one of the most recognized on is the 

Elemental Tetrad as shown in [75]. As the name suggests, there are 4 elements in 

Elemental Tetrad that are crucial for all games as defined blow: 

• Mechanics: This is the procedure and rule of the game such as space, 

objects, rules, actions, chance, and goals.  

• Technology: This is the materials and methods of interactions for 

delivery the game play such as computer or sensors  

• Aesthetics: This demonstrates how the game looks, sounds, smells, 

tastes, and feels  

• Story: This is the sequence of events that unfold in the game and 

according to [75] falling blocks in Tetris can be considered the story 

element.  

There are numerous studies in recent years that integrate the four elements into 

rehabilitation applications. Applying the Elemental Tetrad  becomes more challenging 

in rehabilitation and home based solutions as games will need to be developed and 

modified based on patient’s capabilities [76]. The exercises within the games should 

help the recovery process in a safe environment without any harm or damage to the 

patient. Another study suggests that games in rehabilitation must be intuitive and have 

a sense of achievement to encourage and motivate participation in the rehabilitation 

program [77].  

A study carried by [2] provides the following features as important elements to 

be included in to consider when game theory is applied to rehabilitation settings: 

• Precise data recording  

• Feedback for both clinicians and patients  

• Positive and negative feedback with the aim of motivating and engaging 

the patient.  
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• Provide challenge without being frustrating.   

2.4.4 Review of Key Components for a Gamification Framework 

This section provides a review of key components of game design which are 

relevant to rehabilitation. It is important to note that the following elements will have 

varying importance depending on type of rehabilitation exercises currently taking 

place. As previously mentioned, rehabilitation will need to be fine-tuned on a person-

to-person basis due to reliability on location, time, and treatment of patients after injury 

or nature of underlying conditions such as CP or Arthritis. This is why customizability 

of the games is one of the most crucial aspects of gamification since they should be 

adapted to different needs.   

Patient as the Players 

Patients are the target demographic for gamification of rehabilitation and the age 

of patients can influence their engagement and level of interest [75]. The story of the 

game needs to be clear and simple, and it will capture the initial appeal for the player. 

For example, [78] provides a cow milking mini game where the mood of the cow 

changed when on the farmer (who is the stand in for the player) makes the correct 

movements. The mood of the cow here creates an emotional link to the player and 

encourages them to engage with the game more while performing actions that feel 

more meaningful.  

Game Mechanics 

The patient going through rehabilitation, will need to perform actions or 

exercises in a 3D space. For example, [79] provides a hen house mini game where the 

patients perform wrist movement exercises to collect rolling eggs in a basket. The rules 

of the game encourage the actions which make player actions impact the outcome of 

the game as required by the concept of game mechanics [75]. The application of this 

design can promote autonomy and self-driven motivation from the player as their 

movements have a direct impact on the game.  

As the challenge increases and the game progresses, there are ways to motivate 

the player by various levels, achievements, streaks, and unlocking new features.  In 

rehabilitation, choosing the difficulty level is important to make sure the patient is 

performing their exercises at the appropriate level. The research done by [80] 

demonstrates a method for dynamic change of difficulty. This approach utilised 
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success and failure rates of patients to adapt the difficulty and keep the patient 

motivated. For example, upon multiple failures the difficulty would be lowered so the 

patient does not become discouraged from continuing the exercises. The study showed 

an increase in the number of correct tasks that were completed in a given period of 

time compared to randomized difficulties. The main problem with this approach was 

the lack of control given to the clinicians in adapting the difficulty since all the 

decisions in regard to the difficulty were taken by the game.  

Game Components 

There are patient specific design elements such as points, avatars, tasks, and 

messages which are known as game components. These elements can be designed and 

finetuned based on different patient requirements. A study by [7] highlights the 

importance of correct engagement and completion of rehabilitation exercises. A point 

system can then be utilised as the gold of the game to encourage the patient’s actions 

as they do the exercises correctly. It is important that this point system provides a safe 

and adjustable experience for the patient as different patients may have different points 

required for their exercises.  

The game dynamic refers to the way each game component interacts with the 

game itself [75]. The mobility and patient condition will need to be considered when 

designing how a patient is going to interact with game components. There is a fine line 

between making sure exercises are being done correctly while avoiding exhaustion. A 

study by [78] recommends the following dynamics for different types of rehabilitation: 

free movement, touch the target, catch the target, follow the path, move the target, and 

point & shoot. 

Game Technology 

One of the crucial components of gamified rehabilitation is the input devices 

used for capturing movement of the patient. It is important for the technology to be 

non-invasive, Low cost, and accessible for home-based use. Previously in chapter 2.2 

multiple human motion capture technologies were explored. The developed 

framework in this thesis utilises a combination of optical motion capture technologies 

and inertial measurement units as the game technology. The implementation of this 

technology is explored in Chapter 3.  
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Providing Feedback 

It is essential to monitor a patients progress and provide feedback on how 

correctly the exercises are being performed. This feedback should be provided to both 

the patient going through the exercises and the clinician monitoring the exercise. The 

feedback can be either positive or negative to help the patient correct their movements 

and be encouraged to continue the exercises.  

This feedback will help the clinicians adapt the exercises based on how a patient 

is improving during their rehabilitation program and as result the games will need to 

be modified accordingly. The system developed by [77] allowed the clinician to select 

the game parameters depending on the patient requirements. This customization 

provided a less frustrating experience for the patients as it encouraged continued 

engagement with the game and exercises. In some instances a camera was utilised so 

the clinician could remotely monitor the movement of the patients outside the game 

environment as seen in [2, 77] [2, 77].  

Researchers such as [81] suggest providing feedback in a graded form or 

absolute form to increase the efforts of motor learning. Negative feedback is also 

important to improve the patients' skills while interacting with the games since the 

patients will need to know how accurately they are doing the exercise [82]. Feedback 

can be provided via reward-based systems or through simple messages provided to the 

patients. 

Achieving Rewards 

Game developers sometimes construct game design principles via

dopamine responses as a means to increase engagement. Dopamine is a 

neurotransmitter by human body’s nervous system to send message between cells 

and plays a role in how we feel pleasure [83]. The game rewards can take the form of 

virtual rewards such as power ups or achievements in the game [84]. Rewards 

could extend to real world benefits such as monetary rewards in a casino style 

game. In rehabilitation there the increase in range of movement after engagement 

with the game could be considered one of these rewards which could be followed by 

virtual badges and achievements in the gamified environment.  
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Optimal Challenge  

As previously mentioned, the challenge level experience by the player needs to 

be considered while designing levels. Ideally, the games will start with low difficulty 

levels so the user is motivated to engage with the rehab program. This methodology is 

to counter proficiency of the control by the player and promoting the increased range 

of movements as selected by the clinicians [85]. The challenge here is that from the 

player’s point of view lack of failures could create an uninteresting gameplay 

experience leading to abandonment of the rehabilitation program. Study done by [86] 

describes this feeling as ‘Fiero!’ which is the Italian word for proud which occurs 

somewhere between frustration and relief.   

Clear Goals and Instructions  

There are multiple ways clear goals can be perceived. For example, the players 

path should be clear which is implemented by utilising light and contrast to guide the 

player in a certain path. This implementation can be defined as a goal-oriented game 

design where the player needs to identify long term and short-term goals of the game. 

Feedback provided via the user interface, animation, and visual effect can inform the 

player regarding how close they are to these goals [87]. Clear goals can inform external 

goals such as the goal of performing well in rehabilitation [4]. Unclear goals could 

frustrate the patients leading to low motivation as it has been mentioned multiple times 

so far.  

Motivation in Games  

Motivation, as it has been seen so far, connects all aspects of the game design. 

A well designed game, will utilise different game components to encourage a 

dopamine response via gameplay leading to further play [83]. Motivation can be 

considered a psychological aspect as a result of a well design goal-orientated action 

[83]. The motivation in context of rehabilitation can be extended to extrinsic 

motivation such as self-motivation by engaging with the rehabilitation process [84].  

Achieving Flow 

The concept of flow has been put forward by a psychologist as seen in [88] where 

the flow is defined as “state of concentration or complete absorption with a given 

activity such that nothing else seems to matter”. The paper suggests that this concept 
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can be applied to art, work, sports, and gaming.   This state of “Flow” can be achieved 

by the following points:  

• Defining clear goals and rewards  

• Loss of sense of time 

• Immediate feedback on successes and failures  

• Adaptable challenge level  

• Providing a sense of control  

These tenants directly relate to game design philosophies presented before so 

clear goals, rewards, feedback, and challenge makes games one of the best candidates 

for achieving the “Flow” state.  

Use of Lense in Game Design 

One of the popular books in game design written by [75] provides a detailed look 

at the art of game design. This book suggests that good game design requires the 

developer to keep different perspectives in mind. These perspectives are defined as 

“Lenses” to consider when designing games.  This concept can be applied to gamified 

rehabilitation such as Lense of patient, guardians, and clinician as the main crucial 

perspectives in gamified rehabilitation.  

Emotions in Games 

The article by [86] discusses the concept of emotions in games which provides 

five emotions to consider which are enjoyment, focus, decision, performance, and 

learning. Enjoyment contributes to creating an emotional connection between the 

player and the game leading to increased motivation. Focus facilitates active 

engagement with the game play achieved by feedback and reward systems that were 

previously discussed. Decision in this context refers to making decisions driven by 

emotional responses. Performance is demonstrated as different methods for engaging 

with the gameplay. Learning is defined where the game facilitates motivation to repeat 

and master an action. These topics build on the philosophies of game design and can 

be utilised to evaluate what a user experiences. There are further definitions provided 

by [86] that discuss different levels of enjoyment as hard fun, easy fun, serious fun, 

and people fun set on a sliding scale between goal-orientation and open ended design.  
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2.5 SUMMARY AND IMPLICATIONS 

This chapter provided a review of several technologies used for capturing human 

movement, it provided a review of key elements in analysing human movement data, 

and an assessment of current practices in human joint rehabilitation in clinical and 

gamified settings.  

The review of technology showed optical motion capture technologies such as 

Vicon to be the most accurate representation of human movement. However, this 

technology is very expensive and required specialised facilities for capturing human 

movement data so it would be suitable for rehabilitation at home. The review of sensor 

technology demonstrated that Inertial Measurement Units (IMU) provide the best 

balance between cost, performance requirement, and accuracy for human movement. 

IMUs have already been utilised in several clinical applications as seen in the literature 

which makes them suitable for this application.  

The review of key elements in analysis of human movement data showed that 

machine learning should be utilised to get a clinically accurate representation of human 

movement. It was found that in order to avoid the cost and processing power 

requirements associated with machine learning approaches, trained algorithms such as 

MediaPipe should be utilised. Since the literature did not provide a significant number 

of clinical validations of this technology, an evaluation of this method was done as 

part of this thesis and has been reported in Chapter 5.  

The review of current practices in rehabilitation and gamified approaches 

showed multiple sources on the applicability of rehabilitation. It was found that 

engagement and motivation can be improved utilising gamified elements. The review 

of the literature did not provide too many instances on clinically valid data in the 

designed games. It is true that most solutions provide data and trends to clinicians, but 

most did not provide a clinical validation on accuracy or reliability of the information. 

This thesis provides a framework for gamification where the provided data can be 

utilised directly by the clinicians both during exercises sessions and for long term 

remote monitoring. One of the common themes in the literature was the need for 

customizability of the games as rehabilitation exercises will need to be adjusted 

depending on different patient needs.  
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Chapter 3: Experiment Design 

3.1 OVERVIEW OF THE METHODOLOGY FOR EXPERIMENTAL 

DESIGN 

This chapter provides a detail overview of the experimental design for the 

gamification framework including the hardware requirements and specification, 

machine learning components, visualisation elements utilising the Unity game engine, 

as well as development of the gamified features. From a design standpoint, this will 

elucidate how affordable technology was employed to capture human movement in a 

manner that maintains clinical validity. The selection process investigated 

technologies that can be used outside clinical settings so that the user can receive 

feedback on how accurately exercises are being performed.  This aspect additionally 

offered a way for clinicians to gauge progress, as the framework facilitates the 

assessment of the rehabilitation program's effectiveness for the user. This chapter also 

provides guidelines for developing games for rehabilitation purposes as well as design 

templates for several game archetypes.  

3.2 DEFINING HARDWARE REQUIREMENTS FOR THE FRAMEWORK 

3.2.1 Hardware Requirements and Sensor Selection 

The developed framework provides the means of monitoring human movement 

whilst participating in rehabilitation exercises. This framework provides feedback to 

the user, so they get an understanding on how correctly the exercises are being 

performed. To facilitate the capabilities of the framework, several requirements were 

defined such as capability for recording live data, providing visual representation of 

the movement, capability to customize both the exercises and the games, and providing 

measures of joint and smoothness. The diagram in Figure 8 illustrates the hardware 

requirements [16].   
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Figure 8: Process Diagram for Hardware Requirements [16] 

 

The sensor selected for this project needed to be small, lightweight, have long 

battery life, utilise BLE 5.0 (Bluetooth Low Energy), have high sampling rates, 

provide continuous measurement, and have low cost.  The reason for BLE 5.0 was due 

to robustness and having 8 times more data transmission speed compared to BLE 4.3 

and BLE 2.1 [16] [89]. Other communication protocols such as Wi-Fi and Zigbee were 

considered but eventually ruled out due to availability of BLE in most commercial 

sensor devices as well as smart phones and laptops, which helps in ease of adaptability. 

The sampling rate requirement was defined based on the research by [90] and [91] 

which state the sampling rate requirement for accurately capturing human movement 

needs to be at least 15Hz for slow movements at least 60Hz for fast movement.  

Table 1 and Figure 9 provide a comparison of several off the shelf IMUs that 

were considered based on their sampling rate, connectivity, batter life, weight, size, 

and price. Xsens Dot (known as Movella as of 2022) was selected as most suitable 

since it provided the best compromise of battery life, sampling rate, cost, and 

performance compared to others [16].  
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Table 1: Comparing off the shelf IMUs [16] 

 

IMU 
Sampling 

Rate 
Connectivity 

Battery 

Life 
Weight Size Price 

Xsens Dot [92] 120 Hz BLE  5.0 9 h 11.2 g 
36.3 × 30 

× 10.8 mm 

€495.00 

(~$798.05 

AUD) for 5 

pack 

Vicon Blue 

Trident [93]  

 

100 Hz BLE 5.0 12 h 9.5 g 
42 × 27 × 

11 mm 

$1600.00 

USD 

(~$2184.36 

AUD) each 

Shimmer IMU 

[94]  
128 Hz BLE 2.1 14 h 23.6 g 

51 × 34 × 

11 mm 

€359.00 

(~$578.79 

AUD) each 

Bonsai IMU 

[95] 
50 Hz BLE  4.3 16 h 15 g 

36.5 × 32 

× 13.5 mm 

€2490.00 

(~$4014.44 

AUD) for 15 

pack 

 

   

Figure 9: Comparison Graph for IMU selection [16] 

 

Orientation data and free acceleration data are captured from Xsens Dot which 

utilises a built in sensor fusion algorithm called as XKFCore [92] and customised 

Kalman filter. Xsens Dot specification can be seen in Table 2 and in as previously 

mentioned covers all the requirements that were previously defined [16].  
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Table 2: Specification of Xsens Dot [92] 

 

Physical Properties Specifications  

Weight 11.2g  

Dimensions 36.3 × 30.4 × 10.8 mm (l × w × h)  

Latency 30 ms  

Battery  LIR2032H rechargeable coin battery   

Communication Method Bluetooth 5.0  

Internal Storage 64 MB  

Sample Rate 800 Hz  

Output Rate 1Hz, 60Hz, and 120Hz   

Electrical Current Consumption  68mA  

Operating Temperature  0 to 50° Celsius  

Water resistant rating  IP68  

Communication platforms 

- Android OS 8.0 or above 

- iOS 11.0 or above 

- Windows, MacOS, Raspberry Pi 

 

 

3.2.2 Filtering and Sensor Fusion Techniques  

Sensor fusion and filtering techniques need to be implemented when working 

with data obtained from inertial measurement units. The popular sensor fusion 

techniques for IMU data are Kalman filters, Complementary filters, and Particle filters. 

As previously mentioned, Xsens Dot utilises an internal Kalman filer where the 

filtering happens on the hardware which leads to a reduction in pre-processing time. 

Kalman filter plays as essential role in sensor fusion as stated by [96]. The Kalman 

filter was initially developed for navigation and control systems and its attributes 

address the filtering requirements for IMU data. The extended Kalman filter 

implemented in Xsens Dot addresses non-linearities by performing local linearization 

with the Taylor approximation of the non-linear model to work around this problem. 

This method is used to turn it into a linear model based on linearization points that 

need to be updated for each prediction of the recursive estimation. There are two main 

steps in successfully utilising Kalman filters which are  prediction and  correction [16].  
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The prediction step utilises control commands determine when the dynamic system 

will be in the next point in time. The correction step then utilises IMUs data to correct 

mistakes and predict error compared to the previous step. The prediction and 

correction steps which are known as recursive estimation, continuously repeat to 

provide accurate result [16] [96].   

The limitation of Kalman filter is in its use in nonlinear values since the 

assumptions made during the filtering process would cause some issues. As stated in 

[97], most human movement is linear so this issue will not affect the use of Kalman 

filter in rehabilitation. In case of non-linear movement, extended Kalman filter solves 

the issue by performing a Taylor approximation of non-linear section of movement 

which creates locally linear sections in the data. [16] [96].  

The Xsens Dot utilised a hardware motion processor capable of both sensor 

fusion and filtering, so additional filtering was not required to be implemented in the 

data processing pipeline of the framework. . However, to demonstrate the use of these 

filtering algorithms in clinical setting, sensor fusion of raw accelerometer and 

gyroscope data was implemented in the classification of movement associated with 

cerebral palsy. The details of this experiment can be found in Chapter 4 of this thesis.  

3.2.3 Real time Joint Angle Measurement Techniques Utilising the Sensor Data 

Three joint angle measurement techniques were tested to find the optimal 

approach to determine the wrist, knee, and elbow joint measurements given the 

constraint of maintaining clinically valid data. It is important to highlight that shoulder 

joint angles have been omitted in the calculations since these joint angles are complex 

and cannot be captured utilising only IMU data. IMUs can be utilised in calculating 

finger joints but due to the requirement of several IMUs per finger and the cumbersome 

nature of this approach, HGR was used as the method of measuring finger joints and 

detecting gestures as an example of a complex joint[16]. Hand gesture recognition 

methods also require a machine learning algorithm to be implemented which have been 

detailed in chapter 3.3. 

To evaluate the validity of the selected methods, calculated angles were 

validated against goniometer measurement as goniometers are still the ones most 

commonly used in clinical settings and rehabilitation. These joint measurements also 

needed to be represented in real time so the user would be able to get feedback on the 
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accuracy of the exercising that are being performed. The sensor data would be 

streamed in real time via Bluetooth to a visualiser developed utilising the Unity game 

engine. Chapter 3.4 provides an in-depth overview of how sensor data is transferred to 

the human computer interface part of the framework. [16].  

Method 1: Two quaternion angles provided by the IMU are utilised to create a 

rotate vector in reference to a unit vector on a given axis. This means each calculated 

measurement will provide the joint angle with reference to each axis. A dot product is 

then taken between the rotate vectors followed by an arc cosine to provide the joint 

angle which is later converted to degrees [16]. Figure 10 demonstrate a flow chart of 

method 1 using wrist rotation as an example.  

 

 

Figure 10: Method 1 for Joint Angle Measurement using IMUs [16]. 

  

Method 2: In this method, quaternions angles are captured from the IMU 

followed by measuring the difference between the quaternion of the game object and 

the child body part in the visualizer. To calculate this difference, the inverse quaternion 

of each parent and child object is calculated and multiplied together [16]. The new 

quaternion value is converted to Euler and presented to the user. Figure 11 demonstrate 

a flow chart of method 2 using wrist rotation as an example.  
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Figure 11: Method 2 for Joint Angle Measurement using IMUs [16]. 

 

Method 3: This method utilises one of the Unity game engine built in function 

“gameobject.localRotation.eulerAngles”. This function provides the angle of the child 

game object with reference to the object immediately attached to it known as the 

parent. This function will calculate the joint angle utilising quaternion data attached 

directly to the game objects [16]. Figure 12 demonstrate a flow chart of method 3 using 

wrist rotation as an example. 

 

Figure 12: Method 3 for Joint Angle Measurement using IMUs [16]. 

 

These methods were validated against goniometers to measure the accuracy of 

the calculations. Additionally, the accuracy of the IMUs were validated in Curtin 

University’s Motion Analysis lab against Vicon motion capture technology [16]. The 

details of this validation results are available in Chapter 5. 
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3.2.4 Representation of Smoothness of Movement Utilising Sensor Data 

As presented in section 2.3.2, data captured from IMUs can be utilised for 

measuring smoothness of human movement. To calculate smoothness measures using 

SPARC, DLJ, and LDLJ, the general python code provided by [40] have been 

modified. The code utilises function calls as wrappers, so the code segments can 

compute different requirements of the smoothness measures. This code is then applied 

to the data captured during an exercise session to provide a measurement of how 

smooth the exercises took place.  

Implementation of SPARC Using Sensor Data 

Figure 13 demonstrates the sparc() function which calculates the smoothness of 

a given speed profile using the modified spectral arc length metric. It takes as input the 

movement array, which represents the movement speed profile, the fs parameter 

indicating the sampling frequency of the data, and optional parameters such as 

padlevel, fc, and amp_th. The function returns the spectral arc length estimate of the 

smoothness of the movement, along with the frequency and magnitude spectrum of 

the movement data, as well as the selected portion of the spectrum used for calculating 

the spectral arc length. The function starts by determining the number of zeros to pad 

the movement data for estimating the spectral arc length. It then computes the 

frequency array and the normalized magnitude spectrum using the Fast Fourier 

Transform (FFT). Next, it applies low pass filtering to select the portion of the 

spectrum within the given cut-off frequency, fc. It further applies an amplitude 

threshold to determine the cut-off frequency up to which the spectral arc length is to 

be estimated. Finally, the function calculates the arc length by summing the differences 

between adjacent points in the selected frequency and magnitude arrays, considering 

the scaling factors. 

 The resulting arc length, representing the smoothness of the movement, is 

returned. If any error occurs during the computation, the function returns NaN (Not A 

Number) values for all output parameters. It is important to note that this function can 

only take a one-dimensional array and as such all spectral arc length values will be 

based on the magnitude of their respective types, gathered by computing the square 

root of the x, y, z values each being individually squared and added together. 
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Figure 13: Main Code for Implementing SPARC 

 

Implementation of Dimensionless Jerk Using Sensor Data 

Figure 14 shows the main function for calculating individual factors of the 

dimensionless jerk metric for a given movement profile. It takes as input the movement 

array, containing the velocity, acceleration, or jerk profile. The fs parameter indicates 

the sampling frequency of the data. The data_type parameter specifies the type of 

movement data provided (either 'vel' for velocity or 'accl' for acceleration). The 

rem_mean parameter is only applicable for acceleration or jerk data, indicates whether 

the mean of the movement data should be removed before computing the jerk. The 

function returns three factors: T^N representing the duration scaling factor, A^M 

representing the amplitude scaling factor, and J representing the jerk cost. The function 

first defines parameters for different data types, specifying the number of different 

dimensions and the scaling factors. It checks if the data_type parameter is valid and 

raises an exception if not. The input movement is converted into a NumPy array, and 



 

Chapter 3: Experiment Design 49 

the dimensions are checked to ensure that the data has at least three samples, otherwise 

the dataset is invalid. The time interval dt is calculated based on the sampling 

frequency. If the data_type is acceleration and rem_mean is True, the mean of the 

movement data is subtracted from the array. This step removes the mean acceleration 

if specified. Next, the jerk is computed by taking the norm of the difference of 

consecutive rows in the movement array (n times). The jerk is then divided by the 

appropriate power of the time interval dt to obtain the modified jerk. The modified jerk 

is the squared sum of the jerk values multiplied by dt. The factors mdur, mamp, and 

mjerk are calculated as the duration, amplitude, and jerk components of the 

dimensionless jerk metric, respectively. Finally, these factors are returned by the 

function. 

 

Figure 14: Main Code for Implementing DLJ 
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Implementation of Log Dimensionless Jerk Using Sensor Data 

Figure 15 shows the main code for Log dimensionless jerk which is a basic 

translation of the dimensionless jerk value, as described previously. The code takes in 

the same factors, feeds them back into the dimensionless jerk function and then 

modifiers the result before returning the value. 

 

Figure 15:  Main Code for Implementing LDLJ 

 

Figure 16 lists the log_dimensionless_jerk_imu_factors() function which 

calculates the individual factors of the log dimensionless jerk metric used for IMU 

(Inertial Measurement Unit) data analysis. It takes several input parameters: accls 

representing the accelerometer profile, gyros representing the gyroscope profile, grav 

representing the gravity vector, and fs representing the sampling frequency of the data. 

The gravity vector can be represented by a simple 2d array with the values [0, 0, -

9.81], which will be present in the main body. 

The function returns three factors: -ln(T) representing the duration scaling factor, 

+ln(A) representing the amplitude scaling factor, and -ln(J) representing the jerk cost. 

First, the function computes the movement duration (mdur) by multiplying the number 

of samples (_N) with the sampling interval (dt). Next, it calculates the gravity-

subtracted mean square amplitude (mamp) by taking the norm of the accelerometer 

data and dividing it by the number of samples (_N). If gyroscope data (gyros) is 

provided, the square of the norm of the gravity vector (grav) is subtracted from mamp. 

Then, the function calculates the derivative of the accelerometer signal (_daccls) by 

taking the differences between consecutive accelerometer measurements and scaling 

it by the sampling frequency (fs). 

If gyroscope data is available, the function computes the cross product 

(_awcross) of each accelerometer measurement and its corresponding gyroscope 

measurement using a loop. Otherwise, _awcross is set to an array of zeros with the 

same shape as _daccls. Next, the corrected jerk (_jsc) is computed by subtracting 

_awcross from _daccls. The norm of _jsc is then taken, and its squares are summed 

over the time axis (axis=0). The resulting value is multiplied by the sampling interval 

(dt) to obtain the jerk cost (m jerk). Finally, the function returns the negative natural 
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logarithm of the duration scaling factor (-ln(T)), the natural logarithm of the amplitude 

scaling factor (+ln(A)), and the negative natural logarithm of the jerk cost (-ln(J)). 

 

Figure 16: The Main Code for Implementing LDLJ using IMU Data 

 

The functions and code explained in this sub chapter went through a validation 

process, the result of which is presented in Chapter 5.  

3.3 DEFINING THE MACHINE LEARNING REQUIREMENTS FOR THE 

FRAMEWORK 

3.3.1 Use of Optical Motion Capture Technologies for The Framework 

The developed framework has been designed to human movement to be 

monitored whist engaging in rehabilitation exercises. The developed framework uses 

IMU sensors as the principal method of capturing human joint movements (wrist, 

elbow, and Knee; however, it also utilises optical motion capture technology and 

machine learning for capturing finger movement for modelling a complex joint. As 

there are several joints within a human hand, utilising several IMUs would not be 

feasible and that is the justification for utilising the gesture recognition and machine 

learning approaches that have been used chosen [43].  
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An appropriate algorithm needed to be developed, validated, and implemented 

that facilitates hand gesture required for capturing finger movements required for the 

framework. HGR requires a human control interface component and a command 

mapping component, so it can be utilised as an alternative control method of 

interacting with visual elements within the gamified exercises. As outlined in Chapter 

2, HGR algorithms consist of a gesture description method, data acquisition method, 

gesture identifying method, and a gesture classifying component. To cover all these 

requirements, a six-stage approach was defined which will be covered in the following 

sub chapters [43]. Figure 17 provides a high-level overview of these six stages. 

Figure 17: Overview of 6 stages for implementing the HGR [43] 

3.3.2 Defining Simplifications and Governing Criteria of the HGR 

There are several unique approaches for different subcomponents of HGR 

algorithms. The following simplifications were considered to help with selection of 

relevant HGR components [43]. 

1) There cannot be any changes to components that have been selected

before each stage of investigation. This meant that selected component

would not change to accommodate for needs of new developed

approaches. For example, data acquisition techniques would not change

to the HGR requirements of the following stages.

2) Each component was selected at its own stage without focusing on its

effect on future stages. This selection took place in accordance with the

applicable governing criteria, successful selection of the previous

component, and relevant validation results.



 

Chapter 3: Experiment Design 53 

3) Gesture description and data acquisition component were selected based 

on the outcome of the literature review without any new quantitative or 

qualitative analysis.  

These simplifications provide a linear investigation structure which means the 

number of applicable implementations were exponentially reduced for each stage of 

the HGR implementation. This simplification also removed the requirement of time-

consumed in the experimental analysis for the first two investigation stages. This led 

to a reduction of the workload for analysing different implementation and allowed for 

investigating a wider range of techniques. The validity of the overall investigation was 

not compromised since these components cannot be defined by metrics that can be 

analysed. This means, they needed to be derived from attributed to the result of the 

literature review [43].  

A set of governing criteria were defined to make sure a cohesive and effective 

solution has been developed. These criteria augment the dependent and independent 

variables in each investigation stage such that an effective HGR can be implemented 

[43]. The governing criteria was defined as seen below: 

1) Reliability of the commands: This refers to both number of unit 

commands issues by the algorithm and the ability to distinguish between 

unique commands.  

2) Reproducibility of the commands: This refers to the ability to robustly 

produce the same action given the same user input.  

3) Being physically non-restrictive by equipment: This refers to any 

physical restriction the equipment provides to the user’s body as well as 

any imposed environment requirements.  

4) Ease of operation: This criterion refers to the complexity in learning the 

interface for the HGR and how quickly a new user would be able to start 

interacting with the system.  

5) Low computational requirements: This criterion was defined to make 

sure the HGR could run on readily available devices like low-cost smart 

phones while keeping an optimal operational speed.  



 

54 Chapter 3: Experiment Design 

6) Low monetary cost to the user: low monetary investment. Minimise 

economic burden on clinician and patient. 

3.3.3 Stage One: Selection of Gesture-Description Model 

The first stage of the HGR selections was to choose a gesture description model 

according to the defined governing criteria. As previously mentioned, gesture 

description includes a gesture type, gesture information, and a gesture model. Based 

on the simplification criteria, single hand statistic gesture was chosen for the gesture 

type, symbolic information was chosen for the gesture information, and a three-

dimensional, 21 landmark skeleton model was selected as the gesture model [43].  

Gesture-Type Selection Scope and Justification  

Three main considerations existed in the gesture type that needed to be analysed. 

The first was the motion of observed gestures, which could be static or dynamic 

gesture sets. The second was the inclusivity of wrist motion which defined the scope 

of observation. Thirdly, the number of observed gestures were also considered. Static 

single-hand gestures were chosen to ensure future components are simple and easy to 

understand for the user. Single hand static gestures also helped with lowering the 

computational requirement for the detection algorithm [43].  

A wide range of gestures were developed to avoid biases in the classification and 

identification algorithms. To help with the versatility of the detection algorithm, a 

requirement was set to ensure the gesture set contains gestures defined by recognised 

sign-language systems [43]. An example of the sign language gesture set used in the 

detection algorithm can be seen in Figure 18. 
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Figure 18: Example of sign language used for the HGR [43]  

 

Gesture Model Selection Scope and Justification  

The computational requirements to generate each model and the number of 

classifiable landmarks affect the gesture model selection. To balance these factors, a 

modelling method was selected that allowed for the required classifiable landmarks 

depending on the gesture set. Based on the models reviewed in Chapter 2, a 3D 

skeleton model was selected since appearance-based models had low number of 

classifiable landmarks. 3D geometric and 3D texture volumetric models were not 

selected either due to their complexity leading to high computational requirements 

[43].  

Gesture Information Scope and Justification   

Four considerations had to made regarding gesture information which were 

being spatial, pathic, symbolic, or affective. The selection of the source of this 

information was not mutually exclusive, meaning one or all could be selection. 

Symbolic information was chosen as the primary source of information based on the 

gesture type selection mentioned above. Spatial information for the three-dimensional 
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skeleton landmark model was used to calculate joint angles for the 15 observed joined 

[43]. Details of the joint angle calculations are provided in section 3.3.7. 

3.3.4 Stage Two: Selection of Data-Acquisition Method 

Stage two was to select a data acquisition approach for the HGR capable of 

efficiently and non-restrictively observe a human hand based on the selected gesture 

models. The result of the literature review and governing criteria 1,2,3,5, and 6 were 

utilised for the selection process by evaluating each solution against the given criteria. 

The selection led to choosing single RGB cameras as the main data acquisition method 

for the HGR as it satisfied applicable criteria. Depth cameras did not meet Criterion 3 

requirement as the range restrictions could restrict users. Stereo cameras were omitted 

to their high computational requirements and focal point restrictions which did not 

satisfy Criterial 3 and 5. Band and glove methods were also omitted as they did not 

meet Criterion 3 [43].  

There are some drawbacks to use of single RGB cameras that were addressed by 

other components of the HGR. These draw backs are robustness issues associated with 

background and operator hand, variability, and single viewpoint errors such as self-

occlusions and transform inconsistency. However, this form of HGR is very mature 

that address most of these issues and the technology is readily accessible to end use 

via smart phones, tablets, and laptops [43].  

3.3.5 Stage Three: Selection of Gesture-Identification Algorithm  

Stage 3 was to select a gesture identification algorithm to extract hand features 

from the data captured from a single RGB camera. The extracted features needed to 

be in form of a three-dimensional skeleton model following Governing Criteria 1,2, 

and 5. The selected method also needed to address draw backs of single RGB camera. 

To find the best applicable gesture identification algorithm, a qualitative analysis was 

conducted that focused on computational requirement and the observable localization 

accuracy of the selected algorithms [43].  

There are several feature-extraction methods that are applicable for HGR gesture 

identification, since it was not possible to directly test all of them directly, the design 

simplifications mentioned in stage one was used to reduce the scope. Selection of 

gesture-description and data-acquisition component reduced the scope by the removal 

of any methods not developed for three-dimensional skeletal models; the removal of 
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any method not compatible with single RGB cameras; and considering only existing 

open-source implementations. This led the selection to MediaPipe hands, 

InterHands2.6M, and OpenCV as the possible approaches as discussed in Chapter 2, 

each with their own pre-processing and feature extraction techniques leading to 

different computational requirements. The localisation accuracy of the skeleton model 

and computational requirements for feature extractions were the primary focus on 

selecting the gesture identification approach [43]. The following tests were designs to 

address each of the mentioned requirements: 

1. Identifier Implementation: This test was design to implement a baseline 

variant of the three algorithms capable of observing a single human hand, 

calculating the angle of its 15 primary joints while displaying the 3D-

skeleton model. This stage assesses the operational readiness and the 

computational requirements of implementing each algorithm. It also 

acquires an operational version of the algorithms where future testing 

would be performed. All the algorithms were initially tested on a 2017 

Mac Book Pro with a 3.5GHz Dual Core Intel Core i7 CPU, and Intel Iris 

Plus Graphics card. The system also had a 16 HB LPDDR3 RAM and 

256 GB of storage.  

2. Qualitative Analysis: This test observed was conducted to observe the 

localisation accuracy of the algorithms to make sure Governing Criteria 

1 and 2 are addressed.  This approach reduced the single camera data-

acquisition method. Accuracy of the algorithms were observed for self-

occlusion, rotation, and translation using operational version of the first 

sub test. To achieve this, a user’s hand was held in a constant position in 

front of the camera and the displayed 3D model was then recorded. The 

hand was then rotated and translated around the camera’s view point 

while observing the display model to make sure localisation accuracy is 

being maintained despite the movement. The final stage was to turn the 

hand so some parts are occluded from the point of view of the camera to 

determine if hand features could still be produced.  

3.3.6 Stage Four: Validation of Selected Gesture-Identification Algorithms  

Stage four was to validate the gesture identification algorithm based on the 

accuracy and robustness of the produced model. This stage utilised a quantitative 
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approach based on the advice received by clinical collaborators of this research by 

comparing joint angles calculated from the models to the joint angles measured by a 

finger goniometer.  The result of this method showed the if a selected algorithm met 

Governing Criterion 2. This method was applied to the final selected identification 

algorithm. As mentioned in stage 1, a 3D skeleton model was selected as the gesture 

description model. Percentage variances between joint angles of the observed hand 

measured by the goniometer and the ones measured by the model were calculated to 

determine the accuracy of the model. As discussed in Chapter 2 goniometers are the 

preferred clinical method for capturing human joint and are used at the beginning of 

each rehabilitation exercise session to for understanding the base line of participants. 

Due to their widespread use in clinical settings, goniometers were used to evaluate the 

accuracy of the calculated angles. The measured joint angles were the 

metacarpophalangeal, proximal interphalangeal, and the distal interphalangeal joints 

of all fingers. The static arm of the finger goniometer was stabilized against the 

proximal side of the joint and the hinge of the goniometer was place directly above the 

observed joint. In the event of a bulbous knuckle, the goniometer was moved to the 

side of the finger so that the hinge sat directly in front of the observed joint. After 

securing the position, the free arm of the goniometer would be lightly pressed against 

the distal side of the observed joint. This measurement was done without any force 

applied as it would alter the pose of the observed hand. After the free arm of the 

goniometer was in contact with the distal side of the joint, the joint angle was recorded 

to the nearest 5° [43].  

Joint Angle Calculation Methods Using MediaPipe 

Two methods were applied for joint angle calculation derived from the 3D 

model. The first method was vector angle calculation where two vectors are created: 

each traveling to the joints associated with the current measurement. After defining 

the vectors, their dot product was calculated to measure angles between two joins. This 

method is a similar implementation to what was previously discussed in chapter 3.2.3. 

Another method for joint angle measurement was to discard the depth component of 

the model and perform the same calculation as previous method. This method was 

implemented to measure how much of an effect the 3D nature of the model had on 

performance [43]. Figure 19 and Figure 20 show the python code used for 

implementing the calculations.  
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Figure 19: Python code for calculating three-dimensional join angles [43]. 

 

 

Figure 20: Python code for calculating two-dimensional join angles [43] 

 

To test the robustness and accuracy of the algorithm, two independent variables,  

hand pose and hand orientation to camera, were modified through the following steps 

[43]: 

1. Hand pose: Three positions were considered: Fully closed position, 

partially closed position, and fully open position. These positions were 
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selected as they are easy to hold, stable, repeatable, and were suggested 

by clinical collaborators of this research. These positions simulate a full 

range of motion of a human hand and the example of these positions can 

be seen in Table 3 and Table 4.  

Table 3: Viewpoint and poser examples for stage four for HGR [43] 

 

 

Table 4: Dataset used for classification and analysis [43] 

 
Gesture  

Identifier 

Gesture Reference 

Image 
Models 

1 

 

 

2 

 

 

Pose 
Viewpoint Offset 

0° (Font) 45° (Forty) 90° (Side) 180° (Back) 

Open 

    

Partial 

    

Closed 
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3 

 

 

4 

 

 

5 

 

 

6 

 

 

7 

 

 

8 
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2. Hand orientation with respect to camera: The second independent 

variable was the incident angle of the camera’s POV and the observed 

hand. The orientation angle would change so the robustness of the 

algorithm can be measure against rotation and self-occlusions. Four 

photos were taken for each of the hand poses above which included: the 

front of the hand, 45° offset, 90° offset, and a 180° offset as seen in Table 

3 and Table 4.  

Maintaining high accuracy in MediaPipe Measurements via Control Inputs 

Sufficient accuracy of the MediaPipe measurements was defined as being within 

goniometer error ranges which was maintained using the following control inputs 

while keeping the results repeatable. 

1. Lighting: Defined to avoid variance in lighting so all tests were 

conducted in a well illuminated environment without any shadowing on 

the observed hand. This was maintained by conducting the evaluation in 

the same lighting conditions.  

2. Background: Considered to lower the impact on the MPH modelling 

process. White backgrounds were used to maintain a high level of 

contrast between the hand and the surrounding environment and help 

with feature extraction.  

3. Body position: defined to ensure viewpoint angles and positions for each 

participant is the same. The control variables were for the participants to 

kneel in a comfortable position, with their forearm braced against a test 

bench. The test bench included a set of markers for appropriate positions 

for each background and participant.  

4. Euler angles of the camera: Defined so the viewpoint orientation was the 

same for all participants and varied by desired amounts between tests. 

This practice was derived from research done in [98].  

5. General hand size and distance from camera: A fixed camera distant was 

used for each participant to limit the variability to the participant hands. 

This was achieved by a fixed camera mounting location for each captured 

pose.  
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Final Testing Procedures for Stage Four of HGR 

This stage required the following five steps to be able to test the final 

components required for stage four of the HGR. 

1. Establishing the previously method controls  

2. Forming the required hand pose by the participant  

3. Recording the joint angle utilising a goniometer 

4. Taking photos of the hand from the required viewpoint  

5. Measuring the joint again via a goniometer  

The sets of joint angle measures mentioned above were then compared and if 

they did not match, the test image would be discarded, and the process would be 

repeated. The aim of this approach was to ensure the participants hand pose had 

remained stable during the test. The joint angle calculation and gesture-identification 

algorithms would then utilise the valid photos to generate a set of observed joint 

angles. The python code for this stage was previously provided in Figure 19 and Figure 

20. The final set of accuracies were then generated by comparing the results against 

the goniometer. The outcome of these validation tests is provided in Chapter 5. 

3.3.7 Stage Five: Selection of Gesture-Classification Algorithm and Finger Joint 

Measurements  

Stage five utilised quantitative methods to select the gesture-classification 

algorithm that best complemented the gesture-identification method. The Governing 

Criteria 1,2, and 5 effected this stage from which two quantitative metrics were 

calculated to make the final decision. These metrics were the classification accuracy 

of the algorithms in form of a confusion matrix and classification speed to evaluate the 

computational requirements of the algorithms. [43]. After applying the simplification 

methods described in section 3.3.2, the following two possible scenarios were defined: 

1. If stage 4 demonstrated that the selected gesture-identification 

algorithm can produce the model accurately and robustly a low 

dimensionality classifier base on 15 single dimension joint angles 

would be utilised. This led to investigating decision trees, KNNs, 

and linear regression algorithms.  
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2. If the stage 4 lead to a non-ideal model accuracy, a higher input 

dimensionality classifier with 21 three-dimensional coordinate 

system (total of 63 dimensions) would be utilised. This led to 

investigation of ANNs, SVM, linear regression, and non-machine 

learning bounds-based approaches.  

Dependent variables for stage five remained as classification accuracy and time. 

The independent factors were the style and implementation of the classifiers [43]. The 

following classifiers were kept as constant to insure a fair investigation: 

1. Test data set: A common set of test gestures were identified 

between algorithm which included 10 gestures. Then images were 

then created for each gesture and converted to the 3D model using 

MPH. This resulted in 100 models that formed the test data. 

Criteria 1 and 2 were considered for this selection where the hands 

varied in the ten selected images in scale, orientation, and pose. 

This avoid testing the accuracy algorithm only on “best case 

scenarios”.  

2. Computational requirements for each algorithm: The hardware 

specification of used for each algorithm kept the same to ensure it 

would not affect the selection process. During the classification 

time testing, the time taken for each algorithm was only used at the 

prediction stage of the classifier. This excluded the time required 

for initializing and training the classifier, loading the MPH model, 

and any other time associated with generation of confusion 

matrices.  

The procedure for stage five utilised a basic algorithm to sequentially test each 

of the prospective algorithm against the common data set. After each test, the 

predictions of the classifiers were recorded in their respective confusion matrices 

followed by recording the time taken to perform the classification in a CSV file. The 

final confusion matrices were developed after all test images have been tested, and the 

time performance data was recorded for evaluation [43].  
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3.3.8 Stage Six: Gesture Mapping and Tuning   

Stage six involved developing the gesture mapping component capable of 

translating classifiable gesture into exercise activities. As an example, for the use case, 

a physical quad-rotor drone was utilised, and the exercises would fly the drone in 

different directions. This use case is further explained in Chapter 4. One to one 

command mapping was utilised as the mapping method to align with the previously 

mentioned design decisions. This served as the initial solution that demonstrated the 

HCI algorithm as an alternative means of control. The initial commands were further 

tuned to allow smooth interactions with the game objects and the physical drone 

following governing criteria 4 [43].  

3.4 DESIGN AND IMPLEMENTATION OF THE HUMAN COMPUTER 

INTERFACE 

3.4.1 Use of Unity Game Engine for Visualization  

The Unity game engine was selected as the main component for containing the 

games designed for rehabilitation exercises. Unity is a real-time development platform 

game engine that was developed by the Unity Technologies and released in 2005. The 

primary language used for the developed games is C sharp (C#) and editing of the 

source code is performed through Microsoft Visual Studio. The Unity Game engine 

has the ability to be supported by multiple platforms such as a PC or smart Phones, 

making it an ideal platform for game development and deployment as they can be 

accessed via common consumer devices.   

The Unity game engine lets the developer design both 2D and 3D games with 

applied physics, graphics, and visual effects. It also provides a range of free assets and 

tutorials through its website from other developers, providing a wide range of  guides 

for developers to apply in their games. Additionally, 3D models developed in blender   

which is a free and open-source 3D creation suit, can be added to the unity application 

to make unique game objects [99]. Furthermore, the unity engine has a “interaction 

Engine” which allows for the user to interact through their physical movement with 

game objects and interfaces. Unity provided a solid foundation for creating immersive 

and interactive gamified experiences for the framework.  
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3.4.2 Connectivity of Sensor and ML Elements to Unity  

Unity contained the capability for custom plugins which helped in incorporating 

IMU data streaming and HGR capability for each of the interactive experiences. Figure 

21 demonstrates the high-level connectivity of the main visual elements of the 

framework which consisted of the following structure: 

1. Data extraction from the IMU and vision-based software. 

2. Transmission of extracted data to the unity platform 

3. Creation of a main visualisation interface in unity than can facilitate 

different exercises.  

4. Design of sample mini game with the capability to modify them to fit 

different exercise.  

5. Live recording exercise session with the aim of report orientation data 

such as active and passive range of movement, smoothness measures, 

and statistics regarding the engagement with the exercises.  

 

Figure 21: High-level overview of the data stream elements of the framework. 

 

IMU Data Streaming to Unity  

The primary source for creating the data stream from the IMUs to unity was the 

Xsens Dot software development kit (SDK) provided by manufacturers of the sensors. 

The implemented SDK provides a dependable data stream solution for transmitting the 

IMU data directly to Unity. To facilitate the transmission, the Xsens Dot PC SDK was 

also utilised which is provided as an application programming interface (API) which 

integrates data captured from the IMU into windows-based applications. The SDK 

provides libraries for interfacing with the sensors, sample codes, and through 

documentation for implementation. The code provided in Figure 22 Fig demonstrates 
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the method for real time streaming of Euler angles, device’s tag name, address, battery, 

and connection status to the windows-based computer.  

 

Figure 22: Sample code for streaming sensor data to a windows-based computer 

 

Machine Learning Data Streaming to Unity  

As previously mentioned, MediaPipe hand was utilised as the main HGR for the 

framework which meant the data captured from MediaPipe needed to be transferred to 

Unity. To facilitate the transfer, the Python code in Figure 23 was first created as the 

first step of implementation.  

 

Figure 23: Python code for implementing MediaPipe Hand for the data stream. 

 

Aliases were created after importing the MediaPipe library to facilitate access to 

the drawing utilities and hand tracking modules within MediaPipe. Figure 24 was then 

utilised as a reference for the hand land marks so an array was created called 

“jont_list”. This was followed by implementing an iterative process in the 
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“draw_finger_angles” function to ensure each detected hand in the “results” is 

traversed, and the joint set in the “joint_list” can be sequentially examined. The angles 

are then calculated as previously discussed in stage four of the HGR.   

 

 

 

Figure 24: Localisation of 21 hand landmarks within MediaPipe [100] 

 

Figure 25 provides a look at the “get_label” function that processes the hand 

classification results, extracts the score and label required for the HGR, and calculates 

the coordinates for the wrist landmarks. The main part of the implementation a video 

capture is started where each frame needs to be processed by converting BGR to RGB 

and flipped horizontally. 

 

 

Figure 25: get_label function for processing HGR 

 

The previously mentioned “MediaPipe Hands” module facilitates the detection 

and tracking of the hand landmarks within the frame and renders them on the image if 

detected. The “get_label” function then obtains the hand level and display it on the 

image followed by the “draw_finger_angles” function for visualising the finger angles 

on the image.  
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Connectivity of Final Elements to Unity  

The last connectivity stage was the use of Transmission Control Protocol (TCP) 

which facilitated the transfer for the IMU and MediaPipe to Unity. A Graphical User 

Interface (GUI) was developed using PySimpleGUI to scan the IMUs and use TCP to 

transfer the data to Unity. Figure 26 shows a screenshot of the GUI.  

 

Figure 26: GUI developed for scanning IMUs and transfer to Unity 

 

The TCP transmission required the use of the ZMQ (ZeroMQ) library, which is 

linked to a set address and port which is typically set as “tcp://localhost:5555” in the 

set-up stage. The “send_json()” function is utilised to transmit the required data via a 

socket which transmits the angle data as a JSON object to the TCP end point. Use of 

JSON allowed for utilising the inherent structure and nesting capabilities of data 

structures, providing compatibility across different programming languages and 

platforms. This is why JSON was selected for interactivity of Unity and Python codes. 

A polling procedure was implemented to make sure the socket connection is robust. 

The polling object is registered with the socket and timeout duration of 10miliseconds 

is configured. The “poll()” function can evaluate the status of the buffer for the socket 

to determine occupancy. If the buffer gets full, the socket is connected and 
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disconnected to the same endpoint to prevent potential blocking issues. 

“is_buffer_full” variable is monitored to determine the occupancy status of the buffer. 

In Unity, a TCP server is created using a “ServerReciever” C# code. This code utilises 

the NetMO library to effectively manage TCP socket communication. When the 

“ServerReciever” object is initiated, a “PullSocker” is created to listen on the localhost 

port (in this case 5555) and waits incoming transmission from the TCP client. Figure 

27 demonstrate the code for capturing and storing the data into a set data type which 

goes through the steps mentioned below: 

1) Instantiation of the first ServerReciever  

2) Creation of a new server  

3) Start the server. 

4) Creation of a character array to store the JSON packets from a string.  

5) Removal of non-numeric entries from the string and data storage in different 

elements inside and array of strings. 

6) Conversation of data string to float and storage as a 3-D vector. 

7) Aborting the transmission 

 

Figure 27: Code for capturing and storing the movement data to Unity. 

 

3.4.3 Importing Avatars in Unity for Visualisation of Movement 

To be able to visualise the exercises and map the movement of the participants 

an avatar was required to be created in Unity. The created avatar needed to replicate 

real-time movement of the user. The designed model for the avatar was obtained from 

[101] due to its compatibility with Unity and can be seen in Figure 28.  
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Figure 28: Base of Avatar used for replicating user movements. 

 

The avatar provides flexibility by facilitating various arrays of options for 

manipulating the joints of the model. After importing the model into Unity, a script 

was written for controlling joint transformations. The different controllable joints 

within the model can be seen in Figure 29. 

 

Figure 29: Mapping capabilities of the implemented avatar 

 

Once the avatar was successfully imported into Unity, a default T-pose became 

visible in the Unity scene. As scene in Figure 30 several joints can be manipulated at 

this stage as seen in Hierarchy panel to the left-hand side of the model.   
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Figure 30: T-pose view of the avatar with Hierarchy panel 

 

3.4.4 Animation Set up in Unity for Joint Movements 

To provide a more visual experience to the user, animation was set up for the 

joint movements within Unity. To achieve this, the animation tool provided by Unity 

was utilised. This tool allowed for dynamic movements to be mapped to the joint 

transitions and allowed for different poses for the avatar depending on the 

rehabilitation exercises taking place. This change of pose helped put more focus on the 

joint that was been affected as part of the rehabilitation exercise. The animations also 

provided a more pleasing and engaging visual experience for the user since the 

animations provided the means fort the avatar to mimic the user’s movement more 

realistically. 

 As an example of specific poses required for the avatar, a side view was 

designed for hand rehabilitation exercises that provided clear visibility for the wrist. 

This special pose allowed the ROM of the wrist to be more easily visible by the user. 

A dedicated camera transition was then designed to dynamically transition from the 

main pose to the hand exercise pose. To initiate the camera transitions, an invisible 

button was placed on the arm that was used as the trigger of the transition. This button 

would be activated by the use upon clicking on the arm of the avatar. The script in 

Figure 31 demonstrates changes in priority of the desired camera and Boolean triggers 

that facilitate the transition.  
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Figure 31: Settings priorities and Boolean triggers for camera transitions 

 

3.4.5 Canvas Setup to Streamline Navigation in Unity 

The visualisation required to facilitate a streamlined navigation for different 

exerciseswas made possible by designing an accessible interface by integrating 

multiples canvases in Unity. Each designed canvas facilitated a set of exercises and 

settings by providing buttons and instructions for a particular exercise. This provides 

an easy to navigate layout for the user to be able to select desired exercises or modify 

relevant settings. Figure 32 provides a list the canvases that were designed.  

 

Figure 32: List of designed canvases 

 

A user interface manager script was developed to maintain smooth navigation 

between different canvases. This scrip manages visibility of each canvas through 

different button clicks. To achieve this, each respective canvas needed to be associated 

with a GameObject and specific functions were created to trigger the button clicks. 

The SetActive() function was then utilised to hid or reveal the required canvas.  
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3.4.6 Setting Thresholds for Movement Exercises in Unity  

As demonstrated in Chapter 2, customizability of the gamified exercises is a 

crucial component of rehabilitation. To address this requirement, threshold settings 

needed to be implemented so each exercise could be customized depending on users’ 

requirements such as initial ROM/AROM and other attributes that are usually set by 

the clinicians during a rehabilitation program. The thresholds were also an important 

aspect of the feedback given to the user during the exercises as they determined when 

feedback is given regarding their target range of movement or number of daily 

repetitions of the exercises. Hand movement exercises were selected as an example of 

different threshold requirements within a rehabilitation program. To adjust the 

thresholds, slides were implemented as seen in Figure 33 

 

Figure 33: Slider menu for setting thresholds 

 

To facilitate a more user-friendly experience, slide values needed to be saved so 

they can be loaded on future startup of the application. To achieve this, a script called 

“SliderScript.cs” as seen in Figure 34 was developed that monitors the values set by 

the slide and saves them as float data types. This data will eventually be used as the 

exercise’s thresholds defined by the clinicians and set by the user.  
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Figure 34: Script for saving the set threshold values obtained the sliders. 

 

The script utilises PlayerPrefs.SetFloat() function within Unity to store the data 

internally in pairs as demonstrated in Figure 35.  

 

Figure 35: Script to store values obtained from the sliders. 
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Finally, LoadValues() function within Unity was utilised to capture the saved 

values obtained from the sliders. This function uses PlayerPrefs.GetFloat() method to 

retrieve the float values and assign them to the relevant corresponding float variable. 

This variable is then used to update the slider value and display a text to the user that 

the value loading process was successful. The LoadValues() function is called in 

program startup and the save process to automatically save the latest values. This 

means the system is using the latest values for to optimal functionality. The script used 

for this stage can be seen in Figure 36.  

 

Figure 36: The LoadValues() script used for reading values. 

 

An alternative approach for loading threshold settings was provided after 

consulting with clinical collaborators of this research. In certain cases, such as geriatric 

users, younger children, or rehabilitation after major trauma, adjusting of the threshold 

setting needs to be closely monitored by a clinician. To facilitate closer monitoring, 

the recommended settings can be provided via a CSV file created by the clinicians. 

This is done by a LoadCsv() function as seen in Figure 37. 
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Figure 37: LoadCsv() function for loading pre-defined exercise thresholds 

 

3.4.7 Implementing Rehabilitation Exercises in Unity 

To demonstrate the capability of adding exercises to the framework, four hand 

movement exercises were selected and implemented as a template. These exercises 

were extension/flexion, radial/ulnar deviations, and pronation/supination, as seen in 

Figure 38. A finger touching exercises was also implemented as an example of HGR. 

As previously discussed in Chapter 2, in addition to ROM, the number of repetitions 

and hold time at pre-defined thresholds needed to be recorded during the exercise 

sessions. To achieve this, values captured from the threshold settings input field, either 

through user input or by uploading the CSV file by the clinicians, are utilised as the 
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limits for the exercises. This functionality was implemented in a script as seen in 

Figure 39. 

 

Figure 38: Wrist movement and finger movement exercises used as example 

implementation.  
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Figure 39: Script for setting thresholds limits in exercises 

 

A validation mechanism has been implemented through the TryPars() function. 

This function makes sure valid inputs are accepted via checking the integer inputs and 

prompts the user to re-inter if an invalid value has been selected. The wrist 

rehabilitation exercises example provides some guides to engage with the application 

by providing prompts to start the exercises, highlight thresholds, and start a counter 

when a hold position is achieved. Depending on the exercise, different attributes of the 

IMU was selected for example, extension/flexion relies on Pith angles and radial/ulnar 

deviation relies on the Yaw angle of the IMU.  
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Figure 40: Script for thumb touching exercise. 

 

The thumb touching exercise utilises four data points provided from the 

MediaPipe script that are stored in the Unity environment. Each of these data points 

relate to the distance between the thumb and other fingers. This distance in calculated 

by the angle formed by tip of the thumb and the tip of the other finger and the 

metacarpophalangeal joints between them. The python code for this process was 

previously presented in Figure 23. For this exercise, patients were required to touch 

the tip of each finger with the tip of their thump in a sequential manner. To detect the 

touches, low angle calculated based on MediaPipe data was utilised with the high angle 

pointing to absence of contact. Figure 40 provides the script for this implementation 

where an 8-degree angle threshold was utilised to indicate movement towards the 

thumb. This angle accommodates any potential inaccuracy in join measurement while 

providing a reliable method for finding the direction of fingers. To calibrate the 

exercise, the script in Figure 41 was implemented as the initialisation method. This 
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function utilises the space key as an input for method for resetting all calculated joint 

angles to zero which standardizes the starting point for the required measurements.  

 

 

Figure 41: Script for calibration finger movement exercises 

 

3.4.8 Implementation of Rehabilitation Goals via Dashboard Design 

Rehabilitation programs define goals where the user has to perform a pre-defined 

number of exercises for a pre-determined number of daily repetitions which needs to 

be maintained over several weeks. A daily goal dashboard with a continuity system 

(known in game developed as streaks) was developed to encourage the user to persist 

with the rehabilitation program. Tracking this information also provides the clinician 

a view on how often the user participated in the rehabilitation exercises outside the 

clinical environment. This overview combined with tracking of ROM and smoothness 

measures for the patients can provide a clear view of how effective the rehabilitation 

program has been for the user. The daily goals are set by the clinicians and provided 

to Unity using a CSV file. A script titled “StreakSystem.cs” was developed to check if 

the user has been engaging the exercises set and if the exercises were done 

consecutively for a set number of days which determines the streak. The streak would 

reset if the user were not able to maintain the consecutive days as demonstrated in 

Figure 42. A badge system was then implemented as seen in Figure 43 to provide 

visual feedback to the user on how many streaks were maintained.  
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Figure 42: Scrip for checking the streak 

 

 

 

Figure 43: Badge system for rewarding the pare after keeping streaks 
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3.4.9 Designing Scene Transitions for In Unity  

To provide a more engaging gamified experience for the user, several mini 

games were developed that provided a digitally gamified version of the existing 

rehabilitation exercises. These mini games needed to be kept in a separate scene in 

Unity and managed through a scene management system to transition between the 

avatar view and game view. The design allows for future mini games to be developed 

separately and added to the Unity program without requiring changing the main scene. 

To facilitate multiple mini games and their relevant scenes, a server object accessible 

by all C# scripts of the Unity code was initialised.  

 

After the initiation of the server object, a script called GameLoader.cs was 

created to manage different transitions between the created scenes. This script provides 

a routine for loading scenes depending on their scene index as seen in Figure 44. A 

transition animator was also developed to make the transitions more aesthetically 

pleasing by providing a fide in/out effect.  

 

Figure 44: Script for loading different scenes.  

 

3.4.10 Implementation of Audio Cues to Enhance Engagement  

To further enhance the engagement and entertainment aspect of the gamified 

elements, audio cures such as sound effects and background music were designed and 

implemented in Unity. For implementation of the audio, a dedicated sound class was 

developed that included initial parameters for the audio source as seen in Figure 45. 

The AudioManager.cs script was then developed to be able to manage the audio 

playback components and characterises as seen in Figure 46. The function 

“FindObjectOfType<AudioManager>().Play()” was utilised to provide seamless 
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audio playing of a given source by adjusting characteristics such as volume, pitch and 

how often the given audio element would loop.  

 

Figure 45: Special class created for the audio elements. 

 

 

 

Figure 46: Audio manager used for adjusting different audio elements. 

 

3.4.11 Overview of the Implemented Framework Interactivity  

All the elements explained so far in this chapter were integrated to create the 

main page view seen in Figure 47 for the user going through the rehabilitation 

program. This interface combines these elements to allow the user to input their 

personal information, access exercise data, set or load thresholds, view daily goals, 

and view their badges. Navigational buttons are also provided so different menu can 

be access easily.  
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Figure 47: Main page view of the Unity application 

 

Navigation to specific exercises is done by clicking on a relevant joint on the 

avatar which takes the user to a view suitable for those exercises and provides father 

options. For example, if the hand is pressed, the user is first taken to the view seen in 

Figure 48. This view allows the user to choose between different example hand 

movement exercises that can be selected.  

 

Figure 48: Example side view for wrist and hand movement exercises 
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Figure 49: Example of a selected hand movement exercises (Flexion/Extension) 

 

Figure 49 demonstrates the flexion/extension exercise that has been selected 

which will then show the joint angle feedback, threshold feedback and other settings 

to the user. Figure 50 demonstrates another exercise example for the thumb touching 

exercise with its relevant menus. As it can be seen, each exercise also includes a select 

mini game option which will then take the user to a mini game selection window 

relevant for the selected exercises. Each exercise can either be done in the avatar 

window or the mini game window. Details of the mini game part is provided in sub 

chapter 3.5. 

 

Figure 50: Example of a selected finger movement exercises (Thumb Touch) 

 

3.4.12 Overview of the Generated Movement Data Reports  

Different rehabilitation data such as exercise duration, exercise type, number of 

repetitions achieve, hold time, and exercise streak are stored after engaging with the 

exercises. The base line thresholds, joint angles, and smoothness measures are also 
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stored to provide an overview of the user’s progress during the exercise program. 

Figure 51 shows an example of data that has been collected after a flexion/extension 

exercise.  

 

 

Figure 51: Example of collected data after engaging with a rehab exercise through 

Unity. 

 

The joint angle measures are also collected after engaging with the mini games 

as seen in Figure 52 which demonstrates the ROM for this activity. In this example, 

clustered data demonstrates a low rate of wrist movement, and the spread-out data 

demonstrates a period pf rapid movement.   

 

Figure 52: Example of collecting data after engaging with a mini game. 
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3.5 DEVELOPMENT OF GAMES FOR THE FRAMEWORK 

3.5.1 Design Ideology for the Game Designs 

After development of the backend for the visualisation environment and 

implementation of the measurement techniques, several video game experiences were 

developed to provide a more engaging gamified experience to the rehabilitation 

program. The user who is going through the rehabilitation program would be provided 

with the choice of engaging with the exercises either through the avatar interface or by 

selecting a minigame associated with a said exercise. Each of the developed video 

games which consisted of eight mini games and two larger games followed the 

following design ideology:  

1) The games must replicate certain rehabilitation exercises.  

2) The games must provide the means for movement data such as ROM, 

joint angles, and smoothness measurements to be captured.  

3) The games must reward the user when an exercise has been done 

correctly via scoring systems and audiovisual feedback.  

4) The scoring systems within the games should not encourage the user to 

under reach or overreach threshold for rehabilitation. 

5) The games must be customizable based on the user’s rehabilitation 

requirements.  

The games that are described below utilize IMU sensors connected to back of 

the hand and slightly above the wrist as seen in Figure 53. The finger movement games 

utilise a laptop webcam and MediaPipe as the main input and interaction method. The 

interaction with these games can also be mapped to other joint movements such as 

elbow and knee. The use of framework for posture monitoring activities and exercises 

have been provided in Chapter 4. 
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Figure 53: IMU placement for wrist rehabilitation exercises 

 

3.5.2 Design and Development of Mini Games in Unity 

The mini games described below were designed by maintaining the ideology 

mentioned above. The aim was to provide a wide variety of games that can fit different 

tastes and age groups. The user would be able to select different games depending on 

which rehabilitation exercise has been selected. The mini games below utilised hand 

movement wrist exercises and finger movement exercises as an example of a 

rehabilitation program to follow.  

Monster Chase Game 

In this mini game, a zombie character is constantly chasing the player on a 2D 

plane where the movement of the player can be mapped to different types of hand 

movement depending on the exercise type. For example, one of the attributes could be 

mapping the movement to the time a threshold angle has been maintains. Once the 

specified number of repetitions have been completed, the player escapes the zombie. 

The chasing zombie will capture the player if the goals has not been met - which also 

leads to the game ending.  The game aligns the gameplay mechanics with the selected 

exercises, in this case utilising IMU input, threshold settings, number of repetitions, 

and hold time. To provide customization capability to the game, the zombie’s 

movement speed can be modified utilising the MoveEnemy.cs script as seen in Figure 

54.  
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Figure 54: Script for modifying the zombie's speed 

 

The CameraFollow.cs script was then implemented to make sure both characters 

can be viewed in the screen’s boundary. Figure 55 demonstrates how this script follow 

the character’s movement.  

 

Figure 55: Scrip that allows the camera to follow the characters. 

 

Figure 56 shows the user view for the final implementation of the Monster Chase 

game. Some sample data collected from the interaction with the monster chase game 

has been provided in Appendix B. 
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Figure 56: Screenshot of the user view in the Monster Chase game 

 

Flap and Avoid Game 

The “Flap and Avoid” game was developed to target flexion/extension exercises 

in hand and wrist rehabilitation. The main aim of this game as seen in Figure 57 is to 

avoid hitting the green pipes and collected the coins while controlling the movement 

of the bird character via wrist flexion/extension exercises attached to pitch angle of 

IMU data. The script that utilises PlayerMove() function to map IMU data to the game 

object can be seen in Figure 58. 

 

Figure 57: Screenshot of the Flap and Avoid Game 
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Figure 58: Script for mapping IMU data to the player movement 

 

This mini game also implements a random element by generating pipes at regular 

intervals of time which can be modified depending on rehabilitation requirement of 

the user. Each instantiation of the pipe generates a height value defined by the 

threshold settings of the exercise. The PipeSpawner.cs script can be seen in Figure 59 

that demonstrates this process. Afterwards, the MovePipes.cs script was developed to 

facilitate the movement of the bird character between the pipe elements as seen in 

Figure 60. Finally, the OnCollisionEnter2D() function was implemented to take the 

player to a game over screen if the bird character collides with the pipes. This 

implementation can be seen in Figure 61. Sample data captured from this mini game 

can be seen in Appendix B. 

 

Figure 59: Script for implementing the random pipe height element. 
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Figure 60: Script for interaction between the pipe and the bird 

 

 

 

Figure 61: Script for collision detection between the bird and the pipe 

 

Hovercraft Game 

The “Hovercraft” game was developed as a more advanced version of the flap 

and avoid game with more customizable features. The aim of this mini game is to avoid 

incoming obstacles while flying a hovercraft that moves up and down as seen in Figure 

62. 
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Figure 62: (a) Menu Screen; (b) Patient out of threshold region UFO movement 

flatlined (c) Flexion Threshold reached and UFO moves Down; (d)Extension 

Threshold reached and UFO moves UP. 

 

The obstacles instantiated into the game are purposefully placed and 

manipulated in a way that will encourage the user to hold a flexed or extended hand 

position a hold time. The hovercraft game allows the customization of multiple 

elements such as customizing the delay in obstacle spawn time, modifying the obstacle 

sizes which leads to different hold times. This customizability facilitated the ability to 

modify the game depend on the user’s rehabilitation requirements. Sample data 

captured from this mini game can be seen in Appendix B. 

Brick-Busting Game 

The “Brick-Busting” mini games can be utilized for all three types of hand 

movement exercises similar to the Monster Chase game. In this game, the movement 

of the hand is mapped to IMU data and depending on the exercise type, different 

orientation data is used. The hand movement is attached to a paddle that is used to 

bounce a small ball to break some blocks as seen in Figure 63.  

 
(a) 

 

 
(b) 

 
(c)  

 
(d) 
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Figure 63: (a) Menu Screen; (b) Settings (c) Level 0 game environment; (d) Level 1 

game Environment with Panel moving left. 

 

Similar to previous mini games, different attributes of the game can be 

customized depending on the user requirements via the settings menu. Depending on 

the given threshold, the player paddle size will increase or decrees to allow for different 

initial ROM requirements. For example, Table 5 was utilized to modify ROM for 

ulnar/radial divisions with the ranges derived from [102].  A larger panel surface 

makes it easier for the user to engage in the exercise and avoids them from getting 

frustrated due to their limited ROM. While a smaller panel can make it more 

challenging as they increase their ROM. 

The behaviour of the small ball is managed through the Ball.cs script which 

controls how the ball is moving, maintains the payer score, and updates the high scores. 

The Rigidbody2D component is utilized for managed the physics of the ball and uses 

other UI elements such as highScoreText and scoreText to keep display the score. The 

implementation of game elements can be seen in Figure 64. 

 
(a) 

 

 
(b) 

 
(c)  

 
(d) 
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Table 5: Table to determining panel size based on angle thresholds. 

 

Physical Properties Specifications  

Ulnar > 33 & Radial > 19 Small (1x original Scale)  

15 > Ulnar <= 33 & 10 > Radial <= 19 Medium (3x)  

Ulnar <= 15 & Radial <= 10 Large (5x)  

 

 

Figure 64: Scrip for managing the small ball.  

 

Every time the ball collides with the bricks, the score and speed of the ball is 

increased which is controlled by the script mentioned above. The AudioManager 

manages the audio cues when collision is detected with the brick. Figure 65 

demonstrates the script for managing different collision scenarios. Sample data 

captured from this mini game can be seen in Appendix B. 
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Figure 65: Script for managing the collision for the Brick-Busting game. 

 

Dodge the Spike Game 

The “Dodge the Spike” game was developed to facilitate pronation/supination 

wrist rehabilitation exercises by using the Roll angle of IMU. The aim of the game as 

seen in Figure 66 is to dodge falling spikes by reaching the required rehabilitation 

threshold. The main script for this game is similar to flap and avoid since they have 

similar characteristics of avoiding obstacles. This game included randomized 

elements, which makes it more suitable to late stages of rehabilitation program where 

the aim is constant movement of the joint rather than achieving certain thresholds. 

Sample data captured from this mini game can be seen in Appendix B. 

 

Figure 66: Screenshot of the Dodge the spike game 
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Tilting Mazes Game 

The “Tilting Mazes” game uses rotation about the Z-axis to tilt a 2D maze left 

and right as seen in Figure 67. The objective of the game is to move the ball to the 

yellow diamond exit point while receiving feedback as seen in Figure 68.  

 

Figure 67: Tilting Maze Game: (a) Initiation for Right hand (b) Pronation tilts maze 

right (c) Supination rotates Maze left (d) Level complete 

 

 

 

Figure 68: Feedback panel for the Tilting Maze Game 

 

Upon entering the game environment through a main menu, the ball begins in a 

specify placement as chosen by use depending on their rehabilitation requirements. 
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The patient is then able to control the maze game object by rotating their hand to the 

set target angle. For a right-hand treatment, pronation movement tilts the maze right 

and supination left. To make this game more challenging for user three levels have 

been specifically designed to intuitively encourage the patient to hold their wrist in a 

set position as they try to reach the game objective. Sample data captured from this 

mini game can be seen in Appendix B. 

Glasses Wiping Game 

The “Glasses Wiping” game requires participants to perform bi-directional 

movements with their wrists repeatedly until the fog on the glasses is wiped off, 

presenting a tangible and measurable objective for patients to work towards as 

illustrated in Figure 69.  

 

Figure 69: The Glasses Wiping game. 

 

The user will move their wrist to meet the green wiper goal which will lead to 

triggering a short audio clip and 180-degree change in the wiper direction. Once the 

given number of repetitions have been achieved, the glasses become clean, and a 

particle confetti effect will trigger followed by a celebratory audio cue. The movement 



 

100 Chapter 3: Experiment Design 

of the wiper can be mapped to different wrist movements similar to the other mini 

games described above. 

Piano Tiles Game 

The “Piano Tiles” game was created as an example of finger rehabilitation 

exercises with a focus on thumb touching exercise. This game received angles from 

MediaPipe as the input method and the objective is for the user to touch their thumb 

using the finger that corresponds to the tile that has turned black. If the correct finger 

has been touched, the tile will turn green as seen in Figure 70.  

 

Figure 70: Piano Tiles Mini Game 

 

The TileSpawner.cs script was developed to provide a random black tile 

generation as seen in Figure 71. The script monitors angles of the fingers and updates 

the corresponding tile as needed. If a read angle is less than 10 degrees, the tile colour 

will change to green and the score increases. This also leads to an increase in the speed 

of the black tile appearance followed by audio cues when correct finger is pressed 

managed by the AudioManager. If a wrong finger touches the thumb, the tile colour 

will change to red and the user’s life count will be reduced. The script in Figure 72 and 

Figure 73 maintains the user score and high score as well as displaying the timer using 

UI text elements.  
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Figure 71: Script for creating black tiles for the Piano Tiles game. 
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Figure 72: Part 1 of the script for implementing the tiles game mechanism. 

 

 

 

Figure 73: Part 2 of the script for implementing the tiles game mechanism. 
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3.5.3 Design and Development of Larger Games in Unity 

In addition to the mini games described above, two larger games were developed 

with the capability of covering a wide range of exercises. The detail of these 

implementation has been provided below.  

Skiing Game 

The Skiing game provides a layer skiing experience where the movement of a 

player character can be mapped to a different rehabilitation exercise. The game starts 

with a window as seen in Figure 74 fig so the use can input thresholds of a given 

exercise.  

 

Figure 74: Threshold mode for setting baselines for the Skiing game 

 

The objective of the game is to reach each threshold while avoiding upcoming 

trees in the pathway of the player avatar as seen in Figure 75. A linear interpolation to 

the character’s position has been implemented for a smoother transition between 

positions on the screen providing a sense of floaty movement as seen in Figure 76.  
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Figure 75: Main view mode of the Skiing game 

 

 

 

Figure 76: Character animation for the Skiing game 

 

In addition to the top-down view which provides a free form gameplay 

experience, a side view was implemented as seen in Figure 77 and Figure 78. This 

gameplay mode the encourages a user to hold a stretch rather than just reach a given 

threshold. Sample data captured from this game can be seen Appendix B. 
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Figure 77: Gameplay mode 2 of the Skiing game encouraging to hold a stretch. 

 

 

Figure 78: Feedback provided to the user while engaging in gameplay mode 2. 

 

Aeroplane Flying Game 

The Aeroplane Flying game provides an example of mapping rehabilitation 

exercises to hand movement in the 3D space. The objective of this game is fly an 

Aeroplane through floating loops in the air which can be mapped to different 

rehabilitation exercises. This game opens with a threshold setting similar to other 

games developed and provides a customization capability to the user as seen in Figure 

79. The main user interface for this game can be seen in Figure 80 with demonstrates 

multiple characterises such as the amount of time left, score, orientation angles, visual 
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representation of the hand, and calibration functionality. Figure 81,  Figure 82, and 

Figure 83 show the Aeroplane game in different feedback bodes. 

 

Figure 79: Threshold setting for the Aeroplane flying game. 

 

 

Figure 80: Main feedback window for the Aeroplane flying game 

 



 

Chapter 3: Experiment Design 107 

 

Figure 81: Aeroplane flying game in Pitch mode 

 

 

 

Figure 82: Aeroplane flying game in Yaw mode 

 

 

 

Figure 83: Aeroplane flying game in Roll mode. 
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To implement the control of the Aeroplane module in the game, the 

ControlPlane() function as seen in Figure 84 was developed which also included the 

capability of controlling the plane with mouse and keyboard for debugging purposes. 

Additional debugging controls were implemented using the MoveObjectTest.cs script 

as seen in Figure 85 to test the IMU data as an input for the game.  

 

 

Figure 84: Script used for the main flying control of Aeroplane Flying game. 
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Figure 85: Script for testing the IMU input for Aeroplane flying game. 

 

Finally, after implementing the debugging functionality, the script seen in Figure 

86 was implemented to map the IMU data directly to the Aeroplane movement by 

implementing the ControlPlane() function within the IMUcontroller.cs script. 
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Figure 86: Implementation of the ControlPlane() function within IMUController.cs 

 

After successfully implementing the control functions for the Aeroplane, 

SaveThreshold.cs and LoadThreshold.cs scripts were created to store threshold 

information into the PlayerPrefs class in Unity. The implementation of this script can 

be seen in Figure 87 and Figure 88. The next step was to implement the HoopCollect.cs 

script seen in Figure 89. This script is attached to the invisible portion of the inner 

diameters of each loop to capture the collision between plane object and the invisible 

portion. This process then determines the scoring system.  
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Figure 87: The script for saveThreshholds() function 

 

 

 

Figure 88: Script for setting starting positions for the Aeroplane Flying game. 

 

 
 

Figure 89: Implementing the scoring system for the Aeroplane Flying Game 
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The GameManagerScript.cs was developed to manage all the in-game graphical 

user interfaces. This script starts a countdown timer to the user can position their hand 

before starting the exercise. The details of this implementation can be seen in Figure 

90 and Figure 91. Sample data captured from this game can be seen in Appendix B. 

 

Figure 90: The GameManagerScript for Aeroplane flying game 

 

 

Figure 91: Game over screen implementation for the Aeroplane flying game 
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3.6 SUMMARY OF THE EXPERIMENT DESIGN METHODS 

This chapter demonstrated the design methodology for development of the 

framework in such a way that it can be applied to different types of rehabilitation 

requirements. IMUs were selected as the primary method of capturing simple human 

joints such as wrist, elbow, and knee. Additionally, HGR facilities of MediaPipe were 

utilised to measuring finger joints as an example of monitoring a complex joint for 

rehabilitation purposes. The benefit of this approach was the fact that IMUs are low 

cost and MediaPipe utilises data captured from simple RGB cameras found in laptops 

and modern smart phones which means the processing power requirement are very 

low. This chapter also covered the mathematics behind measure both angles and 

smoothness measurement during the rehabilitation exercises sessions.  

As it was observed, the developed framework provides the means for a user to 

conduct rehabilitation exercises in a home environment and receive feedback on how 

accurately the exercises are being performed. The data accumulated during the 

exercise sessions can be provided to the clinicians so performance overtime can be 

monitored. The patient data is presented using abstract avatars that do not include any 

personal information or images. This also helps lower the bandwidth requirements by 

transmitting movement data only rather than images to the clinician. This chapter also 

described the testing procedures and methods that were used to ensure clinical 

accuracy of the captured data. The result of these tests as well as qualitative analysis 

of the use of the framework via a focus group with experts in the field has been 

provided in Chapter 5.  

A detailed discussion of the design was implementation of human computer 

interface elements of the framework was provided including visualisation methods, 

animations, and audiovisual feedback systems. Moreover, the chapter provided details 

on using game design methodology to create a digital gamified experience for existing 

rehabilitation exercises. This was achieved by providing design guidelines for 

development of several game architypes such that both clinicians and patients can gain 

benefit when engaging with the framework. This design approach allows patients to 

get feedback on how accurately they are engaging with the rehabilitation exercises and 

encourage them to continue the program. The clinicians benefit by being able to 

remotely monitor and review patients’ progress through the rehabilitation program by 
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viewing the reports provided by the HMI. The Next chapter provides more use case 

examples for the developed framework.   
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Chapter 4: Use Case Examples  

4.1 SELECTION CRITERIA FOR USE CASES 

This chapter provides multiple use cases where different elements of the 

framework have been utilised. The content of this chapter has been covered in the 

author’s publications related to this thesis as seen in [14], [103], [16], and [43]. Please 

note that Author contribution statement is available in Appendix A. Some parts of the 

following paper have been covered in Chapter 2 and Chapter 3 with references 

provided when necessary. The papers that will be covered in this chapter are: 

1) Khaksar, S., H. Pan, B. Borazjani, I. Murray, H. Himanshu, W. Liu, C. Elliott, 

C. Imms, A. Campbell, and C. Walmsley. 2021. "Application of Inertial 

Measurement Units and Machine Learning Classification in Cerebral Palsy: 

Randomized Controlled Trial." JMIR Rehabilitation and Assistive 

Technologies 8 (4)  

2) Sabah Al-azzawi, S., Khaksar, S, E. Khdhair Hadi, H. Himanshu, and I. 

Murray. 2021. "HeadUp: A Low-Cost Solution for Tracking Head Movement 

of Children with Cerebral Palsy Using IMU." MDPI Sensors 21 (23)  

3) Khaksar, S., S. Pieters, B. Borazjani, J. Hyde, H. Booker, A. Khokhar, I. 

Murray, and A. Campbell. 2022. "Posture Monitoring and Correction 

Exercises for Workers in Hostile Environments Utilizing Non-Invasive 

Sensors: Algorithm Development and Validation." MDPI Sensors 22 

(24,9618) 

4) Khaksar, S. L.Checker, B.Borazjani, I.Murray, 2023 “Design and Evaluation 

of an Alternative Control for a Quad-Rotor Drone using Hand Gesture 

Recognition” MDPI Sensors 2023 

Each paper demonstrated different use cases by providing different scenarios 

where various elements of framework have been utilised. All papers have been 

submitted in open access journals so the reader of this thesis can refer to the full text 

of papers if they are interested in more detailed representation of the use cases. In 

selecting these use cases, the following criteria was followed:   
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1. All data acquisition methods including both hardware and software 

elements need to be clinically validated before being selected. Details of 

this validation process will be discussed in Chapter 5. 

2. The interaction methods for each use case should not require expensive 

equipment and high processing power.  

3. The use case should not rely heavily on a given sensor brand so the 

interaction method can be done using any equipment manufacturer as 

long as the required specifications are met.  
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4.2 USE CASE IN CLASSIFICATION OF MOVEMENT ASSOCIATED 
WITH CEREBRAL PALSY CASE 1 
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4.3 USE CASE IN CLASSIFICATION OF MOVEMENT ASSOCIATED 
WITH CEREBRAL PALSY CASE 2 
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4.4 USE CASE IN POSTURE MONITORING AND CORRECTION 
EXERCISES FOR WORKERS IN HOSTILE ENVIRONMENTS  
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4.5 USE CASE IN ALTERNATIVE CONTROL SYSTEMS FOR FLYING 
DRONES AS A PHYSICAL GAMIFIED EXERCISE   
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4.6 SUMMARY OF USE CASE EXAMPLES AND THEIR 

IMPLEMENTATION  

This chapter provided 4 different use cases which have been published in peer 

reviewed journals. The CP use cases were selected as example of use of IMUs in 

clinical settings. IMUs were used to capture movement associated with CP in two 

experiments. One for measuring the effectiveness of wrist orthotics for two groups of 

children and young adults in CP via randomized controlled trials. Another example 

utilised IMUs to measure HCA for children with CP. Both instances demonstrated how 

IMU sensors can be utilised in rehabilitation environments.  

The posture monitoring paper provided an example of measuring full posture 

utilising the developed framework. Different posture correction exercises were 

implemented where the user was able to get feedback on their movement while 

wearing the sensors within their PPE. This paper also provided brief look at how the 

joint angle measurements were calculated and validated against Curtin University’s 

Motion Analysis Lab (MAL) and goniometer. Chapter 5 will provide a detailed look 

system testing and validation process.  

The alternative control paper provided the user case and implementation of HGR 

and detailed the methodology for implementing this technology within the framework. 

The drone control mentioned in this chapter was utilised and a physical game activity 

where a free form finger movement exercise can fly the drone in different directions. 

The control was also implemented in the Aeroplane flying game that was discussed 

Chapter 3. 

After successful validation of different use cases for the different elements of the 

framework, a focus group was conducted with exerts in the field of rehabilitation. This 

focus group discussion was analysed utilising narrative analysis method of qualitative 

research. The details of this qualitative research have been provided in Chapter 5. 
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Chapter 5: Analysis of Results and System 

Testing 

5.1 INTRODUCTION OF SYSTEM TESTING AND VERIFICATION 

This chapter provides details of how different aspects of the framework were 

tested, evaluated, and verified. Both quantitative and qualitative methods of research 

have been applied to evaluate the engineering and clinical perspectives respectively.  

For the engineering perspectives, a mix of clinical trials were conducted so the 

information provided by the framework can be evaluated against gold standards of 

human movement capture such as Vicon Motion Analysis Laboratories at Curtin 

University as well as against clinical tools like goniometers. In addition to the clinical 

trials and tests, four separate use cases as discussed in Chapter 4 were utilised where 

different elements of the framework were tested and evaluated.  

This second half of this chapter provides a detailed qualitative analysis in from 

a focus group discussion that was conducted with experts in field of rehabilitation. The 

feedback provided in this focus group was analysed utilising narrative analysis 

methodology. The participants for this focus group provided signed consent for their 

names to be published in this thesis and for quotes to be attributed to them if necessary.  

5.2 ANALYSIS AND SYSTEM TESTING – ENGINEERING 

SPECIFICATIONS   

5.2.1 Evaluation of Sensors Against Vicon Video Capture System  

As mentioned in Chapter 2, the most accurate form of human movement analysis 

is believed to be analysis via video capture technology. There are number of studies 

that have demonstrated the accuracy of IMU sensors for human movement as 

demonstrated in the different use cases in Chapter 4. In additional to the evidence 

provide in the literature, Curtin University’s Vicon motion analysis lab (MAL) was 

utilised as a comparison point.  

Reflectors were connected to the IMU sensors while at Curtin University’s MAL 

[16]. The IMU sensors were then connected to a user’s hand and slightly above the 



 

Chapter 5: Analysis of Results and System Testing 213 

wrist as seen in Figure 92. The user then took part in three rehabilitation exercises 

which were: 

• Flexion and extension exercises 

• Small object pickup exercise 

• Pressing a stop sign exercise.  

The IMU data and Vicon data was collected at the same time and the same 

sampling rate. After completion of the activity, the data for both activities was drawn 

as seen in Figure 93 and Figure 94. Please note that the data has been slightly shifted 

so the similarities of the peaks and valleys of the signal can be visible.  

 

 

Figure 92: Placing reflectors on a user for Vicon Validation [16] 
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Figure 93: IMU vs Vicon for flexion and extension exercise 

 

 

 

Figure 94: IMU vs Vicon for object pick up and stop sign exercises. 

 

5.2.2 Evaluation of Sensor Joint Measurements Against Goniometers 

As discussed in Chapter 2, goniometers are reportedly the most used method of 

calculating joints in clinical settings. This means the next step in evaluating the 

components of the framework was to evaluate the accuracy of the IMU calculation 

against a goniometer. To achieve this, IMUs were connected to a goniometer and 

multiple angle measurements were taken. This test was done once with just the IMU 
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connected to the legs of a goniometer with legs moving without it connected to a user 

and another time with the IMU connected to different parts of the body while 

interacting with the framework. The IMU connection to the goniometer can be seen in 

Figure 95. For the first test, IMU data was compared to join measurements via Xsens 

Dot mobile application and Xsens Dot KineXYZ application that allowed for direct 

stream of IMU data for evaluation. Additionally, MetaMotionR (MMR) IMU sensor 

was used to demonstrate the fact that joint angle measurements are independent on the 

IMU brand as long as the based specifications are met in accordance with hardware 

requirements mentioned in Chapter 3. The comparison of these calculations can be 

seen in Figure 96.  

 

 

Figure 95: IMUs connected directly to a goniometer 



 

216 Chapter 5: Analysis of Results and System Testing 

 

 

Figure 96: Comparison of Different IMUs with a goniometer 

 

The process of testing IMU data connected directly to a user was explained in 

detail as part of the posture monitoring use cases found in Chapter 4 and published in 

[16]. Figure 97, Figure 98, and Figure 99 demonstrates an example of these tests for 

wrist flexion/extension. The data in Table 6 and Table 7 demonstrate a comparison of 

IMU data and the user joint measurements via the framework. In these tests the 

validation was done against a goniometer at different angles using the three joint 

measurement techniques mentioned in Chapter 3. More example of these tests can be 

found in Chapter 4 and published in [16]. 
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Figure 97: Use of goniometer for calculating wrist joints (Baseline measurement). 

 

 

 

Figure 98: Use of goniometer for calculating wrist joints (Extension measurement) 
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Figure 99: Use of goniometer for calculating wrist joints (Flexion measurement) 

 

 

Table 6 : Joint angle measurement against goniometer for wrist flexion  

 

Goniometer Method 1 Method 2 Method 3 

Joint Angle X Y Z X Y Z X Y Z 

0 0 1 1 −1 0 0 −7 −83 −35 

10 3 11 11 10 3 0 3 −87 −35 

20 2 22 22 21 2 0 11 −93 −36 

30 1 29 29 29 1 0 19 −100 −37 

40 1 39 39 39 1 1 26 −106 −39 

50 2 50 49 48 3 1 34 −113 −43 

 

Table 7: Joint angle measurement against goniometer for wrist extension 

 

Goniometer Method 1 Method 2 Method 3 

Joint Angle X Y Z X Y Z X Y Z 

0 16 NAN 17 −1 16 1 2 −69 −35 

10 19 10 22 −11 19 1 −4 −61 −35 

20 21 18 29 −20 21 1 −10 −54 −35 

30 23 31 37 −29 22 1 −18 −47 −36 

40 24 39 45 −41 23 1 −25 −40 −38 

50 25 49 54 −50 24 2 −32 −32 −41 

 

Once it was determined that method 2 of joint angle calculation was the most 

accurate, another set of tests were run to measure the absolute error of this method 

against a goniometer. These error calculations can be seen in Table 8, Table 9, Table 

10, and Table 11. 
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Table 8: Error calculation for flexion angles  

 

Goniometer 

Angle 

Xsens DOT  

Measured Angle 
%Error Absolute Error 

5 4.8     4   -0.2  

15  16.2    8   1.2  

25  24.8    0.8   -0.2  

35  36.7   4.86   1.7  

45   47.5   5.56   2.5  

55   56.4    2.5   1.4  

   

Table 9: Error calculation for extension angles  

 

Goniometer 

Angle 

Xsens DOT  

Measured Angle 
%Error Absolute Error 

5 4.8  4   -0.2  

15  15.4   2.67   0.4  

25  25.8   3.2   0.8  

35  34.5   1.4   -0.5  

45  45.6   1.3   0.6  

55  55.2   0.36   0.2  

 

Table 10: Error calculation for radial deviation angles 

 

Goniometer 

Angle 

Xsens DOT  

Measured Angle 
%Error Absolute Error 

5 4.5  10   -0.5  

10  9.75     2.5   -0.25  

15  15.9   6   0.9  

20  21.5   7.5   1.5  

25  25.5   2   0.5  

30  28.7   4.3   -1.3  

 

Table 11: Error calculation for ulnar deviation angles  

 

Goniometer 

Angle 

Xsens DOT  

Measured Angle 
%Error Absolute Error 

5 5.2  4   0.2  

10  10.3   3   0.3  

15  15.5   3.3   0.5  

20  20.6   3   0.6  

25  24.2   3.2   -0.8  

30  30.5   1.7   0.5  
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5.2.3 Evaluation of Sensor Smoothness Measurements 

The reliability of the smoothness measurements via LDLJ and SPARC needed 

to be evaluated. To achieve this, a healthy participant engaged in the Aeroplane flying 

game going through 5 levels of difficulty. The same user then engaged with the same 

game with inclusion of Jerky movements in their interaction. The result of these 

calculations can be seen in Table 12. As it can be seen, the results of SPARK for level 

1 vary greatly to other levels due to the rest times available in this level. This means 

that the results need to be analysed by removing level 1 data as outlier. This led to the 

observation that normal movements were ~0.75 – 1.25 lower than jerky movements. 

If LDLJ is considered, normal movement is ~0.40 -1.55 lower than those of jerkier 

movements.  

Table 12: Smoothness measurement comparing normal vs jerky movements. 

 

Healthy 

User 

SPARC 

(Linear) 

SPARC 

(Angular) 

LDLJ 

 (Linear) 
LDLJ 

 (Angular) 

Level 1 

Normal -15.0648  -16.5873  -16.4036  -17.1783  

Jerky -7.97966  -8.23135  -14.0585  -14.1818  

Difference 7.08514  8.35595  2.3451  2.9965  

Level 2 

Normal -8.8484  -8.90046  -16.3254  -16.0477  

Jerky -10.0893  -11.8307  -17.4618  -17.4405  

Difference -1.2409  -2.903024  -1.1364  -1.3928  

Level 3 

Normal -10.3873  -9.21525  -17.4934  -17.0546  

Jerky -11.1552  -11.8074  -18.6294  -18.6323  

Difference -0.7679  -2.59215  -1.136  -1.5777  

Level 4 

Normal -10.5619  -10.2303  -17.548  -17.1992  

Jerky -11.3361  -11.0971  -15.9417  -16.023  

Difference -0.7742  -0.8668  1.6063  1.1762  

Level 5 

Normal -10.5947  -9.95636  -17.8519  -17.8753  

Jerky -11.5976  -13.3031  -19.1289  -18.2584  

Difference -1.0029  -3.34674  -1.277  -0.3831  

 

After the initial test, a study was run with a total of 5 participants where 2 were 

healthy and 3 had varying levels of spinal cord injury. The users with spinal cord injury 



 

Chapter 5: Analysis of Results and System Testing 221 

participated in the same activity and the results were compared to the healthy 

participant. The three participants in this study (presented as Use A, User B and User 

C) had varying levels of spinal cord injury. Table 13 provide a summary of the user’s 

capability as part of this study. The healthy participants were both 20 years of age at 

the time of study. The data captured for the study can be seen in Table 14, Table 15, 

and Table 16 . The results demonstrate that SPARC and LDLJ can both be utilised to 

monitor smoothness measurements, where the variance in smoothness of the 

movements can clearly be seen in the provided data below. Additionally, the 

improvement overtime can be seen for user B as there is a 1-month gab in the data 

presented for this user which shows the effects of the gamified rehabilitation exercises. 

For user A, SPARC shows a difference range of ~0.20 – 1.20 and for user B the 

SPARC values were 2.15 – 10.60. The improvements for user B can be seen in their 

improved SPARC values of 1.45 – 3.20. This data proves that quantitative measures 

of SPARC and LDLJ have demonstrated smoothness measurements when compared 

to qualitative analysis of the user’s performances. 

   

Table 13: Information regarding participants of the trial 

 

User Letter 

Code 

Injury  

Type 

Left hand or 

right hand 

Age in 

2022 

Time of 

Injury 

A 

C5 incomplete ASIA C, 

50% normal function in 

upper limb  

Right-handed 

but prefers left 

after injury  

70  January 2021 

B 

C4 incomplete ASIA C, 

30% normal function in 

upper limb 

Right-handed 30  When they 

were a 

teenager  

C 

C4 complete ASAI A, 

14% normal function in 

upper limb 

Right-handed  30  At 12 years of 

age 
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Table 14: Smoothness measurement comparing healthy user vs user with minor 

spinal cord injury. (User A) 

 

User A 
SPARC 

(Linear) 

SPARC 

(Angular) 

LDLJ 

 (Linear) 
LDLJ 

 (Angular) 

Level 1 

Healthy -15.0648  -16.5873  -16.4036  -17.1783  

Spinal Cord 

Injury 

-9.49496  -10.2899  -15.915  -16.4052  

Difference 5.56984  6.2974  0.4886  0.7731  

Level 2 

Healthy -8.8484  -8.90046  -16.3254  -16.0477  

Spinal Cord 

Injury 

-9.22404  -10.6375  -16.9769  -17.5328  

Difference -0.37564  -1.73704  -0.6515  -1.4851  

Level 3 

Healthy -10.3873  -9.21525  -17.4934  -17.0546  

Spinal Cord 

Injury 

-10.5755  -10.6786  -18.1615  -18.6581  

Difference - 0.1882  -1.46335  -0.6681  -1.6035  

Level 4 

Healthy -10.5619  -10.2303  -17.548  -17.1992  

Spinal Cord 

Injury 

-11.7454  -12.9276  -18.7333  -19.3095  

Difference -1.1835  -2.6973  -1.1853  -2.1103  

Level 5 

Healthy -10.5947  -9.95636  -17.8519  -17.8753  

Spinal Cord 

Injury 

-11.0921  -11.8562  -18.5024  -19.0432  

Difference -0.4974  -1.89984  -0.6505  -1.1679  
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Table 15: Smoothness measurement comparing healthy user vs user with major 

spinal cord injury (User B trial 1) 

 

User B 
SPARC 

(Linear) 

SPARC 

(Angular) 

LDLJ 

 (Linear) 
LDLJ 

 (Angular) 

Level 1 

Healthy -15.0648  -16.5873  -16.4036  -17.1783  

Spinal Cord 

Injury 

-19.685  -26.5254  -16.658  -16.6885  

Difference -4.6202  -9.9381  -0.2544  0.4898  

Level 2 

Healthy -8.8484  -8.90046  -16.3254  -16.0477  

Spinal Cord 

Injury 

-19.4293  -23.8923  -17.6483  -17.3666  

Difference -10.5809  -14.9918  -1.3229  -1.3189  

Level 3 

Healthy -10.3873  -9.21525  -17.4934  -17.0546  

Spinal Cord 

Injury 

-12.5405  -12.1977  -18.3131  -18.2126  

Difference -2.1532  -2.98245  -0.8197  -1.158  

Level 4 

Healthy -10.5619  -10.2303  -17.548  -17.1992  

Spinal Cord 

Injury 

-9.06415  -11.1813  -18.0392  -18.3019  

Difference 1.49775  -0.951  -0.4912  -1.1027  
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Table 16: Smoothness measurement comparing healthy user vs user with major 

spinal cord injury (User B trial 2) 

 

User B 
SPARC 

(Linear) 

SPARC 

(Angular) 

LDLJ 

 (Linear) 
LDLJ 

 (Angular) 

Level 1 

Healthy -15.0648  -16.5873  -16.4036  -17.1783  

Spinal Cord 

Injury 

-10.3873  -9.21525  -17.4934  -17.0546  

Difference 4.6775  7.37205  -1.0898  0.1237  

Level 2 

Healthy -8.8484  -8.90046  -16.3254  -16.0477  

Spinal Cord 

Injury 

-10.3152  -12.6184  -17.3166  -17.459  

Difference -1.4668  -3.71794  -0.9912  -1.4113  

Level 3 

Healthy -10.3873  -9.21525  -17.4934  -17.0546  

Spinal Cord 

Injury 

-13.5655  -15.1098  -18.1474  -18.0009  

Difference -3.1782  -5.89455  -0.654  -0.9463  

Level 3 Repeat 

Healthy -10.5619  -10.2303  -17.548  -17.1992  

Spinal Cord 

Injury 

-12.8679  -13.0156  -17.9631  -17.6056  

Difference -2.4806  -3.80035  -0.4697  -0.551  

Level 4 

Healthy -10.5947  -9.95636  -17.8519  -17.8753  

Spinal Cord 

Injury 

-12.3168  -12.4267  -19.0337  -18.7518  

Difference -1.7549  -2.1964  -1.4857  -1.5526  

 

To demonstrate how close each participant was to an ideal range of smooth 

movements the graphs in Figure 100, Figure 101, and Figure 102 were drawn for linear 

SPARC. As it can been seen in Figure 99, User A’s data is very close to the idea range 

due to higher percentage of functional movement. Improvements can be observed for 

user again going from 18/11/21 to 14/01/2021 dates with the SPARC range of 9.57-

9.67 being close to non-injured of 8.85. Figure 101 shows the SPARC for User B 

where the results are further from the idea line as expected due to lower percentage of 

movement compared to User A. This can be seen in the SPARC result of 10.27 to 

14.63 for User B versus the 8.56 to 10.16 of User A. Improvement can again be seen 
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for User B trending towards 10.32. Finally, results of User C are the furthest away 

from the ideal range as expected due to the limited functional movement compared to 

Users A and B. The improvement can be seen with results changing from 21.85 to 

17.69 to a better range of 15.51. Similar analysis can be conducted for linear LDLJ 

and angular SPARC measurements which can be seen in Appendix C. The result of 

this study demonstrated that both SPARC and LDLJ can show movement smoothness 

with SPARC capable of showing the difference on a greater spectrum.  

 

 

Figure 100: Linear SPARC for User A 
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Figure 101: Linear SPARC for User B 

 

 

Figure 102: Linear SPARC for User C 

 

5.2.4 Evaluation of HGR Elements  

The evaluation process for HGR elements of the framework has been previously 

discussed in Chapter 4 as part of the alternative control use case and has been published 

in [43]. In summary, data from HGR methods were validated against a goniometer 

with consultation from clinical collaborators. As cited in (Khaksar et al.) [43], an 
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example of this evaluation process was to first capture open palm joint angles using 

goniometers for each of the following joints of each finger as seen in Table 17: 

• Metacarpophalangeal (J1)  

• Proximal interphalangeal (J2) 

• Distal interphalangeal (J3)  

Table 17: Goniometer measurements for open palm [43] 

 

Joint Number Thumb Index Middle Ring Pinkie 

J1 162 178 175 178 178 

J2 177 172 172 170 172 

J3 180 177 180 180 180 

 

The same joints were then measured using MPH models and their accuracy was 

calculated. These measurements were done in categories of open, partially open, and 

closed palm divided by front, 45-degree, side, and back views. The accuracy of the 

measurements was then calculated in categories of 2D data and 3D data depending on 

the viewpoint. Table 18 shows an example of MPH measurements for open palm, 

Table 19 shows example accuracy by finger, and Table 20 shows the accuracy by 

viewpoint for the 3D data [43].   

Table 18: MPH measurements for open palm (front view) [43] 

 

Joint Number 
Thumb Index Middle Ring Pinkie 

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 

J1 159 165 163 166 168 172 171 179 166 170 

J2 175 175 168 175 169 178 171 173 171 171 

J3 166 166 177 178 178 179 174 177 172 174 
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Table 19: Accuracy of measurements from 3D data by finger [43] 

Hand Position 

Percentage Accuracy 

Thumb Index Middle Ring Pinkie 

Avg Min Avg Min Avg Min Avg Min Avg Min 

Open 96.2% 92.0% 93.8% 78.7% 95.7% 84.0% 95.7% 91.0% 94.4% 85.4% 

Partial 92.2% 63.6% 82.0% 66.1% 82.6% 54.2% 86.2% 68.2% 82.6% 63.6% 

Closed 89.6% 60.7% 72.3% 50.9% 77.0% 53.1% 78.5% 41.5% 82.3% 44.4% 

Table 20: Accuracy of measurements from 3D data by viewpoint [43] 

Hand 

Position 

Percentage Accuracy 

Front Forty-Five Side Back 

Avg Min Avg Min Avg Min Avg Min 

Open 96.8% 91.6% 94.5% 84.8% 93.2% 78.7% 96.0% 85.4% 

Partial 88.6% 71.0% 90.0% 81.3% 76.1% 63.6% 85.7% 54.2% 

Closed 67.8% 41.5% 86.3% 64.3% 84.8% 60.7% 80.7% 51.8% 

5.3 ANALYSIS AND SYSTEM TESTING - CLINICAL PERSPECTIVES 

5.3.1 Use of Focus Group for Qualitative Feedback  

Several clinical trials were conducted as quantitative analysis of 

engineering elements of the developed framework. Once all the foundations were 

analysed, a focus group comprising seven experts in the field of rehabilitation was 

conducted followed by use of narrative analysis as qualitative method of evaluating 

the framework.  

The focus group included seven academics and professionals who work and 

research in rehabilitation and recovery. Informed consents were provided by 

each participant when engaging with the focus group discussions.  The small 

number of participants may have implications for the breadth, representation, 

subjectivity, and uniformity of the discussions, however, due to the participants' 

expert knowledge and relevant academic qualifications, the discussions were highly 

focused and specialised in relevant areas. Potential issues related to uniformity 

arising from differences in academic settings and clinical matters were addressed, as 

all participants had practical clinical experience in the field of rehabilitation. It is 

important to note that the focus group was conducted to comment on the 

gamification aspects of the framework and non-invasive sensor interaction; not the 

concept of gamification itself. The feedback 
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provided by the focus group can also be related to broader spectrum of emergent 

technologies. 

5.3.2 Research Questions Used in the Focus Group Discussion  

The full question list utilised to guide the focus group discussion can be found 

in Appendix D. There were four set of questions that helped guide the conversation 

during the focus group. The purpose of each question set has been provided below.  

Question Set 1: Introductory Questions 

This question asks the participants to introduce themselves and provide 

information regarding their occupation. The answers would provide the foundation 

knowledge of the expertise and qualifications available during the discussion. The 

responses provided facilitated the following information:  

• Establishing background for the participants:  

By requesting participants to introduce themselves and share details 

about their occupation, this question effectively established the diversity 

and breadth of professional expertise within the participants. 

• Identifying relevant expertise: 

Through this question, the understanding of participants' professional 

backgrounds facilitated the specialised knowledge and experience. This 

was particularly useful when seeking input or insights from specific 

professional domains. 

• Exploring different perspectives: 

By divulging the participants' professional occupations, as prompted by 

this question, a deeper insight was gained into their professional roles, 

responsibilities, and viewpoints. This provided the perspective of the 

attendant when providing feedback. 

• Promote credibility: 

This question promoted the credibility of the focus group and established 

the participant’s expertise. This aspect holds particular importance when 

weighing the feedback given by the focus group participants.  
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Question Set 2: Clinical Implementation Questions  

This question gathers feedback on the familiarity of participants with the concept 

of gamification of rehabilitation and gain insights, opinions, and feedback regarding 

the implementation of the framework. The first question in this set provided the base 

understanding of the participants experience in this area as well as feedback on the 

participants opinions regarding the effects of gamification in rehabilitation. This 

provided an opportunity for participants to share their perspectives on the benefits and 

drawbacks of using game elements in rehabilitation based on their experiences. This 

information helped identify common themes, concerns, or misconceptions related to 

impact of gamification.  

The second question in this set aimed to understands the first impression of the 

participants of the developed framework right after being presented with a brief demo. 

These initial thoughts allowed for spontaneous feedback and opinions, leading to 

valuable insight into first reactions. The question allowed the participants to express 

positive aspects such as potential advantages or benefits they perceived from the 

framework, as well as any negative aspects or concerns. This feedback informed 

refinements and adjustments to the framework to address concerns and capitalize on 

strengths.  

The final question in this set explored participant’s perspectives on the practical 

implementation of the framework within clinical settings and rehabilitation exercise 

programs. The question also allowed reflection on feasibility and challenges of 

integrating the framework into existing clinical practices. The participants were also 

able to provide feedback on potential roadblocks and obstacles that would impede 

successful implementations. The feedback received here provided guidance in further 

development of the framework, strategies for overcoming barriers, and maximizing 

effectiveness of implementation in clinical scenarios.  

Question Set 3: Questions Regarding the Usability of the Framework 

This question set explores different aspects of usability of the framework. The 

answers to this question set provided insights and opinions regarding the 

implementation and use of framework in clinical settings from both user and clinician 

point of views.  
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The first question gathered opinions and impressions of the interaction methods 

to the framework which involved the non-invasive sensors and the RGB camera as the 

input methods. The effectiveness, accuracy, and level of accessibility of the 

technologies was also discussed as part of this question.  

The second question identified potential challenges or concerns when using 

sensors in cases where the user has some disabilities. This question also provided an 

opportunity to gather insights into practical issues, concerns of compatibility, and 

accessibility requirements. 

The third question explored opinions on the benefits and adequacy of remote 

viewing of live exercises sessions. Participants were able to share their perspectives 

on advantages of real time monitoring, potential benefits for healthcare provides, and 

the level of engagement provided by the remote viewing aspects of the framework. 

Participants were also able to provide their preference for viewing summary of 

activities with relevant statistic and indicate if this type if information would be 

sufficient for assessment of user’s progress through the rehabilitation program.  

The fourth question provided understanding of participant’s preferences for 

frequency of viewing user engagement with the framework. This allowed for receiving 

insight into how often patient data needs to be motored for example after each session 

or on a periodic basis. Additionally, the questions allowed for receiving feedback on 

benefits of the engagement repots such as progress tracking and trends identification, 

which could lead to creating tailored interventions based on the gathered data.  

The fifth question provided feedback and opinions on the ease of navigational 

aspects of the framework. The responses to this question provided insight into user 

friendly and intuitive navigational system aspects of the framework. This allowed to 

find areas that may be challenging to navigate based on the participants experience in 

use of technology in clinical settings.    

The sixth question provided feedback and opinion on the level of customization 

provided to the users within the framework. The participants were able to discuss 

whether more restriction needed to be added to the customization aspects of the 

framework. This feedback also helped gather insight into different level of freedom 

that should be given to users depending on their rehabilitation requirements, level of 
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familiarity with the technology, and the safety requirements for setting boundaries 

defined by the clinicians.   

The seventh question explored participant’s preferences regarding how baseline 

information for rehabilitation exercises would be provided to the user. There 

participants were presented with the option of inputting the baseline settings in the 

same unity application as the user or provide the information in a separate simpler 

application, designed specifically for baseline settings. This question helped with 

understanding how the framework can be used as part of a normal rehabilitation 

program.  

The eighth question requested participants to provide their gather perspectives 

on potential use of AI for increase exercise attributes for the user. The goal was to get 

an understanding of potential parts of the rehabilitation program that could be 

automated if with use of AI. This question also related to the customisability of the 

framework.  

Question Set 4: Final Thoughts and Wrap up Questions 

The final question invited the participants to provide suggestions and 

recommendations for future developments and improvements of the current 

framework. This question helped with wrapping up the discussions within the focus 

group and get a sense of how much of their needs are addressed via the developed 

framework. These responses helped in defining future directions for implementation 

of gamification within rehabilitation settings and helped with providing guidelines for 

future researchers to continue working in this area.  

5.3.3 Setting, Population, and Participants of the Focus Group  

This focus group was conducted in a meeting room at Curtin University’s 

Bentley campus and provided the options for participants to join in the discussion via 

a video conference call. The room contained two large tables in the centre where 

participants and facilitators were seated. A demonstration of the human computer 

interface aspects was given to the participants, and they were able to physically interact 

with the gamified exercises before engaging in the discussion portion of the focus 

group session. After this activity was complete, the author gave a short 10-minute 

presentation on the overall aims and objectives of the framework which was followed 

by in depth discussion within the group. The audio for the session was recorded to help 
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with transcribing the participant responses. After the sessions, narrative analysis was 

utilised as a qualitative analysis method to analyse the information provided in the 

focus group discussions.  

There was a total of seven participants who were experts in field of 

rehabilitation. The participants all provided signed consent at the beginning of the 

session and provided permission for their name and occupation to be fully published 

as a part of this thesis. Table 21 contains a summary of the participants area of 

expertise, occupation, qualifications, and academic backgrounds.  

Table 21: Information regarding discussion group participants 

Participant Name Occupation and Academic Background 

Group One 

Professor Warren Mansell 

Professor of Mental Health at the School of Population Health 

at Curtin University. BA in Natural Sciences, DPhil, DClinPsy 

in Clinical Psychology 

Dr Welber Marinovic 
Senior Lecturer, School of Population Health, Discipline of 

Psychology at Curtin University, BS, PhD Psychology 

Professor Kylie Hill 
Professor at School of Allied Health at Curtin University. BSc 

Physiotherapy, PhD 

Dr Meg Harrold 
Senior Lecturer School of Allied Health at Curtin University 

BSc Physiotherapy, PhD  

Dr Dale Edwick 

Senior Physiotherapist at Fiona Stanley Hospital, Lecturer 

Curtin school of allied health at Curtin University, Senior 

Physiotherapist at Fiona Stanley Hospital. BS, Hon, PhD in 

Physiotherapy 

Group Two 

Dr Dave Parsons 

Lecturer, Curtin School of Allied Health, Accredited Hand 

Therapist, Allied Health Research Lead at St John of God 

Health Care.  BSc. (Occupational Therapy), MBA, PhD in 

Occupational Therapy 

Ms Eliza Becker 
Project Manager at East Metro Health Services. BS, Hon in 

Physiotherapy 
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5.3.4 Summary of Responses to the Research Questions  

The summary of participant’s responses and their implications have been 

provided below. As mentioned before, narrative analysis was used as the qualitative 

analysis method for the focus group.  

Clinical Implementation Questions: Familiarity with Gamification 

Based on the responses, all participants were familiar with gamification in the 

rehabilitation space, and this was not a new concept to them. Many were already using 

gamification concepts their work such as putty playing exercise as part of rehabilitation 

programs. The participants generally agreed that gamification can be effective to drive 

specific interactions and increase engagement. Dr Parsons noted concerns about 

previous solutions taking up space in the clinical laboratories and not being efficiently 

utilised due to the long set up process. He commented positively on the relatively quick 

set up time of the HMI. Dr Edwick mentioned previous experience with use of virtual 

reality to help with pain management of people recovering from burn injuries. Other 

participants commented on use of virtual reality and augmented reality in rehabilitation 

and most agreed that these technologies present a physical barrier and are too 

cumbersome for people recovering from injuries such as spinal cord injuries or people 

with existing conditions such as cerebral palsy. The weight of the current headset 

technology and effects of it on the rehabilitation program was mentioned such as use 

for people with spinal cord injuries. Professor Hill commented that physical games are 

already being used in rehabilitation settings and mentioned that the transition to digital 

version of the activities could be interesting. This comment led to a discussion about 

using technology so the physical rehabilitation object could be implemented in an 

augmented reality type game where the physical game activity gets the added benefit 

of more information and feedback being provided to the user. 

Clinical Implementation Questions: Initial Impressions 

Most participants had generally positive feedback on the HMI of the framework. 

There were initially some concerns regarding the example cases being focused on wrist 

rehabilitation which were addressed by presenting the full body tracking mode within 

Unity and demonstration of the posture monitoring use case. Dr Parsons commented 

that during a rehabilitation visit it would be faster for a clinician to get the joint angles 

using goniometers, but he could see the benefits of the framework in remote settings 

where users are partaking in rehabilitation exercises outside the clinical setting. Ms 
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Becker had concerns about users becoming withdrawn or overzealous if they are 

constantly being monitored.  

Clinical Implementation Questions: Thoughts on Implementing in 

Rehabilitation Plans 

There was a bit of scepticism regarding the logistics of implementing digital 

gamified exercises in clinical settings. Professor Hill commented that service costs 

need to become cheaper, or resources need to be freed up to allow for the technology 

to be fully implemented. Dr Edwick had the same thoughts and noted that if the system 

is successfully implemented, it could lead to increase rate of patient assessment which 

would lead to freeing up hospital beds leading to cost savings. Dr Parsons questioned 

the funding source for implementing this type of system and suggested that it could be 

spun from value added perspective for private sectors but had concerns about 

government healthcare systems.  

Another interesting discussion point was the comments by Dr Harrold and Dr 

Parsons that generally physiotherapist and occupational therapist are not usually “Tech 

Savvy”. Most participants agreed with this comment and mentioned training required 

for the clinicians to become familiar with the technology aspects of the framework. Dr 

Parsons commented that old technology is still being used and new system are usually 

left untouched to alleviate security concerns. The consensus was that the framework 

can greatly assist telehealth and remote health. Ms Becker commented that usually, 

similar systems are initiated by clinicians and the inclusion of the data provided by the 

framework and circulating this information in academic spaces would lead to the 

technology being more receptive in clinical settings. Ms Becker also noted that the 

inclusion of progress over time data to both the user and clinician could be use as the 

evidence of benefits in clinical settings.  

Usability Questions: Thoughts on Interaction Method with the Framework 

There was a consensus that the use of Camera as the interaction method with the 

exercises would be more accepted compared to use of IMUs as they add a physical 

barrier to entry. They further elaborated concerns regarding the physical sensors 

getting lost when borrowed by the patients. Dr Marinovic and several others suggested 

that if physical interaction methods were accepted, use of technology such as haptic 

feedback to measure force could be implemented. Professor Hill commented that there 

are three main considerations when assessing the effectiveness of a rehabilitation 
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exercise. These considerations were mentioned as range of movement, quality of 

movement, and control of movement. It was discussed that the use of IMUs would 

address all these considerations since joint measurements and smoothness 

measurements provided with the framework covers ROM and Control considerations. 

The quality consideration is also addressed by using the reference IMU. Dr Harrold 

commented that in rehabilitation the use would be required to engage in short but 

frequent exercise sessions which means the exercise session should limit longer 

engagement with the framework. Dr Harrold gave the example of a user doing all their 

exercises repetitions within the span of one hour at the end of the day which can be 

physically damaging and dangerous. Several other participants mentioned the same 

requirements and suggested limiting the engagement time with the system so injuries 

are not overstressed.  

Usability Questions: Thoughts on Use of Sensors with People with 

Disabilities  

The participants outline three main concerns in use of sensors with regards to 

people with disabilities: 

1. Small size of sensors leading to them being misplaced. 

2. Sanitation requirements of the sensors to prevent infection.  

3. Concerns about use cases if patients have open wounds or acute trauma. 

This question also opened the discussion regarding other use cases such as aging 

populations and geriatric users. Professor Hill and Dr Harrold commented the lack of 

technology skills with this group which requires extensive training to troubleshoot 

problems and resolve issues. This response led to discussion regarding the importance 

of proper training materials both included in the framework as a guided modes as well 

as other training materials to both the user and clinicians.  

Usability Questions: Thoughts on Telehealth Implications and Live Viewing 

of Exercise Sessions  

The Telehealth implications and the data provided by the framework outside 

clinical settings were the most popular aspects of the framework. The participants were 

excited about the capability to see engagement metrics to see how many times the user 

engaged with the exercises. The participants highlighted the fact that this data could 

provide an accountability to the patients claims on the engagement time with the 
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framework. It was commented that this aspect can help with evaluation of how the 

exercise program is working. There could be a situation where the engagement data 

shows the user participating in exercises without any physical improvements. This 

means any potential problems can be detected early which helps the clinician provide 

guidelines on correct engagement with the program or investigate any other potential 

issues. Professor Hill commented that the “Good Patients” are the ones that engage 

with the program and have continuous improvement overtime whereas more complex 

cases would take more time in finding out potential issues. Professor Hill commented 

that the data provided by the framework would help free up clinician time so they can 

spend more time with the complex cases.  

Usability Questions: Thoughts on Frequency Data Provided to the Clintons   

The consensus about the frequency of receiving information from the user 

trended towards weekly. However, it was noted that rehabilitation requirements can 

vary greatly from patient to patient and there were positive comments that more 

frequent data was collected if they clinician ever needed to go back and access more 

information if required. Dr Parsons stated that the system needs to be flexible enough 

that the frequency can be modified depending on the case. Professor Mansell 

commented the importance of assigning exercises that are specific to a patient. He also 

commented that his experience shows that some users will engage with gamification 

more than others. Professor Mansell was interested in identifying why some users are 

not engaging with the gamification such as avoiding or fear of pain and discomfort.  

Usability Questions: Thoughts on Ease or Difficulty of Navigating the 

Menus and Settings 

All participants were happy with the implemented navigation control, but the 

importance of a guided mode and tutorials were mentioned again. One of the 

suggestions was to allow the clinicians to limit the number of choices provided to the 

user if needed so they can have more control about what aspects of the exercises are 

modifiable. It was highlighted that different familiarity with technology could lead to 

more what options are presented to the user. Professor Hill had positive comments 

regarding the animations and transitions within the framework and mentioned the 

interface would be engaging to younger users. The possibility of providing touch input 

for menu selection and navigation was also discussed.  
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Usability Questions: Thoughts on Level of Customization Provided to the 

Patients 

Generally, most participants preferred to limit the amount of control users would 

have in changing baselines and attributes within the framework. It was mentioned that 

clinicians would need direct oversight when changes are made to threshold settings. 

The suggested example was to only allow the threshold settings to be increment if the 

required number of reptations have been met. Which means if a user has not completed 

their reptations they should not be allowed to increase the threshold as it may cause 

further injury. Many were happy to allow the user to pick which mini game they want 

to engage with as long as it represented a particular rehabilitation exercise. Professor 

Mansel commented that the games would need to be specialised to the need of the 

patients and commented positively on the customizable nature of the games within the 

HMI.  

Usability Questions: Thoughts on Requirement for Separate Baseline Setting 

Application versus a Single All in One Application 

 The responses were generally centred around a simple method of data entry so 

the baseline and threshold settings can be provided to the participants without too 

much time spent with visual menus. The participants suggested context menu, 

boxes with information and inputs, and slider bars for navigational options of 

the Settings application. There were some suggestions around having some 

threshold angles represented on a goniometer since the clinicians would already be 

familiar with values on the device.  

Final Question Regarding Closing Thoughts and Future Development 

Suggestions 

Most participants in group one stated that AI should not make any decisions or 

changes to the rehabilitation exercise. The second group were more open to the idea 

but mentioned that their experience shows that the current state of technology does not 

support too much reliance on AI. Ms Becker and Dr Parsons suggested that legislative 

changes and extensive research in AI decision making processes need to take place 

prior to implementation of an automated system. The participants also highlighted the 

fact that rehabilitation exercises need to be adjusted to user’s needs which means a lot 

of customizability and oversight needs to be considered when making decisions 

regarding changes in a rehabilitation program.  
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There was a lot of interest regarding a centralized data system that could promote 

social engagement. One of the suggestions was to implement systems that can forecast 

recovery utilising historical data to encourage further engagement with the framework. 

Dr Parsons suggested that the success rate of rehabilitation programs provided by the 

framework could potentially be utilised by private practice as advertisement of the 

effectiveness of their techniques. Dr Parsons also suggested potential use case of the 

framework in preventing injury such as using the data provided by the framework to 

track potential cause of injurie such as finding causes of Carpal Tunnel Syndrome and 

providing exercises to help with offsetting any potential injuries.  

There were some concerns surrounding data safety and security and suggestion 

that some clients may not want their data tracked or recorded. The example of workers 

compensations was brought up and the potential hesitation of engaging with this type 

of technology.  

Professor Hill has some suggestions regarding the integration of this technology 

in general society much like wearable fitness tracking and tech-based lifestyle 

applications. She suggested including options for users to compare their progress and 

engagement with other users in similar rehabilitation environments as a means of 

increased engagement.  

5.4 SUMMARY OF THE ANALYSIS OF RESULTS AND SYSTEM 

TESTING 

5.4.1 Summary of the Evaluation of Engineering Aspects 

The first part of this chapter demonstrated quantitative methods that have been 

utilised to evaluate the technology selected for the development of the framework. 

Initially Curtin University’s Motion Analysis Laboratory (MAL) was utilised a 

method of comparing the accuracy of the sensors against a gold standard of human 

movement capture.  

Once the sensor data was evaluated, different use cases were defined where 

engineering aspects of the framework were put to test in clinical environments. As part 

of these use cases several clinical trials were summarised below:  

• IWHOT and MIT Randomized Control Trials: These trials provided an 

opportunity to demonstrate the accuracy of use of IMUs in clinical 

settings as published in [14].  
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• HCA Trial: This trial provided an opportunity to evaluate the use of 

IMUs for capturing head movement of children with CP where the data 

was compared with a Goniometer as published in [103].  

• Smoothness Calculation Trial: This trial provided the opportunity to test 

and evaluate the results of the smoothness calculations via tests run with 

participants who had spinal cord injury.  

The usability of the framework for posture monitoring as well as evaluation of 

joint angle measurement technique using the IMUs were demonstrated in the posture 

monitoring user case found in Chapter 4 and [16].  

Finally, HGR elements of the framework were validated against goniometers 

and utilised as an alternative method of control for a drone system as found in Chapter 

4 and [43]. 

5.4.2 Summary of the Evaluation of Clinical Aspects 

The second part of this chapter included details of a qualitative analysis of the 

framework in form of a focus group discussion with experts in field of rehabilitation. 

In summary, the participants were interested in the integration and simplification of 

healthcare through technology and saw strong uses in Telehealth and remote 

healthcare applications. It was noted that there is a requirement for the framework to 

cover all three aspects of rehabilitation, namely range, control, and quality of 

movement. The data captured by the framework caused a lot of excitement where the 

following use cases were mentioned by the participants. 

• The data captured by the framework provided insight into how effective 

the rehabilitation program is and if improvements to the range of 

movement is being achieved.  

• The data captured by the framework can provide accountability to the 

user and inform the clinician of how often a patient has engaged with the 

rehabilitation program. 

• The data captured by the framework can provide insight in situations 

where improvement is being made even though the exercise program is 

being followed. This would help with early detection of any potential 

issues. 
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As mentioned above, there is requirement to include more tutorials and guided 

modes for both users and clinicians. It was noted that rehabilitation exercises may vary 

greatly going from user to user which means individual patient requirements needs to 

be carefully considered when defining gamified rehabilitation programs. This also 

affect the amount of control and customisation option is available to a user meaning 

baseline and threshold settings need to be carefully defined by the clinicians. It was 

also highlighted that the developed framework is usable for different age groups due 

to ease of navigation in menus and visual representation of different aspects of the 

framework.   
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Chapter 6: Conclusions 

This thesis presented a framework for gamification of rehabilitation exercises 

utilising non-invasive sensors. To achieve this, an extensive review of the state-of-the-

art human movement capture technologies as well as review of recent trends in 

rehabilitation and gamified approaches were conducted. It was found that in recent 

years, physical games have been used to increase engagement with rehabilitation 

programs and encourage patients to complete the program. Examples of gamification 

of exercises were found, but the main issue was the lack of clinical validation of data 

provided by the framework. Most virtual gamified exercises focus on increasing 

engagement or utilise expensive specialised equipment such as motion analysis labs, 

or virtual/augmented reality headsets. Review of the literature showed that most of 

these virtual gamified solutions offer data attributed to joint measurement but there 

was a lack of clinical validity in their implementation. Moreover, there is no unified 

method of applying virtual gamification in existing exercises so that the clinicians are 

not able to rely on the data with high levels of confidence. That is why the research for 

this thesis started by defining hardware and software components in such a way that 

real time, clinically validated data can be collected to the benefit of patients and 

clinicians.  

The first step in implementation of the system was the selection of IMUs and 

ML facilitated by MediaPipe as the data acquisition methods and main form of 

interaction with the gamified exercises. After defining the data acquisition techniques, 

algorithms for evaluating the effectiveness of the rehabilitation session were developed 

so the user can get feedback on the correctness of their exercises outside clinical 

settings. To achieve this, three main pillars of rehabilitation were considered which are 

Range of Movement, Control of Movement, and Quality of Movement. 

The range of movement, typically assessed using goniometers in clinical 

environments, aids in establishing a foundational point for rehabilitation programs. 

Control and quality of movement is usually observed by the clinicians during an in-

person patient visit.  The challenge lies outside clinical settings where patients do not 

get any feedback regarding the accuracy of their participation in the exercise regimen. 

Additionally, the clinicians are not able to continuously monitor the patients’ progress 
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through the rehabilitation program without them physically present which causes 

challenges if the patient lives in a remote area and is not able to get regular checks at 

a rehabilitation centre. To be able to provide this information remotely to the clinician 

and provide feedback to the user, IMUs and ML technologies were implemented. The 

data from the framework provides joint angle utilising Quaternion orientation frames; 

provides smoothness measurements through implementation of LDLJ and SPARC; 

and provides feedback on quality of movement by a mix of IMU data and HGR.  

To create an engaging gamified environment, an HMI was developed in Unity 

game engine that was capable of providing audiovisual feedback to the user. To 

achieve this, several mini game templates were developed that are mapped to specific 

rehabilitation exercises. Guidelines are provided on how a to apply game theory in 

building a gamified rehabilitation exercises using the provided templates.  

To test the systems, several use cases were defined to demonstrate different 

elements of the developed framework. The CP use cases demonstrated the use of IMUs 

and ML in clinical settings. The posture monitoring use case demonstrated the use of 

the developed framework in full body movement capture and provided information 

regarding validation of IMU data against Curtin University’s motion analysis 

laboratory and goniometers. Finally, the alternative control system use case 

demonstrated the use of the HGR elements of the framework for interacting with a 

physical drone can be mapped to a physical gamified exercise. This use case also 

contained the validation method for the HGR elements of the framework. These use 

cases were all published in open access, peer review journals as documented in Chapter 

4. 

After all the engineering elements were tested and validated, a focus group was 

conducted with experts in field of rehabilitation to gather qualitative feedback on the 

developed framework. The participants of the focus group highlighted the level of 

customization required for rehabilitation exercises. It was noted that the data captured 

by the framework outside clinical settings can provide insight into how well a patient 

is progressing through rehabilitation. This data can also facilitate early detection of 

any potential areas for when a rehabilitation program is not working as expected and 

can add accountability to the user on how well they have engaged with the exercise 

program.  

 



 

244 Chapter 6: Conclusions 

At the completion of this research, the main aims and objectives were to design, 

develop, test, and validate a framework for virtual gamification of rehabilitation 

exercises which has been achieved. There are opportunities for further development of 

this research already taking place at Curtin university. One of these potential directions 

would be use of technology in physical equipment that is currently being used in 

rehabilitation such as exoskeletons such that the physical interaction can be 

demonstrated and recorded. Addition of haptic devices could also be a potential future 

direction which adds another feedback method that can increase the immersion of the 

virtual games. The author believes that once the physical headsets in AR and VR 

technology become light weigh, low cost, and more readily available there is great 

potential in use of this technology as an element for virtual gamification of 

rehabilitation. As of 2023, physical equipment in VR and AR technology is reportedly 

still too cumbersome for rehabilitation but has shown great potential in areas such as 

cognitive abilities or in the psychological therapy space for exposure therapy. 

However, due to popularity and fast growth of video game industry, these technologies 

are progressing at a fast paste and soon the barrier to entry will be lowered further. 

This paints a bright future for virtual gamification of rehabilitation and opens the door 

for further development in this space.  
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APPENDIX B: SAMPLE DATA RECORDINGS FROM 

DEVELOPED GAMES 

This appendix provides sample data recordings from games discussed in chapter 

3.5. 

Figure 103: Sample extension/flexion data for the Monster Chase game 

Figure 104: Sample radial/ulnar deviation data for the Monster Chase game 
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Figure 105: Sample pronation/supination data for the Monster Chase game 

 

 

 

Figure 106: Sample flexion/extension data for the Flap and Avoid game. 
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Figure 107: Sample flexion/extension data for the Hovercraft game 

 

 

 

 

Figure 108: Sample flexion/extension data for the Hovercraft game with larger 

obstacles 
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Figure 109:Sample radial/ulnar deviation data for the Brick-Busting game  

 

 

 

Figure 110: More radial/ulnar deviation data samples for the Brick-Busting game; (a) 

Small Panel, (b) Medium Panel, 

 

 

 
(a) 

 

 
(b) 
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Figure 111: Sample pronation/supination data for the Dodge the Spike game 

 

 

 

Figure 112: Sample pronation/supination data for the Tilting Maze game 
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Figure 113: Sample pronation/supination data for the Skiing game 

 

 

 

Figure 114: Sample flexion/extension data for the Skiing game 
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Figure 115: Sample data from Aeroplane flying game representing movement in 

pitch angles. 

 

 

 

Figure 116: Sample data from Aeroplane flying game representing movement in 

Yaw angles. 
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Figure 117: Sample data from Aeroplane flying game representing movement in Roll 

angles 
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APPENDIX C: EXAMPLES RESULTS OF LINEAR LDLJ AND 

ANGULAR SPARC FOR SMOOTHNESS MEASUREMENTS 

This appendix provides more sample analysis results for the study run to measure 

angular and linear LDLJ for evaluation of smoothness measurements of the 

framework.  

 

Figure 118: Linear LDLJ for User A 

 

Figure 119: Linear LDLJ for User B 
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Figure 120: Linear LDLJ for User C 

 

 

Figure 121: Angular SPARC for User A 
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Figure 122: Angular SPARC for User B 

 

 

Figure 123: Angular SPARC for User C 
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APPENDIX D: FULL QUESTION LIST FOR FOCUS GROUP 

DISCUSSION 

This appendix contains the full question list that was utilised for the focus group 

discussion.  
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