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Abstract

Patients who have suffered soft tissue injuries or undergone surgery often
experience reduced muscle strength, flexibility, and pain in the affected area, which
can interfere with daily activities such as eating, showering, and working.
Rehabilitation exercises are crucial in reducing symptoms and returning patients to
normal activities. However, performing exercises at home can be challenging without
the supervision of a clinician to ensure the safety, efficacy, and correctness.
Furthermore, patients may lose motivation due to the repetitive nature of the exercises
and lack of feedback outside clinical environments. This research presents a
framework for human joint rehabilitation that enables clinicians to set engaging
rehabilitation tasks for their patients. The developed framework utilises non-invasive
sensors and machine learning algorithms to precisely measure and document joint
movements by providing real time feedback on the progress of the exercises for
patients and clinicians. The implementation of gamification will add an entertaining
and interactive dimension to the rehabilitation process, helping to increase patient
engagement, which is a vital component of long-term rehabilitation success that will

reduce the risk of exercises being abandoned.
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Chapter 1: Introduction

1.1 BACKGROUND

Within rehabilitation programs, patients are required to engage in a sequence of
repetitive exercises as part of a timely intervention strategy. This approach aids them
in recovering, enhancing, or maintaining their usual functional capabilities [1].
Patients in rehabilitation performing repetitive movements often find them tedious and
increasingly frustrating. Ultimately, making the rehabilitation less effective as the
patient becomes more un-motived and discouraged throughout their exercise program
[2]. Increasingly, home-based rehabilitation therapy for patients focused on
performance through a goal-orientated task to maximise results and minimising long-
term disability is becoming more relevant in today’s circumstances [3]. Due to
increasing demands for rehabilitation services, medical staff reduction, and rising
costs, clinicians have limited availability to monitor and provide high levels of care
to patients, resulting in longer recovery times [4]. Available clinical tools such as
goniometers are the most common method to measure the baseline limitations of the
range of motion for joint angles [5]. However, clinical supervision is required for using
goniometers. The problem here is that as a patient progresses through their exercise
program, they will need to visit their therapist to validate and monitor their progress.
With this method, feedback to patients is limited by the therapist’s availability rather
than meeting the needs of the patient’s requirements. The lack of supervision and
limited feedback may lead to a reduction in patient motivation for long conditioning
programs and has a negative impact of the effectiveness of the rehabilitation exercises.
However, the introduction of non-invasive sensors and movement tracking devices can
provide a new method to capture home-based rehabilitation exercises performed by
the patient in real-time. Devices such as Microsoft Kinect and Leap Motion controller
utilise infrared sensors and structured light technology, whereas video game
controllers contain Inertial Measurement units (IMU) that can assist in extrapolating
data for clinicians. This allows for opportunities to analyse patient movement data,
while incorporating an environment for video games in which the patient can perform

exercises movements in an engaging and enjoyable way [6]. Rehabilitation exercise
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programs already utilise physical games and activities throughout an exercise program

so use of technology in the space is a worthwhile effort[7].

1.2 SCOPE AND OBJECTIVES

This thesis provides a framework for gamification of human joint remote
rehabilitation exercises utilising non-invasive sensors. This framework provides
guidelines on how a given rehabilitation program can be enhanced with inclusion of
gamification and how it can be adapted such that the data provided by the framework
is clinically reliable. The main aim of this framework is to provide an environment
where both clinicians and patients undertaking a rehabilitation exercise program can
benefit from the inclusion of technology and gamified concepts as a means of
generating greater motivation and engagement with the program. To Achieve this,
non-invasive sensors and machine learning algorithms were utilised to capture human
joint movement. This movement data facilitated engagement with the designed
gamified rehabilitation exercises where information regarding the joint movements

and correctness of the exercises is documented.

The developed framework provides live feedback to the user on how accurately
they are engaging in the rehabilitation exercises and keeps a record of number of
repetitions, range of joint movements, smoothness of movements, and correctness of
exercises for each session. Clinicians can utilise this data as a metric to gauge the
user's progress and engagement with the rehabilitation program, The data can also
provide insight into why an exercise program is not working since movement over

time is measured and logged through the framework.

Different elements of the developed framework were validated through clinical
trials and pilot studies to ensure its clinical usability. Additionally, several use cases
were considered and published in peer review journals to demonstrate the utility of the
framework in different areas. It is important to highlight that due to inclusion of human
participants in this research, human ethics approvals were attained, and participants
provided informed consent when engaging with this research. Since the research

included multiple use cases, where relevant, separate ethics approvals were attained.

The gamified elements of the framework will promote further engagement with
the rehabilitation program and encourages the user to maintain participation in the

required exercises. Numerous exercise templates and adaptable mini games have been
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supplied as examples of aligning rehabilitation exercises with gamified encounters, all

while preserving the integrity of the exercises. Additionally, guidelines have been

provided on customising the gamified elements, so they meet rehabilitation

requirements on a user-to-user basis.

1.3 THESIS OUTLINE

This thesis is presented into six main chapters that explain key aspects of this

research. The thesis structure and a small summary of the content for each chapter has

been explained below:

Chapter 2, Literature Review:

This chapter provides and in-depth analysis of the literature by analysing
different methods of capturing human movements that is relevant to
rehabilitation. Both clinical and on clinical environments are review as part
of this chapter. After reviewing the technology, key elements in analysis of
human movement technologies are reviewed. Finally, this chapter provides
a review on current practices in human movement rehabilitation both using

traditional methods and gamified approaches.

Chapter 3, Experiment Design:

This chapter provides an overview on the methodology for design of
different technologies required for defining the framework. In this chapter,
hardware and machine learning requirements for development of the
framework have been detailed followed by design of human computer
interface components of the frame through visualisation in the Unity game
engine. This chapter also highlights how joint and smoothness
measurements are conducted. Finally, this chapter provides design
templates for developing gamified exercises in such a way that the games
are replicating gamification exercises and the data collected during the

exercises is clinically valid and is relevant to the user and the clinician.

Chapter 4, Use Case Examples:
This chapter contains four different use cases as published peer assessed
journal articles that evaluate different elements related to the development

of the framework. The evaluation techniques of both sensor and machine
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learning elements of the paper can also be read in this chapter. All the
published papers in this chapter are available in open access journals so the

reader my choose to read the article on the journals website if they wish.

Chapter 5, Analysis of Results and System Testing:

This chapter provides and in-depth details on analysis of results and system
testing for this research. The evaluation of results is provided from both
engineering perspectives as well as clinical perspectives. The engineering
perspectives include result of different quantitative analysis methods for
evaluating the data provided by the framework and details the details of
relevant verification procedures. The second part of this chapter contains the
qualitative analysis of a focus group discussion held with experts in field of

rehabilitation.

Chapter 6, Conclusions:
This chapter contains a summary of contributions of this thesis and provides
guidelines for future development and directions for implementation of

gamified concepts in rehabilitation settings.
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Chapter 2: Literature Review

2.1 LIMITATION AND SCOPE OF LITERATURE REVIEW

This section provides an in-depth literature review on the topic of gamification
of rehabilitation. The review will cover a summary of selected human motion capture
technologies use in the context of rehabilitation. The technologies are categorized
primarily into sensor-based and optical motion capture technologies, serving as the
primary approaches for capturing human movement intended for integration into a
gamified environment. As mentioned in Chapter 1, one of the objectives of the
developed framework is to provide a low-cost solution that would be viable for most
people so the most accurate solution may not be the best solution as the mechanism
for capturing human movement. The requirement of low cost and accessibility of the
solution exclude the study or technologies such as Virtual Reality (VR) or Augment
Reality (AR).

After reviewing the technology, key elements in analysis of the human
movement data are explored. This section will also provide an in depth look at one of

the more complex aspects of human motion capture which is gesture control.

Finally, the review will focus on current practices in human joint rehabilitation
both in clinical settings and gamified settings. This section will also provide a look at
game design theories and how it has been applied to rehabilitation in the past.

2.2 SUMMARY OF SELECTED HUMAN MOTION CAPTURE
TECHNOLOGIES

2.2.1 Human Motion Capture Technologies in Clinical Environments

Goniometers and inclinometers are the main tools used in clinical research to
measure joint angles [8]. A goniometer is an instrument that can be used for measuring
joint angles and the available range of motion at a joint and monitoring changes in
joint angles in clinical settings, [9]. Inclinometers are specific types of goniometers
dependent on gravity and are used to measure motion in the spine by placing the device
on the neck or spine and reading the angle at different positions. This use of
goniometers requires precision for an accurate reading which is achieved through
skilful observation and practice, with human error being a major factor that leads to
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them being inaccurate and unreliable, according to [10] and [11]. The accuracy of
range of motion measurement is a crucial part of clinical assessment since this
information is used as a guide for treatment plans, evaluating the effectiveness of
treatments, and monitoring an individual’s response to the treatments [12]. The
reliance on the ability of the clinicians to accurately palpate bony landmarks and
visually estimate the alignment of the axis of the body part and goniometer can cause
issues. Goniometers are reliable, versatile, and widely used, even with measurement
errors of up to 15 degrees. The issue lies when the dynamic range of movement needs

to be measured, especially when dealing with a younger age group [13] [14].

In some instances, other clinical tools need to be utilised when there is a
requirement to get a better understanding of overall posture rather than joint
measurements. X-rays are used to determine spinal health and to evaluate the
alignment of bones, and magnetic resonance imaging (MRI) or CT scans are used to
determine any issues with nerves, muscles, tissues, tendons, bones, ligaments, etc [15].
Furthermore, nerve studies utilising electromyography (EMG) are used to measure
electrical impulses produced by the nerve in response to muscles. This is done with
the aim of determining nerve compressions caused by a herniated disk or diagnosing

spinal stenosis [15].

2.2.2 Sensor-Based Motion Capture Technologies

There are several sensor-based approaches available such as use of Infrared (IR)
LEDs, Fiber-Optic Sensors, E-Textile Sensors, and Inertial Measurement Units (IMU).

These technologies are explored in the following subchapters [14] [16].

Infrared and Near Infrared Based Hand Tracking Technologies

Infrared cameras (IR) than detect light emitted from a surface within set
temperature ranges can be utilised for capturing hand movements [17]. IR cameras
allow segmentation techniques to be run on items within a similar temperature to the
human body. This reduction in areas required for segmentation, the computational
requirements are greatly reduced compared to methods that use colour-based hand
tracking techniques [17] [14].

A study conducted in [17] demonstrates the ease of implementing segmentation
in body temperature range of 30°C-37°C where the regions in this range provide a

higher pixel value compared to the remaining pixels. The algorithm removes the other
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objects detected within this range by omitting the smallest regions first followed by
selecting 2 of the largest regions. The algorithm assumes a single arm if only one
region has been detected [17]. The operator’s hand and arms are extracted from an
image followed by a search window to determine the orientation of each arm. The
search window looks for fingertips in smaller windows which lowers the
computational requirements. Finger approximation of a rectangle with a semicircle tip
is then utilised for each finger. This method utilises the approximation mentioned
before to search for semicircles in the segmented image. The study in [17] shows that
20 candidates with the highest ratings are utilised before removal of false positives
from the sample. False positives on multiple matches around a candidate are removed,
which means the neighbours with lower scored around the highest score candidate will
be removed. Another approach removes false candidates by reviewing pixels
surrounding the centre of a matching template. Multiple pixels are checked in a
diagonal direction inside the hand region and the candidate is removed if they are
found. After removal of the false positives, the system is able to correctly identify the

fingertips in the captured in image [17].

One of the uses of IR techniques can be seen in Leap Motion Controller (LMC)
which is small optical hand tracking module. LMC can track hands within 3D areas up
to 110cm from the device in a field view of 160x160° [18]. LMC uses two near infrared
cameras with 115 frames per second. Early testing results of LMC can be seen in [19]
where static and dynamic hand tracking can be measured. However, the joint angles
calculated via this device have not been clinically validated.

Active Sonar Finger Tracking

Sonar methods are commonly used to detect and determine the distance and
direction of objects underwater utilising acoustics. An interesting use of sonar can be
seen in FingerlO a project taking place at Washington University. This project aims to
use active sonar for finger tracking. The study conducted by [20] utilises mobile
devices such as smart phones and smart watches as active sonar tracking beacons. The
system provides inaudible soundwave in 18 to 20 kHz sample rates couples with speed
of sound in the air which provides an error of 2.1-2.8cm in finger position. FingerlO
uses Orthogonal Frequency Division Multiplexing (OFDM) to compute cyclic suffix
of S samples and uses it to calculate sample error. The sample error is then utilised to

correct incoming signals to achieve fine grain finger tracking with 8mm accuracy [20].
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The system is currently under development and there is relatively high errors in finger

position which makes it not ideal for clinical applications.

Fiber-Optic Sensing for Posture Monitoring

Fiber-optic sensors utilise measurements of light traveling through an optical
fibre system which can be in form of light intensity, phase, and polarization [21]. The
advantage of this technique is the immunity to electromagnetic interference, radio
frequency interference, and lack of effects from corrosive environments [22]. Fiber-
optic sensors can withstand high temperatures, provide a wide dynamic range, and
contain large bandwidths [22]. Study conducted by Roehampton University [23]
provide a dynamic method in measuring lumbar curvature via Fiber-optic sensors. This
study, 8 Fiber-optic sensors are paired in series and attached to a ribbon of sprung steel
in an elastic housing which allowed the ribbon to slide freely during spinal movement.
The measurements were compared to optical motion capture technologies for
validation with the conclusion that these sensors can be used for sagittal lumber
curvature measurements across time [23]. This method is not suitable in clinical setting
due to the high cost of the sensor implementation and lack of clinical validation of the

sensor data [16].

E-Textile Sensors for Posture Monitoring

E-textile sensors commonly refers to electronic textiles which are fabrics that
incorporate electronics woven within them [24]. The sensors within the fabrics are
interconnected which will lead into a less invasive design, tangle free, and cannot be
snagged by other objects. A review conducted by [25] mentions the human skin and
the clothes as the inspiration behind the invention of textile sensors. Similar to human
skin’s reaction to stimuli, electronic textiles will react to the environment through

transfer of energy through material [16].

As a part of the study conducted by [26], a wireless wearable T-shirt for posture
monitoring of rehabilitation exercises has been developed. This solution is made of
stretchable fabric containing wireless sensors that operate as textile substrate. The
inductive sensors were sewn in a zigzag pattern to front and back of the shirt leading
to a lightweight design. The sensors measured deformation as the shirt lengthens and
shortens in the sagittal plane of the body utilising inductive impedance measurements.
The results were validated against optical motion capture technologies to show the

reliability of the techniques. The limitation of this design is the notion that the subject
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seating is minimal, and it will not interfere with parasitic capacitance. This limitation
as well as relaxation of the tight stretchable shirt worn our due to use and washes makes

this design unreliable in clinical settings.

Inertial Measurement Unit (IMU)

Inertial measurement units (IMU) are among the most popular methods for
capturing movement and position of objects. IMUs include an accelerometer,
gyroscope, and magnetometer usually connected to microcontroller module to transfer
orientation information[16]. IMUs are well-developed, non-invasive, affordable with
long battery life [25]. IMUs require minimal computational power and have been
implemented in wide range of application as reviewed by [27]. In recent years there
has been a number of IMU based motion capture research studies such as studies of
gait modulation in patients with foot drop problems [28] and human activity
recognition using thigh angle derived from single thigh mounted IMU data [29]. The
use of IMUs for hand movement in free space is currently underdeveloped primarily
due to the lack of a clear calibration reset point compared to gait analysis. Later in
Chapter 4 of this thesis, use of IMUs in classification of movement associated with
Cerebral Palsy will be discussed [16] [14].

Depending on the application of IMUs, a relevant signal-processing pipeline
needs to be used so that the data can be sent to an external computer accurately without
any loss. It is also important to calibrate the device to find an initial position for the
sensor [30]. Kalman filter, complementary filter and sensor fusion techniques are
common filtering approaches when working with IMUs. IMUs provide a full
orientation frame and position for the wrist which can be used to for the gamification
of the rehabilitation exercises. The issue with using IMUs in free space is the lack of
initial starting position for initialization which needs to be determined as a part of this
research. The use of IMUs within the designed framework will further be discussed in
Chapter 3.

2.2.3 Optical Motion Capture Technologies

The use of digital technology is another appropriate method for human motion
capture. Motion capture (also known as mo-cap) refers to a group of technology where
the movement of people is recorded digitally [31]. The history of motion capture dates

to the 1960s, when Lee Harrison Ill, who was an American animator, used the
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recording of real-time human movement for animation. This recording was done via a

series of adjustable resistors, cathode ray tubes, and analogue circuits [32] [14].

Motion capture is used in sports, medical applications, entertainment,
ergonomics, and robotics. When used in filmmaking and game development, it is
combined with the recording of actions of actors for animations and visual effects.
Additionally, full body movement, face tracking, facial expression, and finger
movements are combined together to create performance capture [31]. In health care,
motion capture is used for gait analysis which is to analyse an individual’s walking

pattern or for kinematic modelling in biomechanics.

Optical passive motion capture technologies use retro-reflective markers
attached to the body parts of the individual that reflects light onto a nearby camera
lens. From this reflection, the position of the marker is calculated within three-
dimensional space and recorded. Optical active motion capture uses the same
technique, but rather than reflecting light; the light is emitted [32].

The equipment required for motion capture is extremely costly and is not
commonly available in a typical hospital; for example, according to Thewlis et al. [33],
a simple Vicon system [34] cost approximately AUD $250,000 (US $268,605.52) in
2011 [33]. Even if the equipment is available, it would be difficult to utilise this
technology outside research contexts as participants will need to be moved to these
motion analysis laboratories to conduct measurements. Another limitation is the need

for additional expert staff to run the laboratories for the motion analysis [14].

2.3 REVIEW OF KEY ELEMENTS IN ANALYSIS OF HUMAN MOTION
CAPTURE

2.3.1 Use of Coordinate Systems in Human Motion Capture

The orientation of a rigid body with respect to a fixed coordinate system can be
described using three angles, referred to as the Euler angles. These angles which have
been illustrated in Figure 1 are defined as the roll, pitch, and yaw (¢, 8,v). It is not
important what order these angles are represented; however, the order of rotation is
crucial. The rotation matrix for each individual Euler angle is shown in Eq 1 to Eq 3.
The ZY X order of rotation evaluated in this study was used to generate the equivalent
rotation matrix in Eq 4 describing the three consecutive rotations in Matlab. Note that

the individual rotations are applied in reverse order. The order of rotations is critical,
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and thus, there exist twelve possible sequences of rotation axis that can be divided into

two groups:
1) Proper Euler angles: zxz, XyX, yzy, zyz, XzX, yXy.
2) Tait- Bryan Angles: xyz, yzx, zxy, Xzy, zyX, yXz.

The most common combination used to re-orientate the body from an initial frame at
XYZ is using Tait-Bryan angles, namely combination zyx, which consist of a rotation

the previously mentioned Pitch, Roll, and Yaw values [35].

Figure 1: Euler angles using an aircraft [36]

Eql R@) = [0 cos(®) —sin(y)

1 0 0
10 sin(y) cos(t/})l

Eq 2 RO=| 0 1 0
[sin() 0 cos(6)

[cos(6) O —sin(@)l

Eq3 cos (¢) sin(¢p) O
R(¢) = [—sin () cos(¢) 0]
0 0 1
cos (¢p) sin(¢) 0][cos(8) 0 —sin(6)7r1 0 0
Eq 4 R(¢,9.lp)=[—sin (¢) cos(¢) oH 0 1 0 Ho cos(yp) —sin(y)
0 0 1llsin(@) 0 cos(8) 110 sin(y) cos(y)

Advantages to using Euler angles are that it is easier to visualize and can describe
rotation and orientation in a precise manner, but a significant disadvantage is that of
the occurrence of gimbal lock which results in the loss of a degree of freedom. Gimbal

lock occurs when two out of three gimbals are aligned, this can be translated to a pitch
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of £90 degrees in the ZY X order of rotation. An example of gimbal lock is shown in
Figure 2.

Figure 2: Example of gimbal Lock [37]

Setting & = 90 and applying basic trigonometric identities to the rotation matrix
of Eq 3 results in Eq 4. From this equation it can be observed that changing the roll
and yaw values will yield the same rotation matrix. To interpret the raw numerical
data, a 3D animation has been developed by [37] which uses a unit sphere to represent
the orientation of the wearable device. The orientation of the sphere is constantly
updated using consecutive Euler angle measurements and synchronised using their

corresponding timestamps. Layout of the orientation frame can be seen in Figure 3.

0 sac

Figure 3: Layout of the orientation frame [37]

The fixed coordinate system is represented by the black lines originating from
the centre of the sphere labelled x, y and z which point to north, east and down

respectively. The sphere representing the orientation of the wearable device contains
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three red markers labelled f(i), f(j) and f(k) which point in the positive x-axis, y-axis
and z-axis of an example sensor as illustrated in Figure below. The time corresponding
to the orientation is displayed in the top corner of the plot. The basic operating
principal behind the Matlab code is application of the rotation matrix described in Eq
5 to a set of coordinates that define a unit sphere [37].

0 —sin(p—v) cos(¢—1)
Eq5 R($,0,W)=|0 cos(¢—) sin(e—)
-1 0 0

Quaternions can represent the orientation of a rigid body with respect to a fixed
coordinate frame without the added limitation of gimbal lock observed using Euler
angles. Quaternions consist of four values, one real component g, and three imaginary
components q4, q,, g3 as shown in Eq 6. A unit quaternion is defined as an ordinary

quaternion with a magnitude of one.

Eq6 4= qo+ qii+ qzj +qsk

The symbols i, j, k in the quaternion expression are unit vectors pointing along
the three perpendicular spatial axes. The fundamental formula describing guaternion

algebra is shown in Eq 7.

Eq 7 i2=j2 =k =ijk=—-1

The quaternion notation used to represent a rotation of 8 degrees about an axis
defined by the vector @t = (uy, uy,u,) is shown in Eq 8.

Eq8 g = cos (g) + (Uyl + uyj + u k) sin (g)

2.3.2 Calculation of Smoothness Measurements in Human Motion Capture

In addition to capturing orientation of an object, the captured IMU data can be
utilised to provide a smoothness measurement of human movement. Research
presented in [38] advises that measuring and quantifying smoothness provides a great
merit to rehabilitation as it represents how much control the participants have had on
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their movement. According to [39], smoothness of movement in each rehabilitation
exercises demonstrates how uninterrupted the movement was given that the following

attributes are taken place when considering smoothness:
e Being dimensionless
e Being consistent
e Being sensitive to change in movement.
e Being practical

Smoothness of movement is typically represented by a bell-shape speed provide
where movements that lack this kinematic pattern are considered as less smooth [38].
Less smooth movement tens to have multiple peaks so a single observed peak would
demonstrate smooth movement. These peaks are referred to as intermittencies and can
occur due capability of the performer and nature of the tasks. Intermittency is created
by impairments such as a deficiency in motor control or result of an injury. The
exercises them can also form intermittencies for instance in point to point reaching
where the smoothness is highly dependent on the activity. This means the smoothness
of different tasks cannot be compared to each other [38]. Smoothness can be calculated
utilising Log Dimension Less Jerk (LDLG) and spectral Arc Length (SPARC) as stated
in [39].

There are several methods for capturing how much jerk exists in a movement as
represented by [38] and [40]. Jerk-based calculations are usually not dimensionless,
however [40] defines dimensionless jerk (DLJ) and log dimensionless jerk (LDLJ)
which both meant the validation criteria mentioned above. Eq 9 shows LDLJ-V as a
velocity-based equation derived from [39] which itself is derived from the equation to
determine LDJ. The main different here is the fact that LDLJ-V utilises the negative
natural log of the absolute value that is provided by LDJ. LDLJ-V uses a normalisation
factor captured from the peach velocity to make results dimensionless. In Eq 9, t; and
t, represent the time period of the movement, v(t) is the velocity of the movement in

the time domain, and vy, is the max velocity.
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SPARC is another method for smoothness measurement which is dependent on
the movement arrest periods (MAP). MAP is defined at the period with no movement
and a period with movement is one where some velocity is experienced. This period
of movement is the loss in measurements of higher derivatives such as acceleration
and jerk as stated in [39]. SPARC uses sub movements across a period to model the

movement which can be seen in Eq 10 [39].

1
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Eq 10

In Eq 10, V(w) is the Fourier magnitude of v(t), V(w) is the normalised
magnitude spectrum. w, is the adaptive cut off frequency which differentiates Spectral
Arc Length (SAL) from SPARC. SAL utilises 40x, but SPARC uses an adaptive range
as its cut of point. This is to reduce the sensitivity to temporal scaling up to the

determined cut-off frequency as seen in Eq 11.

Eq 11 w. = min {wcm“x,min{w, V(r) < Vvr > w}}

Research found in [38] recommends V to be 0.05 and w,.™** to be 20m or 40m as
the range keeps segments small enough to be sensitive to intermittency which leads to
reliability. Setting 40z as the frequency cut off provides a band that is used to cover
the full range of motion from a person’s normal and abnormal movement and

corresponds to 20Hz.
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2.3.3 Gesture Recognition Approaches

Gesture recognition is defined as the mechanism for a system to recognise a
physical and predefined action [41]. The predefined actions are known as gestures that
can be used to the classy expressive and purposeful motion of the human body [41,
42]. This literature review focused on hand gesture recognition (HGR) which restricts
the description above to physical movement of the fingers and hand with the aim of
conveying information [41]. This means the definition describes the sole observation
of the movement of the human hand irrespective of the human body [42]. HGR has
become a staple of the Human Computer Interface (HCI) development environment

and has been a highly researched topic over the past 40 years [43] [42].

The primary motivation driving the development of HGR algorithms has been
its applicability as a fast, natural, and accurate source of HCI [44]. As HGR is a branch
of the general study of human activity recognition [45], it has had applications ranging
from simple alternative control use cases to complex human-robot collaboration [46].
Development of hand gesture recognition algorithms began in the 1980s and has
continued to be refined and diversified into a range of unique approaches. Modern

approaches utilise machine learning to aid in the recognition process [43] [47].

Machine Learning Pipeline

Machine learning is defined as an algorism capable of making decisions outside
of the literal definition by an adoption process called training [48]. In the case of
classification, machine learning algorithms consist of the following components: data
acquisition method, data pre-processing, feature extraction and object classification.
These components form the machine learning pipeline, which is the basis for most
modern HGR algorithms [43] [48]. The purpose of each individual stage has been

explained below:

1. Data Acquisition Method. Data acquisition is the first step of the machine
learning pipeline and refers to the collection of raw data from a source external
to the algorithm [46, 48].

2. Data Pre-processing. Typically, the data provided by the data acquisition
method is rife with noise and low-value data. To perform feature extraction on

such a data sample would be inefficient, and as such, data pre-processing is
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used to remove ‘low value’ data from the provided raw data, refining it such

that it can be more efficiently used by future algorithm components [48].

3. Feature Extraction. Feature extraction further refines the inputted data such
that it becomes consistent in shape, irrespective of the supplied image. The
purpose of this method is to further reduce the inputted data into a single
constant form ‘feature’ where a feature can be described as a meaningful

template of data that will be used in the classification process [48].

Object Classification

Classification is the process by which the algorithm generates an educated
prediction based upon the inputted data and a pre-trained model. The aim of this
prediction is to classify the data as a single element from a pre-defined set. The
methods in which a model is trained and from which a model makes its prediction vary
based on the application [43] [48].

Gesture Recognition Pipeline

The machine learning pipeline is a general description of how machine learning
can be applied to a classification problem. Review documents [46, 47, 49] redefine the
above components to make them more specific to the structure of an HGR algorithm.
This redefined HGR-specific component list is as follows [43].

1. Gesture Acquisition. This is simply the data acquisition method used by a HGR
algorithm.

2. Gesture Description. This defines the type of gestures being recognised and
the primary method in which gestures will be distinguished from one another.

3. Gesture ldentification. This defines the pre-processing data algorithm, the
feature extraction algorithms and gesture tracking components that are used
with an HGR algorithm.

Gesture Classification. This defines the object classification algorithm that will
transform the gesture data returned by the gesture identification component
into a selected gesture.

2.3.4 Data Acquisition Methods

The data acquisition source utilised by HGR algorithms can be defined into two
governing categories, these being image and non-image based [46]. These two
categories can be further subdivided into the sub-categories illustrated in Figure 4. The

image-based category has the following subcategories, marker, depth camera, stereo
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camera, and single camera. The non-image-based category has the following
subcategories, glove, band, and non-wearable. Non-wearable technologies have been
omitted from this investigation as they are an emergent technology with limited
implementations available[43] [46] [50].

Sensors for Data Aquisition

| |

Image Based Non-Image Based

S — 2 £

Depth Sensor Stereo Camera Single Camera Glove

Figure 4: HGR Data Acquisition Categories [43]

Use of Single Camera for Data Acquisition

Single-camera approaches use a single viewpoint RGP camera to monitor the
human hand. HGR algorithms that utilise single camera inputs are a mature technology
[47] and have been implemented since the early 1990s [46]. The primary drawback for
this method is the single viewpoint restriction of the camera which reduces the
robustness of the system. This reduction is due to the fact that algorithm cannot directly
observe components of the hand that are obscured from the camera’s single viewpoint.
This source of error is commonly referred to as occlusion and self-occlusion [46].
Furthermore, single-camera approaches cannot directly observe the depth of hand
components making 3D modelling more difficult. The advantages of single camera
method is the high observational speed of the camera which requires limited
processing to get observational data, natural operation, readily available components,

and high-resolution data which reduces the restrictions on range [43] [47] [42, 47].

Use of Stereo Camera for Data Acquisition

Stereo camera HGR refers to any solution that utilises two or more receivers
with the aim of producing stereoscopic vision for generating a three dimensional
module of the environment [46, 47] [46, 47]. There are different operational
wavelengths for these receivers depending on their implementation where the key

attribute that separates the approaches is the use of multiple optical receivers. For
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example, leap motion is one of the example of the input medium which utilises infrared

receivers to capture skeletonised hand models [43] [44].

Advantages of stereo camera approaches are high accuracy, fidelity, and
robustness due to use of multiple viewpoint modelling. It is important to highlight that
self-occlusion cannot be totally avoided and will still affect the accuracy of the
modelling in different positions. This effect is less prevalent compared to single
camera approaches. Other restrictions of stereo camera systems are their high
computational requires for triangulation of the 3D environment, limited range due to
need of focal point of observation, and calibration difficulties [43] [46, 47] [46, 47].

Use of Depth Camera for Data Acquisition

Depth camera HGR approaches are described as any method that utilises non-
stereoscopic vision for direct observation of the depth of an environment [46]. The 3D
environment can be directly quantified by utilising depth information from a single
sensor rather than RGB colour data [51]. Use of depth information is considered as an
emergent sector of HGR development with common methodologies such as Time of
Flight precepts (ToF) and light coding where light travel time is utilised to ascertain
depth information [51]. As example use of this technology can be seen in Microsoft
Kinect V2 [43] [44].

Advantages of depth camera approaches is in the removal of lighting, shading,
and colour contrast in the data acquisition process which removes the common sources
of inaccuracy [51]. The disadvantages of depth camera approaches are in their high
cost and range restrictions which reduces the fidelity of available data at extended
range. Depth cameras remain applicable for full body gesture recognition at range of
0.5m but they cannot be used in HGR [46] [51]. Occlusion and self-occlusion remain

the source of error in depth cameras.

Glove-Based Data Acquisition

Glove based HGR approaches are defined as methods that require the use of
sensors directly to the user’s hand or a glove for data acquisition [52]. Sensors are used
to measure the flexion of the human hand and fingers directly which were the original
form of HGR first appearing in 1983 [52]. This method is more matured compared to
the others and have an array of implementation scaled for a range of applications [42].

The advantage of glove-based approaches include high accuracy, high data rates, and
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fast computational speeds [50]. The disadvantage of the glove-based approach
includes being cumbersome, restrictive of the human hand, and relatively long pre-test
tuning times [43] [46].

Band Based Data Acquisition

Band based approaches are defined as HGR systems that requires mounts the
sensors to the forearm of the user for data collection [46]. This approach utilises
electrical and optical sensor to observe the movement of human man using in direct
methods [50]. These approaches are a modern implementation of the glove-based
approach due to the advancement of surface electromyography [46]. There are several
advantages in band based methods such as fast response times, low computational
requirements, and not being tied to the hand which makes them less restrictive
compared to glove-based approaches [50]. There are still some disadvantages in band
based methods such as the need for directly mounting to the user which makes it more
restrictive than the visual methods, lower resolution and weaker input signals
compared to other HGR approaches, and they are affected by differing location of the
sensor attachment [43] [50].

2.3.5 Gesture Description Overview

Gesture description refers to the information represented by gesture and the
method for modulating within the HGR algorithm [53]. There are three categories in
gesture description which are physiological scope, the information interpreted from
the gesture, and the model used for representing the gesture [54]. There are different
considerations to be made on each of factors which has been explored below [43].

Physiological scope refers to the pre-set taxonomy used to determine the
physical nature of the gestures [54]. Upon review of the literature, the use of static or
dynamic gesture sets, the inclusion of wrist motion, and the number of hands used to
form the single gesture has been noted as the main distinction factor.

The information interpretation based on HGR algorism can be divided into
spatial information, temporal or pathic information, and symbolic information [41].
Spatial information consists of the position of the gestures within the environment.
Temporal or pathic information is interpreted from velocity and the path an observed
gesture takes within the environment. It is important to highlight that spatial

information is typically observed utilising the world coordinates of the observed
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gesture similar to spatial information. Symbolic information refers to the shape of the
observed gesture and is usually interpreted utilising joint angle calculations or shape

matching methods [41].

The model used to represent an observed hand varies depending on the desired
scope of input gestures [54]. Depending on the increase of number, complexity, and
information density of the gesture, the model becomes more complex, and a relevant
modelling method will also need to be implemented. The complexity of the mode is
proportional to the to the number of classifiable landmarks that has been provided
within the model. HGR modelling can be categorized as 3D based modelling and
appearance-based modelling as scene in Figure 5 [43] [54].

[ Gesture Modelling Methods ]

[ 3D Model Based ] [ Appearance Based ]

3D Texture 3D Geometric 3D Skeleton Silhouette Geometry Motion Based
Volumetric Model Model Model Model Model

J

Figure 5: Summary of Hand-gesture modelling methods [43]

There are models with less complexity such as the silhouette geometry model,
which is used for simple HGR applications, but they offer few classifiable landmarks.
This model is appearance based which lowers the computational requirements and can
be extracted directly from the image with little intermittent computation. These models
are better suited for low response time algorithms that focus on being lightweight with
fast operating applications [55, 56] [55, 56]. More complex models such as 3D
skeleton model could offer up to 21 landmarks for classification and require more
computational power to be accurately generated. Due this this higher computational
power, they are usually utilised in control applications where accuracy and reliance on

more expansive data sets are required [55, 56] [55, 56].

2.3.6 Application of Machine Learning in Gesture Identification

Gesture identification refers to methods for detecting human hand apart from its

background with the aim of generating a computer model for classification also known
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as feature extraction [42, 46, 48] [42, 46, 48] [42, 46, 48]. The following sections
focuses on single camera visual observation methods, 3D skeleton representation, and
2D silhouette models [43] [44].

Use of OpenCV in Gesture Identification

Colour segmentation and shape or colour feature extraction are among the most
basic form of feature extraction for single camera RGB data [54]. Colour segmentation
method utilises the unique consistency of the human hand colour to differentiate the
hand from the background. The advantage of segmentation is the low computational
requirements, however, only 2D models can be produced such as silhouette geometry
models. Additionally, the accuracy is negatively affected due to self-occlusion and
variances in the background, skin tone, and lighting conditions [57]. The unique shape
of human hand is used in shape analysis to aid in the detection and is usually achieve
by contour or edge detection methods such as Fourier Descriptors, pr histograms of
oriented gradients. Similar to segmentation, shape analysis can only be used for
calculating a 2D model however, it is more resilient against background, operator, and
lighting variances [57, 58]. Shape analysis methods require more computational power
compared to colour segmentation and still have self-occlusion and robustness issues
[43].

As mentioned above, these methods cannot be utilised for generation of 3D
models, however, their low computational requirements make them still viable in
modern HGR algorithms. For example, colour segmentation can be used to locate areas
of interest within the image, followed by more robust algorithms for pre-processing
which can lead to a reduction in the amount of data sent to the more complex identifiers
[57, 58] [57, 58]. The existence of opensource libraries such as OpenCV has also
helped in widespread application of these algorithms. OpenCV contains python
modules capable of performing the aforementioned feature extraction methods
efficiently and can be used as the building blocks for many other approaches as seen
in [44].

Use of MediaPipe Hands in Gesture Identification

Media Pipe Hands (MPH) is an on device real time hand identification solution
designed to operate using data from a single RGB camera [55]. The output of MPH is
a list of 2.5D, 21 landmark skeleton model for each observed hand within the frame.

MPH contains a 2-stage pipeline with the first stage being a palm detector, followed
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by the second stage which is the hand landmark extraction model. This pipeline
minimises the computational load of 3D skeleton identification process in two key
methods. First method uses a light computational algorithm to locate areas if the
interest in the image and then applies the landmark model on the located areas. The
second method uses the tracking of identified hands between frames which reduces the

computational power needed to identify subsequent frames [43].

BlazePalm detector is the first stage of the MPH pipeline which detects the hand
locations and deals with challenges such as: variability of hand physical appearance
(colour, size, pose), large scale span, occlusion issues due to use of single perspective,
and low contrast patterns within the hand. To solve these issues, the BlazePalm
detector utilises 3 unique strategies. The first strategy is the utilisation of palm and fist
detection over whole-hand detection which addresses the issue of self-occlusion and
pose variation. It is important to know that whilst fingers are commonly self-occluded,
fist and palms cannot be. The second strategy is the use of an encoder-decoder
extraction method such as FPN which addresses the problem of low contract patterns
and colour variation. The final strategy is the minimisation of focal loss during training
with the aim of combatting the high variance in scale and hand size. The combination
of these strategies provides an accuracy of 95.7% for palm detection followed by
placing a bounding box around the wider 2D silhouette feature surrounding the palm
[59, 60] [59, 60].

The second stage of MPH pipeline applies regression algorithms on the image
encapsulated within the bounding box to locate the previously mentioned 21, 2.5D
joint landmarks. 2.D here refers to the use of x and y coordinate taken relative to the
image’s orthogonal frame and calculation of the z coordinate relative to depth for the
landmarks. The relative depth values are acquired based on perspective angle of the
camera. perceived distance of the new landmark and the palm of the hand. The 21
landmarks provide the estimated joint calculation of the hand. MDP can provide
outputs representing probability values for the confidence of the algorithm on the 21
landmark prediction and binary classification values to the hand being left or right.
The regression model is used via real world data and synthetically generated images

to improve accuracy in different environments and relative depth calculations [59, 60].

Reports provided by [60] indicate average precision of 93.33% for the MPH
pipeline which is very promising considering the straight forward installation of MPH
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via pip or official webpage. MPH has some key issues such as, decreased accuracy

when palms are placed together and rotational inconsistencies [59, 60].

Use of InterHand2.6M in Gesture ldentification

InterHand2.6M (IHM) is a relatively new algorithm that uses single RGP camera
alongside a pre-trained convolution neural network (CNN) which has been labelled as
ResNet and provides highly accurate feature extraction [56]. The output of IHM is a
normalised 3D, 21 landmark skeleton model for 2 hands which is tuned to detect left

and right hand a single operator [43] [56].

The previously mentioned ResNet can be trained using an application specific
data set or using the extensive data set labelled InterHand2.6M provided by IHM. This
data set contains annotated data which can be utilised for training ResNET. The trained
model has provided high accuracy when observing gestures involving two
interconnected hands [56]. The InterHand2.6M dataset was collected in a multi camera
studio consisting of 140 cameras and 450 bidirectional LEDs. 26 unique set of human
hands were observed while performing 53 total gestures per person. This data was then
annotated with the 3D landmarks using a semi-autonomous approach. The extensive
nature of this data collection process is one of the reasons contributing to the high

observational accuracy of the mode [56].

A ResNet model is placed within an InterNet wrapper after being trained.
InterNet utilises a single frame of RGB as its input and sends it to ResNet for feature
extraction and outputs the initial hand features. InterNet then uses the features to
generate a 2D coordinate set and the relative depth of each of the 21 landmarks that
have been previously mentioned. Camera back projections and an inverse affine
transformation which is a transformation that preserves lines and parallelism are then
applied to the coordinates to create the final normalised 3D list of landmarks. The 3D
coordinates are transposed onto an image window so visual validation can be
conducted [56].

Both InterNet and InterHand2.6M datasets are open source and readily available
on PyTorch and github. There is some fine tuning required as the initial download of
the data bases are tuned for static image recognition. To be able to utilise InterNet for
real-time video up to 30 frames per second, ResNet will need to be re-trained. InterNet

has shown 99% accuracy across several indoor and outdoor environments for gesture
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sets which includes 2 hand interactions [56]. Due to high computational requirements

for InterNet, there is limited literature available covering its use in applications.

2.3.7 Gesture Classification

Gesture classification is the process where features are extracted by gesture-
identification algorithms and classified within a pre-defined list of gestures [42, 61].
To classify input-gesture models typical machine learning techniques can be utilised.
Among the widespread approaches are decision trees, K-nearest neighbours (KNN),
Hidden Markov model (HMM), Artificial Neural Networks (ANN), Naive Bayes
(NB), Linear Regression bounds, Support Vector Machines (SVMs), and
Convolutional Neural Networks (CNN). The use of classifiers that can hand high
dimensionality features spaces and classification of element into distinct non-linear
classes are more desirable [61]. These algorithms are further explored in the following
paragraphs [43].

Use of Decision Trees in Gesture Classification

Decision trees operate via a tree like structure which consists of decision nodes
that represent points of classification and leaf nodes that represent classifiable classes.
Decision trees are typically implemented via intuitive, light weight, white box methods
where simple, high-level comparisons are utilised at each node level to classify the
given data. Decision trees are best used for simple classification problems and small
gestures such as the ones mentioned in [62]. More complex variants of decisions trees
which are known as random forest classifiers can be utilised for classifying
multidimensional landmark models without overfitting [43] [44, 62] [44, 62].
Overfitting happens when ML algorithms produce accurate results for training data set

but not for new data sets.

Use of Decision SVM in Gesture Classification

SVM methods use a trained hyperplane as a binary classifier to separate the
classifiable classes. The hyperplanes can be utilised to separate large number of
classifiable classes across multi-dimensional space even in non-linearly separable
cases [62]. The hyperplanes are generated while training the model by utilising the
closest values between neighbouring classes and defining the hyperplane to separate
the values [42]. The dimensionality of the data is increased until the linear separation

of the points is possible [42]. SVM classifiers have high classification speeds
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considering their utility for multiple-dimensional data classification. It is important to
note that SVM methods are prone to overfitting so the training needs to be done with
care [43] [42].

Use of CNN in Gesture Classification

CNN methods are becoming more popular even outside HGR applications [62].
CNN methods operate on neural network models where a given feature is passed
through a various interconnected hidden layers, which uses confidence value
calculations to build up confidence value for the final classicisation [42]. CNN
algorithms can recognise subcomponents of the gesture and use them to provide
accurate predictions for the gesture. As mentioned in [62] and [44], carefully trained
CNN can achieve classification accuracies close to 100%. The issue with CNN is the
reliance on large training data sets and hyper parameter training [46, 57] [46, 57]. The
Hawks Harris algorithm detailed in [57] can nullify the hyper parameter tuning in HGR
applications [43].

2.4 CURRENT PRACTICES IN HUMAN JOINT REHABILITATION
UTILISING TRADITIONAL METHODS AND GAMIFIED
APPROACHES

2.4.1 Current Clinical Approaches for Human Joint Rehabilitation

Before exploring gamification in rehabilitation, current human joint
rehabilitation methods need to be investigated. Rehabilitation is defined as set of
exercises that reduces disability in individuals with respect to their muscles to allow
them to interact with their environment effectively in their day-to-day activities [1].
There are multiple reasons where individuals may require rehabilitation such as pre-
existing conditions, surgery, old age, after injury. It is estimated that 2.4 billion people
worldwide have conditions that would benefit from rehabilitation based on articles by
World Health Organization [1]. This large number highlights the importance
improvements to medical processes for rehabilitation, which is a difficult challenge
due to varying nature of rehabilitation requirement going from person to person [1].
The person going through rehabilitation may need to receive assistance in moving a
body part with the presence of a qualified clinicians and often there is a requirement
to complete exercises outside of clinical environments [1]. To better understand
different requirements for rehabilitation, wrist rehabilitation for people recovering
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from injuries and people with chronic conditions have been reviewed in the literature

below.

Rehabilitation for Paediatric Wrist Impairments and Injuries

Paediatric patients in Australia are classified as age range of 4 months to 17 years
old [63]. Rehabilitation for chronic or short-term wrist injuries or impairments are a
common issue for children. For example, a 10-year study in Sweden [64] defines upper
extremity fractures are among 68% for the age of 0 to 18 years old. These fractures are
often treated in a short time frame but are followed by physical therapy to improve
strength, flexibility, achieve the required range of movement, and to prevent further

re-injury [64].

The issue becomes more complex with longer term and chronic patients that
suffer from neurological conditions such as Cerebral Palsy (CP) or joint inflammation
such as Juvenile Arthritis. These conditions can affect mobility in the upper limbs and
would require longer term rehabilitations. Some of these conditions such as CP are
either lifelong or can become chronic such as Arthritis which means the long-term
conditioning programs need to be utilised to maintain and improve ROM (range of
motion). Approximately 1 in every 1000 children develop a type of chronic condition
in case of Arthritis [65]. CP is one of the most common motor disabilities in children
and it affects 1 in 1000 births [64]. It is reported that spastic limb movement accounts
for 82.9% of all CP cases which affects the range of motion in joints and very common
for wrist joint of many patients [66]. The limited range of motion caused by muscle
stiffness and tightness of the wrist joint will lead to other problems such as weakness
in grip strength [66]. These statistics highlight the importance of maintaining
rehabilitation and therapy intervention where the symptoms need to be maintained and

managed by the therapist, leading to ease of participation in day-to-day activities.

Physical Therapy and Hand Rehabilitation

As earlier in this chapter, rehabilitation is needed to maintain function,
flexibility, strength and range of motion after an injury or in presence of a movement
disorder such as CP [1]. Conditioning programs in rehabilitation usually contain a set
of exercises for patient to repeat over a period to improve or maintain their
functionality. The exercises related to improving range of motion, two categories a

defined which are passive and active [67].
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Passive exercises are assisted by another person, for example a wrist maybe held
to its maximum extension angle with the clinician physically pushing the patient’s
wrist and holding it at this point. These exercises will improve blood flow and sensory

stimulation and prevent muscle stiffness [66].

Active exercises involve the patient performing the exercise without the
clinicians physically participating. The benefits of these exercises are stimulating
neuroplasticity which helps with rewiring of the brain more compared to passive

exercises, strengthens the muscle, and improves ROM [67].

Both passive and active exercises are required for full recovery, and they need
to be performed consistently. The exercises will need to take place at home outside the
clinical settings and the repetitive nature of the exercises sometimes leads to lack of
motivation by the engagement. The lack of feedback received outside clinical settings
are also a factor leading to abandonment of exercises [68, 69]. That is why the idea of
gamification has risen to popularity in the past couple of years as it aims to utilise
games to increase engagement in rehabilitation exercises. Gamification is further

explored in Chapter 2.4.2.

As example of rehabilitation exercises can be seen in hand exercises for wrist

movement given below:
e Flexion and Extension (moving the hand down and up)
e Ulnar deviation and Radial deviation (tilting the wrist side to side)
e Supination and Pronation (rotating the palm to be positioned up and down)

The therapist may provide a specific type and length of exercises depending to
the impairment of injury to the wrist joint. For example, Figure 6 and Figure 7, show
example set of exercises to improve ROM and strengthen wrist muscles. In case of
injuries, medical professionals need to ensure the tissue is healing correctly and the
bones are healed from the fracture before offering rehabilitation exercises.

28 Chapter 2: Literature Review



B

23] Government of Western Australia
|/e/'A East Metropolitan Health Service

)F
!

Lift wrist up fingers
fold in

sk

Occupational Therapy

| \ Wrist Exercises (Active)

Drop wrist down
fingers open

Hand shaking forward Hand shaking back

Wrist circles,
painting the ceiling

rph.health.wa.gov.au

L

Palm down

Where tradition plus innovation equals excellence
Created by the Occupational Therepy Department at RPH ) © State of Western Australia, East Metropolitan Heaith Service 2016 ) RPHM160701003

Figure 6: Active Wrist Exercises Examples (Provided by Royal Perth Hospital in
Western Australia)
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Figure 7: Wrist Strengthening Exercises Examples (Provided by Royal Perth
Hospital in Western Australia)
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2.4.2 Review of Existing Methods for Gamification of Rehabilitation

Gamification in rehabilitation has become popular in the past decade with
advancement of technology [70]. It is becoming more and more important for develop
and facilitate rehabilitation in home-based therapy system and provide hands off
approaches for example people in remote areas [68]. Games developed for upper-limb
rehabilitation can produce greater functional outcomes compared to the typical home-
based therapy sessions as represented reported in [71]. Gamification is capable of
providing an engaging experience by providing challenges to be solved by the patient,
leading to an increase in the motivation and more successful completion of the

rehabilitation program at home [65].

Study by [72] provides a patient-centred serious game utilising a leap motion
controller incorporating hand movement exercises. In this implementation, the game
was developed for patients who had physical impairments which took effect in
personalization of the experience. The game it was consisted of a flying style game
where wrist exercises were mapped to fly high, low, left, and right on a given pathway.
Predefined routs would be followed using hand gestures while receiving visual and
auditory feedback depending on capabilities of their participant. Patients real time
movement parameters would be displayed such as ROM and joint angles with
capability of playing back the session data. The session included leap motion data,
player data, and generated path data. The study had five female patients in age range
of 18 to 30 years. One of the participants had CP with others recovering from finger
or wrist trauma. Patients found the game to lack engagement due to a single navigation
style and existence of a single game. The game was also designed for wide range of
ages, so the younger patients did not find the game entertaining. This study showed
movement data in all direction as X, Y, and Z orientation. The clinicians suggested
hiding unused directions so more focus can be given to the active axis of movement.

relevant to the current exercise. [72].

Fruit Catcher is another rehabilitation game with the objective to get fruits in a
basket developed by [73]. This game was designed for people who have recently been
discharged from the hospital and require home based rehabilitation. The game utilises
a Nintendo Wii Balance Board as the sensor for capturing movement. Difficulty
parameters were designed for the game such as size, number, and fall frequency of the

fruit. Number of repetition and time could be set by the therapists which provided
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useful for adaptability of the game. This solution could detect if the patient was
compensating for the lack of ROM and adjust the gameplay accordingly. The game
provided instant feedback if it detected improper movements, but it still needed to be
closely monitored by the clinicians. The issue with the Wii board is not being capable
of capturing accurate data from the wrist joint application and enjoyment was limited

to a single game [73].

Another gamified example can be seen in in the work done by [69] for Juvenile
Idiopathic Arthritis with wrist inflammation. A series of mini games were developed
using leap motion sensors as the input measure. The developed solution provides input
parameters, track actions, and data recording to the clinicians. The patient sessions

could be replied, and the levels were divided into two categories:
e Random game levels with specified constrains for the player.
e Creation of set game levels via clinician input

The games targeted wrist exercises such as flexion, extension, radial and ulnar
deviation. The game consisted of rhythm games, flabby bird clone, skiing game, and
plane simulator [69]. The mini-game aspect was found to be intuitive since patients
required very few trials to interact and perform exercises to match the gameplay. The
rhythm game and skilling game were the most difficult requiring more tunning such

as widening the flags in the skiing game depending the patient’s ROM [69].

These solution highlights some of the benefits and challenges of designing
games for rehabilitation purposes. As it was observed, all solutions point to increase
in engagement with exercises given the correct targeting of the age group. Also, the
importance of more simple mini game collections has been demonstrated so the
exercises can be done in quick sessions. The issue with the current solutions is the lack
of clinical validity of the data provided during or after the play sessions. Even through
improvement trends can be monitoring via the solution provided by [72] and [69], data
captured from motion leap devices have not been clinically validated meaning the
joints angles reported with these solutions are not representative of the actual wrist or
finger joints angles. The framework developed for this thesis will provide guidelines
of designing exercises specific games focusing on a target rehabilitation goal with the

aim of clinically validated movement information to be provided to the clinicians.
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2.4.3 Fundamentals of Game Design Principles for Rehabilitation

Gamification is defined as the application of game principles and game design
elements in non-game situations [74]. The framework of the game design has many
popular theories and fundamentals however one of the most recognized on is the
Elemental Tetrad as shown in [75]. As the name suggests, there are 4 elements in

Elemental Tetrad that are crucial for all games as defined blow:

e Mechanics: This is the procedure and rule of the game such as space,

objects, rules, actions, chance, and goals.

e Technology: This is the materials and methods of interactions for

delivery the game play such as computer or sensors

e Aesthetics: This demonstrates how the game looks, sounds, smells,

tastes, and feels

e Story: This is the sequence of events that unfold in the game and
according to [75] falling blocks in Tetris can be considered the story

element.

There are numerous studies in recent years that integrate the four elements into
rehabilitation applications. Applying the Elemental Tetrad becomes more challenging
in rehabilitation and home based solutions as games will need to be developed and
modified based on patient’s capabilities [76]. The exercises within the games should
help the recovery process in a safe environment without any harm or damage to the
patient. Another study suggests that games in rehabilitation must be intuitive and have
a sense of achievement to encourage and motivate participation in the rehabilitation
program [77].

A study carried by [2] provides the following features as important elements to

be included in to consider when game theory is applied to rehabilitation settings:
e Precise data recording
e Feedback for both clinicians and patients

¢ Positive and negative feedback with the aim of motivating and engaging

the patient.
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¢ Provide challenge without being frustrating.

2.4.4 Review of Key Components for a Gamification Framework

This section provides a review of key components of game design which are
relevant to rehabilitation. It is important to note that the following elements will have
varying importance depending on type of rehabilitation exercises currently taking
place. As previously mentioned, rehabilitation will need to be fine-tuned on a person-
to-person basis due to reliability on location, time, and treatment of patients after injury
or nature of underlying conditions such as CP or Arthritis. This is why customizability
of the games is one of the most crucial aspects of gamification since they should be
adapted to different needs.

Patient as the Players

Patients are the target demographic for gamification of rehabilitation and the age
of patients can influence their engagement and level of interest [75]. The story of the
game needs to be clear and simple, and it will capture the initial appeal for the player.
For example, [78] provides a cow milking mini game where the mood of the cow
changed when on the farmer (who is the stand in for the player) makes the correct
movements. The mood of the cow here creates an emotional link to the player and
encourages them to engage with the game more while performing actions that feel

more meaningful.

Game Mechanics

The patient going through rehabilitation, will need to perform actions or
exercises in a 3D space. For example, [79] provides a hen house mini game where the
patients perform wrist movement exercises to collect rolling eggs in a basket. The rules
of the game encourage the actions which make player actions impact the outcome of
the game as required by the concept of game mechanics [75]. The application of this
design can promote autonomy and self-driven motivation from the player as their

movements have a direct impact on the game.

As the challenge increases and the game progresses, there are ways to motivate
the player by various levels, achievements, streaks, and unlocking new features. In
rehabilitation, choosing the difficulty level is important to make sure the patient is
performing their exercises at the appropriate level. The research done by [80]
demonstrates a method for dynamic change of difficulty. This approach utilised
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success and failure rates of patients to adapt the difficulty and keep the patient
motivated. For example, upon multiple failures the difficulty would be lowered so the
patient does not become discouraged from continuing the exercises. The study showed
an increase in the number of correct tasks that were completed in a given period of
time compared to randomized difficulties. The main problem with this approach was
the lack of control given to the clinicians in adapting the difficulty since all the

decisions in regard to the difficulty were taken by the game.

Game Components

There are patient specific design elements such as points, avatars, tasks, and
messages which are known as game components. These elements can be designed and
finetuned based on different patient requirements. A study by [7] highlights the
importance of correct engagement and completion of rehabilitation exercises. A point
system can then be utilised as the gold of the game to encourage the patient’s actions
as they do the exercises correctly. It is important that this point system provides a safe
and adjustable experience for the patient as different patients may have different points

required for their exercises.

The game dynamic refers to the way each game component interacts with the
game itself [75]. The mobility and patient condition will need to be considered when
designing how a patient is going to interact with game components. There is a fine line
between making sure exercises are being done correctly while avoiding exhaustion. A
study by [78] recommends the following dynamics for different types of rehabilitation:
free movement, touch the target, catch the target, follow the path, move the target, and
point & shoot.

Game Technology

One of the crucial components of gamified rehabilitation is the input devices
used for capturing movement of the patient. It is important for the technology to be
non-invasive, Low cost, and accessible for home-based use. Previously in chapter 2.2
multiple human motion capture technologies were explored. The developed
framework in this thesis utilises a combination of optical motion capture technologies
and inertial measurement units as the game technology. The implementation of this
technology is explored in Chapter 3.
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Providing Feedback

It is essential to monitor a patients progress and provide feedback on how
correctly the exercises are being performed. This feedback should be provided to both
the patient going through the exercises and the clinician monitoring the exercise. The
feedback can be either positive or negative to help the patient correct their movements
and be encouraged to continue the exercises.

This feedback will help the clinicians adapt the exercises based on how a patient
is improving during their rehabilitation program and as result the games will need to
be modified accordingly. The system developed by [77] allowed the clinician to select
the game parameters depending on the patient requirements. This customization
provided a less frustrating experience for the patients as it encouraged continued
engagement with the game and exercises. In some instances a camera was utilised so
the clinician could remotely monitor the movement of the patients outside the game

environment as seen in [2, 77] [2, 77].

Researchers such as [81] suggest providing feedback in a graded form or
absolute form to increase the efforts of motor learning. Negative feedback is also
important to improve the patients' skills while interacting with the games since the
patients will need to know how accurately they are doing the exercise [82]. Feedback
can be provided via reward-based systems or through simple messages provided to the

patients.

Achieving Rewards

Game developers sometimes construct game design principles via
dopamine responses as a means to increase engagement. Dopamine is a
neurotransmitter by human body’s nervous system to send message between cells
and plays a role in how we feel pleasure [83]. The game rewards can take the form of
virtual rewards such as power ups or achievements in the game [84]. Rewards
could extend to real world benefits such as monetary rewards in a casino style
game. In rehabilitation there the increase in range of movement after engagement
with the game could be considered one of these rewards which could be followed by

virtual badges and achievements in the gamified environment.
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Optimal Challenge

As previously mentioned, the challenge level experience by the player needs to
be considered while designing levels. Ideally, the games will start with low difficulty
levels so the user is motivated to engage with the rehab program. This methodology is
to counter proficiency of the control by the player and promoting the increased range
of movements as selected by the clinicians [85]. The challenge here is that from the
player’s point of view lack of failures could create an uninteresting gameplay
experience leading to abandonment of the rehabilitation program. Study done by [86]
describes this feeling as ‘Fiero!” which is the Italian word for proud which occurs

somewhere between frustration and relief.

Clear Goals and Instructions

There are multiple ways clear goals can be perceived. For example, the players
path should be clear which is implemented by utilising light and contrast to guide the
player in a certain path. This implementation can be defined as a goal-oriented game
design where the player needs to identify long term and short-term goals of the game.
Feedback provided via the user interface, animation, and visual effect can inform the
player regarding how close they are to these goals [87]. Clear goals can inform external
goals such as the goal of performing well in rehabilitation [4]. Unclear goals could
frustrate the patients leading to low motivation as it has been mentioned multiple times

so far.

Motivation in Games

Motivation, as it has been seen so far, connects all aspects of the game design.
A well designed game, will utilise different game components to encourage a
dopamine response via gameplay leading to further play [83]. Motivation can be
considered a psychological aspect as a result of a well design goal-orientated action
[83]. The motivation in context of rehabilitation can be extended to extrinsic

motivation such as self-motivation by engaging with the rehabilitation process [84].

Achieving Flow

The concept of flow has been put forward by a psychologist as seen in [88] where
the flow is defined as “‘state of concentration or complete absorption with a given

activity such that nothing else seems to matter”. The paper suggests that this concept

Chapter 2: Literature Review 37



can be applied to art, work, sports, and gaming. This state of “Flow” can be achieved

by the following points:
e Defining clear goals and rewards
e Loss of sense of time
e Immediate feedback on successes and failures
e Adaptable challenge level
e Providing a sense of control

These tenants directly relate to game design philosophies presented before so
clear goals, rewards, feedback, and challenge makes games one of the best candidates

for achieving the “Flow” state.

Use of Lense in Game Design

One of the popular books in game design written by [75] provides a detailed look
at the art of game design. This book suggests that good game design requires the
developer to keep different perspectives in mind. These perspectives are defined as
“Lenses” to consider when designing games. This concept can be applied to gamified
rehabilitation such as Lense of patient, guardians, and clinician as the main crucial

perspectives in gamified rehabilitation.

Emotions in Games

The article by [86] discusses the concept of emotions in games which provides
five emotions to consider which are enjoyment, focus, decision, performance, and
learning. Enjoyment contributes to creating an emotional connection between the
player and the game leading to increased motivation. Focus facilitates active
engagement with the game play achieved by feedback and reward systems that were
previously discussed. Decision in this context refers to making decisions driven by
emotional responses. Performance is demonstrated as different methods for engaging
with the gameplay. Learning is defined where the game facilitates motivation to repeat
and master an action. These topics build on the philosophies of game design and can
be utilised to evaluate what a user experiences. There are further definitions provided
by [86] that discuss different levels of enjoyment as hard fun, easy fun, serious fun,

and people fun set on a sliding scale between goal-orientation and open ended design.
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2.5 SUMMARY AND IMPLICATIONS

This chapter provided a review of several technologies used for capturing human
movement, it provided a review of key elements in analysing human movement data,
and an assessment of current practices in human joint rehabilitation in clinical and

gamified settings.

The review of technology showed optical motion capture technologies such as
Vicon to be the most accurate representation of human movement. However, this
technology is very expensive and required specialised facilities for capturing human
movement data so it would be suitable for rehabilitation at home. The review of sensor
technology demonstrated that Inertial Measurement Units (IMU) provide the best
balance between cost, performance requirement, and accuracy for human movement.
IMUs have already been utilised in several clinical applications as seen in the literature
which makes them suitable for this application.

The review of key elements in analysis of human movement data showed that
machine learning should be utilised to get a clinically accurate representation of human
movement. It was found that in order to avoid the cost and processing power
requirements associated with machine learning approaches, trained algorithms such as
MediaPipe should be utilised. Since the literature did not provide a significant number
of clinical validations of this technology, an evaluation of this method was done as

part of this thesis and has been reported in Chapter 5.

The review of current practices in rehabilitation and gamified approaches
showed multiple sources on the applicability of rehabilitation. It was found that
engagement and motivation can be improved utilising gamified elements. The review
of the literature did not provide too many instances on clinically valid data in the
designed games. It is true that most solutions provide data and trends to clinicians, but
most did not provide a clinical validation on accuracy or reliability of the information.
This thesis provides a framework for gamification where the provided data can be
utilised directly by the clinicians both during exercises sessions and for long term
remote monitoring. One of the common themes in the literature was the need for
customizability of the games as rehabilitation exercises will need to be adjusted

depending on different patient needs.
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Chapter 3: Experiment Design

3.1 OVERVIEW OF THE METHODOLOGY FOR EXPERIMENTAL
DESIGN

This chapter provides a detail overview of the experimental design for the
gamification framework including the hardware requirements and specification,
machine learning components, visualisation elements utilising the Unity game engine,
as well as development of the gamified features. From a design standpoint, this will
elucidate how affordable technology was employed to capture human movement in a
manner that maintains clinical validity. The selection process investigated
technologies that can be used outside clinical settings so that the user can receive
feedback on how accurately exercises are being performed. This aspect additionally
offered a way for clinicians to gauge progress, as the framework facilitates the
assessment of the rehabilitation program's effectiveness for the user. This chapter also
provides guidelines for developing games for rehabilitation purposes as well as design

templates for several game archetypes.

3.2 DEFINING HARDWARE REQUIREMENTS FOR THE FRAMEWORK

3.2.1 Hardware Requirements and Sensor Selection

The developed framework provides the means of monitoring human movement
whilst participating in rehabilitation exercises. This framework provides feedback to
the user, so they get an understanding on how correctly the exercises are being
performed. To facilitate the capabilities of the framework, several requirements were
defined such as capability for recording live data, providing visual representation of
the movement, capability to customize both the exercises and the games, and providing
measures of joint and smoothness. The diagram in Figure 8 illustrates the hardware

requirements [16].
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Figure 8: Process Diagram for Hardware Requirements [16]

The sensor selected for this project needed to be small, lightweight, have long
battery life, utilise BLE 5.0 (Bluetooth Low Energy), have high sampling rates,
provide continuous measurement, and have low cost. The reason for BLE 5.0 was due
to robustness and having 8 times more data transmission speed compared to BLE 4.3
and BLE 2.1 [16] [89]. Other communication protocols such as Wi-Fi and Zigbee were
considered but eventually ruled out due to availability of BLE in most commercial
sensor devices as well as smart phones and laptops, which helps in ease of adaptability.
The sampling rate requirement was defined based on the research by [90] and [91]
which state the sampling rate requirement for accurately capturing human movement

needs to be at least 15Hz for slow movements at least 60Hz for fast movement.

Table 1 and Figure 9 provide a comparison of several off the shelf IMUs that
were considered based on their sampling rate, connectivity, batter life, weight, size,
and price. Xsens Dot (known as Movella as of 2022) was selected as most suitable
since it provided the best compromise of battery life, sampling rate, cost, and

performance compared to others [16].
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Table 1: Comparing off the shelf IMUs [16]

Sampling
Rate

Battery

IMU Life

Connectivity Weight  Size Price

€495.00
36.3x30 (~$798.05
x10.8 mm AUD) for 5
pack
$1600.00
42 x 27 x uUsb
11mm (~$2184.36

Xsens Dot [92] 120 Hz BLE 50 9h 11.2g

Vicon Blue
Trident [93] 100 Hz BLE 5.0 12h 95¢g

AUD) each

. €359.00

Sh'm’[gi']r MU 128z BLE21 1ah 2369 P13 (~ss7ero
AUD) each

€2490.00
Bonsai IMU 36.5x 32 (~$4014.44
[95] S0 Hz BLE 43 16h 150 135 mmAUD) for 15

pack
COMPARISON GRAPH FOR IMU SELECTION
e x Sens Dot Vicon Blue Trident Shimmer IMU Bonsai IMU

Sampling Rate

2

Price 6 Connectivity
4
2
|
Dimentions /. Battery Life
Weight

Figure 9: Comparison Graph for IMU selection [16]

Orientation data and free acceleration data are captured from Xsens Dot which
utilises a built in sensor fusion algorithm called as XKFCore [92] and customised
Kalman filter. Xsens Dot specification can be seen in Table 2 and in as previously

mentioned covers all the requirements that were previously defined [16].
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Table 2: Specification of Xsens Dot [92]

Physical Properties

Specifications

Weight

Dimensions

Latency

Battery

Communication Method
Internal Storage

Sample Rate

Output Rate

Electrical Current Consumption
Operating Temperature

Water resistant rating

Communication platforms

11.2g

36.3 x 30.4 x 10.8 mm (I x w x h)
30 ms

LIR2032H rechargeable coin battery
Bluetooth 5.0

64 MB

800 Hz

1Hz, 60Hz, and 120Hz

68mA

0 to 50° Celsius

IP68

- Android OS 8.0 or above
-10S 11.0 or above

- Windows, MacOS, Raspberry Pi

3.2.2 Filtering and Sensor Fusion Techniques

Sensor fusion and filtering techniques need to be implemented when working
with data obtained from inertial measurement units. The popular sensor fusion
techniques for IMU data are Kalman filters, Complementary filters, and Particle filters.
As previously mentioned, Xsens Dot utilises an internal Kalman filer where the
filtering happens on the hardware which leads to a reduction in pre-processing time.
Kalman filter plays as essential role in sensor fusion as stated by [96]. The Kalman
filter was initially developed for navigation and control systems and its attributes
address the filtering requirements for IMU data. The extended Kalman filter
implemented in Xsens Dot addresses non-linearities by performing local linearization
with the Taylor approximation of the non-linear model to work around this problem.
This method is used to turn it into a linear model based on linearization points that
need to be updated for each prediction of the recursive estimation. There are two main
steps in successfully utilising Kalman filters which are prediction and correction [16].
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The prediction step utilises control commands determine when the dynamic system
will be in the next point in time. The correction step then utilises IMUs data to correct
mistakes and predict error compared to the previous step. The prediction and
correction steps which are known as recursive estimation, continuously repeat to

provide accurate result [16] [96].

The limitation of Kalman filter is in its use in nonlinear values since the
assumptions made during the filtering process would cause some issues. As stated in
[97], most human movement is linear so this issue will not affect the use of Kalman
filter in rehabilitation. In case of non-linear movement, extended Kalman filter solves
the issue by performing a Taylor approximation of non-linear section of movement

which creates locally linear sections in the data. [16] [96].

The Xsens Dot utilised a hardware motion processor capable of both sensor
fusion and filtering, so additional filtering was not required to be implemented in the
data processing pipeline of the framework. . However, to demonstrate the use of these
filtering algorithms in clinical setting, sensor fusion of raw accelerometer and
gyroscope data was implemented in the classification of movement associated with

cerebral palsy. The details of this experiment can be found in Chapter 4 of this thesis.

3.2.3 Real time Joint Angle Measurement Techniques Utilising the Sensor Data

Three joint angle measurement techniques were tested to find the optimal
approach to determine the wrist, knee, and elbow joint measurements given the
constraint of maintaining clinically valid data. It is important to highlight that shoulder
joint angles have been omitted in the calculations since these joint angles are complex
and cannot be captured utilising only IMU data. IMUs can be utilised in calculating
finger joints but due to the requirement of several IMUs per finger and the cumbersome
nature of this approach, HGR was used as the method of measuring finger joints and
detecting gestures as an example of a complex joint[16]. Hand gesture recognition
methods also require a machine learning algorithm to be implemented which have been

detailed in chapter 3.3.

To evaluate the validity of the selected methods, calculated angles were
validated against goniometer measurement as goniometers are still the ones most
commonly used in clinical settings and rehabilitation. These joint measurements also

needed to be represented in real time so the user would be able to get feedback on the
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accuracy of the exercising that are being performed. The sensor data would be
streamed in real time via Bluetooth to a visualiser developed utilising the Unity game
engine. Chapter 3.4 provides an in-depth overview of how sensor data is transferred to

the human computer interface part of the framework. [16].

Method 1: Two quaternion angles provided by the IMU are utilised to create a
rotate vector in reference to a unit vector on a given axis. This means each calculated
measurement will provide the joint angle with reference to each axis. A dot product is
then taken between the rotate vectors followed by an arc cosine to provide the joint
angle which is later converted to degrees [16]. Figure 10 demonstrate a flow chart of

method 1 using wrist rotation as an example.

Arm
a =
/ Orientation
q \
Object 1 )
Rotate Vector (v
A . \
v
/ ] Dot product  \.f
\ -
. /
Vector Rotate Vector " ‘
q f Arc cosine f

Object 2
Hand
a *
Orientation

! Rad > Degrees | f

f Angle *

Figure 10: Method 1 for Joint Angle Measurement using IMUs [16].

Method 2: In this method, quaternions angles are captured from the IMU
followed by measuring the difference between the quaternion of the game object and
the child body part in the visualizer. To calculate this difference, the inverse quaternion
of each parent and child object is calculated and multiplied together [16]. The new
quaternion value is converted to Euler and presented to the user. Figure 11 demonstrate

a flow chart of method 2 using wrist rotation as an example.
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Figure 11: Method 2 for Joint Angle Measurement using IMUs [16].

Method 3: This method utilises one of the Unity game engine built in function
“gameobject.localRotation.eulerAngles”. This function provides the angle of the child
game object with reference to the object immediately attached to it known as the
parent. This function will calculate the joint angle utilising quaternion data attached
directly to the game objects [16]. Figure 12 demonstrate a flow chart of method 3 using

wrist rotation as an example.
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Figure 12: Method 3 for Joint Angle Measurement using IMUs [16].

These methods were validated against goniometers to measure the accuracy of
the calculations. Additionally, the accuracy of the IMUs were validated in Curtin
University’s Motion Analysis lab against Vicon motion capture technology [16]. The

details of this validation results are available in Chapter 5.
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3.2.4 Representation of Smoothness of Movement Utilising Sensor Data

As presented in section 2.3.2, data captured from IMUs can be utilised for
measuring smoothness of human movement. To calculate smoothness measures using
SPARC, DLJ, and LDLJ, the general python code provided by [40] have been
modified. The code utilises function calls as wrappers, so the code segments can
compute different requirements of the smoothness measures. This code is then applied
to the data captured during an exercise session to provide a measurement of how

smooth the exercises took place.

Implementation of SPARC Using Sensor Data

Figure 13 demonstrates the sparc() function which calculates the smoothness of
a given speed profile using the modified spectral arc length metric. It takes as input the
movement array, which represents the movement speed profile, the fs parameter
indicating the sampling frequency of the data, and optional parameters such as
padlevel, fc, and amp_th. The function returns the spectral arc length estimate of the
smoothness of the movement, along with the frequency and magnitude spectrum of
the movement data, as well as the selected portion of the spectrum used for calculating
the spectral arc length. The function starts by determining the number of zeros to pad
the movement data for estimating the spectral arc length. It then computes the
frequency array and the normalized magnitude spectrum using the Fast Fourier
Transform (FFT). Next, it applies low pass filtering to select the portion of the
spectrum within the given cut-off frequency, fc. It further applies an amplitude
threshold to determine the cut-off frequency up to which the spectral arc length is to
be estimated. Finally, the function calculates the arc length by summing the differences
between adjacent points in the selected frequency and magnitude arrays, considering

the scaling factors.

The resulting arc length, representing the smoothness of the movement, is
returned. If any error occurs during the computation, the function returns NaN (Not A
Number) values for all output parameters. It is important to note that this function can
only take a one-dimensional array and as such all spectral arc length values will be
based on the magnitude of their respective types, gathered by computing the square
root of the X, y, z values each being individually squared and added together.
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sparc(movement, fs, padlevel=4, fc=16.8, amp_th=8.85):

try:

nfft = int{pow(2, np.ceil(np.log2(len{movement)}) + padlevel))

f = np.arange(e, fs, fs / nfft)

Mf = abs{np.fft.fft(movement, nfft))
Mf = Mf / max(Mf)

fc_inx ((f <= fc) * 1).nonzero()
inx]

f_sel = f[fc

Mf_sel = Mf[fc_inx]

= _inx]
Mf_sel = Mf_sel[fc_inx]

new_sal sum(
w(np.diff(f_sel) / (f_sel[-1] - f_sel[@])}, 2) +
pow(np.diff( ), 2)))
n new_sal, (f, Mf), (f_sel, Mf_sel)

n np.NaN, np.NaN, np.NaN

Figure 13: Main Code for Implementing SPARC

Implementation of Dimensionless Jerk Using Sensor Data

Figure 14 shows the main function for calculating individual factors of the
dimensionless jerk metric for a given movement profile. It takes as input the movement
array, containing the velocity, acceleration, or jerk profile. The fs parameter indicates
the sampling frequency of the data. The data_type parameter specifies the type of
movement data provided (either 'vel' for velocity or 'accl’ for acceleration). The
rem_mean parameter is only applicable for acceleration or jerk data, indicates whether
the mean of the movement data should be removed before computing the jerk. The
function returns three factors: T"N representing the duration scaling factor, A"M
representing the amplitude scaling factor, and J representing the jerk cost. The function
first defines parameters for different data types, specifying the number of different
dimensions and the scaling factors. It checks if the data_type parameter is valid and

raises an exception if not. The input movement is converted into a NumPy array, and
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the dimensions are checked to ensure that the data has at least three samples, otherwise
the dataset is invalid. The time interval dt is calculated based on the sampling
frequency. If the data_type is acceleration and rem_mean is True, the mean of the
movement data is subtracted from the array. This step removes the mean acceleration
if specified. Next, the jerk is computed by taking the norm of the difference of
consecutive rows in the movement array (n times). The jerk is then divided by the
appropriate power of the time interval dt to obtain the modified jerk. The modified jerk
is the squared sum of the jerk values multiplied by dt. The factors mdur, mamp, and
mjerk are calculated as the duration, amplitude, and jerk components of the
dimensionless jerk metric, respectively. Finally, these factors are returned by the

function.

dimensionless_jerk_factors(movement, fs, data_type='vel', rem_mean=

param =

n, N = (param[data_type]['n"], param[data_type]['N"])

if data_type
_str = "\n'.joi
data_type)))

ata must™,
format(r)))

, axis=1)

len(movement)
mdur = np.power{ N * dt, N)

np.power{np.max(np.linalg.norm(movement, axis=1)),

return mdur, mamp, mjerk

Figure 14: Main Code for Implementing DLJ
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Implementation of Log Dimensionless Jerk Using Sensor Data

Figure 15 shows the main code for Log dimensionless jerk which is a basic
translation of the dimensionless jerk value, as described previously. The code takes in
the same factors, feeds them back into the dimensionless jerk function and then

modifiers the result before returning the value.

dljfac = dimensionless jerk factors(movement, fs, data_type, rem_mean)

return - np.log(dljfac[e]), np.log{dljfac[1]}, - np.log({dljfac[2])

Figure 15: Main Code for Implementing LDLJ

Figure 16 lists the log_dimensionless_jerk imu_factors() function which
calculates the individual factors of the log dimensionless jerk metric used for IMU
(Inertial Measurement Unit) data analysis. It takes several input parameters: accls
representing the accelerometer profile, gyros representing the gyroscope profile, grav
representing the gravity vector, and fs representing the sampling frequency of the data.
The gravity vector can be represented by a simple 2d array with the values [0, O, -

9.81], which will be present in the main body.

The function returns three factors: -In(T) representing the duration scaling factor,
+In(A) representing the amplitude scaling factor, and -In(J) representing the jerk cost.
First, the function computes the movement duration (mdur) by multiplying the number
of samples (_N) with the sampling interval (dt). Next, it calculates the gravity-
subtracted mean square amplitude (mamp) by taking the norm of the accelerometer
data and dividing it by the number of samples (_N). If gyroscope data (gyros) is
provided, the square of the norm of the gravity vector (grav) is subtracted from mamp.
Then, the function calculates the derivative of the accelerometer signal (_daccls) by
taking the differences between consecutive accelerometer measurements and scaling

it by the sampling frequency (fs).

If gyroscope data is available, the function computes the cross product
(_awcross) of each accelerometer measurement and its corresponding gyroscope
measurement using a loop. Otherwise, _awcross is set to an array of zeros with the
same shape as _daccls. Next, the corrected jerk (_jsc) is computed by subtracting
_awecross from _daccls. The norm of _jsc is then taken, and its squares are summed
over the time axis (axis=0). The resulting value is multiplied by the sampling interval

(dt) to obtain the jerk cost (m jerk). Finally, the function returns the negative natural
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logarithm of the duration scaling factor (-In(T)), the natural logarithm of the amplitude

scaling factor (+In(A)), and the negative natural logarithm of the jerk cost (-In(J)).
log dimensionless jerk imu_factors(accls, gyros, grav, fs):

1. /[ fs
len{accls)

mdur = N * dt

mamp = np.power(np.linalg.norm{accls), 2) / N
if gyros
mamp = mamp - np.power{np.linalg.norm{grav), 2}

_daccls = np.vstack((np.zeros((1, 3)), np.diff(accls, axis=B) * f5)).T

if gyros :
_awcross = np.array([np.cross(_as, _ws
for _as, _ws in zip(accls, gyros)]).T
else:

_awcraoss = np.zeros(np.shape(_daccls))

jsc = _daccls - _awcross
mjerk = np.sum{np.power(np.linalg.norm{_jsc, axis=@), 2))

return - np.log(mdur), np.log(mamp}, - np.log(mjerk)
Figure 16: The Main Code for Implementing LDLJ using IMU Data

The functions and code explained in this sub chapter went through a validation

process, the result of which is presented in Chapter 5.

3.3 DEFINING THE MACHINE LEARNING REQUIREMENTS FOR THE
FRAMEWORK

3.3.1 Use of Optical Motion Capture Technologies for The Framework

The developed framework has been designed to human movement to be
monitored whist engaging in rehabilitation exercises. The developed framework uses
IMU sensors as the principal method of capturing human joint movements (wrist,
elbow, and Knee; however, it also utilises optical motion capture technology and
machine learning for capturing finger movement for modelling a complex joint. As
there are several joints within a human hand, utilising several IMUs would not be
feasible and that is the justification for utilising the gesture recognition and machine

learning approaches that have been used chosen [43].
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An appropriate algorithm needed to be developed, validated, and implemented
that facilitates hand gesture required for capturing finger movements required for the
framework. HGR requires a human control interface component and a command
mapping component, so it can be utilised as an alternative control method of
interacting with visual elements within the gamified exercises. As outlined in Chapter
2, HGR algorithms consist of a gesture description method, data acquisition method,
gesture identifying method, and a gesture classifying component. To cover all these
requirements, a six-stage approach was defined which will be covered in the following

sub chapters [43]. Figure 17 provides a high-level overview of these six stages.

Stage 4

+Validation of
Gesture
Identification
Algorithm

Stage 6

+Evaluation and
Tuning of
Command
Mapping
Algorithm

+Selection of
Gesture

Classification
Algorithm

+Selection of a
Gesture
Description Model

+Selection of a
Gesture
Identification
Algorithm

+Selection of a
Data Acquisition
Method

Stage 5

Figure 17: Overview of 6 stages for implementing the HGR [43]

3.3.2 Defining Simplifications and Governing Criteria of the HGR
There are several unique approaches for different subcomponents of HGR
algorithms. The following simplifications were considered to help with selection of

relevant HGR components [43].

1) There cannot be any changes to components that have been selected
before each stage of investigation. This meant that selected component
would not change to accommodate for needs of new developed
approaches. For example, data acquisition techniques would not change

to the HGR requirements of the following stages.

2) Each component was selected at its own stage without focusing on its
effect on future stages. This selection took place in accordance with the
applicable governing criteria, successful selection of the previous

component, and relevant validation results.
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3) Gesture description and data acquisition component were selected based
on the outcome of the literature review without any new quantitative or

qualitative analysis.

These simplifications provide a linear investigation structure which means the
number of applicable implementations were exponentially reduced for each stage of
the HGR implementation. This simplification also removed the requirement of time-
consumed in the experimental analysis for the first two investigation stages. This led
to a reduction of the workload for analysing different implementation and allowed for
investigating a wider range of techniques. The validity of the overall investigation was
not compromised since these components cannot be defined by metrics that can be
analysed. This means, they needed to be derived from attributed to the result of the

literature review [43].

A set of governing criteria were defined to make sure a cohesive and effective
solution has been developed. These criteria augment the dependent and independent
variables in each investigation stage such that an effective HGR can be implemented

[43]. The governing criteria was defined as seen below:

1) Reliability of the commands: This refers to both number of unit
commands issues by the algorithm and the ability to distinguish between

unique commands.

2) Reproducibility of the commands: This refers to the ability to robustly

produce the same action given the same user input.

3) Being physically non-restrictive by equipment: This refers to any
physical restriction the equipment provides to the user’s body as well as

any imposed environment requirements.

4) Ease of operation: This criterion refers to the complexity in learning the
interface for the HGR and how quickly a new user would be able to start

interacting with the system.

5) Low computational requirements: This criterion was defined to make
sure the HGR could run on readily available devices like low-cost smart

phones while keeping an optimal operational speed.
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6) Low monetary cost to the user: low monetary investment. Minimise

economic burden on clinician and patient.

3.3.3 Stage One: Selection of Gesture-Description Model

The first stage of the HGR selections was to choose a gesture description model
according to the defined governing criteria. As previously mentioned, gesture
description includes a gesture type, gesture information, and a gesture model. Based
on the simplification criteria, single hand statistic gesture was chosen for the gesture
type, symbolic information was chosen for the gesture information, and a three-
dimensional, 21 landmark skeleton model was selected as the gesture model [43].

Gesture-Type Selection Scope and Justification

Three main considerations existed in the gesture type that needed to be analysed.
The first was the motion of observed gestures, which could be static or dynamic
gesture sets. The second was the inclusivity of wrist motion which defined the scope
of observation. Thirdly, the number of observed gestures were also considered. Static
single-hand gestures were chosen to ensure future components are simple and easy to
understand for the user. Single hand static gestures also helped with lowering the

computational requirement for the detection algorithm [43].

A wide range of gestures were developed to avoid biases in the classification and
identification algorithms. To help with the versatility of the detection algorithm, a
requirement was set to ensure the gesture set contains gestures defined by recognised
sign-language systems [43]. An example of the sign language gesture set used in the
detection algorithm can be seen in Figure 18.
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Figure 18: Example of sign language used for the HGR [43]

Gesture Model Selection Scope and Justification

The computational requirements to generate each model and the number of
classifiable landmarks affect the gesture model selection. To balance these factors, a
modelling method was selected that allowed for the required classifiable landmarks
depending on the gesture set. Based on the models reviewed in Chapter 2, a 3D
skeleton model was selected since appearance-based models had low number of
classifiable landmarks. 3D geometric and 3D texture volumetric models were not
selected either due to their complexity leading to high computational requirements
[43].

Gesture Information Scope and Justification

Four considerations had to made regarding gesture information which were
being spatial, pathic, symbolic, or affective. The selection of the source of this
information was not mutually exclusive, meaning one or all could be selection.
Symbolic information was chosen as the primary source of information based on the

gesture type selection mentioned above. Spatial information for the three-dimensional
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skeleton landmark model was used to calculate joint angles for the 15 observed joined

[43]. Details of the joint angle calculations are provided in section 3.3.7.

3.3.4 Stage Two: Selection of Data-Acquisition Method

Stage two was to select a data acquisition approach for the HGR capable of
efficiently and non-restrictively observe a human hand based on the selected gesture
models. The result of the literature review and governing criteria 1,2,3,5, and 6 were
utilised for the selection process by evaluating each solution against the given criteria.
The selection led to choosing single RGB cameras as the main data acquisition method
for the HGR as it satisfied applicable criteria. Depth cameras did not meet Criterion 3
requirement as the range restrictions could restrict users. Stereo cameras were omitted
to their high computational requirements and focal point restrictions which did not
satisfy Criterial 3 and 5. Band and glove methods were also omitted as they did not
meet Criterion 3 [43].

There are some drawbacks to use of single RGB cameras that were addressed by
other components of the HGR. These draw backs are robustness issues associated with
background and operator hand, variability, and single viewpoint errors such as self-
occlusions and transform inconsistency. However, this form of HGR is very mature
that address most of these issues and the technology is readily accessible to end use

via smart phones, tablets, and laptops [43].

3.3.5 Stage Three: Selection of Gesture-ldentification Algorithm

Stage 3 was to select a gesture identification algorithm to extract hand features
from the data captured from a single RGB camera. The extracted features needed to
be in form of a three-dimensional skeleton model following Governing Criteria 1,2,
and 5. The selected method also needed to address draw backs of single RGB camera.
To find the best applicable gesture identification algorithm, a qualitative analysis was
conducted that focused on computational requirement and the observable localization

accuracy of the selected algorithms [43].

There are several feature-extraction methods that are applicable for HGR gesture
identification, since it was not possible to directly test all of them directly, the design
simplifications mentioned in stage one was used to reduce the scope. Selection of
gesture-description and data-acquisition component reduced the scope by the removal

of any methods not developed for three-dimensional skeletal models; the removal of

56 Chapter 3: Experiment Design



any method not compatible with single RGB cameras; and considering only existing
open-source implementations. This led the selection to MediaPipe hands,
InterHands2.6M, and OpenCV as the possible approaches as discussed in Chapter 2,
each with their own pre-processing and feature extraction techniques leading to
different computational requirements. The localisation accuracy of the skeleton model
and computational requirements for feature extractions were the primary focus on
selecting the gesture identification approach [43]. The following tests were designs to

address each of the mentioned requirements:

1. Identifier Implementation: This test was design to implement a baseline
variant of the three algorithms capable of observing a single human hand,
calculating the angle of its 15 primary joints while displaying the 3D-
skeleton model. This stage assesses the operational readiness and the
computational requirements of implementing each algorithm. It also
acquires an operational version of the algorithms where future testing
would be performed. All the algorithms were initially tested on a 2017
Mac Book Pro with a 3.5GHz Dual Core Intel Core i7 CPU, and Intel Iris
Plus Graphics card. The system also had a 16 HB LPDDR3 RAM and
256 GB of storage.

2. Qualitative Analysis: This test observed was conducted to observe the
localisation accuracy of the algorithms to make sure Governing Criteria
1 and 2 are addressed. This approach reduced the single camera data-
acquisition method. Accuracy of the algorithms were observed for self-
occlusion, rotation, and translation using operational version of the first
sub test. To achieve this, a user’s hand was held in a constant position in
front of the camera and the displayed 3D model was then recorded. The
hand was then rotated and translated around the camera’s view point
while observing the display model to make sure localisation accuracy is
being maintained despite the movement. The final stage was to turn the
hand so some parts are occluded from the point of view of the camera to

determine if hand features could still be produced.

3.3.6 Stage Four: Validation of Selected Gesture-ldentification Algorithms

Stage four was to validate the gesture identification algorithm based on the

accuracy and robustness of the produced model. This stage utilised a quantitative
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approach based on the advice received by clinical collaborators of this research by
comparing joint angles calculated from the models to the joint angles measured by a
finger goniometer. The result of this method showed the if a selected algorithm met
Governing Criterion 2. This method was applied to the final selected identification
algorithm. As mentioned in stage 1, a 3D skeleton model was selected as the gesture
description model. Percentage variances between joint angles of the observed hand
measured by the goniometer and the ones measured by the model were calculated to
determine the accuracy of the model. As discussed in Chapter 2 goniometers are the
preferred clinical method for capturing human joint and are used at the beginning of
each rehabilitation exercise session to for understanding the base line of participants.
Due to their widespread use in clinical settings, goniometers were used to evaluate the
accuracy of the calculated angles. The measured joint angles were the
metacarpophalangeal, proximal interphalangeal, and the distal interphalangeal joints
of all fingers. The static arm of the finger goniometer was stabilized against the
proximal side of the joint and the hinge of the goniometer was place directly above the
observed joint. In the event of a bulbous knuckle, the goniometer was moved to the
side of the finger so that the hinge sat directly in front of the observed joint. After
securing the position, the free arm of the goniometer would be lightly pressed against
the distal side of the observed joint. This measurement was done without any force
applied as it would alter the pose of the observed hand. After the free arm of the
goniometer was in contact with the distal side of the joint, the joint angle was recorded
to the nearest 5° [43].

Joint Angle Calculation Methods Using MediaPipe

Two methods were applied for joint angle calculation derived from the 3D
model. The first method was vector angle calculation where two vectors are created:
each traveling to the joints associated with the current measurement. After defining
the vectors, their dot product was calculated to measure angles between two joins. This
method is a similar implementation to what was previously discussed in chapter 3.2.3.
Another method for joint angle measurement was to discard the depth component of
the model and perform the same calculation as previous method. This method was
implemented to measure how much of an effect the 3D nature of the model had on
performance [43]. Figure 19 and Figure 20 show the python code used for

implementing the calculations.
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f calcJointAngles_3D(landmarkArray):

jointAngles = [0]x15
jointAngleIndex = @

for i range(5):

for j range(3):

pInit = landmarkArray.landmark[@]

if (J =0 ):

pInit = landmarkArray.landmark[ix4+j]
pMid = landmarkArray.landmark[i*4 + j + 1]
pFinal = landmarkArray.landmark[ix4 + j + 2]

vl = [pMid.x - pInit.x, pMid.y - pInit.y, pMid.z - pInit.z]
v2 = [pFinal.x - pMid.x, pFinal.y - pMid.y, pFinal.z - pMid.z]

theta_num = v1[0]xv2[0] + vi[1]xv2[1] + v1[2]*v2[2]
theta_dom = calcMagnitude(vl) * calcMagnitude(v2)

theta = math.acos(theta_num / theta_dom)
jointAngle = (math.pi - theta) * 180/math.pi
jointAngles[jointAngleIndex] = jointAngle

jointAngleIndex += 1

return jointAngles

Figure 19: Python code for calculating three-dimensional join angles [43].

calcJointAngles_2D(landmarkArray):

jointAngles = [0]*15
jointAngleIndex = @

ri range(5):
rj r (3):
pInit = landmarkArray.landmark[@]

f(j !=0):
pInit = landmarkArray.landmark[ix4+j]

pMid = landmarkArray.landmark([i*4 + j + 1]
pFinal = landmarkArray.landmark([ix4 + j + 2]

a = np.array([pInit.x, pInit.y])
b = np.array([pMid.x, pMid.y])
c np.array( [pFinal.x, pFinal.y])

radians = pp.arctan2(c(1] - b[1], c[@]-b[@]) - np.arctan2(all]-b[1], al@]-b[0@])
angle = np.abs(radians¥180.0/np.pi)

f angle > 180.0:
angle = 360-angle

jointAngles[jointAngleIndex] = round(angle)
jointAngleIndex += 1

turn jointAngles

Figure 20: Python code for calculating two-dimensional join angles [43]

To test the robustness and accuracy of the algorithm, two independent variables,
hand pose and hand orientation to camera, were modified through the following steps
[43]:

1. Hand pose: Three positions were considered: Fully closed position,

partially closed position, and fully open position. These positions were
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selected as they are easy to hold, stable, repeatable, and were suggested
by clinical collaborators of this research. These positions simulate a full
range of motion of a human hand and the example of these positions can
be seen in Table 3 and Table 4.

Table 3: Viewpoint and poser examples for stage four for HGR [43]

Viewpoint Offset

Pose 0° (Font) 45° (Forty) 90° (Side) 180° (Back)
\, i
V) ¥ 3
Open \ \\ ‘ <
; | 1
e % -
Partial G ,
‘ i
Ay @, 5 1
Closed b S :

Table 4: Dataset used for classification and analysis [43]

Gesture Gesture Reference
Identifier Image

Models

60 Chapter 3: Experiment Design






2.

Hand orientation with respect to camera: The second independent
variable was the incident angle of the camera’s POV and the observed
hand. The orientation angle would change so the robustness of the
algorithm can be measure against rotation and self-occlusions. Four
photos were taken for each of the hand poses above which included: the
front of the hand, 45° offset, 90° offset, and a 180° offset as seen in Table
3 and Table 4.

Maintaining high accuracy in MediaPipe Measurements via Control Inputs

Sufficient accuracy of the MediaPipe measurements was defined as being within

goniometer error ranges which was maintained using the following control inputs

while keeping the results repeatable.

1.

Lighting: Defined to avoid variance in lighting so all tests were
conducted in a well illuminated environment without any shadowing on
the observed hand. This was maintained by conducting the evaluation in
the same lighting conditions.

Background: Considered to lower the impact on the MPH modelling
process. White backgrounds were used to maintain a high level of
contrast between the hand and the surrounding environment and help

with feature extraction.

Body position: defined to ensure viewpoint angles and positions for each
participant is the same. The control variables were for the participants to
kneel in a comfortable position, with their forearm braced against a test
bench. The test bench included a set of markers for appropriate positions

for each background and participant.

Euler angles of the camera: Defined so the viewpoint orientation was the
same for all participants and varied by desired amounts between tests.
This practice was derived from research done in [98].

General hand size and distance from camera: A fixed camera distant was
used for each participant to limit the variability to the participant hands.
This was achieved by a fixed camera mounting location for each captured

pose.
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Final Testing Procedures for Stage Four of HGR

This stage required the following five steps to be able to test the final

components required for stage four of the HGR.
1. Establishing the previously method controls
2. Forming the required hand pose by the participant
3. Recording the joint angle utilising a goniometer
4. Taking photos of the hand from the required viewpoint
5. Measuring the joint again via a goniometer

The sets of joint angle measures mentioned above were then compared and if
they did not match, the test image would be discarded, and the process would be
repeated. The aim of this approach was to ensure the participants hand pose had
remained stable during the test. The joint angle calculation and gesture-identification
algorithms would then utilise the valid photos to generate a set of observed joint
angles. The python code for this stage was previously provided in Figure 19 and Figure
20. The final set of accuracies were then generated by comparing the results against

the goniometer. The outcome of these validation tests is provided in Chapter 5.

3.3.7 Stage Five: Selection of Gesture-Classification Algorithm and Finger Joint
Measurements

Stage five utilised quantitative methods to select the gesture-classification
algorithm that best complemented the gesture-identification method. The Governing
Criteria 1,2, and 5 effected this stage from which two quantitative metrics were
calculated to make the final decision. These metrics were the classification accuracy
of the algorithms in form of a confusion matrix and classification speed to evaluate the
computational requirements of the algorithms. [43]. After applying the simplification
methods described in section 3.3.2, the following two possible scenarios were defined:

1. If stage 4 demonstrated that the selected gesture-identification
algorithm can produce the model accurately and robustly a low
dimensionality classifier base on 15 single dimension joint angles
would be utilised. This led to investigating decision trees, KNNs,

and linear regression algorithms.
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2. If the stage 4 lead to a non-ideal model accuracy, a higher input
dimensionality classifier with 21 three-dimensional coordinate
system (total of 63 dimensions) would be utilised. This led to
investigation of ANNs, SVM, linear regression, and non-machine
learning bounds-based approaches.

Dependent variables for stage five remained as classification accuracy and time.
The independent factors were the style and implementation of the classifiers [43]. The

following classifiers were kept as constant to insure a fair investigation:

1. Test data set: A common set of test gestures were identified
between algorithm which included 10 gestures. Then images were
then created for each gesture and converted to the 3D model using
MPH. This resulted in 100 models that formed the test data.
Criteria 1 and 2 were considered for this selection where the hands
varied in the ten selected images in scale, orientation, and pose.
This avoid testing the accuracy algorithm only on “best case

scenarios”.

2. Computational requirements for each algorithm: The hardware
specification of used for each algorithm kept the same to ensure it
would not affect the selection process. During the classification
time testing, the time taken for each algorithm was only used at the
prediction stage of the classifier. This excluded the time required
for initializing and training the classifier, loading the MPH model,
and any other time associated with generation of confusion

matrices.

The procedure for stage five utilised a basic algorithm to sequentially test each
of the prospective algorithm against the common data set. After each test, the
predictions of the classifiers were recorded in their respective confusion matrices
followed by recording the time taken to perform the classification in a CSV file. The
final confusion matrices were developed after all test images have been tested, and the

time performance data was recorded for evaluation [43].
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3.3.8 Stage Six: Gesture Mapping and Tuning

Stage six involved developing the gesture mapping component capable of
translating classifiable gesture into exercise activities. As an example, for the use case,
a physical quad-rotor drone was utilised, and the exercises would fly the drone in
different directions. This use case is further explained in Chapter 4. One to one
command mapping was utilised as the mapping method to align with the previously
mentioned design decisions. This served as the initial solution that demonstrated the
HCI algorithm as an alternative means of control. The initial commands were further
tuned to allow smooth interactions with the game objects and the physical drone

following governing criteria 4 [43].

3.4 DESIGN AND IMPLEMENTATION OF THE HUMAN COMPUTER
INTERFACE

3.4.1 Use of Unity Game Engine for Visualization

The Unity game engine was selected as the main component for containing the
games designed for rehabilitation exercises. Unity is a real-time development platform
game engine that was developed by the Unity Technologies and released in 2005. The
primary language used for the developed games is C sharp (C#) and editing of the
source code is performed through Microsoft Visual Studio. The Unity Game engine
has the ability to be supported by multiple platforms such as a PC or smart Phones,
making it an ideal platform for game development and deployment as they can be

accessed via common consumer devices.

The Unity game engine lets the developer design both 2D and 3D games with
applied physics, graphics, and visual effects. It also provides a range of free assets and
tutorials through its website from other developers, providing a wide range of guides
for developers to apply in their games. Additionally, 3D models developed in blender
which is a free and open-source 3D creation suit, can be added to the unity application
to make unique game objects [99]. Furthermore, the unity engine has a “interaction
Engine” which allows for the user to interact through their physical movement with
game objects and interfaces. Unity provided a solid foundation for creating immersive

and interactive gamified experiences for the framework.
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3.4.2 Connectivity of Sensor and ML Elements to Unity

Unity contained the capability for custom plugins which helped in incorporating
IMU data streaming and HGR capability for each of the interactive experiences. Figure
21 demonstrates the high-level connectivity of the main visual elements of the

framework which consisted of the following structure:
1. Data extraction from the IMU and vision-based software.
2. Transmission of extracted data to the unity platform

3. Creation of a main visualisation interface in unity than can facilitate

different exercises.

4. Design of sample mini game with the capability to modify them to fit
different exercise.

5. Live recording exercise session with the aim of report orientation data
such as active and passive range of movement, smoothness measures,

and statistics regarding the engagement with the exercises.

Figure 21: High-level overview of the data stream elements of the framework.

IMU Data Streaming to Unity

The primary source for creating the data stream from the IMUs to unity was the
Xsens Dot software development kit (SDK) provided by manufacturers of the sensors.
The implemented SDK provides a dependable data stream solution for transmitting the
IMU data directly to Unity. To facilitate the transmission, the Xsens Dot PC SDK was
also utilised which is provided as an application programming interface (API) which
integrates data captured from the IMU into windows-based applications. The SDK
provides libraries for interfacing with the sensors, sample codes, and through

documentation for implementation. The code provided in Figure 22 Fig demonstrates
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the method for real time streaming of Euler angles, device’s tag name, address, battery,

and connection status to the windows-based computer.

Press any key or wait 2@ seconds to stop scanning...
Number of connected DOTs: 1. Press any key to start.
Stopped scanning for devices.

Opening DOT with addres D4:22:CD:@0:2A:67

Found a device with Tag: Qing2 @ address: D4:22:CD:00:2A:67
Available filter profiles:

General

Dynamic

Current profile: General
Successfully set profile to General

Putting device into measurement mode.

Qing2

Roll: ©.39, Pitch: 1.52, Yaw: 68.86|

Resetting heading for device D4:22:CD:@@:2A:67: OK
Qing? BatterylLevel: 51 Charging status: @

Figure 22: Sample code for streaming sensor data to a windows-based computer

Machine Learning Data Streaming to Unity

As previously mentioned, MediaPipe hand was utilised as the main HGR for the

framework which meant the data captured from MediaPipe needed to be transferred to

Unity. To facilitate the transfer, the Python code in Figure 23 was first created as the

first step of implementation.

draw_finger_angles(image, results, joint_list):
store_angle = []

hand results.multi_hand_landmarks:

joint joint_list:

a = np.array([hand.landmark[joint[®]].x, hand.landmark[joint[e]].
b = np.array([hand.landmark[joint[1]].x, hand.landmark[joint[
c = np.array([hand.landmark[joint[2]].x, hand.landmark[joint[2]].

¥1)
-y1)
¥1)

radians = np.arctan2(c[1] - b[1], c[@]-b[@]) - np.arctan2(a[1]-b[1], a[e]-b[&])

angle = np.abs(radians*186.8/np.pi)

angle >
angle ngle

store_angle._append(angle)

cv2.putText(image, str(round(angle, 2)), tuple(np.multiply(b, [648, 488]).astype(int)),
cv2 _FONT_HERSHEY_SIMPLEX, ©.5, (255, 255, 255), 2,

image

cv2.LINE_AA)

Figure 23: Python code for implementing MediaPipe Hand for the data stream.

Aliases were created after importing the MediaPipe library to facilitate access to

the drawing utilities and hand tracking modules within MediaPipe. Figure 24 was then

utilised as a reference for the hand land marks so an array was created called

“jont_list”. This was followed by implementing an iterative process in the
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“draw_finger angles” function to ensure each detected hand in the “results” is
traversed, and the joint set in the “joint_list” can be sequentially examined. The angles

are then calculated as previously discussed in stage four of the HGR.

g® ®16 0. WRIST 11. MIDDLE_FINGER_DIP
L | 1. THUMB_CMC 12. MIDDLE_FINGER_TIP
7 L TIs 2. THUMB_MCP 13. RING_FINGER_MCP
6 10T ¢, 20 3.THUMBIP 14. RING_FINGER_PIP
" T ! N9 4. THUMB_TIP 15. RING_FINGER_DIP
4 S\ 9 13N /18 5. INDEX_FINGER_.MCP  16. RING_FINGER_TIP
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Figure 24: Localisation of 21 hand landmarks within MediaPipe [100]

Figure 25 provides a look at the “get label” function that processes the hand
classification results, extracts the score and label required for the HGR, and calculates
the coordinates for the wrist landmarks. The main part of the implementation a video
capture is started where each frame needs to be processed by converting BGR to RGB

and flipped horizontally.

get_label(index, hand, results):

output =

idx, classification enumerate(results.multi_handedness):
classification.classification[@].index == index:

label = classification.classification[@].label
lassification.cl: cation[@].score
}" .format(label, round(score, 2))

coords = tuple(np.multiply(
np.array((hand.landmark[mp_hands.HandLandmark.WRIST].x, hand.landmark[mp_hands.HandLandmark.WRIST].y) ),
648,480]) .astype(int))

output = text, coords

output

cap = cv2.VideoCapture(e)

Figure 25: get_label function for processing HGR

The previously mentioned “MediaPipe Hands” module facilitates the detection
and tracking of the hand landmarks within the frame and renders them on the image if
detected. The “get label” function then obtains the hand level and display it on the
image followed by the “draw_finger angles” function for visualising the finger angles

on the image.
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Connectivity of Final Elements to Unity

The last connectivity stage was the use of Transmission Control Protocol (TCP)
which facilitated the transfer for the IMU and MediaPipe to Unity. A Graphical User
Interface (GUI) was developed using PySimpleGUI to scan the IMUs and use TCP to

transfer the data to Unity. Figure 26 shows a screenshot of the GUI.

2 xSens Dot Bluetooth - X

Figure 26: GUI developed for scanning IMUs and transfer to Unity

The TCP transmission required the use of the ZMQ (ZeroMQ) library, which is
linked to a set address and port which is typically set as “tcp://localhost:5555” in the
set-up stage. The “send_json()” function is utilised to transmit the required data via a
socket which transmits the angle data as a JSON object to the TCP end point. Use of
JSON allowed for utilising the inherent structure and nesting capabilities of data
structures, providing compatibility across different programming languages and
platforms. This is why JSON was selected for interactivity of Unity and Python codes.
A polling procedure was implemented to make sure the socket connection is robust.
The polling object is registered with the socket and timeout duration of 10miliseconds
is configured. The “poll()” function can evaluate the status of the buffer for the socket

to determine occupancy. If the buffer gets full, the socket is connected and
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disconnected to the same endpoint to prevent potential blocking issues.
“is_buffer full” variable is monitored to determine the occupancy status of the buffer.
In Unity, a TCP server is created using a “ServerReciever” C# code. This code utilises
the NetMO library to effectively manage TCP socket communication. When the
“ServerReciever” object is initiated, a “PullSocker” is created to listen on the localhost
port (in this case 5555) and waits incoming transmission from the TCP client. Figure
27 demonstrate the code for capturing and storing the data into a set data type which

goes through the steps mentioned below:
1) Instantiation of the first ServerReciever
2) Creation of a new server
3) Start the server.
4) Creation of a character array to store the JSON packets from a string.

5) Removal of non-numeric entries from the string and data storage in different

elements inside and array of strings.
6) Conversation of data string to float and storage as a 3-D vector.

7) Aborting the transmission
Public Server server;
Server = new OF
Server. ();

_linereadl = server. 0);

storeSplitterl = linereadl. (_delimiter,StringSplitOptions.RemoveEmptyEntries);

euler.x = float. (storeSplitterli[@]);
euler.y Float. (storeSplitteri[1]);
euler.z = float. (storeSplitteri[2]);

Server.

Figure 27: Code for capturing and storing the movement data to Unity.

3.4.3 Importing Avatars in Unity for Visualisation of Movement

To be able to visualise the exercises and map the movement of the participants
an avatar was required to be created in Unity. The created avatar needed to replicate
real-time movement of the user. The designed model for the avatar was obtained from
[101] due to its compatibility with Unity and can be seen in Figure 28.
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Figure 28: Base of Avatar used for replicating user movements.

The avatar provides flexibility by facilitating various arrays of options for
manipulating the joints of the model. After importing the model into Unity, a script
was written for controlling joint transformations. The different controllable joints
within the model can be seen in Figure 29.

Figure 29: Mapping capabilities of the implemented avatar

Once the avatar was successfully imported into Unity, a default T-pose became
visible in the Unity scene. As scene in Figure 30 several joints can be manipulated at

this stage as seen in Hierarchy panel to the left-hand side of the model.
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Figure 30: T-pose view of the avatar with Hierarchy panel

3.4.4 Animation Set up in Unity for Joint Movements

To provide a more visual experience to the user, animation was set up for the
joint movements within Unity. To achieve this, the animation tool provided by Unity
was utilised. This tool allowed for dynamic movements to be mapped to the joint
transitions and allowed for different poses for the avatar depending on the
rehabilitation exercises taking place. This change of pose helped put more focus on the
joint that was been affected as part of the rehabilitation exercise. The animations also
provided a more pleasing and engaging visual experience for the user since the
animations provided the means fort the avatar to mimic the user’s movement more

realistically.

As an example of specific poses required for the avatar, a side view was
designed for hand rehabilitation exercises that provided clear visibility for the wrist.
This special pose allowed the ROM of the wrist to be more easily visible by the user.
A dedicated camera transition was then designed to dynamically transition from the
main pose to the hand exercise pose. To initiate the camera transitions, an invisible
button was placed on the arm that was used as the trigger of the transition. This button
would be activated by the use upon clicking on the arm of the avatar. The script in
Figure 31 demonstrates changes in priority of the desired camera and Boolean triggers

that facilitate the transition.
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animator.enabled =

fullBodyCamera.Priority = 0;

LeftArmCamera.Priority = 1;
LeftHandCamera.Priority = @;

animator.SetBool("isSitting

Figure 31: Settings priorities and Boolean triggers for camera transitions

3.4.5 Canvas Setup to Streamline Navigation in Unity

The visualisation required to facilitate a streamlined navigation for different
exerciseswas made possible by designing an accessible interface by integrating
multiples canvases in Unity. Each designed canvas facilitated a set of exercises and
settings by providing buttons and instructions for a particular exercise. This provides
an easy to navigate layout for the user to be able to select desired exercises or modify

relevant settings. Figure 32 provides a list the canvases that were designed.

Figure 32: List of designed canvases

A user interface manager script was developed to maintain smooth navigation
between different canvases. This scrip manages visibility of each canvas through
different button clicks. To achieve this, each respective canvas needed to be associated
with a GameObject and specific functions were created to trigger the button clicks.

The SetActive() function was then utilised to hid or reveal the required canvas.
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3.4.6 Setting Thresholds for Movement Exercises in Unity

As demonstrated in Chapter 2, customizability of the gamified exercises is a
crucial component of rehabilitation. To address this requirement, threshold settings
needed to be implemented so each exercise could be customized depending on users’
requirements such as initial ROM/AROM and other attributes that are usually set by
the clinicians during a rehabilitation program. The thresholds were also an important
aspect of the feedback given to the user during the exercises as they determined when
feedback is given regarding their target range of movement or number of daily
repetitions of the exercises. Hand movement exercises were selected as an example of
different threshold requirements within a rehabilitation program. To adjust the

thresholds, slides were implemented as seen in Figure 33

Extension

l

Flexion
-21.4

l

Radial Deviation

20.0

l

Ulnar Deviation

-19.0

d

Pronation

l

31.0

Supination
L —— ]

-36.0

Figure 33: Slider menu for setting thresholds

To facilitate a more user-friendly experience, slide values needed to be saved so
they can be loaded on future startup of the application. To achieve this, a script called
“SliderScript.cs” as seen in Figure 34 was developed that monitors the values set by
the slide and saves them as float data types. This data will eventually be used as the

exercise’s thresholds defined by the clinicians and set by the user.
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9]

()
Loadvalues();

pronationslider.onvalueChanged. AddListener((a}
1
pronationsliderText.text = a.Tostring(

Hs

supinationslider.onvalueChanged. AddListener((b)
I

L
supinationsliderText.text = b.Tostring
supination gle = b;

E
radialsliderText.text = c.Tostring(™
radialBaseangle = c;

ulnarsliderText.text = d.Tostrin
ulnarBaseangle = d;
nsionSlider.onValueChanged . AddListener((

nsionsliderText.text = e.ToString(
nsicnBaseAngle = e;

Figure 34: Script for saving the set threshold values obtained the sliders.

The script utilises PlayerPrefs.SetFloat() function within Unity to store the data

internally in pairs as demonstrated in Figure 35.

savesettingButton()

dPronationangle = pronationslider.value;
Prefs. SetFloat( ionAngle”, savedPronationAngle);

dsupinationangle upinationslider.value;
refs.setFloat( ionangle”, savedSupinationAngle);

", savedRadialAngle);

", savedulnarangle);

savedExtensionAnzle = extensionslider.value;
| fs.SetFloat( ngle”, savedExtensionAngle);

ider.value;
Angle”, savedFlexionAngle);

Loadvalues();

Figure 35: Script to store values obtained from the sliders.
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Finally, LoadValues() function within Unity was utilised to capture the saved
values obtained from the sliders. This function uses PlayerPrefs.GetFloat() method to
retrieve the float values and assign them to the relevant corresponding float variable.
This variable is then used to update the slider value and display a text to the user that
the value loading process was successful. The LoadValues() function is called in
program startup and the save process to automatically save the latest values. This
means the system is using the latest values for to optimal functionality. The script used

for this stage can be seen in Figure 36.

Loadvalues( )

savedPronationAngl
pronaticnslider.value
pronationSliderText. text renaticnAngle. Tostring("e
pronaticnBaseangle = prona der.value;

savedSupinatit .GetFloat("s SupinationAngle®™);
supinationslider.value
suplnationSliderText. text
supinationBaseangle = supil

savedradialang
radialslider.value
radialsliderText. tex
radialBaseAngle = radia

savedulnarangle =
ulnarslider.value

ulnarsliderText. text

dExtensionAngl
lider.value
ensionsliderText.text =

sionBaseAngle = ext ons -H

savedFlexionAngle = f=.GetFloat{"s
(lonAngle;
xionAngle. Tostring("a.e"

gameRadialBaseangle

gameUlnarBaseAngle

gamePronationBase 'ronaticnangle;
gameSupinaticnBaseAngle SupinaticnAngle;

Figure 36: The LoadValues() script used for reading values.

An alternative approach for loading threshold settings was provided after
consulting with clinical collaborators of this research. In certain cases, such as geriatric
users, younger children, or rehabilitation after major trauma, adjusting of the threshold
setting needs to be closely monitored by a clinician. To facilitate closer monitoring,
the recommended settings can be provided via a CSV file created by the clinicians.

This is done by a LoadCsv() function as seen in Figure 37.
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LoadCswvi{}
-~ reader = stream er{filefath};

filecontent = reader.ReadToEnd();
[1 lines = fileContemt.Split('\n");

csvData = [1ines.Length][];
for { i=8; i < lines.Length; is++)
{

csvData[i] = lines[i].split(",");

3
g

loadedExtensionangle =

vData[31[3]);
extensionGoal = . 5 svData 13;
radialGoal =
pronationGoal =
fingerGoal = .Parse{csvData[3][2]);

reader.Close();

Figure 37: LoadCsv() function for loading pre-defined exercise thresholds

3.4.7 Implementing Rehabilitation Exercises in Unity

To demonstrate the capability of adding exercises to the framework, four hand
movement exercises were selected and implemented as a template. These exercises
were extension/flexion, radial/ulnar deviations, and pronation/supination, as seen in
Figure 38. A finger touching exercises was also implemented as an example of HGR.
As previously discussed in Chapter 2, in addition to ROM, the number of repetitions
and hold time at pre-defined thresholds needed to be recorded during the exercise
sessions. To achieve this, values captured from the threshold settings input field, either

through user input or by uploading the CSV file by the clinicians, are utilised as the
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limits for the exercises. This functionality was implemented in a script as seen in
Figure 39.

Figure 38: Wrist movement and finger movement exercises used as example
implementation.
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GetExtensionRepetitionInput( input)

if ( .TryParse(input,
{
numReps = .Parse{input);

gameNumRepExtension = numReps;
is: " + Input);

GetExtensionHoldTimeInput input}

if ( .TryParse{input, value))
r
L

holdTime = -Parse{input);
gameHoldTimeExtension = holdTime;
Debug.Log("the input is: " + inmput);

Debug. Log("Ple

Figure 39: Script for setting thresholds limits in exercises

A validation mechanism has been implemented through the TryPars() function.
This function makes sure valid inputs are accepted via checking the integer inputs and
prompts the user to re-inter if an invalid value has been selected. The wrist
rehabilitation exercises example provides some guides to engage with the application
by providing prompts to start the exercises, highlight thresholds, and start a counter
when a hold position is achieved. Depending on the exercise, different attributes of the
IMU was selected for example, extension/flexion relies on Pith angles and radial/ulnar
deviation relies on the Yaw angle of the IMU.
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Figure 40: Script for thumb touching exercise.

The thumb touching exercise utilises four data points provided from the
MediaPipe script that are stored in the Unity environment. Each of these data points
relate to the distance between the thumb and other fingers. This distance in calculated
by the angle formed by tip of the thumb and the tip of the other finger and the
metacarpophalangeal joints between them. The python code for this process was
previously presented in Figure 23. For this exercise, patients were required to touch
the tip of each finger with the tip of their thump in a sequential manner. To detect the
touches, low angle calculated based on MediaPipe data was utilised with the high angle
pointing to absence of contact. Figure 40 provides the script for this implementation
where an 8-degree angle threshold was utilised to indicate movement towards the
thumb. This angle accommodates any potential inaccuracy in join measurement while
providing a reliable method for finding the direction of fingers. To calibrate the

exercise, the script in Figure 41 was implemented as the initialisation method. This

80 Chapter 3: Experiment Design



function utilises the space key as an input for method for resetting all calculated joint

angles to zero which standardizes the starting point for the required measurements.

if (Input.GetkKeyDown(KeyCode.Space))
{
tempXangle = euler.x;
tempyvangle = euler.y;
tempZangle = euler.z;

tempXanglelF = euler2.x;
tempyYanglelLF = euler2.y;
tempZanglelF = euler2.z;

3
I

actualxangled
actualrangled (euler.y - tempYAngle);
H

(euler.x - tempXangle);

actualzangle (euler.z - tempZangle);

Figure 41: Script for calibration finger movement exercises

3.4.8 Implementation of Rehabilitation Goals via Dashboard Design

Rehabilitation programs define goals where the user has to perform a pre-defined
number of exercises for a pre-determined number of daily repetitions which needs to
be maintained over several weeks. A daily goal dashboard with a continuity system
(known in game developed as streaks) was developed to encourage the user to persist
with the rehabilitation program. Tracking this information also provides the clinician
a view on how often the user participated in the rehabilitation exercises outside the
clinical environment. This overview combined with tracking of ROM and smoothness
measures for the patients can provide a clear view of how effective the rehabilitation
program has been for the user. The daily goals are set by the clinicians and provided
to Unity using a CSV file. A script titled “StreakSystem.cs” was developed to check if
the user has been engaging the exercises set and if the exercises were done
consecutively for a set number of days which determines the streak. The streak would
reset if the user were not able to maintain the consecutive days as demonstrated in
Figure 42. A badge system was then implemented as seen in Figure 43 to provide

visual feedback to the user on how many streaks were maintained.
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TryPar<al

LactCoaplatedbata =

Lastfoaplatedbata =

if (lastCospletedData. Date == L 1 eday . AddDays(-1))

iF {1 hahe)

if [lasitfomplotodbate Date « Da

streakfount

Figure 42: Scrip for checking the streak

© ®
e o

Figure 43: Badge system for rewarding the pare after keeping streaks
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3.4.9 Designing Scene Transitions for In Unity

To provide a more engaging gamified experience for the user, several mini
games were developed that provided a digitally gamified version of the existing
rehabilitation exercises. These mini games needed to be kept in a separate scene in
Unity and managed through a scene management system to transition between the
avatar view and game view. The design allows for future mini games to be developed
separately and added to the Unity program without requiring changing the main scene.
To facilitate multiple mini games and their relevant scenes, a server object accessible

by all C# scripts of the Unity code was initialised.

After the initiation of the server object, a script called GamelLoader.cs was
created to manage different transitions between the created scenes. This script provides
a routine for loading scenes depending on their scene index as seen in Figure 44. A
transition animator was also developed to make the transitions more aesthetically

pleasing by providing a fide in/out effect.

LoadSixthGame()

imeScale = 1;
outine(LoadGame(6) ) ;

IEnumerator LoadGame| gameIndex)

{

transition.SetTrigger("start");

reeconds (transitionTime);

er. LoadScene(gameIndex) ;

Figure 44: Script for loading different scenes.

3.4.10 Implementation of Audio Cues to Enhance Engagement

To further enhance the engagement and entertainment aspect of the gamified
elements, audio cures such as sound effects and background music were designed and
implemented in Unity. For implementation of the audio, a dedicated sound class was
developed that included initial parameters for the audio source as seen in Figure 45.
The AudioManager.cs script was then developed to be able to manage the audio
playback components and characterises as seen in Figure 46. The function

“FindObjectOfType<AudioManager>().Play()” was utilised to provide seamless
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audio playing of a given source by adjusting characteristics such as volume, pitch and

how often the given audio element would loop.

name;
AudioClip clip;
[Range(&f, 1f)]
volume;
[Fange(.1f, 3F]]

E SOurceg

s.source.loop = 5.loop;

ay.Find(sounds, sound => sound.name == name);

Figure 46: Audio manager used for adjusting different audio elements.

3.4.11 Overview of the Implemented Framework Interactivity

All the elements explained so far in this chapter were integrated to create the
main page view seen in Figure 47 for the user going through the rehabilitation
program. This interface combines these elements to allow the user to input their
personal information, access exercise data, set or load thresholds, view daily goals,
and view their badges. Navigational buttons are also provided so different menu can

be access easily.
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Patient Name: | EXSIE

Set Base Threshold

. —
,7“
My Rewards

Streak: 0

Today's Goal

Figure 47: Main page view of the Unity application

Navigation to specific exercises is done by clicking on a relevant joint on the
avatar which takes the user to a view suitable for those exercises and provides father
options. For example, if the hand is pressed, the user is first taken to the view seen in
Figure 48. This view allows the user to choose between different example hand

movement exercises that can be selected.

Figure 48: Example side view for wrist and hand movement exercises
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Joint Angle: 36.69 a Joint Angle: 25.69
Exceeded the threshold! Hold Time Remaining: 2

Figure 49: Example of a selected hand movement exercises (Flexion/Extension)

Figure 49 demonstrates the flexion/extension exercise that has been selected
which will then show the joint angle feedback, threshold feedback and other settings
to the user. Figure 50 demonstrates another exercise example for the thumb touching
exercise with its relevant menus. As it can be seen, each exercise also includes a select
mini game option which will then take the user to a mini game selection window
relevant for the selected exercises. Each exercise can either be done in the avatar
window or the mini game window. Details of the mini game part is provided in sub
chapter 3.5.

Number of Reps
[

Thumb Touch Exercise

| Select Game |

deft 0.9

Figure 50: Example of a selected finger movement exercises (Thumb Touch)

3.4.12 Overview of the Generated Movement Data Reports
Different rehabilitation data such as exercise duration, exercise type, number of
repetitions achieve, hold time, and exercise streak are stored after engaging with the

exercises. The base line thresholds, joint angles, and smoothness measures are also
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stored to provide an overview of the user’s progress during the exercise program.

Figure 51 shows an example of data that has been collected after a flexion/extension

exercise.

2023/04/15:- 20:21:09
Extension/Flexion Exercise
MNumber of repetition: 4

Hold time: 5

Base extension threshold: 25.54
Base flexion threshold: -21.37

Flexion/Extension Exercise

28 2088 & 8
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Figure 51: Example of collected data after engaging with a rehab exercise through

Unity.

The joint angle measures are also collected after engaging with the mini games

as seen in Figure 52 which demonstrates the ROM for this activity. In this example,

clustered data demonstrates a low rate of wrist movement, and the spread-out data

demonstrates a period pf rapid movement.

Figure 52: Example of collecting data after engaging with a mini game.
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3.5 DEVELOPMENT OF GAMES FOR THE FRAMEWORK

3.5.1 Design Ideology for the Game Designs

After development of the backend for the visualisation environment and
implementation of the measurement techniques, several video game experiences were
developed to provide a more engaging gamified experience to the rehabilitation
program. The user who is going through the rehabilitation program would be provided
with the choice of engaging with the exercises either through the avatar interface or by
selecting a minigame associated with a said exercise. Each of the developed video
games which consisted of eight mini games and two larger games followed the
following design ideology:

1) The games must replicate certain rehabilitation exercises.

2) The games must provide the means for movement data such as ROM,

joint angles, and smoothness measurements to be captured.

3) The games must reward the user when an exercise has been done

correctly via scoring systems and audiovisual feedback.

4) The scoring systems within the games should not encourage the user to

under reach or overreach threshold for rehabilitation.

5) The games must be customizable based on the user’s rehabilitation

requirements.

The games that are described below utilize IMU sensors connected to back of
the hand and slightly above the wrist as seen in Figure 53. The finger movement games
utilise a laptop webcam and MediaPipe as the main input and interaction method. The
interaction with these games can also be mapped to other joint movements such as
elbow and knee. The use of framework for posture monitoring activities and exercises

have been provided in Chapter 4.
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Figure 53: IMU placement for wrist rehabilitation exercises

3.5.2 Design and Development of Mini Games in Unity

The mini games described below were designed by maintaining the ideology
mentioned above. The aim was to provide a wide variety of games that can fit different
tastes and age groups. The user would be able to select different games depending on
which rehabilitation exercise has been selected. The mini games below utilised hand
movement wrist exercises and finger movement exercises as an example of a

rehabilitation program to follow.

Monster Chase Game

In this mini game, a zombie character is constantly chasing the player on a 2D
plane where the movement of the player can be mapped to different types of hand
movement depending on the exercise type. For example, one of the attributes could be
mapping the movement to the time a threshold angle has been maintains. Once the
specified number of repetitions have been completed, the player escapes the zombie.
The chasing zombie will capture the player if the goals has not been met - which also
leads to the game ending. The game aligns the gameplay mechanics with the selected
exercises, in this case utilising IMU input, threshold settings, number of repetitions,
and hold time. To provide customization capability to the game, the zombie’s
movement speed can be modified utilising the MoveEnemy.cs script as seen in Figure
54.
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: MonoBehaviour

speed;

transform. position += Vector3.right * speed * Time.deltaTime;

Figure 54: Script for modifying the zombie's speed

The CameraFollow.cs script was then implemented to make sure both characters
can be viewed in the screen’s boundary. Figure 55 demonstrates how this script follow

the character’s movement.

: MonoBehaviour
Transform target;
smoothSpeed = B.125F;

Vector3 offset;

osition, desiredPosition, smoothSpeed);

Figure 55: Scrip that allows the camera to follow the characters.

Figure 56 shows the user view for the final implementation of the Monster Chase
game. Some sample data collected from the interaction with the monster chase game

has been provided in Appendix B.
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Distance Travelled: 29

Joint Angle Hold Time Repetitions

f 2517 Wrist Extension Repetition Remaining: 2

Figure 56: Screenshot of the user view in the Monster Chase game

Flap and Avoid Game

The “Flap and Avoid” game was developed to target flexion/extension exercises
in hand and wrist rehabilitation. The main aim of this game as seen in Figure 57 is to
avoid hitting the green pipes and collected the coins while controlling the movement
of the bird character via wrist flexion/extension exercises attached to pitch angle of
IMU data. The script that utilises PlayerMove() function to map IMU data to the game

object can be seen in Figure 58.

Figure 57: Screenshot of the Flap and Avoid Game
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Flayersove()

movementy = calibratedangle / 25;

transform.position += r vectorz(ef, movementy , &f) * Time.deltaTime * moveForce;

Figure 58: Script for mapping IMU data to the player movement

This mini game also implements a random element by generating pipes at regular
intervals of time which can be modified depending on rehabilitation requirement of
the user. Each instantiation of the pipe generates a height value defined by the
threshold settings of the exercise. The PipeSpawner.cs script can be seen in Figure 59
that demonstrates this process. Afterwards, the MovePipes.cs script was developed to
facilitate the movement of the bird character between the pipe elements as seen in
Figure 60. Finally, the OnCollisionEnter2D() function was implemented to take the
player to a game over screen if the bird character collides with the pipes. This
implementation can be seen in Figure 61. Sample data captured from this mini game

can be seen in Appendix B.

nstantiate(Pipe);
ion = transform.position + Ve, andom. Range(-2, 5}, 8);

Destroy(newPipe,
timer = @;

3

1)

timer += Time.deltaTime;

Figure 59: Script for implementing the random pipe height element.
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speed = 1.6F;

9]
{
transform.positicn += \ r3.left * speed * Time.deltaTime;
]_

1

Figure 60: Script for interaction between the pipe and the bird

(Collision2D collision)
if (collision.gameObject.CompareTag(PIPE_TAG) collision.gameobject.CompareTag({SKy_TAG) )
1

FindobjectofType
FindobjectofType
sr.flipy = H
myBody . gravityscale = 1;

isover =

f {collision.gameDbject.CompareTag(GROUND TAG) )

Play("Hit"};

pameManager . Gameover();

Figure 61: Script for collision detection between the bird and the pipe

Hovercraft Game
The “Hovercraft” game was developed as a more advanced version of the flap
and avoid game with more customizable features. The aim of this mini game is to avoid

incoming obstacles while flying a hovercraft that moves up and down as seen in Figure

62.
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Flexion Threshold: 26

Extension Threshold: 13

HOVER CRAFT

PLAY

SETTINGS

(a)

Figure 62: (a) Menu Screen; (b) Patient out of threshold region UFO movement
flatlined (c) Flexion Threshold reached and UFO moves Down; (d)Extension
Threshold reached and UFO moves UP.

The obstacles instantiated into the game are purposefully placed and
manipulated in a way that will encourage the user to hold a flexed or extended hand
position a hold time. The hovercraft game allows the customization of multiple
elements such as customizing the delay in obstacle spawn time, modifying the obstacle
sizes which leads to different hold times. This customizability facilitated the ability to
modify the game depend on the user’s rehabilitation requirements. Sample data

captured from this mini game can be seen in Appendix B.

Brick-Busting Game

The “Brick-Busting” mini games can be utilized for all three types of hand
movement exercises similar to the Monster Chase game. In this game, the movement
of the hand is mapped to IMU data and depending on the exercise type, different
orientation data is used. The hand movement is attached to a paddle that is used to

bounce a small ball to break some blocks as seen in Figure 63.
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SETTINGS

BREAKOUT IN SPACE Threhold Angle (deg)

Radial: 19

SETTINGS

HIGHSCORE: 4600

Ulnar:

SCORE: 100 BALLS: 3 LEVEL: 0 SCORE: 1000

Figure 63: (a) Menu Screen; (b) Settings (c) Level 0 game environment; (d) Level 1
game Environment with Panel moving left.

Similar to previous mini games, different attributes of the game can be
customized depending on the user requirements via the settings menu. Depending on
the given threshold, the player paddle size will increase or decrees to allow for different
initial ROM requirements. For example, Table 5 was utilized to modify ROM for
ulnar/radial divisions with the ranges derived from [102]. A larger panel surface
makes it easier for the user to engage in the exercise and avoids them from getting
frustrated due to their limited ROM. While a smaller panel can make it more

challenging as they increase their ROM.

The behaviour of the small ball is managed through the Ball.cs script which
controls how the ball is moving, maintains the payer score, and updates the high scores.
The Rigidbody2D component is utilized for managed the physics of the ball and uses
other Ul elements such as highScoreText and scoreText to keep display the score. The

implementation of game elements can be seen in Figure 64.
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Table 5: Table to determining panel size based on angle thresholds.

Physical Properties Specifications

Ulnar > 33 & Radial > 19 Small (1x original Scale)
15 > Ulnar <= 33 & 10 > Radial <= 19 Medium (3x)

Ulnar <= 15 & Radial <= 10 Large (5x)

efs.GetImt(™

manager . Gal
isuon =

Figure 64: Scrip for managing the small ball.

Every time the ball collides with the bricks, the score and speed of the ball is
increased which is controlled by the script mentioned above. The AudioManager
manages the audio cues when collision is detected with the brick. Figure 65
demonstrates the script for managing different collision scenarios. Sample data

captured from this mini game can be seen in Appendix B.
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L

i +;
speed -= -@8.2f;

other.gameobject.CompareT.

FindobjectofType<audic

other.gameObject. CompareTag( "Brick"™})

FindobjectofTypecaudicMan Y.Play("Hiterick");

if (other.gameObject.CompareTag(“Ground”))

rb.velocit:
manager . Gal

Figure 65: Script for managing the collision for the Brick-Busting game.

Dodge the Spike Game

The “Dodge the Spike” game was developed to facilitate pronation/supination
wrist rehabilitation exercises by using the Roll angle of IMU. The aim of the game as
seen in Figure 66 is to dodge falling spikes by reaching the required rehabilitation
threshold. The main script for this game is similar to flap and avoid since they have
similar characteristics of avoiding obstacles. This game included randomized
elements, which makes it more suitable to late stages of rehabilitation program where
the aim is constant movement of the joint rather than achieving certain thresholds.
Sample data captured from this mini game can be seen in Appendix B.

Score: 37

Joint Angle: 18

Figure 66: Screenshot of the Dodge the spike game

Chapter 3: Experiment Design 97



Tilting Mazes Game

The “Tilting Mazes” game uses rotation about the Z-axis to tilt a 2D maze left
and right as seen in Figure 67. The objective of the game is to move the ball to the

yellow diamond exit point while receiving feedback as seen in Figure 68.
(!

-
b)
(d)

Figure 67: Tilting Maze Game: (a) Initiation for Right hand (b) Pronation tilts maze
right (c) Supination rotates Maze left (d) Level complete

tion Thresholc

Supination Threshold: 21

Figure 68: Feedback panel for the Tilting Maze Game

Upon entering the game environment through a main menu, the ball begins in a

specify placement as chosen by use depending on their rehabilitation requirements.
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The patient is then able to control the maze game object by rotating their hand to the
set target angle. For a right-hand treatment, pronation movement tilts the maze right
and supination left. To make this game more challenging for user three levels have
been specifically designed to intuitively encourage the patient to hold their wrist in a
set position as they try to reach the game objective. Sample data captured from this
mini game can be seen in Appendix B.

Glasses Wiping Game

The “Glasses Wiping” game requires participants to perform bi-directional
movements with their wrists repeatedly until the fog on the glasses is wiped off,
presenting a tangible and measurable objective for patients to work towards as
illustrated in Figure 69.

Figure 69: The Glasses Wiping game.

The user will move their wrist to meet the green wiper goal which will lead to
triggering a short audio clip and 180-degree change in the wiper direction. Once the
given number of repetitions have been achieved, the glasses become clean, and a

particle confetti effect will trigger followed by a celebratory audio cue. The movement

Chapter 3: Experiment Design 99



of the wiper can be mapped to different wrist movements similar to the other mini

games described above.

Piano Tiles Game

The “Piano Tiles” game was created as an example of finger rehabilitation
exercises with a focus on thumb touching exercise. This game received angles from
MediaPipe as the input method and the objective is for the user to touch their thumb
using the finger that corresponds to the tile that has turned black. If the correct finger

has been touched, the tile will turn green as seen in Figure 70.

Life: 3 Score: 1

Index | Middle | Ring | Pinky

Figure 70: Piano Tiles Mini Game

The TileSpawner.cs script was developed to provide a random black tile
generation as seen in Figure 71. The script monitors angles of the fingers and updates
the corresponding tile as needed. If a read angle is less than 10 degrees, the tile colour
will change to green and the score increases. This also leads to an increase in the speed
of the black tile appearance followed by audio cues when correct finger is pressed
managed by the AudioManager. If a wrong finger touches the thumb, the tile colour
will change to red and the user’s life count will be reduced. The script in Figure 72 and
Figure 73 maintains the user score and high score as well as displaying the timer using

Ul text elements.
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imer > maxTime)
randNum = UnityEngine.Ra <Range(1,
~andbium 1)

newTilel = Instantiate(ts

AewTilel, transform. Lon , position +
one ¥

two ;

three

Instantiate(til
transform. positic " position +

se i (randNum

newTile Instanti
newTiled. transform.
two

thres

four

e if (randium 4)

newTiled Instanti

newTiled. transform. positi , m.position +

one
two
three

ewTilel, t11eTi

eWTile2, tileTinm
ewTiled, tileTim
eWTiled, tileTinm

Figure 71: Script for creating black tiles for the Piano Tiles game.

Chapter 3: Experiment Design 101



eftIndexangle < 1 hree&& ! four)

newTilel.Gett >() .material.color =

leftRingAngle <

-material.color =

FtMiddleAngle < 18 & & three&s! four)

newTile?.Gett >() .material.color =
urrent:

maxTime -

tilaTima

| leftIndexangle < two || leftPinkyfngle <

.material.color = .red;

FtRingAngle ¢ 18 &8 B Itwo four)

ewTiled C erers() .material.color =
urrent:

maxTime -

tilaTima

FindObjectOf

three = !th

if (leftMiddlefngle « three leftIndexAngle < 18 three || leftPinkyAngle < 1
newTile3.GetComponen erer>() .material.color = .red;

three = !th
1if

leftPinkyfngle < 18
newTiled . GetComponen

maxTime -

tileTime -=

FindObjectOfT
! four;

if (leftMiddlefngle % four || leftIndexfAngle < 18 && four || leftRinghngle <

newTiled . GetComponen material.color =

Figure 73: Part 2 of the script for implementing the tiles game mechanism.
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3.5.3 Design and Development of Larger Games in Unity
In addition to the mini games described above, two larger games were developed
with the capability of covering a wide range of exercises. The detail of these

implementation has been provided below.

Skiing Game

The Skiing game provides a layer skiing experience where the movement of a
player character can be mapped to a different rehabilitation exercise. The game starts
with a window as seen in Figure 74 fig so the use can input thresholds of a given

exercise.

Figure 74: Threshold mode for setting baselines for the Skiing game

The objective of the game is to reach each threshold while avoiding upcoming
trees in the pathway of the player avatar as seen in Figure 75. A linear interpolation to
the character’s position has been implemented for a smoother transition between

positions on the screen providing a sense of floaty movement as seen in Figure 76.
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Figure 75: Main view mode of the Skiing game
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Figure 76: Character animation for the Skiing game

In addition to the top-down view which provides a free form gameplay

experience, a side view was implemented as seen in Figure 77 and Figure 78. This

gameplay mode the encourages a user to hold a stretch rather than just reach a given

threshold. Sample data captured from this game can be seen Appendix B.
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Figure 77: Gameplay mode 2 of the Skiing game encouraging to hold a stretch.

Figure 78: Feedback provided to the user while engaging in gameplay mode 2.

Aeroplane Flying Game

The Aeroplane Flying game provides an example of mapping rehabilitation
exercises to hand movement in the 3D space. The objective of this game is fly an
Aeroplane through floating loops in the air which can be mapped to different
rehabilitation exercises. This game opens with a threshold setting similar to other
games developed and provides a customization capability to the user as seen in Figure
79. The main user interface for this game can be seen in Figure 80 with demonstrates

multiple characterises such as the amount of time left, score, orientation angles, visual
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representation of the hand, and calibration functionality. Figure 81, Figure 82, and

Figure 83 show the Aeroplane game in different feedback bodes.

SIS

Threshold Angles (Degy)

Flexion: -10 supination: -20 Radial: -5

—_————  — |  —

Extension:10 Pronation: 10 ulnar::5

TIME LEFT 13:29

SCORE: 10

Figure 80: Main feedback window for the Aeroplane flying game
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Figure 83: Aeroplane flying game in Roll mode.
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To implement the control of the Aeroplane module in the game, the
ControlPlane() function as seen in Figure 84 was developed which also included the
capability of controlling the plane with mouse and keyboard for debugging purposes.
Additional debugging controls were implemented using the MoveObjectTest.cs script

as seen in Figure 85 to test the IMU data as an input for the game.

mous pMagnitude

rollInput = Mathf.lerp(rollInput, Input

d * Time.deltaTime, rollInput * rollSpeed * Time.deltaTime,

transform.up * activ peed * Time.deltaTime);

Figure 84: Script used for the main flying control of Aeroplane Flying game.
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.deltaTime;

F (Input.G

currentLos onent.x i eed * .deltaTime;

F (Input.G

current t.y -= rot eed * .deltaTime;

F (Input

currentLos C onent.y ionSpeed * .deltaTime;

F (Input.G

currentLo onent.z - i eed * pe.deltaTime;

.deltaTime;

Figure 85: Script for testing the IMU input for Aeroplane flying game.

Finally, after implementing the debugging functionality, the script seen in Figure
86 was implemented to map the IMU data directly to the Aeroplane movement by

implementing the ControlPlane() function within the IMUcontroller.cs script.
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e.deltaTime,

if(yawControl >= ulnarDevThres

* Time.deltaTime, 9);

* Time.deltaT

* Time.deltaTime * ro

* Time.deltaTime *ro

Figure 86: Implementation of the ControlPlane() function within IMUController.cs

After successfully implementing the control functions for the Aeroplane,
SaveThreshold.cs and LoadThreshold.cs scripts were created to store threshold
information into the PlayerPrefs class in Unity. The implementation of this script can
be seen in Figure 87 and Figure 88. The next step was to implement the HoopCollect.cs
script seen in Figure 89. This script is attached to the invisible portion of the inner
diameters of each loop to capture the collision between plane object and the invisible

portion. This process then determines the scoring system.
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Figure 87: The script for saveThreshholds() function

Figure 88: Script for setting starting positions for the Aeroplane Flying game.

1t += 18;

Collider

udioSource

Figure 89: Implementing the scoring system for the Aeroplane Flying Game
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The GameManagerScript.cs was developed to manage all the in-game graphical
user interfaces. This script starts a countdown timer to the user can position their hand
before starting the exercise. The details of this implementation can be seen in Figure

90 and Figure 91. Sample data captured from this game can be seen in Appendix B.

IEnumerator CountdownToStart

econdsRealtime(1f);

Figure 90: The GameManagerScript for Aeroplane flying game

Figure 91: Game over screen implementation for the Aeroplane flying game
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3.6 SUMMARY OF THE EXPERIMENT DESIGN METHODS

This chapter demonstrated the design methodology for development of the
framework in such a way that it can be applied to different types of rehabilitation
requirements. IMUs were selected as the primary method of capturing simple human
joints such as wrist, elbow, and knee. Additionally, HGR facilities of MediaPipe were
utilised to measuring finger joints as an example of monitoring a complex joint for
rehabilitation purposes. The benefit of this approach was the fact that IMUs are low
cost and MediaPipe utilises data captured from simple RGB cameras found in laptops
and modern smart phones which means the processing power requirement are very
low. This chapter also covered the mathematics behind measure both angles and

smoothness measurement during the rehabilitation exercises sessions.

As it was observed, the developed framework provides the means for a user to
conduct rehabilitation exercises in a home environment and receive feedback on how
accurately the exercises are being performed. The data accumulated during the
exercise sessions can be provided to the clinicians so performance overtime can be
monitored. The patient data is presented using abstract avatars that do not include any
personal information or images. This also helps lower the bandwidth requirements by
transmitting movement data only rather than images to the clinician. This chapter also
described the testing procedures and methods that were used to ensure clinical
accuracy of the captured data. The result of these tests as well as qualitative analysis
of the use of the framework via a focus group with experts in the field has been

provided in Chapter 5.

A detailed discussion of the design was implementation of human computer
interface elements of the framework was provided including visualisation methods,
animations, and audiovisual feedback systems. Moreover, the chapter provided details
on using game design methodology to create a digital gamified experience for existing
rehabilitation exercises. This was achieved by providing design guidelines for
development of several game architypes such that both clinicians and patients can gain
benefit when engaging with the framework. This design approach allows patients to
get feedback on how accurately they are engaging with the rehabilitation exercises and
encourage them to continue the program. The clinicians benefit by being able to

remotely monitor and review patients’ progress through the rehabilitation program by
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viewing the reports provided by the HMI. The Next chapter provides more use case

examples for the developed framework.
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Chapter 4: Use Case Examples

4.1 SELECTION CRITERIA FOR USE CASES

This chapter provides multiple use cases where different elements of the
framework have been utilised. The content of this chapter has been covered in the
author’s publications related to this thesis as seen in [14], [103], [16], and [43]. Please
note that Author contribution statement is available in Appendix A. Some parts of the
following paper have been covered in Chapter 2 and Chapter 3 with references

provided when necessary. The papers that will be covered in this chapter are:

1) Khaksar, S., H. Pan, B. Borazjani, I. Murray, H. Himanshu, W. Liu, C. Elliott,
C. Imms, A. Campbell, and C. Walmsley. 2021. "Application of Inertial
Measurement Units and Machine Learning Classification in Cerebral Palsy:
Randomized Controlled Trial.” JMIR Rehabilitation and Assistive
Technologies 8 (4)

2) Sabah Al-azzawi, S., Khaksar, S, E. Khdhair Hadi, H. Himanshu, and 1.
Murray. 2021. "HeadUp: A Low-Cost Solution for Tracking Head Movement
of Children with Cerebral Palsy Using IMU." MDPI Sensors 21 (23)

3) Khaksar, S., S. Pieters, B. Borazjani, J. Hyde, H. Booker, A. Khokhar, 1.
Murray, and A. Campbell. 2022. "Posture Monitoring and Correction
Exercises for Workers in Hostile Environments Utilizing Non-Invasive
Sensors: Algorithm Development and Validation.” MDPI Sensors 22
(24,9618)

4) Khaksar, S. L.Checker, B.Borazjani, [.Murray, 2023 “Design and Evaluation
of an Alternative Control for a Quad-Rotor Drone using Hand Gesture
Recognition” MDPI Sensors 2023

Each paper demonstrated different use cases by providing different scenarios
where various elements of framework have been utilised. All papers have been
submitted in open access journals so the reader of this thesis can refer to the full text
of papers if they are interested in more detailed representation of the use cases. In

selecting these use cases, the following criteria was followed:
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1. All data acquisition methods including both hardware and software
elements need to be clinically validated before being selected. Details of

this validation process will be discussed in Chapter 5.

2. The interaction methods for each use case should not require expensive
equipment and high processing power.

3. The use case should not rely heavily on a given sensor brand so the
interaction method can be done using any equipment manufacturer as

long as the required specifications are met.
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4.2 USE CASE IN CLASSIFICATION OF MOVEMENT ASSOCIATED
WITH CEREBRAL PALSY CASE 1
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Abstract

Background: Cerebral palsy (CP) 1s a physical disability that affects movement and posture. Approximately 17 million people
worldwide and 34,000 people in Australia are living with CP. In clinical and kinematic research, goniometers and inclinometers
are the most commonly used clinical tools to measure joint angles and positions in children with CP
Objective: This paper presents collaborative research between the School of Electrical Engineering, Computing and Mathematical
Sciences at Curtin University and a team of clinicians in a multicenter randomized controlled trial involving children with CP.
This study aims to develop a digital solution for mass data collection using inertial measurement units (IMUs) and the application
of machine leaming (ML) to classify the movement features associated with CP to determine the effectiveness of therapy. The
results were calculated without the need to measure Euler, quaternion, and joint measurement calculation, reducing the time
required to classify the data.
Methods: Custom IMUs were developed to record the usual wrist movements of participants in 2 age groups. The first age
group consisted of participants approaching 3 years of age, and the second age group consisted of participants approaching 15
years ol age, Both groups consisted of participants with and without CP. The IMU data were used to calculate the joint angle of
the wrist movement and determine the range of motion. A total of 9 different ML algorithms were used to classify the movement
features associated with CP. This classification can also confirm if the current treatment (in this case, the use of wrist extension)
1s effective.
Results: Upon completion of the project, the wrist joint angle was successfully caleulated and vahdated against Vicon motion
capture. In addition, the CP movement was classified as a feature using ML on raw IMU data. The Random Forrest algorithm
achieved the highest accuracy of 87.75% for the age range approaching 15 years, and C4.5 decision tree achieved the highest
accuracy of 89.39% for the age range approaching 3 years.
Conclusions: Anecdotal feedback from Minimising Impairment Trial researchers was positive about the potential for IMUs to
contribute accurate data about active range of motion, especially in children, for whom goniometric methods are challenging.
There may also be potential to use IMUs for continued monitoring of hand movements throughout the day.
Trial Registration: Australian New Zealand Clinical Tnals Registty (ANZCTR) ACTRN12614001276640,
</ Awww anzetr org auw/Trial Registration/TrialReview. aspx 7id=367398, ANZCTR ACTRN12614001275651,
https://www.anzctr. org awTrial Registration/ TrialReview aspx 1id=367422
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Introduction

Background

Cerebral palsy (CP) is a condition that affects a person’s ability
to move [1,2]. It occurs as a result of injury to the developing
brain during pregnancy or a short time after birth [3]. CP
presents with different characteristics in different people, as the
damage to the brain is not identical in every person [1] The
movement difficulties experienced by people with CP are
divided into three main categories: spastic motor type, in which
muscles appear stiff and tight (most common), dyskinetic type,
which ivolves involuntary movement patterns; and ataxic type,
which involves uncoordinated muscle movements that can affect
balance and sense of positioning in space [3.4]. The level of
severity and combination of symptoms can differ from person
to person [ 5]. For example, one person could have weakness in
one hand, which can lead to difficulty in writing or tying
shoelaces, whereas another person may have little control over
their movement or speech because CP can also affect the
person’s ability to coordinate the muscles around the mouth
and tongue [5].

There are many different clinical classification systems for upper
limb function in children with CP with different levels of
complexity. In a review by McConnell et al [6], 18 different
clinical classification systems were identified and reviewed
according to whether they classified function or deformity and
by considering the quality of psychometric evidence for each
method. These methods were rated based on the clinical utility
of each system using previously published tools [6]. An example
of chnical classification system 15 House [7] classification,
which contains four categories of thumb deformities. Another
example of clinical classification is that by Green and Banks
[8], which contains four subgroups of poar, fair, good, and
excellent based on the use of the hand by the individual with
CP These classification methods demonstrate the complexity
of clinical classification of hand movement in children with CP
and the diverse approaches taken to achieve it.

As of early 2021, there is no single method for completely
curing or preventing CP Public health measures such as
mandatory seatbelts, pool fencing, and rubella vaccinations are
among the prevention methods currently i use [9]
Physiotherapy and occupational therapy focus on encouraging
a person’s day-to-day movement skills and abilities, such as
sitting, walking, dressing, and toileting, and use a range of
specialist interventions such as movement and goal-directed
training and provision of equipments, such as walking frames,
wheelchairs, supportive seating, footwear, and orthotics [9]
When studying children with CF, range of motion, which is the
capability of a joint to go through its complete spectrum of
movement, may become a crucial component of research.
Passive range of motion can be defined as the range of motion
when an external force causes movement of the joint and is the
maximum range of motion, whereas active range can be

Tttps:/frehab mir. org2021/4/e29769
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achieved when opposing muscles contract and relax, resulting
in child- or person-initiated joint movement [10].

Occupational therapists use upper imb orthoses for chaldren
with CP who have muscle overactivity caused by spasticity, but
there 15 little evidence of the long-term effects of these methods
[11]. The clinical rationale is that the orthoses help preserve the
range of movement, however, they are complex to construet,
expensive, and can cause discomfort for the children wearing
them [11]. To address the need for robust evidence, a multicenter
randomized controlled trial (RCT) is being used to evaluate the
effectiveness of wrist hand orthoses to prevent loss of range of
movement in children with CP (see Experiment Setup and Data
Collection for details). This RCT used inertial measurement
units (IMUs) to measure active movement in children with CE,
to address two measurement problems: (1) the complex
movement patterns of children with CP make it difficult for
therapists to accurately apply typical clinical measures, such as
a goniometer (an instrument that measures the available range
of motion at a joint) and (2) young children’s small hands and
difficulty following detailed movement instructions make it
difficult to achieve reliable measurements.

Existing Methods

General movement assessment is used, which is a noninvasive
and cost-effective method for identifying babies at risk of CP
[12]. This assessment is done by recording a 3- to 5-minute
video of an awake infant lying on their back while they were
calm and alert without the presence of toys and pacifiers. Parents
can be present and record the video, but they should not interact
with their babies. This video is then observed and assessed by
trained health professionals to detect signs of the disorder [3,12].
This process becomes easier when infants grow older, as they
can follow the instructions of the medical professionals to
perform different tasks so that their movement can be monitored.
This assessment is mainly used as a diagnostic tool for the early
detection of CP, and it is not used to quantify the range of
movement or motion.

In clinical research, the goniometer and inclinometer are used
to measure joint angles in children with CP [13]. A goniometer
15 an instrument that measures the joint angle, and depending
on the nature of the expermment, it can measure the available
range of motion at a joint. [t can be used to monitor changes in
joint angles in clinical settings [14]. The traditional method of
using angle-measuring tools is not accurate and reliable,
according to some recent studies [13]. Accurately measuring
range of motion (ROM) is an important part of clinical
assessment as this information 1s used to guide treatment plans,
determine treatment efficacy, and monitor individual’s response
to treatment [15]. Gontometric measures rely on the ability of
the clinician to accurately palpate bony landmarks and visually
estimate the alignment of the axis and arms of the goniometer
to the joint that is being measured. Goniometers are versatile,
reliable, and widely used, irrespective of their measurement
errors of up to 15 degrees. However, for active movement, the

TMIR Rehabil Assist Technol 2021 | vol, B |iss. 4 | e29769 |p 2
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use of gomometers 1s very difficult. and their use may not be
possible in populations that are unable to respond to instructions
reliably [15].

A general approach for capturing movement is the use of digital
technologies, such as motion capture. Motion capture (also
referred to as mo-cap or mocap) is the process of digitally
recording the movement of people [16]. It is used in
entertainment, sports, medical applications, ergonomics, and
robotics. In filmmaking and game development, it refers to the
recording actions of actors for animations or visual effects. It
15 also referred to as performance capture when 1t includes a
full body, face, and fingers or captures subtle expressions [16].
The equipment required for motion capture is extremely costly
and is not commonly available in a typical hospital, for example,
according to Thewhis et al [17]. a simple Vicon system [18] cost
approximately Aus $250,000 (US $268,605.52) in 2011 [17].
Even if the equipment is available, it may be difficult to take
children to these motion analysis laboratories to conduct
measurements. Another limitation is the need for expert staff
to run the laboratories for the motion analysis of hand
movement.

Another approach is to measure gesture control using electronic
sensors, such as infrared (IR) Light-emitting diodes. Gesture
recognition software for advanced smartphones was presented
in the paper found in the study by Kong et al [19]. The leap
motion sensor uses IR sensors to scan finger movements with
atypical field of view of 1407 <120 [20]. This method is mostly
applied in the entertainment industry, so it does not meet the
need for accuracy in capturing the movement of people with
CP

Table 1. Evaluation of existing methods.

Khaksar et al

With the development of mertial sensor technologies,
IMU-based motion capture systems have been introduced in
the study of human motion. IMUs comprise an accelerometer,
gyroscope, and magnetometer that are connected to a
microcontroller and can be used to capture orientation. In recent
years, there have been several IMU-based motion capture
research studies, such as studies of gait modulation in patients
with foot drop problems [21] and human activity recognition
using thigh angle derived from a single thigh-mounted IMU
data [2]. The use of IMUs for hand movement in free space is
currently underdeveloped. primarily due to the lack of a clear
calibration reset point compared with gait analysis. Another
benefit of IMU solutions 1s flexibility in the collection window.
From a practical pont of view, the data measured during any
session using motion capture technologies or any nonportable
devices that require the patient to be at a certain location at a
certain ime, which may not be a period when certain movement
characteristics are present or typical. For example, the patient
could be having a good day or fatigued coincidentally during
the clinic visit. IMU measurements outside the predefined time
may avoid errors in the data collection. In addition, patient’s
compliance would potentially increase in the case of children,
where their movement is taking place in their home environment
compared with organized clinic visits. The challenge would
then be to filter a larger data set to remove outhers, which 1s
already a problem even when clinicians are involved. Therefore,
the IMU data collection needs to be streamlined so that data
can be captured easily without any need for clinical or technical
expertise.

An overview of all the relevant existing methods, including
their advantages and disadvantages can be seen in Table 1.

Type of approach Advantages Disadvantages
Goniometers [ 14] s Low cost »  Lack ofaccuracy
o Can provide measurements very quickly o  Does not provide long-term tracking of movement
unless repeated multiple imes
«  Difficnlt when children are involved
Video capture [16] o Very accurate o Very costly
e Canprovide real-time orientation and active «  Continued monitoring is not possible outside the
movement motion capture studio
»  Long set up time
«  Facilities are not available to everyone
IR LED" gesture recognition [20] ¢ Low cost «  Lackofaccuracy o
o Portable e Notpossible for continned monitoring
«  Mostly developed for entertainment use
IMUS [22] e« Low cost o IMUs drift over ime

o Can provide a reasonably accurate orienta- o

tion frame

« Low power consumption

o Portable

The postprocessing of IMU data can be lengthy

IR infrared radio.
PLED: light-emitting diode.
“IMU: inertial measurement unit.
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Contribution of the Paper

This paper presents collaborative research between the
Department of Electrical Engineering and Computing at Curtin
University and the investigator team of a multicenter RCT
ivolving children with CP [11] The novelty of this work 15
the mass data collection and application area of the sensor
system. To achieve this goal, 2 small, low-cost, custom-built
IMUs were developed to capture the hand movements of
participants in 2 age groups. The first age group had participants
approaching 3 years, and the second age group had participants
approaching 15 years. Both groups comprised participants with
and without CP Custom sensors were needed because
commercial sensors are costly and do not provide raw sensor
data. This means that validation cannot be performed easily. In
addition, the use of custom sensors will avoid preprocessing by
a third party. The designed sensors were capable of measuring
wrist joint movement as the angle difference between 2 parallel
sensors, which simplifies a 3D system problem to a 2D one.
Therefore, only the relative motion was used, and the impact
of the environment was ignored. This approach facilitates a
reliable and valid method to capture changes over time.
Capturing ROM over time is important because children with
CF have secondary musculoskeletal complications, which means
they are at risk of losing movement range. The proposed
low-cost sensor system could also provide the means for active
and continuous tracking of wrist joint movement during usual
or predetermined tasks and actions that are currently not possible
using traditional gomometric methods.

A second contribution of this paper is the application of ML to
raw IMU data to classify the movement features associated with
CP without the need to measure Euler, quaternion, and joint
measurement calculations. This means that the processing time
will be reduced because of using raw data for classification.
This classification aims to investigate the exstence of
characteristics of CP movement, which is different from the
clinical classification used for CP as a condition. This
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classification can also confirm if treatment (in this case. the use
of wrist extension) is effective. After the initial data collection,
9 different ML algorithms were used to classify CPas a feature:
the Random Forrest algonthm achieved the highest accuracy
of 87.75% for the age range approaching 15 years, and C4.5
decision tree achieved the highest accuracy with 89.39% for
the age range approaching 3 vyears. The result of this
classification aligns with existing research work in which ML
is applied to classify footdrop using IMUs [23]. The results of
this project showed that decision tree-based ML algorithms
were the most accurate compared with other methods, which
could be used as a guideline for similar human jomnt
measurements.

Methods

Sensor Development

A custom-built IMU was developed to capture the hand
movements of children with CP for this project. The IMU
consisted of an MPU 9250, a custom-built Arduino Pro Mini,
and a 2.4-GHz radio frequency (RF) radio. Each sensor was
powered by a small 90 mAh, 3.7-V rechargeable lithium battery
and could support up to 3 hours of nonstop measurement. The
custom Arduino Pro Mini was previously designed by Dr
Weiyang Xu as part of his thesis titled Design and Falidation
of a Portable Wireless Data Acquisition System for Measuring
Human Joint Angles in Medical Applications [24]. The IMU
data were captured using a simple recewver dongle that used an
RF radio transceiver connected to an Arduino Uno and was read
from the serial communication link. Both RF modules were
connected using a serial peripheral interface (SPT), and the IMU
was connected using an interintegrated circuit (I'C) connection.
The designed IMU is shown in Figures 1 and 2. A summary of
the specifications of the IMU is presented in Table 2, These
sensors were validated against a goniometer and Vicon motion
capture system, the results of which can be found in the studies
by Walmsley et al [15] and Xu et al [25].
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Figure 1. The MPU9150 (blue printed circuit board [PCB]), custom-built Arduino Pro Mini (green PCB), and RF Module (red PCB); a comparison

of the inertial

unit with an A lian five-cent coin; and the 3D printed case for the sensor [24].

2a.

Figure 2. The recciver dongle in the 3D printed case [24}

Table 2, Specification of the inertial measurement unit (IMU).

Electronic Module Parameter Value
MPU 9250 IMU +  Accelerometer FS range Rangcof #2 g, #4 g, +8 gand £16 ¢
+  Gyroscope FS range Range of 250, £500, 1000 and +2000%/scc
+  Magnetometer FS range Range of £1200 uT
nRF24101 Transceiver *  ISM® band operation 24GHz
o Air datarate 250 kbps, 1 and 2 Mbps
+  Programmable output power 0,-6,~12 or =18 dBm
Arduino Pro mini «  Circuit operating voltage 33VorsV
+  Clock Speed 8 MHz (3.3 V version) or 16 MHz (5 V version)
«  Flash memory 32KB
Arduino Uno «  Circuit operating voltage 5V
+  Clock Speed 16 MHz
+  Flash memory 32KB

“ISM: Industrial, Scientific, and Medical.
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The SPI is a synchronous, full-duplex serial bus standard that
was introduced by Motorola to support communication between
amaster processor and multiple slaves [26]. This protocol used
Serial Clock sent by the master to synchronize master and slave;
Serial Data Out to stream from the device; Serial Date In to
stream into the device; Slave Select to enable slave, which is
omitted in point-to-point connotations [26]. The master—slave
connection for the RF module is shown in Figure 3. SPI was
used to connect the RF module to the custom build module,
where Arduino was the master and the RF module was the slave.
The same connection was used on the receiver to connect the

Khaksar et al

RF moduole and Arduino Uno with the Arduino acting as the
master and the RF module acting as the slave. This decision
was made because of the inclusion of Master In Slave Out and
Master Out Slave In data lines that facilitate full-duplex
o ication, a fast c¢ ication speed that can go to 10
Mbps or more; inclusion of push-pull drivers that provide good
signal integrity, not limited to 8-bit words for bits transferred;
use of master’s clock by the slave, which removed the need for
precision oscillators, and lower power requirements compared
with other serial buses because of less circuitry.

b Arduino Uno and the RF module, and the right diagram

Figure 3. The left diagram shows the serial peripheral i (3P}

shows the SPI connection between the custom Arduine Pro mini and the RF module. MISO; Master In Slave Out; MOSI: Master Out Slave In; RF:

radio-frequency; SCLE: Serial Clock.

5

nRF4LOL

Arduino Ling RE

— —

..
Custom Ardumo Pro Mini mi;m'

The designed sensors needed to wirelessly transfer data to avoid
hindering the hand mg ofthe participants in the project.
Popular wireless communication technologies include Bluetooth,
RF, WiFi, and infrared. The popular frequency range for
wireless communication includes subGHz below | GHz (for
long-range) and 2.4 GHz (for short-range). The proposed joint
movement calculation system uses an nRF24L01 RF transceiver
[27] (transmitter-receiver integrated on the same chip) module,
which operates on a 2.4-GHz frequency band using 125 channels
inthe frequency range of 2.4 GHz-2.525 GHz. The module uses
a license-free industrial, scientific, and medical frequency and
can cover a distance of up to 1000 m. To improve the data loss
at this crowded frequency band around 2.4 GHz, the nRF24L01
RF transceiver module uses a low noise amplifier [27]. The data
rate requirement of the proposed joint movement calculation is
not very high. This RF transceiver module is an improvement
as it supports data rates in the range of 250 kbps-2 Mbps. The
RF transceiver module connects with the Arduino module using
SPI through Serial Clock, Master In Slave Out, and Master Out
Slave In pins. The nRF24L01 RF transceiver is an ultralow

ic of the 12C tion b

Figure 4. Sch
Serial Data Line.

power drawing of 26 pA of current in standby mode and 900
nA of current under down mode [27].

The I°C bus is a synchronous serial protocol originally
developed by Philips Semiconductor (now known as NXP
semiconductors) in the early 1980s [26]. The main aim of I°C
was originally to support the board-level interconnection of ID
modules and peripherals [26]. This protocol used serial data,
and Senal Clock and ground for a half-duplex connection, which
is capable of handling multiple masters and slaves. Serial Clock
synchronizes all bus transfers, and serial data carries the data
being transferred [26]. The connection of the MPU 9250 module
is shown in Figure 4. The structure of the timing diagram for
1°C is shown in Figure 5. The I°C was used to connect the IMU
module to the custom-built IMU, with the Arduino acting as
the master and the IMU acting as the slave. This decision was
made because of the incorporation of Acknowledgment and No
Acknowledgment functionality that improves error handling,
flexible data transmission rates, addressability of each devices
bus, and requiring only 2 signal lines,

the custom Arduino Pro Mini and the inertial measurement unit. 8CL: Serial Clock Line; SDA:

Custom Arduino Pro Mini

MPU 9250
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Figure 8. 12C timing diagram. SCL: Serial Clock Line; SDA: Serial Data Line.

st_m Valid Data Bit Change —
soa T | / \ T
SCL 1\ f— S/ ) M

The IMUs comprise an accelerometer, gymsco: and_— Joint Angle Calculations 11

magnetometer. Using sensor fusion techmques, an object’s
orientation can be captured using differential equations
describing its dynamic behavior, which can be derived from the
Newton-Euler by means of the Euler angle parametrization [28].
Quaternion 1s another method for capturing the orientation of
an object, which is a four-element vector that can be used to
encode any rotation in a 3D coordinate system [28]. In this
study. to simplify calculations, raw acceleration and angular
velocity were captured and used to measure the wrist joint angle.
The requirements and specifications of this research lead to the
selection of IMUs owing to their low cost, low power
consumption, and ability to provide orientation with the relevant
update rate.

The sensors collected raw acceleration and angular velocity in
the X-, Y-, and Z-axes, and the results were postprocessed in
MATLAB using a 2-sensor-based joint orientation algorithm.
This algorithm shows the difference in relative movements
between 2 sensors when they share the same frame and zero
position [24]. The Z- and Y-axes of both sensors need to be
parallel to each other, so the X-axis of both sensors merge into
the wrist center. This means that the wrist joint movement can
be measured as the angle difference between the 2 sensors. The
use of 2 parallel sensors for joint calculation simplifies the 3D
system problem to a 2D one. The orientation of the MPU9250
is shown in Figure 6 [29] and the placement of the sensors is
shown in Figure 7.

Figure 6. Orientation of the MPU9250 inertial measurement unit chip, where X is Roll, Y is Pitch, and Z is Yaw [29].

X (North)

v"(')LiJ

Z (Down)

Figure 7. Sensor pl howing sensor 1 d to the back of the hand and sensor 2 connected above the wrist.

Using 2 sensors creates a relative system, so the rotation on the
Y-axis or the orentation on the X-Z plane can simply be
calculated using the following formula:

lespy = LBiwsor s = LBimsar cquation (1)
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According to the tangent function, the angle of B can be initially
calculated using the leration from the X-and Z-axes, where
x is the angle between the net acceleration and the acceleration
on the X-Z plane. Therefore, the tangent of B can be calculated
as follows:
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The angles used in equation (2) can be seen in Figure 8.

The data sample rale for both sensors was sct 1o 100 He, which
reduced the difference in angular velocity measurements
between each sample.

Unlike traditional vaw. pitch. and roll orientation systems, a
relerence plane was unnecessary in the present algonthm as

Figure 8. 3D system for acceleration.

As the desired accuracy cannol be achicved by using only the
acceleration. sensor fusion was used to increase the measurement
accuracy by combining the data from both the accelerometer
and the gyroscope. The acceleromeler oulpul was independent
of each sample during the measurement period; therefore, 8_..
8,., and 0_. which are the projected orientation angles on the
X-Z. Y-Z. and Z-Y planes. respectively, were used as rough
measurcments, The gyroscope’s angular velocily ®,.was added
to describe the actual change between samples and can be
calculated afier subtracting the average siatic drifl and using a
Savitzky-Golay filter to calibrate the moving average drift [24].
The gyroscope’s angular velocity can be calenlated using the
following formula:

sigg(th = 05yl 1] @ B Ungit+ 1)@ wly = Vif = DTt & Ty mmylf = Tif = B, oot (%)

Here, 0. is the average static drift, which can be calculated
using the following equation:

e (R e (ETTE

oy} ]| sgmarn iy
|| somarn |

In the formula given above, n, m, and r are random intcgers and
m is larger than 3. The total number of samples needs to be
larger than n+ (m=1) 7+ 100 m. These calculations lead 1o the
following sensor fusion algorithm. which is based on a
complementary filier:

ol 4 1) o A [ n] = sigretin 4 13 % A0lnd |4 a4 1) cpun

where a, b. and ¢ arc the names of 1hac measurcment axcs and
n+1 is the current order of the sample. o, /i + 1) is the Gltered
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both sensor axes were aligned so thal the joinl movement was
equivalent 1o the oricnlation difference between the sensors.
Therefore, only relative motion was used, and the impact from
the environment was ignored |24].

The orientation of each individual sensor was calculated using
the orientation reading and angle movement during each
sampling period. and a complementary filter introduced a
high-pass filter to the main orientation tracker and adjusted with
a low passed value from Ihe acccleromeler’s oncnlation
measurement |24],

angle along the c-asis. Therelore, M, represents (he rotation
on the c-axis, and 8, is the current angle on the a-b plane. which
is based on acceleromeier measurements. Finally, the
combination of high pas factor h and low pas factor1is 1 [24].

The results of these joint calculations were validated in the study
by Shanf Bidabadi et al |30] against a 3D Vicon video capture
setup. The accuracy of the setup was writlen ina different paper
found in the study by Walmslev et al [15], where a custom-made
robolic device with predetermined angles was designed, where
the sensors detected peak angles with mean errors ranging from
~0.95% 1o 0,117 when one wearable sensor was static and the
other dynamic. When 2 wearble sensors were moving,
movement al a higher speed (90°/s) had a mean crror range of
=2.637 10 0.54° and movement at a slower speed (30%s) had a
mean error range of —0.92° to 2.90° | 15].

Data Preprocessing

The IMU scnsors generaled time-serics data from  the
accelerometer, gyroscope, and magnetometer around the 3 axes.
First, small sections were removed from readings aken at the
beginning of the experiments when the IMU sensors were not
stabilized. Then. the remaining data collected by each sensor
from each experiment in 3 oriemtations (ie, pitch, row. and yvaw)
were comverted into frequencyv-domain representations by
performing fast Fouricr transform. Comverting data o the
frequency domain can successfully capture the characteristics
of gait motion, as shown by similar experiments in [23.31,32],
the interval between adjacent readings was approximated as (). 1
seconds and the lundamental Mrequency was calculated as 1/,
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where 1, 15 the total time of the expeniment The amplitude
A, phase shift P, and peak frequency F of the first 5 harmonics
were collected into a feature vector. The feature vector for each
experiment was 1270, and the 270 features were as follows:

[
e =5+ £ 5§

g vusatlon (5]

ST S —

Each experiment was then labeled O for a typically developing
child and 1 for a child with CP.

Classification by ML Algorithms

The problem of distinguishing typical hand movements from
hand movements of children with CP constitutes a binary
classification problem, that is, classification between two
classes. Various algorithms can be constructed using different
ML methods based on existing data that can be used to classify
unseen data. This process is called training. Some classical ML
algorithms commonly used in engineering problems include
linear classifiers such as Naive Bayes and logistic regression,
decision trees such as the C4.5 decision tree and random forest,
support vector machine, k-nearest neighbors, and neural
networks such as multilayer perceptron and convolutional neural
networks. More sophisticated deep neural networks can also be
designed for classification problems; however, the size of
training data sets 1s a major concern. Other problems include
data bias, overfitting, a lack of computational resources, etc.

To decide between the 2 classes, ML algonithms for binary
classification establish decision boundaries that separate the
data points in the training data set from the 2 classes. This
process relies on optimizing a cost function that varies between
the algorithms. Most algorithms, such as logistic regression,
support vector machine, decision trees, and neural networks,
aim to construct a model with parameters that are leamed from
the training data set, whereas some algorithms operate directly
on the data set, for example, k-nearest neighbors. Although
there are numerous libraries and tools offering implementations
of ML algorithms [33,34], the performance of the individual
algorithm depends on the nature of the problem and the
properties of the data set. Choosing the algorithm that performs
best for a particular problem is subject to investigation.

Experiment Setup and Data Collection

As a part of an Australia-wide CP research study called the
Minimising Impairment Trial (MIT) and Infant Wrist Hand
Orthosis Trial i{WHOTs), the IMU sensors were used to capture
the wrist movements of 2 groups of participants. The MIT trial
included children with and without CP aged 5-15 years, and the
1WHOT included children aged 6 months to 3 years. These
studies were multisite RCTs that aimed to evaluate whether
long-term use of rigid wrist or hand orthoses in children with
CP, combined with usual multidisciplinary care, could prevent
or reduce musculoskeletal impairments, including muscle

hitps:/frehabmir org'2021/4/e29769
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stiffness or tone and loss of movement range, compared with
usual multidisciplinary care alone [11]. IMUs were used as an
outcome measure to capture the active wrist ROM. During each
assessment session, the participants completed several wrist
movement activities such as making a stop sign motion, picking
up small objects, playing with toys, pressing a big button, and
s0 on. The aim of these activities was to assess the ROM used
during active movement and task performance while data were
collected via sensors. In addition, goniometric measurements
of the joint movement was collected. The detailed protocol of
this research has been published [ 11] if the reader is interested
in more information about the clinical aspects of this trial.

For this project, the aim was to capture CP movement as a
feature by ML on the raw IMU data by focusing on the data
collected during the stop sign task i the MIT and 1WHOT.
Each participant was asked to perform a simple stop sign motion
to capture the maximum wrist joint angle as well as the
maximum range of movement. To achieve this study’s aim, two
separate experiments were run using participants who were
approaching the age of 3 years from iWHOT and participants
who were approaching the age of 15 years from MIT. From
MIT, 263 samples from 89 participants with CP and 199 samples
of typical movement data captured from 30 participants without
CP were used. The participants without CP simulated typical
movements to reach 199 samples. From iWHOT, 171 samples
from 51 participants with CP and 149 samples from 20
participants without CP were used.

Cross-validation, which 1s 90% training and 10% testing, were
used 10 times to train and test the classifier, which can be seen
in the next section of this paper. The CP data were collected by
the research teams working on the MIT and iWHOT trial
according to ethically approved procedures (HREC REF
201406EP) and with signed, informed consent from all the
participants’ parents or guardians. Deidentified data were used
to produce ML results, which are analyzed in the Discussion
section of this paper.

Results

Figures 9 and 10 show the raw data captured for a stop sign
motion trial of a participant withowt CP, starting from the
stationary position to a stop sign and again to a stationary
position, These data included the accelerometer and gyroscope
in 3 axes. Figure 11 shows the placement of the sensors on the
hand and above the wrist.

After the data were captured, they were processed and run
through the different equations deseribed in the joint calculation
section of the report. Through these calculations, the drift was
removed, and the joint angle was calculated, the results of which
are shown in Figure 12.
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Figure 9. Raw data captured with the sensor connected to the hand (data without CP). CP: cerebral palsy.

Sensor connected to the hand (Data without CP)
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Figure 10. Raw data captured with the sensor connected above the wrist (data without CP). CP; cercbral palsy,
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Figure 11. Stop sign motion required by the participants.

Khaksar et al

Figure 12. Joint angle results from a participant without CP. CP: cerebral palsy.

Joint angle (Data without CP)
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The stop sign trials from participants with CP were captured
using the same IMUs as those used in the previous group. The
results of the raw data captured from the CP participants are
shown in Figures 13 and 14. The results of the calculated joint
angles are shown in Figure 15.

Anecdotal feedback from MIT and iWHOT researchers was
positive about the potential of IMUs to contribute accurate data

https /irebab sensr org/ 2021441625769

w—Sensor 2 = Difference

about active ROM, especially in children for whom goniometric
methods are challenging.

After the initial angles were calculated, several classical ML
models were trained to create a classifier for the captured data.
The Waikato Environment for Knowledge Analysis platform
[34] version 3.8 was chosen as the platform for these
experiments. Waikato Environment for Knowledge Analysis is
a collection of open-source ML algorithms and contains tools

TMIR Rehabil Assist Technol 2021 |vol 8 [1ss 4]€29769 |p 11
(page rumber not for citation purposes)

XSL-FO

RenderX

Chapter 4: Use Case Examples 127



JMIR REHABILITATION AND ASSISTIVE TECHNOLOGIES Khaksar et al

for data preparation, classification, regression. clustering, machine, multilayer perceptron, and k-nearest neighbors. The
association nule mining, and visualization [34]. The algonthms  authors analysis of the produced ML results can be found in the
used consisted of ZeroR, OneR, Bayes Net, Naive Bays, logistic  Discussion section of this paper.

regression, C4.5 decision tree, random forest, support vector

Figure 13, Raw data captured with the sensor connected to the hand (data with CP). CP: cerebral palsy.

Sensor connected to the hand (Data with CP)
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Figure 14, Raw data captured with the sensor connected above the wrist (data with CP). CP: cerebral palsy.
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Figure 15. Joint angle results from a participant with CP. CP: cerebral palsy.
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Principal Findings Table 3 presents the results of the 9-ML algorithms on the

The resultant evaluation metnecs are accuracy, the number of
comrectly classified instances over the total mumber of instances,
the area under the curve (AUC), and the area under the recsiver
operating characteristic (ROC) curve. The ROC curve maps the
true positive rates as the x-coordinate and false positive rates
as the y-coordinate. Ten-fold eross-validation was adopted,
splitting the data set into 10 parts, training the models with 9
parts, and testing with 1 part each time for a total of 10 times.
The accuracy and AUC were obtained by averaging the 10 sets
of results and taking the weighted average of the 2 classes. The
baseline of the expeniments was obtained from ZeroR, a

classification using the MIT data. The baseline obtained from
ZeroR. showed 57.02% accuracy and 0.493 AUC. The best
accuracy was 85.75% vielded by random forest, and the best
AUC was 0.890 vielded by k-nearest neighbors. Figure 16 shows
the ROC curves of the © ML algorithms and the baseline. OneR,
k-nearest neighbors, multilayer perception, and random forest
all produce reascnable ROC curves and are expected to perform
well for the problem. Naive Bayes performs better than the other
algonthms owing to the conditional independence assumption
it makes. Because the frequency space features are interrelated,
it is unreasonable to make this assumption.

Table 3. Machine | ng result using minimizing impai training data, showing the best accuracy.
Algorithm Accuracy (%) AUC*
OneR 84.23 0.848
Logistic regression 72.79 0.749
MNaive Bayes 65.23 0752
Bayes Net 80.99 0,832
4.5 decision tree T74.95 0,740
Remclom forest b 8575 0.867
Multilayer perceptron 80.35 0.865
Support vector machine 70.70 0.794
K-nearest neighbors 82.07 Q890
Average 7845 ass

*AUC: area under the curve.
“The best aceuracy and area under the curve values are italicized.
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Figure16. The ROC curves of 10 classification algorithms using the Mininmusing Impairment Trial data. The area under the curve values are the areas
hetween the ROC curves and the x-axis. ROC: receiver operating characteristic.
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Curicusly, OneR uses only a single feature and achieves 84.23%
classification accuracy The algonthm uses the 91st feature,
which isthe phase shift corresponding to the second harmonic
obtained fromthe hand sensor: This phencmencn may indicate
that the most useful information for classification 1s recorded
by thehand sensor and that omitting one sensor may bepossible
in the future.

Table 4 presents the results of the 9-ML algorithms in binary
classification using the IWHCT data The baseline cbtained
from ZeroR showed 53.44% accuracy and 0494 AUC. The best
accuracy was obtamed by the C4 5 decision tree at 85.75%, and
the best ATIC was obtained by Nawe Bayes at 0.890. Figure 17

—a— Logintic
o Hogression
—8— (4.5 Decision

Troe
—a— Random Forest
—— Nae Rayirs
= flayes Net

—8— SUppOrt Vecton
Machine
—— K0 A0S
Meighbours
—0— Multikayer
Perceptron
—8—Dnek

#— Baseline {ferof)

showsthe ROC curves of the 2-ML algorithms plusthe baselne
Although all models appear to be reasonable classifiers for the
problem, it 15 worth noting that OneR, which classifies based
on one feature alone, already achieves £8.13% accuracy and
0886 AUC The deciding feature is the amplitude of the
acceleration in the row direction on the hand sensor, which
corresponds to the most important piece of information in a
real-world scenario. Therelatve underp erformance of the more
sophisticated algorithms, in contrast, may be duetothe chserved
noises n the training data that lead to biases m the learned
models. Such noises mnclude the sensors fallng off the
participant, the participant nct following instructions, ete.

Table 4. Machine learrung result using Infant Wrist Hand Orthosis Trial data,

Algonithm Acouracy (%) AUCt
OneR. 8813 0.386
Logistic regression 004 0.906
Maive Bayes 86.88 TIL
Bayes MNet 8243 0921
4, 5 decision tree £9.38 0.858
Random forest &1.88 0917
Multilayer perceptron 21.25 0937
Support vector machine 8375 0.783
K-nearest neighbors 8344 0.394
Average &4.90 0804

BATIC: area under the curwve.

YThebest accumcy and area under the curve values are italicized.
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Figure 17. The ROC curves of 10 clasafication algorithms using the Infant Wriist Hand Orthosis Trial data The area under the curve values are the
areas between the ROC curves and the x-axis. ROC: receiver opemting characteristic.
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Conclusions

Upon completion of the project, the wrist joint angle was
successfully caleulated, and CP movement was classified asa
feature using ML on raw MU data. Anecdotal pesitive feedback
from MIT and rWHCT researchers was also received regarding
the potential for IMUs to contribute accurate data about active
ROM, especally where the use of gonicmeters can be
challenging There may also be the potential to use IMUs for
continued monitoring of hand movernents throughout the day
The sensor sizeneeds to bereduced to make itmore comfortable
to wear Examples of ML and IMU data captured for medical
purposes can be seen in the paper titled Classification of foot
drap gak characteristic due to lumbar radicdopathy using
machineg learning algorithms [23] This paper locks at the
classification of MU data captured from hospital patients with
foot drop 1ssues using supervised leamning and uses 11 different
ML classifiers and shows that randem forest was the most
accurate method with an accuracy of 88 45% for a specific data
set [23]. Some of the other ML algenthms used were SVM,
Naive Bayers, and deep leamnmg, which gave accuracies of
86.87%%, 86 87%, and 86 06%, respectively [14] Bidabadi et al
[30] showed results were very similar to the current findings,
althcugh the focus was on a different joint. This suggests that
decisiontree-based ML algorithms may be the best option for
classifying IMU data for joint movement. The classifier used
in this study would be able to distinguish atypical and reduced
movement, which can potentially be useful for people with
different joint movement disorders such as arthntis and
Parlinson disease.

There are some limitations to the IMU setup used m this study,
such as the inherent drift of IMUs, which can be corrected by

as 06 o7 08 og 1

—a—Logmc Hegression

—a—(4.5Decision Tree
—w—Random Forest
—a—HNave Bayes
—e—Hayes Net

—e—Suppar Vector
Machine
—a— K- nearest
Neghbours
—e— Multilayer
Perceptron
—e—OneR

»— Baselne (Zerch)

the drift mitigation techniques described in the methods. These
techniques may proveproblematic for longer trials. There were
otherissues during the data collection sessions, such as touching
the 2 thand and foreanm) sensors because of the small hands of
some participants or accidental touching of the sensors by the
therapist while using the goniometer, which leads to an increase
innoise inthe data. Bugs inthe data collection interface created
for technicians also resulted in some comrupted data and data
loss, which added to the preprocessing time of the ML section
of this study Finally, at the initial stages ofthe project, the scale
of the accelerometer was set at +2 g because the slower moving
trials rarely reached this value. Once free play stuations were
mtroduced that would usually contain rapid movement,
particularly in younger children, itwas observed that the scale
of g needed to be extended beyond this threshold, which resulted
in reduced accuracy. This reduction caused some data loss, so
the scale was switched to+16 g for faster trials.

As part of future worle, real-time calculation of joint angle and
orientation data can be implemented so that direct quaternions
can be collected and used for this caleulation. The research team
involved in this paper began the preliminary work on this next
step and plans to publish their results once the solution has been
fully created. The sensor setup will also be updated to remove
the reliance on a separate receiver dongle by switching the
communication module to Bluetooth Low Energy transferto a
smartphone application. These changes to the user experience
and the medum of transfer would improve the utility of the
process of data collection, better contimied montoring of
children with CP, and quicker trial sessions in routine
appointrnents for children with CE
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Abstract: Cerebral palsy (CP) is a common reason for human motor ability limitations caused
before birth, through infancy or early childhood. Poor head control is one of the most important
problems in children with level IV CF and level V CF, which can affect many aspects of children’s
lives. The current visual assessment method for measuring head control ability and cervical range
of motion (CROM) lacks accuracy and reliability. In this paper, a HeadUp system that is based on
a low-cost, 9-axis, inertial measurement unit (IMU) is proposed to capture and evaluate the head
control ability for children with CP. The proposed system wirelessly measures CROM in frontal,
sagittal, and transverse planes during ordinary life activities. The system is designed to provide real-
time, bidirectional communication with an Euler-based, sensor fusion algorithm (SFA} to estimate
the head orientation and its control ability tracking. The experimental results for the proposed STA
show high accuracy in noise reduction with faster system response. The system is clinically tested on
five typically developing children and five children with CP (age range: 2-5 years). The proposed
HeadUp system can be implemented as a head control trainer in an entertaining way to motivate the
child with CP to keep their head up.

Keywords: head control; cerebral palsy; rehabilitation; inertial measurement unit; head movement
measurement; health; disability; sensor fusion algorithm

1. Introduction

Cerebral palsy (CP) is a group of disorders in the developmental milestone, including
posture and motor function, that become evident through infancy or early childhood [1,2).
The CP prevalence ranges from 1.5 to more than 4 per 1000 live births, These statistics
are expected to be much higher in developing countries due to low standards of medical
care [3].

CF is a non-progressive brain disorder, and most children with CP experience spastic-
ity, motor disorders, and a lack of selective motor contrel [4]. Although CP is permanent,
its outcomes can be minimized [5]. These motor difficulties differ from one CP child to
another CP child based on the severity level. The Gross Motor Function Classification
System (GMFCS)[6] classifies children with CP into five levels, as shown in Figure 1.

Children with CP levels IV-V suffer from one of the essential cerebral palsy problems:
poor head control [7].

Head control refers to the ability to control the head upright above the shoulder
with respeet to gravity while sitting, standing, or walking with a rotation ability in the
desired direction. Head stability gives a stable reference to vertical posture. Additionally,
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poor head control can affect many aspects of children’s lives, such as eating, self-care,
self-entertainment, vocational sitting [%,9], and self-esteem [10].

Figure 1. Cerebral palsy levels.

Multiple reasons make the assessment of head motion and head control ability (IICA)
a vital study area in the rehabilitation and bicengineering speciality. The most significant
reason is helping clinicians evaluate, diagnose, and provide optimal care and treatment for
children with CP [11,12]. Moreover, difficulties encountered while preserving head control
can be one of the first indications that a child has a development problem.

However, the current diagnosis for poor head control depends on visual inspec-
tion [13], which relies on the clinician’s experience and the time he has spent with a patient.
Sometimes, clinicians and physiotherapists cannot spend an adequate amount of time
assessing HCA. Although parents spend much time with their children, they still cannot
provide continuous monitoring for head movement. There is also the problem that people
living in remote areas do not have access to medical experts.

Additionally, different studies reported poor accuracy and reliability of visual assess-
ment for joint movement. These studies stated the need for more accurate and reliable tools
combined with a visual evaluation to improve examination quality [14,15]. As a result,
there is a need for a precise system that can capture head movement and discover the
inability to fully control the vertical orientation of the head. There is also a need to provide
the best physiotherapy program, to avoid the implications of inaccurate diagnoses and to
fully utilize this program.

Inertial measurement unit (IMU) sensors can capture an object’s motion without the
need for external reference, cameras, emitters or environmental lighting [16]. The IMU
consists of a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. There are
many clinical applications for IMUs in human movement monitoring [17-22].

This paper presents a novel, IMU-based system for HCA tracking that targets children
with CP aged from 2 to 5 years old. HeadUp is a head-mounted device that is designed
to be small (3 x 3 x 3 x 6.5) cm, that is easy to wear, that is lightweight (<50 g), and that
consumes low power. Additionally, the device’s raw data are available and could be ac-
cessed easily for future analysis to identify the required physiotherapy program. Moreover,
the proposed device is designed to be inexpensive in contrast to other existing systems and
specifically for head movement monitoring. The most important challenge is extracting
medical information from the raw system’s readings to assess the IICA of the child and
this study will address this challenge in Section 6.

The main contribution of this paper is the use of a custom built and low-cost sensor
for capturing head movement of children with CP in the age range of 2 to 5 years. Most of
the research in the literature target older children (5-12 years) with either higher CP levels
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such as level I or II, where the child already has better motor ability and reasonably good
head control [23-25]. The paper shows the application of a low-cost engineering solution
to capture clinically viable data which allows clinical professionals and physiotherapists
to get a better understanding of the active range of head movement for children with CI.
Anecdotal feedback from the physiotherapists has been positive since there are very limited
methods for capturing the active range of movement, especially for the age range of 2 to
5 years.

The remainder of this study has been constructed as follows: related work is presented
in Section 2. System design is described in Section 3. This section includes the HeadUp
device design and the filter algorithm to filter the measured data’s noise. System imple-
mentation is explained in Section 4. Section 5 presents the results and Section 6 discusses
the results. Section 7 concludes the paper and presents future work.

2. Related Work

Head movement or cervical movement is the ability to smoothly and accurately
move the head to a given pattern. There are several possible methods to measure head
movement. Head motion measurement systems or cervical range of motion (CROM) have
been gradually adopted in the medical profession for many purposes. Different methods
have been employed to measure head motion [26].

An ancient study was conducted in 1962 [27], in which the author reviewed the vari-
ous methods for joint motion measurement in general and head motion measurement in
particular, such as protractors with arms, optical goniometers, and pendulum goniome-
ters, These measurements made it difficult to accurately determine head motion. Many
recent studies have discussed more accurate and trustworthy methods for head movement
measurement [28-32].

One of the best and most accurate methods is an optical motion capture system [32]
that uses cameras and optoelectronic markers to track head movement. Although this
method is convenient, such systems are easily affected by occlusion and lighting effects,
which tend to reduce the system efficiency. Additionally, such systems are costly and
complex to implement in laboratories [33]. Another issue is the difficulty of a tesling
environment for small children.

Different systems have been proposed to overcome these limitations. IMUs showed
excellent implementation in the field of three-dimensional motion analysis [17,34-36].
In [36], Rudigkeit et al. compared different commercially available IMU-based systems
under various conditions to control an object by head movement. The authors reviewed the
control model presented in the literature and highlighted the advantages and disadvantages
of each method. All previously mentioned methods can be an effective way to measure the
head control ability HCA of children with cerebral palsy.

Many researchers have investigated some of these methods for training children with
CP to achieve better head control [11,37,38], especially between 1970 and 1990 [7,39-42].
Harris et al. [7] developed an electronic device that can be placed in an oversized helmet to
monitor head movement while converting this movement to electrical signals, providing
auditory guidance to achieve an upright position. The authors tested the effectiveness of
the head control device (HCD) on nine children with CF, with ages ranging from 7 to 18; all
of these children improved their head stability after using the device from approximately a
few seconds to more than 5 min in duration of holding a fixed posture. Harris et al. did not
provide any statistical details about the enhancement after treatments, and the degree of
improvement for each patient is unknown.

Subsequently, mercury tilt switches were employed to detect the head deviation from
the specified angle range [39—41]. In [39], a mercury tilt switch was installed on an earphone
to turn a transistor radio ON and OFF to reinforce head posture for two children with
CP whose ages ranged from 9 and 17 years old. Radio music was activated when the
child’s head was in the upright position. The authors discovered that music can promote
head control for children with CP. A wearable head position trainer (HPT) was designed
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in [40] and tested on 12 CP children aged 3-10 years. HP'T provided auditory feedback and
number count of head position deviations beyond a given angle for each child. A large
number of researchers have applied the HPT in their studies [41-43].

Although these studies stated an improvement in HCA, many drawbacks and limita-
tions in their devices are noted [44]. Some of these disadvantages are described as follows:
*  These devices were heavy (220 g without the helmet), and some of the children

experienced difficulty raising their head while wearing the apparatus compared with

those without wearing the device.
*  Cables must connect these devices to a control unit, increasing the size of the over-
all system.

These devices did not provide any information about head movementin 3 dimensions.
*  The presence of a physiotherapist is mandatory during the experiments.
¢ Difficulty in reliable device positioning occurred because of the working principle of

mercury tilt switching.

* A deviation angle threshold for cach child had to be established and applied every
time the device was used.

Unfortunately, there are few recent studies concerning head movement and head
control ability tracking for children with CP. In 2018, head motion was measured for
children with CP using a video-based approach. The authors placed markers on the ear
and temporal fossa, using cameras to record head movement. This approach has a beneficial
effect on ITCA assessment [11]. The same approach was employed [35] to estimate the
head orientation. Even though this approach solves the previously mentioned limitations
and difficulties, it is costly and difficult to set by students.

The head motion tracking system presented in this paper is inexpensive, casy to
wear, and designed specifically for head motion monitoring of CP to provide valuable
information for therapists about HCA.

3. Methodology
3.1. HeadUp System Design

The proposed HeadUp system was designed and tested as a medical HCA evaluation
svstem. The HeadUp device is constructed to be convenient for patients who wear it and
to be informative for physicians who use it to monitor the paramcters of the patient’s
head movements. As shown in Figure 2, head motion can be described in the following
terms [45]:

Right Rotation  Left Rotation

Transverse Plane

Figure 2. Head motion terms.
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Flexion (F)

Extension (E)

Right Lateral Flexion (RLF)
Left Lateral Flexion (LLF)
Right Rotation (RR)

Left Rotation (LR)

These head motion parameters are essential for evaluating the HCA of patients with
CP As illustrated in Figure 3, the HeadUp system includes the HeadUp device and the
receiver device.

The HeadUp device comprises a microcontroller {Arduino Pro Mini 3.3 V), a 9-axis
IMU sensor (MPU9255), a charge indicator unit, and transceivers (nRF24L01), The MPU9255

L I

has a 3-axis accelerometer (Acc), 3-axis gyroscope (Gyro), and 3-axis magnetometer (Mag).

The receiver device includes another microcontroller and nRF24101 transceiver to receive
the data. Both the HeadUp device and receiver device were powered by a rechargeable
100¢ mAh Livion 3.7 battery. The total cost of the HeadUp system (HeadUp and receiver
dongle) was approximately 18$.

- - (o/ RecelwerDevie Ty,
P HesdUp Davics — r)) ik Panelhitn :
: [~ S = -
b

Fower

; i
i I
i ]
| smay { - I
\ 3 ra-nm—| ]
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Figure 3. HeadUp system architecture.

The microcontroller, which is the main component for the HeadUp device, collects data
by an inter-integrated circuit protocol (I*C) bus, calculates the head movement parameters,
encapsulates the data into packets with patient Id, dates, and sends the packets to the
receiver device by radio-frequency. The data shown in Figure 4 will be collected by the
receiver device and sent to a laptop through the UART protocol. The data are then saved
in a (CSV) file for further analysis. The HeadUp system (transmitter and receiver devices
are shown in Figure 5.

Pat.lD correspond to Patient ID

E/F correpond to head’s Extension/Flexion
RLF/LLF correspond to head’s Right/Left Flexion
RR/LR correspond to head's Right/Left Rotation

Figure 4. HeadUp data packet.
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(a) (b)
Figure 5. HeadUp system (transmitter and receiver). {(a) HeadUp for moderate CP. (b) Head Up for
severe CP.

3.2, Data Acquisition and Sensor Fusion Algorithm
3.2.1. Data Acquisition

Iirst, the raw data were obtained while the HeadUp device were stable; these raw
data could not be applied without calibration. All three sensors (Acc+Gyro+Mag) need to
be calibrated, and two values must be measured for each sensor (bias and scale). Bias is
the difference between the raw value and the zeroes, while the scale value represents how
much larger the range of sensor data is than the actual value of the physical movement.
Without calibration, the measurements lack accuracy. Therefore, calibration is mandatory
before the device is utilized.

The IMU sensor was sampled at a 100 Hz frequency and 16-bit resolution. The desired
measurement from the HeadUp device is HCA, which can be evaluated by CROM angle
measurement {6, ¢, ). These measurements were obtained by using the raw data from the
IMU sensor.

The Acc measures the acceleration based on Newton's second law and the associated
force. The head movement angles (extension /flexion (#) and right/left lateral flexion (p})
can be measured from only the calibrated Acc measurements using the following equations:

a 180
J i S S, T i 1
G fn (ay)? + (az)? “n M
i ay 180
y = ta B e R .
o= 101 (ay )2 + (a:)2 A @

where 8, is the estimated 11/1° angle and ¢, is the estimated RLE/LLY angle using only the
Acc readings; ay, ay, a. are the acceleration along x, y, and z axis.

The problem with these head movement angles, which are measured only from the
Acc, is that they are susceptible to vibration and suffer from noise, as shown in Figure 6.
A Butterworth low pass filter (L.I'F} was selected to filter the noise. A Fourier transform
was used to calculate the cut-off frequency for the LPT.

Sagittal Plane Frontal Plane

| Wittt Ter s Wina Alve.
o it LF Wit LY

F/E angle{Deg.)
RLFALF angle(Deg.)

. . w " . . . w -

Til‘ne [sec) Time [sec)

Figure 6. Before and after low pass filter with only Acc.
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Although the filtered @ and ¢ were noise-free, as shown in Figure 7, the system
response is sluggish, as depicted in Figure 8.

Figure 8 shows an estimation of the F/E angles, and the lag in the measurement can
be clearly seen, so there is a trade-off between getting a noise-free signal and the system’s
response time.

Sagittal Plane Frontal Plane

— Without fiter
— With LPF

¥

FfE angie(Deg.)
5

&

£ ¢
|
|
|
|
|
|
=
£

Time {sec) Time {sec)

frm————

3 i

Time (sec)
Figure 8. Delay problem with Acc. readings.

Another option for measuring head movement is to use a Gyro. The Gyro measures
the object’s angular velocity and can also indirectly measure head movement # and ¢ by
integrating angular velocity over time using the following equation:

Ou(t+A) = O + wyAt 3

Felf | A) = ¢ | anl (4)

where f(#+ A) and @ are the new and previous estimated 12/1 angles using only the Gyro
readings . ¢ (t | A) and ¢, are the new and previous estimated RLF/LLF angles using
only the Gyro readings; wy, wy, . which are the rotational velocities around x, v, and z
axis. The issue with the Gyro readings is that the #; and ¢, drift over time, as illustrated in
Figure 9. This figure reveals that the head flexion drifts approximately 30° after 5s. Both
noise and drift contribute to unacceptable results.
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Figure 9. Drift problem in only gyroscope.

We can conclude that neither the Acc nor the Gyro provide accurate head movement
measurements. Therefore, a sensor fusion algorithm (SFA) was implemented to overcome
each sensor drawback and to obtain a noise-free and fast system response.

3.2.2. Sensor Fusion Algorithm

As mentioned in Section 3.2.1, the readings from the Acc are not accurate for high-
frequency situations such as fast movement in short time intervals; that is why Gyro
readings are used for these instances. To obtain accurate head movement measurements,
an SFA was implemented to overcome the drawbacks of using each sensor alone and
to get reliable readings and improve overall accuracy. To get faster response time and
noise-free signal, a complementary filter was used by combining the desired low-frequency
characteristic of the Acc and the desired high-frequency characteristic of the Gyro, as shown
in Equations (5) and (6).

O(t+A) = (1—a)[0(E) + wyAt] +ad, (5)

Pt+8) = (1 —a)[p(t) + weAt] +agy (6)

where 8(t | A) and @ are the new and previous estimated E/F angles. ¢(t | A} and ¢ are
the new and previous estimated RLF/LLF angles. & is a constant (0 < & < 1). The larger
the « the more Gyro is trusted, and as & converging to zero, we base our measurement
more and more on the Ace readings. For the HeadUp system we chose a to be = 0.95.

Equations (5) and (6) put a high-pass filter on the Gyro measurements and a low pass
filter on the Acc measurements, and then these signals are combined depending on the
constant a to form the final angle estimation.

The complementary filter comprises of a high pass filter and a low pass filter and it
may be applicable when the data received from the Acc and Gyro has errors at some period
of time. On the one hand, small external forces can create errors in the measurements
of the Acc, which means they are not reliable in the short term. On the other hand,
the Gyro usually provides accurate data in a short time frame before the drift error can
cause problems. To solve these issues, a low-pass filter can be utilized for the Acc, while
a high-pass filter can be applied to the Gyro data [16]. As both low- and high-pass filters
are included in the complementary filter, high-frequency components and low-frequency
components can be handled. The fused data from the sensors will contain much less error
compared to individual sensor readings.

Another filtering method that tends to be more complex is called Kalman filtering.
The filter uses a recursive algorithm that can estimate unknown data using historical
measurements [46]. There are several stages in the Kalman filter method. First, an initial
value will be acquired from the system alongside a prediction algorithm used to correlate a
prediction error [47]. Once a new measurement is available, the filter uses it to update the
prediction value and the prediction error. As in this project we were aiming to implement
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algorithms on an embedded Arduine microcontroller with limited computational power,
we opted for a method with less computational cost [453], that is complementary filtering.

The Acc and Gyro can only measure the head T'/1L and head RLF/LLE A magnetome-
ter is needed to measure the head’s right/left rotation; i as illustrated in Equation (7).
The applied SFA is presented in Figure 10; the steps are shown in Algorithm 1.

My COs b — Mz sing = 180 @
M cosi -+ iy sinprsin @ + . cos Ppsinfl i g

where  is the estimated RR/LR angles and 1y, my, ni; are the magnetometer raw readings;
strength of the earth’s magnetic vector along the sensor’s x, y, and z axis.

:p—tan_'

Algorithm 1: Sensor Fusion I ure
Data: IMU's Row Data
Result: The CROM angles: &, ¢, i
initialization; 8, ¢, ¢ = 0;
R=Truc
while R do
-IMU Calibration;
-Read Data: Accelerometer data (@, ay,0:)
Gyroscope data(wy, wy, ) and Magnetometer
data (my, my, m:)
~calculate 8,
-calculate ¢p and #
-calculate i
end

P —
s o e o preierea
Aot Ll | e - (@) ooy | 8,0 G tin

. ¥, et @ 8
e i - iy -— ()

(9)
o

samanrzr gt

Figure 10. HeadUp SFA and filtering procedure.

As shown in Figure 10, the SFA has the following steps:
1. Calibration step for all the sensors’ readings (Acc, Gyro, and Mag) to ensure that all
the measurements are close to zero when the system is at rest;

2. Butterworth low pass filter for the Acc readings to get rid of high-frequency additive

noise;

3. To get faster response time and noise-free measurements, a complementary filter was
used;

4. Finally, the magnetometer was used along with Acc and gyro to acquire the head
rotation.

The measurements from the HeadUp device are presented in Figure 11.
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Figure 11. Head movement with a 9-axis IMU for typically developing child.

This figure shows the fast response time and the clean measurement with no cumula-
tive drift or noise, demonstrating the proposed SFA’s validity.

3.3. System Validation

The accuracy of the HeadUp device was tested by comparing the flexion angle mea-
surement with another CROM tool in both Sagittal and frontal planes. A protractor with
an arm was employed as the validation device, which was composed of two arms with
a protractor in between the arms, and could be utilized to give the CROM [49]. This
comparison was performed by placing both devices on a flat surface with an adjustable
angle to measure the decline of the surface, as presented in Figure 12. The surface was
moved at four angles (307, 457, 80°, and 90°). To ensure reading validity, a linear analysis
was performed for the CROM measurements recorded by the protractor with the arm
and HeadUp device (Figure 13), and the mean differences in the measurement from both
devices were calculated. Note that the proposed SFA for the HeadUp device will filter all
the noise and fix the drift problem if there is any as explained in Section 3.2. The validation
results are discussed in Section 5.

Figure 12. HeadUp device validation using protractor with arm.
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Figure 13. Protractor with arm vs, HeadUp.

4. System Implementation
4.1. Subjects’ Selection

Ten male and female children have participated in this research (five children with
various CI” degrees (male: 4; female: 1; age: 2-5)); This age range was selected because
it is a significant period to train the HCA (early age) for future improvement, and the
definitive diagnosis of CI is difficult before two years of age [50]. All the sclected subjects
with CP suffered from poor [ICA (level IV-V), responded to simple tasks, and understood
straightforward instructions. Tive typically developing children were also selected for this
research with the same age range (2-5 y/o) [5].

Table | shows the characteristics of the participants with CP; the clinicians usually
asked for these data during the assessment.For the typically developed children, all of
them were healthy.

Table 1. Participants” with CP characteristics.

No. Name Age Sex CP Level Test Condition Notes
1 M 35 M Y sitting full term baby,mild squint,Mixed Cp
2 AH 5 M v sitting full term baby,sever squint
3 MA 2 M v sitting full term baby,No squint
4 FH 5 F v sitting full term baby,mild squint
5 HJ 35 M v sitling neglected baby

4.2, Measurements

As mentioned in Section 3.1, the HeadUp device includes an IMU sensor consisting of a
3-axis gyroscope, 3-axis accelerometer, and 3-axis magnetometer As previously mentioned,
the main aim of this study is the use of custom build sensors to help capture active range
of head movement for children with CP? (level V and V) and help control their movements.
In such CP levels, the child cannot walk or stand or sit by him/herself, the child can
only sit with support. This means the lower part of the body will be stationary and will
not affect head movement, as a result only one IMU has been used to capture the head
movement. Additionally, different studies showed that one IMU can capture the full head
orientation [24,51-53].

A HeadUp device was mounted on the subject’s head using a head cap for severe
children with CF, while it was located on a hair hoop for children with mild CP. Figure 14
shows that HeadUp was mounted on the child’s head, allowing the child to move his/her
head in different directions while seated. HeadUp was used to gather the acceleration,
magnetic field, and angular velocity of the head. The data gathered from HeadUp were
applied to evaluate the [ICA based on the proposed method.
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Ilach child wore the HeadUp device while sitting with lumbar support and was instructed
to perform the following movement (refer to Figure 2) [24,54,55]

¢ Case 1: sit still without any movement (Natural).

¢ Casc 2: dorsal extension and ventral flexion.

¢ Case 3: right lateral flexion and left lateral flexion.

*  Case 4: right rotation and left rotation.

HeadUp device ’ A

Latersl

‘ (Flection /K xtention)

Flecting /Fytention

(@
Figure 14. System implementation. (a) ITeadUp placement. (b) Child with CP wearing HeadUp device.

These movements are recorded by the receiver device, which receives the data packets
(Figure 4), and displays the results on the host computer and saves the data as a CSV file.
The HeadUp system measured head angular movement (sagittal plane, frontal plane) and
rotational movement (transverse plane) at 100 Hz.

5. Result

As mentioned in Section 1, IICA affects many aspects of a child’s life. IHead stability
gives a stable reference to vertical posture, which is very important to achieve the vertical
posture. Figure 15 illustrates the HCA in the sagittal plane, frontal plane, and transverse
planc during the sitting trial for subject 1 (child with CP). Figure 11 shows the same head
movement for a typically developing child of the same age and no reported CROM problem.
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Figure 15. Head movement in 3 dimensions for a child with CP.

Figures 11 and 15 show the same sequence head movements; the subjects were asked
to do /L, LLI/RLY, and RR/LR head movement. ligure 11 shows that head movements
for a typically developed child. That figure clearly indicates the child could perform these
moves, and he/she has a good head control ability and no CROM problem. While Figure 15
indicates that the child with cerebral palsy had trouble controlling their head movement
and that figure contains more random movement than Figure 15.
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The research experiments start with case 1, where all participants were asked to sit
without any head movement. Figures 16 and 17 shows the results for case 1. The ex-
perimental results for each participant show considerable differences among the head
movement signals captured from typically developing participants and those captured
from children with CP.

As illustrated in Figure 17 in the sagittal plane for children with CP, continuous
variation in the F/E angle is missing for normal children, whereas normal head control
in the sagittal plan can be observed in Figure 16. Additionally, this difference is noted on
the RLF/LLF in the frontal plane in both figures. Figure 17 indicates the poor HCA for
children with CP.

Moreover, Figure 17 shows if the child’s head and trunk rotated or collapsed consis-
tently to one side. This information helps the physiotherapist perform physical therapy for
each child with CP.

Note that the head control ability for subject 1 was tested in different ways, the results
of which are depicted in Figures 15 and 17. Figure 15 depicts the case where the instructions
were to perform a different head movement, and that figure shows the child’s poor ability
to control his head. Then Figure 17 shows the same subject trying to sit still without any
head movement. The subject was able to control his head rotation in the Transverse plane,
but in the Sagittal plane and Frontal plane, it is hard for him to hold his head.
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Figure 16. Head movement for typically developing children.
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Figure 17. Head movement for children with CF.

The second part of the study experiments consisted of cases 2, 3, and 4, where all
participants were asked to perform simple head movements (F, E, LLE, RLE, RR, and LR).
The results for this part are shown in Table 2.

Table 2. Mean values and standard deviations of CROM for the participants.

Movements Typically Developing Children Children with CP
F 60.3° = 13.30° 55.4° + 10.11°
E 30.38° £9.10° 25.22° = 10.40°
RLF 35.7° £ 6.98° R L7
LLF 35.30 £ 8.307 33.81° £9.82°
LR 80.04° + 8.03° 60.96° + 10.23°
RR 78.81° = 10.86” 66.03° +9.27°

As mentioned in Section 3.3, the device accuracy was tested against another CROM
tool; protractor with arm. The mean square error was calculated to see how close the
HeadUp’s measurements were to the ground truth. The reported mean square error
was less than 2°, which demonstrates the validity of the TTeadUp device. Although the
test was done for only 6 s, device validity was tested for a longer time during research
experiments. Figures 11 and 15-17 show the fast response time and the clean readings with
no accumulative drift or noise, demonstrating the proposed SFA's validity.

6. Discussion

This study showed an investigation in applying an IMU-based system to capture
active head movement and measure head control ability for young children with severe
CP; level IV or V. It was found that the HeadUp system demonstrated the capability to
record the head movement in E/F, LLF/RLE, and RR/LR while sitting.

Moreover, HeadUp device allows physicians to capture children’s active head move-
ment while they are engaged in various activities—whether in the health center or through-
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out their regular lives in their home. The HeadUp system could aid in improving diagnostic
and in the suggestions for treatments.

The HeadUp device was mounted on the subject’s head while sitting with lumbar
support, as illustrated in Figure 14, and all the participants were instructed to perform
different head movements.

Figures 16 and 17 show the HCA without any instructed activity. In normal cases,
the head movement angles should be around zero, and this can be clearly seen in Figure 16.

Figure 16 shows that the HeadUp devise is able to estimate the head movements
for typically developing children in all directions. The difference in the sagittal plane in
Figures 16 and 17 indicates the number of head drops for children with CP. This shows
the lack of head control ability by children with CP which has been captured by the sensor.
Figure 17 shows the HCA for children with CF. Different medical information can be
extracted from that figure:

1. All participants with CP have a poor head control ability.

2. The head of subject 4 collapsed consistently to the right side, while the head of subject
5 collapsed corlsistently to the left side, which mean the muscles in these sides are
weak(this can be seen from RLF/LLF angles).

3. Subject 3 has better HCA than other participants with CP.

After the first stage, different instructions were given to the participants to evaluate
the ability of HeadUp system to measure the range of motion (ROM), as shown in Table 2.
There were several noticeable differences between the ROM of typically developing children
and children with CF. For example, the average ROM in the transverse plane (LR and RR)
for a child with CP’ was 63° compared with an average ROM of 79° for typically developing
children. This means that the head rotation ability for children with CP is lower than
Typically developed children.

Head motion in the frontal plane for normal children had a larger mean ROM (35° RLF
and 35° LLF) for the five healthy participants compared with a mean of 32° RLF and 33°
LLF) for the children with CF. The mean CROM in the sagittal plane (Flexion) was 60°
for normal children, while it was 55° for children with CP All these medical informa-
tion can be valuable for improving diagnostic and in the suggestions for treatments and

physiothereby program.

7. Conclusions

Head movement tracking for children with CP with proper efficiency is a challenge.
There is a need for a low-cost, accurate, and easy-to-use device that can evaluate and
analyze the HCA to detect poor head control for children with CP. Therefore, this research
paper presents in-house head motion monitoring to analyze the HCA and to provide the
best physiotherapy program.

On the basis of the acquired results, the proposed HeadUp device showed an average
reliability of 2° compared with other CROM tools (protractor with arm). The Head Up-based
MU device captured head movement in three planes (sagittal, frontal, and transverse).
An SFA was presented to overcome the high noise in the measurements, the noise was
reduced in the filtered readings, and as a result, the accuracy of the measurements was
increased, which paved the way to accurately identify the HCA for children with cerebral
palsy. IMU utilization resolves the problems faced by current CROM methods, such
as accuracy, expense, and size, by designing a portable, small, and low-cost alternative
that clinicians and physiotherapists can utilize for monitoring the HCA to identify head
movement abnormalities.

The validity and reliability of the HeadUp device against one of the standard head
angle measurement tools (protractor with arm) were evaluated in two planes (sagittal
and frontal). HeadUp’s evaluation gives therapists important information that helps in
identifying the appropriate and effective rehabilitation program. In future work, several
possible improvements to the system can be explored further, such as:
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*  Validates the HeadUp system'’s resulls against a more reliable tool in three planes
with both devices on the child’s head.

*  Investigates different filtering algorithms, such as the Kalman filter

*  Use the HeadUp device in an entertaining way as a HCA trainer and examine its
performance to improve the child’s head stability.

*  Constructed a standalone HCA diagnosis device with the help of machine learning
algorithms to distinguish head movement disorder from the typical head movement
patterns pattern.
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The following abbreviations are employed in this manuscript:

CP Cerebral palsy

CROM  cervical range of motion
MU inertial measurement unit
SFA sensor fusion algorithm

GMFCS  Gross Motor Function Classification System
HCD head control device
HPT head position trainer

F Flexion

E Extension

RLF Right Lateral Flexion
LLF Left Lateral Flexion
RR Right Rotation

LR Left Rotation

Acc accelerometer

Gyro  gyroscope

LPF low pass filter

HCA head control ability
ROM range of motion
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Abstract: Personal protective equipment (PPE) is an essential key factor in standardizing safety
within the workplace. Harsh working environments with long working hours can cause stress on the
human body that may lead to musculoskeletal disorder {MSLY). MSL refers to injuries that impact the
muscles, nerves, joints, and many other human body areas. Most work-related MSD results from
hazardous manual tasks involving repetitive, sustained force, or repetitive movements in awkward
postures. This paper presents collaborative rescarch from the School of Electrical Engineering and
School of Allied Health at Curtin University. The main objective was to develop a framework for
posture correction excrcises for workers in hostile environments, utilizing inertial measurement
units (IMU). The developed system uses IMUSs to record the head, back, and pelvis movements of
a healthy participant without M50 and determine the range of motion of each joint. A simulation
was developed to analyze the participant’s posture to determine whether the posture present would
pose an increased risk of MSD with limits to a range of movement set based on the literature, When
compared to measurements made by a goniometer, the body movement recorded 94% accuracy and
the wrist movement recorded %% accuracy:

Keywords: personal protective equipment (TT'E); hostile environments; posture monitoring; muscu-
loskeletal disorder; optical metion capture; fiber-optic sensing; c-textile sensors; inertial measurement
unit (IMU); Kalman filter; Fuler angles; quaternion angles; Unity; human joint measurement

1. Introduction
L.1. Background

PPE is an essential key factor in standardizing safety within the workplace. Harsh
waorking environments with long working hours can cause stress on the human body may
result in musculoskeletal disorder (MSD). MSD refers to injuries that impact the muscles,
nerves, joints, and many other human body areas [1]. Most work-related MSD results from
hazardous manual tasks involving repetitive, sustained foree, or repetitive movements in
awkward postures [1].

MSD impacts the workers and the employer in the form of economic loss due to
absenteeism, lost productivity, increased health care, disability, and worker’s compensation
claims [1]. Based on the Australian Workers’ Compensation Statistics from 2018 to 2019,
36% of compensation claims were due to body stress, resulling in a median of 6.2 weeks
lost per severe claim [2]. The percentage rate of severe claims due to MSD between male
and female workers is 87%, with laborers being the highest compared to several other
working groups [2].

The age group most impacted by this issue are between 45 and 49 years of age.
However, even the youngest workers under 20 years old have 3650 claims of injury and
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MSD [2]. These statistics show that this is, in fact, a severe issue that needs to be dealt with
and will be beneficial for all working-age groups.

1.2. Existing Methods

A standard device currently used to measure joint angles is known as a goniometer.
A specific type of goniometer is used to measure motion in the spine and is known as a
gravity-dependent goniometer or inclinometer [3]. This method requires precision for an
accurate reading that is only obtained through practice and skillful observation [3]. The
slightest misplacement can lead to an inaccurate reading and usage would not be suitable
in the proposed application area and will not offer continued monitoring of the active range
of movement.

Safe Work Australia’s Hazardous manual task Code of Practice states that a movement
that is repeated or sustained for long period that ranges 20° out of the human posture’s
natural state can pose a significant risk of MSD [4]. An angle of 30° for spinal range is used
to make the range less conservative. In addition to this, a goniometer is used to verify the
obtained data.

Optical passive motion capture technologies use retro-reflective markers attached
to the body parts of the individual that reflects light onto a nearby camera lens. From
this reflection, the position of the marker is calculated within three-dimensional space
and recorded [5]. This approach is also known as motion capture or mo-cap which is
the process of digitally recording the movement of people [6]. This approach is used in
sports, entertainment, ergonomics, medical applications, and robotics and is also known as
performance capture when looking at the full body, face, and fingers. Optical active motion
capture uses the same technique, but rather than reflecting light, the light is emitted [5].
Optical motion capture technology provided the most accurate results based on research [5]
and is well equipped for use in a laboratory environment. This method is considered as the
gold standard for capturing human movement; however, due to its considerable expense,
with a simple Vicon system [7] costing around $250,000 Australian dollars in 2011 [#], its
impracticality for small harsh environments, and its inherent complexity [9], optical motion
sensing is impractical for most field-based settings.

Fiber-optic sensors are another example of potential field use and rely on the mea-
surement of light traveling through an optical fiber system. This measurement can be in
terms of light intensity, phase, or polarization [10]. Fiber-optic sensing provided a robust
design that could withstand harsh environments by tolerating high temperatures, offered
a wide dynamic range and large bandwidth, and was not susceptible to electromagnetic
interference, radio frequency, or corrosive environments [11]. Even though this is a new
method recently developed for posture monitoring, it has shown that it is a solid competitor
compared to optical motion capture technology producing similar results [12]). However,
due to its considerable expense and inherent complexity, fiber-optic sensing was not chosen.

Another potential approach could be the use of e-textile sensors, which is a common
phrase referring to electronic textiles. Electronic textiles are fabrics that incorporate elec-
tronics and interconnections woven within them [13]. E-textile sensors provided a less
visible and invasive design. This method provided reliable results when compared to
optical motion capture technology [14]. This procedure required minimal complexity to
implement. Due to this method’s lack of durability in harsh environments (susceptible to
interference with parasitic capacitance due to heavy sweating and relaxation of the tight
stretchable fabric due to continuous use and washing) which can result in unreliable data,
e-textile sensors were not chosen [14].

Inertial measurement units (IMU) are one of the popular field-based methods for
tracking the movement and positioning of an object. IMU’s consist of an accelerometer to
measure force and acceleration, a gyroscope to measure the rate of change in angles, and
lastly a magnetometer that utilizes the earth’s magnetic field as a fixed reference for the
current estimation of the IMU orientation to prevent drift [15].
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The inertial measurement unit (IMU) provides a well-developed, non-invasive, afford-
able design with long battery life [16]. Less advanced theory is required to implement this
method and has proven to be a reliable form of posture monitoring with several cases to
refer to [17]. There is an option of customizing the IMU or choosing a pre- calibrated and
developed system. Due to these advantages, IMUs were chosen as the desired method.
There are several data-driven methods for using IMU data in conjunction with neural
networks to classify human movement. For example, IMUs have previously been used for
medical purposes such as capturing foot drop in [18] and the hand movement of children
with cerebral palsy in [19]. Ref. [15] shows a system for using multiple IMUs connected to
the legs of patients with foot drop issues and uses machine learning to classify the severity
and need for surgery compared to healthy participants. Ref. [16] uses IMUs to capture the
hand movement of children with cerebral palsy, as well as typically developing children,
and uses machine learning to classify the movement associated with cerebral palsy from
the IMU data. In another example, [20] provides a method for using image processing,
neural networks, and public databases for capturing human movement. They implement
this using 15 sensors. Even though the results look very promising, the large number of
sensors and the processing power required to analyze the data are unsuitable for hostile
environments. To overcome this issue, rather than relying on machine learning, the pro-
posed system focuses on real-time quaternion data and a range of joint angle movements
to monitor the user movement, as well as provide feedback to them for potential use in
posture correction exercises. The detail of this implementation is explained in the methods
section of the paper [20].

1.3. Contribution of the Paper

The main contribution of this paper is providing a digital, low-cost system and frame-
work for human posture monitoring and exercises for workers in a hostile environment.
The sensor set up provides a clinically accurate representation of wrist, elbow, and knee
joint movement which has been validated in a Vicon motion analysis system and goniome-
ters. This system and framework provide the ability to adjust the range of movement for
different body parts and the length of time spent at each range. This framework can also be
utilized as a digital rehabilitation tool where rehab exercises related to the wrist, elbow, and
knee can be captured in real time and provide the user with feedback on how accuralely the
exercise is being mrnpleled, For this paper, the focus has been on providing this feedback
for workers in a hostile environment.

2. Methods
2.1. System Requirements

The aim of this paper is to provide a system that will enable workers to have their
posture monitored whist doing certain activities and provide posture correction exercises,
with feedback to the user so they can see if they are doing the exercise correctly. The target
user will be any worker or individual that require having their posture monitored whilst
doing activities. This system will be used to provide posture monitoring with a visual
aspect for now.

Requirements that were identified as essential for the success and effectiveness of
the project were that the system must be able to record live stream data, show a visual
representation of movement, detect harmful and non-harmful angles which need to be
defined for each user, and display a message for the user regarding the harmful position.
Additional requirements that will be examined are the measurement of wrist, knee, and
elbow joint angles.

A process diagram for the proposed system can be seen in Figure 1 and shows the
process that was followed when implementing the system.
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Figure 1, Process diggram.

2.2, Selecting a Suitable Sensor

One of the first steps for this project was to select suitable IMU sensors that are small,
lightweight, have a long battery life, utilize BLE 5.0 (Bluetooth Low Energy), have a high
sampling rate, provide continuous measurements throughout the working shift, and are
economically priced. BLE 5.0 connectivity is needed as it is more robust and can transmit
8 times more data at twice the speed compared to BLIE 4.3 or BLIE 2.1 [21].

There are a wide variety of off-theshelf IMU sensors on the market; however, only a
select few IMU sensors seen in Table 1 were used for comparison. With the aforementioned
factors considered, Xsens Dot was chosen as the IMU to use in this project as it can be seen
in Figure 2 that the Xsens Dot was the most well-rounded choice, although the Vicon blue
trident was a close contender. ITowever, due to the noticeable price difference Xsens Dot
was chosen. Figure 3 shows a photo of the Xsens Dot sensors used in this paper.

Table 1. Different IMU choices for posture monitoring.

M Sag‘ptleins Connectivity B{li‘;ﬂf Weight Size Price
363 €495.00
Xsens Dot [27] 120 Tk BLES.4 9h nag 30 (~5798.05 ALTD)
10.5 mm for 5 pack
42 27 $1600.00 USD
Vicon Blf:*s] Trident 4944, BLES.0 12h 954 <11 (~52184.36 AUD)
- mm each
51 34 £359.00
Shimmer MU [24] 128 Hz BLE21 14h o6g 1 (~S578.79 AUD)
mm each
365 £2480.00
Bonsai IMU [25] 50 Hz BLE43 16h 158 32 (~54014.44 AUDY
135 mm for 15 pack

Orientation and free acceleration are obtained from the Xsens dot by means of an
in-built fusion algorithm and a Kalman filter. This fusion algorithm is referred to as the
XKFCore of the Xsens Dot IMU [22].

'The Xsens Dot is sized at L:36.3 x W:30.4 x TL:10.8 mm with a weight of 11.2 g. This
provides a small and lightweight device that does not hinder the user’s movement. The
internal storage is 64 MB with a sampling rate of 800 Hz. This provides enough storage
for storing the captured data when necessary and a sampling rate capable of capturing
fast movement. The output rate ranges from 1 Hz to 60 Hz with 120 Hz available only for
recording. Communication is conducted through Bluetooth [22].

The Xsens Dot provides 9 h battery life which means the sensors can provide con-
tinuous motoring of the posture without the need to change the battery. The electrical
current consumption of one Xsens Dot is 68 mA [22]. The battery within the Xsens dot is an
LIR2032H rechargeable coin battery. Battery specifications include a nominal capacity of
70 mAh, a nominal Voltage of 3.7 V, and a working temperature of —20~+607 [22].
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Figure 2. Comparison graph for IMU selection based on Table 1.

: i

Figure 3. The Xsens Dot IMU [18].

The Xsens Dot can operate in temperatures ranging from 0 to 50° Celsius which
is within the required standards for underground environments. 'The IP Rating is IP68
which indicates that the Xsens Dot can withstand damage caused by dust or water {can be
submerged up to 1.5 m deep} [26].

2.3. Filtering and Sensor Fusion

1t is necessary to use fusion algorithms to filter out the external noise and integrate all
the sensor data. There are several different methods used for filtering, namely, for example,
Kalman filtering, complementary filtering, and particle filtering. ‘The Xsens Dot uses an
in-built fusion algorithm for capturing real-time orientation and a filtering method such as
a Kalman filter.

Kalman filtering is one of the most common estimation algorithms and plays an
essential role in the IMU fusion algorithm [27]. Developed in 1960, the Kalman filter is used
today for navigation systems and control systems [25]. ‘The objective of the Kalman filter
is to minimize the mean squared error of the measured data compared to the estimated
results [24]. This is completed by using two basic steps: prediction and correction. 'The
prediction step uses the control commands given to predict where the dynamic system will
be at the next point in time. The correction step uses the data obtained by the IMU sensor
to correct any potential mistakes that have been made and determines a prediction error to
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use when the following prediction is made [27]. This prediction and correction step cycles
continuously to provide accurate results and is known as recursive estimation.

One limitation that the Kalman filter possesses is that it is not well suited for working
with nonlinearities due to the assumptions made to develop a Kalman filter; however,
since human movement is linear, it is not a major issue. These assumptions being that
the filter will only work with Gaussian distribution, and all models are linear [30]. An
alternative Kalman filter was created, known as the extended Kalman filter, that deals
with non-linearities by performing local linearization with the Taylor approximation of
the non-linear model to work around this problem. This method is used to turn it into a
linear model based on linearization points that need to be updated for each prediction of
the recursive estimation [30].

Euler angles describe the rotation and orientation of a body in three-dimensional
space from an initial frame to a final frame [31]. The angles used are commonly known
as yaw, pitch, and roll. Euler angles describe the orientation between two 3D coordinate
systems. This orientation can be represented ina 3 « 3 coordinate system parameterized
by Euler angles.

Advantages to using Euler angles are that it is easier to visualize and can describe ro-
tation and orientation in a precise manner [32]. Euler angles do have a disadvantage
which is that this technique is susceptible to gimbal lock, which is the phenomenon
where one degree of freedom is lost due to two axes aligning. For example, when
the pitch approaches 907, the roll and yaw is locked, thus making them indistinguish-
able [33]. Without an external reference, it is impossible to re-orientate the axis once gimbal
lock occurs [33].

A method of working around gimbal lock is to use quaternion angles instead. Quater-
nion angles consist of 4 components: a real component and three imaginary components.
Quaternion angles describe three-dimensional rotations and orientation with a generaliza-
tion of complex numbers [32]. These angles are then later converted to a regular rational
matrix, instead of a rotation matrix as seen with Euler angles. Quaternion angles simplify
the equation by using a quaternion notation to represent a rotation of # degrees about an
axis defined by the vector ff = [y, uy, uz), as seen in Equation (1).

¥ -
q-—wleg)+{uxi+"?j+u;k)3in( g) @

2.4. Software Specification

The Unity game engine [34] and the Xsens Dot application were the tools utilized for
implementing the software component of the posture monitoring framework.

Unity is a powerful system used for designing games and application scenes in 2D
or 3D. With correct use of programming, Unity can be utilized to capture motion data for
analysis. Programming language such as C# is used to develop scripts within the model.
Unity was the main platform for developing the model as it has extensive reference and
scripting documentation that can be used to start obtaining motion capture data as quickly
as possible.

The hardware Xsens Dot IMU provides an application called “Xsens dot” that is used
to obtain motion capture data directly for the IMU via Bluetooth. This application has the
capability to record real-time streaming of the IMU and log the data into a csv file that can
be exported onto a computer for analysis. From the Xsens Dot application provided, the
IMUs were connected to the application through Bluetooth connectivity. The advanced
application gives the users the option to measure the quaternion, Euler, free acceleration,
acceleration, magnetic field, and angular velocity.

2.5. Prototype Design

A prototype has been set up with a standard PPE helmet that has an inner frame for
fitting adjustments (Figure 4). It was decided that the Xsens Dot sensor will be placed on
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the top of the head as this placement will provide the most accurate results. It was decided
that a harness similar to the harness scen in [17] shall be created to determine the correct
placement of the IMU on the user’s back for the best results. It was determined that placing
the IMU sensors on the back of the chest and the hips is the best placement to receive
reliable results. The harness prototype can be seen in Figure 5.

Figure 5. Harness prototype.

Harnesses similar to this are being used in some mines around the world. This harness

is designed to carry additional load that would normally be placed around the belt/pants.

This design prevents any possible injury or discomfort.

The Xsens Dot IMUs are placed within a plastic zip-lock bag and positioned on
the harness with Velcro. This is not a permanent solution. However, it does provide a
temporary solution to evaluate posture monitoring.

Utilizing the Xsens Dot application discussed, the head movement was monitored

(validation of this IMU has already been completed and can be viewed in Validation).

Figure 6 shows a user pivoting (bending) the head left and right to a 30° angle. Thirty
degrees has been chosen as discussed in the existing Methods section. When the head pivots
to the right, the Fuler angle in the X-axis produced a positive 30" angle. When the head
pivots to the left, the Tuler angle in the X-axis produced a negative 30” angle. In the natural
state the angle is nearly zero. The flexion and rotation of the head was also monitored and
produced the same pattern of results with the Y-axis and Z-axis, respectively.
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Pivot of the head

Figure 6. Oricntation measurement with head pivoting.

Figure 7 shows the participant pivoting (bending) the chest left and right to a 30” angle.
When the chest pivots to the right, the Culer angle in the X-axis produced a positive 30
angle. When the chest pivots to the left, the Euler angle in the X-axis produced a negative
307 angle. In the natural state, the angle is nearly zero. The flexion and rotation of the
chest was also monitored and produced the same pattern of results with the Y-axis and
/-axis, respectively.
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Figure 7. Orientation measurement with chest pivoting,

Figure 8 shows the participant pivoting (bending) the hips left and right to a 30° angle.
When the hips pivot to the right, the Euler angle in the X-axis produced a positive 30° angle.
When the hips pivot to the left, the Euler angle in the X-axis produced a negative 30° angle.
In the natural state, the angle is nearly zero. The flexion and rotation of the hips were also
monitored and produced the same pattern of results with the Z-axis and Y-axis, respectively.
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Figure 8. Orientation measurement with hips pivoting.

Standard Velero straps were used to monitor any arm or leg movement. The orientation
measurement of the arms and legs are not required as only the head, chest, and pelvis are
the main body parts that will be monitored to determine poor posture. The Xsens Dot
sensors will be positioned on the Velcro straps similarly by placing the Xsens Dot sensor
into a plastic zip-lock bag and attaching the sensor to the arm or leg with Velcro.
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2.6. Connecting to Sensors

The sensors needed to be connected to a computer via Bluetooth to transfer their data
and pass them to Unity for visualization. To achieve this, a graphical user interface has
been developed in Python that uses Bluetooth to scan for available IMUs, synchronizes
them, and passes the information directly to Unity. The application has been developed by
implementing a reliable Transmission Control Protocol (TCP) client (the Python Bluetooth
module) and TCP receiver (Unity script asset called the ServerReceiver).

TCP (Transmission Control Protocol) is a transport layer protocol that is used in
conjunction with IP to ensure the reliable transmission of packets. TCP is more reliable as it
requires a handshake to start the session. Handshake refers to a connection establishment
protocol where a connection request (CR) is first sent to the receiver from the sender and
then waits for a “connection accepted” sent to the sender from the receiver.

A GUI has been developed in Python where the users can scan the sensors, as seen in
Figure 9. This interface streams the IMU crientation data to Unity where the data stream
can be seen in Figure 10.

2 sSens Dot Bluetoath — *

Figure 9. Bluetooth module and GUIL.

Once connection from all sensors have been established, selecting the run button
will start streaming the quaternion angles from each sensor to the receiver. The TCP

packets in JSON format are shown in Figure 10 where each line represents a new packet.

With quaternion, ‘wq’ represents the real component, and the remainder represents the
imaginary components.
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Figure 10. TCP Packets in JSON format.

2.7. foint Angle Measurements Methods

Three different methods were examined to measure joint angle movement of the wrist,
knee, and elbow. The method chosen needed to be able to replicate measurements that are
made by a goniometer (a medical device used to measure joint angle during movement).
The chosen method was incorporated within the simulation for users to access, if desired.
The measurements made will also be accessible through a csv file within Unity.

The first method involved obtaining two quaternion angles from the child game
object and the object that it is immediately attached to (the parent). The quaternion angles
obtained from the parent and child are used to create a rotate vector that is in reference to
a unit vector on an axis (obtained by script quaternions.cs). A dot product between the
two rotate vectors is obtained and arc cosine is used to produce an angle which is later
converted to degrees. A high-level flow chart of the process (with wrist rotation used as an
example) can be seen in Figure 11.

.“\‘
. iy \
7 el Dot product
T -
./
q \ LT e cosine
U omosen [ l

Figure 11. Method 1 joint calculation.

The second involved obtaining two quaternion angles from the child game object and
the object that it is immediately attached to (the parent) and determining the difference in
angle between the child body part and the parent body part. This difference is calculated
by multiplying the inverse of the quaternion from the parent to the quaternion from the
child. This new quaternion is converted to Euler and displayed to the user. A high-level
flow chart of the process (with wrist rotation used as an example) can be seen in Figure 12.
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Figure 12. Method 2 joint calculation.

'The third method involved using a function provided by Unity, namely “gameob-
ject.localRotation.eulerAngles”. This function provides an angle of the child game object in
reference to the object that it is immediately attached to (the parent). For this example, this
function will provide an angle, which can be represented as a joint angle, between the hand
and the lower arm. A high-level flow chart of the process (with wrist rotation used as an
example) can be seen in Figure 13, The three methods have been simultancously compared
to measurements made by a goniometer.
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Figure 13. Method 3 joint calculation.

2.8. Visulizing the Data in Unity

'The avatar used to mimic the participant’s movements was imported from the Unity
asset store as it uses the ragdoll feature. This enables the user to develop a humanoid avatar
with objects placed within their respective position based on the body mapping. With this
helpful feature, it enables the user to have control of several joints of the humanoid with
significant detail, as can be seen in Figure 14.

Further development of the scene was made, as seen in the result section to ensure
users can sce the date, time, movement angles of the main focused body parts, a message
board when objects are out of bound, and a dropdown selection to change monitoring
scenes. Further developments were made where joint angles can be monitored, thus a
toggle selection for this method was incorporated as well.

Chapter 4: Use Case Examples

165



Sensors 2022, 22, 9618 14 0f23

Figure 14. Body mapping of Unity avatar.

2.9. Sensor Evaluation

The accuracy of the Xsens Dot IMU sensors were validated with Curtin University’s
Vicon motion analysis lab. A simple wrist flexion and extension exercise was completed
while the arm was resting on a table and reflectors were placed on the sensors.The data
provided by the Vicon set up was then compared against the orientation data provided by
the IMU. An example of the Vicon data vs. Xsens Dot data has been provided in Figure 15.
Please note that the signals have been time shifted so the data can be compared more easily.
The location of reflectors for the Vicon system can been in Figure 16

Flex Extend

Figure 15. Validation of Xsens Dot IMU with Vicon.
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Figure 16. Placement of reflectors for the Vicon validation,

After the accuracy of the IMUs were validated, a goniometer was then used to compare
the reported results from the sensors to the readings of the goniometer. In this validation,
full body rotation and joint angle validation was compared to a goniometer. The results of
this validation have been discussed in the preliminary findings section of this paper.

3. Results

l'ull body movement was made possible by developing an array of structs with
13 allocations. A struct is a collation of variables that can be different types in programming,
Lach allocation represents an essential body part used for posture monitoring. Lach struct
consists of a quaternion, three Euler angles for rotation, correction, and positional control,
the Xsens Dot sensor number controlling their respected body object, and lastly the name of
the object that is being controlled. Adil’s method was used to obtain the quaternion data of
the Xsens Dot sensors. The quaternion angles of each sensor used are converted to Euler via
an in-built Unity function called quaternion.culerAngles [35]. Euler was chosen to be the
displayed angle to the user as it is the easiest and most common angle used to understand
rotation. OnAnimatorlK function [36] was used to provide the Euler angles to the avatar
in order to create movement. This function that is provided by Unity gives the user the
ability to access any object that is part of the avatar’s anatomy (seen in Figure 14). The
final version of the environment can be seen in Figure 17 and the movement can be seen in
Figure 18, Supplementary Materials Video S1 to S5 contain several video demonstrations
for the framework.

One problem that arose when implementing full body movement was that a calibration
was needed to ensure that the avatar can return to in its natural state when the sensors
set the avatar in an unnatural position. This calibration needed to be created in a way
that still ensured that the angles provided were still deemed accurate and only needed
to be completed the first time sensors were attached. This was achieved by creating a
trigger token, the C button. When the user pressed the C button, the system will took a
new reading of the Xsens Dot sensors and stored it in a temporary rotation float. From
this, the original rotation is subtracted from the temporary rotation, providing a difference
that establishes a new rotation between —180 and 180°. This method can be seen executed
in Figure 19.
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Once full body movement was attained, it was necessary to monitor different move-
ment scenarios. It was determined that standing, sitting, lifting, and joint movement would
be monitored in this model. A user interface dropdown selection was made that showcased
the different scenarios available. This dropdown was connected to the setPosition.csv script.
An integer variable between 0 and 4 was given from the dropdown list to the Pos function
within setPosition.csv script representing scene None to Lifting, respectively. This function
provided a Euler angle variable noted as “pos” to the Rotations.csv script. Through all
4 scenes, the head, chest, and hips are being monitored with the head, chest, hips, upper
arms, and upper legs receiving rotation. Figure 20 showcases some natural movement that
can be accomplished from selecting the sitting or lifting scene, respectively.
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Figure 19. Implementing Calibration.
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Figure 20. Natural sitting motion with sitting scene (above) and natural crouching motion with
lifting scene (below).

4. Discussion
4.1. Principal Findings

As previously mentioned, three joint measurements methods were investigated.
Method 1 and Method 2 stayed consistent, providing results similar to the measurements
made by the goniometer, while Method 3 started producing promising results regarding
the knee and elbow. Method 3 produced good results at a later state since the parent and
child both started with a Euler angle of (0°, 07, 07). When the wrist joints were measured,
the upper arm had a starting Euler angle of (=807, 0%, 0”) and the lower arm had a starting
angle of (07, 07, 90°). It was decided that Method 2 would be the method of choice as
the results gave clear positive and negative values based on the choice of direction when
completing the required motions. Method 2 also had clear singular changing X, Y and Z
angles when completing cach activity, which will be more favorable to the user.

The sensors were validated against a goniometer by taking angle measurements at
0, 10, 20, 30, 40, and 50" angles using the goniometers and comparing the readings with
the IMU-based measurements. Table 2 illustrates the validation results of the head, chest,
and hips when compared to measurements made by a goniometer. It is seen that the
results can be deemed as reliable. Tables 3 and 4 illustrate the validation results of a user’s
wrist when the hand is in an ulnar and radial deviation, respectively. Tables 5 and 6
illustrate the validation results of a user’s wrist when the hand is in flexion and extension,
respectively. Tables 7 and & illustrate the validation results of a user’s wrist when the hand
is in pronation and supination, respectively. Table 9 showcases the validation results of a
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user's knee when the hand is in flexion and extension. Table 10 showcases the validation
results of a participant’s elbow when the hand is in flexion and extension. The results of
the tests prove the reliability of Method 2 as the main source of joint measurement for

this application.

Table 2 Measurements of full body movement (All angles are in degrees).

Goniometer Head Chest Hips
Upuna Mot PO g Lt PR e ln Tighes
Motion  sht nﬁ: Motion  Jisht Kisht  Motin SR Riaht
Motion = Motion : on
Angle XAngle YAngle ZAngle XAngle YAngle ZAngle XAngle YAngle ZAngle
a 0 (1] a o o 0 i (1] o
10 10 10 8 1 10 9 10 10 n
20 20 2 19 20 0 20 20 a0 15
30 2 30 30 29 30 30 30 a EY
40 £ k-] L 40 A0 40 A N/A
50 49 Lo 50 49 50 47 50 £ N/A
Table 3. Measurements of ulnar deviation of wrist (All angles are in degrees).
Goniometer Method 1 Method 2 Method 3
Joint Angle X ¥ Z X Y z X § o 7
0 e o 1 -1 o0 o -7 -8 -35
10 n NAN 11 -1 12 0 1 -74 -36
20 1% NAN 19 ~1 19 0 4 —67 —35
30 30 NAN 30 -1 31 0 11 ~58 -34
40 38 NAN 38 -1 39 0 16 -49 -32
50 50 NAN 50 -1 52 0 21 —40 29
Table 4. Measurements of radial deviation of wrist (All angles are in degrees).
Goniometer Method 1 Method 2 Method 3
Joint Angle X ¥ ¥ X Y ¥ b1 Y Z
o 1 NAN 1 -1 1 0 -6 -82 -36
10 11 3 11 -1 -9 0 -12 -9 -34
20 20 4 20 -1 -20 0 -18 -100 -32
30 29 4 29 ~1 -2 0 -3 -108 -29
40 42 5 42 -1 —38 0 -28 120 -24
50 50 [ 50 -1 —51 0 -31 -129 -19
Table 5. Measurement of flexion of wrist (All angles are in degrees).
Goniometer Method 1 Method 2 Method 3
Joint Angle X Y z X Y z X X z
0 ] 1 1 -1 0 0 - —83 —35
10 3 1 11 10 3 Q 3 —87 -35
20 2 22 2 21 2 o 11 -93 36
30 1 29 29 29 1 0 19 -100 37
40 1 39 39 39 1 1 26 —106 -39
50 2 50 49 48 3 1 M4 -113 43
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Table 10. Elbow angle measurements from flexion of the arm (All angles are in degrees).

Goniometer Methad 1 Method 2 Method 3

Joint Angle X Y z X Y z X Y Z
0 0 NAN 1 i 0 1] =2 1 —80
10 10 NAN 10 -1 10 0 7 3 80
20 il NAN 21 =1 21 0 18 5 —79
30 31 NAN 31 -1 30 0 7 7 ~78
40 40 NAN 40 -1 42 0 36 o 77
50 51 NAN 51 -1 50 0 46 13 -74

4.2. Conclusions

Upon completion of the project, an IMU-based human movement monitoring frame-
work has been provided that can be expanded to various possibilities beyond posture
monitoring. As described in the paper, this monitoring system relies on real-time quater-
nion data streamed via IMUs to Unity. Once the accuracy of the IMUs was validated against
Vicon motion analysis set up at Curtin University, three separate joint angle measurements
were implemented and validated against the goniometer. The goniometer comparison
demonstrated Method 2 as being the most accurate for the application area. The most
accurate method was achieved by obtaining two quaternion angles from the child game
object and the object that it is immediately attached to (the parent), and determining the
difference in angle between the child body part and the parent body part. This difference is
calculated by multiplying the inverse of the quaternion from the parent to the quaternion
from the child, converted to Euler and displayed to the user. A calibration functionality
was also implemented since IMUs will demonstrate inherent drift overtime.

There is scope for future work in the simultaneous joining of joint angle movement
with full body posture monitoring such that rehabilitation exercises can be explored.
Smoothness of motion can also be explored and included for further development in
the accuracy of results that would be deemed useful in the medical field. One of the main
advantages of the proposed system is that it does not rely on a specific type of IMU. As
long as quaternion data can be read from the IMU, it can map to this framework. This
has been made possible by moving all the calibration and joint angle measurement to the
software. Additionally, since the software was developed in Unity, it can be easily ported
to mobile platforms such as Andreid and Apple’s [0S and open the possibility of remote
training where clinical staff can provide remote guidance and advice while the sensors are
worn by the workers on site.

Supplementary Materials: The following supporting information can be downloaded at: hiips://
www.ndpi.com /article,/10.3390,/522249618//51, Video 51: Full Interface Demo, Video 52: Menuu System
Demo, Video 53: Calibration Demo, Video $4: Sitting Live Demo, Video 55: Head Movement Live Demo.
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Abstract: Gesture recognition is a mechanism by which a system recognizes an expressive and
purposeful action made by a user’s body. Tland-gesture recognition (HGR) is a staple piece of
gesture-recognition literature and has been keenly researched over the past 40 years. Over this time,
HGR solutions have varied in medium, method, and application. Modern developments in the arcas
of machine perception have seen the rise of single-camera, skeletal model, hand-gesture identification
algorithms, such as media pipe hands (MPH). This paper evaluates the applicability of these modern
HCR algorithms within the context of alternative control. Specifically, this is achieved through the
development of an HGR-based alternative-control system capable of controlling of a quad-rotor drone,
The technical importance of this paper stems from the results produced during the novel and clinically
sound evaluation of MPH, alongside the investigatory framework used to develop the final HGR
algorithm. The evaluation of MPH highlighted the Z-axis instability of its modelling system which
reduced the landmark accuracy of its output from 86.7% to 41.5%. The selection of an appropriate
classifier complimented the computationally lightweight nature of MPH whilst compensating for
its instability, achieving a classification accuracy of %6.25% for cight single-hand static gestures. The
success of the developed 11GR algorithm ensured that the proposed alternative-control system could
facilitate intuitive, computationally inexpensive, and repeatable drone control without requiring
specialised equipment.

Keywaords: alternative control; finger tracking; human computer interface (HCT); hand gesture
recognition (HGR); media pipe hands (MPH)

1. Introduction
1.1. Background

Alternative-control algorithms consist of two main components, a non-standard
human—computer interface (HCI) and a command mapping algorithm [1<4]. An alternative-
control algorithm is considered successful in its application if the alternative HCI extends
upon the functionality offered by the conventional control medium. Within the literature,
the degree of this success is commonly appraised against the following criteria: higher
accuracy, ease of use without holding any equipment or instruments in hand, shorter user
learning cycle, lower cost, offers capabilities that are not available in traditional interfaces,
and computationally inexpensive [5].

This paper proposes the use of hand-gesture recognition (HGR) as an alternate HCIL.
Gesture recognition is the mechanism by which a predefined physical action made by
a user is recognized by a system [6]. HGR has been an extensively researched topic over
the past 40 years [5], resulting in a plethora of different viable approaches. Modern HGR
applications use a machine-learning pipeline to achieve this recognition [5,7]. Within
literature, this pipeline is defined to consist of four subcomponents: data-acquisition
medium, gesture description, gesture-identification algorithm, and gesture-classification
algorithm [7-9].
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The application of I IGR in alternative-control algorithms for drones has been a popular
arca of research for several years, Various studies have investigated different combina-
tions of HGR subcomponents to optimise the process of recognising hand gestures and
translating these gestures into drone actions. In [10], the authors employed sensor fusion
between a mechanomyography band and a hand-mounted initial measurement unit (IMU})
to achieve robust control of an aerial drone using only the mechanical motion of the hand.
In [11], the authors utilised a single RGB camera with marker gloves to recognise static
gestures in combination with a hand-mounted IMU to recognise the dynamic motion of
these gestures. In [12], the authors used a single RGB camera input paired with MPH and a
long short-term memory neural network to achieve intuitive drone control that required no
calibration or specialised equipment. In [13], the authors created a drone control simulation
using a stereo camera (leap motion controller) as the primary input. In [14], the authors
constructed a novel glove-based HGR system that also provided vibrotactile feedback to
the system operator. ‘The modern approaches cited above represent just a small subset
of the HGR implementations that have been applied in the context of alternative control.
These approaches vary in the selection of all four sub-components, the general taxonomy
of known approaches for cach HGR subcomponent is explained in greater detail under
Section 1.2.

1.2. Existing Methods
1.2.1. Data-Acquisition Medium

The data-acquisition sources utilized by 11GR algorithms can be defined into two
governing categories, these being image-based approaches and non-image-based ap-
proaches [5]. The image-based category contains the following subcategories: marker,
depth camera, stereo camera, and single camera. The non-image-based category contains
the following subcategories: glove, band, and non-wearable. Non-wearable technologies
have been omitted from this investigation as they are an emergent technology with limited
implementations available [#,15]. Marker-based approaches have also been omitted from
this investigation as they have been made largely obsolete by advancements in machine
perception [5,8]. The remaining viable components are illustrated in Figure 1.
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Figure 1. IIGR data-acquisition categories.

1.2.2. Gesture Description

There are three aspects that form the gesture descriptor within existing THGR algo-
rithms. These are the physiological scope of the gesture, the information interpreted from
the gesture, and the model used to represent the gesture [16]. All three of these factors
vary greatly between the HGR implementations detailed within the reviewed supporting
literature [/,16,17].

Physiological scope refers to the pre-set taxonomy used to define the physical nature
of the gestures [16]. The main distinctions that are made in the existing literature when
defining this taxonomy are: the use of static or dynamic gesture set, the inclusion of wrist
maotion, and the number of hands that are used to form single gestures.

The information interpreted from gestures by HGR algorithms has three categories:
spatial information, pathic information, and symbolic information [6]. Spatial information
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refers to the position of the gestures within the environment. Pointing gestures are an
example of gestures that convey spatial information. Pathic or temporal information is in-
terpreted from the velocity and path that an observed gesture takes within an environment.
Much like spatial information, this is typically observed from the world coordinates of the
observed gesture. Symbolic information refers to the shape the observed gesture makes and
is typically interpreted through joint angles’ calculation or shape-matching techniques [6].

Within IIGR algorithms, the model used to represent an observed hand changes to
reflect the desired scope of input gestures [16]. As the number, complexity, and infor-
mation density of gestures increase, the complexity of the modelling method used must
also increase. Model complexity is directly proportional to the number of classifiable
landmarks that the model provides [16]. HGR modelling methods fall into two main cate-
gories: 3D-hased models and appearance-based models. These models are demonstrated

in Figure 2.
|

Figure 2. Hand-gesture modelling methods.

Less complex models such as the sithouctte geometry model are preferably used for
simple HGR applications as they offer very few classifiable landmarks. Given that it is
an appearance-based model, it is computationally inexpensive to generate as it can be
extracted directly from the image with little intermittent computation. These model styles
are best suited for low-response-time algorithms that specialize in lightweight and fast
operating applications. More complex models such as the 3D-skeleton model typically offer
up to 21 landmarks [16,18,19] for classification. These models require considerably more
computational power to generate accurately, but the 21 landmarks enable the calculation
of exponentially more distinguishable gestures. Due to the higher computational load
required to generate the model, they are typically employed in control applications where
a higher accuracy and a more expansive data set are required [20].

1.2.3. Gesture Identifiers

Gesture identification is a catch all term that refers to the method by which a human
hand is detected as apart from its background and transformed into a computer model
used for classification [5,8]. This process is often referred to as feature extraction [21]. The
model referenced is an estimation of the human hand, and the model type is as deseribed
in Section 1.2.2. The observational method used to collect the data from which the hand
is detected is the data-acquisition component discussed in Section 1.2.1. As there arc a
multitude of different approaches for each combination of model and observation method,
this review focuses on modern methods that utilize single-camera visual observation
methods and 3D-skeleton representations [22].

Media pipe hands (MP11) is a complete and well researched on-device real time hand
identification solution designed to operate using a single RGB camera [18]. The output
produced is a list of 2.5D), 21-landmark skeleton models for each hand observed within the
input frame. MPH utilizes a computationally efficient two-stage pipeline: the first stage
is a palm detector, and the second stage is the hand-landmark extraction method. This
pipeline was designed to minimize the computational load of 3D-skeleton identification in
two key methods. The first method uses a computationally inexpensive algorithm to locate
areas of interest within the image and then applies the landmark model only to these areas.
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The second method uses the tracking of identified hands between frames to reduce the
compulation requirements necessary to perform identification of the subsequent frames.

InterHand2.6M (IHM) is a relatively new gesture-identification algorithm that uti-
lizes a single RGB camera and a pre-trained convolutional neural network (CNN) labelled
ResNet to achieve highly accurate feature extraction [19]. The output produced is a normal-
ized 3D, 21-landmark skeleton model for up to two hands, specifically tuned to detect and
correctly label the left and right hands of a single operator [19].

1.2.4. Gesture Classifiers

Gesture classification refers to the process by which a feature extracted by the
gesture-identification algorithm is classified as a particular gesture from a pre-defined
list [5,21]. The classification of input-gesture models is a typical machine-learning problem
and can be addressed by numerous different algorithms. Popular approaches include
decision trees, K-nearest neighbours (KNN), the hidden Markov model (HMM), artificial
neural networks (ANNs), naive Bayes (NB), linear regression, bounds-based classification,
support vector machines (SVMs), and convolutional neural networks (CNNs). Modern
HGR approaches favour the use of classifiers that can handle high-dimensionality features
spaces and classify elements into many distinct non-linearly separable classes.

1.3. Contribution of the Paper

The primary contribution of this paper is the development of a cohesive, high acces-
sibility, low-cost, alternative-control algorithm. This paper used a multi-stage method to
identify, analyse, and clinically validate modern HGR components such as MPH. A cohe-
sive alternative-control algorithm was constructed by using the results of these analytical
stages to implement components that best complemented one another and satisfied the
overarching design criteria of the paper. This set of complimentary HGR components
operated at a high level of confidence and robustness against gesture confusion. The
developed HGR algorithm had a gesture-classification accuracy of 96.25% over an array of
eight input gestures, which is comparable to modern HGR algerithms [10-14]. The final
alternative-control algorithm was demonstrated using a quad-rotor drone, whereby the
algorithm was able to address its core developmental criteria and extend the functionality
of the drone’s conventional control medium. In comparison to modern alternative-control
systems for drones, the final algorithm presented in this paper provides an increased level
of accessibility, a higher computational efficiency, and a lower monetary cost. The increased
level of accessibility was achieved due to the clinical validation of MPH, which led to the
development of HGR systems that compensalte for the Z-axis instability of the MPH model.
This meant that users are no longer required to maintain ideal hand orientation in front
of the input RGB camera, making the system easier to operate than other approaches that
utilise MPH [12]. Furthermore, the final solution does not require specialised equipment,
further increasing its accessibility and lowering its monetary cost [10,11,13,14]. Finally, the
computational requirements of the final solution are minimal when compared to other
vision-based HGR alternative-control algorithms [12,13].

The results achieved in this paper support the use of HGR algorithms such as MPH
in alternative-control applications. Thus, the framework used to develop the alternative-
control algorithm detailed in this paper could be re-applied to a multitude of other ap-
plications by simply reconfiguring the command mapping component. The secondary
contribution of this paper is the novel validation of MPH medelling accuracy. These
data can be used to inform future projects on how best to apply MPH to their respective
applications even in project scopes that extend beyond alternative control.
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2. Methods
2.1. Methodology Structure
2.1.1. Overview

The investigatory scope of this paper focused on using pre-existing gesture-recognition
components to construct an alternative-control algorithm. This methodology section is
focused on the selection, validation, and implementation of these standalone components
to form a cohesive final algorithm. 'lo achieve this, each standalone component was
investigated, with subsequent investigations being adjusted to reflect the results of the
previous stages. This overview describes the structure of the investigatory method, the
governing criteria used to define each of the investigations, and the two key simplifications
used to manage the scope of the overall investigation.

Alternative-control algorithms consist of an [ ICI component and a command mapping
component. The HCE component selected for this project was HGR. From the literature
reviewed in Section 1.1, all TIGR algorithms consist of the following four components: ges-
ture deseription, data-acquisition method, gesture identifier, and gesture classifier. With the
inclusion of a command mapping component, the list of components required by the final
solution was derived. The subsequent investigation used to select a final implementation
for each of these components was broken up into six stages. The first stage was the selection
of a gesture-description model. The second stage was the selection of a data-acquisition
method. The third stage was the selection of a gesture-identification algorithm. The fourth
stage was the validation of the selected gesture-identification algorithm. The fifth stage
was the sclection of a gesture-classification algorithm. The sixth and final stage was the
derivation and tuning of a gesture-mapping component. The general structure of the
investigation is shown in Figure 3.
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Figure 3. Investigation structure flow chart,

2.1.2. Defining Simplifications
As demonstrated in Section 1.2, due to the mature nature of [1GR, there were numer-

ous unique approaches available for each of the four algorithm subcomponents. Given the

expansive scope of viable approaches, it was not feasible to investigate all possible subcom-
penent combinations directly. Consequently, to maintain the validity of the investigation,
three simplifications were defined to manage the scope of the investigation:

1. Components selected prior to the current stage of the investigation cannot be changed.
Implementations were only considered if they were applicable with the previously
selected components. Selected components should not be changed to accommodate
for the needs of a new proposed approach. For example, the data-acquisition method
selected in stage two could not be changed to accommodate for the requirements of a
gesture-identification component proposed in stage three.

2. Theselection of each component was to be made without consideration for future com-
ponents. The selection of cach component was to be based on the applicable governing
criteria, selection of previous components, and the relevant validation results.

3. The gesture-description and data-acquisition components were selected from the re-
viewed literature, without any new quantitative or qualitative analysis being performed.
Simplifications 1 and 2 enforced a linear investigation structure. By using this linear

method of selection, the number of applicable implementations reduced exponentially with
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each subsequent stage of the investigation. This reduced the scope of each investigation
stage to a workable level whilst maintaining the validity of the overall investigation.
However, these assumptions only worked to reduce the scope of the later stages of the
investigation. Hence, the inclusion of a third simplification was required to reduce the
scope of the earlier stages.

The third simplification removed the need for time-consuming experimental analysis
to be performed during the first two investigatory stages. This reduced the workload
required to analyse different implementations, allowing for a wider array of implementa-
tions to be investigated. This simplification did not compromise the validity of the overall
investigation for two key reasons. The first reason is that it is difficult to qualitatively or
quantitively analyse the effectiveness of different gesture-description and data-acquisition
methods without considering the HGR algorithms that are typically included within. The
most effective way to analyse complete solutions is to review the literature used to define
them, hence supporting the selection of these components following a literature review.
The second key reason is that the criteria relative to these two components are not defined
by analysable metrics, and as such can clearly be derived from the attributed literature ina
yes or no fashion.

By utilising Simplification 3 to inform the selection of the highest-level components
(Components 1 and 2), and then enforcing Simplifications 1 and 2, the scope of each in-
dividual section can be managed appropriately—facilitating an efficient derivation of the
final solution. Furthermore, the application of Simplification 3 enables the selection of Com-
ponents 1 and 2 within Sections 2.2 and 2.3 respectively, as no experimental investigation
was needed. This allowed for more specific testing to be defined for subsequent sections.

2.1.3. Governing Criteria

To ensure that a cohesive and effective final solution was developed over the course
of this investigation, a governing set of criteria were developed. The purpose of these
criteria was to augment the dependent and independent variables used within each in-
vestigatory stage, in a way that led to the development of an effective alternative-control
algorithm. That is, if the implementation selected for each component is selected because it
conforms best to the defined criteria, then the final solution will function as an effective
alternative-control system. The selected criteria were a subset of the list found in Section 1.1
of the literature review. These criteria were selected from the larger list to specifically
adhere to the design approaches used in [3,4] which successfully produced enervative and
effective solutions. The final set of governing criteria used in this project are listed below in
order importance:

1. Reliability in issuing the intended command: This criterion graded both the number of
unique commands the algorithms can issue, and the algorithm’s ability to distinguish
between these unique commands.

2. Reproducibility of the intended command: This criterion graded the algorithm’s

ability to robustly reprod uce the same action when presented with the same user input.

3. Physically non-restrictive equipment or instrumentation: This criterion graded how
restrictive the algorithm’s control interface was, referring to both restrictions caused by
elements that were physically placed upon the user’s body or elements that required
the user to operate within a restricted space or in a restricted manner.

4. Ease of operation and shorter user learning cycle: This criterion graded how complex
or difficult to learn the control interface was, considering factors such as complexity
of inputs, complexity of input structure and physical difficulty to form inputs.

5. Computationally inexpensive: This criterion graded the computation requirements
for the algorithm’s operation and inversely the speed in which the algorithm could
operate at if given an abundance of computational resources.

6. Monetarily inexpensive: This criterion graded the general cost needed for the algo-
rithm to function, including the cost of the computational hardware required to run
the algorithm and the sensory hardware to acquire data.
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2.2. Stage One: Selection of Gesture-Description Model
2.2.1. Overview

The first stage of the investigation selected a gesture-description method that could
facilitate specific and repeatable control of a complex system. This stage was affected
by Simplification 3, which specified that the investigation type was a review and not a
quantitative or qualitative investigation. As stated in Section 1.2.2, the gesture-description
component of an HGR algorithm consists of three subcomponents: gesture type, gesture
information, and gesture model. All three subcomponents were evaluated individually
and selected per Governing Criteria 1, 4, and 5.

Due to the relevant simplification, the method used to determine the final implemen-
tation for these three subcomponents was a literature review. The options to be reviewed
for each of the subcomponents were derived directly from the reviewed literature and are
listed under each of the subcomponent’s justification sections.

The final values selected for these fields are as follows: for the gesture type, single-
hand static gestures were chosen; for the gesture information, symbolic information was
selected; for the gesture model, a three-dimensional, 21-landmark skeleton model was
selected. These values were selected for two key reasons. The first was to ensure that the
final solution met the relevant governing criterion, and the second was to ensure that the
simplest solution to these requirements was found.

2.2.2. Gesture-Type Selection Justification

The type of gestures observed had three main considerations to be analysed. The first
of these was the motion of observed gestures, either a static or dynamic gesture set. The
second was the scope of observation, specifically the inclusivity of wrist motion. Finally,
the scope and number of observable gestures was considered.

Static single-hand gestures were selected to ensure future components’ simplicity
and ease of understanding for operators. While dynamic or two-handed gestures also
conform to Criterion 4, the construction of an algorithm that operates using these gestures
would have been considerably more complex than an algorithm designed to recognise
static gestures [16]. Furthermore, single-hand static gestures are easier for an operator
to learn and perform consistently, decreasing the user learning cycle in comparison to
the more complex dynamic or two-hand gestures [16]. Thus, single-hand static gestures
were selected to simplify the computational restrictions and user learning cycle of the
final solution.

A wide range of gestures was initially proposed to avoid arlificially biasing the
identification and classification components’ selection by providing an ample array of
gestures, The only restriction on the initial gesture set was that it had to contain gestures
defined by a recognised sign-language system. This was performed to ensure that the
selected gestures were easily recognisable and easily learned [22], aiding in the final
solution’s conformity to Criterion 4. An example gesture set is shown in Figure 4.

2.2.3. Gesture Model Selection Justification

The gesture-model selection was governed by two key factors, the computational
complexity required to generate each model and the number of classifiable landmarks
offered by each model. This selection aimed to balance these two factors by selecting a
modelling method that allowed for enough classifiable landmarks to differentiate between
the types of gestures detailed in Section 2.2.2, whilst not requiring excessive compulational
power to generate. The modelling methods analysed are listed in Section 1.2.2. Given
the number and complexity of the possible gestures, the most applicable model was a
3D-skeleton model [18,19]. Appearance-based models were not applicable as their low
number of classifiable landmarks would limit the final algorithm's ability to differentiate
between the desired input gestures [156]. More complex 3D models, such as 3D geometric
models and 3D textured volumetric models, were not applicable as the additional classi-
fiable landmarks they offer are not necessary to differentiate between the desired input
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gestures. Thus, the use of these models would needlessly increase the complexity of future
components without benefitting the final algorithm’s performance [16].
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Figure 4. Sign language example hand-gesture set [23].

2.24. Gesture Information Justification

The information derived from the gestures had four considerations, these being spatial,
pathic, symbolic, or affective [6]. Note that the selection of these information sources was
not mutually exclusive, i.e., one or all of them could be selected. Given the gesture type
selected in Section 2.2.2, symbolic information was the primary source of information that
was extracted from the observed gestures [¢]. Additionally, the spatial information of the
three-dimensional skeleton landmark model was also used to calculate the joint angles for
each of the 15 observed joints. Stage four methodology will define the specific calculations
required to perform this transformation.

2.3. Stage Two: Selection of Data-Acquisition Method

The second stage of the investigation was the selection of a data-acquisition method.
The purpose of this stage was to select a data-acquisition method capable of efficiently and
non-restrictively cbserving a human hand in a manner conducive to the production of the
selected gesture model. Similar to Section 2.2, the investigation process for this stage was
a literature review as defined by Simplification 3. The governing criteria relevant to this
section were Criteria 1, 2, 3, 5, and 6. To ensure that these criteria were satisfied, this review
assessed all of the HGR data-acquisition methods listed under Section 1.2.1. Each of these
solutions were analysed against the criteria listed above and compared against one another
to find an optimum solution.

Out of the analysed data-acquisition methods, single RGB cameras were the only
analysed approach that satisfied the applicable governing criteria. In contrast, the other
data-acquisition methods all posed notable drawbacks that would severely hinder the final
solution’s ability to satisfy these criteria. Specifically, depth cameras were omitted due to
their range and availability restrictions, which would jeopardise the final solution’s confor-
mity to Criterion 3 as the range restrictions will restrict users [¥,24]; stereo cameras were
omitted due to their extensive computational requirements and focal pointing restrictions,
which would make satisfying Criteria 3 and 5 difficult [7,5,13]; and band and glove ap-
proaches were both omitted because of their direct opposition to Criterion 3 [8,10,11,14,15].

After these omissions, the single RGB camera was the only remaining viable approach.
However, single-camera approaches have some notable drawbacks that will need to be
addressed by future components. These are primarily the robustness issues associated with
background and operator hand, variability, and single viewpoint error sources such as
self-occlusion and transform inconsistency [#]. Despite these notable drawbacks, due to
the mature nature of this form of HGR [7], it is reasonable to assume that the selection of
appropriate future components can appropriately manage these drawbacks [7,12].
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2.4, Stage Three: Selection of Gesture-Identification Algorithm

The purpose of stage was to select a gesture-identification algorithm capable of extract-
ing hand features from the data returned by a single RGB camera. The extracted features
were to be arranged in the form of the desired three-dimensional skeleton model. The gov-
erning criteria relevant to this section were Criteria 1, 2, and 5. Additionally, the prospective
algorithms were also investigated as to their ability to minimize the drawbacks of single
RGB camera approaches, such as self-occlusion. A qualitative analysis was performed
to facilitate this selection, focusing on the computational cost of the implementation and
the observable localization accuracy of the prospective algorithms. This stage was only
intended to be a minor thresholding investigation, aimed less at comparing applicable
solutions and more towards ensuring the selected solution will be able to conform to the
governing criterion.

Given that there are a multitude of feature-extraction methods that are applicable for
HGR gesture identification, it was not feasible to test them all directly. Fortunately, this
expansive scope was reduced considerably by the three design simplifications. The previ-
ously selected gesture-description and data-acquisition components reduced the scope of
this investigation in the following ways: the removal of any method not initially developed
to return a three-dimensional skeleton model; the removal of any gesture-identification
approach not compatible with single RGB camera data; and only considering pre-existing
open-source implementations. After these reductions, three solutions were marked for
future investigation: media pipe hands, InterHands2.6M, and an OpenCV approach. These
three algorithms represented possible solutions that applied different pre-processing and
feature-extraction techniques and had drastically different computational loads.

The key dependent variables of this qualilative investigalion were the localisation
accuracy of the skeleton model and the computational requirements needed to perform
feature extraction. These two dependent variables were analysed in two subtests. The
first test aimed to observe the computational requirements to set up and operate the three
algorithms, The second subtest aimed to observe the localisation capacity of the three
algorithms in variable environments.

1. Identifier Implementation: The aim of this subtest was to implement a baseline variant
of the three algorithms. The baseline variant of this method should be capable of
observing a single human hand and printing the angle of its 15 primary joints to the
terminal while also displaying the 3D-skeleton model on screen. The method used
to calculate these joint angles is described in Section 2.5. The purpose of this stage is
three-fold. Firstly, it serves to assess the operational readiness of the algorithms.
Secondly, it assesses the computational requirements necessary to implement the
algorithms. Finally, it acquires an operational version of said algorithms upon which
future testing would be performed. The key independent variables of this test are
the three different algorithms being tested. All algorithms are to be applied on the
same 2017 Mac Book Pro that operates using a 3.5 GHz Dual-Core Intel Core i7 CPU,
an Intel Iris Plus Graphics 650 1536 MB graphics card, 16 GB 2133 MHz LFDDR3 of
RAM, and 250.69 GB of storage.

2. Qualitative Analysis: The aim of this subtest was to qualitatively observe the im-
plemented algorithms’ localisation accuracy. This subtest was the first step towards
ensuring that the selected algorithm conforms to Criteria 1 and 2 and minimizing the
drawbacks of the selected data-acquisition method. This investigation stage aimed
to observe each algorithm’s accuracy in cases of self-occlusion, rotation, and trans-
lation using the operational version derived in the first subtest. The method for this
observation was relatively simple. First, a user’s hand was held in a constant position
in front of the camera. The displayed three-dimensional model was then recorded.
From this position, the hand was then rotated and translated around the camera’s
viewport. While these rotations and translations occurred, the displayed model was
constantly observed. These observations aimed to determine whether the algorithm
could maintain its localisation accuracy despite the movement. The final stage of the
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observation was to turn the hand so that certain aspects of the hand become occluded
from the camera’s POV. This was conducted to determine whether the algorithm
could still produce a model despite the occlusion of hand features.

2.5, Stage Four: Validaton of Selected Gesture-Identification Algorithm

The fourth stage of the investigation focused on the validation of the selected gesture-
identification algorithm. Specifically, this stage centred around the evaluation of the
accuracy and robustness of the model produced by the selected algorithm. This stage em-
ployed a clinically advised, quantitative approach that compared the joint angles derivable
from the model with the joint angles measured with a finger goniometer. The results of this
method were then used to determine the current algorithm’s conformation to Governing
Criterion 2. Due to the extensive nature of this validation process, it was not possible to
apply it to each of the gesture-identification algorithms analysed in Stage 3; hence, it was
only applied to validate the final selected identification algorithm.

The key dependent variable observed during this investigatory stage was the per-
centage accuracy of the generated model. The generated model, as specified in Stage 1,
was a three-dimensional skeleton hand model. The accuracy of the model was found by
calculating the percentage variance between the joint angles of the observed hand measured
by a goniometer and the joint angles calculated from the generated model. Joint-angle
comparison was used over other possible methods such as landmark-accuracy analysis or
joint-positional analysis because of the clinical support available for joint-angle measure-
ment. As a resull of this, the joint angles could be measured directly and accurately using a
clinically defined method which provided an excellent reference value for comparison with
the model. In contrast to this, if landmark-accuracy analysis or joint-positional analysis
methods had been applied, considerable sources of error could have been introduced into
the reference value due to sources such as hand-size variation, joint-location variation, and
joint-observation variation.

The joint angles to be tested are the joint angles of the metacarpophalangeal, proximal
interphalangeal, and the distal interphalangeal joints of all fingers including the thumb.
For all joints’ measurements, the static arm of the finger goniometer was to be stabilized
against the proximal side of the joint with the hinge of the goniomeler being placed directly
above the observed joint. If the participants knuckle was bulbous in nature such that
it prevented the goniometer from securely sitting above the joint, then the goniometer
was to be moved to the side of the finger, such that the goniometer’s hinge sat directly in
front of the observed joint. Once secured, the free arm of the goniometer was then lightly
pressed against the distal side of the observed joint. It is imperative that little to no force is
applied during this process as the goniometer is designed to move freely, and any excessive
application of force could alter the pose of the observed hand. Once the free arm of the
goniometer had contacted the distal side of the joint, the joint angle could then be recorded
to the nearest 5°. This method was advised by Jayden Balestra [25].

Two methods that were applied to calculate the joint angles from the three-dimensional
model. The first method analysed was a conventional three-dimensional vector angle
calculation which first created two vectors: one traveling to the desired joint from the
previous attached joint and a second vector traveling from the joint to the next joint. Once
these vectors had been defined, a simple dot product calculation was then applied to
calculate the angle that existed between the two joints. A second method was used as a
backup, which simply ignored the depth component of the model and then performed the
same calculation performed above. This method was included to quantify whether the
three-dimensional nature of the model was aiding or limiting the model’s performance.
The code used to perform both calculations is shown in Appendix D.

In order to thoroughly test the robusiness of the algorithm alongside its accuracy,
two independent variables—hand pose and hand orientation to camera—were changed
throughout the course of this stage:
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1. Hand pose: The first of these variables was the pose of the hand. In total, three
positions were investigated: a fully closed position, a partially closed position, and a
fully open position. These three positions were selected because they are stable, easy
to hold, repeatable positions, and again, because they were the advised positions
suggested by our clinical reference, Jayden Balestra [25]. Furthermore, these three
positions were used to simulate a full range of motion of the human hand, as it was
important to validate the accuracy of the model across a hand’s full range of motion.
An example of the three poses used are shown in Appendices A and B.

2. Hand orientation with respect to camera: The second independent variable that
was altered over the course of this analysis was the incident angle formed from the
camera’s point of view and the observed hand. By changing this angle of orientation,
the algorithm’s robustness against rotation and self-occlusion (the drawbacks of single
camera RGB solutions) could be quantitatively observed. For each of the three hand
poses defined above, four photos were taken: one from directly in front of the hand,
one from a 45° offset, one from a 20° offset, and one from a 180° offset. An example of
the four viewpoints used are shown in Appendices A and B. To ensure a high level
of accuracy within the test itself, a wide range of controls were put in place, to make
sure each stage of the analysis was repeatable and accurate.

3. Lighting: To avoid lighting variance, all tests were to be conducted in a well il-
luminated environment, specifically aiming that no shadowing be present on the
observed hand.

4. Background: Background variation is known to have an impact on the MPH modelling

process. As this is not a factor currently being analysed, a white backdrop was used for

all tests. A white backdrop was used to ensure that there was a high level of contrast
between the hand and the background to aid in the feature-extraction process.

Pose stability and body position: To ensure that the same position and viewpoint

angles were observed for each participant, two controls were put in place to manage

body position and hand stability. The first control is that participants are to kneel in a

comfortable position, with their forearm braced against the test bench. The test bench is

to contain a set of marks, indicating the appropriate positions for the background
and participant forearm.

6. Pitch, roll, and yaw of the camera: To ensure that the viewpoint orientation was
maintained across all participants, and only varied by the desired amounts between
tests, the Halide camera application was used [26].

7. General hand size/distance from camera: Whilst changes in participant hand size
were unavoidable, to avoid exacerbating these variations, a fixed camera distance
was used for all participants. This was performed by simply having fixed mounting
points for the camera on the test bench at the correct location and orientation for each
of the desired viewpoint angles.

The final testing procedure consisted of five stages; (i) establish the aforementioned
controls; (ii) the participant forms required hand pose; (iii) record the joint angles using
goniometer; (iv) photograph the hand from the required viewpoints, (v) re-measure the
joint angles using a goniometer. After the above procedure had been completed, the
two sets of measured joint angles were compared. If the results of the second set of
measurements failed to match the first, the test images were discarded, and the process was
repeated. This was conducted to confirm that the participant’s hand pose had remained
stable throughout the test. This process was repeated for each participant and for each pose.
A five-minute pause was taken between lests to ensure that participant fatigue did not
affect pose stability. The valid photos were passed to the selected gesture-identification and
angle-calculation algorithms, which generated a set of observed joint angles (the code used
to perform this stage of the process is referenced through Appendix D). These observed
joint angles were then compared against the goniometer measurements to generate a final
set of accuracy percentages.

w
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2.6. Stage Five: Selection of Gesture-Classifcation Algerithm

The purpose of the fifth stage of the investigation was to use a quantitative method
to select the gesture-classification algorithm that best complimented the selected gesture-
identification algorithm. The three relevant criteria for this stage are Governing Criteria
1,2, and 5. From these three criteria, two quantitative metrics were calculated to inform
the final selection. These metrics were the classification accuracy of the tested algorithms
expressed in the form of confusion matrices and classification speed expressed in seconds
(used to reflect the computational requirements of the algorithms).

To ensure that the selected classifier complimented the selected gesture-identification
component, there were two possible scopes and criterion weightings defined for this stage
of the investigation. Each of the defined scopes was focused on a different possible outcome
which could have arisen from the results of Stage 4. Before defining the individual scopes,
there was another key scope reduction that applied to both cases. The selected classifier
must be a pre-trained solution, capable of classifying gestures of a globally recognised
sign-language. This reduction was made to conform with the paper problem statement,
and the selected gesture-description model. These two possible scopes are defined below:

1. If the Stage 4 results show that the selected gesture-identification algorithm can
accurately and robustly produce a model that reflects the user’s hand, then a low
dimensionality classifier built around the 15 single-dimension joint angles should
be investigated. The final selected algorithm is that which favours Criterion 5 over
Criteria 1 and 2. The algorithms to be investigated are decision trees, KNNs, and
linear regression [27].

2. If the Stage 4 results show a less than ideal model accuracy, then a higher input
dimensionality classifier which uses the original 21 three-dimensional coordinate
system (63 total dimensions) would be investigated. The final selected algorithm is
that which favours Criteria 1 and 2 over Criterion 5. Specifically, the algorithms to
be investigated are ANNs, SVM, linear regression, and a non-machine learning
bounds-based approach [27,28].

Regardless of the selected scope, the experimental method that would be used to
analyse the prospective classifiers remained the same. In either case, the dependent
variables of the investigation remained the classification accuracy and classification time.
The independent variables of this classification were the style and implementation of the
classifiers themselves. To ensure a fair investigation of the defined classifiers, the following
variables were kept constant:

1. Testdata set: A custom data set was to be made for the selected classifiers. Ideally,
after the initial group of prospective classifiers had been defined, a common set of
ten gestures would be identified between the algorithms. Once this common gesture
set had been defined, ten images were created for each gesture and converted into
three-dimensional models using MPH. These 100 models formed the test data set for
this stage of the invesligation. Note, to ensure that Criteria 1 and 2 were assessed
correctly, the hands present in the ten selected images varied, in scale, orientation,
and pose. By introducing these variations into the comumon data set, the algorithm’s
accuracy will be tested in a more robust fashion as they are not being tested in a
‘best-case scenario’.

2. Computation power provided to each algorithm: To ensure that no one algorithm is
favoured during this analysis process, all testing should be performed on the same
device, with no background processes running. When performing classification-time
testing, the time taken should only be considered for the ‘prediction stage’ of the
classifier. Specifically, this time value should exclude the time taken to initialize /train
the classifier, load the MPH model, and any time associated with the creation of the
confusion matrices.

The procedure for this investigation was relatively simple, a basic algorithm was used
to sequentially test each of the prospective pre-trained algorithms against the commeon
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data set. After each test, the prediction of the four classifiers was recorded in the respective
confusion matrices, and the time taken to perform that classification was stored in a CSV
file. Once all the test images had been fed into the algorithm, the final confusion matrices,
and time performance data were displayed on screen for evaluation.

2.7. Stage Six: Gesture Mapping and Tuning

The purpose of this stage of the investigation was to develop a gesture-mapping
component capable of translating classifiable gestures into drone actions. The mapping
method selected for this component was a one-to-one command mapping approach. This
approach was selected to conform with the design decisions made in [1-3,29] and served
as a good initial solution capable of demonstrating the functionality of the fully developed
HCI algorithm within the context of alternative control. This stage consists of two key
developmental sections. The first section was the initial declaration of a gesture dictionary
that translated observed gestures into commands. The second section was the tuning of
these commands to allow for smooth control of the drone. The primary relevant criterion
for this stage is Governing Criterion 4.

The DI TELLO quad-rotor drone (mechanism specifications provided in Appendix F)
was selected to be controlled by this mapping component for three key reasons. The
first reason is that the physical characteristics of the drone made it well suited for use
in prototype implementations such as this. The drone is inexpensive, light, and slow
and has built-in collision recognition sensors and systems. These collision-mitigation
sensors limited the consequences experienced during testing, which was beneficial given
the experimental nature of the applied control algorithm. The second reason is that while
DJI TELLO does not offer a python API, the mobile application offered by DJI to operate
the drone has commands that can be easily replicated using Python’s built-in socket library.
This meant limited work was required to transfer controlling commands to the drone. The
final key benefit is the breadth of commands offered within the TELLO app. The TELLO
app offers numerous distinct commands ranging from simple operations, such as lift-off
and land, to complex tasks such as ‘do a barrel roll".

The TELLO drone accepted two basic movement command sets, each containing six
unique commands. The first command set uses positional commands that move or turn
the drone by a fixed amount per transmitted command. The second command set uses
velocity commands, whereby each command updates the drone’s velocity in a certain way.
With the addition of the take-off and land commands, two unique sets of eight commands
were defined for investigation. In either case, the eight commands were mapped to the
eight gestures, most accurately classifiable by the completed HGR algorithm. Once this
mapping was complete, three key factors had to be experimentally tuned through a set
of test flights. These factors were: the time a gesture must be held before a command is
executed, the magnitude of a response once a command is executed, and the refresh rate
for command execution. The final command set and values for each of the above factors
were selected because they facilitated the control that best conformed to Criterion 4.

3. Results
3.1. Gesture-Identification Selection
3.1.1. Implementation Results

Three algorithms were considered and attempted to be implemented; these were
media pipe hands (MPH), InterHand2.6M, and an OpenCV extension of MPH titled CVZ.
However, due to the computational requirements to both train and operate, InterHands2.6M
was removed from further analysis during this stage. The training data required a 365-GB
download to attain all the necessary data to train the ResNet network for 3(-fps operation.
The 365-GB download exceeded the total storage capacity of the host machine and as such
could not be completed.

MPH was successfully implemented using its open-source solution that included APIs
for both java and python [30]. The python API was used for this project. As mentioned
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in the Section 1.2.3, the computational requirements of MPI1 are minimal, as such it was
expected that MPH would be able to run at a high frame rate on the selected host machine.
MPH conformed to this expectation, continually maintaining its capped frame rate of 30 fps,
validating its conformity to Governing Criterion 5. The output of this implementation is
shown in Figure 5.

Figure 5. MPH output displaying the 21 coloured landmarks overlayed onto the input image and the
text based joint angle measurement model displayed through terminal.

The joint-angle calculations were handled by a python module that applied the calcu-
lations described in Section 2.5. This module parsed the ‘hand” objects produced by MPH
to acquire the 3D coordinates of the joints. These 31 coordinates were converted to joint
angles using the aforementioned calculations before displaying these angles using the ascii
art hand shown in Figure 5. An ascii art hand was used to visually display the joint angles
in the terminal, in order to ensure that they could be easily interpreted by the user.

CVZ [31] was successfully implemented using its python APL Despite its lack of
supporting litcrature, CVZ. was relatively casily to implement. CVZ. only required one
variable to be set which was the webcam input source directory. Once operational, CVZ's
performance appeared to fluctuate greatly with frame rates ranging from 16 fps to 30 fps.
Unfortunately, CVZ also suffered from some considerable stability issues and had a re-
occurring bug that would crash the code repetitively whenever two hands appeared
in-frame together. The initial output of CVZ is shown in Uigure 6.

Figure 6. CVZ output displaying the 21 red landmarks overlayed onto the input image and the text
based joint angle measurement model displayed through terminal.

As CVZ had the same 21-landmark model structure as MPH, only minor changes were
needed to be adapt MPH's joint-angle calculation python module to match CVZ. The only
changes required were to adjust the code pair with CVZ’s landmark data structure. After
these changes, the joint information was able to be successfully calculated and displayed as
shown in Figure 6.
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The computational performances of CVZ and MPH were also observed during this
stage. Each algorithm's computational performance was observed by recording the refresh
rate of the algorithm’s identification component. Specifically, this was achieved by measur-
ing the number of output the models returned per second. The output rate was measured
with both one and two hands on screen. MPH maintained a refresh rate of 13.22 outputs
per second with two hands in frame and 14.04 with one hand in frame. CVZ maintained an
output rate of 14.1 with one hand in frame and, as mentioned, would crash whenever two
hands came into frame.

3.1.2. Qualitative Analysis Results

Qut of the three algorithms, two had been successfully implemented, these being MPH
and CVZ. The results of the qualitative analysis of both algorithms are detailed below.

Resistance to Translation

Both MPH and CVZ were exposed to a simple translation of a closed fist, facing the
camera, around the cameras frame. This involved movements both toward and away
from the camera (changing scale) and movements vertically and horizontally across the
images frame (traditional translation). Neither algorithm showed signs of major landmark
deviation or angular fluctuation during this test.

Resistance to Rotation

Both algorithms were presented with a closed fist with the palm facing the camera,
the fist was then rotated about the axis along the operator’s forearm. Throughout this
rotation, both MPH and CVZ appeared to maintain a high degree of localisation accuracy,
as the displayed landmarks never deviated from their respective joints. Despite this, the
joint angles being displayed to the terminal did fluctuate greatly. This suggests that whilst
the feature-extraction/landmarking method used by both algorithms is robust against
rotation, the modelling method used may not be. This demonstrates that neither algorithm
is entirely robust against rotation, which is an issue that may need to be addressed by the
classification component.

Resistance to Self-Occlusion

In this test, the hand was held with the palm directly facing the camera, being posi-
tioned directly along its axis of reception. Then, the hand was slowly tilted forward until
the fingers were directly facing the camera and the palm was completely obscured by the
fingers. MPH performed relatively well during this test, as its gesture-tracking component
was able to keep an understanding of the hand'’s position even after the palm had become
completely obscured by the fingers. MPH was also able to maintain sensical joint readings
throughout this entire process. CVZ, on the other hand, did not fare as well during this
test. Once the hand was approximately 15% off its final position, the bounding box (pink
box displayed in Figure 6} raised an exception within the code, crashing the observation
algorithm. Thus, the conclusion of this third test was that MPH demonstrated robustness
toward self-occlusion and, in its present form, CVZ did not.

3.1.3. Final Selection

From the results detailed in Sections 3.1.1 and 2.1.2, MPH was selected as the final
gesture-identification component. MPH was selected because it was operationally stable,
the least computationally intensive, and demonstrated a high degree of robustness when
presented with translation and self-occlusion. These results demonstrate the potential that
MPH has to aid in the satisfaction of Criteria 1, 2, and 5.
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3.2. Gesture-Identification Validation Results
3.2.1. Measured Joint Angles

Tables 1-3 display the average joint-angle readings recorded for each of the three
poses. These joint-angle readings are the averaged results taken from the three participants
that were analysed during this study. The tables are organised to display the measured
angles for each joint, metacarpophalangeal (J1), proximal interphalangeal (]2}, and distal
interphalangeal (J3), for each finger.

Table 1. Open-palm joint angles measured by goniometer.

Joint Number Thumb Index Middle Ring Pinkie
n 162 178 175 178 178
2 177 172 172 170 172
12 180 177 180 180 180

Table L Partially closed palm joint angles measured by goniometer.

Joint Number Thumb Index Middle Ring Pinkie
n 153 168 168 170 173
2 157 93 92 a7 97
13 118 113 107 117 113

Table 3. Closed-palm joint angles measured by goniometer.

Joint Number Thumb Index Middle Ring Pinkie
n 148 98 98 107 107
]2 143 82 83 82 0
13 117 110 108 108 112

3.2.2. Calculated Joint Angles

Tables 415 display the joint angles calculated from MPH. The angles displaved are
the average angles that were returned from the three participants that completed testing.
The tables are broken up into three groups, with each group containing the angles recorded
for that pose. Within each group, there are four tables, with each table containing data
calculated from one viewpoint. Each table contains the joint angles calculated using
both the two-dimensional and three-dimensional methods of calculations. The tables
are organised to display the calculated angles for each joint, metacarpophalangeal (]1),
proximal interphalangeal (]2), and distal interphalangeal (]3), for each finger.

Table 4. Closed-palm joint angles calculated from the MPH model—front,

R Thumb Index Middle Ring Pinkie
s D 1) 3D D 3D 20 3D 20 D 0
Ji 151 156 142 142 144 144 142 140 132 128
]2 151 151 53 54 47 45 34 35 40 41
13 105 100 164 161 127 115 136 128 147 143

3.2.3. Final Accuracy Percentages

Ascan be seen in Tables 16-19 below, the data in Sections 3.3.1 and 3.3.2 were compared
and condensed to generate two separate sets of accuracy data. The tables below display the

Chapter 4: Use Case Examples

191



seasprs 20EY, 24, 162 JRENE

AveTage and Pininum accurdcy periertedes actoss eduh view point and s ross vack finger
Tre lables were further redaced to generale final sel of figures for the 30 accuracs, which
had anm average azowracy of #.7% ard a miniciue zocuracy of $1.2%, and Lhe 2D accuracy,
which had ar average accuracy of 83.8% and 3 mirimwm accuracy of $.8%.

Table 5. Closed-palm juind amges celonated frem e M2 model—4h",

) Thumtb Livelen Midudle Ring Pinkie
Joinl Numbwer ) ’
2l 217 317 2 an 21 3n ny an 207
IL 110 e} 143 157 ) 125 112 “lz bh

Table & Clpwad pelin juint amgies celeuwated Genn the XOH mande] - i

I ity Indles Meliclulle iy, Pipkic
Jeiol Numbwer
in an an n an n in n in n
11 [EX) Y 4 7 A 73 7 7h &3 a2
T2 174 a1 I0N I3 W uid L L3 k) 1
13 £ R 123 18 L LLi 114 13 113 110

Table 7. ¢ loeaxd ]'u'lm Jonsat Az walenated frem the MOH madel - back.

Thumb [ndex Middle Ring Pinkie
Joint Numbwer
il irn kb 2 N 30 21 An zn
n 159 Zal 125 135 155 114 148 L\ 112
12. 154 51 75 s Wy o T az L) LA
15 liny K 1eid [N ‘nh 1.3 1.7 2] 157 16

Joint Numiber e

Tabrle 9 Zartially  lsed panoiet angles caloulated Feon e MIPH nodel - 545

I ity Iieles Meliclulle iy, Pipkic

Jeiol Numbwer

192 Chapter 4: Use Case Examples



Sensors 2023, 23, 5462 18 of 35
Table 10. Partially closed palm joint angles calculated from the MPH model—side.
Joint Numb Thumb Index Middle Ring Pinkie
oint !
' an ) 3D 20 D 0 3 D 2
n 145 134 m 121 113 114 116 115 110 115
12 142 146 113 113 107 106 104 104 121 12
I3 161 160 139 132 133 132 135 134 145 146
Table 11. Partially closed palm joint angles calculated from the MPH model—back.
Thumb Index Middle Ring Pinkie
Ioi“t Nllﬂ'lb@r —_— ——— —— — —_—— — — — —_—— — -
D n 3D 2D 3D D 3D 2D k1 D
1 160 163 151 159 162 169 153 159 144 150
Iz 153 153 100 89 84 38 91 63 102 85
13 118 116 151 98 156 153 154 135 146 121
Table 12. Open-palm joint angles calculated from the MPH model—front.
Jotnt Nem Thumb Index Middle Ring Pinkie
e k1b] D 3D 2D 3D D 3D D kb D
1 159 165 163 166 168 172 171 179 166 170
J2 175 175 168 175 169 178 171 173 171 171
13 166 166 177 178 178 179 174 177 172 174
Table 13. Open palm joint angles calculated from the MPH model—45°.
Thumb Index Middle Ring Pinkie
Joint Number
k1b] 2D 3D D 3D 2D 3D 2 3D 2D
n 149 149 151 167 164 171 171 172 168 169
1z 171 176 165 173 163 171 163 164 157 157
13 169 170 175 175 175 175 175 175 172 172
Table 14. Open palm joint angles calculated from the MPH model—side.
Thumb Index Middle Ring Pinkie
Joint Number — - —— —
D 2 3D 2D 3D m 3D 2 3D b1b}
n 163 159 140 164 147 168 163 171 161 168
12 169 174 165 169 157 169 161 17 169 172
12 174 168 167 177 176 178 172 174 170 172

3.3. Gesture-Classsifier Selection
3.3.1. Scope Definition

As discussed in Section 2.6, there were two scopes of prospective classifiers available
for investigation. Given that the results of Stage 4 demonstrated the MPH's module instabil-
ity, a second scope of algorithms were selected. In total, four pre-trained classifiers, which
utilised different classification techniques and had different computational loads, were
selected for further investigation under this section. The four algorithms are listed below:
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1. ANN classifier: Conventional machine-learning classifier built to classify Indian sign
language—sourced from [32].

2. Linear-regression classifier: Conventional machine-learning classifier built to classify
Russian sign language—sourced from [33].

3. SVMclassifier: Conventional machine-learning classifier built to classify Indian sign
language—sourced from [34].

4. Bounds-based classifier: Non-machine-learning, statically defined classifier built to
classify ASLAN counting gestures—altered version, original found from [31].

Table 15, Open palm joint angles calculated from the MPH model—back.

e Nl Thumb Index Middle Ring Pinkie
et D 2D 3D 2D ) 2D D 2D 3D D
n 159 164 161 161 172 177 162 164 152 154
]2 176 177 174 176 171 177 175 179 168 175
13 168 169 174 177 177 178 175 176 175 176

Table 16. Model accuracy calculated from 3D data—by finger.

Percentage Accuracy

Hand Position Thumb Index Middle Ring Pinkie
Avg Min Avg Min Avg Min Avg Min Avg Min
Open 96.2% 92.0% 93.8% 78.7% 95.7% 84.0% 95.7% 91.0% 94.4% 85.4%
Partial 92.2% 63.6% 82.0% 66.1% 82.6% 542%  86.2% 68.2% 82.6% 63.6%
Closed 89.6% 60.7% 723% 50.9% 77.0% 53.1%  785% 41.5% 8§2.3% 44.4%
Table 17. Model accuracy calculated from 2D data—by finger.
Percentage Accuracy
Hand Position Thu.mb Indn . M|ddle _ng Pmkle
Avg Min Avg Min Avg Min Avg Min Avg Min
Open 962%  920%  956% 543%  968%  89.1% 962%  921%  954%  565%
Partial 91.2% 64.4% #8.9% 72.0% 77.6% 41.3%  B86.8% 67.6% 854% 66.5%
Closed 88.5% 60.7% 57% 9.8% 59.7% 169%  664% 22.0F%6 76.6% 38.9%
Table 18. Model accuracy calculated from 3D data—by viewpoint.
Percentage Accuracy
Hand Position Front Forty-Five Side Back
Avg Min Avg Min Avg Min Avg Min
Open 96.8% 91.6% 94.5% 84.8% 93.2% 78.7% 96.00% 85.4%
Partial 88.6% 71.0% 90.0% 81.3% 76.1% 63.6% 85.7% 54.2%
Closed 67.8% 41.5% 86.3% 64.3% 84.8% 60.7% 80.7% 51.5%

As per Section 2.6, a common data set was developed such that the four classifiers
listed above could be directly compared against one another. After analysing the three
gesture sets recognisable by the four classifiers, it was found that they share eight common
gestures. A single participant was then imaged to generate the required ten sub-images,
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which were subsequently modelled using MPIT to form the final data set, as shown in

Appendices A and B,

Table 19. Model accuracy caleulated from 20D data—by viewpoint.

Percentage Accuracy
Hand Position Front Forty-Five Side
Avg Min Avg Min Avg Min Avg Min
Open 97.6% 92.2% 96.3% N.2% 94.1% #4.3% 96.2% 86.5%
Partial 91.3% 65.2% 9.3% BU.5% 76.49% 64.4% H5.6% 41.3%
Closed 53.2% 9.8% 81.9% 39.8% 84.9% 60.7% 58.0% 24.1%

3.3.2. Accuracy Results

ligures 7-10 display the confusion matrices used to quantitatively compare the clas-
sification accuracices of the four classifiers. The raw data from which these classifiers are
gencrated can be found through Appendix C. From the figures shown below, the non-
machine-learning bounds-based classifier performed the best on the given dataset, with an
accuracy of 96.25%. The second-best performing classifier was the SVM approach with an
aceuracy of 81.3%, followed by ANN with an accuracy of 77.5%, and the linear regression
maodel with an accuracy of 70%.
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Figure 7. Confusion Matrix 1—bounds-based classifier accuracy.

Linear Regression Classifier 10
o ~ * ] L ] o A
o
aj
1
2
a
a4
5
6
a
1

-
-

Actual
-

Preducted
1]

Figure 8. Confusion Matrix 2—linear-regression classifier accuracy.
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Figure 9. Confusion Matrix 3—ANN classifier accuracy.
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Figure 10. Confusion Matrix 4—5SVM classifier accuracy.

3.3.3. Computational Performance Results

The purpose this section of the results was to quantitatively compare the computational
performance of the four potential classifiers. As stated in Section 2.6, this was achieved via
a comparison of the time taken by each of the classifier to classify each of the 80 images.
Figure 11 displays the computational performance data generated during this testing.
As displayed, the bounds-based classifier had the lowest classification time, averaging
81.4 ms. The SVM and linear-regression classifiers had comparable performances, both
averaging 88 ms. The slowest of the four algorithms was the ANN model with an average
classification time of 196 ms.

Classifier Computational Preformance Graph
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Figure 11. Comparison of tested classifiers computational performance.
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3.3.4. Final Classifier Selection

As per the selected scope for this investigation, the selection of the classifier aimed
to favour classification accuracy over computational speed. This preference was made
to ensure the final algorithm conformed with Governing Criteria 1 and 2. As such, the
bounds-based classifier was selected because it had the highest classification accuracy.
Fortunately, the bounds-based classifier also had the lowest classification time, indicating
that it had the lowest computational requirement, suggesting that it also best conformed to
Governing Criterion 5.

3.4. Gesture-Mapping Selection and Tuning

With the selection of the gesture classifier complete, the HGR-based HCl component
for the alternative-control solution was complete. The final developmental stage of the
investigation could begin, with the development of the gesture-mapping component. As
defined in Section 2.7, the development of this gesture-mapping component consisted of
two main stages, the first being the selection of the command set, and the second stage
being the tuning of the mapping component. This investigatory stage began with the
implementation of the position command system.

Following the analysis performed in Stage 5, it was known that the HGR algorithm
could accurately recognise the eight gestures present in the common data set. As only eight
gestures were required to operate the positional control system, one-to-one mapping could
be applied to construct the gesture dictionary shown in Table 20.

Table 20, Positional command set,

Gesture Identifier Command

1 Move along 2 axis (forward velocity)

Mowve along —v axis (backward velocity)
Move along y axis (upward velocity)

Move along —v axis (downward velocity)
Move along x axis (bank right)
Move along —x axis (bank left)
Set required movement along, x, y, and z axes to zero (stop)
Take-off or land (depending on whether in flight, or landed)

®|N ™ W

Through the implementation of a third-party, open source, python APl [35], the above
commands were able to be transmitted to the TELLO drone. The positional based control
framework was then tested and tuned, using the flight paths defined in Figure 12
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Figure 12. Test flight paths.
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The most immediate concern from this initial implementation was the overloading
of the TELLO's onboard command buffer. This was caused because the commands were
being transmitted at too great a rate for the TELLO drone to process. To solve this, the
time taken to recognise a gesture was increased to 500 ms. Whilst this did make the drone
appear slightly less responsive initially, it successfully prevented further overloading of
the buffer.

However, after these changes, the TELLO appeared to have periods of unresponsive-
ness during the testing in the final flight path. These periods of unresponsiveness were
accompanied by the TELLO drone continually reporting “error No valid IMU". This error
was attributed to the use of the positional command system, and the method the TELLO
drone used to process incoming commands. If a command was received by the drone
whilst the drone was processing /reading its IMU data, the drone would abandon the task
and attempt to execute the command. As positional commands required IMU data to
execute, whenever this interrupt situation would oceur, the command would fail, and the
drone would re-execute its previous command.

To combat this, the gesture dictionary was redefined to use the velocity command
system, as shown in Table 21, This command system did not require readings from the IMU
sensor; the TELLO drone executed the received commands immediately and consistently.
This resulted in the drone appearing more responsive and subsequently easier to control.
The same flight paths were used to tune the velocity control system.

Table 21. Velocity command set,

Gesture Identifier Command
1 Increase velocity along 2 axis (forward velocity)

Increase velocity along —z axis (backward velocity)

Increase velocity along y axis (upward velocity)

Increase velocity along —y axis (downward velocity)

Increase velocity along x axis (bank right)

Increase velocity along —x axis (bank left)

Set velocity along, x, v, and z axes to zero (stop)
Take-off or land (depending on whether in flight or landed)

W (|| = WM

The tuning for the velocity control system was the same as the tuning process used
for the positional control system. The gestures” hold time remained the same, whilst the
command magnitude and command refresh times were both reduced. After this tuning
process, the final alternative-control algorithm was able to easily guide the drone through
the defined flight paths.

3.5. Performance Overview

With the completion of Stage 6, the final alternative-control algorithm had been fully
developed and proved to be functional. To ascertain the final performance of the solution,
it was re-analysed against the governing criteria.

+ Reliability in issuing the intended command: From the resulls of Stage 5, the final
solution proved to be capable of accuralely distinguishing between the intended
commands within the command set. When combined with the mapping medium de-
veloped in Slage 6, the solution was able to reliably transmit the intended commands
to the chosen application medium. Hence, this criterion is satisfied.

¢ Reproducibility of the intended command: From the results of Stage 4, the initial
confidence for the final solution’s conformity to this criterion was challenged due to
MPH lack of rotational robustness. However, through the implementation of a
bounds-
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based classifier, the final sclution was able to recognise commands robustly and
repeatably despite viewpoint and scale variations. Hence, this criterion is satisfied.

¢ TPhysically non-restrictive equipment or instrumentation: Given the selection made
inStage 2, the use of a single RGB camera ensured the final solution’s conformity to
this criterion. Furthermore, as per the results of Stage 5, the final HGR algorithm is
capable of recognising gestures from multiple viewpoints meaning the operator does
not have to maintain a perfect position in front of the camera, Hence, this criterion
is satisfied.

¢ Ease of operation and shorter user learning cycle: Given the selection made in Stage 1,
the use of single-hand, static, sign language gestures ensured that the commands were
simple and easy to learn. When combined with the finely tuned, one-to-one gesture-
mapping compenent developed in Stage 6, natural and accessible drone control was
facilitated. Hence, this criterion is satisfied.

¢  Computationally inexpensive: Through the computational analysis performed in
Stage 5, and the selection of MPH justified in Stage 3, the final solution was specifi-
cally selected to be as computationally lightweight as possible. Hence, this criterion
is satisfied.

¢ Monetarily inexpensive: Given Stage 2's selection of an inexpensive, non-specialised
data-acquisition method, and the low computational requirements of the final algo-
rithm, the final solution is monetarily efficient. Hence, this criterion is satisfied.

4. Discussion
4.1. Principal Findings

As previously mentioned, the MPH model accuracy was validated against goniometer
readings. The goniometer readings used as a baseline are illustrated in Tables 1-3. The joint
angles calculated from the MPH model are illustrated in Tables 4-15. The comparison of
these values produced the model accuracy percentages values summarized in Tables 15-18.
From these accuracy percentages, the Z-axis instability of the MPH model was characterized
(explained in greater depth in Section 4.2.2). This characterization was then used to inform
the selection of an initial list of prospective classifiers that were theorized to be able
to handle this instability. The classification accuracy of these prospective algorithms
was then tested using a common input data set, the results of this test are displayed in
Figures 7-11. The final accuracy performance proved that despite MPH's drawbacks, it was
still applicable in an alternative-control setting as the now-complete HCI functioned at a
high confidence level. Section 3.4 then demonstrated how the control-mapping component
was created and tuned to apply the fully developed HCI to drone control. The final
performance of the algorithm was then judged against its original governing criteria and
demonstrated in the attached multi-media video in the Supplemenlary Materials section.

4.2, Results Analysis
4.2.1. Gesture-Identifier Selection Analysis

These results demonstrate the potential MPH has to aid in the satisfaction of Criteria
1, 2, and 5. As stated in the methodology defined in Section 2.4, the purpose of Stage
3 was lo select a gesture-identificalion algorithm. Stage 3 achieved its purpose through
its selection of MPH based on the reasoning detailed in Section 3.1.3. As this was only a
threshold-qualitative investigation was simply intended to determine the applicability of
the selected solution, it had numerous limitations. The three significant limitations are the
lack of a quantitative analysis, the lacklustre computational power of the host machine,
and the limited investigation scope.

The first limitation of this stage was the use of a qualitative analysis method. Whilst
this was a valid baseline approach to observe and compare the algorithm’s general localisa-
tion accuracy, it fails to provide a solid metric from which the true localisation accuracy
of MPH can be extrapolated. The primary constraint this imprints onto the investigation
is that there are no quantifiable data proving that MPH is the most accurate solution out
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of the prospective algorithms. The accuracy of MPH modelling method will be analysed
in Stage 4, which does partially account for this. However, the true accuracy of MPH
localisation of its landmarks to the joints of the human hand remains largely unknown.

The second limitation arises from the lack of computational power provided by the
host machine. This limitation directly excluded InterHands2.6M, which has been proven
to be a feature-extraction method comparable to MPH [19]. Whilst MPH did success-
fully conform to the governing criteria relevant to this section, InterHands2.6M may have
had a superior accuracy or computational performance once trained. Unfortunately, this
limitation was unavoidable as the host machine chosen for this paper was the only ma-
chine available.

The third limilation is derived from the limited number of independent variables
that the tested gesture-identification algorithms were tested against. In an ideal setting, if
Stage 3 was to be expanded, the gesture-identification algorithms should also have been
tested against other sources of variance that are likely to be included in alternative-control
applications. These include but are not limited to background variation, operator hand
colour variation, operator hand size variation, and lighting variations. Whilst the failure
to include these does not invalidate the selection of MPH, it should be considered for
future work.

4.2.2. Gesture-Identifier Validation Analysis

As stated in the methodology section defined in Section 2.5, the primary purpose of
this stage was to validate the performance of the gesture-identification algorithm. The
results shown in Stage 4 achieved this purpose through the successful application of a
clinical methed to ascertain the accuracy of the MPH model. The results of this investigation
effectively displayed the advantages and disadvantages of MPH, the disadvantages of
which must be mitigated by future components lo ensure the final solution’s conformity to
the governing criteria.

From the data recorded during Stage 4, four trends about MPH model accuracy
became immediately apparent: confirmation of the high potential accuracy of MPH mod-
elling systems, the model’s susceptibility to rotation and pose due to its normalised depth
coordinate system, the innate benefit of the three-dimensional modelling system over a
conventional two-dimensional system, and the model’s resistance to self-occlusion. Each
of these observations had considerable implications for the future development of both
this alternative-control algorithm and for future applications seeking to implement MPH
(future implementations will be discussed in greater detail in Section 5).

The first key finding from the analysis performed during Stage 4 was the positive
observation of MPH potential accuracy. This key finding supported the observations made
in Stage 3, which are demonstrated in Tables 16 and 17. From these tables, MPH was shown
to be capable of accurately observing the digits of the human hand to a high degree, having
a maximum accuracy percentage of 96.2% while maintaining an average observational
accuracy of 86.7%. This alludes to MPH's capability to satisfy Criterion 1, if coupled with
an appropriate classification algorithm that can handle the major disadvantages of MPH
which will be discussed next.

The second key finding was the observation that MPH robustness was severely limited
by its “2.5D coordinate system”. MPH uses a normalised depth component, meaning that
while the x and y components of a landmark’s coordinate are derived from the image’s
width and height, the 2 component is derived from a depth calculation between the
landmark and the wrist of the observed hand. This results in a model that is not a true
three-dimensional representation of the observed hand because the z coordinates have a
different scale to the x and y coordinates. MPH attempts to adjust for this by normalising the
z component to be within a similar numerical range to the x and y components. However,
as demonstrated in Tables 18 and 19, the percentage accuracy of the model can be seen to
vary greatly based upon the importance of the z coordinate in the angle calculations.
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Orientations that placed connected coordinates along the x and y planes with limited
changes in the z coordinate had notably higher accuracy values than orientations that
had large changes in the z coordinate. In other words, if the two vectors from which an
angle is calculated had large differences in their respective z values, i.e., the angle being
observed lay upon the 2, y plane, the resultant angle would have a low accuracy. A good
example of this observation is a comparison between the percentage accuracy of the closed
pose when observed from the side and from the front. When observed from the front,
the average accuracy of the MPH model was only 67.8%, in comparison to the model’s
84.8% accuracy when observed from the side. From this demonstration, it can be inferred
that the normalisation method implemented by MPH fails to successfully equalise the
relative scales of the x, y, and z planes, causing the aforementioned instability Lo rotation.
This observation raises a concerning disadvantage for MPH. If this disadvantage is not
mitigated by future components, it will have to be mitigated by the operator. Specifically,
to ensure that Governing Criterion 1 is met, the operator will have to keep their hands in a
constant orientation with respect to the camera. This both limits the manoeuvrability of the
operator and makes the algorithm more difficult to use, jeopardising the final algorithm’s
conformity to Governing Criteria 3 and 4.

The third key finding was that despite the drawbacks of the 2.5D modelling system,
the depth component did have some notable benefits over a traditional 2D model. This
observation came from the direct comparison between the 2D angle calculations which
ignored the depth component and the 3D calculations which used the depth component.
While both systems struggled to handle rotation, the three-dimensional system was notably
more stable than the two-dimensional system. This can be directly observed by the overall
percentages stated in Section 3.2.3, whereby the three-dimensional system’s minimum
observed accuracy only dropped to 41.5% whilst the two-dimensional system fell to 9.8%.
This key finding was practically relevant when informing the selection of future compo-
nents. Future components were selected to avoid reductions in MPH model complexity,
such as the use of joint angles directly, or the removal of the z coordinate, instead favouring
the use of the full 21-landmarks, x, v, z coordinate system.

The final key finding was the quantitative validation of MPH resistance to self-
occlusion. This key finding validated MPH's ability to handle one of the key limita-
tions of single camera RGB data acquisition, reinforcing its selection as the final gesture-
identification algorithm. Evidence for this key finding can be observed in Tables 18 and 19,
whereby the average and minimum joint accuracies calculated from the back and side
viewpoints remain comparable, if not favourable to angles calculated from the front on
viewpoints. As can be seen in Appendices A and B, many of the images taken from the side
and back viewpoint had fingers that were not able to be directly observed because they
were obscured by other parts of the hand. The fact that the angles calculated from these
images produced results similar, if not superior, to their non-obscured counter parts proves
MPH's robustness against self-occlusion. This key finding again supports MPH's selection,
as it demonstrates how it conforms to Governing Criteria 2 and 4.

However, during the Stage 4 investigation, two limitations were encountered. These
were the limited fidelity of the goniometer measurements and the limited number of poses
used. The goniometer used for this experiment had a measuring fidelity of 5° intervals.
These intervals meant that in almost every measurement, the joint angle was being rounded
to the nearest 5° mark as the observed angle often fell between these said marks. This
rounding could have contributed to the error percentages recorded in Stage 4. However,
as non-digital goniometers remain the industry standard for joint measurements [36], this
source of error had to be accepted. This leads into the second limitation that impacted the
Stage 4 investigation. Due to the specification to only use three governing poses to keep
consistency among all participants, these poses could not be adjusted to set the goniometer
to its nearest 5° mark. This prevented the immediate resolution of the error source above. If
a more flexible posing regime had been implemented, the poses could have been altered on
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a participant-by-participant basis to ensure that the goniometer was reading whole values,
rather than having to round to the nearest value.

4.2.3. Gesture-Classifier Selection Analysis

As stated in the methodology for Stage 5, the primary purpose of this stage was to
select a gesture classifier that best complimented the functionality of the selected gesture-
identification algorithm. The results shown in Stage 5 achieved this purpose through the
selection of a bounds-based classifier based on the reasoning shown in Section 3.3.4. Aside
from achieving its key purpose, this section produced another key finding which supported
the selection of MPH as the gesture-identification component. However, this investigation
stage also had three key limitations: the impact of gesture set reduction on pre-trained
classifiers, the tests’ limited data set, and the unexplained variations in the computational
performance data.

The most important finding produced by this investigatory stage, aside from the
selection of the classification algorithm, was the demonstration that MPH's disadvantages
are surmountable. As can be seen from the confusion matrices shown in Figure 7, despite
the inherent variations in the MPH model, the bounds-based classifier was able to achieve
an extremely high level of accuracy.

This shows that when MPH is combined with the appropriate auxiliary systems, its
disadvantages can be minimised, maximising its effectiveness as a gesture-identification
algorithm. This was a key finding that served to both validate the selection of MPH within
this overall solution and look favourably on the implementation of MPH in future solutions.

The first key limitation that Stage 5 faced was the impact of gesture set reduction on
a pre-trained classifier. As the classifiers could not be re-trained to recognise the eight
newly defined gestures, a set of external controls had to be implemented to reduce their
classification ranges. This reduction came in the form of a simple cascading set of ‘if-
else” statements that forced the classifiers to return the highest probability gesture out of
the eight-gesture subset, even if the classifier would have otherwise returned a different
gesture. This reduction had to be made to produce a proper confusion matrix. To prevent
this reduction from impacting upon the overall validity of this experiment, the time take
to complete this reduction was removed from the overall classification time. [deally, the
classifiers would have been re-trained to only recognise the eight new defined gestures.

The second key limitation was the size and scope of the data set. Given that this was
one of the two secondary investigations performed over the course of this paper, it was
not deemed practical to develop a test data set with more than a thousand images. This
limited the level of testing that could be performed on the four classifiers. While it does not
invalidate the classifier selection made above, in an ideal setting, a larger data set would
have been used, with more edge-case gestures being included to really test the limits of the
classification algorithms.

The final limitation centred around the unexpected behaviour displayed toward the
end of Figure 11. Initially, it was assumed that each of the algorithm's classification times
would remain largely consistent across the 80 input images. This was an assumption
based on the idea that the classification time would only fluctuate greatly if the size and /or
complexity of the input data changed. As the input data remained constant, in both size and
complexity across the 80 input models, the fluctuation remained unexplained. However, as
the selected classifier was consistently faster than the other classifiers even in the regions of
fluctuation, the validity of the final solution was not compromised by this limitation.

5. Conclusions

This project achieved its primary purpose by developing a functioning alternative-
control algorithm that extended the usability of a quad-rotor drone. This was achieved
through the development of an HGR algorithm that combined the functionality of MPH
and a bounds-based classifier. The final solution facilitated natural and accessible control
while being computationally inexpensive and not requiring the use of specialized camera
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equipment. The success of the final solution demonstrated the applicability of modern,
single-camera HGR algorithms within the confines of alternative control. Furthermore, the
clinical evaluation of MPH demonstrated MPH's inherent advantages and disadvantages.
The success of the developed alternative-control algorithm shows that when handled
appropriately, MPH can be a powerful HGR tool that has applications within clinical and
control settings. However, future projects seeking to apply MPH must be mindful of the
algorithm's limitations or risk failure. There are three main areas of future work related to
this paper, these being an extension of the applied methodology, the application of MPH's
model validation data, and the application of the developmental framework used in this
paper alongside the final solution itself.

The first proposed area of future work is an extension of the method applied in this
paper. One area of this extension is the completion of a broader comparative review of
gesture-identification components, specifically aiming to extend upon the works of this
paper by including a quantitative comparison of landmark-localization accuracy in its
analysis of algorithms such as MPH and InterHands2.6M. Furthermore, another proposed
extension of this paper’s methodology is a data-based analysis of the final solution’s
performance. This could be achieved by grading the final solution and the TELLO drone’s
standard control mechanism against the governing criteria of this paper using quantitative
metric-based testing.

The second proposed area of future work is the application of the MPH model’s
validation data and joint-localization accuracy observations. The first area of application is
in clinical diagnoses, focusing on using MPH to generate joint angles accurate enough to
diagnoses illness and injury. As per the findings of this paper, MPH cannot do this directly
due to its modelling method's instability; however, it could be achieved using sensor fusion.
One possible avenue would be using MPH's joint-localisation accuracy to efficiently locate
points of interest and then modelling these joints in a true three-dimensional environment
using, for example, a stereo camera. The second setting is in rehabilitation, focusing on
using MPH's current level of accuracy to observe the general motion of the human hand
and then acting upon this motion in a gamified environment.

The final proposed area of future work is the application of the developed alternative-
control algorithm and the framework used to construct it. The most immediate application
for the developed alternative-control algorithm is using it to extend the accessibility of
drone control to operators that cannot operate the standard control medium due to having
impaired dexterity. Another application for the developed algorithm is seeking to opti-
mise its computationally lightweight nature to foster ils use in either embedded or edge
computing environments. The framework used to develop the final alternative-control
algorithm can be re-applied to a multitude of other alternative-control tasks. With the now
fully developed HGR component, all that would be required to re-tune the current sclution
to control a new agent is the reconstruction of the command mapping component.
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Appendix D. Code Methods
This displays the specific python calculation methods used by various aspects of
the report:

Figure Al. Three-dimensional joint-calculation methed.

Figure A2. Two-dimensional joint-calculation method.

Appendix E.
This appendix displays the specifications for the mechanism used to demonstrate
the functionality of the final alternative-control algorithm. The selected mechanism was

a TELLO Drone. Table Al includes the general technical specifications for the drone,

Figure A3 is an image of the TELLO drone.
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Table Al. TELLO specifications. Values reproduced from [37].

Aircraft

Flight Weight B0g
Dimensions 98 « 92 x 41 mm
Propeller Diameter 76.2 mm
Range Finder
Barometer
Built in Functions LED
Vision System

Electrical Interface

Maximum Flight Range

2.4 GHz 802.11n Wi-Fi
Micro USB Charging Port
100 m

Maximum Flight Time 13 min
Flight Performance =
Maximum Speed 8m/s
‘Maximum Iilrerighl 30m
Battery Detachable Battery 38V-11Ah
Photo 5MP (2592 x 1936)
FOV 82.6°
Camera Video HD720P30
Format 1PG (Photo), MP4 (Video)
EIS Yes

Figure A3, TELLO drone [38].

References

L

Mahmood, M.; Rizwan, M.E; Sultana, M.; Habib, M.; Imam, M.H. Design of a Low-Cost Hand Gesture Controlled Automated
Wheelchair. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5-7 June 2020; pp. 1379-1382.
[CrossRef]

Posada-Gomez, R.; Sanchez-Medel, L.H.; Hernandez, G.A.; Martinez-Sibaja, A.; Aguilar-Laserre, A.; Lei-ja-Salas, L. A Hands
Gesture System of Control for an Intelligent Wheelchair. In Proceedings of the 2007 4th International Conference on Electrical and
Electronics Engineering, Bursa, Turkey, 5-7 September 2007; pp. 68-71. [CrossRef]

Hu, B.; Wang, ]. Deep Learning Based Hand Gesture Recognition and UAV Flight Controls. Int. J. Autom. Comput. 2020, 17, 17-29.
[CrossRef]

Lavanya, K.N,; Shree, D.R,; Nischitha, B.R.; Asha, T; Gururaj, C. Gesture Controlled Robot. In Proceedings of the 2017
International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT),
Mysore, India, 15-16 December 2017; pp. 465-469. [CrossRef]

208

Chapter 4: Use Case Examples



Semsars 2023, 13, 5462 34 of 35

30.

31

32

Premaratne, P; Nguyen, Q.; Premaratne, M. Human Computer Interaction Using Hand Gestures. In Advanced Intelligent Computing
Theories and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 381-386. [CrossRef]

Mitra, 5.; Acharya, T. Gesture Recognition: A Survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 311-324. [CrossRef]
Guo, L; Lu, Z; Yao, L. Human-machine interaction sensing technology based on hand gesture recognition: A review. [EEE Trans.
Hum.-Mach. Syst. 2021, 51, 300-309, [CrossRef]

Liu, H.; Wang, L. Gesture recognition for human-robot collaboration: A review. Int. [. Ind. Ergon. 2018, 68, 355-367. [CrossRef]
Damaneh, M.M.; Mohanna, F; Jafari, P. Static hand gesture recognition in sign language based on convolutional neural network
with feature extraction method using ORB descriptor and Gabor filter. Expert Syst. Appl. 2023, 211, 118559, 1SSN: 09574174,
[CrossRef]

Ma, Y; Liu, Y;; Jin, R.; Yuan, X; Sekha, R.; Wilson, 5,; Vaidyanathan, R. Hand Gesture Recognition with Convolutional Neural
Networks for the Multimodal UAV Control. In Proceedings of the 2017 Workshop on Research, Education and Development of
Unmanned Aerial Systems (RED-UAS), Cranfield, UK, 25-27 November 2019; pp. 198-203, [CrossRef]

Yoo, M.; Na, Y.; Song, H,; Kim, G.; Yun, J.; Kim, 5.; Moon, C;; Jo, K. Mation Estimation and Hand Gesture Recognition-Based
Human-UAV Interaction Approach in Real Time. Sensors 2022, 22, 2513, [CrossRef] [PubMed]

Yeh, Y.-B; Cheng, 5-]; Shen, C.-H. Research on Intuitive Gesture Recognition Control and Navigation System of UAV. In
Proceedings of the 2022 [EEE 5th International Conference on Knowledge Innovation and Invention (ICKII), Hualien, Taiwan,
22-24 July 2022; pp. 5-8. [CrossRef]

Tsai, C.-C.; Kuo, C-C.; Chen, Y.-L. 3D Hand Gesture Recognition for Drone Control in Unity. In Proceedings of the 2020 IEEE 16th
International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20-21 August 2020; pp. 985-988,
[CrossRef]

Lee, |-W.; Yu, K.-H. Wearable Drone Controller: Machine Leaming-Based Hand Gesture Recognition and Vibrotactile Feedback.
Sensors 2023, 23, 2666, [CrossRef] [PubMed]

liang, 5; Kang, P.; Song, X.; Lo, B.EL.; Shull, P.B. Emerging wearable interfaces and algorithms for hand gesture recognition:
A survey. IEEE Rev. Biomed. Eng. 2022, 15, 85-102 [CrossRef] [PubMed]

Rautaray, 5.5,; Agrawal, A, Vision Based Hand Gesture Recognition for Human-Computer Interaction: A survey. Artif. Infell. Rev.
2015, 43, 1-54. [CrossRef]

Aggarwal, | K.; Ryoo, M.S. Human Activity Analysis: A Review. ACM Comput. Swrp, 2011, 43, 16:1-16:43. [CrossRef]

Zhang, F; Bazarevsky, V.; Vakunov, A; Tkachenka, A; Sung, G.; Chang, C.L.; Grundmann, M. MediaPipe Hands: On-device
real-time hand tracking. arXiv 2020, arXiv:2006.10204. [CrossRef]

Moon, G.; Yu, 5.-1; Wen, H.; Shiratori, T; Lee, K.M. InterHand2.6M: A dataset and baseline for 3D interacting hand pose estimation
from a single RGB image. In Computer Vision-ECCV 2020 (Lecture Notes in Computer Science); Springer: Berlin/Heidelberg, Germany,
2020; pp. 548-564. [CrossRef]

Ge, L.; Ren, Z.; Li, Y; Xue, Z; Wang, Y.; Cai, |.; Yuan, ]. 3D hand shape and pose estimation from a single RGE image.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15-20 June 2019;
pp. 10833-10842, [CrossRef]

Jindal, M.; Bajal, E.; Sharma, S. A Comparative Analysis of Established Techniques and Their Applications in the Field of Gesture
Detection, In Machine Learning Algorithms and Applications in Engineering; CRC Press: Boca Raton, FL, USA, 2023; p. 73.

Yasen, M.; Jusoh, 5. A systematic review on hand gesture recognition techniques, challenges and applications. Peer] Comput. Sci.
2019, 5, e218. [CrossRef] [PubMed]

American Sign Language. Wikipedia. Available online: hitps:/ /en.wikipedia.org /wiki/ American_Sign_Language (accessed on
3 April 2023),

Cudah, M.; Al-Naji, A.; Chahl, ]. Hand Gesture Recognition Based on Computer Vision: A Review of Techniques. [. Imaging 2020,
6, 73. [CrossRef] [PubMed]

Balestra, |.; (Climbit Physio, Belmont, WA, Australia). Personal communication, 2022,

Xu, X,; Zhang, X.; Fu, H.; Chen, L,; Zhang, H.; Fu, X, Robust Passive Autofocus System for Mobile Phone Camera Applications.
Comput. Electr. Eng. 2014, 40, 1353-1362. [CrossRef]

Bhushan, 5.; Alshehri, M.; Keshta, ; Chakraverti, A.K.; Rajpurchit, |.; Abugabah, A. An Experimental Analysis of Various
Machine Learning Algorithms for Hand Gesture Recognition. Electronics 2022, 11, 968, [CrossRef]

Gadekallu, T.R; Srivastava, G.; Livanage, M.; lyapparaja, M.; Chowdhary, C.L.; Koppu, 5; Maddikunta, PK.R. Hand Gesture
Recognition Based on a Harris Hawks Optimized Convolution Neural Network. Compud. Electr. Eng. 2022, 100, 107836, [CrossRef]
Katsuki, Y.; Yamakawa, Y.; Ishikawa, M. High-speed human/robot hand interaction system. In Proceedings of the HRIACM/IEEE
International Conference on Human-Robot Interaction System, Portland, OR, USA, 2-5 March 2015; pp. 117-118. [CrossRef]
MediaPipe. MediaPipeHands [SourceCode]. Available online: https:/ /github.com/google/mediapipe /tree/master /mediapipe /
python/solutions (accessed on 21 April 2022).

CVZone. Hand TrackingModule [SourceCode]. Available online: https:/ /github.com /cvzone /cvzone /blob/ master /cvzone /
HandTrackingModule.py (accessed on 23 May 2022).

Soumotanu Mazumdar. Sign-Language-Detection [SourceCode]. Available online: https:/ /github.com/ FortunateSpy5 /sign-
language-detection (accessed on 21 August 2022).

Chapter 4: Use Case Examples

209



Sensors 2023, 23, 5462 35 of 35

33, Dmitry Manoshin. Gesture_Recognition [SourceCode]. Available online: hitps: / / github.com/ manosh7n / gesture_recognition
{accessed on 9 August 2022),

34. Halder, A,; Tayade, A. Real-time vernacular sign language recognition using mediapipe and machine leaming, Inf. [. Res.
Publ. Rev. 2021, 2, 9-17. Available online: https:/ /scholar.google.com/scholar?as_g-Real-time+vemacular+sign +language+
recognition+ using + mediapipe+ and » machine + learning&eas_occi=titlefehl-endeas_sdi=0%2C31 {accessed on 16 August 2022).

35 Damia F Escote. D[ITelloPy [SourceCode]. Awvailable online: hitps://github.com /damiafuentes/ DI TelloPy (accessed on
2 April 2022),

36. Hamilton, G.E; Lachenbruch, P.A. Reliability of Goniometers in Assessing Finger Joint Angle. Phys. Ther. 1969, 49, 465469,
[CrossRef] [PubMed]

37. TELLOSPECS. RYZE. Available online: hittps:/ /www.rizerobotics.com /tello/ specs (accessed on 25 May 2023).

38.  Tello. Wikipedia, Available online: hitps:/ /de wikipedia.org/wiki/ Tello_{Drohne) (accessed on 25 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and / or the editor(s). MDPI and /or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

210 Chapter 4: Use Case Examples



4.6 SUMMARY OF USE CASE EXAMPLES AND THEIR
IMPLEMENTATION

This chapter provided 4 different use cases which have been published in peer
reviewed journals. The CP use cases were selected as example of use of IMUs in
clinical settings. IMUs were used to capture movement associated with CP in two
experiments. One for measuring the effectiveness of wrist orthotics for two groups of
children and young adults in CP via randomized controlled trials. Another example
utilised IMUs to measure HCA for children with CP. Both instances demonstrated how

IMU sensors can be utilised in rehabilitation environments.

The posture monitoring paper provided an example of measuring full posture
utilising the developed framework. Different posture correction exercises were
implemented where the user was able to get feedback on their movement while
wearing the sensors within their PPE. This paper also provided brief look at how the
joint angle measurements were calculated and validated against Curtin University’s
Motion Analysis Lab (MAL) and goniometer. Chapter 5 will provide a detailed look

system testing and validation process.

The alternative control paper provided the user case and implementation of HGR
and detailed the methodology for implementing this technology within the framework.
The drone control mentioned in this chapter was utilised and a physical game activity
where a free form finger movement exercise can fly the drone in different directions.
The control was also implemented in the Aeroplane flying game that was discussed
Chapter 3.

After successful validation of different use cases for the different elements of the
framework, a focus group was conducted with exerts in the field of rehabilitation. This
focus group discussion was analysed utilising narrative analysis method of qualitative

research. The details of this qualitative research have been provided in Chapter 5.
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Chapter 5: Analysis of Results and System
Testing

5.1 INTRODUCTION OF SYSTEM TESTING AND VERIFICATION

This chapter provides details of how different aspects of the framework were
tested, evaluated, and verified. Both quantitative and qualitative methods of research
have been applied to evaluate the engineering and clinical perspectives respectively.

For the engineering perspectives, a mix of clinical trials were conducted so the
information provided by the framework can be evaluated against gold standards of
human movement capture such as Vicon Motion Analysis Laboratories at Curtin
University as well as against clinical tools like goniometers. In addition to the clinical
trials and tests, four separate use cases as discussed in Chapter 4 were utilised where

different elements of the framework were tested and evaluated.

This second half of this chapter provides a detailed qualitative analysis in from
a focus group discussion that was conducted with experts in field of rehabilitation. The
feedback provided in this focus group was analysed utilising narrative analysis
methodology. The participants for this focus group provided signed consent for their

names to be published in this thesis and for quotes to be attributed to them if necessary.

5.2 ANALYSIS AND SYSTEM TESTING - ENGINEERING
SPECIFICATIONS

5.2.1 Evaluation of Sensors Against Vicon Video Capture System

As mentioned in Chapter 2, the most accurate form of human movement analysis
is believed to be analysis via video capture technology. There are number of studies
that have demonstrated the accuracy of IMU sensors for human movement as
demonstrated in the different use cases in Chapter 4. In additional to the evidence
provide in the literature, Curtin University’s Vicon motion analysis lab (MAL) was

utilised as a comparison point.

Reflectors were connected to the IMU sensors while at Curtin University’s MAL

[16]. The IMU sensors were then connected to a user’s hand and slightly above the
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wrist as seen in Figure 92. The user then took part in three rehabilitation exercises

which were:

o Flexion and extension exercises
e Small object pickup exercise

e Pressing a stop sign exercise.

The IMU data and Vicon data was collected at the same time and the same
sampling rate. After completion of the activity, the data for both activities was drawn
as seen in Figure 93 and Figure 94. Please note that the data has been slightly shifted

so the similarities of the peaks and valleys of the signal can be visible.

L

rrssesses

¥

RN

Figure 92: Placing reflectors on a user for Vicon Validation [16]
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Figure 93: IMU vs Vicon for flexion and extension exercise
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Figure 94: IMU vs Vicon for object pick up and stop sign exercises.

5.2.2 Evaluation of Sensor Joint Measurements Against Goniometers

As discussed in Chapter 2, goniometers are reportedly the most used method of
calculating joints in clinical settings. This means the next step in evaluating the
components of the framework was to evaluate the accuracy of the IMU calculation
against a goniometer. To achieve this, IMUs were connected to a goniometer and

multiple angle measurements were taken. This test was done once with just the IMU
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connected to the legs of a goniometer with legs moving without it connected to a user
and another time with the IMU connected to different parts of the body while
interacting with the framework. The IMU connection to the goniometer can be seen in
Figure 95. For the first test, IMU data was compared to join measurements via Xsens
Dot mobile application and Xsens Dot KineXYZ application that allowed for direct
stream of IMU data for evaluation. Additionally, MetaMotionR (MMR) IMU sensor
was used to demonstrate the fact that joint angle measurements are independent on the
IMU brand as long as the based specifications are met in accordance with hardware
requirements mentioned in Chapter 3. The comparison of these calculations can be

seen in Figure 96.

Figure 95: IMUs connected directly to a goniometer
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Figure 96: Comparison of Different IMUs with a goniometer

The process of testing IMU data connected directly to a user was explained in
detail as part of the posture monitoring use cases found in Chapter 4 and published in
[16]. Figure 97, Figure 98, and Figure 99 demonstrates an example of these tests for
wrist flexion/extension. The data in Table 6 and Table 7 demonstrate a comparison of
IMU data and the user joint measurements via the framework. In these tests the
validation was done against a goniometer at different angles using the three joint
measurement techniques mentioned in Chapter 3. More example of these tests can be

found in Chapter 4 and published in [16].
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Figure 97: Use of goniometer for calculating wrist joints (Baseline measurement).

Figure 98: Use of goniometer for calculating wrist joints (Extension measurement)
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Figure 99: Use of goniometer for calculating wrist joints (Flexion measurement)

Table 6 : Joint angle measurement against goniometer for wrist flexion

Goniometer Method 1 Method 2 Method 3

Joint Angle X Y Z X Y Z X Y Z
0 0 1 1 -1 0 0 -7 83 —35
10 3 11 11 10 3 0 3 -87 35
20 2 22 22 21 2 0 11 93 -36
30 1 29 29 29 1 0 19 -100 —37
40 1 39 39 39 1 1 26 —106 -39
50 2 50 49 48 3 1 34 113 43

Table 7: Joint angle measurement against goniometer for wrist extension

Goniometer Method 1 Method 2 Method 3

Joint Angle X Y Z X Y Z X Y Z
0 16 NAN 17 -1 16 1 2 -69 35
10 19 10 22 —-11 19 1 -4 61 -35
20 21 18 29 -20 21 1 -10 54 35
30 23 31 37 -29 22 1 -18 47 36
40 24 39 45 41 23 1 -25 —40 38
50 25 49 54  —50 24 2 -32 32 41

Once it was determined that method 2 of joint angle calculation was the most
accurate, another set of tests were run to measure the absolute error of this method
against a goniometer. These error calculations can be seen in Table 8, Table 9, Table
10, and Table 11.
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Table 8: Error calculation for flexion angles

Goniometer Xsens DOT

Angle Measured Angle %Error Absolute Error
5 4.8 4 -0.2
15 16.2 8 1.2
25 24.8 0.8 -0.2
35 36.7 4.86 1.7
45 47.5 5.56 2.5
55 56.4 2.5 1.4

Table 9: Error calculation for extension angles

Goniometer Xsens DOT

Angle Measured Angle %Error Absolute Error
5 4.8 4 -0.2
15 154 2.67 0.4
25 25.8 3.2 0.8
35 345 1.4 -0.5
45 45.6 1.3 0.6
55 55.2 0.36 0.2

Table 10: Error calculation for radial deviation angles

Go}r;\lgg”lngter M ;Z?Jnrsec[i)gggle %Error Absolute Error
5 4.5 10 -0.5
10 9.75 2.5 -0.25
15 15.9 6 0.9
20 21.5 7.5 1.5
25 25.5 2 0.5
30 28.7 4.3 -1.3

Table 11: Error calculation for ulnar deviation angles

Goniometer Xsens DOT

Angle Measured Angle %Error Absolute Error
5 5.2 4 0.2
10 10.3 3 0.3
15 15.5 33 0.5
20 20.6 3 0.6
25 24.2 3.2 -0.8
30 30.5 1.7 0.5
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5.2.3 Evaluation of Sensor Smoothness Measurements

The reliability of the smoothness measurements via LDLJ and SPARC needed
to be evaluated. To achieve this, a healthy participant engaged in the Aeroplane flying
game going through 5 levels of difficulty. The same user then engaged with the same
game with inclusion of Jerky movements in their interaction. The result of these
calculations can be seen in Table 12. As it can be seen, the results of SPARK for level
1 vary greatly to other levels due to the rest times available in this level. This means
that the results need to be analysed by removing level 1 data as outlier. This led to the
observation that normal movements were ~0.75 — 1.25 lower than jerky movements.
If LDLJ is considered, normal movement is ~0.40 -1.55 lower than those of jerkier

movements.

Table 12: Smoothness measurement comparing normal vs jerky movements.

Healthy SPARC SPARC LDLJ LDLJ
User (Linear) (Angular) (Linear) (Angular)
Level 1
Normal -15.0648 -16.5873 -16.4036 -17.1783
Jerky -7.97966 -8.23135 -14.0585 -14.1818
Difference 7.08514 8.35595 2.3451 2.9965
Level 2
Normal -8.8484 -8.90046 -16.3254 -16.0477
Jerky -10.0893 -11.8307 -17.4618 -17.4405
Difference -1.2409 -2.903024 -1.1364 -1.3928
Level 3
Normal -10.3873 -9.21525 -17.4934 -17.0546
Jerky -11.1552 -11.8074 -18.6294 -18.6323
Difference -0.7679 -2.59215 -1.136 -1.5777
Level 4
Normal -10.5619 -10.2303 -17.548 -17.1992
Jerky -11.3361 -11.0971 -15.9417 -16.023
Difference -0.7742 -0.8668 1.6063 1.1762
Level 5
Normal -10.5947 -9.95636 -17.8519 -17.8753
Jerky -11.5976 -13.3031 -19.1289 -18.2584
Difference -1.0029 -3.34674 -1.277 -0.3831

After the initial test, a study was run with a total of 5 participants where 2 were

healthy and 3 had varying levels of spinal cord injury. The users with spinal cord injury
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participated in the same activity and the results were compared to the healthy
participant. The three participants in this study (presented as Use A, User B and User
C) had varying levels of spinal cord injury. Table 13 provide a summary of the user’s
capability as part of this study. The healthy participants were both 20 years of age at
the time of study. The data captured for the study can be seen in Table 14, Table 15,
and Table 16 . The results demonstrate that SPARC and LDLJ can both be utilised to
monitor smoothness measurements, where the variance in smoothness of the
movements can clearly be seen in the provided data below. Additionally, the
Improvement overtime can be seen for user B as there is a 1-month gab in the data
presented for this user which shows the effects of the gamified rehabilitation exercises.
For user A, SPARC shows a difference range of ~0.20 — 1.20 and for user B the
SPARC values were 2.15 — 10.60. The improvements for user B can be seen in their
improved SPARC values of 1.45 — 3.20. This data proves that quantitative measures
of SPARC and LDLJ have demonstrated smoothness measurements when compared

to qualitative analysis of the user’s performances.

Table 13: Information regarding participants of the trial

User Letter Injury Lefthandor  Agein Time of
Code Type right hand 2022 Injury
C5 incomplete ASIA C, Right-handed 70 January 2021
A 50% normal function in but prefers left
upper limb after injury
C4 incomplete ASIA C, Right-handed 30 When they
B 30% normal function in were a
upper limb teenager
C4 complete ASAI A, Right-handed 30 At 12 years of
C 14% normal function in age
upper limb
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Table 14: Smoothness measurement comparing healthy user vs user with minor
spinal cord injury. (User A)

User A SPARC SPARC LDLJ LDLJ
(Linear) (Angular) (Linear) (Angular)
Level 1
Healthy -15.0648 -16.5873 -16.4036 -17.1783
Spinal Cord -9.49496 -10.2899 -15.915 -16.4052
Injury
Difference  5.56984 6.2974 0.4886 0.7731
Level 2
Healthy -8.8484 -8.90046 -16.3254 -16.0477
Spinal Cord -9.22404 -10.6375 -16.9769 -17.5328
Injury
Difference  -0.37564 -1.73704 -0.6515 -1.4851
Level 3
Healthy -10.3873 -9.21525 -17.4934 -17.0546
Spinal Cord -10.5755 -10.6786 -18.1615 -18.6581
Injury
Difference - 0.1882 -1.46335 -0.6681 -1.6035
Level 4
Healthy -10.5619 -10.2303 -17.548 -17.1992
Spinal Cord -11.7454 -12.9276 -18.7333 -19.3095
Injury
Difference -1.1835 -2.6973 -1.1853 -2.1103
Level 5
Healthy -10.5947 -9.95636 -17.8519 -17.8753
Spinal Cord -11.0921 -11.8562 -18.5024 -19.0432
Injury
Difference  -0.4974 -1.89984 -0.6505 -1.1679
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Table 15: Smoothness measurement comparing healthy user vs user with major
spinal cord injury (User B trial 1)

User B SPARC SPARC LDLJ LDLJ
(Linear) (Angular) (Linear) (Angular)
Level 1
Healthy -15.0648 -16.5873 -16.4036 -17.1783
Spinal Cord -19.685 -26.5254 -16.658 -16.6885
Injury
Difference -4.6202 -9.9381 -0.2544 0.4898
Level 2
Healthy -8.8484 -8.90046 -16.3254 -16.0477
Spinal Cord -19.4293 -23.8923 -17.6483 -17.3666
Injury
Difference  -10.5809 -14.9918 -1.3229 -1.3189
Level 3
Healthy -10.3873 -9.21525 -17.4934 -17.0546
Spinal Cord  -12.5405 -12.1977 -18.3131 -18.2126
Injury
Difference -2.1532 -2.98245 -0.8197 -1.158
Level 4
Healthy -10.5619 -10.2303 -17.548 -17.1992
Spinal Cord -9.06415 -11.1813 -18.0392 -18.3019
Injury
Difference  1.49775 -0.951 -0.4912 -1.1027
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Table 16: Smoothness measurement comparing healthy user vs user with major
spinal cord injury (User B trial 2)

User B SPARC SPARC LDLJ LDLJ
(Linear) (Angular) (Linear) (Angular)
Level 1
Healthy -15.0648 -16.5873 -16.4036 -17.1783
Spinal Cord -10.3873 -9.21525 -17.4934 -17.0546
Injury
Difference 4.6775 7.37205 -1.0898 0.1237
Level 2
Healthy -8.8484 -8.90046 -16.3254 -16.0477
Spinal Cord -10.3152 -12.6184 -17.3166 -17.459
Injury
Difference -1.4668 -3.71794 -0.9912 -1.4113
Level 3
Healthy -10.3873 -9.21525 -17.4934 -17.0546
Spinal Cord -13.5655 -15.1098 -18.1474 -18.0009
Injury
Difference -3.1782 -5.89455 -0.654 -0.9463
Level 3 Repeat
Healthy -10.5619 -10.2303 -17.548 -17.1992
Spinal Cord -12.8679 -13.0156 -17.9631 -17.6056
Injury
Difference -2.4806 -3.80035 -0.4697 -0.551
Level 4
Healthy -10.5947 -9.95636 -17.8519 -17.8753
Spinal Cord -12.3168 -12.4267 -19.0337 -18.7518
Injury
Difference -1.7549 -2.1964 -1.4857 -1.5526

To demonstrate how close each participant was to an ideal range of smooth
movements the graphs in Figure 100, Figure 101, and Figure 102 were drawn for linear
SPARC. As it can been seen in Figure 99, User A’s data is very close to the idea range
due to higher percentage of functional movement. Improvements can be observed for
user again going from 18/11/21 to 14/01/2021 dates with the SPARC range of 9.57-
9.67 being close to non-injured of 8.85. Figure 101 shows the SPARC for User B
where the results are further from the idea line as expected due to lower percentage of
movement compared to User A. This can be seen in the SPARC result of 10.27 to

14.63 for User B versus the 8.56 to 10.16 of User A. Improvement can again be seen
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for User B trending towards 10.32. Finally, results of User C are the furthest away
from the ideal range as expected due to the limited functional movement compared to
Users A and B. The improvement can be seen with results changing from 21.85 to
17.69 to a better range of 15.51. Similar analysis can be conducted for linear LDLJ
and angular SPARC measurements which can be seen in Appendix C. The result of
this study demonstrated that both SPARC and LDLJ can show movement smoothness

with SPARC capable of showing the difference on a greater spectrum.
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Figure 100: Linear SPARC for User A
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5.2.4 Evaluation of HGR Elements

The evaluation process for HGR elements of the framework has been previously
discussed in Chapter 4 as part of the alternative control use case and has been published
in [43]. In summary, data from HGR methods were validated against a goniometer

with consultation from clinical collaborators. As cited in (Khaksar et al.) [43], an
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example of this evaluation process was to first capture open palm joint angles using

goniometers for each of the following joints of each finger as seen in Table 17:
e Metacarpophalangeal (J1)
e Proximal interphalangeal (J2)

e Distal interphalangeal (J3)

Table 17: Goniometer measurements for open palm [43]

Joint Number Thumb Index Middle Ring Pinkie
J1 162 178 175 178 178
J2 177 172 172 170 172
J3 180 177 180 180 180

The same joints were then measured using MPH models and their accuracy was
calculated. These measurements were done in categories of open, partially open, and
closed palm divided by front, 45-degree, side, and back views. The accuracy of the
measurements was then calculated in categories of 2D data and 3D data depending on
the viewpoint. Table 18 shows an example of MPH measurements for open palm,
Table 19 shows example accuracy by finger, and Table 20 shows the accuracy by
viewpoint for the 3D data [43].

Table 18: MPH measurements for open palm (front view) [43]

Joint Number Thumb Index Middle Ring Pinkie
3b 2b 3 2D 3B 2b 3D 2b 3D 2D
J1 159 165 163 166 168 172 171 179 166 170
J2 175 175 168 175 169 178 171 173 171 171
J3 166 166 177 178 178 179 174 177 172 174
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Table 19: Accuracy of measurements from 3D data by finger [43]

Percentage Accuracy
Hand Position = Thumb Index Middle Ring Pinkie
Avg Min Avg Min Avg Min Avg Min Avg Min
Open 96.2% 92.0% 93.8% 78.7% 95.7% 84.0% 95.7% 91.0% 94.4% 85.4%
Partial 92.2% 63.6% 82.0% 66.1% 82.6% 54.2% 86.2% 68.2% 82.6% 63.6%
Closed 89.6% 60.7% 72.3% 50.9% 77.0% 53.1% 78.5% 41.5% 82.3% 44.4%

Table 20: Accuracy of measurements from 3D data by viewpoint [43]

Percentage Accuracy
Front Forty-Five Side Back
Avg Min Avg Min  Avg Min Avg Min

Open 96.8% 91.6% 94.5% 84.8% 93.2% 78.7% 96.0%  85.4%

Hand
Position

Partial 88.6% 71.0% 90.0% 81.3% 76.1% 63.6% 85.7% 54.2%

Closed 67.8% 415% 86.3% 643% 848% 60.7% 80.7% 51.8%

5.3 ANALYSIS AND SYSTEM TESTING - CLINICAL PERSPECTIVES

5.3.1 Use of Focus Group for Qualitative Feedback

Several clinical trials were conducted as quantitative analysis of
engineering elements of the developed framework. Once all the foundations were
analysed, a focus group comprising seven experts in the field of rehabilitation was
conducted followed by use of narrative analysis as qualitative method of evaluating

the framework.

The focus group included seven academics and professionals who work and
research in rehabilitation and recovery. Informed consents were provided by
each participant when engaging with the focus group discussions. The small
number of participants may have implications for the breadth, representation,
subjectivity, and uniformity of the discussions, however, due to the participants'
expert knowledge and relevant academic qualifications, the discussions were highly
focused and specialised in relevant areas. Potential issues related to uniformity
arising from differences in academic settings and clinical matters were addressed, as
all participants had practical clinical experience in the field of rehabilitation. It is
important to note that the focus group was conducted to comment on the

gamification aspects of the framework and non-invasive sensor interaction; not the
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provided by the focus group can also be related to broader spectrum of emergent

technologies.

5.3.2 Research Questions Used in the Focus Group Discussion
The full question list utilised to guide the focus group discussion can be found
in Appendix D. There were four set of questions that helped guide the conversation

during the focus group. The purpose of each question set has been provided below.

Question Set 1: Introductory Questions

This question asks the participants to introduce themselves and provide
information regarding their occupation. The answers would provide the foundation
knowledge of the expertise and qualifications available during the discussion. The

responses provided facilitated the following information:
e Establishing background for the participants:

By requesting participants to introduce themselves and share details
about their occupation, this question effectively established the diversity
and breadth of professional expertise within the participants.

e ldentifying relevant expertise:

Through this question, the understanding of participants' professional
backgrounds facilitated the specialised knowledge and experience. This
was particularly useful when seeking input or insights from specific

professional domains.
o Exploring different perspectives:

By divulging the participants' professional occupations, as prompted by
this question, a deeper insight was gained into their professional roles,
responsibilities, and viewpoints. This provided the perspective of the

attendant when providing feedback.
e Promote credibility:

This question promoted the credibility of the focus group and established
the participant’s expertise. This aspect holds particular importance when

weighing the feedback given by the focus group participants.
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Question Set 2: Clinical Implementation Questions

This question gathers feedback on the familiarity of participants with the concept
of gamification of rehabilitation and gain insights, opinions, and feedback regarding
the implementation of the framework. The first question in this set provided the base
understanding of the participants experience in this area as well as feedback on the
participants opinions regarding the effects of gamification in rehabilitation. This
provided an opportunity for participants to share their perspectives on the benefits and
drawbacks of using game elements in rehabilitation based on their experiences. This
information helped identify common themes, concerns, or misconceptions related to

impact of gamification.

The second question in this set aimed to understands the first impression of the
participants of the developed framework right after being presented with a brief demo.
These initial thoughts allowed for spontaneous feedback and opinions, leading to
valuable insight into first reactions. The question allowed the participants to express
positive aspects such as potential advantages or benefits they perceived from the
framework, as well as any negative aspects or concerns. This feedback informed
refinements and adjustments to the framework to address concerns and capitalize on

strengths.

The final question in this set explored participant’s perspectives on the practical
implementation of the framework within clinical settings and rehabilitation exercise
programs. The question also allowed reflection on feasibility and challenges of
integrating the framework into existing clinical practices. The participants were also
able to provide feedback on potential roadblocks and obstacles that would impede
successful implementations. The feedback received here provided guidance in further
development of the framework, strategies for overcoming barriers, and maximizing

effectiveness of implementation in clinical scenarios.

Question Set 3: Questions Regarding the Usability of the Framework

This question set explores different aspects of usability of the framework. The
answers to this question set provided insights and opinions regarding the
implementation and use of framework in clinical settings from both user and clinician

point of views.
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The first question gathered opinions and impressions of the interaction methods
to the framework which involved the non-invasive sensors and the RGB camera as the
input methods. The effectiveness, accuracy, and level of accessibility of the

technologies was also discussed as part of this question.

The second question identified potential challenges or concerns when using
sensors in cases where the user has some disabilities. This question also provided an
opportunity to gather insights into practical issues, concerns of compatibility, and

accessibility requirements.

The third question explored opinions on the benefits and adequacy of remote
viewing of live exercises sessions. Participants were able to share their perspectives
on advantages of real time monitoring, potential benefits for healthcare provides, and
the level of engagement provided by the remote viewing aspects of the framework.
Participants were also able to provide their preference for viewing summary of
activities with relevant statistic and indicate if this type if information would be

sufficient for assessment of user’s progress through the rehabilitation program.

The fourth question provided understanding of participant’s preferences for
frequency of viewing user engagement with the framework. This allowed for receiving
insight into how often patient data needs to be motored for example after each session
or on a periodic basis. Additionally, the questions allowed for receiving feedback on
benefits of the engagement repots such as progress tracking and trends identification,

which could lead to creating tailored interventions based on the gathered data.

The fifth question provided feedback and opinions on the ease of navigational
aspects of the framework. The responses to this question provided insight into user
friendly and intuitive navigational system aspects of the framework. This allowed to
find areas that may be challenging to navigate based on the participants experience in

use of technology in clinical settings.

The sixth question provided feedback and opinion on the level of customization
provided to the users within the framework. The participants were able to discuss
whether more restriction needed to be added to the customization aspects of the
framework. This feedback also helped gather insight into different level of freedom

that should be given to users depending on their rehabilitation requirements, level of
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familiarity with the technology, and the safety requirements for setting boundaries

defined by the clinicians.

The seventh question explored participant’s preferences regarding how baseline
information for rehabilitation exercises would be provided to the user. There
participants were presented with the option of inputting the baseline settings in the
same unity application as the user or provide the information in a separate simpler
application, designed specifically for baseline settings. This question helped with
understanding how the framework can be used as part of a normal rehabilitation

program.

The eighth question requested participants to provide their gather perspectives
on potential use of Al for increase exercise attributes for the user. The goal was to get
an understanding of potential parts of the rehabilitation program that could be
automated if with use of Al. This question also related to the customisability of the

framework.

Question Set 4: Final Thoughts and Wrap up Questions

The final question invited the participants to provide suggestions and
recommendations for future developments and improvements of the current
framework. This question helped with wrapping up the discussions within the focus
group and get a sense of how much of their needs are addressed via the developed
framework. These responses helped in defining future directions for implementation
of gamification within rehabilitation settings and helped with providing guidelines for

future researchers to continue working in this area.

5.3.3 Setting, Population, and Participants of the Focus Group

This focus group was conducted in a meeting room at Curtin University’s
Bentley campus and provided the options for participants to join in the discussion via
a video conference call. The room contained two large tables in the centre where
participants and facilitators were seated. A demonstration of the human computer
interface aspects was given to the participants, and they were able to physically interact
with the gamified exercises before engaging in the discussion portion of the focus
group session. After this activity was complete, the author gave a short 10-minute
presentation on the overall aims and objectives of the framework which was followed

by in depth discussion within the group. The audio for the session was recorded to help
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with transcribing the participant responses. After the sessions, narrative analysis was
utilised as a qualitative analysis method to analyse the information provided in the

focus group discussions.

There was a total of seven participants who were experts in field of
rehabilitation. The participants all provided signed consent at the beginning of the
session and provided permission for their name and occupation to be fully published
as a part of this thesis. Table 21 contains a summary of the participants area of

expertise, occupation, qualifications, and academic backgrounds.

Table 21: Information regarding discussion group participants

Participant Name Occupation and Academic Background

Group One

Professor of Mental Health at the School of Population Health
Professor Warren Mansell at Curtin University. BA in Natural Sciences, DPhil, DClinPsy
in Clinical Psychology

Senior Lecturer, School of Population Health, Discipline of

Dr Welber Marinovic Psychology at Curtin University, BS, PhD Psychology

Professor at School of Allied Health at Curtin University. BSc

Professor Kylie Hill Physiotherapy, PhD

Senior Lecturer School of Allied Health at Curtin University

Dr Meg Harrold BSc Physiotherapy, PhD

Senior Physiotherapist at Fiona Stanley Hospital, Lecturer
Curtin school of allied health at Curtin University, Senior
Physiotherapist at Fiona Stanley Hospital. BS, Hon, PhD in
Physiotherapy

Dr Dale Edwick

Group Two

Lecturer, Curtin School of Allied Health, Accredited Hand
Therapist, Allied Health Research Lead at St John of God

Health Care. BSc. (Occupational Therapy), MBA, PhD in
Occupational Therapy

Dr Dave Parsons

Project Manager at East Metro Health Services. BS, Hon in

Ms Eliza Becker Physiotherapy
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5.3.4 Summary of Responses to the Research Questions

The summary of participant’s responses and their implications have been
provided below. As mentioned before, narrative analysis was used as the qualitative

analysis method for the focus group.

Clinical Implementation Questions: Familiarity with Gamification

Based on the responses, all participants were familiar with gamification in the
rehabilitation space, and this was not a new concept to them. Many were already using
gamification concepts their work such as putty playing exercise as part of rehabilitation
programs. The participants generally agreed that gamification can be effective to drive
specific interactions and increase engagement. Dr Parsons noted concerns about
previous solutions taking up space in the clinical laboratories and not being efficiently
utilised due to the long set up process. He commented positively on the relatively quick
set up time of the HMI. Dr Edwick mentioned previous experience with use of virtual
reality to help with pain management of people recovering from burn injuries. Other
participants commented on use of virtual reality and augmented reality in rehabilitation
and most agreed that these technologies present a physical barrier and are too
cumbersome for people recovering from injuries such as spinal cord injuries or people
with existing conditions such as cerebral palsy. The weight of the current headset
technology and effects of it on the rehabilitation program was mentioned such as use
for people with spinal cord injuries. Professor Hill commented that physical games are
already being used in rehabilitation settings and mentioned that the transition to digital
version of the activities could be interesting. This comment led to a discussion about
using technology so the physical rehabilitation object could be implemented in an
augmented reality type game where the physical game activity gets the added benefit

of more information and feedback being provided to the user.

Clinical Implementation Questions: Initial Impressions

Most participants had generally positive feedback on the HMI of the framework.
There were initially some concerns regarding the example cases being focused on wrist
rehabilitation which were addressed by presenting the full body tracking mode within
Unity and demonstration of the posture monitoring use case. Dr Parsons commented
that during a rehabilitation visit it would be faster for a clinician to get the joint angles
using goniometers, but he could see the benefits of the framework in remote settings

where users are partaking in rehabilitation exercises outside the clinical setting. Ms
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Becker had concerns about users becoming withdrawn or overzealous if they are

constantly being monitored.

Clinical Implementation Questions: Thoughts on Implementing in
Rehabilitation Plans

There was a bit of scepticism regarding the logistics of implementing digital
gamified exercises in clinical settings. Professor Hill commented that service costs
need to become cheaper, or resources need to be freed up to allow for the technology
to be fully implemented. Dr Edwick had the same thoughts and noted that if the system
is successfully implemented, it could lead to increase rate of patient assessment which
would lead to freeing up hospital beds leading to cost savings. Dr Parsons questioned
the funding source for implementing this type of system and suggested that it could be
spun from value added perspective for private sectors but had concerns about

government healthcare systems.

Another interesting discussion point was the comments by Dr Harrold and Dr
Parsons that generally physiotherapist and occupational therapist are not usually “Tech
Savvy”. Most participants agreed with this comment and mentioned training required
for the clinicians to become familiar with the technology aspects of the framework. Dr
Parsons commented that old technology is still being used and new system are usually
left untouched to alleviate security concerns. The consensus was that the framework
can greatly assist telehealth and remote health. Ms Becker commented that usually,
similar systems are initiated by clinicians and the inclusion of the data provided by the
framework and circulating this information in academic spaces would lead to the
technology being more receptive in clinical settings. Ms Becker also noted that the
inclusion of progress over time data to both the user and clinician could be use as the

evidence of benefits in clinical settings.

Usability Questions: Thoughts on Interaction Method with the Framework

There was a consensus that the use of Camera as the interaction method with the
exercises would be more accepted compared to use of IMUs as they add a physical
barrier to entry. They further elaborated concerns regarding the physical sensors
getting lost when borrowed by the patients. Dr Marinovic and several others suggested
that if physical interaction methods were accepted, use of technology such as haptic
feedback to measure force could be implemented. Professor Hill commented that there

are three main considerations when assessing the effectiveness of a rehabilitation
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exercise. These considerations were mentioned as range of movement, quality of
movement, and control of movement. It was discussed that the use of IMUs would
address all these considerations since joint measurements and smoothness
measurements provided with the framework covers ROM and Control considerations.
The quality consideration is also addressed by using the reference IMU. Dr Harrold
commented that in rehabilitation the use would be required to engage in short but
frequent exercise sessions which means the exercise session should limit longer
engagement with the framework. Dr Harrold gave the example of a user doing all their
exercises repetitions within the span of one hour at the end of the day which can be
physically damaging and dangerous. Several other participants mentioned the same
requirements and suggested limiting the engagement time with the system so injuries
are not overstressed.

Usability Questions: Thoughts on Use of Sensors with People with

Disabilities
The participants outline three main concerns in use of sensors with regards to

people with disabilities:
1. Small size of sensors leading to them being misplaced.
2. Sanitation requirements of the sensors to prevent infection.
3. Concerns about use cases if patients have open wounds or acute trauma.

This question also opened the discussion regarding other use cases such as aging
populations and geriatric users. Professor Hill and Dr Harrold commented the lack of
technology skills with this group which requires extensive training to troubleshoot
problems and resolve issues. This response led to discussion regarding the importance
of proper training materials both included in the framework as a guided modes as well
as other training materials to both the user and clinicians.

Usability Questions: Thoughts on Telehealth Implications and Live Viewing
of Exercise Sessions

The Telehealth implications and the data provided by the framework outside
clinical settings were the most popular aspects of the framework. The participants were
excited about the capability to see engagement metrics to see how many times the user
engaged with the exercises. The participants highlighted the fact that this data could
provide an accountability to the patients claims on the engagement time with the
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framework. It was commented that this aspect can help with evaluation of how the
exercise program is working. There could be a situation where the engagement data
shows the user participating in exercises without any physical improvements. This
means any potential problems can be detected early which helps the clinician provide
guidelines on correct engagement with the program or investigate any other potential
issues. Professor Hill commented that the “Good Patients” are the ones that engage
with the program and have continuous improvement overtime whereas more complex
cases would take more time in finding out potential issues. Professor Hill commented
that the data provided by the framework would help free up clinician time so they can

spend more time with the complex cases.

Usability Questions: Thoughts on Frequency Data Provided to the Clintons

The consensus about the frequency of receiving information from the user
trended towards weekly. However, it was noted that rehabilitation requirements can
vary greatly from patient to patient and there were positive comments that more
frequent data was collected if they clinician ever needed to go back and access more
information if required. Dr Parsons stated that the system needs to be flexible enough
that the frequency can be modified depending on the case. Professor Mansell
commented the importance of assigning exercises that are specific to a patient. He also
commented that his experience shows that some users will engage with gamification
more than others. Professor Mansell was interested in identifying why some users are
not engaging with the gamification such as avoiding or fear of pain and discomfort.

Usability Questions: Thoughts on Ease or Difficulty of Navigating the
Menus and Settings

All participants were happy with the implemented navigation control, but the
importance of a guided mode and tutorials were mentioned again. One of the
suggestions was to allow the clinicians to limit the number of choices provided to the
user if needed so they can have more control about what aspects of the exercises are
modifiable. It was highlighted that different familiarity with technology could lead to
more what options are presented to the user. Professor Hill had positive comments
regarding the animations and transitions within the framework and mentioned the
interface would be engaging to younger users. The possibility of providing touch input

for menu selection and navigation was also discussed.
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Usability Questions: Thoughts on Level of Customization Provided to the
Patients

Generally, most participants preferred to limit the amount of control users would
have in changing baselines and attributes within the framework. It was mentioned that
clinicians would need direct oversight when changes are made to threshold settings.
The suggested example was to only allow the threshold settings to be increment if the
required number of reptations have been met. Which means if a user has not completed
their reptations they should not be allowed to increase the threshold as it may cause
further injury. Many were happy to allow the user to pick which mini game they want
to engage with as long as it represented a particular rehabilitation exercise. Professor
Mansel commented that the games would need to be specialised to the need of the
patients and commented positively on the customizable nature of the games within the
HMI.

Usability Questions: Thoughts on Requirement for Separate Baseline Setting

Application versus a Single All in One Application
The responses were generally centred around a simple method of data entry so
the baseline and threshold settings can be provided to the participants without too
much time spent with visual menus. The participants suggested context menu,
boxes with information and inputs, and slider bars for navigational options of
the Settings application. There were some suggestions around having some
threshold angles represented on a goniometer since the clinicians would already be

familiar with values on the device.

Final Question Regarding Closing Thoughts and Future Development
Suggestions

Most participants in group one stated that Al should not make any decisions or
changes to the rehabilitation exercise. The second group were more open to the idea
but mentioned that their experience shows that the current state of technology does not
support too much reliance on Al. Ms Becker and Dr Parsons suggested that legislative
changes and extensive research in Al decision making processes need to take place
prior to implementation of an automated system. The participants also highlighted the
fact that rehabilitation exercises need to be adjusted to user’s needs which means a lot
of customizability and oversight needs to be considered when making decisions

regarding changes in a rehabilitation program.
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There was a lot of interest regarding a centralized data system that could promote
social engagement. One of the suggestions was to implement systems that can forecast
recovery utilising historical data to encourage further engagement with the framework.
Dr Parsons suggested that the success rate of rehabilitation programs provided by the
framework could potentially be utilised by private practice as advertisement of the
effectiveness of their techniques. Dr Parsons also suggested potential use case of the
framework in preventing injury such as using the data provided by the framework to
track potential cause of injurie such as finding causes of Carpal Tunnel Syndrome and

providing exercises to help with offsetting any potential injuries.

There were some concerns surrounding data safety and security and suggestion
that some clients may not want their data tracked or recorded. The example of workers
compensations was brought up and the potential hesitation of engaging with this type

of technology.

Professor Hill has some suggestions regarding the integration of this technology
in general society much like wearable fitness tracking and tech-based lifestyle
applications. She suggested including options for users to compare their progress and
engagement with other users in similar rehabilitation environments as a means of

increased engagement.

5.4 SUMMARY OF THE ANALYSIS OF RESULTS AND SYSTEM
TESTING

5.4.1 Summary of the Evaluation of Engineering Aspects

The first part of this chapter demonstrated quantitative methods that have been
utilised to evaluate the technology selected for the development of the framework.
Initially Curtin University’s Motion Analysis Laboratory (MAL) was utilised a
method of comparing the accuracy of the sensors against a gold standard of human

movement capture.

Once the sensor data was evaluated, different use cases were defined where
engineering aspects of the framework were put to test in clinical environments. As part

of these use cases several clinical trials were summarised below:

e IWHOT and MIT Randomized Control Trials: These trials provided an
opportunity to demonstrate the accuracy of use of IMUs in clinical

settings as published in [14].
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e HCA Trial: This trial provided an opportunity to evaluate the use of
IMUs for capturing head movement of children with CP where the data
was compared with a Goniometer as published in [103].

e Smoothness Calculation Trial: This trial provided the opportunity to test
and evaluate the results of the smoothness calculations via tests run with

participants who had spinal cord injury.

The usability of the framework for posture monitoring as well as evaluation of
joint angle measurement technique using the IMUs were demonstrated in the posture
monitoring user case found in Chapter 4 and [16].

Finally, HGR elements of the framework were validated against goniometers
and utilised as an alternative method of control for a drone system as found in Chapter
4 and [43].

5.4.2 Summary of the Evaluation of Clinical Aspects

The second part of this chapter included details of a qualitative analysis of the
framework in form of a focus group discussion with experts in field of rehabilitation.
In summary, the participants were interested in the integration and simplification of
healthcare through technology and saw strong uses in Telehealth and remote
healthcare applications. It was noted that there is a requirement for the framework to
cover all three aspects of rehabilitation, namely range, control, and quality of
movement. The data captured by the framework caused a lot of excitement where the

following use cases were mentioned by the participants.

e The data captured by the framework provided insight into how effective
the rehabilitation program is and if improvements to the range of

movement is being achieved.

e The data captured by the framework can provide accountability to the
user and inform the clinician of how often a patient has engaged with the

rehabilitation program.

e The data captured by the framework can provide insight in situations
where improvement is being made even though the exercise program is
being followed. This would help with early detection of any potential

issues.
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As mentioned above, there is requirement to include more tutorials and guided
modes for both users and clinicians. It was noted that rehabilitation exercises may vary
greatly going from user to user which means individual patient requirements needs to
be carefully considered when defining gamified rehabilitation programs. This also
affect the amount of control and customisation option is available to a user meaning
baseline and threshold settings need to be carefully defined by the clinicians. It was
also highlighted that the developed framework is usable for different age groups due
to ease of navigation in menus and visual representation of different aspects of the

framework.
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Chapter 6: Conclusions

This thesis presented a framework for gamification of rehabilitation exercises
utilising non-invasive sensors. To achieve this, an extensive review of the state-of-the-
art human movement capture technologies as well as review of recent trends in
rehabilitation and gamified approaches were conducted. It was found that in recent
years, physical games have been used to increase engagement with rehabilitation
programs and encourage patients to complete the program. Examples of gamification
of exercises were found, but the main issue was the lack of clinical validation of data
provided by the framework. Most virtual gamified exercises focus on increasing
engagement or utilise expensive specialised equipment such as motion analysis labs,
or virtual/augmented reality headsets. Review of the literature showed that most of
these virtual gamified solutions offer data attributed to joint measurement but there
was a lack of clinical validity in their implementation. Moreover, there is no unified
method of applying virtual gamification in existing exercises so that the clinicians are
not able to rely on the data with high levels of confidence. That is why the research for
this thesis started by defining hardware and software components in such a way that
real time, clinically validated data can be collected to the benefit of patients and

clinicians.

The first step in implementation of the system was the selection of IMUs and
ML facilitated by MediaPipe as the data acquisition methods and main form of
interaction with the gamified exercises. After defining the data acquisition techniques,
algorithms for evaluating the effectiveness of the rehabilitation session were developed
so the user can get feedback on the correctness of their exercises outside clinical
settings. To achieve this, three main pillars of rehabilitation were considered which are
Range of Movement, Control of Movement, and Quality of Movement.

The range of movement, typically assessed using goniometers in clinical
environments, aids in establishing a foundational point for rehabilitation programs.
Control and quality of movement is usually observed by the clinicians during an in-
person patient visit. The challenge lies outside clinical settings where patients do not
get any feedback regarding the accuracy of their participation in the exercise regimen.

Additionally, the clinicians are not able to continuously monitor the patients’ progress
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through the rehabilitation program without them physically present which causes
challenges if the patient lives in a remote area and is not able to get regular checks at
a rehabilitation centre. To be able to provide this information remotely to the clinician
and provide feedback to the user, IMUs and ML technologies were implemented. The
data from the framework provides joint angle utilising Quaternion orientation frames;
provides smoothness measurements through implementation of LDLJ and SPARC;

and provides feedback on quality of movement by a mix of IMU data and HGR.

To create an engaging gamified environment, an HMI was developed in Unity
game engine that was capable of providing audiovisual feedback to the user. To
achieve this, several mini game templates were developed that are mapped to specific
rehabilitation exercises. Guidelines are provided on how a to apply game theory in

building a gamified rehabilitation exercises using the provided templates.

To test the systems, several use cases were defined to demonstrate different
elements of the developed framework. The CP use cases demonstrated the use of IMUs
and ML in clinical settings. The posture monitoring use case demonstrated the use of
the developed framework in full body movement capture and provided information
regarding validation of IMU data against Curtin University’s motion analysis
laboratory and goniometers. Finally, the alternative control system use case
demonstrated the use of the HGR elements of the framework for interacting with a
physical drone can be mapped to a physical gamified exercise. This use case also
contained the validation method for the HGR elements of the framework. These use
cases were all published in open access, peer review journals as documented in Chapter
4.

After all the engineering elements were tested and validated, a focus group was
conducted with experts in field of rehabilitation to gather qualitative feedback on the
developed framework. The participants of the focus group highlighted the level of
customization required for rehabilitation exercises. It was noted that the data captured
by the framework outside clinical settings can provide insight into how well a patient
Is progressing through rehabilitation. This data can also facilitate early detection of
any potential areas for when a rehabilitation program is not working as expected and
can add accountability to the user on how well they have engaged with the exercise

program.

Chapter 6: Conclusions 243



At the completion of this research, the main aims and objectives were to design,
develop, test, and validate a framework for virtual gamification of rehabilitation
exercises which has been achieved. There are opportunities for further development of
this research already taking place at Curtin university. One of these potential directions
would be use of technology in physical equipment that is currently being used in
rehabilitation such as exoskeletons such that the physical interaction can be
demonstrated and recorded. Addition of haptic devices could also be a potential future
direction which adds another feedback method that can increase the immersion of the
virtual games. The author believes that once the physical headsets in AR and VR
technology become light weigh, low cost, and more readily available there is great
potential in use of this technology as an element for virtual gamification of
rehabilitation. As of 2023, physical equipment in VR and AR technology is reportedly
still too cumbersome for rehabilitation but has shown great potential in areas such as
cognitive abilities or in the psychological therapy space for exposure therapy.
However, due to popularity and fast growth of video game industry, these technologies
are progressing at a fast paste and soon the barrier to entry will be lowered further.
This paints a bright future for virtual gamification of rehabilitation and opens the door
for further development in this space.
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APPENDIX B: SAMPLE DATA RECORDINGS FROM
DEVELOPED GAMES

This appendix provides sample data recordings from games discussed in chapter
3.5.
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Figure 103: Sample extension/flexion data for the Monster Chase game

Monster Chase Radial/Ulnar Deviation

Figure 104: Sample radial/ulnar deviation data for the Monster Chase game
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Monster Chase Pronation/Supination
40

30

~

.ll.lnll.""l e = = ased
8

0

10

ol S

L]
-
L]
L]
L
L]
-
L
[ ]
L]
15 ‘ i)

1]

[}

.

-

L]
.
= -
L]
H .
£ J
]
w 0 ‘
& 0 5 10 25 35 40
P | H
g s .
< 10 - ] -
£ i
g - - [}
* -
L]
20 '
L]
L]
L]
° L]
-30
L]
M .

-50

Time (s)

Figure 105: Sample pronation/supination data for the Monster Chase game
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Figure 106: Sample flexion/extension data for the Flap and Avoid game.
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Figure 107: Sample flexion/extension data for the Hovercraft game
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Figure 108: Sample flexion/extension data for the Hovercraft game with larger
obstacles
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Brick Buster Radial/Ulnar Deviation
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Figure 109:Sample radial/ulnar deviation data for the Brick-Busting game
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Figure 110: More radial/ulnar deviation data samples for the Brick-Busting game; (a)
Small Panel, (b) Medium Panel,
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Figure 111: Sample pronation/supination data for the Dodge the Spike game
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Figure 112: Sample pronation/supination data for the Tilting Maze game
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Pronation / Subnation (Roll)
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Figure 113: Sample pronation/supination data for the Skiing game

Flexion / Extension (Pitch)
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Figure 114: Sample flexion/extension data for the Skiing game
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Recording Results - Pitch Section
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Figure 115: Sample data from Aeroplane flying game representing movement in

oint Angle (degrees)

J

25

20

15

10

pitch angles.

Recording Results - Yaw Section
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Figure 116: Sample data from Aeroplane flying game representing movement in

Yaw angles.
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Recording Results - Roll Section
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Figure 117: Sample data from Aeroplane flying game representing movement in Roll
angles
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APPENDIX C: EXAMPLES RESULTS OF LINEAR LDLJ AND
ANGULAR SPARC FOR SMOOTHNESS MEASUREMENTS

This appendix provides more sample analysis results for the study run to measure

angular and linear LDLJ for evaluation of smoothness measurements of the

framework.
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Figure 118: Linear LDLJ for User A
USER B LDLJ (LINEAR) LEVEL 2
(RIGHT)
0
24, 21 31. 21 07. 21 14 21 21, 21
-5
x
&
2
4 -10
=
o
Z
S 15
[a]
(U]
9 ) o o~ L ©
3 2 < S 5
20 g ; o S =
-25
TIME

s NON-INJURED IDEAL

Figure 119: Linear LDLJ for User B
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Figure 120: Linear LDLJ for User C
USER A SPARC (ANGULAR) LEVEL 2
(LEFT)
0
25. 21 09.12.21 18.22.21 27.02.21 14.0%.22 23.00.22
-5
z
) -10 N
z o g o g =
o & = 3 o = 2
g 15 = o 2 5 S 2
— <t =
<<
o
—
Q
w20
wv
-25
-30
TIME

- NON-INJURED IDEAL

Figure 121: Angular SPARC for User A
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Figure 122: Angular SPARC for User B
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Figure 123: Angular SPARC for User C
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APPENDIX D: FULL QUESTION LIST FOR FOCUS GROUP

DISCUSSION

This appendix contains the full question list that was utilised for the focus group

discussion.

Curtin University

Focus group questions:

1.

2.

10f1

Participant informaticn sheet ¥

Please introduce yourself and your occupation
Clinical implementation

2.1. How familiar are you with gamification of rehabilitation exercises and what it is your opinion
regarding its effects?

2.2. What is your initial impression of this framework? Please share any positive or negative
feedback that comes to your mind.

2.3. Do you see a pathway for effectively incorporated this framework into clinical settings and
patients’ treatment plan? What are the roadblocks?

Usability questions

3.1. What do you think about the interaction method (i.e IMU sensors and the camera) with the
framework?

3.2. Do you see any issues with connecting IMUs to people with disabilities?
3.3. Do you see any benefits of being able to remotely view the live exercise session or would a
summary of activities with stats such as Max/Min Range of movements, number of repetitions

achieved, etc be adequate

3.4. How often would you be interested in reviewing patient’s engagement with the framework?
(Per session or per week?) What are the benefits of the report?

3.5. Do you find the framework easy to navigate? What makes it easy/hard?

3.6. What do you think about the level of customization given the patients? i.e should there be
more restrictions given to the patients when interacting with the framework.

3.7. Do you prefer to have a separate application for providing the baseline for the patients or
would you rather have an all-in-one application?

3.8. Do you see any benefits in an Al system proving feedback to the user?
Final thoughts

4.1. Do you have any suggestions on the future development and improvement of the current
framework

CRICOS Provider Code 00301J (WA), 026278 (NSW)
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