236 research outputs found

    An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling

    Get PDF
    As hurricanes continue to threaten coastal communities, accurate storm surge forecasting remains a global priority. Achieving a reliable storm surge prediction necessitates accurate hurricane intensity and wind field information. The wind field must be converted to wind stress, which represents the air-sea momentum flux component required in storm surge and other oceanic models. This conversion requires a multiplicative drag coefficient for the air density and wind speed to represent the air-sea momentum exchange at a given location. Air density is a known parameter and wind speed is a forecasted variable, whereas the drag coefficient is calculated using an empirical correlation. The correlation’s accuracy has brewed a controversy of its own for more than half a century. This review paper examines the lineage of drag coefficient correlations and their acceptance among scientists

    The Impact of Hurricanes on the Oceanographic Conditions in the Exclusive Economic Zone of Cuba

    Full text link
    In this work, we analysed the satellite-based responses of sea surface temperature (SST) and chlorophyll-a (chl-a) concentration in the waters of the Exclusive Economic Zone (EEZ) of Cuba to hurricanes that crossed the EEZ between 1998 and 2016. We considered two spatial scales to capture the spatially heterogeneous nature of the effects of hurricanes. A first more fine-grained one where we considered 120 km radius disks centered at every consecutive hurricane position within the EEZ (scale 1) and a second more coarse grained one enclosing the entire EEZ (scale 2). We conclude that the hurricanes induced a weak cooling since 75 and 85% of the SST anomalies at scale 1 and 2, respectively, were smaller than -1{\deg}C. The cooling was mainly caused by the wind, inducing mixing and/or upwelling of subsurface cool waters. The maximum chl-a responses were recorded in the first and second post-storm weeks, with 60% ranging between -0.01 and 0.04 mg m−3^{-3} at scale 1, and between -0.07 and 0.02 mg m−3^{-3} at scale 2. During those post-storm weeks SST and chl-a anomalies were 18 and 44% higher at scale 1 than at scale 2, respectively. We argue that the transport of chl-a from the deep chlorophyll maximum and/or the rich coastal waters are the dominant mechanisms determining the post-storm chl-a response in the EEZ. We also found that the magnitude of the Island Mass Effect in the EEZ after the passage of the hurricanes was 89% higher than before its passage.Comment: 33 pages, 14 figures. Submitted to Remote Sensing of Environmen

    Skill assessment and optimization of the third generation wave models for applications in Gulf of Mexico

    Get PDF
    Numerical phase-averaged wave models are the best option to obtain the spatial and temporal distribution of the wave energy over a large domain, such as the Gulf of Mexico. Parallel implementation of unstructured SWAN and WAVEWATCH-III were engaged in this research to evaluate the performance of third generation wave models for different conditions. Met-ocean data from a network of NDBC buoys and WAVCIS stations were used to assess the predictive skills of the wave models. Deep water wave energy dissipation formulations were carefully analyzed and modified to improve the accuracy of the bulk wave parameters. Moreover, the importance of the assumptions for choosing the high frequency cut-off and the slope of the power law for the frequency tail were highlighted by several simulations using SWAN and WAVEWATCH-III. The results show that previous underestimation of wave period reported from the WAM-3 formulation of SWAN was partially attributed to the different assumptions used on the high frequency end of the spectrum. When waves propagate to shallow water, several other processes affect the wave spectrum such as dissipation of wave energy by bed friction in non-cohesive environments. The wave model with an optimized set of coefficients for the Gulf of Mexico was used to skill assess two widely used bed friction formulations. Simulation results showed that the incorporation of sediment information in an eddy viscosity formulation led to more accurate wave hindcast than the JONSWAP formulation. The computation cost required to use the proposed formulation increased by less than 4%. The turbid plume exiting the Atchafalaya Bay system significantly influences the wave spectrum of western Louisiana coast. Using extended deployments during low and high discharge periods of the Atchafalaya River, meteorological, hydrodynamic and bottom boundary layer parameters were monitored from Tiger and Trinity Shoals. These datasets were used to evaluate the mud-wave interaction in SWAN. The numerical algorithm to solve the complex dispersion equation of SWAN was optimized. Moreover, the model was extended to incorporate the damping term in non-stationary simulations. The results show that without including the mud-effects, the high frequency waves were overestimated close to Tiger Shoal during northerly winds

    Advances in Hurricane Research

    Get PDF
    This book provides a wealth of new information, ideas and analysis on some of the key unknowns in hurricane research. Topics covered include the numerical prediction systems for tropical cyclone development, the use of remote sensing methods for tropical cyclone development, a parametric surface wind model for tropical cyclones, a micrometeorological analysis of the wind as a hurricane passes over Houston, USA, the meteorological passage of numerous tropical cyclones as they pass over the South China Sea, simulation modelling of evacuations by motorised vehicles in Alabama, the influence of high stream-flow events on nutrient flows in the post hurricane period, a reviews of the medical needs, both physical and psychological of children in a post hurricane scenario and finally the impact of two hurricanes on Ireland. Hurricanes discussed in the various chapters include Katrina, Ike, Isidore, Humberto, Debbie and Charley and many others in the North Atlantic as well as numerous tropical cyclones in the South China Sea

    Inundation of a barrier island (Chandeleur Islands, Louisiana, USA) during a hurricane : observed water-level gradients and modeled seaward sand transport

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 119 (2014): 1498–1515, doi:10.1002/2013JF003069.Large geomorphic changes to barrier islands may occur during inundation, when storm surge exceeds island elevation. Inundation occurs episodically and under energetic conditions that make quantitative observations difficult. We measured water levels on both sides of a barrier island in the northern Chandeleur Islands during inundation by Hurricane Isaac. Wind patterns caused the water levels to slope from the bay side to the ocean side for much of the storm. Modeled geomorphic changes during the storm were very sensitive to the cross-island slopes imposed by water-level boundary conditions. Simulations with equal or landward sloping water levels produced the characteristic barrier island storm response of overwash deposits or displaced berms with smoother final topography. Simulations using the observed seaward sloping water levels produced cross-barrier channels and deposits of sand on the ocean side, consistent with poststorm observations. This sensitivity indicates that accurate water-level boundary conditions must be applied on both sides of a barrier to correctly represent the geomorphic response to inundation events. More broadly, the consequence of seaward transport is that it alters the relationship between storm intensity and volume of landward transport. Sand transported to the ocean side may move downdrift, or aid poststorm recovery by moving onto the beach face or closing recent breaches, but it does not contribute to island transgression or appear as an overwash deposit in the back-barrier stratigraphic record. The high vulnerability of the Chandeleur Islands allowed us to observe processes that are infrequent but may be important at other barrier islands.2015-01-1

    Multiscale, Multiphysics Modelling of Coastal Ocean Processes: Paradigms and Approaches

    Get PDF
    This Special Issue includes papers on physical phenomena, such as wind-driven flows, coastal flooding, and turbidity currents, and modeling techniques, such as model comparison, model coupling, parallel computation, and domain decomposition. These papers illustrate the need for modeling coastal ocean flows with multiple physical processes at different scales. Additionally, these papers reflect the current status of such modeling of coastal ocean flows, and they present a roadmap with numerical methods, data collection, and artificial intelligence as future endeavors

    Investigation of Coastal Vegetation Dynamics and Persistence in Response to Hydrologic and Climatic Events Using Remote Sensing

    Get PDF
    Coastal Wetlands (CW) provide numerous imperative functions and provide an economic base for human societies. Therefore, it is imperative to track and quantify both short and long-term changes in these systems. In this dissertation, CW dynamics related to hydro-meteorological signals were investigated using a series of LANDSAT-derived normalized difference vegetation index (NDVI) data and hydro-meteorological time-series data in Apalachicola Bay, Florida, from 1984 to 2015. NDVI in forested wetlands exhibited more persistence compared to that for scrub and emergent wetlands. NDVI fluctuations generally lagged temperature by approximately three months, and water level by approximately two months. This analysis provided insight into long-term CW dynamics in the Northern Gulf of Mexico. Long-term studies like this are dependent on optical remote sensing data such as Landsat which is frequently partially obscured due to clouds and this can that makes the time-series sparse and unusable during meteorologically active seasons. Therefore, a multi-sensor, virtual constellation method is proposed and demonstrated to recover the information lost due to cloud cover. This method, named Tri-Sensor Fusion (TSF), produces a simulated constellation for NDVI by integrating data from three compatible satellite sensors. The visible and near-infrared (VNIR) bands of Landsat-8 (L8), Sentinel-2, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were utilized to map NDVI and to compensate each satellite sensor\u27s shortcomings in visible coverage area. The quantitative comparison results showed a Root Mean Squared Error (RMSE) and Coefficient of Determination (R2) of 0.0020 sr-1 and 0.88, respectively between true observed and fused L8 NDVI. Statistical test results and qualitative performance evaluation suggest that TSF was able to synthesize the missing pixels accurately in terms of the absolute magnitude of NDVI. The fusion improved the spatial coverage of CWs reasonably well and ultimately increases the continuity of NDVI data for long term studies

    Spatial structure and dynamics of the plant communities in a pro-grading river delta : Wax Lake Delta, Atchafalaya Bay, Louisiana

    Get PDF
    River deltas are dynamic depositional environments that are controlled to varying degrees by coastal and fluvial forces. Plant communities in deltas respond to many of the same allogenic forces that shape delta geomorphology. This study examines the factors that influence plant community development, productivity, and species distributions in the Wax Lake delta, a young, actively pro-grading river delta in coastal Louisiana, USA. A species distribution map created using high-resolution 8-band WorldView-2 imagery was found to have an overall accuracy of 75 percent. Classification tree analysis suggested that most of the observed variation in plant species distributions within the delta can be explained by variables related to flooding, riverine and tidal flushing, soil development, ecological succession, and exposure. This full model explained 65 percent of the spatial variability, compared to 54 percent explained by elevation alone, indicating that elevation is the most important driver of species distributions in this deltaic system. Analysis of a time series of NDVI data derived from 94 Landsat images from 1973 to 2011 suggests that both total and mean plant community productivity within the delta has increased over time and that seasonal fluctuations occur that are related to water temperature and discharge. While significant short-term decreases in NDVI were found following five major storm events, in each case, total and mean NDVI recovered to within the 95 percent prediction interval of the long-term trend by the following growing season. Following the historic 2011 Mississippi River flood, the area of the delta increased by nearly 5 km2. Greater increases in delta area occurred at higher water levels, suggesting substantial vertical accretion across much of the subaerial delta. The plant community responded to this vertical accretion by shifting to higher elevation species across nearly 9 km2 of the delta. Overall, these results indicate that the plant community in the Wax Lake delta is largely driven by allogenic factors related to delta geomorphology and is increasing in productivity as the delta continues to accrete over time. The marshes in the delta show great resilience to storm disturbance, and a strong response to allogenic succession driven by extreme flood events

    Phytoplankton and Carbon Dynamics in the Estuarine-Coastal Waters of the Northern Gulf of Mexico from Field Data and Ocean Color Remote Sensing

    Get PDF
    In this study, phytoplankton community and carbon dynamics were examined in the optically complex estuarine-coastal regions of the northern Gulf of Mexico (nGOM) from field and satellite ocean color observations. As part of this study, bio-optical ocean color algorithms for i) dissolved organic carbon (DOC), ii) phytoplankton pigment composition, iii) adaptive estimation of Chl a and iv) phytoplankton size fractions were developed to facilitate the study of biogeochemical cycling in the nGOM. The phytoplankton based algorithms were applied to Sentinel 3A/B-OLCI oean color data to assess phytoplankton community dynamics to extreme river discharge conditions as well as hurricanes in the nGOM. This study revealed that the effects of hurricanes on phytoplankton community dynamics were dependent on background nutrient conditions, as well as the intensity, track and translational speed of storms: 1) Strong flooding associated with Hurricane Harvey (2017) shifted the dominance of phytoplankton community in Galveston Bay from cyanobacteria and dinoflagellate to diatom and chlorophyte; 2) high levels of organic matter delivered from estuaries to shelf waters after Hurricane Michael (2018) fueled a red tide mixed with coccolithophore bloom in the nGoM; 3) the physical and chemical environment after hurricanes are favorable for the growth and dominance of coccolithophores in shelf waters. Further, microphytoplankton mainly controlled by freshwater inflows showed dominance in estuaries of the nGoM, with highest/lowest values observed in spring/fall. In comparison, phytoplankton size fraction (PSF) dynamics in the midshelf and offshore waters of the nGoM are strongly influenced by Loop Current (LC) expansion, and eddy shedding with highest picophytoplankton fraction observed in the warm waters of LC. DOC dynamics was studied using an empirical algorithm that was developed and applied to multiple satellite sensors (Landsat 5 TM and MODIS-Aqua) to assess multi-decadal (1985-2012) DOC trends in Barataria Basin. The linkages between DOC and environmenal variations were investigated. The relationships between satellite-derived DOC and land cover variations (1985–2011) derived from Landsat-5 TM supervised classification indicate soil loss in the salt marsh to be an important DOC source in the wetland-estuary system, and overall strong land use/land loss impact on the long-term DOC trends in the Barataria Basin
    • …
    corecore