601 research outputs found

    Understanding interaction mechanics in touchless target selection

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)We use gestures frequently in daily life—to interact with people, pets, or objects. But interacting with computers using mid-air gestures continues to challenge the design of touchless systems. Traditional approaches to touchless interaction focus on exploring gesture inputs and evaluating user interfaces. I shift the focus from gesture elicitation and interface evaluation to touchless interaction mechanics. I argue for a novel approach to generate design guidelines for touchless systems: to use fundamental interaction principles, instead of a reactive adaptation to the sensing technology. In five sets of experiments, I explore visual and pseudo-haptic feedback, motor intuitiveness, handedness, and perceptual Gestalt effects. Particularly, I study the interaction mechanics in touchless target selection. To that end, I introduce two novel interaction techniques: touchless circular menus that allow command selection using directional strokes and interface topographies that use pseudo-haptic feedback to guide steering–targeting tasks. Results illuminate different facets of touchless interaction mechanics. For example, motor-intuitive touchless interactions explain how our sensorimotor abilities inform touchless interface affordances: we often make a holistic oblique gesture instead of several orthogonal hand gestures while reaching toward a distant display. Following the Gestalt theory of visual perception, we found similarity between user interface (UI) components decreased user accuracy while good continuity made users faster. Other findings include hemispheric asymmetry affecting transfer of training between dominant and nondominant hands and pseudo-haptic feedback improving touchless accuracy. The results of this dissertation contribute design guidelines for future touchless systems. Practical applications of this work include the use of touchless interaction techniques in various domains, such as entertainment, consumer appliances, surgery, patient-centric health settings, smart cities, interactive visualization, and collaboration

    Toward New Ecologies of Cyberphysical Representational Forms, Scales, and Modalities

    Get PDF
    Research on tangible user interfaces commonly focuses on tangible interfaces acting alone or in comparison with screen-based multi-touch or graphical interfaces. In contrast, hybrid approaches can be seen as the norm for established mainstream interaction paradigms. This dissertation describes interfaces that support complementary information mediations, representational forms, and scales toward an ecology of systems embodying hybrid interaction modalities. I investigate systems combining tangible and multi-touch, as well as systems combining tangible and virtual reality interaction. For each of them, I describe work focusing on design and fabrication aspects, as well as work focusing on reproducibility, engagement, legibility, and perception aspects

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Designing Accessible Nonvisual Maps

    Get PDF
    Access to nonvisual maps has long required special equipment and training to use; Google Maps, ESRI, and other commonly used digital maps are completely visual and thus inaccessible to people with visual impairments. This project presents the design and evaluation of an easy to use digital auditory map and 3D model interactive map. A co-design was also undertaken to discover tools for an ideal nonvisual navigational experience. Baseline results of both studies are presented so future work can improve on the designs. The user evaluation revealed that both prototypes were moderately easy to use. An ideal nonvisual navigational experience, according to these participants, consists of both an accurate turn by turn navigational system, and an interactive map. Future work needs to focus on the development of appropriate tools to enable this ideal experience

    Enhancing interaction in mixed reality

    Get PDF
    With continuous technological innovation, we observe mixed reality emerging from research labs into the mainstream. The arrival of capable mixed reality devices transforms how we are entertained, consume information, and interact with computing systems, with the most recent being able to present synthesized stimuli to any of the human senses and substantially blur the boundaries between the real and virtual worlds. In order to build expressive and practical mixed reality experiences, designers, developers, and stakeholders need to understand and meet its upcoming challenges. This research contributes a novel taxonomy for categorizing mixed reality experiences and guidelines for designing mixed reality experiences. We present the results of seven studies examining the challenges and opportunities of mixed reality experiences, the impact of modalities and interaction techniques on the user experience, and how to enhance the experiences. We begin with a study determining user attitudes towards mixed reality in domestic and educational environments, followed by six research probes that each investigate an aspect of reality or virtuality. In the first, a levitating steerable projector enables us to investigate how the real world can be enhanced without instrumenting the user. We show that the presentation of in-situ instructions for navigational tasks leads to a significantly higher ability to observe and recall real-world landmarks. With the second probe, we enhance the perception of reality by superimposing information usually not visible to the human eye. In amplifying the human vision, we enable users to perceive thermal radiation visually. Further, we examine the effect of substituting physical components with non-functional tangible proxies or entirely virtual representations. With the third research probe, we explore how to enhance virtuality to enable a user to input text on a physical keyboard while being immersed in the virtual world. Our prototype tracked the user’s hands and keyboard to enable generic text input. Our analysis of text entry performance showed the importance and effect of different hand representations. We then investigate how to touch virtuality by simulating generic haptic feedback for virtual reality and show how tactile feedback through quadcopters can significantly increase the sense of presence. Our final research probe investigates the usability and input space of smartphones within mixed reality environments, pairing the user’s smartphone as an input device with a secondary physical screen. Based on our learnings from these individual research probes, we developed a novel taxonomy for categorizing mixed reality experiences and guidelines for designing mixed reality experiences. The taxonomy is based on the human sensory system and human capabilities of articulation. We showcased its versatility and set our research probes into perspective by organizing them inside the taxonomic space. The design guidelines are divided into user-centered and technology-centered. It is our hope that these will contribute to the bright future of mixed reality systems while emphasizing the new underlining interaction paradigm.Mixed Reality (vermischte Realitäten) gehen aufgrund kontinuierlicher technologischer Innovationen langsam von der reinen Forschung in den Massenmarkt über. Mit der Einführung von leistungsfähigen Mixed-Reality-Geräten verändert sich die Art und Weise, wie wir Unterhaltungsmedien und Informationen konsumieren und wie wir mit Computersystemen interagieren. Verschiedene existierende Geräte sind in der Lage, jeden der menschlichen Sinne mit synthetischen Reizen zu stimulieren. Hierdurch verschwimmt zunehmend die Grenze zwischen der realen und der virtuellen Welt. Um eindrucksstarke und praktische Mixed-Reality-Erfahrungen zu kreieren, müssen Designer und Entwicklerinnen die künftigen Herausforderungen und neuen Möglichkeiten verstehen. In dieser Dissertation präsentieren wir eine neue Taxonomie zur Kategorisierung von Mixed-Reality-Erfahrungen sowie Richtlinien für die Gestaltung von solchen. Wir stellen die Ergebnisse von sieben Studien vor, in denen die Herausforderungen und Chancen von Mixed-Reality-Erfahrungen, die Auswirkungen von Modalitäten und Interaktionstechniken auf die Benutzererfahrung und die Möglichkeiten zur Verbesserung dieser Erfahrungen untersucht werden. Wir beginnen mit einer Studie, in der die Haltung der nutzenden Person gegenüber Mixed Reality in häuslichen und Bildungsumgebungen analysiert wird. In sechs weiteren Fallstudien wird jeweils ein Aspekt der Realität oder Virtualität untersucht. In der ersten Fallstudie wird mithilfe eines schwebenden und steuerbaren Projektors untersucht, wie die Wahrnehmung der realen Welt erweitert werden kann, ohne dabei die Person mit Technologie auszustatten. Wir zeigen, dass die Darstellung von in-situ-Anweisungen für Navigationsaufgaben zu einer deutlich höheren Fähigkeit führt, Sehenswürdigkeiten der realen Welt zu beobachten und wiederzufinden. In der zweiten Fallstudie erweitern wir die Wahrnehmung der Realität durch Überlagerung von Echtzeitinformationen, die für das menschliche Auge normalerweise unsichtbar sind. Durch die Erweiterung des menschlichen Sehvermögens ermöglichen wir den Anwender:innen, Wärmestrahlung visuell wahrzunehmen. Darüber hinaus untersuchen wir, wie sich das Ersetzen von physischen Komponenten durch nicht funktionale, aber greifbare Replikate oder durch die vollständig virtuelle Darstellung auswirkt. In der dritten Fallstudie untersuchen wir, wie virtuelle Realitäten verbessert werden können, damit eine Person, die in der virtuellen Welt verweilt, Text auf einer physischen Tastatur eingeben kann. Unser Versuchsdemonstrator detektiert die Hände und die Tastatur, zeigt diese in der vermischen Realität an und ermöglicht somit die verbesserte Texteingaben. Unsere Analyse der Texteingabequalität zeigte die Wichtigkeit und Wirkung verschiedener Handdarstellungen. Anschließend untersuchen wir, wie man Virtualität berühren kann, indem wir generisches haptisches Feedback für virtuelle Realitäten simulieren. Wir zeigen, wie Quadrokopter taktiles Feedback ermöglichen und dadurch das Präsenzgefühl deutlich steigern können. Unsere letzte Fallstudie untersucht die Benutzerfreundlichkeit und den Eingaberaum von Smartphones in Mixed-Reality-Umgebungen. Hierbei wird das Smartphone der Person als Eingabegerät mit einem sekundären physischen Bildschirm verbunden, um die Ein- und Ausgabemodalitäten zu erweitern. Basierend auf unseren Erkenntnissen aus den einzelnen Fallstudien haben wir eine neuartige Taxonomie zur Kategorisierung von Mixed-Reality-Erfahrungen sowie Richtlinien für die Gestaltung von solchen entwickelt. Die Taxonomie basiert auf dem menschlichen Sinnessystem und den Artikulationsfähigkeiten. Wir stellen die vielseitige Verwendbarkeit vor und setzen unsere Fallstudien in Kontext, indem wir sie innerhalb des taxonomischen Raums einordnen. Die Gestaltungsrichtlinien sind in nutzerzentrierte und technologiezentrierte Richtlinien unterteilt. Es ist unsere Anliegen, dass diese Gestaltungsrichtlinien zu einer erfolgreichen Zukunft von Mixed-Reality-Systemen beitragen und gleichzeitig die neuen Interaktionsparadigmen hervorheben

    Evaluating the Influence of Haptic Force-Feedback on 3D Selection Tasks using Natural Egocentric Gestures

    Get PDF
    Immersive Virtual Environments (IVEs) allow participants to interact with their 3D surroundings using natural hand gestures. Previous work shows that the addition of haptic feedback cues improves performance on certain 3D tasks. However, we believe this is not true for all situations. Depending on the difficulty of the task, we suggest that we should expect differences in the ballistic movement of our hands when presented with different types of haptic force-feedback conditions. We investigated how hard, soft and no haptic force-feedback responses, experienced when in contact with the surface of an object, affected user performance on a task involving selection of multiple targets. To do this, we implemented a natural egocentric selection interaction technique by integrating a two-handed large-scale force-feedback device in to a CAVE (TM)-like IVE system. With this, we performed a user study where we show that participants perform selection tasks best when interacting with targets that exert soft haptic force-feedback cues. For targets that have hard and no force-feedback properties, we highlight certain associated hand movement that participants make under these conditions, that we hypothesise reduce their performance

    A Utility Framework for Selecting Immersive Interactive Capability and Technology for Virtual Laboratories

    Get PDF
    There has been an increase in the use of virtual reality (VR) technology in the education community since VR is emerging as a potent educational tool that offers students with a rich source of educational material and makes learning exciting and interactive. With a rise of popularity and market expansion in VR technology in the past few years, a variety of consumer VR electronics have boosted educators and researchers’ interest in using these devices for practicing engineering and science laboratory experiments. However, little is known about how such devices may be well-suited for active learning in a laboratory environment. This research aims to address this gap by formulating a utility framework to help educators and decision-makers efficiently select a type of VR device that matches with their design and capability requirements for their virtual laboratory blueprint. Furthermore, a framework use case is demonstrated by not only surveying five types of VR devices ranging from low-immersive to full-immersive along with their capabilities (i.e., hardware specifications, cost, and availability) but also considering the interaction techniques in each VR device based on the desired laboratory task. To validate the framework, a research study is carried out to compare these five VR devices and investigate which device can provide an overall best-fit for a 3D virtual laboratory content that we implemented based on the interaction level, usability and performance effectiveness

    Blending the Material and Digital World for Hybrid Interfaces

    Get PDF
    The development of digital technologies in the 21st century is progressing continuously and new device classes such as tablets, smartphones or smartwatches are finding their way into our everyday lives. However, this development also poses problems, as these prevailing touch and gestural interfaces often lack tangibility, take little account of haptic qualities and therefore require full attention from their users. Compared to traditional tools and analog interfaces, the human skills to experience and manipulate material in its natural environment and context remain unexploited. To combine the best of both, a key question is how it is possible to blend the material world and digital world to design and realize novel hybrid interfaces in a meaningful way. Research on Tangible User Interfaces (TUIs) investigates the coupling between physical objects and virtual data. In contrast, hybrid interfaces, which specifically aim to digitally enrich analog artifacts of everyday work, have not yet been sufficiently researched and systematically discussed. Therefore, this doctoral thesis rethinks how user interfaces can provide useful digital functionality while maintaining their physical properties and familiar patterns of use in the real world. However, the development of such hybrid interfaces raises overarching research questions about the design: Which kind of physical interfaces are worth exploring? What type of digital enhancement will improve existing interfaces? How can hybrid interfaces retain their physical properties while enabling new digital functions? What are suitable methods to explore different design? And how to support technology-enthusiast users in prototyping? For a systematic investigation, the thesis builds on a design-oriented, exploratory and iterative development process using digital fabrication methods and novel materials. As a main contribution, four specific research projects are presented that apply and discuss different visual and interactive augmentation principles along real-world applications. The applications range from digitally-enhanced paper, interactive cords over visual watch strap extensions to novel prototyping tools for smart garments. While almost all of them integrate visual feedback and haptic input, none of them are built on rigid, rectangular pixel screens or use standard input modalities, as they all aim to reveal new design approaches. The dissertation shows how valuable it can be to rethink familiar, analog applications while thoughtfully extending them digitally. Finally, this thesis’ extensive work of engineering versatile research platforms is accompanied by overarching conceptual work, user evaluations and technical experiments, as well as literature reviews.Die Durchdringung digitaler Technologien im 21. Jahrhundert schreitet stetig voran und neue Geräteklassen wie Tablets, Smartphones oder Smartwatches erobern unseren Alltag. Diese Entwicklung birgt aber auch Probleme, denn die vorherrschenden berührungsempfindlichen Oberflächen berücksichtigen kaum haptische Qualitäten und erfordern daher die volle Aufmerksamkeit ihrer Nutzer:innen. Im Vergleich zu traditionellen Werkzeugen und analogen Schnittstellen bleiben die menschlichen Fähigkeiten ungenutzt, die Umwelt mit allen Sinnen zu begreifen und wahrzunehmen. Um das Beste aus beiden Welten zu vereinen, stellt sich daher die Frage, wie neuartige hybride Schnittstellen sinnvoll gestaltet und realisiert werden können, um die materielle und die digitale Welt zu verschmelzen. In der Forschung zu Tangible User Interfaces (TUIs) wird die Verbindung zwischen physischen Objekten und virtuellen Daten untersucht. Noch nicht ausreichend erforscht wurden hingegen hybride Schnittstellen, die speziell darauf abzielen, physische Gegenstände des Alltags digital zu erweitern und anhand geeigneter Designparameter und Entwurfsräume systematisch zu untersuchen. In dieser Dissertation wird daher untersucht, wie Materialität und Digitalität nahtlos ineinander übergehen können. Es soll erforscht werden, wie künftige Benutzungsschnittstellen nützliche digitale Funktionen bereitstellen können, ohne ihre physischen Eigenschaften und vertrauten Nutzungsmuster in der realen Welt zu verlieren. Die Entwicklung solcher hybriden Ansätze wirft jedoch übergreifende Forschungsfragen zum Design auf: Welche Arten von physischen Schnittstellen sind es wert, betrachtet zu werden? Welche Art von digitaler Erweiterung verbessert das Bestehende? Wie können hybride Konzepte ihre physischen Eigenschaften beibehalten und gleichzeitig neue digitale Funktionen ermöglichen? Was sind geeignete Methoden, um verschiedene Designs zu erforschen? Wie kann man Technologiebegeisterte bei der Erstellung von Prototypen unterstützen? Für eine systematische Untersuchung stützt sich die Arbeit auf einen designorientierten, explorativen und iterativen Entwicklungsprozess unter Verwendung digitaler Fabrikationsmethoden und neuartiger Materialien. Im Hauptteil werden vier Forschungsprojekte vorgestellt, die verschiedene visuelle und interaktive Prinzipien entlang realer Anwendungen diskutieren. Die Szenarien reichen von digital angereichertem Papier, interaktiven Kordeln über visuelle Erweiterungen von Uhrarmbändern bis hin zu neuartigen Prototyping-Tools für intelligente Kleidungsstücke. Um neue Designansätze aufzuzeigen, integrieren nahezu alle visuelles Feedback und haptische Eingaben, um Alternativen zu Standard-Eingabemodalitäten auf starren Pixelbildschirmen zu schaffen. Die Dissertation hat gezeigt, wie wertvoll es sein kann, bekannte, analoge Anwendungen zu überdenken und sie dabei gleichzeitig mit Bedacht digital zu erweitern. Dabei umfasst die vorliegende Arbeit sowohl realisierte technische Forschungsplattformen als auch übergreifende konzeptionelle Arbeiten, Nutzerstudien und technische Experimente sowie die Analyse existierender Forschungsarbeiten

    Augmented Reality and Robotics: A Survey and Taxonomy for AR-enhanced Human-Robot Interaction and Robotic Interfaces

    Get PDF
    This paper contributes to a taxonomy of augmented reality and robotics based on a survey of 460 research papers. Augmented and mixed reality (AR/MR) have emerged as a new way to enhance human-robot interaction (HRI) and robotic interfaces (e.g., actuated and shape-changing interfaces). Recently, an increasing number of studies in HCI, HRI, and robotics have demonstrated how AR enables better interactions between people and robots. However, often research remains focused on individual explorations and key design strategies, and research questions are rarely analyzed systematically. In this paper, we synthesize and categorize this research field in the following dimensions: 1) approaches to augmenting reality; 2) characteristics of robots; 3) purposes and benefits; 4) classification of presented information; 5) design components and strategies for visual augmentation; 6) interaction techniques and modalities; 7) application domains; and 8) evaluation strategies. We formulate key challenges and opportunities to guide and inform future research in AR and robotics
    • …
    corecore