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UNDERSTANDING INTERACTION MECHANICS IN TOUCHLESS TARGET 

SELECTION 

We use gestures frequently in daily life—to interact with people, pets, or objects. 

But interacting with computers using mid-air gestures continues to challenge the design 

of touchless systems. Traditional approaches to touchless interaction focus on exploring 

gesture inputs and evaluating user interfaces. I shift the focus from gesture elicitation 

and interface evaluation to touchless interaction mechanics.  

I argue for a novel approach to generate design guidelines for touchless 

systems: to use fundamental interaction principles, instead of a reactive adaptation to 

the sensing technology. In five sets of experiments, I explore visual and pseudo-haptic 

feedback, motor intuitiveness, handedness, and perceptual Gestalt effects. Particularly, I 

study the interaction mechanics in touchless target selection. To that end, I introduce 

two novel interaction techniques: touchless circular menus that allow command selection 

using directional strokes and interface topographies that use pseudo-haptic feedback to 

guide steering–targeting tasks. 

Results illuminate different facets of touchless interaction mechanics. For 

example, motor-intuitive touchless interactions explain how our sensorimotor abilities 

inform touchless interface affordances: we often make a holistic oblique gesture instead 

of several orthogonal hand gestures while reaching toward a distant display. Following 

the Gestalt theory of visual perception, we found similarity between user interface (UI) 

components decreased user accuracy while good continuity made users faster. Other 

findings include hemispheric asymmetry affecting transfer of training between dominant 

and nondominant hands and pseudo-haptic feedback improving touchless accuracy.  

The results of this dissertation contribute design guidelines for future touchless 

systems. Practical applications of this work include the use of touchless interaction 

techniques in various domains, such as entertainment, consumer appliances, surgery, 

patient-centric health settings, smart cities, interactive visualization, and collaboration. 
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Chapter 1. Introduction 

Interacting with computers besides using mouse and keyboard has been a 

significant leap for human-computer interaction (Jacob et al., 2008). Over the last 

decade, with smartphones, tablets, and tabletops, interactive flat surfaces and touch 

interactions have pervaded our everyday life. With the current boom in sensing 

technologies, interactive computing has leaped further—from surfaces to spaces, from 

touch to touchless (Wigdor & Wixon, 2011). 

Touchless is an interaction modality—enabling users to interact with computers 

using mid-air gestures, either with a bare hand (Bailly, Walter, Müller, Ning, & Lecolinet, 

2011) or while wearing specialized hand gloves (Ni, McMahan, & Bowman, 2008). 

Unlike mouse, pen, keyboard, or touch, touchless gestures permit users to interact from 

a distance and untethered from a surface (Hespanhol, Tomitsch, Grace, Collins, & Kay, 

2012). Touchless affords fluidity in physical navigation, along with the absence of an 

intermediate input device. Touchless interfaces are often deemed as natural user 

interfaces (NUIs). NUIs promise to offer an intuitive interface that does not require 

developing special skills for interacting with computers but allows people to use their 

natural abilities (Macaranas, Antle, & Riecke, 2015). For example, ad slogans, such as 

‘you are the controller’ attained great popularity among consumers when Microsoft 

launched Kinect™ in 2010 (Nansen et al., 2014). Touchless interactions promise to turn 

our everyday gestures into meaningful commands to operate computer systems—from 

laptops to smart televisions to microwaves to large displays (Garzotto & Valoriani, 2012; 

Guimbretière & Nguyen, 2012; Vatavu & Zaiti, 2014).  

Labeling touchless as natural raises a crucial question: What is natural (or 

intuitive or like real-world) for users? The emergence of NUIs has spurred interest in 

critically examining the concept of natural or intuitive, fueling many ongoing debates 

(Aigner et al., 2012; Grandhi, Joue, & Mittelberg, 2011; Hansen & Dalsgaard, 2015; 

Hespanhol et al., 2012; Lee, 2010; Malizia & Bellucci, 2012; Morris, 2012; O’Hara, 

Harper, Mentis, Sellen, & Taylor, 2013; Vatavu & Zaiti, 2014; Wigdor & Wixon, 2011). 

This dissertation sidesteps from generically labeling touchless as natural; instead, I 

explore the core mechanics of touchless interaction, such as feedback, affordances, 

abilities, or handedness. The premise here is that the naturalness of an interface is not 

an axiomatic truth, but achieved through sufficient feedback, effective feedforward, and 

perceived affordances (Norman, 2010; Wigdor, 2010). 
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Figure 1.1. Unlike mouse, pen, or touch, touchless interaction is device-less—enabling 

people to interact with computers with bare hands and facilitating physical navigation. 

I study touchless interaction from an embodied cognition perspective—drawing 

on different theories of cognitive science and motor behavior. The embodied cognition 

perspective argues that our perceptions and motor actions depend on how the body 

experiences the world through our various sensorimotor abilities (Dourish, 2004; Kirsh, 

2013). Using this theoretical lens, I deconstruct the sensorimotor relations in touchless—

explore how interface affordances and ability play a role in the intuitiveness of touchless 

interactions and use theories of visual perception and motor action to inform the design 

of touchless interfaces. 

Particularly, this dissertation focusses on the device-less property of touchless 

(Figure 1.1). Different touchless interfaces use different kind of sensing technologies, 

ranging from infra-red (IR) body markers (Zhou & Hu, 2008), IR-enabled handheld 

remote controllers (Kamuro, Minamizawa, Kawakami, & Tachi, 2009), hand gloves (Ni et 

al., 2008) to depth-based, markerless sensing (Bailly et al., 2011, Figure 1.2). Marker-

based technologies—where individuals wear a set of IR markers on their bodies—are 

commonly used to study motion-tracking, but are intrusive and cumbersome for 

interacting with systems (Zhou & Hu, 2008). Infra-red handhelds enable interacting with 

computers using mid-air gestures but involve an input device (Kamuro et al., 2009). It is 

the introduction of markerless sensing of whole-body movements—without any 

intermediate device—that propelled the emerging research on touchless interfaces in a 

variety of domains, such as entertainment (Morris, 2012; Nebeling, Huber, Ott, & Norrie, 

2014; Rovelo Ruiz, Vanacken, Luyten, Abad, & Camahort, 2014; Vatavu & Zaiti, 2014), 

surgery (Mentis, O'Hara, Sellen, & Trivedi, 2012; O'Hara et al., 2014; Ruppert et al., 

2012; Schwarz, Bigdelou, & Navab, 2011), patient-centric health settings (Dsouza et al., 

2014; Johnson, O'Hara, Sellen, Cousins, & Criminisi, 2011; Morrison et al., 2016; 

device–less
interaction

device–based
interaction
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Mullaney, Yttergren, & Stolterman, 2014; Rosa & Elizondo, 2014; Tan, Chao, Zawaideh, 

Roberts, & Kinney, 2013), interactive visualization (Dostal, Hinrichs, Kristensson, & 

Quigley, 2014; Kister, Reipschläger, Matulic, & Dachselt, 2015), and collaboration 

(Bragdon, DeLine, Hinckley, & Morris, 2011). 

 

Figure 1.2. Touchless interactions use different kinds of sensing technologies, ranging 

from infra-red (IR) body markers to depth-based, markerless sensing. 

Most recently, the naturalness of device-less touchless interaction was studied 

from an interactional perspective, focusing on Merleau-Ponty’s lived-body view of 

individual experiences and Wittgenstein’s socially organized view of the action (O’Hara 

et al., 2013). This dissertation looks into device-less touchless (hereafter touchless) from 

a different perspective: the implications of no embodied conception of a tool—no 

transition of an input device from present-at-hand, an object of activity, to ready-to-hand, 

absorbed in the fabric of the activity (Dourish, 2004; Heidegger, 1988). I argue that this 

device-less property of touchless creates unique interaction mechanics, different from 

the mouse, keyboard, pen, or touch. 

Although touchless may involve interaction mechanics different than other more 

traditional modalities, such as touch or pen, touchless input remains strikingly similar to 

our everyday use of mid-air gestures. This similarity is the focus of some current 

approaches toward designing touchless interaction techniques—a method called gesture 

elicitation. Gesture elicitation aims to design intuitive interfaces by involving users in the 

process (Wobbrock, Morris, & Wilson, 2009). Gesture vocabularies are identified by 

typically showing the outcome of user interface actions or commands, and asking 

individual users to propose gestures that would trigger those actions. By the end of the 

process, a set of interaction commands emerges (Aigner et al., 2012; Grandhi et al., 

2011; Morris, 2012; Nebeling et al., 2014; Vatavu & Zaiti, 2014; Vatavu & Wobbrock, 

2015). Another approach to designing touchless systems is expert design: proposing 

new or emulating successful interaction techniques from other interaction modalities, 

marker-based
tracking

hand-held with
markers hand gloves markerless

tracking
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such as pen or mouse, and then iterating and evaluating them with users (Bailly et al., 

2011; Guimbretière & Nguyen, 2012; Hespanhol et al., 2012; Ni et al., 2008). In this 

dissertation, I shift the focus from gesture elicitation and interface evaluation to touchless 

interaction mechanics, present empirical results, and lay out several design and 

research implications. 

Touchless techniques have been explored in various setups, from small to large 

interactive surfaces, from near to far-away interactions (Garzotto & Valoriani, 2012; 

O’Hara et al., 2013). This dissertation explores touchless interactions with distant, two-

dimensional (2D), large displays (Figure 1.3). Touchless becomes relevant for 

interacting with large, distant displays when an interaction device is not at hand (e.g., in 

public spaces), when touching a device is not acceptable (e.g., in a sterile environment), 

or during sporadic browsing of multimedia information (e.g., in interactive TVs). Though 

in some of these scenarios users can use hand-held devices, such as smartphones or 

tablets, device-free interaction relieves users from the burden of searching, learning, 

connecting, and attending to an additional “medium” between the user and the display.  

 

Figure 1.3. Touchless interaction with large displays while sitting at a distance and 

engaged in laid-back or high-bandwidth, sporadic tasks (Chattopadhyay & Bolchini, 

2013). 

However, it is important to note that touchless may not be suitable for all types of 

large-display interactions, primarily because of the lack of precision inherent in the 

interaction modality (Nancel, Wagner, Pietriga, Chapuis, & Mackay, 2011; Norman, 
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2010). Although researchers are exploring mid-air interaction techniques for fine-grained 

tasks such as text-entry (Markussen, Jakobsen, & Hornbæk, 2014; Sridhar, Feit, 

Theobalt, & Oulasvirta, 2015), it is highly unlikely that touchless would replace keyboard 

or pen for such precise interactions, such as typing or drawing illustrations (Fung, Lank, 

Terry, & Latulipe, 2008). Touchless is more suited for sporadic, high-bandwidth tasks, 

such as pointing-and-selecting, opening, moving, or lightly annotating (Beaudouin-Lafon 

et al., 2012; Nancel et al., 2011). To that end, I study touchless target selection in 

distant, large displays—a fundamental piece of interaction for any touchless interface.  

  Current research on touchless target selection techniques follows either of the 

two prevalent design approaches—gesture elicitation or expert design. Elicitation studies 

aim to understand user preference in touchless input gestures in different interaction 

contexts, such as in a living room with a large, flat screen television (Morris, 2012; 

Vatavu & Zaiti, 2014) or multiple collocated users viewing omnidirectional videos (Rovelo 

Ruiz et al., 2014). In the expert design approach, target selection techniques are 

introduced and evaluated. For example, pushing or dwelling (Hespanhol et al., 2012), 

making three-dimensional strokes (Guimbretière & Nguyen, 2012), posing a certain 

combination of fingers (Bailly et al., 2011; Kulshreshth & LaViola Jr, 2014), rolling the 

wrist and pinching (Ni et al., 2008) or crossing a delimiter (Ren & O’Neill, 2012) to select 

a target. Both elicitation and expert design approaches seek intuitive touchless 

techniques, but user studies have found certain interactions—that were earlier described 

as suitable or are effectively supported by the system—turn out difficult to perform during 

evaluation (Nebeling et al., 2014; Ren & O’Neill, 2012). For example, target selection by 

moving an open palm normal to the display (push-to-select) caused frequent false 

positives and false negatives while interacting with large displays (Hespanhol et al., 

2012). When interacting with touchless marking menus on a distant display, researchers 

reported that most users had difficulties constraining their gestures in a two-dimensional 

(2D) plane (Bailly et al., 2011). Recent research on 3D marking menus also reported 

users’ limitations in making precise hand trajectories in 3D space (Guimbretière & 

Nguyen, 2012; Ren & O’Neill, 2012). We often encounter such observations from 

evaluation studies about user limitations or failure of certain touchless gestures without 

any proper explanation. The current approaches are either treating human abilities as a 

‘black box’, assuming that our ability to interact with the physical world directly translates 

into our ability to perform exact gestures in space or simply reacting to technological 

capabilities. I argue that the problem herein is twofold: neither of the existing approaches 
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operationalizes the concept of intuitiveness nor seeks to understand the principles 

determining the fundamental interaction mechanics of touchless. 

 This dissertation sets out to understand touchless interaction mechanics in target 

selection on distant, large, vertical 2D displays. For example, what is intuitive in 

touchless? How can we design intuitive touchless interaction primitives, the basic units 

that constitute an interface control? How can we mitigate the lack of precision in 

touchless input? How can we design feedback languages to improve the touchless user 

experience? Feedback in touchless systems is exclusively visual and proprioceptive. 

How can theories of visual perception inform the design of input, feedback, or interface 

languages for touchless? This theoretical investigation is a crucial stepping stone toward 

unearthing fundamental knowledge about the potential and limitations of touchless as an 

interaction modality. Knowledge resulting from this inquiry will drive the design of next-

generation touchless systems based on fundamental interaction principles—instead of a 

reactive adaptation to the sensing technologies. 

 I present use-driven basic research (Stokes, 1997). The emergence of touchless 

in different application domains motivated the research questions in this dissertation. 

Three types of outcomes are produced: (1) knowledge about how sensorimotor relations 

affect touchless performance, (2) interaction design guidelines for future touchless 

systems, and (3) a set of touchless interaction techniques for large displays. Overall, my 

contribution to human-computer interaction research is empirically understanding the 

interaction mechanics in touchless and using that knowledge to put forth interaction 

design guidelines for future touchless systems. 

 In sum, this dissertation explores touchless interaction mechanics through five 

sets of experiments (Chapters 4, 5, 7, 8, and 9) and two interaction techniques (Chapter 

6). I begin with reviewing the literature on touchless interaction, defining the scope, and 

elaborating the significance of this research (Chapter 2). Chapter 2 also discusses the 

embodied cognition theory and the Gestalt theories of visual perception and motor 

action. Chapter 3 delves deeper into touchless interaction mechanics, focusing on target 

selection techniques. Here, I discuss the ‘crossing’ interaction primitive, less common in 

traditional input modalities, such as pen or mouse. Chapter 4 discusses empirical results 

from studies on visual feedback. Chapter 5 focusses on affordances and ability in 

touchless interfaces, operationalizes intuitiveness, and introduces motor-intuitive 

touchless interaction primitives. Armed with the results of these experiments, I then 

introduce two interaction techniques (Chapter 6). First, I present Touchless Circular 
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Menus (TCM), a command selection technique for large displays using directional 

strokes. Second, I present interface topographies, a targeting-steering technique using 

pseudo-haptic feedback.  Chapter 7 discusses empirical results from studies on pseudo-

haptic feedback in touchless target selection and steering. Chapter 8 discusses 

experiments on motor control and how hemispheric asymmetry, along with the lack of 

haptic feedback, affects touchless performance. Chapter 9 presents results from the 

experiments studying effects of perceptual Gestalt on touchless performance. I then 

discuss how the empirical results from different studies fit together to understand better 

touchless interaction mechanics (Chapter 10) and finally conclude the dissertation with 

open problems and future work (Chapter 11).   
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Chapter 2. Background, scope, and significance 

In this chapter, I first review the emergence of touchless systems across a variety 

of application domains, such as public spaces, health, or information visualization, and 

discuss their different interaction patterns, user expectations and domain characteristics. 

Then, I define interaction mechanics, which encompass interface affordances and 

people’s abilities. I further review the embodied cognition perspective—focusing on the 

device-less property of touchless and discussing the Gestalt theories of perception and 

motor action. Review of these theories is crucial as they inform the interaction design 

solutions of the emerging problems in current touchless research—as discussed in the 

later chapters. This Chapter concludes with the scope and significance of the 

dissertation. 

2.1. The use of touchless systems across different domains 

Current touchless systems can broadly be classified in terms of the size of their 

interfaces (e.g., large vs. small) or interaction proxemics (e.g., near vs. far-away 

interactions). Interaction proxemics is a property of an interactive system: the proxemic 

consequences of the interface and interaction mechanics (Mentis, O'Hara, Sellen, & 

Trivedi, 2012; O’Hara, Kjeldskov, & Paay, 2011). For example, pen- or touch-based 

interaction entails a proximal or near-the-display relation exclusively, while touchless 

interaction supports either distal or a mix of near-and-far interactions—based on the kind 

of sensors at play (Figure 2.1).  

 

Figure 2.1. Current touchless systems can broadly be classified in terms of their 

interface size (e.g., large vs. small) or interaction proxemics (e.g., near vs. far-away 

interactions). The scope of this dissertation is touchless interactions with large displays 

from a distance. 

Touchless systems in various domians

interaction
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Human factor studies have found touchless interactions lacking fine-grained 

precision (Nancel et al., 2011), making them more suitable for pointing, browsing, and 

lightly manipulating tasks. But in what contexts would it be useful to have gesture 

controls? While gesture control is exciting and frees users from learning a new input 

device, with the lack of accuracy and associated fatigue, users often wonder why 

“Should you care about putting your hands in the air?” (Jennings, 2014).  

Like touch-enabled laptops, touchless control was recently introduced in laptops 

(Jennings, 2014). The ability to control games and applications with mid-air gestures, 

howver, did not receive many favorable reviews: 

“The lack of accuracy available put paid to all the games we tried and, 
even when Leap Motion worked as intended, keyboards and gamepads 
are still far more reliable and satisfying.” –Jennings, 2014 

 

Other touchless systems with small displays and near-the-surface interactions include 

facilitating bimanual interactions with desktop or laptop computers (Guimbretière & 

Nguyen, 2012) and interactions with household appliances like digital ovens (because 

during cooking physical contact with an interface is infeasible due to soiled hands or 

wearing gloves, Garzotto & Valoriani, 2012).   

Current research on touchless systems mostly focuses on large displays and 

interacting from a distance. Because, it provides a context where other interaction 

modalities such as a mouse, keyboard, pen, or touch crucially limit the interaction 

proxemics (users are tethered to their input devices or required to be near the interfaces, 

O’Hara et al., 2013). While using handhelds can provide mobility in such scenarios (Liu, 

Chapuis, Beaudouin-Lafon, Lecolinet, & Mackay, 2014; Nancel, Chapuis, Pietriga, Yang, 

Irani, & Beaudouin-Lafon, 2013), touchless relieves the need of acquiring and carrying 

along an input device (Bailly et al., 2011). In what follows, I briefly discuss prior 

approaches to large display interaction and then identify specific contexts where 

researchers are exploring touchless interaction with large displays. 

2.1.1. Touchless interaction with large displays 

Large display research began with the conception of ubiquitous computing 

(Weiser, 1993). Historically, yard-scale whiteboards drove the vision of large displays 

(Czerwinski, Smith, Regan, Meyers, Robertson, & Starkweather, 2003; Swaminathan & 

Sato, 1997). For example, Liveboard (Elrod et al., 1992), MERBoard (Huang, Mynatt, & 

Trimble, 2006), or Tivoli (Pedersen, McCall, Moran, & Halasz, 1993) were some of the 

early works. But as large displays were being extensively built, deployed, and evaluated 

in Human-Computer Interaction (HCI) settings (Ni, Schmidt, Staadt, Livingston, Ball, & 
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May, 2006), their size started ranging from three to four standard desktop monitors to a 

whole wall (4 m x 1.5 m or larger). With the dropping cost of building large displays and 

the growing need to visualize large volumes of data, large display research in HCI took 

two important directions—understanding their advantages and innovating effective large-

display interaction techniques. 

Exploratory works investigated the efficacy of large displays in war-rooms 

(Jagodic, Renambot, Johnson, Leigh, & Deshpande, 2011; Jagodic, 2011), meeting 

rooms (Bragdon, DeLine, Hinckley, & Morris, 2011), and design studios (Oehlberg, 

Simm, Jones, Agogino, & Hartmann, 2012); with single users (Czerwinski, Tan, & 

Robertson, 2002) and multi-users (Jagodic et al., 2011); with collocated and remote 

users (Beaudouin-Lafon et al., 2012). Particularly, researchers found large displays 

improve task productivity (Czerwinski et al., 2003), spatial performance (Tan, Gergle, 

Scupelli, & Pausch, 2003; Tan, Gergle, Scupelli, & Pausch, 2006), collaborative 

sensemaking (Andrews, Endert, & North, 2010), difficult data manipulation (Liu et al., 

2014), collocated brainstorming (Bragdon et al., 2011), and collaborative visualization 

(Dostal et al., 2014).  

Early research on large display interaction explored traditional point-and-click 

techniques—mouse, pen-based stylus or single-touch input (Baudisch, Good, & Stewart, 

2001; Baudisch et al., 2003; Baudisch, Cutrell, Hinckley, & Gruen, 2004; Bezerianos & 

Balakrishnan, 2004). Some of the research challenges were how to access remote 

content on the display, how to optimally manage content layout, or how to enhance 

display space organization (Bezerianos & Balakrishnan, 2004). To solve those 

challenges, techniques such as vacuum (Bezerianos & Balakrishnan, 2005), drag-and-

pop, drag-and-pick (Baudisch et al., 2003), or tiling (Jagodic, 2011) were proposed. 

Later research focused on post-WIMP interaction techniques (windows, icons, menus, 

pointer), such as whole-body movements (Shoemaker, Tang, & Booth, 2007), ray 

casting (Jota, Nacenta, Jorge, Carpendale, & Greenberg, 2010), or gestures (Bragdon & 

Ko, 2011). For example, pen-based rectilinear gestures were found significantly efficient 

than direct selection of far-away targets on large displays (Bragdon & Ko, 2011). Apart 

from interaction techniques, interaction metaphors were studied to understand how the 

distance between the display and the user affects users’ interaction experience (Jota, 

Pereira, & Jorge, 2009). Researchers also continue to explore large display experience 

for different tasks and interaction modalities, such as difficult data manipulation with 

handhelds (Liu et al., 2014), information visualization with tangible controllers (Jansen, 



11 

Dragicevic, & Fekete, 2012), or up-close interaction during collocated collaboration 

(Jakobsen & Hornbæk, 2014). 

 

Figure 2.2. Some example contexts where touchless systems are being increasingly 

explored. Touchless becomes relevant when interactions are sporadic and acquiring 

input devices either infeasible or effort some. 

An alternative to up-close interaction is distal interaction with large displays. To 

that aim, people can use device-based (e.g., Gyro mouse or Wii remote) or device-less 

(e.g., touchless) interaction techniques (Bellucci, Malizia, Diaz, & Aedo, 2010; Nancel et 

al., 2011). Touchless becomes relevant when interactions are sporadic and acquiring 

input devices either infeasible or effort some. Other than gaming consoles, following are 

some primary areas, where touchless systems are being increasingly explored (Figure 

2.2): 

 Public spaces: People in public spaces, such as airports, shopping malls, or 

smart cities, interact with large displays for a brief amount of time. Hence, they 

may not spend the time and effort required to connect to an intermediate device 

to begin interaction (Valkanova, Walter, Vande Moere, & Müller, 2014; Walter, 

Bailly, & Müller, 2013; Walter, Bailly, Valkanova, & Müller, 2014). While touch 

displays are now commonly found in such contexts, touchless interaction allows 

interacting with displays that are out of hand’s reach or from a distance (to get a 

bird’s eye view of the display content). Example applications include interactive 

operating room

window shoppinginformation visualization

television
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systems in shopping malls (Walter et al., 2013), street games (O’Hara et al., 

2013), and installations for civic participation (Valkanova et al., 2014).  

 Sterile operating rooms: In sterile environments, at times surgeons need to 

browse and manipulate images without physical contact to maintain asepsis. 

Touchless interfaces provide them direct control without the assistance of an 

intermediary nurse (O’Hara et al., 2013; O’Hara et al., 2014; Ruppert et al., 2012; 

Schwarz et al., 2011). 

 Patient-centric health settings: With the increasing urge to make health 

interventions patient-centric, touchless systems with full-body tracking provide 

patients more control in managing clinical tools, such as positioning during 

radiotherapy treatments (Dsouza et al., 2014; Johnson et al., 2011; Morrison et 

al., 2016; Mullaney et al., 2014; Rosa & Elizondo, 2014; Tan et al., 2013). 

 Consumer electronics: Touchless interactions can support the sporadic browsing 

of multimedia in interactive televisions or facilitate interaction with omnidirectional 

videos (Morris, 2012; Rovelo Ruiz et al., 2014; Vatavu & Zaiti, 2014). 

 Beyond-the-desktop visualization: Visualizing large data sets have moved from 

desktops to large displays (Roberts, Ritsos, Badam, Brodbeck, Kennedy, & 

Elmqvist, 2014); touchless techniques allow multiple users to engage in both 

proximal and distal interactions with these visualizations (Death of the Desktop, 

2014; Dostal et al., 2014; Isenberg, 2014). 

 Collocated collaboration: Current computing devices vary widely in shapes, 

sizes, and affordances, ranging from smartphones to centrally shared displays 

(Bragdon et al., 2011). In such contexts of differently-abled devices, touchless 

techniques can facilitate distal interaction with shared displays during collocated 

collaboration and brainstorming (Oehlberg et al., 2012).     

2.2. Interaction mechanics 

In HCI, novel interaction techniques are frequently proposed, from desktop-

based systems to touch to touchless. Such point designs are, however, insufficient 

toward wider dissemination of research as well as adoption by designers (Beaudouin-

Lafon, 2004). In terms of research, it is difficult to build on a gamut of different interaction 

techniques, without an underlying theory of interaction design, a set of rules and 

principles that explain their advantages and guide ways to combine and choose between 

those techniques. Furthermore, to transfer novel interaction techniques into commercial 

applications, developers need models, methods, and tools that can identify the 
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immediate benefits of shifting to a new interaction paradigm. In sum, the premise of 

designing interactions over interfaces argue for a theoretical foundation that combines 

both an understanding of the broader context of use and the sensory-motor details of the 

interaction. Studying the details of interaction as a sensory-motor phenomenon is as 

essential as devising new computer algorithms. Such explorations can provide a 

scientific basis to evaluate the interaction performance and inform new interaction 

models and design principles.  

 One of the crucial propellers of post-WIMP computing are the emerging input 

technologies, and their growing similarity to the devices we use in our everyday world 

(e.g., pen) or interactional ways of the daily life (e.g., surface or mid-air gestures). These 

input technologies bring along their distinct set of potential and limitations, thus requiring 

fundamental interaction design guidelines for different user interface designs (Wigdor, 

2010). Wigdor (2010) argues that when architecting these next-generation user 

interfaces, it is crucial to adapt to human motor, cognitive, and social abilities, which can 

produce easy-to-learn interfaces and enable interaction scenarios that current mouse-

based user interfaces do not. To that end, the five key areas requiring exploration are 

sensing and processing, input, affordance, and feedback languages, and applications. 

Sensors and effective processing of the accumulated data are critical to capture users’ 

actions and surroundings. For example, the innovation of multi-touch trackpads enabled 

rich user interfaces by sensing multiple points of contact simultaneously, compared with 

the earlier generation of interactive systems with single touch point detection capability. 

Input languages constitute of a vocabulary of interface commands that are designed by 

combining interaction primitives—a narrow subset of system-recognized actions that are 

mapped to system responses (Wigdor & Wixon, 2011). For example, single click, double 

click, drag, or tap are interaction primitives; point and click is a kind of input language. 

Affordance languages complement input languages. Their influence on interface design 

is two-fold. First, they identify how sensor capabilities can draw on user abilities and 

inform the design of interaction primitives and interface commands. Second, they may 

also provide feedforward mechanisms, in concert with input languages, to guide user 

input. Feedback languages assist users in understanding a system’s reactions to their 

actions. For example, the auditory feedback when emptying a recycling bin in a 

Windows system. Finally, investigating applications for emerging technologies can 

provide a holistic view of interactive systems in the context of use.  
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 Interacting with mid-air gestures or touchless is a novel input technology. The 

advent of markerless sensors has fueled its popularity and speculated its use in different 

contexts. While novel touchless systems are being widely explored, an underlying theory 

of interaction design or a fundamental set of rules and principles are lacking. Because 

touchless interactions are so markedly different than traditional mouse and keyboard 

input, it is crucial to invest in theoretical foundations and draw on them toward 

developing input, affordance, and feedback languages.  

 But as we dig deeper into the interaction mechanics and study touchless 

interactions as a sensory-motor phenomenon, it is equally important not to abandon the 

holistic view of these interactions in the context of use. O’Hara et al. (2013) studied the 

“naturalness” of touchless from an interactional perspective in different contexts of use. 

This work was based on Merleau-Ponty’s lived-body view of individual experiences and 

Wittgenstein’s socially organized view of action. Not to lose a broader context of use, 

this dissertation is positioned around interaction with large displays; but it departs from 

earlier works on social organization of action around touchless systems (Mentis et al., 

2012; Morrison et al., 2016; O'Hara et al., 2014a; O'Hara et al., 2014b) to study sensory-

motor details of touchless interaction. To that aim, I look at touchless from the embodied 

interaction perspective (Gibson, 1979; Dourish, 2004) and explore what does the 

absence of an input device entails—like reckoning on visual perception and 

proprioception as primary ways of feedback. In what follows, I discuss the overarching 

theories that informed the experiments in this dissertation (chapters 4, 5, 7, 8, and 9). 

2.3. An embodied interaction perspective: The tool, or lack thereof   

So far, this chapter tried to convince the need of exploring touchless interaction 

mechanics for designing future interactive systems. To pursue this investigation, I adopt 

the embodied interaction perspective (reviewed in Dourish, 2004). Detail discussion of 

the rich history of embodiment is beyond the scope of this dissertation; the keen reader 

may read chapters four and five of Paul Dourish’s Where the action is (2004). Embodied 

interaction and its antecedent phenomenology, of course, has lent a theoretical lens to 

many HCI investigations. That is not new. The goal here, instead, is to introduce 

embodied interaction, explain its relevance in studying touchless, and set up the stage to 

design empirically testable interaction design theories.  

Dourish (2004) defines embodiment as “the property of our engagement with the 

world that allows us to make it meaningful.”  Embodied phenomena are the ones where 

we encounter the real world—not the abstract—and find meaning in it through 
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exploration. For example, imagine making a conversation; simple actions like turn taking, 

turn allocation or repairing organization (resolving problems in speaking, hearing, or 

understanding) are conversational rules that humans become familiar with while 

engaged in the activity. However, when designing conversational computer systems, 

such rules need to be pre-specified to produce natural interaction with users. Thus, a 

conversation is an embodied phenomenon in our everyday world. Other similar 

examples are grasping an object, walking down the stairs, using and interpreting 

nonverbal cues, or understanding social stigmas. Indeed, all such phenomena draw on a 

sense of familiarity with our everyday surroundings—the physical objects, the laws of 

physics, and the socially constructed world. 

Embodiment is central to all our daily experiences with the everyday world. But 

then, what is particular about embodied interaction? What is not embodied interaction? 

To answer this question, it is crucial to understand that embodied interaction is not a 

kind of interaction per se. It is an approach to design and analyze interactions in HCI—

that capitalizes on our physical skills, abilities, familiarity with real-world objects or the 

relation between social actions and where it is situated (Suchman, 1987). O’hara et al. 

(2013) studied the role of embodiment in touchless in the social milieu (what are the 

social implications of touchless in different settings or from a social computing 

perspective). This dissertation draws on embodiment to study touchless interactions 

from a different aspect—as a sensory-motor phenomenon (Beaudouin-Lafon, 2004). The 

goal here is, however, not to focus on abstract cognitive processes, but the phenomenal 

world we experience daily. To that aim, I will later discuss Gibson’s (1979) ecological 

psychology and how it informs this dissertation’s study of touchless interaction 

mechanics. But before that, I introduce the phenomenological backdrop of embodiment. 

Instead of the view of Cartesian dualism between the mind and body, I adhere to 

Heidegger’s hermeneutic phenomenology—that the meaningfulness of the world lies in 

how we encounter it practically (1988).  

Heidegger’s view of phenomenology argues for a fundamental intertwining of 

thinking and being. A central premise of his work is the concept of Dasein—the essence 

of being in the world, inhabiting as a human being. While inhabiting the world, we act 

upon it; however, the world is not merely the object of our actions, but also a medium 

through which we find ways to accomplish our goals. For instance, part of the world—

like some physical objects in it—turns into tools or equipment for some task. This view of 
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the world as both an object and medium is how Heidegger couples intentionality with 

being in the world.  

In HCI, Heidegger’s phenomenology has inspired the analysis of computational 

theories of cognition (Winograd & Flores, 1986). Particularly, of crucial importance is 

how he distinguishes the roles of a tool—interplaying between an object of experience 

and the means of experience (Miller, 2011). For example, Dourish (2004) provides the 

example of a mouse while interacting with a GUI: When the mouse is connected to the 

computer, it is an extension of the user’s hand, and the user is acting through the 

mouse—in Heidegger’s terms, ready-to-hand. If the mouse reaches the edge of the 

mousepad, requiring the user to lift and reposition it, the user becomes aware of the 

mouse as an object of her activity, mediating her action—in Heidegger’s terms, present-

at-hand. Other examples include eyeglasses ceasing to be a separate object of 

experience and becoming part of the user’s experience of seeing the world (Ihde, 1990), 

the craftsman perceiving the hardness and position of a nail through the hammer which 

has become an extended limb of his body (Heidegger, 1988) a blind man’s cane 

allowing him to experience the world when in contact with the pavement (Merleau-Ponty, 

1962), or a driver’s mastery of the steering, through which he achieves the experience of 

driving (Richardson, 2007). A common theme across these examples is the presence of 

a device, transitioning from being an object to being absorbed into the fabric of an 

activity—as the means of experiencing the world or interacting with a computer.  

Departing from its antecedents, the traditional input modalities like mouse, 

keyboard, pen, or touch, touchless features device-less interaction with a computer—

where the body plays both the tool and the medium. This presents a unique opportunity 

for interaction design theorists to inform future designs from a deep theoretical 

underpinning—exploiting the implications of a lack of tool in interactive computing. 

Touchless has transformed human-computer interactions on a par with our everyday 

interactions with the physical world; however, the physical world is governed by the laws 

of physics, while the computing interface is synthetic (Beaudouin-Lafon, 2004). What 

does this mismatch entail for touchless systems?  

As I discussed before, interaction as a sensory-motor phenomenon includes 

users’ execution of goals, the system’s reaction and feedback to their action, and users’ 

assessment of that feedback to continue the interaction. In what follows, I explore 

implications of the lack of tool in touchless, while focusing on interactions with large, 

distant, vertical, two-dimensional (2D) displays. 
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In touchless interaction, we use mid-air gestures to interact with computers—our 

body acting both as the tool and medium. In the history of interactive computing, such 

duality in the role of the human body is new. Although touch-enabled systems are similar 

to touchless—with no requirement of acquiring a tool—they include a touch surface, 

which embodies the concept of a tool, later transitioning to a medium. This absence of 

tool in touchless is often celebrated as a “natural” mode of interaction. Natural, because 

in daily life, we use our body to interact with the everyday physical world; we grab a 

book, open a door, lift a box, throw a ball, wave a friend goodbye, wipe the whiteboard, 

gesture to a direction, and so on and so forth. In our everyday interactions, a tool is not 

always necessary; we use our body (such as body parts, arms, and legs) to both 

accomplish a task and experience it (and find meaning in it). But gesturing with a distant 

2D display is quite unlike gesturing with a three-dimensional (3D) physical world—thus 

invalidating the premise that touchless gestures are natural simply because we are 

familiar using them in our surrounding physical world. 

Then what are the differences between gesturing in our familiar environment and 

touchless interaction with distant, large, 2D displays? This stands as the pressing 

question now. To find an answer, I build on Gibson’s exploration of the relation between 

seeing and acing—a classic problem in visual perception (1979). Visual perception deals 

with how living beings can see, recognize the seen, and act on it. To study this 

phenomenon, Gibson introduced the concept of ecological psychology, which 

encompasses the central construct of affordances. Ecological psychology acknowledges 

the significance of our physical embodiment by positioning cognition within the 

environment, as a concept involving the organism, action, and its environment. Gibson 

defines affordance as a construct relating the ability of an entity, action, and the 

environment (Gibson, 1971; discussed in Dourish, 2004). For example, a chair affords 

sitting to a human, but not to an entity inappropriate for sitting (e.g., a fish). Water affords 

breathing to fish with its gills, it does not afford breathing to human beings, because we 

are not appropriately equipped. The concept of affordance has been extensively studied 

in HCI and extended in different, such as perceived affordances (Norman, 1988), 

technology affordances (Gaver, 1991), and social affordances (Gaver, 1996). In this 

dissertation, I use Gibson’s affordances to study touchless interaction mechanics. 

To study touchless, it is important to understand its affordance and users’ 

abilities in the interaction context. This investigation is crucial to identifying the 

differences between gesturing in our everyday environment and touchless interaction. 
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Touchless input is three dimensional. In the absence of a device and its constraints, our 

whole body and the complete set of physical abilities become available toward realizing 

affordances of a touchless system. So while interacting with a distant 2D display, we can 

use our hands or fingers to push, pull, roll, or make directional strokes in mid-air as 

interaction commands—similar to mid-air gestures we use in our everyday (3D) world. 

However, the response of our input is available on a 2D, distant display that lacks the 3D 

worldview of the everyday world (Gibson, 1979). There lies the mismatch—the 

availability of all physical abilities we use in a 3D world, but to act on, a 2D user interface 

(UI) without any haptic feedback. Because of the lack of haptic feedback, touchless 

interaction primarily depends on visual perception and proprioception. Thus, I draw on 

psychological principles of visual perception (Koffka, 1922) and motor control (Klapp & 

Jagacinski, 2011) and theories of motor behavior (Sigrist, Rauter, Riener, & Wolf, 2013) 

to explore touchless interaction mechanics. Each of the chapters 4, 5, 7, 8, and 9 will 

discuss the pertinent theories and how they inform the subsequent empirical studies. 

Before that, I look at the emerging problems in touchless and explain the scope and 

significance of this dissertation. 

2.4. Emerging problems 

Up to now, touchless systems have been explored largely as a practical 

exercise—with a variety of prototypes developed opportunistically (Bailly et al., 2011), 

driven much by the innovation in body tracking sensor technology and the emergence of 

new algorithms than by a reasoned understanding of the role of physicality (our body) in 

such interactions. Interaction design theories that govern the traditional input modalities 

have limited applicability to this new domain. But there is no theory of touchless 

interaction. How does touchless capitalize users’ physical abilities, skills, and everyday 

familiarity? Which features of touchless are important, which are merely convenient in 

certain contexts, and which are simply infeasible with average human abilities? This 

dissertation is about developing answers to some of these questions.  

The previous section explained why gesturing in a 3D physical world is unlike 

using mid-air gestures to interact with distant, 2D displays—theoretically. In practice, 

researchers studying user performance with touchless prototypes have reported several 

breakdowns too. What is lacking is an explanation of these observations—a theory. This 

dissertation attempts to address this limitation. Although I do not set out to identify and 

explain an exhaustive set of breakdowns in touchless systems—observed till date, I 

provide an overarching theoretical perspective to study them (Figure 2.3). Under the 
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umbrella of embodied interaction, I illustrate the use of specific theories (from traditional 

fields like visual perception and motor behavior) to explain certain interaction 

breakdowns; and then go on to generate new theories and interaction design principles. 

These principles inform new touchless interaction techniques (Chapter 5), which in turn 

facilitates studying further aspects of touchless interaction mechanics (Figure 2.3). 

 

Figure 2.3. Up to now, touchless systems have been explored through building 

prototypes or eliciting gesture input from users—driven much by the innovation in sensor 

technology and new algorithms than by a reasoned understanding of the role of our body 

in such interactions. Instead, this dissertation follows a bottom-up approach: 

understanding the sensory-motor relations in touchless interactions and then using that 

knowledge to drive design guidelines. 

The growing popularity of touchless stems from its expectation as something 

natural to use, something already familiar to us. But such an attribution has led to many 

debates; mainly because current studies often adopt a vernacular definition of ‘natural’ 

or ‘intuitive’ as instinctive or spontaneous—thereby lacking an operationalization. How 

do we define natural? As effective, accurate, a feeling of familiarity, easy to learn, easy 

to remember, or fun to use? For example, empirical studies have shown that due to the 

lack of haptic guidance, touchless gestures are less efficient and more fatiguing than 

device-based gestures (Nancel et al., 2011). Does that make touchless less natural? Or 

just less efficient than touch? 

Investigating touchless as a sensory-motor phenomenon can address this 

question. However, current research is either exploring the naturalness of touchless 

input through elicitation studies (Aigner et al., 2012; Grandhi et al., 2011; Vatavu & Zaiti, 

2014), or designing touchless interface languages motivated by mouse (Hespanhol et 

al., 2012; Jota et al., 2009), pen (Guimbretière & Nguyen, 2012) or touch-based 

interfaces (Bailly et al., 2011; Ren & O'Neill, 2012). In elicitation studies, users suggest 

gestural inputs based on the outcome shown on the user interface (UI). This method 
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aims to identify an input language that is based on everyday metaphors (Lakoff & 

Johnson, 1980). For example, Grandhi et al. (2011) reported user preference toward 

bimanual gestures and intuitiveness of dynamic gestures (iconic representation of the 

motion required for the manipulation) over static iconic hand poses. For example, users 

would prefer a “wiping” hand movement over a static hand sign to trigger a “delete” 

action.  

On the other hand, expert design studies first iteratively design touchless 

interface languages, such as target selection, pan-and-zoom techniques or menus, and 

then evaluate their user performance. These proposed interaction techniques are either 

motivated by our everyday metaphors, similar to elicitation studies (e.g., pushing to 

select, like pushing to open a door, Hespanhol et al., 2012), or other traditional UI 

languages (e.g., marking menu for pen-based interaction, Guimbretière & Nguyen, 2012; 

finger-count menu for touch interaction, Bailly et al., 2011; or linear menu for WIMP 

interaction, Bailly et al., 2011).  

The challenges with this approach to touchless research are two-fold. First, 

uncoupling the touchless input and interface leaves no space to explore the mechanics 

of touchless interactions (Beaudouin-Lafon, 2004). Second, in the absence of any 

knowledge of touchless interaction mechanics, when designing touchless UIs, designers 

resort to WIMP, pen or touch-based interaction principles. As a result, when touchless 

evaluation studies report certain interaction techniques to be intuitive, they fail to explain 

why other techniques were unintuitive or ineffective.  

For example, a number of recent studies have studied touchless target selection, 

using static poses (a fist, Bailly et al., 2011), finger count (Bailly et al., 2011; Kulshreshth 

& LaViola Jr, 2014), crossing a delimiter (Ren & O'Neill, 2012), 3D angular strokes 

(Guimbretière & Nguyen, 2012), push (Hespanhol et al., 2012), dwell (Hespanhol et al., 

2012), multi-finger pinch (Guimbretière & Nguyen, 2012) or roll-and-pinch (Ni et al., 

2008). In touchless target selection, researchers noted a number of limitations.  

Guimbretière and Nguyen (2012) report the unreliability of a three-dimensional marking 

menu because users failed to gauge a 3D angle for the mark gesture. Ren and O’Neill 

(2012) report similar findings for their stroke technique. For push-to-select gesture, 

Hespanhol et al. (2012) report a translation-action ambiguity problem. A touchless 

gesture suffers from translation-action ambiguity when users frequently trigger actions 

while repositioning their body in space. They also report accidental invocation problems 

with dwell or holding gesture. Bailly et al. (2011) found users faced difficulty in 
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constraining their hand movements in a 2D plane, thus often triggering inadvertent 

commands. Markussen et al. (2014) found their proposed mid-air word-gesture keyboard 

slower than touch—in spite of the increased fluidity in touchless movements during 

target selection. Some of the possible reasons that authors discuss are the 

incompatibility between the stimulus and response, gestures in the motor space 

compared with the keyboard and feedback on the display and the heavy reliance on 

visual feedback. 

This lack of theory and principles to explain observations encountered during 

touchless studies can only be mitigated using a bottom-up approach: understanding the 

sensory-motor relations in touchless interactions and then using that knowledge to drive 

design guidelines.  

2.5 Scope of the work  

 

Figure 2.4. Around touchless target selection, this dissertation studies input, feedback, 

and affordances—using off-the-shelf, markerless motion-tracking sensors (Kinect™), in 

the application context of large-display interaction. 

 Within touchless interaction with large, 2D, distant displays, this dissertation 

focuses on target selection. Target selection is the most fundamental task in interactive 

computing with a variety of ways to accomplish it—from the command line argument cat 

to a voice command open. Around touchless target selection, I study input, feedback, 

and affordances (Figure 2.4). For touchless input, I operationalize naturalness or 

intuitiveness, introduce motor-intuitive interaction primitives (Chapter 5), and study motor 

control (Chapter 8). Chapters 4 and 7 discuss experiments on visual and pseudo-haptic 

feedback respectively. Toward studying interface affordances, I design interaction 

techniques (Chapter 6) and explore effects of Gestalt principles in touchless interactions 
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(Chapter 9). Among the five key aspects requiring innovation for architecting next-

generation interfaces (Wigdor, 2010), this dissertation does not delve into sensing or 

applications of touchless. All experiments in this dissertation use off-the-shelf, 

markerless motion-tracking sensors (Kinect™) and emulates the application context of 

large-display interaction.  

Methodologically speaking, this dissertation is primarily a number of controlled, 

quantitative studies. To study touchless as a sensory-motor phenomenon, I use theories 

from more traditional fields, like cognitive psychology and motor behavior. Thus, their 

style of empirical investigation is borrowed. Such rigorous hypothesis testing approach 

has led to many important advances in HCI because it provides a scientific basis for 

users’ performance evaluation (Newell & Card, 1985). However, controlled experiments 

provide internal validity at the cost of ecological validity. So it is important to stress that 

the results in this dissertation should not be overgeneralized. Laboratory studies allow 

measuring user performance without any extraneous factors at play, which may differ 

significantly within different application contexts. It is out of the scope of this dissertation 

to make such generalizable claims, and future work must associate the findings here 

with the holistic level of the interaction context in use. 

2.6. Significance of this research 

The significance of this research is to address the crucial need for understanding 

the fundamental interaction principles of touchless—instead of a reactive adaptation to 

the advancements in motion-sensing technology. The overarching research aim here is 

to generate a set of theories explaining the sensory-motor relations in touchless 

interaction. Whereas prior HCI approaches to designing touchless systems have been 

either building prototypes or eliciting a gesture vocabulary, this dissertation sets out to 

generate fundamental knowledge that can inform touchless interaction design principles. 

Designing interactions grounded in interaction theory has long been argued for 

(Beaudouin-Lafon, 2004). I employ that design philosophy to provide a theory of 

touchless interaction—in terms of quantifiable results testing the sensory-motor 

properties of touchless and design principles informed by those empirical results. 
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Chapter 3. Understanding touchless interaction mechanics  

The backdrop is now complete. Chapter 2 detailed the theoretical outlook of this 

dissertation, introduced its scope and explained its significance. Up to this point, I have 

discussed touchless interactions in general. The goal of this chapter is to identify the key 

aspects of touchless interaction mechanics and serve as the necessary introduction to 

the empirical studies in the next six chapters. It also delves deeper into the current 

approaches of touchless target selection. In a sense, this chapter bridges the broad 

theoretical abstractions of Chapter 2 with the particular functional aspects of touchless 

interactions that are investigated hereafter (chapters 4 to 9). 

3.1. Related work  

 This dissertation looks into three aspects of touchless interactions mechanics—

input, feedback, and interface affordances—using off-the-shelf sensing technology. 

Although in the experiments discussed later, users interact with large displays while 

sitting at a distance, users’ body posture is not a topic of interest here. It served as a 

convenience to participants during the study (often around two hours) and increased the 

ecological validity of the empirical results (for laid-back settings, where users may 

remain seated during the interaction). However, the interaction mechanics, explored 

here, exclusively deal with hand gestures—not arm, other body parts, or full-body 

gestures. This is crucial to note because different body parts imply different movement 

and control abilities, thus affecting touchless interactions differently.  

 Touchless performance, such as efficiency, accuracy, and levels of fatigue, has 

been explored before—but not toward generating touchless interaction design guidelines 

per se. For example, while investigating mid-air pan-and-zoom techniques for very large, 

wall-sized displays, Nancel et al. (2011) showed that due to the lack of haptic guidance, 

touchless gestures are less efficient and more fatiguing than device-based gestures 

(e.g., a mouse wheel or touchpad). However, they found touchless gestures causing 

significantly fewer overshoots (task errors) than 2D surface-based gestures (e.g., 

touchpad). Within touchless, linear gestures were faster than circular gestures.  

To measure upper-arm fatigue (a condition often called gorilla arm), Hincapié-

Ramos et al. (2014) proposed a novel quantitative metric drawing on the biomechanical 

structure of the arm—consumed endurance. Fatigue in HCI is usually measured with 

self-reporting scales, where researchers ask users to rate their perceived physical effort, 

such as the NASA TLX or the Borg CR10 scale. During validations studies, the 

consumed endurance metric correlated strongly with the Borg CR10 scale, a standard 
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measurement instrument of perceived exertion (Hincapié-Ramos et al, 2014). Authors 

also provided a set of guidelines to design less-fatiguing touchless interfaces. For 

example, they suggested that having arms bent and the interaction plane center to the 

body (see Figure 4, Hincapié-Ramos et al., 2014) is least tiring when selecting targets 

on a 2D plane and the SEATO keyboard layout (see Figure 7, Hincapié-Ramos et al, 

2014) best balances efficiency with effort for touchless text entry.  

Kajastilan et al. (2012) studied touchless gestures to accomplish a secondary 

task (such as tuning a radio) while attending to a primary task (such as driving). When 

comparing control gestures (touch vs. touchless, both circular) for visual and auditory 

interfaces, they found that user accuracy of the auditory interface was at par with the 

visual when using touchless gestures (see Figure 4, Kajastilan et al., 2012). However, 

overall, with visual and auditory feedback, the touchless interface was slower than the 

touchscreen. 

 A how-to-guide for designing touchless interactions with Microsoft Kinect is also 

available for developers (Microsoft, 2016), which provides pointers on how to optimize 

sensor performance and design appropriate interfaces and feedback languages for 

different application domains. 

  In sum, examining interaction mechanics of touchless has been the byproduct of 

several research endeavors, and they have identified efficiency, accuracy, and fatigue 

among the important outcome measures. This dissertation brings touchless interaction 

mechanics to the primary focus.  

3.2. Interaction mechanics  

3.2.1. Sensing  

 Microsoft’s Kinect is a camera-based solution for full-body tracking. This 

technology, enabling markerless motion capture using a camera system, was first 

introduced as a commercial videogame console in 2010 (Figure 3.1). Kinect uses a 

range camera technology from PrimeSense™ that understands a 3D scene in two steps. 

First, it emits a continuously-projected infrared structured light in the environment. Then, 

it uses its depth sensors (infrared laser projector combined with a monochrome CMOS 

sensor) to record video data in 3D under any ambient light conditions. The computation 

of depth map broadly uses two classic computer vision techniques for 3D scene 

reconstruction, depth from focus and depth from stereo. When a live scene is processed 

by the Kinect, two versions of the scene is recorded, the color map (using the RGB 

camera) and depth map (using the depth sensors). Once a live scene is captured, 
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machine learning algorithms are used to discover the 3D skeleton of a human body—if 

present at the scene. It also provides an estimate of robustness of the tracking output. 

 

Figure 3.1. Experiments in this dissertation use off-the-shelf tracking sensors, Microsoft’s 

Kinect. It is a camera-based solution for full-body tracking, enabling markerless motion 

capture using a camera system, and was first introduced as a commercial videogame 

console in 2010. 

 Human skeleton detection works as following. For each 3D scene, the Kinect 

evaluates how well each pixel matches the typical features of an example template. For 

example, does the pixel looks similar to one at the top of the body, or at the bottom? 

Each of the pixels is then scored accordingly. This evaluation uses a randomized 

decision forest search algorithm (Shotton et al., 2013). Broadly speaking, the 

randomized decision forest search is a collection of decisions, each of which asks 

whether a pixel (with a certain set of features) of the scene is a candidate for a particular 

body part. This evaluation algorithm is already trained with a collection of motion capture 

data (around 500,000 frames). Once the candidacy of each pixel to a particular body 

part is decided, the likely location of the skeletal joints is computed based on 

biomechanical constraints, and a 3D skeleton is built. Microsoft Xbox computes this 

algorithm 200 times per second—way faster than prior skeletal recognition algorithms. 

Due to its speed and robustness, these sensors are being used not only in games, but 

also in many computer vision tasks (Han, Shao, Xu, & Shotton, 2013), such as 
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interaction recognition (Chattopadhyay, 2011; Yun, Honorio, Chattopadhyay, Berg, & 

Samaras, 2012) or activity recognition (Sung, Ponce, Selman, & Saxena, 2012). 

3.2.2. Input, feedback, and affordances  

 Touchless input can be bare hand (Hespanhol et al., 2012) or require wearing 

hand gloves (Vogel & Balakrishnan, 2005). With markerless camera-based sensors, like 

Kinect, users can interact with a bare hand. What kind of hand gestures would be 

suitable for touchless interaction is an emerging area of HCI research—gesture 

elicitation. Elicitation studies (Grandhi et al., 2011), and its variants (Nebeling et al., 

2014) have explored different gesture inputs drawing on gestures used in our daily world 

(Morris, 2014). Instead of asking users to report intuitive gestures at the macro level 

(e.g., how would you like to indicate an undo action after deleting a folder 

inadvertently?), my approach to touchless input is deconstructing its intuitiveness from 

the perspective of human abilities and interface affordances (e.g., Is it intuitive for us to 

accurately make orthogonal hand movements facing a 2D interface? More importantly, 

what is intuitive in touchless?). I explore this research question by drawing on the 

differences between the physical world and touchless, and emphasizing the role of 

embodiment in touchless interaction (chapters 5 and 8).   

 Touchless feedback is exclusively visual and proprioceptive—with no haptic 

guidance. Prior research has shown its telling effects on touchless performance—slow 

and tiring. Touchless interaction using hand gloves or other wearables have studied 

workarounds this problem, like vibrotactile feedback (Foehrenbach, König, Gerken, & 

Reiterer, 2009; Freeman, Brewster, & Lantz, 2014; Lehtinen, Oulasvirta, Salovaara, & 

Nurmi, 2012; Pasquero, Stobbe, & Stonehouse, 2011; Richter, Loehmann, Weinhart, & 

Butz, 2012). For example, Freeman et al. (2014) found no significant effect of tactile 

feedback on selection time, but on reducing task workload.  

Other systems have also explored non-contact tactile feedback, such as AIREAL 

(Sodhi, Poupyrev, Glisson, & Israr, 2013), Ultrahaptics (Carter, Seah, Long, Drinkwater, 

& Subramanian, 2013), HaptoMime, (Monnai, Hasegawa, Fujiwara, Yoshino, Inoue, & 

Shinoda, 2014), or ultrasound transducers (Hoshi, Takahashi, Iwamoto, & Shinoda, 

2010), and auditory feedback (Kajastila & Lokki, 2013; Vogel & Balakrishnan, 2005). 

This dissertation looks into visual feedback (Chapter 4) and pseudo-haptic feedback 

(Chapter 7) in touchless target selection. 
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Figure 3.2. Although the dissertation chapters focus on a primary area of exploration, 

either input, feedback, or affordances, each of them is also inclusive of the other 

aspects—altogether studying touchless interaction mechanics. 

 I study affordance in touchless interaction mechanics in two ways. First, human 

abilities and interface affordances are explored to study touchless input—touchless 

interaction primitives that make up the building blocks of a touchless interface (chapters 

5 and 9). Second, I propose touchless interaction techniques capitalizing interface 

affordances and evaluate them with users (Chapter 6). 

 Although this section tried to decouple the dissertation chapters and inject them 

into the three areas of touchless interaction mechanics, they are inherently intertwined 

(Figure 3.2). Each Chapter, thus has a primary area of exploration, either input, 

feedback, or affordances, but are also inclusive of the other aspects—altogether 

studying touchless interaction mechanics.  

3.3. Target selection 

 This dissertation studies interaction mechanics around touchless target selection. 

Touchless target selection techniques were briefly discussed in Chapter 2. In this 

section, I provide a detailed review of the current approaches (Table 1), discuss their 

performance, and identify the emerging problems. I do not claim this review to be 

exhaustive—rather it is representative of recent research. Furthermore, although point 

and select interactions are often studied together in HCI, pointing performance in 

touchless interfaces is beyond this dissertation’s scope; the focus is exclusively on target 

selection. 

 

input

touchless

feedback
visual: Chapter 4

motor-intuitive interaction: Chapter 5

Perceptual Gestalt: Chapter 9

touchless circular menus: Chapter 6

interface topographies: Chapter 6

handedness & 
motor control: Chapter 8

pseudo-haptic: Chapter 7

interface
affordance

Understanding touchless
interaction mechanics
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Table 3.1. Current touchless target selection techniques in different contexts of use. 

Target selection 

method 
Technology type Related works 

wrist rotation wearable glove Ni et al., 2008; Ni et al., 2011 

tap (angle between 

palm and another 

finger) 

wearable glove 
Markussen, Jakobsen, & Hornbæk, 

2013 

pinch, thumb to another 

finger 

wearable glove/ 

IR markers  

 

Banerjee, Burstyn, Girouard, & 

Vertegaal, 2011; Markussen, 

Jakobsen, & Hornbæk, 2014; Ni et al., 

2008; Ni et al., 2011; Vogel & 

Balakrishnan, 2005 

bare hand Guimbretière & Nguyen, 2012 

push, orthogonal to a 

2D display 
bare hand 

Hespanhol et al., 2012; Kajastila & 

Lokki, 2013; Pyryeskin, Hancock, & 

Hoey, 2012 

push, orthogonal to a 

2D display, with a 

velocity threshold 

bare hand Seixas, Cardoso, & Dias, 2015 

dwell, for a time window bare hand 

Freeman, Brewster, & Lantz, 2014; 

Hespanhol et al., 2012; Microsoft 

Kinect®; Pyryeskin, et al., 2012 

directional stroke bare hand Bailly et al., 2011; Ren & O'Neill, 2012 

crossing bare hand 
Ren & O'Neill, 2012; Schwaller, 

Brunner, & Lalanne, 2013 

freehand movement wearable glove Markussen, et al., 2014 

grab/fist/closed palm bare hand 

Bailly et al., 2011; Hespanhol et al., 

2012; Pyryeskin, et al., 2012; Seixaset 

al., 2015; Song, Goh, Hutama, Fu, & 

Liu, 2012 
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finger combination, 

static pose 
bare hand 

Bailly et al., 2011; Freeman, et al., 

2014; Kulshreshth & LaViola Jr, 2014; 

Sridhar, Feit, Theobalt, & Oulasvirta, 

2015; 

lassoing bare hand Hespanhol et al., 2012 

enclosing with two 

hands 
bare hand Hespanhol et al., 2012 

  

Touchless target selection is not a brand new area of research. As evident in 

Table 1, target selection methods are being explored for more than a decade. However, 

the continual emergence of advanced sensing technologies and a shift toward intuitive 

interactions (rather than designer-driven techniques) makes this research both timely 

and relevant. 

 To enable precise gestures like in-air tap (making an angle between a finger(s) 

and the palm), tilting of the wrist, or pinching using multiple fingers, researchers have 

used wearable gloves with IR markers (Ni et al., 2008; Ni et al., 2011; Markussen, et al., 

2014; Vogel & Balakrishnan, 2005). Such gestures have been studied for command 

selection from menus (Ni et al., 2008) or mid-air text entry using posture-letter mapping 

(Sridhar, et al., 2015). In bare-hand interactions, with off-the-shelf camera-based 

tracking solutions, the common gestures are push (Hespanhol et al., 2012), dwell 

(Pyryeskin, et al., 2012), grab (Bailly et al., 2011), and 3D directional strokes (Ren & 

O'Neill, 2012). Some of these target selection methods were studied with horizontal 

surfaces, to enable mid-air interaction just above a multi-touch surface (Banerjee, et al., 

2011), while others with vertical displays (Bailly et al., 2011). Another broad classification 

of the selection methods reviewed here is the temporal aspect—a static gesture or a 

dynamic gesture. For example, making a certain combination or arrangement of fingers 

to select a menu option (Kulshreshth & LaViola Jr, 2014) or entering a particular 

alphabet (Sridhar, et al., 2015) is a static gesture. While pushing orthogonal to a display 

to indicate a selection (Hespanhol et al., 2012) or moving over a series of alphabets on a 

keyboard to type in a word is a dynamic gesture. Gestures can also be a mix of two, 

such as roll-and-pinch, where users make a pinch to start a selection, then tilt their wrist 

toward the circular menu option of their choice, and finally release the pinch to indicate 

their intention of target selection (Ni et al., 2008).   
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 Each of the selection techniques listed in Table 1 has different performance 

benefits and limitations. Rather than enumerating all of them in details, it is interesting to 

note some common trends. For example, grab gestures are reported more accurate than 

push (Seixas et al., 2015). Although built upon the success of marking menus 

(Kurtenbach, Buxton, 1994; Lepinski, Grossman, & Fitzmaurice, 2010) that interpret 

directional strokes as target selection commands, studies report users’ limitations in 

making accurate 3D strokes (Guimbretière & Nguyen, 2012; Ren & O'Neill, 2012). Both 

dwell and push suffer from a limitation of accidental invocations; selections are invoked 

inadvertently when repositioning the body in space, a problem in distinguishing between 

the translation and action movements (Hespanhol et al., 2012). 

 Now that the stage is set for a deeper exploration of touchless interaction 

mechanics in target selection, we move on to the next chapters, where I will present 

detailed empirical studies testing a set of hypothesis on feedback, input, and interface 

affordances.   
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Chapter 4. Visual feedback 

In the absence of any haptic feedback, touchless primarily rely on visual cues, 

but properties of visual feedback remain little explored. This Chapter systematically 

investigates how large-display touchless interactions are affected by (1) types of visual 

feedback—discrete, partial, and continuous; (2) alternative forms of touchless cursors; 

(3) approaches to visualize target-selection; and (4) persistent visual cues to support 

out-of-range and drag-and-drop gestures.  

4.1. Feedback or lack thereof? 

In spite of the abundant enthusiasm about more “natural” forms of interaction, the 

lack of feedback in touchless scenarios raises important usability concerns (Nancel et 

al., 2011; Norman, 2010). In fact, unlike mouse or touch-based interactions, touchless 

synthesizes input and output from physically disconnected motor and display spaces, 

and without any haptic feedback. This lack of haptic guidance reduces users’ efficiency 

and accuracy, because users are excessively dependent on other forms of sensory 

feedback, such as visual, auditory, or proprioception (Markussen et al., 2014; Nancel et 

al., 2011). Researchers have tried to compensate this lack of haptic feedback using 

visual and auditory feedback (Kajastila & Lokki, 2013; Vogel & Balakrishnan, 2005), or 

tactile feedback (Gupta, Morris, Patel, & Tan, 2013; Sodhi, Poupyrev, Glisson, & Israr, 

2013). Specifically, visual feedback has been used to improve the learnability of 

touchless gestures (Walter, Bailly, & Müller, 2013), to identify multiple users (O'Hara et 

al., 2014), to communicate gesture ambiguity (Vogel & Balakrishnan, 2005), and to 

represent clicking and swiping gestures (Markussen et al., 2014; Vogel & Balakrishnan, 

2005). Although visual feedback is being actively used in touchless interaction, a 

systematic exploration of its properties is lacking.  

Visual feedback in touchless interactions should guide users’ movement 

effectively. It should also be salient among an array of artifacts on a large display. The 

role of visual feedback in acquiring and learning movements has been extensively 

studied in human motor science (Saunders & Knill, 2004; Sigrist, Rauter, Riener, & Wolf, 

2013). Similarly, attributes of display artifacts have been widely explored in the visual 

search literature (Wolfe, 1998; Wolfe & Horowitz, 2004). But these findings have not 

been significantly adopted to guide the design of visual feedback in touchless 

interactions. Designers simply consider representing users’ position and their actions: 

“where the user is” (e.g., with an open hand) and “what the user is doing” (e.g., a grab 

posture). To help users learn, retain, and perform touchless gestures effectively, we are 
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faced with the challenge of designing visual feedback as a salient yet non-distracting 

aide.  

The main contribution of this chapter is to explore visual feedback in large-display 

touchless interactions—using six controlled experiments—along four aspects: (1) types 

of visual feedback; (2) alternative forms of touchless cursors; (3) alternative approaches 

to visualize target-selection; and (4) persistent visual feedback for two common user 

actions: drag-and-drop and when users land out of the display range. Our approach to 

explore visual feedback is informed by the motor science and the visual perception 

literature. A successful design of visual feedback have the potential to augment users’ 

proprioception, and somewhat compensate the lack of haptic feedback in touchless 

interactions. Our work makes the following contribution: 

 We discuss related work about visual feedback from the motor science and the 

visual perception literature—such as timing, attributes, and semantics—that can 

inform future research on designing appropriate visual feedback for different 

touchless interactions (section 4.2). 

 We provide empirical results from six controlled experiments that explore types of 

visual feedback, shape, size, color and opacity of touchless cursors, different 

approaches to visualize target selection, and persistent visual feedback in 

touchless interactions (sections 4.3 – 4.9). 

 Grounded in our empirical results, we provide practical guidelines for designing 

visual feedback in large-display touchless environments (section 4.11). Finally, 

we illustrate our guidelines by designing a visual feedback routine for drag-and-

drop operations across a touchless system’s three interaction states—idle, 

active, and engaged. 

How visual perception regulates attention and controls movement is complex and 

being extensively studied. Still, our work is a first step toward adopting some existing 

results and rethinking the design of visual feedback in touchless interactions. Our 

findings can facilitate the development of a visual feedback language for large-display 

touchless interfaces. 
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4.2. Background 

Visual feedback in motor responses 

Visual feedback plays a twofold role in motor responses: motor control and motor 

learning. Hence, the impact of visual feedback on movement is widely studied in 

rehabilitation, sports training, and minimally invasive surgery. Two aspects that mediate 

the role of visual feedback in motor responses are task complexity and feedback 

visualization. 

Motor control. While proprioception estimates the initial body posture and selects 

a motor command, pointing movements are continually corrected by the visual feedback 

of the hand (Scheidt, Conditt, Secco, & Mussa-Ivaldi, 2005). Processing of visual 

feedback while pointing movements can be quite short (e.g., 100 ms, Zelaznik et al., 

1983), and thus facilitate the accuracy of rapid movements. In dynamic environments, 

where closed-loop control (sensory feedback of the users’ action) is possible, visual 

feedback informing motion pattern and position coordinates significantly affect hand 

movements—in both early and later stages of the movement (Saunders & Knill, 2004). 

Motor learning. In any desktop environment, transfer functions (or gain factors) 

define how amplitudes of hand and cursor movements relate to each other; these are a 

type of visuomotor transformation that we can easily master due to our sensorimotor 

abilities (Verwey & Heuer, 2007). In general, when users need to retain mastery of 

visuomotor transformations, the type of visual feedback during the practice plays a key 

role: While terminal visual feedback (at the end of the movement) facilitates simple 

tasks, such as aiming movements using a mouse, continuous visual feedback helps 

complex tasks, such as inter-limb coordination skills (Sigrist et al., 2013; Sülzenbrück, 

2012). Even the frequency of visual feedback—when decreased with decreasing task 

complexity—further facilitates motor learning. Touchless interactions in large-display 

environments range from bimanual gestures for data manipulation to static gestures for 

mode switching. Visual feedback, if appropriately used, can augment learnability of such 

visuomotor transformations. 

Visualization. Visual feedback designs are effective when they enable parallel 

processing of the visual and the kinesthetic information about the ongoing movement 

(Sigrist et al., 2013). In motor learning, they range from abstract (lines, bars, curves, 

Lissajous figures) to natural visualizations (virtual avatars, 3D animations). Studies 

indicate that it is very important to provide feedback about only the relevant key features 

of the task (Huegel, Celik, Israr, & O’Malley, 2009). While it is common to provide user 
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information in large-display touchless interactions using a skeleton representation, 

rethinking our visual feedback designs may facilitate user performance. 

Visual attributes guiding attention 

Design-dimensions of display artifacts have been widely explored in visual 

search literature (Smith and Thomas, 1964; Wolfe, 1998; Wolfe & Horowitz, 2004). But 

these findings have not been significantly adopted to guide the design of visual feedback 

in touchless interactions. For example, research suggests that color coding leads to 

efficient visual search (Carter, 1982), but in a dense display efficiency is retained only if 

the distractors and the targets are widely separated in color space (D’Zmura, 1991). 

Although debatable, the topological property of a “hole” or the number of line terminators 

are often considered as features that guide attention in visual search (Wolfe & Horowitz, 

2004). The relative size of a target item and how densely packed it is (spatial density) 

compared to other display artifacts also plays a role in guiding attention (Wolfe, 1998). 

Empirical studies suggest that attention can be efficiently guided to opaque targets 

among transparent objects, but it is more difficult to find one transparent item among all 

opaque items. Interestingly, the effect of opacity is explained by the human tendency to 

combine multiple cues—namely motion, luminance and structural features (Wolfe, 

Birnkrant, Kunar, & Horowitz, 2005). 

With the absence of haptic feedback in touchless interactions, we are faced with 

the challenge of designing visual feedback that can help users control and learn 

touchless gestures effectively. Inspired by the role of visual perception in motor 

responses and visual search, our work is a first step to investigate the effects of visual 

feedback in large-display touchless interactions. 

We conducted six within-subject experiments to understand how the following 

four aspects of visual feedback affect large-display touchless interactions: (1) types of 

visual feedback (discrete, partial, and continuous); (2) alternative forms of touchless 

cursors; (3) alternative approaches to visualize target-selection; and (4) persistent visual 

feedback for drag-and-drop operation and when users land out of the display range 

(Figure 4.1). Findings from these empirical studies can facilitate the development of a 

visual feedback language for future touchless interfaces. 
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4.3. General method 

Figure 4.1. We conducted six controlled experiments to understand how visual feedback 

affects user experience in large-display touchless interactions. (Left) In our experiment, 

participants used touchless gestures to select display objects while sitting away from a 

large display. (Right) They used a velocity-based select and a distance-based de-select 

gesture. We evaluated three types of visual feedback (partial, continuous, and discrete) 

and alternative touchless cursors. (Left) We also designed and evaluated Stoppers—

semantic visual feedback informing users when they are out of the display range, and 

Trail— persistent visual feedback echoing the path of movement during drag-and-drop 

operations. 

Apparatus 

Our experiments were conducted using a high-resolution large display that 

comprises of eight 50–inch projection cubes laid out in a 4 x 2 matrix. The large display 

is driven by a single computer. Each of these cubes has a 1600 x 1200 pixel resolution, 

resulting in a 160-inches wide and 60-inches high display with over 15.3 million pixels 

(Figure 4.2). For motion tracking, we used a Kinect™ (for Windows) sensor. All 

experiments were written in C# running on Windows 7, and were implemented with 

OpenNI 1.4 SDK and PrimeSense’s NiTE 1.5 middleware. 
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Participants  

A total of 37 right-handed participants with no color-blindness were recruited from 

an urban university campus; experiments were conducted in two rounds (December 

2012 and August 2013). 18 participants (9 females, 13 familiar with touchless gestures) 

took part in the first five experiments (first round), and 19 participants (8 females, 11 

familiar with touchless gestures) took part in the sixth experiment (second round). 15/18 

and 15/19 participants were below 30 years of age. Participants were randomly recruited 

by sending out emails using the university’s mailing list. The study was approved by the 

university’s Office of Research Administration (IRB Study No. 1210009814 and 

1303010855), and participants were compensated with a $20 gift card for two hours of 

participation. 

 

Figure 4.2. Our experiments were conducted using a 160 x 60 inches large display with 

a resolution of 15.3 M pixels. We used Microsoft’s Kinect sensor for motion tracking, and 

across all six experiments, participants sat in a chair 2 meters away from the large 

display. 

Gesture primitives 

To explore visual feedback in large-display touchless interactions, we designed 

two gesture primitives: select and de-select. A select gesture was defined as a forward 

movement of the hand with a certain velocity (350 mm/s), and a de-select gesture was 

defined as a backward movement of the hand by a certain distance (100 mm, Figure 

4.1). Using these two gestures, participants performed two basic actions: (1) point-and-
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select— point to an object, select and de-select, and (2) drag-and-drop— point to an 

object, select it, drag it to a specified location, and de-select.  

Procedure 

Across all five experiments, participants sat in a chair 2 m away from the large 

display and took about two hours to complete all trials. They were situated 1.6 m away 

from the sensor, and the chair-seat was 53 cm high. The sensor was 89 cm from the 

ground with a horizontal field of view of 57 degrees, and a vertical field of view of 43 

degrees. (In the second round, for experiment 6, participants sat in a couch 2.25 m away 

from the display and 1 m away from the sensor, and the couch-seat was 44 cm high.) In 

the XY plane (parallel to the display), hand movements were mapped from real space to 

display space as 1: 2.4 (when a participant moved 1 cm in real space, the cursor moved 

2.4 cm in the display space). Before the experiment, all participants spent about 10 – 15 

minutes practicing select and de-select gestures while solving a picture puzzle on the 

large display (see Figure A1 in Appendix A.1). Each block of an experiment began by 

selecting a ‘Start’ circle. Each trial began with a blue folder appearing on the display with 

a black background (Figure 4.2). To successfully complete a trial, participants either 

performed a point-and-select or a drag-and-drop operation on the folder. Participants 

were required to take at least a 10–second break in between each block. (For 

experiments 1 – 4, 20 trials constituted a block.) Trials were recorded using a video 

camera capturing users’ gestures and the display. In the first round, across the five 

experiments, randomized partial counterbalancing was used to control order effects. 

Measures 

User experience was operationalized as efficiency (performance time), 

effectiveness (selection and de-selection error rates), and user satisfaction (users’ 

ranking of experimental conditions and qualitative comments). We also logged the 

location where selection and de-selection errors occurred. Time was measured from 

when a folder (target) appeared on the display to when users successfully selected the 

folder or moved the folder to a specified location. To ensure that participants do not 

spend too long on any particular trial, and could complete the entire experiment, point-

and-select trials were skipped after 20 seconds and drag-and-drop trials were skipped 

after 40 seconds. Data were analyzed only for successfully completed trials. 

4.4. Experiment 1: different types of visual feedback 

In WIMP-based interfaces, the mouse pointer provides visual feedback for two 

input states—tracking and engaged. In direct-touch paradigm, visual feedback is usually 
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available for the engaged state (e.g., user tapping on an icon, or pinching to zoom). 

Touchless systems are typically one-state input devices, where users are always being 

tracked (Wigdor and Wixon, 2011). What kind of visual feedback should be available for 

touchless interactions? In this experiment, we studied three different types of visual 

feedback—discrete, partial, and continuous (Figure 4.1). Discrete feedback required 

users’ explicit invocation by holding their hand stationary for 5 seconds in front of the 

sensor. Once discrete feedback was invoked, the touchless cursor was continually 

visible on the display. It would disappear after a certain period of user’s inactivity.  Partial 

feedback only visualized the target’s response to user input but did not provide any 

visual feedback otherwise (This condition was inspired by terminal feedback in motor 

learning). For example, when users’ hand hovered over a folder, the folder got 

highlighted. Though user’s hand was continually tracked, no visual feedback was 

available at any other time. Continuous feedback did not require any explicit invocation. 

A touchless cursor was always visible as long as the user’s hand was within the display 

range. Overall, continuous feedback operated similar to the mouse pointer; partial 

feedback operated similar to tapping an on-screen object in touch-based systems, and 

discrete feedback provided strict user control on the system’s behavior. 

Method 

The experimental target-selection task was adapted from Fitts’ 1D reciprocal task 

(Fitts, 1954). For each consecutive trial, a folder appeared at a certain amplitude (1100 

pixels in display space, 29 cm in control space) left or right of the previous trial position. 

Experimental conditions were randomly counterbalanced. The size of the white-bordered 

touchless cursor was equal to the size of the target folder (256 pixels, or 163 mm). In 

summary, the study design was as followed: 3 types of feedback (condition) x 4 trials x 

18 participants = 216 trials 

For discrete feedback, participants needed to invoke the touchless cursor for 

each trial. The invocation time was not considered as part of their performance time. We 

did not evaluate dismissal of discrete feedback. The time threshold for discrete feedback 

was informed by our pilot studies. When previous work used lower time-out thresholds 

(e.g., 1 second) for selection by dwelling (Hespanhol, Tomitsch, Grace, Collins, & Kay, 

2012), authors reported that users found it too sensitive, and even after considerable 

training users could not avoid unintentional triggering. However, we do not argue that 

our time-out threshold is an optimal choice. We simply wanted to measure the user 

experience, when participants perceived an explicit invocation of visual feedback. 
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Results and discussion 

 

Figure 4.3. Types of feedback (discrete, partial, and continuous) significantly affected 

selection time and user preference. Continuous feedback was most efficient and most 

preferred by users. 

Shaprio-Wilk test of normality showed that performance time was normally 

distributed, but error rates were not. A repeated measures ANOVA found that 

performance time was significantly affected by the type of feedback, N = 72, F(2, 12) = 

5.09, p <.05 , η2 = .46 (Figure 4.3, left). Only successful selections were considered for 

data analysis; participants were unsuccessful with 51% of the trials in discrete, 75% in 

partial, and 21% in continuous feedback condition. Unsuccessful trials were treated as 

data missing completely at random (MCAR). Planned contrasts showed that participants 

were significantly efficient with continuous feedback (M = 4.30 s, SD = .83) compared 

with discrete feedback (M = 7.17 s, SD = 1.61), p < .01, d = 2.24.  

A Friedman test showed significant effects of the type of feedback on error rates, 

χ2(2, n = 19) = 16.00, p < .001.  Follow-up pairwise comparisons were conducted using a 

Wilcoxon test and Type I error was controlled using Bonferroni-Holm correction. Error 

rates were significantly more in partial feedback condition (Mdn = 0%, IQR = 50) than 

both in continuous feedback (no errors), Z = 2.83, r = .65, and discrete feedback 

condition (no errors), Z = 2.83, r = .65, ps < .01. 

Each participant was asked to rank the three types of feedback according to their 

order of preference. A Friedman’s ANOVA showed a significant effect of the type of 

feedback on user preference, χ2(2, N = 18) = 17.56, p < .001 (Figure 4.3, right).  Follow-

up Wilcoxon tests showed that users significantly preferred continuous feedback over 

discrete feedback, Z = 3.23, r = .76, and partial feedback, Z = 2.99, r = .70, ps < .01. 
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Among the three conditions, continuous feedback provided the best user 

experience, thus confirming the critical role of visual feedback in controlling touchless 

interactions. Although discrete feedback differed from continuous feedback only in 

invocation, users were less efficient with the former. Holding their hand stationary not 

only made users dislike discrete feedback, but also affected their efficiency. This 

suggests that simply holding the hand stationary may not be an ideal candidate for mode 

switching. However, in a touchless system, this effect would only be articulated in the 

first task following the mode switching. For partial feedback 7 out of 18 participants 

mentioned that they guessed where to point, which explains the significant decrease in 

their efficiency and effectiveness. This suggests that in device-less touchless 

interactions, point-and-select tasks on a large display cannot be guided sufficiently with 

proprioception. 

4.5. Experiment 2: alternative shapes, sizes, and colors of the touchless cursor 

A mouse pointer is an icon from a semiotic perspective (Pierce, 1931-58). By 

default, it resembles an arrow and signifies the concept of pointing.  It may also take up 

other forms, such as an hour clock (to signify that the user needs to wait for a computer 

response) or a blinking vertical line (to signify the possibility of text input). The mouse 

pointer provides visual feedback for point-and-click interactions. Similarly, in touchless 

systems, the touchless cursor could change its form (e.g., shape, size) to provide 

necessary visual feedback on the ongoing status of the interaction.  In this experiment, 

we studied three different properties of the touchless cursor—shape, size and color.  But 

why can’t we simply replicate the existing representations of the mouse pointer? 

Because the lack of kinesthetic feedback in touchless interactions and the inherent 

ambiguity with hand-gesture input requires unobtrusive yet effective visual feedback at 

many instances—unwarranted in point-and-click interactions (e.g., see Vogel & 

Balakrishnan, 2005). This makes our investigation of visual feedback in large-display 

touchless interactions pertinent. 

We studied five shapes: circle, semi-circle, triangle, diamond, and star; three 

sizes: small, medium, and large; and five outline colors: green, blue, white, red and 

yellow. Searching the mouse pointer on a traditional desktop screen is not a pressing 

problem, but it is often reported that users lose track of the cursor in very large displays 

and multi-monitor configurations (e.g., see Baudisch, Cutrell, & Robertson, 2003). On 

the other hand, large displays are suited for visualizing and manipulating large datasets 

(Beaudouin-Lafon, 2012). Hence, it is crucial that a touchless cursor can easily be 
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searched while interacting with information-dense displays. Our shape and color coding 

dimensions were inspired by a class counting study (most common visual search task) 

by Smith and Thomas (1964). The shapes used in this experiment are geometric forms 

with vertices ranging from 0-5. We conducted a pilot study to confirm the user perception 

of the five Munsell colors (Fig.1, p. 139, Smith and Thomas, 1964) when converted to 

RGB space (see Appendix A.2 for conversion details). Seven observers classified each 

color on the large display. Fleiss’ kappa was used to measure the reliability of their 

agreement. All observers substantially agreed on all colors (κ > .75) except white (κ = 

.30). Following the analysis, we changed the white color to be described by its hex color 

code, FFFFFF. Small-sized cursors were bounded by a square of 128 pixels (81 mm), 

medium by 256 pixels (163 mm), and large by 512 pixels (325 mm). Overall, the cursors 

were 50%, 100% or 200% of the display object (256 x 256 pixels) that was required to 

be selected during the point-and-select task. 

 

Figure 4.4. (Left) Selection time was significantly correlated with the size of the touchless 

cursor, r = –.10, p < .01. (Right) We found an interaction effect of shape x size on 

selection time. The increase in number of corners did not increase efficiency across all 

sizes of touchless cursors. 

Method 

For this experiment, we used the same target-selection task as experiment 1. 

Visual feedback was continuously present. The touchless cursor was not filled with any 

solid color. All experimental conditions were randomized across trials. In summary, the 

study design was as followed: 5 shapes x 3 sizes x 5 colors x 4 trials x 18 participants = 

5400 trials. 
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Results and discussion 

Among the three independent variables (shape, size, and color), we only found a 

significant correlation between the size of the touchless cursor and performance time, r = 

-.10, p < .01 (Figure 4.4, left). No main effect of shape, size, or color was found on 

participants’ efficiency or effectiveness. We only found an interaction effect of shape x 

size, F(8, 184) = 2.15, p < .05, η2 = .09. Increase in the number of corners did not 

increase efficiency across all sizes, which explains the interaction effect (Figure 4.4, 

right). No significant performance benefit of the large-sized cursor was found over the 

medium-sized cursor, but 10/18 participants reported preference for large-sized cursors. 

Nine out of 18 participants preferred circular cursors. No color preference was reported.  

Our results suggest that a touchless cursor of size equivalent to display objects 

(equal bounding areas) provides an optimal user experience, and an increase in cursor 

size do not improve user performance. We did not find any significant effect of shape or 

color coding of the touchless cursors. Overall, participants reported their preference for 

symmetrical shapes. A limitation of this study was the simplicity of the selection task, 

and a non-distracting background. Future research on the effects of shape and color of 

touchless cursors should investigate complex scenarios, where the display already 

contains artifacts of different shapes and colors. 

4.6. Experiment 3: alternative levels of transparency of the touchless cursor 

Researchers have found that different levels of transparency of user interface 

elements, such as a tool palette, affect users’ selection time (Harrison, Kurtenbach, & 

Vicente, 1995). In this experiment, we investigated user experience for different levels of 

transparency (100%, 50%, 25%, and 0%) of the touchless cursor. The level of 

transparency affected the fill of the touchless cursor, but not its outline.  

Method 

We used the selection task from experiment 2. The touchless cursor always had 

a white outline, and was equal to the size of the target folder (256 pixels, or 163 mm). 

Different transparency levels with the base color white were randomized across trials. In 

summary, the study design was as followed: 4 transparency levels x 4 trials x 18 

participants = 288 trials. 

Results and discussion 

Performance time or error rates were not significantly affected by levels of 

transparency, ps > .05; but user preference was significantly affected (Figure 4.5). Each 

participant was asked to rank the four types of touchless cursors according to their order 
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of preference. A Friedman’s ANOVA showed a significant effect of transparency on user 

preference, χ2(3, N = 18) = 18.17, p < .001.  Follow-up Wilcoxon tests showed that users 

significantly preferred medium transparency (50%) over low-transparent (25%), Z = 3.56, 

r = .84 and opaque touchless cursors, Z = 3.06, r = .76, ps < .01. 

 

Figure 4.5. User preference of touchless cursors was significantly affected by their level 

of transparency. Participants significantly preferred medium transparency (50%), both 

over low transparency (25%) and opaque touchless cursors. 

Participants mentioned that they disliked the opaque touchless cursor because it 

obstructed the view of the display object, but a 50% transparent touchless cursor was 

equally preferred as a completely transparent touchless cursor (with only an outline). 

This is an important finding since we are used to an opaque mouse pointer in desktop 

environments, but the mouse pointer is significantly smaller than the icons, thus not 

producing the obstruction problem that participants faced in this experiment. As we 

found in experiment 2, having a touchless cursor smaller than the display icon reduces 

user’s selection efficiency. 

4.7. Experiment 4: alternative approaches to represent selection 

The touchless cursor should not only inform users where they are on the display, 

but also what they are doing. How can we represent operations (e.g., selection, de-

selection) using the touchless cursor as a ‘sign vehicle’? This is particularly important 

because of the absence of any kinesthetic feedback in touchless interactions that is 
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conveniently available with a mouse or on a touch surface. In this experiment, we 

investigated different approaches to represent target-selection: change in the cursor’s 

shape (circle to semi-circle, semi-circle to triangle, triangle to diamond, and diamond to 

star), change in depth (sphere to circle, and circle to sphere), and change in 

transparency (0% to 100%, 100% to 0%, 50% to 25%, and 25% to 50%). For example, 

when hovering over a folder, a user would see a circular touchless cursor, a successful 

select gesture would transform the cursor into a semi-circle, and a successful de-select 

gesture would convert the cursor back to a circle. 

 

Figure 4.6. Participants made significantly more errors when Trail was present compared 

with no Trail condition, p < .05, r = .50. 

Method 

We used the selection task from experiment 2. The touchless cursor always had 

a white outline (except for depth changes, where the cursor was filled white), and was 

equal to the size of the target folder (256 pixels, or 163 mm). In summary, the study 

design was as followed: 10 cursor transitions x 4 trials x 18 participants = 720 trials. 

Results and discussion 

Performance time or error rates were not significantly affected by different cursor 

transitions, ps > .05. Although most participants could not report clear ranking 

preferences for the 10 cursor transitions, overall they reported that a change of opacity 

was more informative and less distracting than a change in shape or depth. Ten out of 
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18 participants liked cursor transitions to represent target-selection. One participant 

commented, “I felt I am accomplishing something. It made me feel good.”  

4.8. Experiment 5: persistent visual feedback for drag-and-drop operations 

All interactive systems are affected by some amount of lag: a delay between 

users’ input and the visualized response. Working with multitouch systems, Wigdor et al. 

(2009) reported that such lag reduces users’ perception of reactivity of the system, and 

designed a trail visualization that renders behind a finger as its contact point moves from 

one position to another. Large-display touchless interactions are device-less. With no 

surface friction of any device, the user moves faster, and with a larger screen the 

delayed reactivity of the system becomes a significant problem. Moreover, without any 

tactile feedback, the user solely depends on proprioception to perceive their path of 

movement. Since continuous visual feedback controls motor responses (see section 

2.3.1), this lack of immediate visual feedback can affect operations where users are 

dragging an object on the display. In this experiment, we evaluated trail – persistent 

visual feedback that echoes the immediate history of user’s hand positions (for a pre-

defined time window). A trail was visualized as a Bézier spline (using cubic Bézier 

curves) along 10 previously tracked hand positions. 

Method 

The experimental task was a drag-and-drop operation. For each trial, participants 

moved a folder across the display (2000 pixels in display space, 53 cm in control space) 

to the left or to the right. The white-bordered touchless cursor (equal to the size of the 

target folder, 256 pixels) was filled with solid white, when a successful select gesture 

was interpreted; and the trail was visualized as a yellow line (Figure 4.1). In summary, 

the study design was as followed: 2 directions x 3 blocks of repetitions x 18 participants 

= 108 trials. 

Before this experiment, participants practiced drag-and-drop operations in 8 

compass directions (1100 pixels in display space, 29 cm in control space) for 3 blocks of 

repetition (Figure 4.9 shows the de-selection errors during those practice sessions).  

Results and Discussion 

Shaprio-Wilk test of normality showed that neither performance time, nor error 

rates were normally distributed. The presence of trail did not significantly affect 

performance time; but error rates were significantly more with trail present (Mdn = 25%, 

IQR = .28) than without trail (Mdn = 0%, IQR = .29), n = 17, Z = —2.08, p < .05, r = .50 

(Figure 4.6). Specifically, trail did not affect error rates for selection, but de-selection 
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errors were more with trail present (Mdn = 25%, IQR = .33) than without trail (Mdn = 0%, 

IQR = .14), n = 17, Z = —2.20, p < .05, r = .53. Participants commented that the 

continuous updating of the trail was distracting and exacerbated the natural tremor in 

hand motions. 

Unlike in device-based interactions (such as with touch), hand movements in 

mid-air are rarely smooth—they frequently create a convoluted trail, thus distracting 

rather than supporting the user’s task at hand. Moreover, the echo feedback provided 

information not entirely relevant to users’ task at hand. Our results suggest that a trail 

significantly affected participants’ effectiveness, mainly while dropping objects on the 

display (de-selection errors). Why selection was not equally affected by trail may be 

explained by the inherent difficulty of the de-select gesture (for details see additional 

observations, Figure 4.9). Based on participants’ comments, video recordings, and 

logged data, we re-designed trail: A straight line joining the initially selected position to 

the user’s current hand position (Figure 4.10, bottom-left).  

4.9. Experiment 6: persistent visual feedback for out-of-range events 

In large-display touchless interactions, when the sensor’s tracking range does 

not match with the system’s display range, a gap is created between the system’s 

behavior and the user’s mental model. This happens when users perform a gesture that 

erroneously steps out of the display range. During our pilot studies in the first round of 

experiments, we observed that when participants’ gestures go off the display and the 

touchless cursor becomes unavailable, participants stop and get disoriented. They do 

not further attempt to move their hands and return within the display range. In the 

absence of any visual feedback, users fail to perceive that they are still being tracked by 

the sensors. From our observations, we hypothesized that participants halted because 

they perceived a lack of feedback as an error, and their reaction to an error was to slow 

down, a well-known phenomenon called post-error slowing (Notebaert et al., 2009).  

Based on our hypothesis, we iteratively developed and tested Stoppers (Figure. 

4.1), a type of semantic feedback (p. 83, Wigdor & Wixon, 2011) that uses the metaphor 

of stoppers (or plugs) to inform users that the system is still tracking their gesture, thus 

giving them the opportunity to instantly step back within the display’s range. Stoppers 

support this action by providing visual feedforward (direction to move) and visual 

feedback (user’s current position). When users gesture within a display range, a 

touchless cursor (such as a circle) is available. When users go off the display range, a 

semi-circle appears at the last-recorded within-display position of their gesture. In our 
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current visualization of Stoppers, the change in feedback from a circle to a semi-circle 

subtly informs users that they are out of the display range and need to retrace their way 

back (see Figures A2 and A3 in Appendix A.3 for a detailed visualization). Stoppers 

disappear as soon as the user is back within the display range. During pilot studies in 

the first round of experiments, users found Stoppers intuitive and helpful 

(Chattopadhyay, Pan & Bolchini, 2013). In the second round, we systematically 

investigated the effect of stoppers on user’s efficiency in returning within the display 

range. 

Method 

For this experiment, participants pointed to a target object (a text label or a 

display icon of size 256 pixels) appearing randomly at certain positions at the top, left or 

bottom border of the display (see Figure A4 in Appendix A.3 for a description of the 

experimental task).  Because of the difficulties of our de-select gesture in the previous 

round of experiments, we decided to use a pointing task. To successfully complete a 

trial, participants pointed to the target object with a white-bordered touchless cursor 

(sized equal to the target). In summary, the study design was as followed: 14 target 

positions x 5 blocks x 19 participants = 1330 trials 

Results and Discussion 

 

Figure 4.7. Participants were significantly faster in returning within the display range with 

Stoppers present than without Stoppers, p < .01, d = .87. 

Participants were significantly faster in returning within the display range with 

stoppers present (M = 411 ms, SD = 104) than without stoppers (M = 533 ms, SD =169), 

t(18) = 2.97 , p < .01, d = .87 (Figure 4.7). Participants also reported stoppers as a non-
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distracting, helpful guide to keep them within the display’s range and to help them 

retrace their steps back.  

Our results from experiments 5 and 6 confirm that the type of visualization plays 

a key role in visual feedback: relevant and semantic visual feedback seems to be more 

effective than echo feedback in large-display touchless interactions. 

4.10. Additional findings  

 

Figure 4.8. While using the select gesture, participants spontaneously created and used 

a rich range of hand poses. 

Apart from our six controlled studies we made two interesting observations: one 

throughout the first round of the experiment, and another during the drag-and-drop 

practice sessions. Since our gesture primitives and hand tracking algorithm was agnostic 

of participants’ hand poses, we encouraged participants to user their preferred hand 

pose. Across all experiments, we observed a rich paradigm of spontaneous gesture 

variations that participants created to perform touchless selection (Figure 4.8).   

Throughout our first five experiments, we used two gesture primitives: select and 

de-select. While a select gesture was defined as a forward movement of the hand with a 

certain velocity, a de-select gesture was defined as a backward movement of the hand 

by a certain distance (Figure 4.1). During the drag-and-drop practice sessions (prior to 

experiment 5), participants performed de-selection at 8 different locations of the display. 

We observed an interesting phenomenon: While participants intended to move backward 

from the sensor (in Z-direction), they actually moved down vertically (during de-selecting 

objects in northern regions, such as NW, N, or NE) or moved up vertically (during de-

selecting objects in southern regions, such as SW, S, or SE) (Figure 4.9). Overall, there 

was a strong trend among participants to bring their hand closest to the center of their 

torso, probably for energy conservation. An inverse, but related phenomenon was 

reported by researchers while using push-to-select gestures on large displays 

(Hespanhol et al., 2012): While translating from one position on the display to another 

(parallel to the display), users often moved their hands forward (orthogonal to the 

display), and accidentally invoked the select gesture.  
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4.11. General discussion 

We conducted six controlled experiments to explore four different aspects of 

visual feedback in large-display touchless interactions. Specifically, we investigated: 

types of feedback, alternative forms of touchless cursors, alternative approaches to 

visualize target-selection, and persistent visual feedback for drag-and-drop operations 

and out-of-range events. Although we studied visual feedback using a point-and-select 

task, our findings are applicable beyond our experimental tasks. In the following 

sections, we discuss how our findings can be extended to inform the design of visual 

feedback for touchless interactions with large displays. To frame our discussion properly, 

it is important to note two different kinds of large-display touchless interactions: An 

interaction that happens in the context of a display object (e.g., using a marking menu to 

operate on an icon, Bailly et al., 2011), and an interaction that is object-agnostic (e.g., 

making a teapot gesture to create an avatar; Walter et al., 2013). Our findings and 

design guidelines are relevant to object-oriented touchless interactions that require users 

to point to a display object prior to any gesture invocation. 

Design Implications 

First, our findings suggest that continuous visualization of users’ current position 

on the display—independent of an application’s response to user input—is crucial for 

touchless interactions. The designer may choose to represent tracking information 

corresponding to one or more body parts depending upon the interaction vocabulary in 

use. For example, a touchless system allowing two-hand manipulations would require 

visual feedback for both hands; a system allowing foot interactions should further 

represent tracking information of users’ feet. Visual feedback of an application’s 

response does not provide enough feedback to users before any successful gesture 

registration or during gesture relaxation (Wu, Shen, Ryall, Forlines, & Balakrishnan, 

2006).  For example, an application allowing users to rotate 3D images bimanually in a 

sterile environment should show the hand positions in addition to the rotation of the 

object as a result of users’ hand movements (similar to Rosa & Elizondo, 2014).  

Second, a touchless cursor can be efficiently used as a ‘sign vehicle’ to represent 

many critical aspects of touchless interactions, such as when a user is engaged in an 

on-going interaction or when multiple users are collaborating synchronously. Our results 

suggest that shape or color coding of touchless cursors do not significantly affect user 

experience in large-display touchless interactions. Yet, users informally commented on 

their preference toward symmetrical shapes. Hence, colors may be used to distinguish 
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multiple users interacting at a time, while shapes may be used to represent different 

interaction states (e.g., when the user is clutching instead of interacting).  

We found that a touchless cursor of size equivalent to a display object is 

significantly more efficient than a smaller cursor (50% of the display object), but not 

significantly less efficient than a larger cursor (200% of the display object). While using a 

cursor equivalent to the size of a display object, users disliked an opaque cursor, but 

significantly preferred a slightly transparent touchless cursor (50% opacity). The 

applicability of our results on the size of the touchless cursor may be limited by our 

gesture primitives. Nevertheless, similar to shape coding, our results on transparency 

can be applied to represent a touchless cursor during an interaction. For example, 

multiple users reported envisioning a scenario where during touchless selection the 

cursor would transform from an outline to a transparent fill to represent a successful 

select gesture, and revert to its default outline when deselected. Although we explored 

different transitions of the touchless cursor to represent touchless selection (experiment 

4), no particular condition emerged as significantly more efficient or effective. Still users 

reported a preference for transparency changes and mentioned that shape transitions 

were distracting.  

Most current systems use the icon of an open hand as a touchless cursor, and 

transform the icon to a closed hand or corresponding poses (such as finger counts) on 

successful pose recognition (Microsoft, 2013). This visual feedback technique may not 

be scalable for a collaborating environment. Our results can be used to augment the 

visual feedback along with pose information in collaborative touchless environments. For 

example, let us imagine a collaborative touchless environment that uses both hands and 

feet toward performing gestures. Multiple users may be color coded. Hands and feet 

may be distinguished using shape coding (or iconic images). The touchless cursors can 

appear as outlines while users are being tracked, but are not engaged. On successful 

gesture recognition, a touchless cursor may simply be filled with a certain level of 

transparency, or an iconic image of the pose can be transparently overlaid on the cursor. 

Third, persistent visual feedback can benefit touchless operations that are 

affected by users’ fast and large movements. When users erroneously gestured out of 

the display range, Stoppers significantly increased their efficiency in returning within the 

display range (experiment 6). However, trail—persistent visual feedback that echoed 

users’ path of movement during drag-and-drop operations decreased users’ efficiency 

(experiment 5). Users reported them as distracting and redundant. While stoppers 
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provided users with semantic feedback (a meaningful representation of the system’s 

knowhow about the user), trail provided echo feedback (an echo of minimally processed 

sensor data; p. 83, Wigdor and Wixon, 2011).  Although further research is required to 

make a more general claim, semantic feedback seems to be more effective than echo 

feedback in large-display touchless interactions. Our findings suggest that persistent 

visual feedback in large-display touchless interactions should be: (1) visually 

unobtrusive, (2) salient, and (3) communicate only relevant information for the ongoing 

interaction. Based on these guidelines, we redesigned trail from a cubic Bezier curve to 

a simple straight path connecting the initial selection position during a drag-and-drop 

operation and the current position of the user’s hand. 

 

Figure 4.9. During drag-and-drop practice sessions, participants moved display objects 

in 8 directions (N, S, W, E, SW, SE, NE, and NW). We found an interesting pattern in the 

de-selection errors across different positions of the display: While moving backward from 

the sensor (in Z-direction), participants often moved down vertically (during de-selecting 

objects in northern regions, such as NW, N, or NE) or moved up vertically (during de-

selecting objects in southern regions, such as SW, S, or SE). Overall, there was a strong 

trend among participants to bring their hand closest to the center of their torso, probably 

for energy conservation. 
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Additionally, we discovered a caveat about touchless gesture primitives that 

parametrize orthogonal movements. Our video recordings and logged data of users’ de-

selection errors showed that users always tend to follow the shortest path toward the 

center of their torso, rather than orthogonal movements (Figure 4.9). While performing 

de-select gestures, users frequently moved vertically downwards (or vertically upwards) 

while intending to move only orthogonal to the large display. This observation well aligns 

with the minimum energy cost model of human movement planning (Alexander, 1997); it 

states that while reaching an object, among infinitely many paths, we choose the one 

path that minimizes our metabolic energy cost. This phenomenon is most relevant for 

large-display touchless interactions, where to interact with display objects users stretch 

their hands beyond the space directly in front of their torso—up, down, left or right.  

Overall, our findings suggest that given the large size of the display, and the lack 

of haptic feedback in touchless interactions, effective visual feedback plays a key role in 

improving the touchless user experience with large display interfaces. When 

proprioception is the only feedback for an interaction modality, visual cues can 

somewhat compensate the lack of haptic feedback. This work provides the first step 

toward building a visual feedback language for touchless interactions.  

Finally, to crystallize in a coherent view the lessons learned across our six 

experiments, we propose a visual feedback routine for a simple interaction scenario: 

moving a folder using a drag-and-drop operation (Figure 4.10). We envision the large-

display touchless system in three interaction states: idle, active, and engaged. In the idle 

state, though users are being tracked by the motion sensor, they cannot interact with the 

system; for example the user may be out of the display range, or clutching. In active 

state, users are interacting with the system (e.g., pointing), but not performing any 

action, such as selecting, dragging, or resizing. In engaged state, users either make a 

gesture to initiate an operation, or continue an ongoing operation; the system in this 

state would register a gesture, allow the user to continue a gesture, or recognize gesture 

termination. In our visualization instance, we provide stoppers to represent when users 

are out of the display range (Figure 4.10.a); a circular, unfilled touchless cursor to show 

users’ position on the display (Figure 4.10.b); a partially filled (50%) touchless cursor to 

indicate that selection has been registered (Figure 4.10.c); and a trail to provide 

semantic context of the ongoing drag-and-drop operation (Figure 4.10.d). When users 

complete the drag-and-drop operation, the touchless cursor would change back to its 

default state, and indicate that de-selection has been registered. This simple idle-active-
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engaged model provides a preliminary framework to conceptualize interactions and their 

corresponding visual feedback routine in a touchless system. 

 

Figure 4.10. Demonstrating visual feedback for the three interaction states—idle, active, 

and engaged—during a drag-and-drop operation: (a) Stoppers represent when users are 

out of the display range; (b) a circular, unfilled touchless cursor shows users’ position on 

the display; (c) a partially filled (50%) touchless cursor indicates that selection has been 

registered; and (d) a trail provides semantic context of the ongoing drag-and-drop 

operation. 

Limitations 

The capability of our motion tracking sensor limits our findings. It operated with a 

maximum refresh rate of 30 fps: Users perceived a lag of about 33 ms between their 

movements and screen update. In our experimental setup, participants sat in a 

comfortable chair. This may have affected their ability to make certain gestures; but 

neither did we observe any ergonomic constraints, nor was reported by the participants. 

Moreover, our participants were right-handed. Although we do not think that this would 

affect our findings on visual feedback, we cannot claim a generalization of our findings 

across left-handed users.  

We investigated visual feedback using only select and de-select gestures. Our 

performance measures may be biased by the gesture primitives we used in the 

experiment, and further research is necessary to tailor visual feedback to any particular 

interaction vocabulary. Our experimental system received a mean SUS score of 66 that 

suggests an average usability; but we did not record any subjective ratings for 
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intuitiveness. Informally, users did not report any significant physical strain after the 

experiment. Based on current research, future studies should record user fatigue using 

objective measurements, such as consumed endurance (Hincapié-Ramos, Guo, 

Moghadasian, & Irani, 2014). Users’ difficulty in performing the de-select gesture (Figure 

4.9) was obvious during the practice trials; but that may not have significantly affected 

the experimental trials (in experiment 5) because participants only performed select and 

deselect gesture at their chest-level (when seated).  

Our experiment used a simple point-and-select task, and a solid black 

background. Most real world tasks are complicated, and the display background is 

populated with other artifacts. Future research investigating visual feedback in large-

display touchless interactions should use the display density of the background as an 

experimental factor. More complex tasks, such as matching, sorting or grouping of 

display objects may be used. 

Though we provide some guidelines on how to design visual feedback for 

multiple users interacting simultaneously, future experiments—controlled or in-the-wild—

are required to identify their role in collaborative touchless environments. Moreover, we 

did not investigate the aspect of clutching in touchless interactions. It is important to 

investigate how visual feedback can intuitively allow users to reposition their body parts 

without affecting the screen output. 

External validity 

Our results are generalizable for large-display touchless interactions. Specifically, 

our findings about different types of visual feedback (experiment 1) and observations 

about de-select gestures (Figure 4.9) may not apply in gaming scenarios where users 

interact with standard television screens, such as 50” HDTVs, from a 7-9 feet distance. 

This is because in such scenarios the operating region of user’s motor space (also 

known as user’s control space) is much smaller compared with while interacting with 

larger displays. (Shrinking the motor space in large-display interactions—using a very 

high control display gain—would lead to quantization errors.) Although users were 

seated in our experiments, we expect our findings to stay valid in a standing posture. 

Visibility depends on the distance from the display. Our experiments were conducted at 

a fixed distance from the large display. Though distance from the display may affect the 

task efficiency of the users (since display objects get smaller), it is unlikely to affect our 

general findings on visual feedback. Finally, our design guidelines are agnostic of the 

control-display gain of the system, or how the control space is mapped to the display 
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space. For our study, we used an off-the-shelf sensor inside a room with normal levels of 

fluorescent lighting. Outdoor lighting may affect the tracking noise, the screen glare, and 

the perception of color coding.  

4.12. Conclusions 

Touchless interactions lack haptic feedback, but effectively designed visual 

feedback can guide users to control their movements and still perform operations 

efficiently. Because large displays are often densely populated with artifacts, visual 

feedback in large-display touchless interactions should be easily perceivable. Motor 

science research suggests that visual feedback can improve motor control and learning; 

studies on visual perception present attributes that can be used to facilitate users’ 

attention in visual search. Inspired by the potential of visual feedback in related fields, 

we systematically investigated types of feedback, alternative forms of touchless cursors, 

approaches to visualize target selection, and persistent visual feedback during drag-and-

drop operation and out-of-range event. 

Our findings suggest that continuous visual feedback is significantly effective 

than partial feedback; users’ efficiency did not increase with their cursors increasing 

beyond the size of the display objects (200%); and users preferred slightly transparent 

(50%) cursors over completely opaque ones. We also found that semantic feedback 

located at the border of the display (Figures 4.1, A3 and A4) informing users when they 

were out of the display range helped users to return efficiently; but echo feedback 

showing the path of users’ movement made users inefficient during drag-and-drop 

operations. We additionally observed users making a wide range of hand postures 

during touchless selection. We also found that orthogonal movements as interaction 

primitives are limited: users obviously take the shortest path toward their torso, thus 

misfiring touchless gestures. 

This work aligns with the research on imaginary interfaces that show users can 

reliably perform spatial interaction using bare-hand movements without any visual 

feedback (Gustafson, Bierwirth, & Baudisch, 2010), or eyes-free distal pointing 

(Cockburn, Quinn, Gutwin, Ramos, & Looser, 2011). Instead, our work puts forth the 

importance of visual feedback in effectively controlling touchless interactions with large 

displays—where the display space is entirely decoupled from the motor space. The 

overarching contribution of our work is to confirm the key role of visual feedback in 

touchless interactions, and providing some early pointers on how the design of visual 

feedback can somewhat compensate the lack of haptic feedback. Future research on 
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visual feedback needs to mine specific requirements in different interaction scenarios, 

such as swiping-to-type on a keyboard, crossing-to-select a menu, or making finger 

poses to trigger commands. These requirements related to motor control, motor 

learning, and visual attention can then guide the design of a visual feedback language 

for those interaction scenarios. Another direction of research is—given our dependency 

on visual perception for triggering motor responses in touchless interactions—what other 

phenomena that affect visual perception (e.g., Gestalt principles) also affects touchless 

user experience. This is explored in Chapter 9. 
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Chapter 5. Affordance and ability 

Elicitation and evaluation studies explore intuitive touchless gestures but do not 

operationalize intuitiveness. For example, studies found that users fail to make accurate 

3D strokes as interaction commands. But this phenomenon remains unexplained. In this 

chapter, we first explain how making accurate 3D strokes is generally unintuitive 

because it exceeds our sensorimotor knowledge. We then introduce motor-intuitive, 

touchless interaction that uses sensorimotor knowledge by relying on image schemas. 

Specifically, we propose an interaction primitive—mid-air, directional strokes—based on 

space schemas, up-down and left-right. Finally, we present results from a controlled 

study, where users interact with large displays using directional strokes.  

In sum, this chapter operationalizes intuitive touchless interaction and 

demonstrate how user performance of a motor-intuitive, touchless primitive based on 

sensorimotor knowledge (image schemas) is affected by biomechanical factors. 

5.1. Operationalizing intuitiveness in touchless interactions  

 To explore intuitiveness (or naturalness) in touchless interactions, researchers 

mostly follow either of these two approaches: gesture elicitation (e.g., Aigner et al., 2012, 

Vatavu & Zaiti, 2014) or gesture evaluation (e.g., Ren & O'Neill, 2012). For example, a 

gesture elicitation study reported that users would prefer dynamic “wiping” hand 

movements over a static hand posture (e.g., a certain combination of fingers) to trigger a 

“delete” action (Grandhi, et al., 2011). In a gesture evaluation study, researchers found 

that users evaluated “dwelling” as the most intuitive gesture to select a target 

(Hespanhol, et al, 2012). Neither of these existing approaches to investigate 

intuitiveness of touchless interactions operationalizes the concept of intuitiveness. 

Therefore, we often encounter observations from evaluation studies about the poor 

performance of certain gestures without any proper explanation. For example, a 

common touchless interaction primitive to indicate “selection” uses dynamic gestures, 

where meaning is assigned to particular translations (i.e., hand movements) in space. 

Recent works examining this interaction primitive (Guimbretière, & Nguyen, 2012; Ren, 

& O'Neill, 2012) report users’ limitations in making precise hand trajectories in 3D space. 

Despite repeated observations of this phenomenon, we still lack a causal explanation. 

We argue that to explain the potential and limitations of current touchless 

primitives, we need to consider the level of knowledge that is being used in such 

interaction contexts. The level of knowledge at play while interacting with computers is 

classified into a continuum of knowledge by the intuitive interaction framework (Blackler 
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& Hurtienne, 2007). In this continuum, the level of intuitiveness of the interaction 

grammar is inversely proportional to the artificiality of the knowledge that a user relies on 

to interact with. Intuitive interaction is thus characterized as the extent to which users’ 

unconscious application of prior knowledge leads to effective interaction (Hurtienne & 

Israel, 2007). In the case of touchless interactions, designers often treat human abilities 

as a “black box”, assuming that our ability to interact with the physical world directly 

translates into our ability to perform exact gestures in space. Yet, intuitive interaction 

does not work in this way. To unleash intuitive user experiences, designers need to 

examine the relationship between a given level of knowledge and the corresponding 

interaction primitives that align well with that knowledge. 

The main contribution of this chapter is to introduce the concept of motor-

intuitive, touchless interactions. Specifically, we propose and evaluate a novel, motor-

intuitive, touchless interaction primitive—mid-air, directional strokes—based on space 

schemas: up-down and left-right. To investigate how other factors, such as 

biomechanical properties of the human body, affect the performance of our proposed 

motor-intuitive touchless primitive, we conducted a controlled experiment. As per the 

intuitive interaction framework, motor-intuitive interactions have the potential to establish 

a new touchless interaction grammar that is based on what users can accomplish 

without further cultural or advanced expertise. Our work makes the following 

contributions: 

 We provide a theoretical explanation of human limitations in making accurate 3D 

trajectories (section 5.3) by drawing an analogy between ‘reaching for an object’ 

and freehand gesturing toward a display. This explanation is based on the 

consideration of the sensorimotor level in the continuum of knowledge that is at 

play during such interactions. We further discuss how the lack of feedback in 

touchless interactions can also explain such motor limitations.  

 We introduce motor-intuitive, touchless interactions based on image schemas. 

Specifically, we propose a touchless interaction primitive that draws on the 

sensorimotor level of knowledge—the two space schemas, up-down and left-right 

(section 5.4). 

 Finally, we investigate how biomechanical factors affect user performance of our 

proposed interaction primitive. Grounded in our empirical results, we provide 

practical design guidelines for intuitive touchless interactions and large-display 

touchless interactions (section 5.7). These include pointers on designing dynamic 
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touchless gestures, characterization of right-handed users’ control space based 

on user performance, and implications for designing UI elements for large 

displays (e.g., touchless menus). 

Our work is a first step toward applying the continuum of knowledge in intuitive 

interaction to define touchless interaction primitives. Our findings can inform 

fundamental design decisions to align touchless user interfaces with human 

sensorimotor abilities, thus making them intuitive to use.  

5.2. Background 

While designing gesture primitives for touchless interfaces—often referred as a 

kind of Natural User Interface (NUI)—existing studies associate the same meaning to 

‘natural’ and ‘intuitive’ (Aigner et al., 2012; Hespanhol et al., 2012; Grandhi et al., 2011; 

Lee, 2010; Morris, 2012; O’Hara et al., 2013; Vatavu & Zaiti, 2014; Wigdor & Wixon, 

2011). The meaning of ‘natural’ or ‘intuitive’ (these terms are used interchangeably in 

this dissertation) that is adopted by these studies does not go beyond the vernacular 

definition of instinctive or spontaneous. Our work is an attempt to operationalize 

‘intuitive’ in touchless interactions and builds upon the crossroads of two research areas: 

intuitive interaction and natural user interfaces. 

Intuitive interaction 

The intuitive interaction framework defines intuitive interaction (or intuitivity) as 

the extent to which users’ unconscious application of prior knowledge leads to effective 

interaction (Blackler & Hurtienne, 2007). While a similar framework, reality-based 

interaction (Jacob et al., 2008), identifies core themes (such as naïve physics or body 

awareness and skills) to scope what can be called real (or natural), intuitive interaction 

framework provides a continuum of knowledge to classify intuitivity (Hurtienne & Israel, 

2007). This bottom-up continuum of knowledge classifies intuitive interaction according 

to four different levels of prior knowledge: innate, sensorimotor, culture, and expertise. 

According to this continuum, the higher an interface requires specialization of knowledge 

the lower is the expected speed of knowledge retrieval, and hence less intuitive to use. 

Although this continuum of knowledge has been used to propose tangible interaction 

primitives (Hurtienne & Israel, 2007), use of this continuum in touchless interaction 

remains largely unexplored. According to this continuum of knowledge, touchless 

primitives drawing on the sensorimotor level of knowledge would be far more intuitive to 

use than primitives based on the expertise level. 
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Natural user interface 

Many ongoing debates stem from the term natural in natural user interfaces 

(NUIs) (Norman, 2010; O’Hara, 2013; Wigdor & Wixon, 2011). NUIs promise to offer an 

intuitive interface modality, one that does not require users to develop special skills for 

communicating with computers, but allows users to use their natural abilities. But what is 

natural (or intuitive or like real-world) for users? Norman (2011) discussed that the notion 

of naturalness in a user interface is not an axiomatic truth, but achieved through 

sufficient feedback, effective feedforward, and perceived affordances. O’Hara et al. 

(2013) discuss how naturalness of an interaction modality, such as touchless, is derived 

from the actions it enables in different communities of practice and settings (the 

interactional perspective). According to Wigdor & Wixon (2011, p. 9), natural is a design 

philosophy that enables an iterative product-creation process, rather than a mimicry of 

the real world. Overall, there is an urgent need to understand what is natural for users, 

and then leverage it toward building NUIs.  

In touchless interaction, elicitation and evaluation studies on hand gestures 

continue to inform the naturalness of interaction primitives. For example, empirical 

studies have shown that unguided mid-air gestures—especially circular in design—are 

generally less efficient and more fatiguing than linear gestures (Nancel, et al., 2011). 

Grandhi et al. (2011) reported user preference toward bimanual gestures and 

intuitiveness of dynamic gestures (iconic representation of the motion required for the 

manipulation) over static iconic hand poses. Different kinds of hand gestures have also 

been evaluated as command selection techniques, such as push (Hespanhol et al., 

2012), grab, finger-count (Bailly, Walter, Müller, Ning, & Lecolinet, 2011), mark 

(Guimbretière & Nguyen, 2012; Ren, & O'Neill, 2012), or roll-and-pinch (Ni, McMahan, & 

Bowman, 2008). While these studies report certain gestures to be intuitive compared 

with others, they do not classify their intuitivity or provide an explanation about why other 

gestures failed to be intuitive (performed poorly). We argue that the continuum of 

knowledge in intuitive interaction can operationalize the intuitiveness of touchless 

interfaces by informing the design of touchless interaction primitives, which are the 

building blocks of any interaction language (Wigdor & Wixon, 2011, p. 116). 

5.3. Touchless interaction primitives and our limitation to perform accurate 3d 

trajectories 

Human gesturing has been used in different application domains of HCI for over 

50 years. In 2005, Karam and Schraefel provided a high-level classification of human 
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gestures according to gesture styles, input technologies, output technologies, and 

application domains. Since 2010, with recent advancements in markerless tracking, mid-

air gestures are being increasingly used as interaction primitives in touchless interaction. 

To classify the physical mechanics of these gestures, we build upon the taxonomy 

proposed by Vatavu & Pentiuc (2008) (Figure 5.1). Vatavu and Pentiuc classified hand 

gestures into four categories: static simple, static generalized, dynamic simple and 

dynamic generalized gestures. Static simple gestures are gestures that only involve the 

use of a single posture over a certain period of time (e.g., a closed hand, Bailly et al., 

2011). Static generalized gestures are gestures that involve a series of consecutive 

postures over certain periods of time (e.g., rolling the wrist and pinching, Ni et al., 2008; 

or finger movements, Vogel & Balakrishnan, 2005). Dynamic simple gestures are 

gestures that use information about the underlying motion trajectory but not the posture 

information (e.g., drawing shapes or characters in mid-air, Gustafson, Bierwirth, & 

Baudisch, 2010; or performing accurate 3D strokes to invoke commands in a 3D 

marking menu, Ren & O'Neill, 2012). Dynamic generalized gestures are gestures that 

use the information about both the motion trajectory and the posture (e.g., select by 

moving an open palm normal to the display, Hespanhol et al., 2012; or pinch and 3D 

stroke, Guimbretière & Nguyen, 2012). Each of these four categories of gestures is 

defined as a function of time. Hence, we call this a temporal classification.  

Mid-air gestures as interaction primitives can also be classified from a spatial 

perspective—describing the relationship between the position of the gesture in the input 

space and the UI (user interface) elements in the display space. Spatially, a gesture can 

be referential or non-referential. Referential gestures are gestures that use the spatial 

information along with posture and/or motion trajectory. For example, to select an icon 

with a reach gesture users need to move across the icon’s boundary (Ren & O'Neill, 

2012); or to select using a dwell gesture users need to point to an object and hold their 

open palm (Hespanhol et al., 2012). Non-referential gestures are gestures that do not 

use any spatial information but only the posture and/or motion trajectory (e.g., touching 

the hip in StrikeAPose, Walter, Bailly, & Müller, 2013; or making a posture for entering a 

letter, Sridhar, et al., 2015). 
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Figure 5.1. We present a taxonomy to classify the physical mechanics of device-free, 

mid-air gestures. We generalize the taxonomy proposed by Vatavu & Pentiuc (2008) as 

temporal, and further provide a spatial classification. 

Touchless interaction is limited by the absence of haptic feedback, and the 

decoupling between the display space (containing the goal of the interaction) and the 

input space (containing the motor action) (O’Hara, et al., 2013). Specifically, dynamic 

touchless gestures (simple or generalized) suffer from human limitations to make 

accurate three-dimensional movements in mid-air (such as making accurate 3D strokes, 

or constraining hand movements in a 2D plane). Previous research that evaluated 

touchless gestures has reported this phenomenon (Bailly et al., 2011; Guimbretière & 

Nguyen, 2012; Hespanhol et al., 2012; Ren & O'Neill, 2012). Guimbretière and Nguyen 

(2012) report the unreliability of a three-dimensional marking menu because users failed 

to gauge a 3D angle for the mark gesture. Ren and O’Neill (2012) report similar findings 

for their stroke technique. For push-to-select gesture, Hespanhol et al. (2012) report a 

translation-action ambiguity problem. A touchless gesture suffers from translation-action 

ambiguity when users frequently trigger actions while repositioning their body in space 
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Static
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Simple

Generalized

Simple
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Non-Referential

Spatial 

Pinch (Guimbretière & Nguyen, 2012)
Grab, open palm, finger-count (Bailly et al., 2011)

Roll and pinch (Ni et al., 2008)
ThumbTrigger, AirTrap (Vogel & Balakrishnan, 2005)

Pan and zoom (Nancel, Wagner, Pietriga, 
 Chapuis, & Mackay, 2011)
Shapes, characters (Gustafson et al., 2010)
Stroke (Ren & O'Neill, 2012)

Push (Hespanhol et al., 2012)
3D mark (Guimbretière & Nguyen, 2012) 

Cross (Chattopadhyay & Bolchini, 2014) 
Dwell (Hespanhol et al., 2012)
Reach (Ren & O'Neill, 2012)

StrikeAPose (Walter et al., 2013)
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(Figure 5.2). Although the literature widely reports human limitations to make precise 3D 

trajectories, we still lack a causal explanation. 

 

Figure 5.2. Some of the current technological systems (1) expect users to discriminate 

between action-gestures (1-a) and translation-gestures (1-b) by making orthogonal 

hand-movements. However, in daily life, we are continually moving our hands in an 

unconstrained, three-dimensional space. This tension between our familiar movements 

(2-a, 2-b) and technological expectations (1-a, 1-b) poses a translation-action ambiguity 

in touchless interactions. 

We explain human limitations in making accurate 3D trajectories by drawing an 

analogy between ‘reaching for an object’ (a sensorimotor level of knowledge) and 

freehand gesturing toward a display. In daily life, we mostly move our hands in an 

unconstrained, three-dimensional space. To reach for an object, among infinitely many 

trajectories, we choose the one that minimizes our metabolic energy costs (Alexander, 

1997). Hence, we are not familiar with planning movements that force us to calculate 

accurate 3D trajectories, or follow a combination of orthogonal paths. Based on this 
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minimum energy cost model, we argue that users fail to perform accurate 3D strokes in 

mid-air as they cannot leverage their familiar mental model of movement planning. Since 

making accurate 3D strokes exceeds our sensorimotor level of knowledge, according to 

the continuum of knowledge in intuitive interaction, this would be classified as an 

expertise level of knowledge (Hurtienne & Israel, 2007). 

Furthermore, the lack of accuracy in making 3D trajectories can be explained by 

the limited feedback in touchless interactions. To perform touchless interactions we rely 

exclusively on visual feedback and proprioception (our sense of position and orientation 

of the body, Mine, Brooks, & Sequin, 1997) because current touchless systems only 

provide visual cues on the display and no haptic feedback. Visual feedback—provided 

on a two-dimensional display—and proprioception cannot sufficiently guide users to 

make accurate 3D trajectories. Whether manipulating visual feedback (e.g., laser rays in 

mid-air, or 3D visualization) or adding vibrotactile feedback (e.g., airwave, Gupta, Morris, 

Patel, & Tan, 2013) can assist users to make accurate 3D trajectories is yet to be 

explored. 

5.4. Motor-intuitive interactions: designing touchless primitives based on image 

schemas 

Our explanation for the lack of accuracy in making 3D trajectories is based on the 

sensorimotor level of knowledge in the continuum of intuitive interaction: users fail to 

make 3D trajectories because they cannot apply their prior knowledge that they learned 

while interacting with the physical world. Hence, we argue that the potential and 

limitations of touchless primitives can be explained using the continuum of knowledge in 

intuitive interaction (Hurtienne & Israel, 2007). To illustrate our argument, we introduce 

motor-intuitive, touchless interactions based on image schemas that draw on our 

sensorimotor level of knowledge. 

Motor-intuitive touchless interactions 

Motor-intuitive touchless interactions are interactions where users can apply their 

pre-existing sensorimotor knowledge unconsciously. Specifically, they do not need to 

learn new motor planning or execution skills. Since childhood, we perform basic motor 

movements, such as pushing, pulling, grasping, or moving up and down. These motor 

intuitions are closely related to image schemas, such as up-down, near-far, or left-right. 

Image schemas are a schematic representation of our daily sensorimotor experiences—

an abstraction of the different patterns by which our body interacts with the physical 

world (Johnson, 1987; Lakoff & Johnson, 1980). Hurtienne & Israel (2007) classified 
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image schemas in eight different groups: basic, space, containment, identity, multiplicity, 

process, force, and attribute (Table 1, p. 130, Hurtienne & Israel, 2007). Motor-intuitive 

interaction primitives are based on space schemas: schemas that represent our 

everyday motor-actions in navigating 3D space such as up-down, left-right, near-far, 

front-back, center-periphery, straight-curved, contact, path, scale, or location. 

Intuitiveness of a motor-intuitive interaction cannot be determined solely by its 

performance measures (efficiency and accuracy), but depends on the level of knowledge 

at play during the interaction. With practice, users may perform certain motor actions 

accurately (expertise level), but motor-intuitive interactions are based on image schemas 

that act beyond our conscious awareness (sensorimotor level). Hence, motor-intuitive 

interactions would be easy-to-perform, learn, and remember. 

 

Figure 5.3. We argue that the continuum of knowledge in intuitive interaction (left, 

Hurtienne & Israel, 2007) can classify mid-air gestures into different levels of 

intuitiveness, and thereby operationalize the intuitiveness of touchless interfaces (right, 

Wigdor & Wixon, 2011, p. 116). Our work illustrates this argument by designing and 

evaluating a touchless interaction primitive (mid-air, directional strokes) that draws on 

our sensorimotor level of knowledge (image schemas, more specifically the up-down 

and the left-right space schema). To evaluate our proposed interaction primitive, we 

investigated user performance when making directional strokes in eight compass 

directions. 
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Because motor-intuitive interactions are based on image schemas that act 

beyond our conscious awareness, they are unlikely to be self-reported in traditional 

gesture elicitation studies. Gesture elicitation studies aim at gathering gesture primitives 

as suggestions from end users for any particular interaction (e.g., moving hand upward 

to increase the volume of a TV, Vatavu & Zaiti, 2014). As expected, participants of these 

studies use their previous knowledge and acquired skills to suggest touchless interaction 

primitives. They certainly use metaphors to map the gestures to their meaning (Lakoff & 

Johnson, 1980), such as the motion of cutting with an imaginary knife to mean a slice 

gesture (Grandhi, et al., 2011). However, with respect to the continuum of knowledge 

(Figure 5.3, left), these metaphors mostly reside at the levels of tool, expertise, or 

culture. Thus, it is not surprising that researchers report limitations of elicitation studies 

due to expertise bias (previously acquired gesture interaction models, such as the 

mouse, Morris, et al., 2014; Vatavu & Zaiti, 2014) or cultural bias. As an alternative to 

gesture elicitation, in our approach toward designing intuitive touchless interaction 

primitives, we shifted to the sensorimotor level of the continuum of knowledge and 

introduced motor-intuitive, touchless interactions. To exemplify our concept, we propose 

a novel, motor-intuitive, touchless primitive: mid-air directional strokes. 

5.5. Mid-air directional strokes: a motor-intuitive touchless primitive based on 

image schemas 

We propose a motor-intuitive, touchless interaction primitive: mid-air strokes 

dynamically mapping the up-down and the left-right schema. Using these two space 

schemas, users can make any two-dimensional directional movements, such as north, 

south or southwest. (Making accurate 3D movements would require the use of an 

additional front-back schema. While physical tokens allow tangible interactions to use 

the front-back schema, the absence of haptic feedback in touchless interactions limits 

the use of that space schema.) To leverage the up-down and the left-right space 

schemas, a touchless system would provide visual cues on a 2D display and use an 

orthographic projection to interpret users’ 3D hand movements as 2D trajectories. This 

design proposal opens up a number of questions. Most importantly, given that the 

sensorimotor knowledge is constant across different directions, what other factors could 

affect such mid-air movements? How will different directions affect users’ performance? 

Will users be more effective with smaller strokes? 
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Effect of biomechanical factors on mid-air directional strokes  

Our proposed motor-intuitive, touchless interaction primitive is based on space 

schemas that use the sensorimotor level of knowledge. In touchless interactions, user 

performance depends on both the level of knowledge at play and biomechanical 

properties of the human body. To investigate how biomechanical properties can affect a 

motor-intuitive, touchless primitive, we designed a controlled experiment. Theoretically, 

users can make any two-dimensional directional movements using the two space 

schemas left-right and up-down. For our controlled experiment, participants performed 

mid-air strokes in eight compass directions while sitting away and interacting with a large 

display. The directions of movement were represented visually on the display to 

leverage users’ sensorimotor skills (image schemas; for details see the Tasks and 

Procedure section). In our study, we were specifically interested to understand how 

directions of movement and stroke lengths affect user performance of mid-air strokes.  

Our experiment did not investigate intuitiveness in touchless interactions (as studied by 

Aigner et al., 2012, Grandhi et al., 2011, or Hespanhol et al., 2012), but explored how 

the same motor-intuitive, interaction primitive can cause different user performance 

(operationalized as accuracy and efficiency). We did not measure users’ self-reported 

satisfaction because during the pilot studies most users reported equal preferences for 

all directions of movement and stroke lengths.  

5.6. Evaluating user performance of mid-air directional strokes  

When we move our arms in mid-air, biomechanical properties of the human body 

(such as the position of the forearm relative to the upper body) affect how accurately and 

quickly we can make arm movements (Werner, Armstrong, Bir, & Aylard, 1997). 

Although empirical studies suggest that hand pointing at shoulder level requires more 

effort than pointing at center level, no significant effects of arm-configuration or arm-

extension on performance time (efficiency) or accuracy has been reported (Hincapié-

Ramos et al., 2014). Because of the required effort, we argue that arm postures will 

affect the efficiency and accuracy of hand movements. 

Hypothesis 1 (H1): Direction of movement will affect the efficiency of mid-air directional 

strokes. 

Hypothesis 2 (H2): Direction of movement will affect the accuracy of mid-air directional 

strokes. 

Pointing and target acquisition has been widely studied in device-based input 

modalities (Fitts, 1954; Grossman & Balakrishnan, 2004; MacKenzie & Buxton, 1992; 
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Shoemaker, Tsukitani, Kitamura, & Booth, 2012). It is well established in the literature 

that time taken to complete a movement is directly proportional to the amplitude of the 

movement. Moreover, Nancel et al. (2011) found that unguided mid-air gestures are 

more tiring than device-based mid-air gestures, which suggests that users would be 

more precise with a smaller amplitude of movements.   

Hypothesis 3 (H3): Increase in stroke length will decrease the efficiency of mid-air 

directional strokes. 

Hypothesis 4 (H4): Increase in a stroke length will decrease the accuracy of mid-air 

directional strokes. 

Method 

We conducted a within-subject experiment to understand how well participants 

can perform mid-air strokes in different directions. Specifically, we wanted to test the 

effect of direction and stroke length on the efficiency and accuracy of mid-air strokes. 

Furthermore, we wanted to compare the paths that participants took across different 

directions and stroke lengths. This important data can inform future research on 

designing touchless interfaces that draw on dynamic gestures. 

Participants 

We recruited 17 right-handed participants (7 females) from an urban university 

campus. Ten participants had prior familiarity with touchless gestures. Twelve 

participants were below 30 years of age. Participants were randomly recruited by 

sending out emails using the university’s mailing list. The study was approved by the 

Indiana University Institutional Review Board (Protocol# 1303010855), and participants 

were compensated with a $20 gift card for an hour of participation. 

Apparatus 

We used a high-resolution large display integrated by Fakespace Systems that 

comprises of eight 1.27 m projection cubes laid out in a 4 x 2 matrix. It is driven by a 

single computer. Each cube has a resolution of 1600 x 1200 pixels, resulting in a 4.06 m 

wide by 1.52 m high display with over 15.3 million pixels. We used a Kinect™ for 

Windows to track users’ hand position. The experiments were written in C# running on 

Windows 7, and were implemented with OpenNI 1.4 SDK and PrimeSense’s NITE 1.5.  

Tasks and procedure 

To test our hypotheses, we designed an experimental task (Figure 5.4, right) 

inspired by a previous study (Lepinski, Grossman, & Fitzmaurice, 2010). On a large 

interactive display (Figure 5.4, left), participants were presented with a direction (at 
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random) and a target line in that direction. The (640-pixel long) target line informed users 

of the minimum travel length and appeared at 500, 800 or 1100 pixels. Participants were 

situated 1 m away from the sensor and were asked to make a hand movement in the 

provided direction as accurately as possible. The motion-tracking sensor had a 

horizontal field of view of 57 degrees and a vertical field of view of 43 degrees. 

Participants’ movements were mapped from real space to display space as 1: 3.7 (when 

a participant moved 1 cm in real space the cursor moved 3.7 cm in the display space). 

Trajectory lengths in real space were 86 mm, 137 mm, and 189 mm. We chose smaller 

movements because a survey on social acceptability of touchless gestures (Bragdon et 

al., 2011) found that 80% of respondents felt comfortable performing smaller hand 

motions over larger body motions, such as sweeping their arms well across their body. 

Eight different directions were presented at random: 0, 45, 90, 135, 180, 225, 270 and 

360 degrees.  

 

Figure 5.4. (Left) In our experiment, participants used touchless gestures to interact with 

a large display, while sitting away from it. (Right) The experimental task began with a 

landing circle appearing on the display (a). As participants reached the landing circle, the 

direction of movement and the target line appeared (b). Participants completed the task 

by making a directional stroke with a minimum travel distance as informed by the target 

line (c). 

Participants sat on a comfortable couch at 2.25 m away from the large display 

and took about 20-30 minutes to complete all trials. Existing studies on touchless 

interaction with large displays have mostly investigated settings where users are 

standing in front of the display. However, a sitting posture may limit users’ fluidity of 

hand-movements more than a standing posture. We chose a sitting position for our 

experiments to avoid standing fatigue and uncover any limitations posed by a sitting 

posture. Trials were recorded using a video camera capturing users’ gestures and the 

display. Before the actual experiment, all participants completed three blocks of practice 
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trials. Participants were required to take at least a 10-second break in between each 

block. Trials were randomized within subjects. In summary, the study design was as 

followed: 8 directions (trials) x 3 trajectory lengths x 5 blocks x 17 participants = 2040 

trials.  

Participants hovered over a ‘Start’ circle to begin a block. Each trial began with a 

landing circle appearing on the display, which participants landed on to begin the trial. 

The landing circle was horizontally aligned with the participants’ body midline, and 142 

cm from the ground. The sensor was 84 cm from the ground, and the couch-seat was 44 

cm high. As soon as participants reached the landing circle, two things would appear: an 

arrow representing one out of eight directions and a target line at one of the three stroke 

lengths (Figure 5.4). For a trial to be considered successful, participants were required to 

move past the target line with an angular error less than 45 degrees. Participants’ hand 

movements in the 3D space were measured as their orthographic projections on the 2D 

display. 

Measures 

We recorded performance time, error rate, angular error, and trajectory paths. 

Time was measured from when participants left the landing circle to when they moved 

past the target line. We measured the stroke angle using the last point recorded inside 

the landing circle and the first point recorded after crossing the target line (hence the 

target line, though 20-pixel wide, did not influence the calculation of angular error). The 

angular error was calculated as the absolute difference between this stroke angle and 

the required angle for the trial. An error was recorded when the angular error was more 

than 45 degrees. In the case of an error, the trial was repeated until participants 

successfully completed it. We measured the efficiency as time to complete a trial and 

accuracy as error rates and angular error. 

Results 

Performance data was analyzed using nonparametric tests for within-subject 

experimental design because Shapiro-Wilk tests were significant, p < .001, and Q-Q 

plots were non-linear. In our experimental setup, participants sat in a couch away from 

the large display (Figure 5.4). We observed that some participants ran into considerable 

ergonomic constraints in making movements in the south direction (270 degrees) 

because of the sitting posture. Their arm movements got hindered by their knees or the 

armrest of the couch (more in Limitations). This effect is obvious in all of our following 

results. To ensure that this experimental artifact would not affect the conclusions we 
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draw from our results, we also tested our data without considering the S-direction as one 

of the levels of the direction variable. When these tests showed major differences in 

terms of the significance level, we reported the test statistic and the level of significance. 

 

Figure 5.5. The direction of movement significantly affected performance time and the 

angular error of mid-air strokes, p < .001. Participants made significantly less angular 

error (p < .001) in E and W direction compared with all other directions (NE, N, NW, SW, 

S, and SE). 

Direction of movement affects efficiency and accuracy of mid-air strokes 

Direction of movement significantly affected performance time (Mdn = 205 ms, 

IQR = 203), χ2(7) = 146.93, p < .001 (Figure 5.5). We conducted 13 pairwise 

comparisons: N vs. rest of the directions, and S vs. rest of the directions. Post-hoc 

Wilcoxon Signed-rank tests (with Bonferroni correction, significance level .0038) 

revealed that participants took significantly more time making strokes in N-direction than 

E, W, NE, or NW, p < .001, with a medium effect, .33 < r < .46. We found a significant 

learning effect across blocks, p < .01. Participants were about 66 ms faster in the last 

block than in the first block. H1 was supported.  

A trial was considered erroneous, when participants made an angular error more 

than 45 degrees in clockwise or counter-clockwise direction. Direction of movement 

significantly affected error rate (Mdn = 4.76%, IQR = 7.08), χ2 (7) = 28.82, p < .001 

(without S-direction, χ2(6) = 20.7, p < .01).  

Direction of movement significantly affected angular error (Mdn = 12.5 degrees, 

IQR = 16.11), χ2(7) = 159.14, p < .001. We conducted 13 pairwise comparisons: E vs. 

rest of the directions, and W vs. rest of the directions (with Bonferroni correction, 
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significance level .0038). Post-hoc Wilcoxon Signed-rank tests revealed that angular 

error in directions N, NE, NW, S, SE and SW were significantly more than angular error 

in E direction, p < .001, with a medium effect, .37 < r < .50; and in W direction, p <.001, 

with a small to medium effect, .28 < r < .44. Angular error was more in W direction (Mdn 

= 7.00 deg.) than in E direction (Mdn = 8.60 deg.), Z = 2.08, but not significant, p = .04. 

H2 was supported. 

 

Figure 5.6. Stroke length significantly affected performance time and angular error of 

mid-air strokes, p < .001. Interestingly, participants made significantly less angular error 

with increase in stroke length, p < .001. 

Stroke length affects efficiency and accuracy of mid-air strokes 

Stroke length significantly affected performance time, χ2(2) = 385.39, p < .001 

(Figure 5.6). Post-hoc Wilcoxon Signed-rank tests (with Bonferroni correction, 

significance level .016) revealed that performance time was significantly different 

between each pair of distances, p < .001. Small stroke length (Mdn = 105 ms, IQR = 

28.7) was significantly faster than medium stroke length (Mdn = 205 ms, IQR = 182.12) 

with a medium effect, Z = 13.48, p <.001, r = .47; and medium stroke length was 

significantly faster than large stroke length (Mdn = 309 ms, IQR = 230.63) with a medium 

effect, Z = 12.44, p <.001, r = .44. H3 was supported. 

Stroke length did not significantly affect error rate, but significantly affected 

angular error, χ2(2) = 42.19, p < .001 (without the S-direction: χ2(2) = 34.66, p < .001). 

Moreover, post-hoc tests revealed that angular error significantly decreased with 

increase in stroke lengths. Angular error for small strokes (Mdn = 15.1 degrees, IQR = 

17.61) was significantly more than angular error for medium strokes (Mdn = 12 degrees, 

IQR = 15.74) with a small effect, Z = 4.44, p < .001, r = .13; angular error for medium 

 M
ed

ia
n 

tim
e 

/ t
ria

l (
m

s) 40
0

20
0

0

86 mm 137 mm 189 mm 86 mm 137 mm 189 mm
20

15
10

5
0M
ed

ia
n 

an
gu

la
r e

rr
or

 / 
tr

ia
l (

de
g)

Stroke length Stroke length 

p < .001

p < .001

p < .001

p < .001

10
0

30
0



73 

strokes was significantly more than angular error for large strokes (Mdn = 10.68, IQR = 

12.4) with a small effect, Z = 4.04, p < .001, r = .11. H4 was not supported. 

Trajectory patterns indicate asymmetric ability in touchless interactions 

We recorded the paths participants took to move in different directions across 

different stroke lengths (Figure 5.7). Participants were asked to make directional strokes 

as accurately as possible. We recorded paths only for successful trials, and a trial was 

successful if a participant’s angular error was less than 45 degrees. From the 

visualization of these paths, a number of patterns emerged. First, participants’ 

trajectories were longer on their dominant side compared with their non-dominant side. 

Second, confirming previous findings, their angular error decreased as stroke length 

increased. Third, we observed a trend in participants’ hand movements toward the 

eastern hemisphere (dominant side) and the northern hemisphere. For example, in both 

N and S direction of movement, participants’ strokes tended toward the eastern 

hemisphere; in E and W direction, their strokes tended toward the northern hemisphere. 

In the following section, we discuss the lessons learned from our experiments, and the 

implications suggested by our findings. Specifically, we discuss how our findings can 

inform the design of intuitive touchless interactions and UI elements for large-display 

touchless interactions (such as menus, or toolbars).  

Discussion 

In this paper, we introduced motor-intuitive, touchless interactions based on 

image schemas that draw on our sensorimotor level of knowledge. To illustrate our 

concept, we proposed a motor-intuitive, touchless interaction primitive: mid-air 

directional strokes mapping the up-down and the left-right space schemas. We then 

argued that in touchless interactions, a motor-intuitive primitive is affected by the 

biomechanical properties of the human body. To that aim, we explored how the same 

motor-intuitive, interaction primitive can result in different user performance across 

different directions of movement and different stroke lengths. 
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Figure 5.7. We recorded trajectories (across 8 directions, and 3 distances) from 17 right-

handed participants as they performed directional strokes in mid-air (see Figure 5.4). In 

right-handed users’ control space, we observed the following: (a) participants performed 

longer trajectories while operating on their dominant side than in their non-dominant 

side; (b) participants’ angular error decreased with an increase in the stroke length 

(similar to Figure 5.6); and (c) participants’ hand movements tended toward the eastern 

hemisphere and the northern hemisphere (illustrated by dashed arrows). 
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Lessons learned 

In a controlled experiment (N = 17), we investigated efficiency and accuracy of 

mid-air strokes. We learned the following from our study. First, direction of movement 

significantly affected efficiency and angular error of mid-air strokes. On average, 

participants were very efficient and took only 0.2 seconds (median performance time) to 

make a directional stroke. However, their median angular error was 12.5 degrees, which 

is slightly more than twice compared with a previous study on multitouch strokes (5.6 

degrees, Lepinski et al., 2010). Increase in angular error from multitouch to mid-air 

strokes contradicts a previous finding, where 2D-surface gestures were more erroneous 

than 3D-free gestures (Nancel et al., 2011). However, such a comparison is limited, 

because these studies used different experimental tasks and settings. Previous studies 

that explored 3D strokes as interaction commands (Guimbretière & Nguyen, 2012; Ren 

& O'Neill, 2012) do not report any performance measures because users were extremely 

inaccurate. Instead, the gesture primitives were either redefined or reported as 

infeasible. Unlike accurate 3D strokes (based on the expertise level of knowledge), we 

found 2D directional strokes (based on the image schemas, which is a sensorimotor 

level of knowledge) generally effective and efficient. This supports our premise that the 

intuitiveness of touchless interactions can be operationalized using the continuum of 

knowledge in intuitive interaction (Hurtienne & Israel, 2007): the higher the level of 

knowledge used in an interaction primitive, the lower would be the expected speed of 

knowledge retrieval, and the lesser would be the primitive’s intuitiveness to general 

population.  

Second, an increase in stroke length increased performance time. This is an 

expected result that aligns well with previous findings for other input modalities, where 

movement time increased with movement amplitude (Fitts, 1954; MacKenzie & Buxton, 

1992). The increase in stroke length also decreased angular error. This is an 

unexpected finding that suggests that we tend to over-correct our movements based on 

forward planning (Shadmehr, Smith, & Krakauer, 2010). This finding advises against 

designing touchless gestures that require users to make directional strokes with a very 

short trajectory length (more in the Design Implications). 

Third, we found an effect of cross-lateral inhibition on user’s ability to make mid-

air strokes. Cross-lateral inhibition occurs when users’ hand crosses the body midline 

and operates away from their dominant side (Figure 5.8): Crossing the ‘body midline’ 

offers more resistance than operations limited to the same side of the dominant hand 
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(Schofield, 1976). In line with this biomechanical property, we observed that across all 

stroke lengths, right-handed participants made longer strokes on their dominant side 

(Figure 5.7). However, we did not find any significant effect of cross-lateral inhibition on 

users’ efficiency or accuracy. This effect of cross-lateral inhibition indicates how 

handedness—an innate level of knowledge—affected an interaction primitive that used 

the sensorimotor level of knowledge. This observation follows the inherent 

dimensionality of the continuum of knowledge in intuitive interaction: the lower the level 

of knowledge the higher the frequency of encoding and retrieval of knowledge. Hence, 

interaction primitives designed to use any particular level of knowledge in the continuum 

would still be affected by the levels of knowledge residing below (in varied amounts 

based on prior use and training).  

 

Figure 5.8. Cross-lateral inhibition occurs when users’ hand crosses the body midline 

and operates away from their dominant side (e.g., left side for right-handed participants). 

 Overall, our findings suggest that in intuitive touchless interactions, user 

performance of a motor-intuitive, touchless primitive is significantly affected by the 

biomechanical properties of the human body. Based on efficiency, angular errors, and 

the trajectory-patterns that participants took to make directional strokes in mid-air, we 

identified three regions that are characterized by decreasing performance and increasing 

effort: top-right, top-left, and top-middle (Figure 5.9). Our findings align with previous 

results where researchers found that users’ physical effort was significantly more for 
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interactions in the shoulder plane (similar to our top-middle) compared with interactions 

in the center plane (similar to our top-left and top-right) (Hincapié-Ramos et al., 2014). 

We do not comment on users’ relative performance in the southern hemisphere because 

we observed that our experimental setting constrained some users’ southward 

movements. Hence, the relatively inferior user performance may be an artifact of our 

experiment. In the following paragraphs, we use our findings to inform some design 

implications for both intuitive touchless interactions and large-display touchless 

interactions. 

 

Figure 5.9. In a right-handed user’s control space, while sitting away and interacting with 

a large display, our study on mid-air directional strokes identified three regions that are 

characterized by decreasing performance and increasing effort: top-right, top-left, and 

top-middle. 

5.7. Design implications 

Design implications for intuitive touchless interactions.  

Compared with previous reports on users’ failure to perform 3D trajectories as 

interaction commands, we found that mid-air directional movements based on image 

schemas (up-down and left-right) were efficient (median 0.2 s) and effective (median 

angular error of 12.5 degrees). We did not record users’ self-reported satisfaction 

because during our pilot studies most users reported equal preferences across all 

experimental conditions. Such equal preferences can be explained by the same level of 

knowledge at play (sensorimotor level) during interacting in different directions and 
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different stroke lengths. To compare a motor-intuitive touchless primitive with another 

gesture primitive, in Chapter 6, we introduce a command-selection technique based on 

mid-air directional strokes (Touchless circular menus). In a controlled study, we found 

that touchless circular menus were twice more efficient than linear menus that used 

“grab” gestures; users also perceived less workload while using the touchless circular 

menus. 

Our empirical results suggest that in touchless interaction, intuitive interaction 

depends on both the sensorimotor level of knowledge and the biomechanical properties 

of the body. We showed that even when touchless interactions with mid-air strokes draw 

on the sensorimotor level of knowledge, other factors such as directions of movement 

and stroke lengths significantly affect the user performance. Specifically, we present two 

design guidelines for intuitive touchless interaction. First, scale-dependent, directional 

gestures should not be of very small length (e.g., 86 mm in our experiment) because 

though such gestures take less time to complete, they seem to produce more angular 

error. Instead, designers should consider selecting a stroke length that involves more 

than just flipping the hand, such as moving the forearm (portion of users’ arm between 

the elbow and the wrist), because longer strokes are more accurate. However, it must be 

noted that large hand-movements sweeping across the body have been reported as 

fatiguing and socially unacceptable (Bragdon et al., 2011). Hence, large hand-

movements requiring users to move their arm (not just forearm) might be more effective 

but would be less efficient and less acceptable to users in a specific context. 

Second, dynamic touchless gestures should only require users to make 2D 

directional strokes, rather than accurate angular movements in 3D. For example, a menu 

option should be accessible by making a stroke in any compass direction (such as NE or 

SW) that is based on space schemas (up-down or left-right), rather than a three-

dimensional angle in freespace (such as vectors in 3D space, cf. Figure 5 in 

Guimbretière & Nguyen, 2012). Continuous visual feedback to guide users in making 

such directional gestures will be helpful. For example, rather than depending on users’ 

proprioception to execute mid-air strokes (Guimbretière & Nguyen, 2012), a dynamic 

illustration (e.g., a visual trace) of how users’ hand is moving could be shown (section 

4.11, Chapter 4). In general, visual feedback is a major factor affecting the intuitiveness 

of touchless interactions.  

In the absence of any haptic feedback, visual feedback plays a major role to 

ensure that while interacting with motor-intuitive touchless primitives, users are actually 
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drawing upon their sensorimotor level of knowledge. For example, it is crucial to provide 

a proper visual representation of an image schema on the display (e.g., Figure 5.4) and 

adopt an effective frame of reference (egocentric or allocentric, Klatzky, 1998). Our 

experiments used an allocentric (viewer’s) frame of reference and traditional GUI-type 

visual feedback because the alternative—egocentric frame of reference and full-body 

avatar visualization—may not be suitable in certain scenarios, such as visualization or 

collaborative work (Bragdon et al., 2011; Dostal, Hinrichs, Kristensson, & Quigley, 2014). 

Because egocentric frame of reference and avatars are used in immersive full-body 

games, touchless interactions in those games need not be grounded on image schemas 

to feel intuitive. But in more traditional settings, touchless primitives based on image 

schemas will be more intuitive than primitives based on expertise level of knowledge. 

While we do not discuss the role of visual feedback in touchless interactions in this 

paper, the effect of visual feedback on acquiring, learning, and retaining motor actions is 

well studied (e.g., see Sigrist, Rauter, Riener, & Wolf, 2013). 

Design implications for large-display touchless interactions.  

Our findings can also be leveraged to design interface elements for large-display 

touchless UIs. First, directional strokes to trigger frequently used commands should be 

in the top-right or the top-left of the user because users’ performance suffers as they 

operate in the top-middle of their control space (see Figure 5.9). Moreover, user effort 

increases as the dominant hand suffers from cross-lateral inhibition when it crosses the 

body midline (Figure 5.8). Designers can leverage this characterization of users’ control-

space to define rarely used gestures. For example, to operate a media player, users 

could make a stroke in E-direction to play/pause, and a stroke in N-direction to quit the 

media player. Similarly, crucial interface widgets such as toolbars should be around the 

equator of the users’ control space (see Figure 5.9) because we found that users were 

most effective and efficient in executing mid-air strokes around the equator.  

Second, the average angular error of 12.5 degrees in mid-air directional strokes 

suggests that pie-based touchless menus can offer about 25 command-selection options 

that can still be accurately selected with mid-air strokes. Future controlled experiments 

can be informed by this range of touchless menu options to further determine the precise 

cardinality of menu items. Apart from menus, mid-air directional strokes will also play an 

important role as an interaction primitive in touchless user interfaces for sketching (Taele 

& Hammond, 2014).  
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Finally, our experiment with a large display explored intuitiveness of touchless 

primitives that leverage the entire control space available for hand gestures. Hand 

gestures, when used with current game consoles, only involve a small control space 

(i.e., users’ hand movements are very small and directly in front of the sensor) because 

users are situated about 2 – 3 m away from a 1.27 m HDTV. In comparison, large-

display interaction opens up the potential of a larger control space. In our work, we 

showed how using a larger control space poses new limitations to touchless interactions, 

such as biomechanical factors, even when a gesture primitive is based on our 

sensorimotor level of knowledge (motor-intuitive). Furthermore, we argue that motor-

intuitive, touchless interactions will outperform expertise-based interactions because 

touchless interactions are sporadic, spontaneous, and short-lived: They are often used 

for exploratory tasks (e.g., browsing images, opening and closing files, or using media 

controls) rather than fine-grained, repetitious tasks (e.g., editing) (Chattopadhyay & 

Bolchini, 2013).  

Limitations 

Our experiment was limited by the capabilities of our motion-tracking sensor, 

which operated at a refresh rate of 30 frames per second. We could not record some of 

the trajectory paths (Figure 5.7) because some tracking points were lost when 

participants moved their hands very fast. We also placed our sensor in such a way that 

the execution of the longest stroke was within the sensor’s optimal tracking range. Our 

experimental setup also limits our findings. Specifically, we observed that some of our 

participants faced considerable ergonomic constraints while performing southward 

movements. We chose a ‘sitting’ position for our experiments to avoid users’ standing 

fatigue. We did not anticipate that users would face ergonomic constraints in this 

position, but users often moved their hands backward (toward the center of their body) 

instead of southward, thus causing the arm-rest to restrain their movements.  

For small-length strokes, some users completed an entire experimental trial in 

the E and the W direction while resting their hands on the arm rest. This was not 

possible for trials in any other direction or with medium or large strokes. While those few 

trials may have increased the efficiency and accuracy of mid-air strokes in E and W 

direction, they do not confound our general conclusion that biomechanical factors affect 

motor-intuitive, touchless interactions. Furthermore, other experiments using a standing 

posture and without any armrest has also shown that touchless interactions in the center 

plane (e.g., E and W) requires significantly less effort than interactions in shoulder plane 
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(e.g., N, S, or NW). In addition, all our participants were right-handed. Hence, we cannot 

claim a generalization of our findings across left-handed users.  

We did not investigate the effect of control-display gain or pointer acceleration on 

the execution of mid-air strokes. This would be necessary to design the required length 

of mid-air strokes in a touchless interface. We anticipate an effect of pointer acceleration 

on user performance of mid-air strokes. Furthermore, we did not record any subjective 

ratings for user fatigue or intuitiveness. Informally, users did not report any physical 

strain after 30 minutes of execution of mid-air strokes.  

We need to further consider the role of visual feedback in guiding users to make 

mid-air strokes. In our study, the direction of movement was presented as a static image. 

Users mentioned that a dynamic illustration of their hand movement would be helpful in 

making accurate strokes. We think that adequate visual feedback will somewhat mitigate 

the absence of haptic feedback, and also improve users’ learnability. However, this 

needs to be further explored. 

Though we mention that the median angular error for mid-air, directional 

strokes—12.5 degrees—can inform the design of touchless pie-menus, future 

experiments are required to identify the precise cardinality of such menus. Moreover, in 

our experiments, we used a landing circle to mark the beginning of a mid-air stroke. It is 

necessary to investigate specific invocation techniques when such dynamic gestures are 

applied to touchless interfaces. 

External validity 

Our findings can be generalized to touchless interaction settings, where users 

are sitting away from a large display, facing the display, and within the sensor’s tracking 

range. Though our study used a couch with an arm-rest (see Figure 5.4) our findings can 

be extended to other furniture setups. However, it must be noted that an arm-rest in 

such scenarios plays a two-fold role: (a) it can help reduce user fatigue by allowing the 

elbow to rest during hand movements; (b) it can also constrain southward movements. 

Since sitting posture already constrained users’ hand movements to a certain extent, we 

expect our general findings to stay valid in a standing posture. For example, 2D strokes 

would be more intuitive than 3D strokes without prior expertise and directions of strokes 

and stroke-length would still affect the user performance of mid-air strokes. However, in 

a standing posture, users would be more efficient in utilizing the southern hemisphere of 

their control space than while sitting. Finally, our design guidelines are agnostic of the 

control-display gain of the system, or how the control space is mapped to the display 
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space. We provided insights into how human sensorimotor abilities (in the control space) 

can inform the design of intuitive touchless interfaces (in the display space). 

5.8. Conclusions 

How intuitively users perform a mid-air hand gesture can inform what subset of 

physically possible actions should constitute intuitive touchless interactions. For 

example, in this paper, we contrasted between two touchless gesture primitives—

making accurate 3D strokes that draw on the expertise level of knowledge and making 

2D directional strokes that draw on the sensorimotor level of knowledge. The fact that 

making accurate 3D strokes is less intuitive for the general population than making 2D 

strokes can be explained by the intuitive interaction framework where the expertise level 

of knowledge resides above the sensorimotor level. Hence, we argued that the 

continuum of knowledge in intuitive interaction can operationalize the intuitiveness of 

touchless interfaces because it informs the design of touchless primitives by considering 

the level of knowledge that is at play during their execution. Specifically, we introduced 

motor-intuitive, touchless interactions based on image schemas that draw on our 

sensorimotor level of knowledge. To illustrate motor-intuitive interactions, we proposed a 

touchless primitive—mid-air, directional strokes—based on space schemas up-down 

and left-right. We then investigated how our proposed touchless primitive is affected by 

the biomechanical properties of the human body.  

Our findings suggest that mid-air (2D) directional strokes are efficient (median 

time of 0.2 seconds) and effective (median angular error of 12.5 degrees). From our 

results, we discovered that directions of movement (2D) and stroke length affect users’ 

performance of mid-air directional strokes. Interestingly, users made significantly 

accurate strokes while traveling longer trajectories. While sitting away and interacting 

with a large display, our results identified three regions in a right-handed user’s control 

space that can be characterized by decreasing accuracy and increasing effort: top-right, 

top-left, and top-middle. Finally, grounded in our findings, we provided practical 

guidelines on designing intuitive touchless interaction and UI elements for large displays.  

This is but a first step in understanding how the continuum of knowledge in 

intuitive interaction can inform the design of motor-intuitive, touchless interaction 

primitives. Our findings can inform fundamental design decisions to align touchless user 

interfaces with human sensorimotor abilities, thus making them intuitive to use. An 

important result from this study is how asymmetric motor abilities—due to biomechanical 

factors—affect user performance of motor-intuitive, touchless interactions. This research 
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opens up an immediate line of inquiry—a need to explore the proposed motor-intuitive 

interaction primitive, 2D directional strokes, as part of an interaction technique. We 

explore this in Chapter 6.  
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Chapter 6. Interaction techniques 

 This Chapter focuses on interface affordances and exclusively serves two 

purposes. First, it builds upon the motor-intuitive interaction primitive introduced in 

Chapter 5, mid-air directional strokes, and introduces a touchless interaction technique. 

The interaction technique is then evaluated in a controlled study. Empirical results from 

this user study, then prompts the proposal of the second interaction technique—

discussed later—and the experiments in chapters 7 and 8. 

6.1. Touchless circular menus 

 

Figure 6.1. Large display interaction space across two dimensions: user posture and 

distance from the display. Scenario 3 represents our experimental setting. 

To support touchless interactions with large displays, we still need a fundamental 

set of interface conventions for frequent user-operations, such as pointing, text-entry, or 

command-selection (Figure 6.1). This area is a largely uncharted territory. Specifically, 

whereas an extensive body of works investigated optimal menu designs for mouse-and-

keyboards, pen-input, or multitouch surfaces, few have explored touchless command-

selection techniques for large displays. Recent solutions that have appeared in product 

platforms (e.g., Samsung Smart TV) or research venues require users to comply strictly 

with system-defined poses, such as closing the hand, pinching with fingers, or making 

different finger combinations. These approaches are problematic because they are 

analogous to command-line interfaces: users need to remember an interaction 

vocabulary and input a pre-defined symbol (via gesture or command).  Not only have 

expert reviews commented on such products’ low user-acceptance (CNET reviews, 

2013), but in-lab user-studies have also reported high mental and physical demand 

(Bailly et al., 2011).  
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Our approach to address this problem is based on our prior work on motor-

intuitive touchless interactions (Chapter 5)—drawing on users’ prior knowledge, such as 

sensorimotor abilities, which is acquired since childhood while continuously interacting 

with the physical world. We propose Touchless circular menus (TCM) – a contextual 

circular menu, through which users can select commands by making directional strokes 

and crossing menu options (Figure 6.2). TCM utilize our sensorimotor ability to make 

directional strokes in mid-air. Therefore, it relieves users from both recalling a 

vocabulary of precise postures and complying with those pre-defined poses. 

 In a two-part, controlled experiment, we first investigated how different triggering 

locations of TCM affect user performance. Then, we compared between TCM and 

contextual linear menus with grab gestures. Our work contributes the following: 

 A command-selection technique that solely builds upon human sensorimotor 

abilities. Although the menu structure, the menu-triggering mechanism, and the 

menu-selection delimiter already exist in practice, a combination of these to 

harness our motor abilities is a novel approach toward designing touchless menu 

systems. 

 We further provide important empirical evidence applicable to the design of 

touchless user interfaces for large displays. 

 

Figure 6.2. Touchless circular menus (TCM) relieve users from the need to comply 

strictly with system-defined postures and supports command selection by movement in 

mid-air. 

Our results show that the performance of TCM depends significantly on their 

triggering locations on the visual display, suggesting an effect of our asymmetric motor 

abilities on touchless interactions with large displays. Our experiments also suggest that 
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TCM is more efficient and causes less workload than command-selection techniques 

using strict postures, such as grab. 

6.1.1. Background 

Freehand input techniques are increasingly becoming popular due to the recent 

advances in markerless motion tracking and improved gesture-recognition techniques. 

The growing popularity of touchless interactions stems from its expectation as something 

natural to use. While critics have repeatedly refuted such a claim of inherent naturalness 

to this modality, researchers have explained that naturalness of touchless modality lies 

in the actions enabled and settings (or communities of practice) that give meaning to 

such actions (O'hara et al., 2013). In a similar line, designers have been encouraged to 

find naturalness in users, rather than in interaction techniques or interface components 

(Wigdor & Wixon, 2011).  

Another research domain, which investigates how to design interfaces that are 

intuitive to use, has proposed the intuitive interaction model (Blackler & Hurtienne, 

2007). Their model explains how different levels of prior knowledge—from innate abilities 

to expertise—and their unconscious application define an interface’s intuitiveness. For 

example, any interface that uses motion to attract attention (e.g., inertial scrolling) taps 

into our innate abilities to respond toward movement; while advanced software features 

often require a certain level of expertise. Until now, all touchless interaction techniques 

have been proposed as an extension of what has proven efficient for mouse-based, pen-

based, or multitouch interfaces (Bailly et al., 2011; Lenman, Bretzner, & Thuresson, 

2002). Our design approach for touchless interactions uses human abilities to inform 

interface components. 

6.1.2 Command-selection techniques 

Command-selection techniques have been studied for decades (Tables 6.1.a 

and 6.1.b). Different menu techniques have been proposed for point-and-click (Callahan, 

Hopkins, Weiser, & Shneiderman, 1988; Kabbash, Buxton, & Sellen, 1994; Kurtenbach 

& Buxton, 1994; Pook, Lecolinet, Vaysseix, & Barillot, 2000) and multitouch systems 

(Lepinski, Grossman, & Fitzmaurice, 2010). The major difference between other 

interactive systems and touchless systems is the device-free nature of the later. Due to 

the absence of a device, freehand interaction lacks control and precision (Lepinski et al., 

2010). Hence, it becomes important to consider the strength and limitations of human 

motor abilities while extending any device-based menu-techniques to touchless systems. 
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Table 6.1.a. Different features of some device-based menu techniques that have been 

widely studied. 

 

Traditional linear 

menu (Kabbash et 

al., 1994) 

Pie menu 

(Callahan et al., 

1988) 

Marking menus 

(Kurtenbach & Buxton, 

1994) 

Uni/ Bimanual one-handed one-handed one-handed 

Shape vertical radial radial 

Menu triggering 

mechanism 
not applicable 

press and hold 

mouse 

press and hold 

mouse/stylus 

Menu selection 

delimiter 

release the mouse 

button 

release the mouse 

button 

release the mouse 

button/stylus 

Gesture 

semantics 
none none 

scale-invariant 

directional strokes 

Menu breadth 
4 (later studies 

suggest 8) 
8 

12 (later studies 

suggest 8) 

Expert mode No No Yes 
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Table 6.1.b. Different features of some device-based menu techniques that have been 

widely studied. 

 
Control menus (Pook et 

al., 2000) 

FlowMenu 

(Guimbretiére, 

& Winograd, 

2000) 

Toolglass (Bier, 

Stone, Pier, Buxton, & 

DeRose, 1993) 

Uni/Bimanual one-handed one-handed two-handed 

Shape radial radial radial 

Menu triggering 

mechanism 

press and hold 

mouse/stylus 

press 

mouse/stylus 

non-dominant hand 

positions the widget 

Menu selection 

delimiter 

moving a threshold 

distance from the menu-

center (no crossing of any 

interface element) 

re-entering the 

menu-center 

mouse click with the 

dominant hand 

Gesture 

semantics 
none none none 

Menu breadth 8 8 
~70 x 70 pixel 

Toolglass sheet 

Expert mode Yes No No 

 

Prior research (Bailly et al., 2011; Guimbretière & Nguyen, 2012; Lenman et al., 

2002) proposed touchless menus by extending successful device-based menus (Tables 

6.2a and 6.2b). From their evaluation, researchers report interesting findings on how our 

motor abilities limit touchless interactions. In an informal testing (Guimbretière & 

Nguyen, 2012), researchers found that a 3D marking menu was most efficient when 

users were not required to make accurate 3D marks: Users found it difficult to gauge a 

3D angle. Bailly, et al (2011) reported that most users had difficulties constraining their 

gestures in a 2D plane. These observations suggest human limitations to perform 3D 

movements accurately in mid-air. Most importantly, this emphasizes our premise that 

designing touchless menus require more than a mere extension of device-based menus. 
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Table 6.2a. Different features of touchless menus for distant and near-surface 

interactions 

 
1Linear menu 

(Bailly et al., 2011) 

1Marking menu 

(Bailly et al., 2011) 

1Finger-Count menu 

(Bailly et al., 2011) 

Uni/Bimanual one-handed one-handed two-handed 

Shape vertical radial vertical/ radial 

Triggering 

mechanism 

opening the hand 

toward the display 
none none 

Menu selection 

delimiter 
closing the hand closing the hand 

closing both hands at 

the same time 

Gesture 

semantics 

opening and 

closing hand 

strokes, and  closing 

hand 

finger combinations 

with both hands, and 

closing hand 

Menu breadth 8 8 5 

Expert Mode No Yes Yes 

1Interactions from a distance; 2Interactions near surface 

It is also important to identify the features of touchless menu techniques that 

require different considerations than device-based techniques. For example, with pen-

input or multitouch surfaces, triggering a menu is straightforward: Users put the pen 

down or touch the surface with fingers. Similarly, command-selection is delimited by 

breaking contact with the interface. In device-based paradigms, both linear and radial 

menus are common. Now without the guidance of a device, we are faced with the 

obvious questions: What would be an efficient triggering mechanism or a menu selection 

delimiter? Can we accurately make directional movements in mid-air to operate a radial 

menu? 

All existing touchless menu techniques (Tables 6.2.a and 6.2.b) employ hand-

postures (e.g., grab, finger-count, or pinch) for menu-invocation and menu-selection. 

Only Guimbretière & Nguyen (2012) investigated scale-invariant marks as an alternative 

menu-selection delimiter but reports its limitations due to 3D angular movements. Bailly, 

et al (2011) reported no significant difference in accuracy for linear and marking menus. 

Alternative to these existing techniques, we propose a touchless menu system that 
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relieves users from both recalling a precise vocabulary of hand postures and strictly 

complying with them. 

Table 6.2b. Different features of touchless menus for distant and near-surface 

interactions 

 

1Roll-and-pinch 

menu (Ni et al., 

2008) 

2Bimanual marking 

menu (Guimbretière 

& Nguyen, 2012) 

1Touchless Circular 

Menu 

Uni/Bimanual one-handed one-handed one-handed 

Shape radial radial radial 

Triggering 

mechanism 

thumb-to-forefinger 

pinch gesture 

middle or index-

finger pinch (non-

dominant hand) 

reaching the ROI of a 

target 

Menu 

selection 

delimiter 

releasing the pinch releasing the pinch 

moving passed the 

boundary of any 

interface element 

(crossing) 

Gesture 

semantics 

rolling the wrist, 

and pinching with 

fingers 

pinch, and 3D 

directional strokes 

(non-dominant 

hand) 

none 

Menu breadth 8/12 26/ 48/ 52 5 

Expert Mode No No No 

1Interactions from a distance; 2Interactions near surface 

6.1.3. Designing touchless circular menus (TCM) 

During our qualitative exploration phase, we looked for human capabilities that 

could relieve users from the burden of complying with pre-defined hand-postures. It 

would save users from recalling a fixed vocabulary of gestures and from maintaining 

positions optimal for the pose-recognizer. We found that users can reliably make 

directional gestures in mid-air, a sensorimotor ability that we frequently use in our 

everyday lives, such as during conversations or to give directions. Since such everyday 

movements happen unconstrained in 3D space, we observed the same problem as 

reported earlier (Bailly et al., 2011; Guimbretière & Nguyen, 2012; Hespanhol et al., 
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2012): users’ obvious difficulty in gauging 3D angles accurately. We mitigated this 

problem by shifting the burden of users’ input to the interface—interpreting users’ 3D 

translation by its orthographic projection on the 2D display. Based on our ability to make 

directional strokes in mid-air, and informed by some of the successful features of device-

based menus, we designed iteratively a contextual menu system for large displays: 

Touchless circular menus (Figure 6.3). 

 

Figure 6.3. Touchless circular menus: (a) a user approaches a target, (b) and reaches 

the ROI of the target. TCM appear against the user’s direction of approach. (c) The user 

makes a directional stroke towards TCM, (d), and selects a command by crossing it. The 

selected menu option changes color to indicate a successful command-selection. 

Menu invocation 

To trigger the contextual menu, a user must cross the region-of-interest (ROI) of 

a display object. The ROI can be of any symmetrical shape around the center of the 

target, with its size directly proportional to the technique’s sensitivity. To support rapid 

exploration without accidental invocation of the menu, the menu appeared against the 

users’ direction of movement. So if users would reach the ROI of a display object from 

the top, or left, the menu would appear against their direction of approach: at the top-left 

corner of the target. Users can then make a directional stroke toward the command (see 

Figure 6.3) and select it by crossing; but if they continue in their direction of movement 

the touchless circular menu would disappear. 

Command selection by crossing 

To select a command after triggering the menu, users cross it using a stroke in 

the command’s direction. Device-based marking menus are scale invariant, and a 

mark’s angle is interpreted to select commands. However, when extended to touchless 

techniques (Bailly et al., 2011; Guimbretière & Nguyen, 2012), this implies the need of a 

posture-based menu-invocation, and a posture-based menu-selection delimiter, which 

negates the typical advantages of marking menus. Hence, it is not surprising that Bailly 
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et al. (2011) reported similar accuracy for touchless implementations of linear and 

marking menus.  

Until the crossing happens, users can cancel TCM by moving in any direction 

away from the triggered menu. To allow easy escape routes, we designed the structure 

of TCM as a semi-circular array of options appearing at the top-left or the bottom-right 

corner of the target. As users approach the menu, to give them orientation, a trace is 

drawn connecting the target and the users’ hand position. Based on Fitts’ law (Fitts, 

1954), to improve users’ pointing performance, we designed the menu options to 

increase in amplitude as users approached them. To provide further feedback, menu 

options changed color when selected by crossing.  

 

Figure 6.4. The second-level menu in TCM (dashed path represents the user’s actual 

movement). 

Accessing submenus  

Currently, our menu design scales up to two levels (5 x 5), with users performing 

continuous strokes (Figure 6.4). When users cross a command in the root menu, a 

submenu appears opposite to it, pivoted around the center of the selected command. To 

operate the submenu, users then change their track and cross another command. In 

device-based hierarchical menus, submenus appear in the same direction of the root 

menu. Due to the lack of precision and control of freehand movements, TCM require 

users to make inflections in their continuing trajectories, and thereby avoid accidental 

command-selections. Users can dismiss a submenu by continuing in their direction of 

movement after selecting a command from the root menu. In the following sections, we 

discuss our experiments with single-level TCM.  
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6.1.4. Experiment 1: Evaluating touchless circular menus 

TCM are contextual menus for large displays, and ideally they are expected to 

perform optimally across the entire display canvas. Hence, we conducted a controlled 

experiment to investigate how effectiveness and efficiency of TCM is affected by their 

triggering locations on the visual interface.  

Hypotheses 

Our menu design was motivated by our abilities to make directional strokes in 

mid-air. When we move our arms in mid-air, biomechanical properties of the human 

body (such as the position of the forearm relative to the upper body) affect how 

accurately and quickly we can make arm-movements. Certain arm-postures result in a 

more static equilibrium of the body and hence are more comfortable than others. The 

absence of any guidance device, such as a remote (Nancel et al., 2011) or a wand (Cao 

& Balakrishnan, 2003), further aggravates the control and the precision of such mid-air 

movements (Nancel et al., 2011). Based on these theories, we made the following 

hypotheses: 

H1: Triggering location will affect the efficiency of TCM. 

H2: Triggering location will affect the effectiveness of TCM. 

Furthermore, in our experimental setup, based on our sensor’s tracking 

specifications and pilot testing, we ensured that the tracking performance was optimal 

across all triggering locations. 

Apparatus 

The high-resolution large display (Figure 6.2) integrated by Fakespace Systems 

comprises of eight 50" projection cubes laid out in a 4 x 2 matrix. It is driven by a single 

computer. Each cube has a resolution of 1600 x1200 pixels, resulting in a 160" wide by 

60" high display with over 15.3 million pixels. Our goal was to evaluate TCM as a 

potential user interface component using off- the-shelf motion-capture sensors. We used 

a Kinect for Windows to track users’ hand position and recognize gestures. Though this 

system is limited from a technological perspective, we wanted to evaluate user 

performance with a commodity-range camera. The experiments were written in C# 

running on Windows 7, and were implemented with OpenNI 1.4 SDK and PrimeSense’s 

NITE 1.5.  

Task 

To test our hypotheses, we designed a menu selection task informed by the ISO 

standard 9241-9 (ISO, 2002). On a large interactive display (Figure 6.2), participants 
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were shown a circular arrangement (594-pixel diameter) of 9 equally sized (320-pixel) 

squares, aligned to the horizontal and the vertical center of the background (Center, N, 

NW, NE, S, SW, W and E). Participants’ task was to invoke TCM for a (randomly 

generated) white square and select the ‘Remove’ command by crossing (Figure 6.2). 

The ROI was set to 256 pixels, and TCM’s diameter was set to 400 pixels. 

Procedure 

We recruited 15 right-handed participants (4 females) from a university campus, 

with 8 participants having prior familiarity with touchless gestures, and 11 participants 

below 30 years of age. 

Participants sat on a comfortable couch (Figure 6.2) at 2.25 m away from the 

display (~1 m away from the sensor), and took 20-30 minutes to complete all trials. Prior 

to the experiment, all participants completed 3 blocks of practice trials. Throughout the 

experiment, participants were required to take at least a 10-second break in between 

each block. Trials were randomized within subjects. In summary, the study design was 

as followed: 9 triggering locations (trials) x 7 blocks x 15 participants = 945 total trials. 

Participants hovered over a ‘Start’ circle, to begin a block. Trials were defined as 

a successful selection of the ‘Remove’ command. We recorded performance time, 

command-selection errors, and encouraged participants to make comments about the 

menu. Time was measured from the target’s appearance to a successful command 

selection. A command-selection error was recorded, when participants selected a wrong 

command from the triggered menu. When a command-selection error occurred, ‘error’ 

was flashed on the display, and the trial restarted. Participants received a $20 gift card 

for 2 hours of participation. 

Successful Trigger Rate. TCM are contextual menus. They are triggered when 

users reach the ROI of a target and are dismissed if users move away from the triggered 

menu. During selecting commands, users may inadvertently dismiss the menu before 

selecting any command and re-trigger it again. To understand how unwanted menu 

dismissals affect users’ efficiency, we defined successful trigger rate as successful 

triggers / (successful + unsuccessful triggers). Successful triggers: When users trigger a 

menu, and continue to select a command from the triggered menu. Unsuccessful 

triggers: When users trigger a menu, but the menu is dismissed before any command is 

selected. Obviously, a high successful trigger rate would increase a menu’s efficiency as 

users would not have to re-trigger it. 
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Results 

Performance time was normally distributed, but error rate and successful trigger 

rate were not. We used repeated measures ANOVA (and its nonparametric version) for 

data analysis.  

 

Figure 6.5. The triggering location of TCM significantly affected selection time and 

successful trigger rate. 

Triggering location {Center, N, NW, NE, S, SW, W and E} had a significant effect 

on task time, F(6.9, 718.12) = 4.74, p < .001 (Figure 6.5). Planned contrasts revealed 

that both north (3466 ms) and south (3646 ms) locations took significantly more time 

than the center location (3095 ms), p <. 001. We found a significant learning effect 

across blocks, p < .01. Participants were about half a second faster in the last block than 

the first block. Menu triggering location also significantly affected successful trigger 

rates, χ2(8) = 18.83, p < .05.  Across all triggering locations, the average successful 

trigger rate per trial was 88.4%. H1 was supported. 

Triggering location did not significantly affect error rate. The average error rate 

(participants selecting a wrong command from the menu) across all triggering locations 

was 2.7%. During 88.5% of the command-selection errors, users chose the nearest 

neighbor options (‘Send’ or ‘Share’, Figure 6.2). H2 was not supported. 

Apart from the initial novelty effect that excited the participants, they appreciated 

the use of fewer muscles in the crossing gesture. However, participants also commented 

on the lack of control: “I felt I had to rush to select the menu option” and precision: “It 

was sometimes difficult to be precise.” Overall, users liked the feedback language of the 

menu: “It feels like the menu is a bow, and I am aiming an arrow to select one of the 

NEESESSWWNWNCenter

80
40

0Su
cc

es
sf

ul
 tr

ig
ge

r
 ra

te
 / 

tr
ia

l (
%

)

M = 88.4% , SD = 3.9 

Menu triggering locations relative to users’ position

NEESESSWWNWNCenter

Ti
m

e 
/ t

ria
l (

m
s) 40

00
20

00
0

Error Bars: 95% CIM = 3.3 s , SD = 0.7 



96 

options.” Finally, some users were excited about their performance: “I was surprised that 

I could do so well.” 

Discussion 

From our user study, we learned the following about TCM: 

 Depending upon the menu’s triggering location on the display users’ control on 

their hand movements varied significantly. 

 A visual comparison of successful trigger rates and time spent in command-

selection across all triggering locations (Figure 6.5) reveals that unsuccessful 

triggers were not the sole reason behind the variability in efficiency of TCM. For 

example, at certain triggering locations (such as, N and S), users did not lose the 

triggered menu more than the average but spent more than average time in 

command-selection. One possible explanation is that participants had to put 

more physical effort, thereby spending more time at certain triggering locations. 

 Overall, our results suggest that touchless interaction with large displays is 

significantly affected by the asymmetric nature of human motor abilities (control and 

precision).  

The average efficiency of TCM was 3.3s and accuracy 97.3%. Bailly et al. (2011) 

reported performance measures for a linear menu as 6.6s (94.2%), marking menu as 

7.2s (95.3%) and finger-count menu as 8.5s (93.4%). Our results cannot be directly 

compared to Bailly et al. (2011) because we used different experimental tasks and menu 

hierarchy (details in Table 6.4). However, this is an encouraging result. Although such 

performance time is higher than the menu-selection time in typical Xbox games, it is 

important to note that Xbox gamers are continually (visually) guided to position 

themselves in an optimal space—in front of the sensor (2–3 meters)—so that the sensor 

can track users’ entire body (Microsoft, 2014). TCM was implemented using hand 

tracking algorithms that did not require whole body tracking.  

 Limitations. Due to sensor limitations, when participants moved their arms very 

fast, tracking points were lost, thereby causing unwanted menu dismissals. This may 

have decreased the successful trigger rate for TCM. As TCM do not require any static 

poses, their invocation and selection suffer from certain limitations. To provide users 

escape routes, the breadth of TCM is limited to 5. Moreover, menu invocation is not 

tolerant to target overshooting (when hand movements trail the eye gaze), and may 

cause accidental invocations if users decide to change the direction of movement for 

target acquisition. One possible approach to mitigate these limitations is using explicit 
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dynamic gestures (e.g., lassoing or pigtails, Hinckley, Baudisch, Ramos, & Guimbretiere, 

2005) as a menu-selection delimiter. As a delimiter, dynamic gestures would be more 

efficient than static poses as users would not have to halt-and-execute a pose, but fluidly 

end the selection. Furthermore, we do not foresee a large number of commands in 

large-display touchless interfaces, as they are not fitted for intense editing but suited for 

exploratory data browsing. As the location of menu options in TCM depends on users’ 

direction of movement, users cannot exploit spatial memory to locate them. However, 

TCM appear at either the NW- or the SE-corner of a target in a symmetric layout (as 

mirror images of one another). Further research is required to understand if users can 

exploit this symmetry to locate menu options in TCM. 

External Validity. Our findings can be generalized to settings, where users are 

sitting away from a large display, facing the display, and within the sensor’s tracking 

range. Since sitting posture already constrains our arm movements to a certain extent 

(e.g., when leaning back or resting the elbow), we expect similar or better user 

performance of TCM in a standing posture. 

Experiment 1 suggested an encouraging performance of TCM. However, it was 

unclear how this performance would compare with menu systems that employ static 

postures, especially in similar settings.  

6.1.5. Experiment 2: Touchless circular menus vs. linear menus 

 Experiment 1 focused on investigating the performance of TCM across different 

triggering locations. In experiment 2, we investigated how the overall user experience of 

TCM compares with contextual linear menus using grab gestures.  

Contextual Linear Menus. With linear menus, participants could point-and-select 

a display object by doing a grab gesture. They would do a grab gesture by making a fist, 

and opening their hand again (Figure 6.6). To trigger the linear menu, users would do a 

grab gesture on a target, and the menu would appear to its right. Then users would 

select a command by doing another grab. In this technique, gesture registration happens 

with the first grab; then gesture relaxation follows, where users point to a command, and 

then grab gesture is reused to select that command (Wu, Shen, Ryall, Forlines, & 

Balakrishnan, 2006) 
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Figure 6.6. To trigger linear menus, users made a grab gesture on the target by closing 

(left) and opening their hand (center). A command was then selected by another grab 

gesture (right). 

Hypotheses 

Based on previous research and our pilot studies, we made the following two 

hypotheses: 

H3: Compared with TCM, the linear menu design uses more muscle groups 

(Werner et al., 1997) and involves reuse of gesture primitives (Wu et al., 2006). 

We predicted TCM would be more efficient than linear menus. 

H4: We hypothesized that TCM would be easier to use than linear menus 

because of the use of more muscle groups (Werner et al., 1997) in grab pose 

than in a crossing gesture.  

Task and procedure  

In experiment 2, we compared the user experience of TCM with that of linear 

menus. Thus, it used the same experimental task, procedure and evaluation metrics as 

experiment 1. However, due to sensor limitations, we designed the command-selection 

task for linear menus only at six different locations (Center, N, NW, NE, W and E). A 

successful grab gesture on the target triggered the linear menu 200 pixels right and 700 

pixels top from the top-right corner of the target. The menu consisted of five equally 

sized (256-pixel) squares (Figure 6.6), and the participants’ task was to select the 

‘Remove’ command by a grab gesture. Users would dismiss the linear menu if they 

performed a grab gesture anywhere outside the menu. We recorded menu dismissals to 

calculate the menu’s successful trigger rate. Self-reported system usability scores were 

recorded using SUS, and perceived workload using NASA-TLX. Participants responded 

to SUS (Brooke, 1996) after using each menu (except questions 1, 2 and 6). After using 

both the menus, they completed the NASA-TLX scale (Hart & Staveland, 1988). Since 
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we conducted both parts of our experiment on the same day, and with the same 

participants, the menu condition was counter-balanced. Participants took a break of 

about 10 minutes in between sessions. Trials were randomized within subjects.  

Apparatus. The linear menu experiment was written in C running on Windows 7 

and was implemented with OpenNI 2.2 SDK, NITE 2.2 and Windows SDK 1.7. For the 

grab gesture recognition, we used PrimeSense’s Grab detector library (PrimeSense 

Labs, 2013). 

Results 

 

Figure 6.7. Compared with linear menus, users were more efficient with TCM, and 

perceived lower overall workload. 

TCM are More Efficient than Linear Menus. TCM (M = 3.3s, SD = .7) were more 

than twice as fast as the linear menus (M = 7.4s, SD = 2), t(14) = 7.43, p < .001, r = 

0.89. H3 was supported. However, there was no significant difference in successful 

trigger rates between TCM (Mdn = 89%, IQR = 9.55) and linear menus (Mdn = 92%, IQR 

= 7.62).  

TCM are Less Effective than Linear Menus. TCM (Mdn = 1, IQR = 3) were 

significantly less effective than linear menus, Z = 2.68, p < .01, r = .69. With TCM, on an 

average, users made about 3 errors per 100 trials. Given the lack of precision and 

control associated with freehand movements, 97.3% accuracy is an encouraging result. 

Leaving out the outliers, users made no command-selection errors with linear menus.  

TCM elicit Less Workload than Linear Menus. System usability scores were not 

significantly different between TCM (M = 82.86, SD = 13.58) and linear menus (M = 

72.62, SD = 19.96). However, overall workload was significantly higher for linear menus 

(Mdn = 39.17, IQR = 19.17) than TCM (Mdn = 20.83, IQR = 9.17), Z = 2.89, p < .01, r = 

.75. When the NASA-TLX scale was analyzed separately, we found significant 
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differences between the menus regarding physical demand, temporal demand, and 

effort. H4 was partially supported. 

User Comments. Compared with TCM, linear menus received mixed user 

reactions. A male participant younger than thirty was enthusiastic: “This is how I envision 

using touchless gestures.” A female participant over fifty said: “It was a lot of effort.” She 

pointed out that Arthritis patients would find it difficult to do grab gestures. 

Discussion 

In experiment 2, we compared the overall user experience of TCM with linear 

menus (Table 6.3). TCM utilize our sensorimotor abilities to make directional strokes in 

mid-air, while the linear menu was designed to emulate the current status quo: 

contextual menu using grab gestures.  

Table 6.3. Contrasting characteristics of touchless circular menus vs. contextual linear 

menus. 

 Touchless circular menus Contextual linear menus 

Menu selection 

delimiter 

crossing the boundary of an 

interface element 
grab gesture 

Triggering 

mechanism 

reaching a pre-defined ROI of 

a display object 
grab gesture 

Gesture types (dynamic) stroke (static) grab 

Technology hand tracking hand pose recognition 

Shape radial linear 

 Surprisingly, the linear menu had an accuracy of 100%, which means 

participants did not select any wrong command from the triggered menu. Nevertheless, 

participants lost the triggered menu in 8% of the trials. Our videos revealed that while 

grabbing a menu command, participants often moved their hands horizontally away from 

a specific command (right or left); thereby dismissing the menu. As they did not move 

their hands up or down, and the linear menu options were stacked vertically (Figure 6.6), 

command-selection errors did not occur.  Compared with linear menus, TCM had an 

accuracy of 97.3%. This maybe because:  

 The options in linear menus were 256-pixel squares and more than eight times 

wider than the options in TCM (306 pixels in length, 30 pixels in breadth). 
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 In linear menus, users triggered the menu with a grab gesture. They also 

selected a command using another grab gesture. Between these two gesture 

registrations, users could move their hands freely around the display. However, 

for TCM, after the menu is triggered, users could inadvertently move their hand 

and select a wrong command. Unlike linear menus, TCM required users to 

constrain strictly their freehand movements after triggering the menu. 

6.1.6. Conclusion 

 Overall, we learned the following from part II of our study: 

 In our experimental settings, TCM were more efficient but less effective than 

linear menus. TCM elicited significantly less workload than linear menus. 

 Compared with linear menus, participants were more than two times faster with 

TCM, but there was no significant difference in successful trigger rates between 

them. This suggests that menu-triggering by reaching the ROI (88% accuracy) 

performed on par with menu triggering by grab (92%). Moreover, participants 

seemed to spend more time with linear menus due to more effort required in 

performing a grab gesture than a crossing gesture. 

 Limitations. Capabilities of our tracking sensor limit our results. An ideal gesture 

recognition algorithm may have made the linear menus more efficient than TCM. In this 

work we proposed a touchless menu system that does not employ any pose-recognition 

techniques, but performed on par with current available menu techniques (Table 6.4). 

Furthermore, with future improvements in tracking capabilities, we expect that TCM will 

outperform linear menus because it builds on users’ previously learned skills of making 

in-air directional gestures. Aimed at a preliminary understanding of a touchless menu 

system that does not employ any pose-recognition techniques, both our visual interface 

and task were simple (always selecting the ‘Remove’ command from a single-level 

menu). Future research is required to assess the user experience of TCM in more 

realistic usage scenarios. 

 External Validity. Large displays are becoming popular in consumer electronics 

(e.g., interactive TVs), healthcare settings and public spaces. Touchless gestures offer a 

promising interaction modality for these novel devices. Our proposed touchless menu 

system uses dynamic gestures for selecting commands on large displays while 

interacting from a distance. 
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Table 6.4. Performance measures across touchless menus. 

Touchless menu system 
Menu 

options 
Average time 

Average 

accuracy 

1Linear menu (Bailly et al., 2011) 8 x 8 6.6s 94.2% 

1Marking menu (Bailly et al., 2011) 8 x 8 7.2s 95.3% 

1Finger-count menu (Bailly et al., 

2011) 
5 x 5 8.5s 93.4% 

2Contextual linear menu 5 7.4s 100% 

2TCM 5 3.3s 97.3% 

1Participants standing; 2Participants sitting. 

 Prior work on touchless interaction with large displays contributed interaction 

techniques that require users to comply with pre-defined postures. Our research 

suggests that dynamic gestures—such as simple crossing—when coupled with human 

sensorimotor abilities—such as making directional strokes—is more efficient than 

posture-based techniques. Specifically, whereas existing touchless menu systems for 

selecting commands from a distance are posture-based (Bailly et al., 2011; Lenman et 

al., 2002), we introduced a novel touchless menu system (TCM) for large displays, which 

solely uses our ability to make directional strokes in mid-air and relieves users from 

recalling a vocabulary of gestures. 

Our comparative study suggests that TCM are more than two times efficient than 

contextual linear menus using grab gestures. Users also perceived less workload with 

TCM. However, TCM caused 3% more errors than linear menus. This may happen 

because, unlike linear menus, TCM required users to constrain strictly their freehand 

movements after triggering the menu. Touchless input is inherently imprecise, which is 

exacerbated by the lack of haptic feedback. To improve the accuracy of touchless 

selections, we now explore pseudo-haptic feedback (Lécuyer, Burkhardt, & Etienne, 

2004). To that end, we first introduce an interaction technique, interface topographies, in 

the next section, and then report empirical studies in Chapter 7. 

In evaluating TCM, we also found that the asymmetric nature of human motor 

capabilities significantly affected the efficiency of our proposed touchless circular menus. 

We expect this effect to be pervasive in touchless interactions with large displays, which 

requires further investigation. The design of future touchless interfaces can be informed 
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by identifying these asymmetric motor abilities. In Chapter 8, we revisit motor control and 

study handedness in touchless interactions.  

6.2. Interface topographies 

The lack of haptic feedback in touchless interactions causes users’ gestures 

difficult to control and to move off interface elements unintentionally. This lack of control 

increases users’ effort to perform accurate actions, such as steering and targeting. To 

mitigate this problem, we introduce interface topographies: pseudo-haptic textures that 

modify cursor movements to guide touchless interactions along the contours of interface 

content (e.g., data visualizations) or components (e.g., widgets). We designed and 

implemented three topography primitives—holes, valleys, and pits.  

Designing appropriate touchless interfaces is still in its infancy (Guimbretière & 

Nguyen, 2012; Dostal et al., 2014). We still need basic interface standards to design 

touchless widgets and to support frequent user tasks, such as searching, targeting, or 

steering. In the last section, we introduced and evaluated a touchless command 

selection technique. We found that target acquisition was imprecise due to a lack of 

control in steering toward the menu option (see section 6.1.5). In this section, we explore 

interface affordances in steering-targeting tasks—tasks requiring trajectory-based 

movements before target acquisition. 

The lack of haptic guidance reduces touchless precision because users are 

exclusively dependent on other forms of sensory feedback, such as visual, auditory, or 

proprioception (Nancel et al., 2011; Chapter 5). Hence touchless gestures add abundant 

fluency to an interaction scenario, but fail to provide fine-grained, pixel-level, motor 

guidance for accurate interaction tasks. To compensate this lack of haptic feedback, 

researchers have explored visual, auditory and tactile feedback in touchless target-

acquisition tasks (Lehtinen et al., 2012; Van Mensvoort, 2002). But as touchless 

interfaces mature to provide traditional controls (e.g., menus or scrollbars) and its 

contents call for trajectory-based tasks (e.g., interacting with data visualizations, such as 

heat maps or bubble charts; or drawing), understanding how to improve the precision of 

trajectory-based interactions becomes essential.  

 To improve the precision of touchless interactions, specifically trajectory-based 

interactions on large displays, our paper makes the following contributions: 

 We introduce Interface Topographies: pseudo-haptic textures (e.g., holes, 

valleys, and pits) that can virtually overlay on interface controls (menu or 

scrollbar) or interface contents (e.g., data visualization structures, such as nodes, 
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lines, or regions) and constrain the touchless cursor’s imprecise movements 

during navigation—conveniently along the structure of the interface content or 

control.  

 We implement three topography primitives, holes, valleys, and pits (Figure 6.8), 

and introduce two techniques to augment their effectiveness, adaptive and 

additive topographies. Adaptive topographies dynamically adapt their shapes to 

constrain imprecise cursor movements. Additive topographies combine multiple 

primitives to suit a specific trajectory-based interaction.  

 

Figure 6.8. Topography primitives (e.g., holes, valleys, or pits) operate as virtual 

surfaces that overlay on an interface and modify cursor movements to improve the 

precision of touchless interactions. 

6.2.1. Background 

Touchless interactions suffer from lower accuracy than device-based 

interactions—due to the absence of haptic feedback. To improve user experience, haptic 

feedback is explored across different input modalities for over two decades. Under this 

umbrella term of haptic feedback, however, lays important distinctions (cf. Table 1, 

Oakley, McGee, Brewster, & Gray, 2000), such as force feedback, tactile feedback, or 

pseudo-haptic feedback. Force feedback relates to the mechanical production of 

sensations perceived by the human kinesthetic system (muscles, tendons, and joints). 

Tactile feedback pertains to the cutaneous sense of pressure perceived by the skin 

surface. Pseudo-haptic feedback is proprioceptive and can simulate haptic effects (e.g., 

slopes or friction) with a passive input device (Lécuyer et al., 2004). It is generated by 

purposely violating the isometric mapping between the motor space and the display 

space. For example, while crossing a bump on an interface, the cursor is artificially 
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slowed down, forcing the user to move the device more, thereby creating an illusion of 

force feedback (Lécuyer et al., 2004).  

In the last two decades, researchers explored force feedback to haptically 

augment desktop interfaces. For example, a PHANTOM haptic device (SensAble 

Technologies Inc., now part of Geomagic) was used to create a haptically enhanced 

XWindows Desktop (now commercially available as Geomagic Touch™ X). When such 

haptically-enhanced GUIs were evaluated on target-acquisition tasks, researchers found 

that haptic effects reduced errors and overall workload, but did not affect task completion 

times (Oakley et al., 2000). Furthermore, basic research looking into the interplay of 

perceptual processes in haptic feedback showed that between the vertical and the 

lateral force information, the lateral forces dominate other perceptual cues (Robles-De-

La-Torre & Hayward, 2001). 

Lately, integrating tactile feedback in user interfaces has garnered increased 

attention. To generate a broad range of different tactile sensations, researchers 

proposed using electrovibration—controlled electrostatic friction—in touch interfaces 

(Bau, Poupyrev, Israr, & Harrison, 2010). In touchless interfaces, approaches to 

generate tactile feedback followed two broad categories—wearable sensor gloves and 

feedback projected on users’ unadorned hands. For example, to augment visual search, 

wearable gloves with vibrotactile actuators was proposed for dynamic tactile cueing 

(Lehtinen et al., 2012). Approaches to project tactile feedback included the use of air 

voxels in AIREAL (Sodhi et al., 2013), and ultrasonic waves in UltraHaptics (Carter et al., 

2013) and HaptoMime (Monnai et al., 2014). Evaluations of touchless systems with 

continuous tactile feedback for target-acquisition did not report significant performance 

benefits (Foehrenbach et al., 2009). But touchless gestures with dynamic tactile 

feedback in search-and-select tasks significantly improved task completion times, when 

visual complexity was high (Lehtinen et al., 2012). Rest of the touchless systems with 

tactile feedback focused on psychophysical experiments, but not empirical evaluations 

(Carter et al., 2013; Sodhi et al., 2013). 

Pseudo-haptic feedback does not require additional hardware, and is explored in 

a number of applications (surveyed in Lécuyer, 2009). Approaches to implement 

pseudo-haptic feedback include adding tiny displacements to the cursor (ActiveCursor, 

Van Mensvoort, 2002), using Flash-based animation templates (PowerCursor), or 

varying the cursor’s motion with a transfer function (pseudo-haptic textures; Lécuyer, A., 

et al., 2004). For example, a transfer function adjusts the Control/Display (C/D) ratio of 
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an input device to simulate textures and generate the illusion of lateral forces—same 

forces that dominate the perception of textures in force-feedback devices (Robles-De-

La-Torre et al., 2001). Empirical studies suggest that users can feel pseudo-haptic 

textures, such as bumps and holes (Lécuyer et al., 2004). Apart from guiding target 

acquisition in GUI, pseudo-haptics have also been used for content creation tasks in 

digital drawing. For example, Kinematic Templates amplify or dampen the cursor’s 

speed to guide users’ strokes into drawing circles, parallel lines, or soft edges (Fung et 

al., 2008).  

In the context of touchless systems past work focused on tactile feedback, but 

not pseudo-haptic feedback, and evaluated mostly target-acquisition tasks. Tactile 

feedback has the benefit of improving touchless experience, but with the exception of 

empirical evaluation of visual search tasks, past research did not evaluate its benefits on 

user performance. On the other hand, in GUI, force feedback improved user 

performance in target-acquisition (Oakley et al., 2000) and steering-targeting tasks 

(Dennerlein, Martin, & Hasser, 2000). Building upon prior work, we address this research 

gap: We introduce a touchless interaction technique with pseudo-haptic feedback and 

evaluate its performance in steering-targeting tasks (Accot & Zhai, 1997). 

6.2.2. Designing interface topographies 

Interface Topographies are pseudo-haptic textures overlaid on interface contents 

or controls that manipulate the touchless cursor’s motion to improve interaction 

precision. The cursor is manipulated by adjusting the C/D ratio with a transfer function. 

This transfer function is formulated according to the geometrical structure of the interface 

content or the interface control. For example, a visualization presented on a touchless 

interface is morphed into a virtual topography. Thus, by overlaying a virtual terrain atop 

the visualization that reflects the visualization’s structure (e.g., rows, columns, or 

regions), interface topographies can constrain users’ imprecise touchless gestures 

during steering and targeting tasks.  

We implemented topography using height maps. Height maps vary the cursor’s 

speed to conjure up a feeling of traveling over uneven topographical surfaces (Lécuyer 

et al., 2004). To simulate different topographies, we first propose topography primitives 

and discuss their design parameters. We then introduce two techniques to augment the 

effectiveness of interface topography: adaptive and additive topographies. Finally, we 

describe a visual feedback routine that augments the pseudo-haptic feedback as users 

exit a topographical structure. 
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Figure 6.9. Two different types of valleys: V-shaped and U-shaped. (H = current height, 

Hmax = maximum height) 

Height Maps: Simulating a Topography 

Topography of a surface is a function of different heights—a height map. 

Topography can be simulated on a user interface by maintaining a height value 

associated with each pixel of the screen. A slope is simulated using either a Gaussian 

profile or a Polynomial profile (e.g., Figure 6.9).  

Our algorithm to implement topographies (Figure 6.10) is adapted from Lécuyer 

et al. (2004): Users’ movement in the control space is mapped to the touchless cursor’s 

movement in the display space as a function of the height map of the topography.  The 

cost of displacement between two consecutive pixels is determined by their difference in 

height. When this difference in height is negative, the cost is greater than 1 (i.e., user 

has to move more in the control space than usual, or ascend) and when the height 

difference is positive, the cost is less than 1 (i.e., user moves less in the control space 

than usual, or descends). Until users’ movement in control space exceeds the cost of 

displacement, the touchless cursor is constrained at its prior position, thus simulating 

movement over a virtual terrain. 

V-shaped
Valley

Gaussian profile

Polynomial 
profile

U-shaped
Valley

H = Hmaxexp(-x2)

H = Hmaxexp(-x)H = Hmaxexp(x)
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Figure 6.10. Algorithm for traveling height maps (based on Lécuyer et al., 2004). 

6.2.3. Topography primitives: holes, valleys, and pits 

To match some common geometrical structures, such as points, lines, and 

circles, we propose using height maps (Figure 6.11) to simulate holes, valleys, and pits 

(Figure 6.8). 

Holes: A hole is a narrow, circular depression from a baseline plane that is 

simulated using mathematical profiles, such as a Gaussian, a polynomial, or a linear 

profile (Lécuyer et al., 2004). For example, a vertical cross-section of a Gaussian Hole 

can be computed as: H = Hma x  × exp(−x)2, where H is the height of the pixel x, and 

Hmax is the height of the baseline plane. 

Valleys: A valley is a linear depression from a baseline plane (Figure 6.9). The 

vertical cross section of a valley is either similar to a hole (a V-shaped valley, Gaussian 

profile) or to a pit (a U-shaped valley, polynomial profile).  

 Pits: A pit is a wide, circular depression from a baseline plane whose left slope is 

simulated with an exponential decay function, H = Hm a x  × exp(−x) , and right slope 

with an exponential growth function, H=Hm a x × exp(x) .  To simulate valleys and pits, 

we chose a polynomial profile: 

  

AmPx  Amount of pixels moved in control space 
PrevPos  Previous position in display space 
CurrPos  Current position in display space 
T  Topography constant 

ApplyTopography (PrevPos, CurrPos, AmPx) 
DO 

NextPixel  CalcNextPx (PrevPos, CurrPos)               
DiffHeight  CalcDh (PrevPos, NextPixel) 

IF DiffHeight > 0 
CostOfMovement  1 + T × |DiffHeight|  

ELSE  
CostOfMovement  1 − T × |DiffHeight| 

ENDIF 

IF AmPx > CostOfMovement 
PrevPos  NextPixel 
AmPx   AmPx − CostOfMovement 

ELSE 
CurrPos = PrevPos 

ENDIF 
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FOR each pixel P along the length of the wall 

H = Hmax × exp(− Slope × P) 

ENDFOR 

 

Figure 6.11. A vertical cross-section of a pit or a valley is stored as a height map, with h 

= Hmax × f(step), ∀ step: step ∈ W. 

Invoking topography 

On-demand invocation: To navigate interface content (e.g., a heatmap where a 

valley is overlaid on a row), topographies are invoked on demand. Such on-demand 

invocation ensures that topographies assist steering-targeting only after users have 

determined the navigation task (e.g. which particular row to traverse), and avoid 

accidental distractions en route to a target. On-demand dismissals for interface content 

topographies should be allowed for densely packed contents, because that allows easy, 

short movements into adjacent regions without much displacement in the motor space to 

exit the topography. 

Automatic invocation and on-demand dismissal. To operate interface controls 

(e.g., menus or scrollbars), topographies are auto-invoked when users land on a 

controls’ operation zone. For example, a valley is activated along a scrollbar to facilitate 

precise steering. Since landing may be accidental, and the topographic effect distracting, 

a “reserved” gesture (e.g., a closed fist or a non-dominant hand raise) allows emergency 

exit and promptly dismisses the topography. 

Topography parameters  

The proposed topography primitives are based on four parameters: Wall Length, 

Slope, Hmax, and T. A higher value of T amplifies the slope of a topography and 

increases or decreases the cost of displacement (see Figure 6.10). Through iterative 

tuning, we identified an optimum range of T as [100, 500]. A combination of the 

parameters Wall Length and Hmax play the same role as the parameter Slope in 

simulating a steep or a gradual ascent/descent. For user evaluation, we used Hmax = 10, 
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Wall Length = 5, Slope = 0.1, and T = 400 for valleys and T = 200 for pits. In the 

parameter tuning phase, we encountered the following phenomenon: When users 

moved obliquely to the wall of any topography, they took a longer path to exit; resulting 

in weaker constraints than when moving orthogonally to the wall. To mitigate this and 

effectively constrain imprecise touchless interactions, we introduced Adaptive 

Topography. 

6.2.4. Adaptive topographies 

The slope of topography allows a gradual descent into a hole, a pit, or a valley. 

However, when exiting, the ascent—the feature that ultimately constrains users— 

provides different resistance depending on how users move along the wall of the 

topography. Orthogonal movements provide the intended resistance, but oblique 

movements provide weak constraints due to small differences in height crossed while 

traversing the wall (similar to taking the ramp instead of a huge step). Our solution is 

adaptive topographies (Figure 6.12): after users enter a pit or a valley, the inclined walls 

become vertical, thereby eliminating the possibility for users to make oblique movements 

that would allow them to unwittingly leave the topography during data browsing. Holes, 

however, do not require any adaptation, because they map to points that do not require 

detailed interaction within the topography—instead, holes play the role of transitional 

stops along interconnected lines.  

 

Figure 6.12.  Slope of a valley (or a pit) allows users to move gradually into the 

topography (I). To get out, users can move orthogonal (O1) or oblique (O2) to the wall of 

the valley (or the pit). Due to small differences in height, however, a long oblique 

movement along the wall (O2) fails to sufficiently constrain users’ touchless gestures. To 

mitigate this, we introduce Adaptive Topography: after users enter a valley (or a pit), its 

walls become vertical, thus requiring a higher cost of displacement to move out of the 

topography, and thereby appropriately constraining users’ touchless interactions to the 

region. 
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6.2.5. Additive topographies 

Similar to interaction primitives constituting interaction controls, topography 

primitives can be combined to match non-trivial interface content, such as graphical data 

visualizations. To that aim, we introduce Additive Topographies. Because the complex 

nature of additive topographies may over-constrain users’ touchless interaction, we 

suggest dynamic invocation of primitives in these kinds of scenarios, thereby fostering a 

more seamless data browsing experience. For example, a graph (with nodes and edges) 

can be morphed into a set of holes and valleys. At first, the graph would only contain 

holes to provide a variety of flexible starting points for data exploration. As users enter a 

node/hole, valleys would be invoked on its connecting edges to guide graph traversal. 

As a particular edge (with valley) is being traversed, its endpoints would be overlaid with 

“destination” holes. 

Additional visual feedback & offset recovery 

Interface topographies provide pseudo-haptic feedback during steering-targeting 

tasks. This pseudo-haptic effect is generated by purposely violating the isometric 

mapping of the cursor between the motor space and the display space. For example, the 

touchless cursor—while ascending out of the topography—ceases to move until 

sufficient displacement occurs in the control space (see Figure 6.10). Traditionally, prior 

work on pseudo-haptic feedback exclusively used C/D ratio modification to elicit a 

sensorial experience—but only in device-based interactions (Lécuyer et al., 2004; 

Lécuyer, 2009). Our pilot studies explored pseudo-haptic feedback for touchless 

interfaces and found it as a double-edged sword. Modifying C/D ratio along interface 

content/controls improved accuracy, and users reported perceiving a “wall” constraining 

their interactions. Yet, decoupling motor and display spaces disoriented users as the 

topographic effect prolonged; rather than continuing to move in the control space to fully 

experience the pseudo-haptic effect, users often confused the “frozen cursor” as a 

tracking error and halted. This perceived post-error slowing was perhaps exacerbated by 

strong user expectations of interaction fluidity—common in human-human gestural 

interactions (Notebaert et al., 2009).  
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Figure 6.13. Although primarily designed for pseudo-haptic feedback (B, C), interface 

topographies also provide visual feedback (D) as users exit a topography: When the 

cursor is halfway ascending out of a topography (D), a secondary cursor shows users’ 

position in the control space and a trail connects the two cursors. On a successful exit 

from the topography, the two cursors immediately merge to represent users’ position in 

control space (E), thus recovering the control-display offset. 

To mitigate this problem, we introduced an additional visual feedback routine for 

interface topographies (Figure 6.13). As the touchless cursor is halfway ascending out of 

the topography, a secondary cursor shows users’ position in the control space and a trail 

connects the two cursors. The width of this trail represents the current cost of 

displacement to exit the topography (see Figure 6.10). On a successful exit from the 

topography, the two cursors immediately merge to represent users’ position in control 

space, thus recovering the control-display offset. This immediate recovery of the offset—

due to the C/D ratio manipulation—eventually generates a “no man’s land”. The display 

space—following the end of a topographic ascent—that corresponds to the excess 

space traversed in the control space is rendered unusable while exiting the topography 

(Figure 6.13). Thus, to navigate adjacent regions in densely-packed interface contents, 

users should employ on-demand dismissal of the topography.  

 Interface topographies, pseudo-haptic feedback in touchless interaction, are 

evaluated in a controlled study in Chapter 7. We will revisit touchless input in Chapter 8 

and interface affordances in Chapter 9. 
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Chapter 7. Experiments on pseudo-haptic feedback 

This Chapter discusses an empirical study on the effects of pseudo-haptic 

feedback in touchless steering-and-targeting. We evaluate interface topographies 

(introduced in Chapter 6) with 17 participants performing two steering-targeting tasks at 

two levels of difficulty.  

As of yet, the most-frequently used evaluation task in touchless is target 

acquisition (Guimbretière & Nguyen, 2012; Van Mensvoort, 2002). However, other 

actions, such as navigation or drawing, often require users to perform trajectory-based 

tasks such as steering. And as trajectory length increases, trajectory-based tasks require 

more control—even more so in touchless interactions due to the lack of tactile feedback 

and an input device. Such expected precision in an interaction task is particularly 

suitable to explore the efficacy of topographies. Thus, in this chapter, we evaluate 

adaptive interface topographies (see section 6.2.4) in touchless steering-targeting tasks. 

While prior research evaluated visual (Vogel & Balakrishnan, 2005), auditory (Vogel & 

Balakrishnan, 2005), and tactile feedback (Lehtinen et al., 2012) in touchless interfaces, 

this study evaluates a touchless feedback language that includes pseudo-haptic 

feedback.  

Furthermore, we wanted to assess whether using a physical token—not digitally 

connected to the interface—provides users an advantage of tactile feedback (similar to 

the use of token in Ballendat, Marquardt, & Greenberg, 2010). Hence, in total, we 

explored four types of interfaces: Flat (no topography), Token (with an unconnected 

physical device working identic to bare hands), Topography (with topography primitives, 

see Chapter 6), and Topography & Token (together). 

7.1. Hypothesis 

Prior empirical studies have found that force feedback in device-based 

interactions reduces errors and workload, but task completion times remain unaffected 

(Oakley et al., 2000). Because pseudo-haptic feedback mimics the lateral effects of force 

feedback (Robles-De-La-Torre, 2001), we expected similar results. We hypothesized the 

following: 

H1: Topography will not affect touchless efficiency. 

H2: Topography will increase touchless accuracy. 

H3: Topography will increase accuracy more in a difficult than simple task (in 

terms of the required precision). 

H4: Topography will reduce overall workload of touchless interactions. 
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Figure 7.1. Participants performed two steering-targeting tasks on a large display, at two 

conditions of difficulty. For example, a vertical steering-targeting task on a low-density, 

contiguous grid in the easy condition (A), and a circular task on a high-density, 

contiguous non-grid in the difficult condition (B). The target column (A1) or region (B1) 

was labeled at the beginning of the task. When participants traversed a cell outside the 

target, it flashed red (A2, A3, B2). Target cells were selected either once (task 1, A4) or 

twice (task2, B3), and turned green on selection (light green, A4; dark, then light green, 

B3). 

7.2. Method 

Participants. We recruited 17 right-handed participants (Mage = 24.31, SEage = 

1.51, 7 females). Fourteen of them were familiar with Kinect, Wii, or Leap Motion. This 

study was approved by Indiana University IRB (1411698641) and participants were 

compensated $20 for their time and effort. 

Apparatus. We used a 4.06 m wide and 1.52 m high display with over 15.3 

million pixels. The display, integrated by Fakespace Systems, is composed of eight 1.27 

m projection cubes (each with a resolution of 1600 x 1200 pixels) laid out in a 4 x 2 

matrix, and is driven by a single computer. Instead of using submillimeter-accurate 

sensors, we evaluated interface topography using off-the-shelf hardware—a Kinect™ for 

Windows—reflecting more likely real-world configurations. All experiments were written 

in C#/WPF running on Windows 7, and were implemented with Windows Kinect SDK 

1.8. 

Tasks and procedure. To test our hypothesis, we designed two abstract steering-

targeting tasks (Figure 7.1). Task 1 emulated a vertical steering-targeting task on a 

contiguous grid structure, similar to steering along a column in a heat map and selecting 

each cell (Figures 7.1-A1 and 7.2).  Task 2 emulated a circular steering-targeting task on 
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a contiguous non-grid structure, similar to steering a circular region of interest and 

selecting the cells within (Figure 7.1-B1 and 7.3). Both tasks broadly represented 

steering-targeting tasks in touchless interfaces, where topographies could be overlaid on 

interface content (data visualization). We did not, however, test the on-demand 

invocation of topographies on interface content, but only the user experience during the 

steering-targeting task (H1–4). 

 

Figure 7.2. The vertical steering-targeting task (contiguous grid) on a large display while 

sitting at a distance at a low level of density. 

In task 1, participants traversed the target column from the topmost to the 

bottommost cell (64px-square; Figure 7.1-A4). In task 2, participants passed over each 

cell within the target circle (576px diameter circle) at least twice, which first turned yellow 

and then green (Figure 7.1-B3). Passing a cell twice represented the typical repetitive 

interaction during processing information from a visualization. Across both tasks, when a 

target cell was traversed, it turned green (Figures 7.1-A4 & 7.1-B3); if a non-target cell 

was traversed, the cell flashed red to indicate an error (Figures 7.1-A2, 7.1-A3, & 7.1-

B2). Overall, task 1 required more interaction precision than task 2 due to its implicit 

spatial complexity. 
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Figure 7.3. The circular steering-targeting task (contiguous non-grid) on a large display 

while sitting at a distance at a high level of density. 

Moreover, each task comprised of two levels of difficulty—operationalized as 

spatial density. An easy task was half as densely populated as a difficult task. 

Overshoots occurred when participants moved out of the target region. To complete 

each trial, participants selected all cells within a target region (a trial continued until 

completed successfully). In a repeated-measures within-subject experiment, we 

measured task completion time (for efficiency) and the number of overshoots (for 

accuracy) for each of 816 trials: 2 tasks × 4 interfaces × 2 difficulty × 3 ROIs × 17 

participants. Trials and tasks were completely randomized within subjects and across 

subjects.  

 

Figure 7.4. An open-ended, exploratory prototype, based on the VAST 2011 Epidemic 

Spread dataset (Grinstein et al., 2011).    
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At the conclusion of the controlled tasks, participants interacted with an 

ecologically-oriented InfoVis task (Figure 7.4), to provide their interaction preference. 

Epidemic Spread was designed using the dataset from the VAST 2011 challenge (a city 

map, text messages, and metadata, Grinstein et al., 2011). The points of origin of posts 

with at least one keyword related to the epidemic (or events leading to the epidemic) 

were shown on the map. As participants browsed over the map, a word cloud displayed 

all the keywords shared from the positions underlying the participants’ cursor (128-pixel 

squares in all interaction conditions); the font size of a keyword indicated its frequency. 

We defined three ROIs on the map. Using the word cloud, participants tried to identify 

one major event that occurred in each of those ROIs. During this task (~ 20 minutes), 

they used Mouse, Flat, Token, and Topography techniques, in no particular order.  

Participants sat in a ~0.5m high chair, situated 2 m away from the large display 

(~ 1.5 m from the sensor) and took about an hour to complete the study (Figure 7.2). 

Participants’ movements were mapped from the control space to the display space with 

1: 3.75 (baseline C/D ratio). Trials were video recorded. Prior to each task, all 

participants practiced three trials at each ROI with topography. Participants rested at 

least 10s after every 3 trials and 10 minutes after completing all trials in a task. They 

used a whiteboard marker as the token (Expo Original). After completing each task (all 

trials), participants self-reported their perceived workload using the NASA-TLX 

instrument. To prevent over-exposing participants to the instrument (16 times), we only 

measured workload for Flat, Token, and Topography across easy and difficult conditions 

(6 times). We also logged task completion times, the number of overshoots out of the 

target region, and the trajectory paths for each trial. Time, overshoots, and paths were 

measured from the first time participants landed on the target region until trial 

completion. Task completion times included the time spent overshooting target 

boundaries and subsequent recovering. Overshoots more than 500 pixels from the 

target boundaries were discarded as system (sensing) errors. Participants shared overall 

comments at the conclusion of the tasks. 

7.3. Results 

For all 17 participants, we analyzed task completion times, the number of 

overshoots, and overall workload. As expected, task completion times were positively 

skewed; thus, replications of unique experimental conditions were represented by their 

median. Our analysis used GLMM with standard repeated measures REML technique. 

Participants were handled as a random factor. We report F-statistic using type III 
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ANOVA with Satterthwaite approximation, and pairwise comparisons (using pooled 

variance) with Holm-Bonferroni correction. We found a learning effect across blocks: For 

the difficult task, participants performed about 3.7s more slowly in the first block of task 1 

than the last block (2.8s more slowly for task 2). As the factors, interface and difficulty, 

were counter-balanced, this did not adversely affect our analysis. 

Task 1: vertical steering in a contiguous grid  

Efficiency. We found significant main effects of difficulty, F(1, 112) = 23.27, p < 

.001, and interface, F(3, 112) = 2.87, p = .039, but no significant interaction effect 

(Figure 9A). Participants took significantly more time to complete the difficult task (M = 

20s, SD = 5.13) than the easy task (M = 18s, SD = 4.84), p < .001, r = 0.50, which 

confirmed our manipulations of task difficulty. Pairwise comparisons did not find any 

significant effect of topography on efficiency (Flat vs. Topography or Token vs. 

Topography & Token). H1 was supported.  

Accuracy. We found significant main effects of difficulty, F(1, 112) = 199, p < .001 

(Mhigh = 23.77, SDhigh = 8.47; Mlow = 10.04, SDlow = 3.15), and interface, F(3, 112) = 7.20, 

p < .001, and an interaction effect of interface × difficulty, F(3, 112) = 4.48, p = .005 

(Figure 7.5-B). Pairwise comparisons indicated tha t in the difficult task, participants 

made significantly fewer overshoots with topography (M = 20.38, SD = 3.90) than a flat 

interface (M = 26.06, SD = 9.30), p = .031, r = 0.51, and significantly fewer overshoots 

with topography & Token (M = 19.47, SD = 4.40) than Token (M = 29.18, SD = 10.53), p 

< .001, r = 0.72. No significant results were found for the easy task. Post hoc Tukey-

tests did not find significant differences between Flat and Token for either easy or 

difficult task. H2 was partially supported—only for the difficult task. H3 was supported. 

Workload. We found no significant effect of the interface on workload, p = .132 

(Figure 7.5-C). However, interface significantly affected perceived effort, p = .025, but 

not perceived performance, p = .793. H4 was not supported 

Task 2: circular steering in a contiguous non-grid  

Efficiency. We found a main effect of difficulty, F(1, 112) = 459, p < .001, but no 

significant effect of either interface or the interface × difficulty interaction (Figure 7.5-D). 

Participants took significantly more time for the difficult task (M = 29s, SD = 6.55) than 

the easy task (M = 16s, SD = 2.82), p < .001, r = 0.92. H1 was supported. 

Accuracy. Only difficulty had a significant effect on the number of overshoots, 

F(1, 112) = 132, p < .001 (Mhigh = 30.43, SDhigh = 17.62; Mlow = 5.51, SDlow = 3.27) 

(Figure 7.5-E). In the difficult task, participants made more overshoots in Token (M = 
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33.12, SD = 14.64) than Topography & Token (M = 24.59, SD=19.59), with results 

approaching significance, p = .056. Similar to task 1, post hoc tests did not find 

significant differences between Flat and Token for either easy or difficult task. Neither H2 

nor H3 was supported.   

Workload. Interface did not significantly reduce participant’s overall workload, p = 

.292 (Figure 7.5-F). Interface neither significantly affected participants’ perceived effort, 

p = .708, nor perceived performance, p = .902. H4 was not supported. Figures 7.5-D & 

7.5-H exemplifies how topographies constrained participant’s interactions. 

 

Figure 7.5. In task 1, interface topography significantly reduced the number of 

overshoots, but not overall workload, thus improving participant’s interaction precision. In 

task 2, interface topography did not significantly affect efficiency or overall workload; but 

participants made fewer overshoots with topography & token than token alone, with 

results approaching significance, p = .056. 
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Performance across task 1 and task 2 

To explore the effects of interface and difficulty on performance across tasks, we 

fitted a hierarchical mixed-effects model with participant as a random factor, task as a 

random factor, and task difficulty nested within the task factor: time/overshoot ~ interface 

× difficulty + rand(participant) +  rand(task/difficulty). 

Our fitted model found a main effect of interface on task completion time, F(3, 

246) = 3.80, p = .010, but no interaction effect. Pairwise comparisons did not find any 

significant effect of Topography on efficiency. H1 was supported. Number of overshoots 

was significantly affected by interface, F(3, 262) = 6.74, p < .001, and interface 

× difficulty, F(3, 262) = 4.92, p = .002. Pairwise comparisons indicated that across tasks, 

in the difficult condition, participants made significantly fewer overshoots with 

Topography & Token (M = 14.71, SD = 7.68) than with Token (M = 21.53, SD = 11.42), p 

< .001, r = .62; and significantly fewer overshoots with Topography (M = 16.66, 

SD = 6.31) than Flat (M = 20.25, SD = 10.13), p = .024, r = .38. No significant results 

were found for the easy task. H2 was partially supported. H3 was supported. Across the 

two tasks, post-hoc tests did not find any significant differences between Flat and Token 

for either easy or difficult task.  

Based on participants’ open-ended summary comments, they preferred a 

traditional interface (Flat) for completing task 1, which required a strict vertical steering-

targeting. In this context, the lack of constraints “Helped me to move easily in the 

complex [more dense] matrix” [P13], provided “more freedom to move around” [P3], and 

felt both “free and smooth” [P4] and “faster and less constrained” [P9].   

However, this freedom came with a perceived cost. Participants reported that 

completing the task without any constraints felt slower and required more effort due to 

the lack of precision in their interactions: “I’d get really far away [from the target region]” 

[P10]; Flat interface was “harder to control; I needed to concentrate more” [P6]; “[I] 

wasted a lot of time as I was moving away” [P7]. These responses are notable since we 

found no significant quantitative differences in task completion time between the flat and 

topography conditions; however, they do resonate with the significantly fewer overshoots 

in the topographic interface. 

Six participants preferred using the flat touchless interface than using a physical 

token, because then they had “no physical objects to use” [P14], a perceived advantage 

in regards to system simplicity. Although the token was not digitally connected to the 

interface, participants reported that a flat touchless interface “was not as accurate as 
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token, but required less focus.” When using the token, five participants felt guided. For 

example, they reported that the token “helped me focus” [P2], “felt like painting” [P13], 

and “gave me more support to move along the track” [P3]. For these participants, the 

token increased their confidence in interaction: “I felt like I had more control” [P6] and “I 

felt I could more accurately focus my interactions” [P16]). However, four participants 

reported increased fatigue when using a token and perceived the system’s response to 

this style of input as being less precise than a flat interface. For example, participants 

reported that “I didn't like token. It felt less precise, less accurate” [P4]; “I was more tired 

with the token; my arm felt rigid” [P16]; “I expected to be more precise using the token 

compared with my hand. But it was not happening, so there was a break of 

expectations” [P17]; and “It felt more natural with hand, but more straight with token” [P5, 

referring to the linear, vertical gesture needed to complete task 1]. 

The shortcomings of the traditional touchless interface that participants disliked 

were somewhat mitigated when using the interface topography. Participants perceived 

the cursor constraints that topography was designed to provide: “The subtle corrections 

were making me efficient” [P16]; “It was smoothing my… movements and keeping me in 

line” [P12]; “I did not have to continually focus on my hands afraid of getting out. It was 

easy to learn and helped me to be precise” [P17]. However, two participants found the 

guidance to be too constraining, especially for task 1: “It was too much constraining in 

the vertical movement” [P17]; “I didn’t like the fact that I was not in control” [P4]; One 

participant [P6] found the trail feedback to be distracting, while some participants 

reported it to be useful: “[It] lets you know that you’re out of the region. You can see if 

you are going out with your peripheral vision” [P4]; “I knew when I was out of line” [P6]. 

Overall, in task 1, the participants’ responses on whether topography was useful or too 

constraining were mixed. But almost all found topographies to be helpful in task 2. These 

qualitative findings suggest an interesting nuance between the user perceptions and the 

user performance that emerged from our quantitative results. In task 1, participants were 

significantly more accurate with the topographic interface compared with the traditional 

touchless interface; in task 2, however, the improvement in accuracy with topographies 

only approached significance. 
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7.4. Discussion 

Overall, results partially supported our main hypotheses. Interface topography 

improved the precision of touchless interactions (H2) in task 1, but did not significantly 

affect user efficiency (H1). Overall workload, however, was not reduced using 

topography. For task 1 (Figure 7.5, top row), which required greater overall precision 

than task 2, topography significantly increased interaction accuracy for difficult trials. 

However, for difficult trials of task 2 (Figure 7.5, bottom row), increase in accuracy 

because of topography only approached statistical significance. Moreover, across tasks 

1 and 2, accuracy of easy trials was unaffected by topographies. Thus, H3 was 

supported, H2 was partially supported, but H4 was not supported. In what follows, we 

discuss some relevant implications of our findings. 

Implications for touchless interaction research 

Topographies improve Touchless Interaction Precision. Past studies provided 

empirical evidence that users can successfully identify macroscopic pseudo-haptic 

textures, such as bumps and holes, when simulated by modifying the C/D ratio of the 

mouse cursor (Lécuyer et al., 2004). Building upon pseudo-haptic textures, we (1) 

introduced topography primitives, (2) demonstrated adaptive techniques to morph 

interface content using topography primitives, and (3) provided empirical evidence that 

topographies do increase the accuracy of touchless interactions. Practical implications of 

our findings include (1) providing dynamic guidance in natural user interactions where 

typical tactile feedback is lacking or insufficient and (2) building virtual affordances for 

natural user interface components such as touchless menus or widgets. Notably, we 

found evidence that virtual constraints such as interface topography are effective only 

when an interaction is sufficiently difficult, i.e., for operations requiring high interaction 

precision (H3). 

Fluency vs. Control in Touchless Interfaces. Our findings suggested a dichotomy 

between users’ perceived performance (as self-reported) and observed performance (as 

captured in log). While topographies improved users’ accuracy in both task 1 

(significantly) and task 2 (approaching significance), most users reported topographies 

as being helpful in task 2, but often too constraining in task 1 (see Figure 7.5). This 

tension between perceived interaction fluency and input control signifies a familiar but 

crucial tradeoff in the evolution of interaction techniques. For example, the mouse allows 

more input control because of its characteristic resistance that its movement across a 

surface provides; but pen, touch, and touchless gestures provide more interaction 
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fluency—a hallmark of natural user interfaces (NUI). Thus, attempts to provide more 

input control in natural user interfaces, such as touchless, implies immediately 

compromising some of its ‘naturalness’ or interaction fluency.  As per our findings, the 

balance between perceived interaction fluency and input control is not absolute, but is 

highly situated. It depends on the nature and the difficulty of the task (i.e., required 

precision), the optimization of user feedback, and on the contingent break of user’s 

expectations that occurs when novel systems substantially augment the ability of users 

but do not behave as smoothly as expected. We showed that pseudo-haptic feedback 

improves touchless accuracy. But, further research is required to understand how to 

optimally tradeoff between the perceived interaction fluency and input control in 

touchless interactions—with input control mediated by feedback and user abilities.  

Implications for touchless interaction design 

 

Figure 7.6. Designing widgets for touchless interaction that improves users’ steering-

targeting precision: A valley overlaid on a scrollbar (above) and valleys adaptively 

invoked along menu options of a pie-menu (below). 

Apart from the key conceptual implications stemming from our findings, important 

design implications include offering static or adaptive virtual constraints in common 

interface controls—such as scrollbars or touchless menus (Figure 7.6). For example, to 

improve users’ steering accuracy, a valley can be overlaid on top of a scrollbar or along 

a menu option of the touchless circular menus (TCM, see Chapter 6). TCM were found 

to be significantly more efficient—but less accurate—than linear menus, because users 

had to constrain their freehand movements between triggering a menu and steering 

toward a menu option.   

Limitations. Our study’s findings are limited by the capability of our off-the-shelf 

tracking sensors, which were intended to reflect current, widely available technologies. 
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We evaluated topographies using simple, abstract tasks in a controlled lab setting. 

Further research is required to assess their benefits during repeated invocation and 

dismissal of interface topographies.  

7.5. Conclusion 

In sum, we designed, implemented, and evaluated interface topographies—

pseudo-haptic textures that increase the accuracy of touchless interactions in difficult 

steering-targeting tasks. During these tasks, users made fewer overshoots with 

topographies than with a traditional touchless interface. Specifically, our contribution is 

threefold. First, we implemented three topography primitives—holes, valleys, and pits—

that map to common geometrical primitives, points, lines, and regions (Chapter 6). 

Second, with adaptive and additive topography, we demonstrated how these primitives 

can be combined to morph non-trivial interface content into topographies. Third, we 

provided empirical evidence suggesting that interface topography improves accuracy of 

touchless interactions, but do not affect users’ overall workload or efficiency. 

Until now, we have explored solely users’ dominant hand. But bimanual 

touchless interactions can further complement that vocabulary of touchless gestures 

(Grandhi et al., 2011; Guimbretière & Nguyen, 2012; Nancel et al., 2011). To that end, in 

the next Chapter we study handedness in touchless input. 
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Chapter 8. Motor control: handedness and hemispheric asymmetry 

In this chapter, we shift back to touchless input from feedback. We had studied 

touchless input before; Chapter 5 looked into human capabilities and introduced motor-

intuitive interactions based on image schemas and sensorimotor abilities. In the previous 

Chapter, we evaluated pseudo-haptic feedback on touchless accuracy in steering-

targeting tasks. Until now, we have explored single-handed manipulation—with users’ 

dominant hand. But in user input, that is half the story. In interactive computing, 

bimanual techniques involving users’ nondominant (or non-preferred) hand has been 

extensively studied and particularly found useful as a mid-air input in performing 3D 

object manipulation (Hinckley, Pausch, Goble, & Kassell, 1994). Because of the 

significance of the nondominant hand in interaction techniques, this chapter explores 

handedness and transfer of skill between dominant and nondominant hands. Broadly 

speaking, we study motor control in touchless. This research is grounded in the more 

traditional literature (nearly a century of research; Adams, 1987; Magill & Anderson, 

2007) on motor behavior (e.g., motor control and learning, Todor & Doane, 1978).     

In interactive computing, the research on bimanual methods follows two primary 

directions, understanding the performance constraints of the nondominant hand and 

evaluating user experience of bimanual interaction techniques. For example, in a 

seminal work, Guiard (1987) introduced the Kinematic chain model to explain why most 

human skilled manual activities involve two hands, and how they play different roles in 

the division of labor. He pointed out that the two manual motors representing the two 

hands work as if assembled in a serial fashion. This hierarchical division of role between 

the two hands results in the manipulative efficiency of bimanual gestures. Much work in 

HCI has been built upon Guiard’s model to propose efficient bimanual interaction 

techniques; more recently in device-based mid-air and touchless (Hespanhol et al., 

2012; Nancel et al., 2011; Pyryeskin et al., 2012). Bimanual methods require the use of 

the nondominant hand. The nondominant hand can also be used in single-handed 

interactions, when more precise tasks demand the use of the dominant hand and may 

involve a different interaction modality (e.g., a tablet or a pen; Guimbretière & Nguyen, 

2012). We do not look into touchless bimanual interactions. Instead, this chapter 

focusses on exploring the performance constraints of the nondominant hand in touchless 

steering and targeting tasks. Most recently, Jude, Poor, & Guinness (2014) found that 

touchless pointing performance improved more than mouse and touchpad, and had the 

lowest degradation between hands. In this chapter, first, we review the relevant literature 
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on motor behavior, then present a set of hypotheses, and finally discuss the results from 

a two-stage empirical study. 

8.1. Background 

 The work in this chapter builds upon two important concepts in motor behavior—

transfer of learning and motor control. Earlier, we had briefly touched upon motor control 

when discussing visual feedback in Chapter 4. Visual feedback plays an important role 

in motor control and assists in motor learning and retention (Sigrist et al., 2013). This 

Chapter delves deeper into the properties of touchless input and the lack of haptic 

feedback. Here, we aim to understand two aspects of touchless input: how insufficient 

feedback affects the performance of nondominant hand (motor control) and how prior 

training with dominant hand impacts the nondominant hand’s performance (bilateral 

transfer of learning). 

Motor control 

 Fitts’s law (1954) is arguably the most frequently used theoretical premise in HCI 

(Wright & Lee, 2013). This classic finding represents movement time in relatively long 

movements as a function of the distance to the target and the size of the target. A less 

studied, but equally important, finding is that these parameters, distance and target 

amplitude, do not influence the choice reaction time—the time interval between the 

appearance of a signal and the beginning of the response (Ells, 1973; Fitts & Peterson, 

1964). Choice reaction time reflects the time to program a response—that is the 

preparation time among a set of alternate options.  

When studying choice reaction time in aimed movements, Klapp found (1975) 

that the time is influenced by the required precision of the movement only for shorter 

amplitudes, but not in longer ones (increased time for higher requirement of precision). 

Following this findings, Klapp (1975) concluded that long aimed movements are under 

feedback control, while very short movements are pre-programmed and simply ballistic; 

and that Fitts’s law do not hold for very short movements, but for long movements that 

comprise of a fast initial movement, a pause, and then a slow final movement (ballistic 

and corrective movements, Casiez et al., 2008). Thus, information processing while 

control of aimed movements involves either feedback control or preprogrammed motor 

plans—although their roles may not always be mutually exclusive. 

 Motor behavior research contends that human cerebral hemispheric 

specialization influences motor performance (Cohen, 1973; Durnford & Kimura, 1971). 

For example, Todor and Doane (1978) reported data partially supporting that 
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performance capabilities of the hands mirrors the dominant processing type of their 

contralateral hemisphere: in right-handed individuals, the left hemisphere and the right 

hand is dominant for sequential information processing or feedback-controlled motor 

actions, whereas the right hemisphere and the left hand is dominant for parallel 

information processing or preprogrammed motor plans. They found that the left hand (in 

right-handed individuals) fared superior in aimed movements that required greater 

preprogramming of motor plans. However, the right hand was not found superior in 

movements requiring the greatest demand for feedback control.  

 

Figure 8.1. Kabbash, MacKenzie, & Buxton (1993) built upon Todor and Doane’s (1978) 

work and studied the user performance of right-handed individuals with mouse, stylus, 

and trackball. 

  In HCI, Kabbash, MacKenzie, & Buxton (1993) built upon Todor and Doane’s 

(1978) work; they studied the user performance of right-handed individuals with mouse, 

stylus, and trackball. As expected, mean movement times in pointing and dragging tasks 

were significantly greater with left than right hand. However, interestingly, they found the 

accuracy of left hand in trackball-dragging was superior to the right hand, in contrast with 

the opposite finding in mouse and stylus. Kabbash et al. (1993) explained this finding of 

a left-hand advantage to the finger-thumb independence requirement in the trackball-

dragging task and the superiority of the right-hand to perform paired finger flexions 

(Kimura & Vanderwolf, 1970). However, it is also interesting to note that compared with 

mouse and stylus, trackball has an increased degrees of freedom for dragging and fewer 

feedback constraints (Figure 8.1). The left hand advantage, thus, may also be because 

of the greater role of preprogrammed motor plans in operating the trackball over the 

mouse and the stylus. 

 Because of the lack of haptic feedback, we argue that touchless relies more on 

preprogrammed motor plans than feedback control. Thus, in right-handed individuals, 

Mouse Stylus Trackball

Inputs studied in assessing performance of the nondominant hand
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the left-hand performance will be superior in steering-targeting tasks. We hypothesized 

the following: 

H1: Nondominant hand’s accuracy will be significantly greater than the dominant 

hand. 

Transfer of skill 

 The role of cerebral hemispheres in motor control and learning is also evidenced 

in the transfer of motor skill learned in one hand to the other hand (Criscimagna-

Hemminger, Donchin, Gazzaniga, & Shadmehr, 2003). Such bilateral transfer of motor 

control means better speed and accuracy with one hand, when the particular skill was 

practiced with another hand. Researchers have suggested that such inter-arm 

generalization from dominant to nondominant hand is caused by neural elements within 

a cerebral hemisphere tuned to both the right and left hands (Criscimagna-Hemminger 

et al., 2003). However, such bilateral transfer of learning is asymmetric in nature (Malfait 

& Ostry, 2004; Teixeira, 2000). For example, when acquisition of motor skills has a 

strong perceptual component (e.g., timing) transfer between dominant (or preferred) and 

non-dominant hand is symmetric (Teixeira, 2000). But when motor skill is strongly 

effector-dependent, such as exerting force control, transfer of learning is asymmetric—

only from dominant to nondominant hand (point-to-point reaching movements, cursor 

launching, etc.). Motor skills generalize from dominant to nondominant hand in a variety 

of tasks, such as reaching movements, pointing, rhythmic tapping, or wrist-flexion 

movement (Teixeira, 2000).     

 Touchless targeting and steering have a strong effector component. Thus, we 

expected a transfer of learning from dominant to nondominant hand. Furthermore, 

because the dominant hand is superior in feedback processing, we hypothesized that 

additional pseudo-haptic feedback (similar to force control) will augment learning in the 

dominant hand (Todor & Doane, 1978), and that will further increase the skill transferred 

to the nondominant hand. We hypothesized the following: 

H2: Prior training with right hand will improve the nondominant hand’s accuracy 

than without training. 

H3: Prior training with right hand and additional feedback control will improve 

nondominant hand’s accuracy than without training. 

Building upon prior results, we hypothesize effects on task accuracy, not task 

completion times (Kabbash et al., 1993; Teixeira, 2000). 
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8.2. Method 

Participants. We study handedness and transfer of learning in touchless in two 

consecutive experiments. Experiment 1 was conducted along with the experiments 

evaluating pseudo-haptic feedback (Chapter 7). In Chapter 7, we report user 

performance of interface topographies—an interaction technique drawing on pseudo-

haptic feedback—with right-handed participants using their dominant hand (right hand). 

Following that study, each participant further completed another session on using 

topographies with their non-dominant hand (left hand). Among the 17 right-handed 

participants (Mage =24.31, SEage = 1.51, 7 females) taking part in this study, fourteen of 

them were familiar with Kinect, Wii, or Leap Motion. We recorded the user performance 

of right hand (RHcontrol) and left hand following training with right hand and pseudo-haptic 

feedback (LHrhf). Experiments were conducted in December 2014. 

 

Figure 8.2. We studied handedness in touchless interactions with a circular steering-

targeting task (same task used in the experiments evaluating interface topographies, 

Chapter 7). Right-handed users completed the task at a high level of density (high 

difficulty) on the large display while sitting at a distance. 

 We conducted experiment 2 in two sessions. In the first session (about 30 

minutes) 16 right-handed participants (different than those recruited for experiment 1, 

Mage = 30.44, SEage = 2.28, 9 females, two familiar with Kinect) completed tasks using 

their left hand. They revisited the lab (at least three days apart) to participate in the 

second session. In session 2 (about an hour), participants completed experimental tasks 

first using their dominant hand (right hand) and then their left hand. In this session, 

pseudo-haptic feedback was not available when using the right hand. The study was 

approved by Indiana University IRB (1411698641) and participants were compensated 

$15 for their time and effort. Experiments were conducted in May, 2015. 

  Apparatus. Study setup was the same as the experiments evaluating pseudo-

haptic feedback (Chapter 7). We used the 4.06 m wide and 1.52 m high display with 
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over 15.3 million pixels and a Kinect™ for Windows; our experiments were written in 

C#/WPF running on Windows 7, and were implemented with Windows Kinect SDK 1.8. 

Tasks and procedure. In Chapter 7, we found that pseudo-haptic feedback 

improved task accuracy for difficult tasks. So experiment 2 only included difficult tasks or 

steering-targeting in a high-density condition. To ensure user performance was not 

affected by boredom and excessive fatigue, half of the participants (n = 8) completed 

task 1 and another half task 2 (see section 7.2 for details). Task 1 was a vertical 

steering-targeting task on a contiguous grid structure, similar to steering along a column 

in a heat map and selecting each cell and, and task 2 a circular steering-targeting task 

on a contiguous non-grid structure, similar to steering along a circular region of interest 

and selecting the cells within. Like experiment 1 (similar to Chapter 7), experiment 2 was 

repeated-measures and within-subject. Total number of trials in experiment 1 used 

toward this study is 816: 1 hand (left) x 2 tasks × 4 interface repetitions × 1 difficulty × 3 

ROIs × 17 participants. In experiment 1, each participant completed both task 1 and task 

2. Since the interface repetitions (completely randomly balanced) were a mix of with and 

without pseudo-haptic feedback, data from experiment 1 contributed to the condition 

LHrhf, left hand following training with right hand and pseudo-haptic feedback. Total 

number of trials in experiment 2 was 576: 3 hands (left in session 1, right then left in 

session two) x 1 task x 4 interface repetitions × 1 difficulty × 3 ROIs × 16 participants. In 

experiment 2, each participant either completed task 1 or task 2. The interface types for 

session two with right hand (in experiment 2) was all without pseudo-haptic feedback; 

they were repeated to ensure the same number of trials prior to left-hand usage. 

Participants sat on a ~0.5m high chair, situated 2 m away from the large display 

(~ 1.5 m from the sensor) and took about an hour to complete the study (Figure 8.2). 

Participants’ movements were mapped from the control space to the display space with 

1: 3.75 (baseline C/D ratio). Trials were video recorded. Prior to each task, all 

participants practiced one trial at one random ROI without pseudo-haptic feedback. 

Participants rested at least 10s after every 3 trials and 10 minutes after completing all 

trials in a task. 

Measures. Task completion times included the time spent overshooting target 

boundaries and subsequent recovering. Task accuracy was operationalized as the 

number of errors, overshooting target boundaries. Overshoots more than 500 pixels from 

the target boundaries were discarded as system (sensing) errors. 
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8.3. Results 

For all participants, we analyzed task completion times and a number of 

overshoots. For both experiments, data violated parametric assumptions (p < .01, 

Shapiro–Wilk test). Thus, we use Wilcoxon Signed Rank Test to compare dominant and 

nondominant hand’s performance and report Pearson’s r for effect size (with continuity 

correction). We first report results of experiment 1 that evaluated the user performance 

of right hand (RHcontrol) and left hand following training with right hand and pseudo-haptic 

feedback (LHrhf). In experiment 2, we report results from the user performance of right 

hand (LHcontrol) and left hand following training with right hand and no additional feedback 

(LHrh). For analysis within both experiments, dependent two-group Wilcoxon Signed 

Rank Test is used. When comparing performance across the two experiments, we use 

independent two-group Wilcoxon Rank Sum Test (with continuity correction). All missing 

data (owing to random sensing lapses) were treated as missing completely at random 

(MCAR). Data analysis was done in R version 3.1.1. 

Preliminary analysis.  

 One participant’s second session’s data was lost due to system malfunction. We 

analyze data for task 2 with 7 participants. Data analysis on task 1, the vertical steering-

targeting task did not lead to any significant results. They are, hence, not reported. In 

what follows, only user performance for task 2 is reported 

8.3.1. Experiment 1 

Using a one-tailed test, no significant differences were found between user 

performances of right hand (RHcontrol, Mdn = 36.00, IQR = 43.5) and left hand following 

training with right hand and pseudo-haptic feedback (LHrhf, Mdn = 9, IQR = 45), n = 199, 

p = 0.74 (Figure 8.3). As expected, task times were positively skewed, but similar, 

RHcontrol, M = 29.89s, SD = 7.55, and LHrhf, M = 31.71s, SD = 7.73. 
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Figure 8.3. No significant differences were found between user performances of 

right hand and left hand following training with right hand and pseudo-haptic feedback. 

8.3.2. Experiment 2 

 

Figure 8.4. No significant differences were found between user performances of 

left hand and left hand following training with right hand. 

Using a one-tailed test, no significant differences were found between user 

performances of left hand (LHcontrol, Mdn = 42.5, IQR = 48) and left hand following 

training with right hand (LHrh, Mdn = 36, IQR = 43), n = 84, p = .21 (Figure 8.4). H2 was 

not supported. Similar to experiment 1, task times were neither significantly different, 

LHcontrol, M = 35.47s, SD = 8.53, and LHrh, M = 30.53s, SD = 9.63. 
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Figure 8.5. User performances of left hand following training with right hand and 

pseudo-haptic feedback was significantly more accurate than left hand without any prior 

training. 

When comparing across experiments, we found that left hand following training 

with right hand and pseudo-haptic feedback (LHrhf) was significantly more accurate than 

left hand without any training (LHcontrol) with a small-to-medium effect size, U = 9944.5, Z 

= 2.53, p = .006, r = 0.2 (Figure 8.5). H3 was supported. 

Right hand (RHcontrol) was significantly more accurate than left hand (LHcontrol) with 

a small-to-medium effect size, U = 6565.5, Z = 2.86, p = .002, r = 0.2, (Figure 8.5). H1 

was not supported. No other performance differences were significant.  

8.4. Discussion 

 This Chapter investigated handedness and transfer of training in a touchless 

circular steering-targeting task. Data failed to support the hypothesis that left-hand 

accuracy is superior to right hand (H1). Instead, the user performance of right hand 

(RHcontrol) was found significantly more accurate than left hand (LHcontrol) with a small-to-

medium effect size. This result may be limited because of two reasons. First, the circular 

steering-targeting task with high-density arrangement may have required greater 

demands of feedback control, thus drawing on the strengths of  users’ dominant hand—

and neutralizing the property of touchless depending on preprogrammed motor plans. 

This points to the fact that nondominant hand performance does not simply depend on 

the input modality, but a combination of the task-at-hand and the input modality. Second, 
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in the RHcontrol condition, users performed steering-targeting without any pseudo-haptic 

feedback. However, because we were not studying bilateral transfer of learning from 

nondominant to dominant hand, in the LHcontrol condition, users performed steering-

targeting both with and without pseudo-haptic feedback (randomly balanced). Thus, user 

performance of the nondominant hand may have been aggravated for trials that needed 

additional feedback control. Future experiments need to consider tasks with much less 

requirements of feedback control to evaluate if there is a nondominant hand advantage 

for simpler tasks. 

 We found a significant transfer of learning from dominant to nondominant hand. 

H3, but not H2, was supported. Transfer of learning was significant when users 

performed tasks with their right hand and used pseudo-haptic feedback in some of the 

trials. When users were not exposed to the additional feedback in the right-hand 

condition, the transfer of learning was not significant; left hand’s performance was not 

significantly better than without any prior learning (LHcontrol). The additional feedback in 

right-hand condition must have augmented the motor skill learning in touchless circular 

steering-targeting, which is later transferred to the nondominant hand. 

 Although more systematic explorations are required to understand the role of 

nondominant hand in touchless, we were able to show a significant transfer of training 

from dominant to nondominant hand in touchless. Touchless interaction techniques can 

be designed to support this type of inter-limb transition for bimanual methods, thus 

supporting a novice to expert changeover.  

 It is important to note here that hemispheric asymmetry also affected user 

performance in a prior experiment in this dissertation—in Chapter 5. In Chapter 5, we 

had found that accuracy of mid-air directional strokes (within dominant hand) 

significantly increased as movements became longer (see Figure 5.6). This maybe 

because short movements using preprogrammed motor plans (Todor & Doane, 1978) 

was inhibited by the use of dominant hand compared with the feedback control required 

in longer movements.  

Two research implications follow from these findings. First, touchless modality 

facilities tasks requiring pre-programmed motor plans over feedback control. Second, if 

tasks require greater feedback control, training the dominant hand with additional 

feedback can significantly improve the nondominant hand’s performance due to bilateral 

transfer of learning.  
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As of now, we have studied either perceptual factors (visual feedback, image 

schema) or motor factors (pseudo-haptic feedback, transfer of learning in motor skill). 

The final set of experiments, in the next Chapter, investigates the confluence of 

perceptual and motor factors in touchless. How visual theories of perception may 

influence the motor action in touchless methods?  We look for this answer in Chapter 9. 
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Chapter 9. Gestalt in touchless 

 This Chapter presents the final set of experiments of this dissertation: We 

investigate how Gestalt principles affecting visual perception influences motor control in 

touchless. While deconstructing intuitiveness in touchless—in chapters 2 and 5—we 

discussed wherein the mismatch lies between the physical and touchless world, in spite 

of the immediate resemblance of the gestural input. The mismatch lies in the availability 

of all physical abilities we use in a 3D world in touchless interactions, but to act on, a 2D 

user interface (UI) without any haptic feedback. Because of the lack of haptic feedback, 

touchless interaction exclusively depends on visual perception and proprioception. Thus, 

in this last study, we draw on the Gestalt principles of visual perception (particularly 

principles of similarity and continuity, Koffka, 1922) and motor control (Klapp & 

Jagacinski, 2011) to explore touchless interaction mechanics. 

9.1. Gestalt psychology  

 

Figure 9.1. Rubin’s face-vase is an example of visual illusion illustrating Gestalt 

principles of figure-ground organization (Rubin, 1915) 

In spite of its criticisms—for over a century—Gestalt thinking has continued to 

influence the discoveries of psychological principles that explained visual perception 

(Wertheimer & Riezler, 1944). With Max Wertheimer’s historical 1912 paper on phi 

motion, Gestalt theory emerged as an explanation of perception in terms of structured 

wholes or Gestalten, rather than an assimilation of more primitive percepts (Wertheimer, 

1912). Decades later, true Gestalt phenomena again became relevant in visual 

perception with the importance of hierarchical structure in perceptual representations 

(Palmer, 1977). Ecological (Gibson, 1971) and computational (Marr, 1982) approaches 

to visual perception also acknowledged the influence of Gestalt thinking (Koffka, 1922; 
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Wertheimer & Riezler, 1944). Overall, Gestalt psychology—a popular proponent of 

holism—has played an illustrious role in providing theoretical foundations toward visual 

perception (Wagemans et al., 2012a; Wagemans et al., 2012b), and very recently motor 

action (Klapp & Jagacinski, 2011). 

Gestalt psychologists have argued that perceptual experiences and motor 

actions are inherently holistic, rather than a composite of unrelated structural units. The 

most symbolic image of Gestalt is arguably the Rubin’s vase (Figure 9.1, Rubin, 1915)—

illustrating the figure-ground principle (Wagemans et al., 2012b): When two adjoining 

regions share a border and create a mosaic percept, the occluding region is perceived 

as the figure with the adjacent region not imparting a shape. This figure is said “to own 

the borderline”. The border-ownership is switched when figure-ground reversals occur 

(e.g., when observers perceive two faces in Figure 9.1 instead of a vase). To find out 

why such a switching occurs, readers are directed to Wagemans et al., 2012b (section 

3), and to find out the factors determining what is perceived as a figure to Wagemans et 

al., 2012a (section 5). 

The centennial review on Gestalt research showed how different methodological 

shortcomings of this research program have somewhat been addressed (Wagemans et 

al., 2012a; Wagemans et al., 2012b). Specifically, the Gestalt principles of perceptual 

grouping in vision, such as proximity, similarity, or continuity, have been quantified 

(Wagemans et al., 2012a). Another recent review analyzed reaction-time results from 

previous studies and argued that four fundamental Gestalt principles in perception also 

apply to the control of motor action—holism, constancy, mutual exclusivity, and grouping 

in apparent motion (Klapp & Jagacinski, 2011). For example, certain motor actions, such 

as articulating a syllable during speech or making quick taps indicate the presence of 

motor Gestalts (chunks). However, neither perceptual nor motor Gestalt has been 

investigated in the context of touchless interactions. 

The focus of this chapter is perceptual Gestalt. We argue that Gestalt principles 

can inform how visual perception influences touchless interactions, because visual 

perception plays a crucial role in terms of feedback, feedforward, or understanding 

ecological affordances (Gibson, 1979) in touchless systems. We also discuss later how 

one of our prior results on motor-intuitiveness (from Chapter 5) can be explained using 

motor Gestalt theories. In sum, this chapter’s principal contribution is to introduce Gestalt 

thinking into touchless.  
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Specifically, I study the role of perceptual Gestalt in touchless target selection—

with the directional stroke primitive (Chapter 5, or a crossing gesture; Accot & Zhai, 

2002; Apitz, Guimbretière, & Zhai, 2010). Prior works have extensively investigated 

crossing in pen-based interfaces and suggested it as a promising interaction primitive for 

three-dimensional environments (Apitz et al., 2010). In what follows, we propose two 

experiments, their findings, and the significance of the results. 

 In Chapter 2, while setting up the background for this dissertation, we had 

emphasized the concept of embodiment in touchless, and argued that ecological 

affordances (Gibson, 1971) would be a suitable lens to explore touchless interface 

affordances—and more broadly touchless interaction mechanics. Gibson’s work on 

affordances, like Marr (1982), is an approach to visual perception alternative to the more 

standard cognitive psychology and information-processing approaches. In addition, both 

these approaches show an explicit influence of Gestalt thinking (Wagemans et al., 

2012a). 

 The oldest, most cited, and most studied aspect of Gestalt thinking in visual 

perception is perceptual grouping in simple 2D displays (Figure 9.2). Historically, 

Wertheimer (1923) proposed the first problem in perceptual grouping by exploring 

factors that determine the perceptual grouping of discrete elements (Wagemans et al., 

2012a). Perceptual grouping is a kind of perceptual organization, which is a broader 

field, often studied by Gestalt psychologists. Another kind of perceptual organization is 

figure-ground organization. Their difference is important to note. Grouping establishes 

the qualitative elements of perception, such as similarity or continuity, while figure-

ground determines how these elements are interpreted in terms of shape, relative 

location, or frame of reference in a 3D world (Wagemans et al., 2012a). Since we study 

2D touchless interfaces, our focus is perceptual grouping. Two particular grouping 

principles are studied: by similarity of shape (Figure 9.2-E) and continuity (Figure 9.2-I). 

Similarity of shape. With all other conditions being equal, the most similar visual 

elements in shape tend to be grouped together (Wagemans et al., 2012a). 

Continuity. With all other conditions being equal, elements tend to be grouped 

together when they are aligned with each other (Wagemans et al., 2012a). 

We chose the above two Gestalt principles based on prior research and our 

preliminary investigation of perceptual Gestalt in expert users (see Appendix B). 
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Figure 9.2. Some Gestalt principles of perceptual grouping (adapted from Wagemans et 

al., 2012a): Equally spaced dots do not group together (A), but when some are placed 

closed together, they group together strongly in pairs (B). All else being equal, the most 

similar elements will tend to be grouped together (by color, C; size, D; and orientation, 

E). Other examples include common fate (elements moving in the same direction, F), 

symmetry (G) and parallelism (H) of curves, continuity of lines (I), and closure (all else 

being equal, elements forming a closed figure will tend to form a group). 

9.2. Research questions and hypothesis 

 Beyond visual perception, Gestalt principles of grouping was recently studied in 

motor action (Klapp & Jagacinski, 2011) and tactile perception (Gallace & Spence, 

2011). Moreover, Gestalt principles continue to inform the design of traditional graphical 

user interfaces (interaction design book). Building upon prior work, this dissertation lays 

the foundations for designing Gestalt-informed touchless user interfaces. Our 

overarching research question is: 

How perceptual Gestalt affects a crossing-based touchless user interface? 

Within this dissertation crossing-based interface was first studied in Chapter 5 to 

understand the motor-intuitiveness of directional strokes, and then in Chapter 6 to 

design a touchless command-selection technique. 
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Grouping by similarity 

The Gestalt principle of similarity states that, “all else being equal, the most 

similar elements (in color, size, and orientation) tend to be grouped together” (p. 9, 

Wagemans et al., 2012a). We hypothesize the following: 

H1: User interface (UI) components representing similarity will decrease the 

efficiency of touchless target selection by crossing.  

H2: UI components representing similarity will decrease the accuracy of 

touchless target selection by crossing.  

The rationale of this hypothesis is that the perceptual similarity between different 

UI components will tend to group strongly into a perceptual whole. Such a perceived 

grouping would inhibit the action of crossing if one of those UI components represents 

action while the other a signifier of the action (e.g., a part of a widget and a cursor, 

Figure 9.3). Our hypothesis is informed by our preliminary findings where expert users 

were faster when crossing-to-select a rectangular menu option with a circular cursor 

than a circular menu option with a circular cursor (see Appendix B).  

 

Figure 9.3. Strong tendency of a perceptual grouping would inhibit the action of crossing 

if one of those UI components represents action while the other a signifier of the 

action—due to Gestalt principle of similarity. 

Grouping by continuity 

The Gestalt principle of continuity or good continuation states that elements tend 

to be grouped together as a single uninterrupted object when they follow an established 

direction (Wagemans et al., 2012a). We hypothesize the following: 

H3: UI components representing structural continuity will increase the efficiency 

of touchless target selection by crossing.  

H4: UI components representing structural continuity will decrease the accuracy 

of touchless target selection by crossing.  
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The rationale of this hypothesis is that the continuity of UI components (e.g., a 

menu with multiple options) increases the effective target width, because users tend to 

group the UI components into a perceptual whole (Figure 9.4, left). But in the absence of 

good continuation, the target width is decreased (Figure 9.4, center) and different parts 

of the UI component act as distractors to the intended target (Figure 9.4, right). With the 

increase in effective width, users will be faster, but more prone to make angular errors.  

Our hypotheses are also informed by prior studies that found that efficiency in crossing-

based interfaces is inversely related to the target width (Apitz et al., 2010). 

 

Figure 9.4. Good continuity of UI components (e.g., a menu with multiple options) 

increases the effective target width, because users tend to group the UI components into 

a perceptual whole (left). However, in the absence of good continuation, the target width 

is decreased (center) or the different parts of the UI component act as distractors to the 

intended target (right). 

Method 

Participant. We recruited 18 right-handed participants (Mage = 25.61, SEage = 1.98, 

8 females). Fifteen of them were familiar with Kinect, Wii, or Leap Motion. This study 

was approved by Indiana University IRB (1601477955) and participants were 

compensated $15 for their time and effort.  

Apparatus. We used a 1.34 m wide and 0.79 m high LG TV with a resolution of 

1920 x 1080 pixels and driven by a single computer (Figure 9.5). For motion tracking, we 

used off-the-shelf hardware—a Kinect™ for Windows. The experiments were written in 

C# running on Windows 7, and were implemented with OpenNI 1.4 SDK and 

PrimeSense’s NITE 1.5. During the study, participants sat in a 56 cm high chair, situated 

1.5 m away from the large display (1.54 m from the sensor) and took about an hour to 

complete the study (Figure 9.5). The sensor was 83 cm from the floor and aligned to the 

user’s body midline horizontally. The armrest of the chair was 73 cm high. The motion-
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tracking sensor had a horizontal field of view of 57 degrees and a vertical field of view of 

43 degrees. Participants’ movements were mapped from real space to display space as 

1: 3.7 (when a participant moved 1 cm in real space the cursor moved 3.7 cm in the 

display space, baseline C/D ratio). Trials were video recorded.  

 

Figure 9.5. (Right) In our experiment, participants used touchless gestures to interact 

with a large display, while sitting away from it. (Left) The experimental task began with a 

landing circle appearing on the display. As participants reached the landing circle, the 

target appeared and participants completed the task by crossing-to-select the target. 

Prior to each task, all participants practiced three blocks trials. Participants rested 

at least 5 s after every 3 trials and 5 minutes after completing all trials in a task. We 

logged task completion times, the number of errors, and the trajectory paths for each 

trial.  

Participants hovered over a ‘Start’ circle to begin a block. Each trial began with a 

landing circle appearing on the display, which participants landed on to begin the trial. 

The landing circle was horizontally aligned with the participants’ body midline. As soon 

as participants reached the landing circle, two things would appear: an arrow 

representing one out of four directions (0, 45, 135, and 180) and a target (Figures 9.7 

and 9.9). Participants’ hand movements in the 3D space were measured as their 

orthographic projections on the 2D display.  

We recorded performance time, error rate, angular error, and trajectory paths. 

Time was measured from when participants left the landing circle to when they moved 

past the target. We measured the angle of crossing using the last point recorded inside 

the landing circle and the first point recorded after crossing the target (hence the width of 

the target did not influence the calculation of angular error). Angular error was calculated 

as the absolute difference between this crossing angle and the required angle for the 

large display
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trial. For a trial to be considered successful, participants were required to move past the 

target with an angular error less than ± 22.5°. If users land beyond the target without 

crossing or make an angular error greater than ± 22.5°, it is considered as an error (a 

target miss) In the case of an error, the trial was repeated until participants successfully 

completed it. We operationalize efficiency as time to complete a trial and accuracy the 

angular error. 

9.3. Experiments on Gestalt similarity 

Tasks and procedure 

This experimental task emulated different cursors and widgets currently used in 

existing touchless systems (Figure 9.6). A linear menu (Callahan et al., 1988) was 

presented, and the shape of the touchless cursor and the shape of the menu options 

were systematically manipulated (three structures: circle—circle, triangle—triangle, and 

circle—triangle, Figure 9.7).  

 

Figure 9.6. An example of a linear menu in a current touchless application (Xbox Kinect 

game, Dance Central 2) 

Because past studies showed that certain angles between the target centerline 

and the horizontal line affect user performance of crossing-based interfaces (Accot & 

Zhai, 2002; chapters 5 and 6), this study randomized trials at the following four angles 

with similar levels of difficulty: 0°, 45°, 135°, and 180° (Figure 9.7). The total number of 

trials for this experiment was: 18 (participants) x 4 (angles) x 3 (structures) x 8 (blocks or 

repetitions) = 1728. 

Linear menu
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Figure 9.7. To test Gestalt similarity in touchless, a linear menu was presented at four 

different angles, and the shape of the touchless cursor and the shape of the menu 

options were systematically manipulated (circle—circle, triangle—triangle, and circle—

triangle). 

Results 

For all 18 participants, for both the experiments, we analyzed performance time 

(for efficiency) and angular error (for accuracy). Trajectory paths are not reported here; 

for an analysis of paths during crossing-to-select targets, see Chapter 5. Because of the 

simplicity of the experimental task, overall workload was not measured, and we chose 

the continuous dependent variable angular error over the discrete error count to 

operationalize task accuracy. Across the experiments, participant reported their levels of 

fatigue as very low (on a 10-point scale, Mdn = 3, IQR = 2.75).  

Recorded data were positively skewed; thus, replications of unique experimental 

conditions were represented by their median. Our analysis used GLMM with standard 

repeated measures REML technique. Participants were handled as a random factor. We 

report F-statistic using type III ANOVA with Satterthwaite approximation, and pairwise 

comparisons (using pooled variance) with Holm-Bonferroni correction. Effect sizes are 

reported using Cohen’s d, and interpreted as: 0.2 or greater as small, 0.5 as medium, 

and 0.8 large (Cohen, 1992).  
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Figure 9.8. Similarity of shape in UI components did not significantly affect performance 

times, but it affected accuracy. Participants made significantly smaller angular error in 

the dissimilar condition (circle—triangle). 

Efficiency. We found significant effects of structure F(2, 186.97) = 8.68, p < .001, 

and angle, F(3, 186.97) = 9.03, p < .001, but no significant interaction effect (Figure 9.8, 

left).  However, participants took significantly less time in the circle—circle condition (M = 

256 ms, SD = 131) than triangle—triangle (M = 286, SD = 137), p < .001, d = .22, and 

circle—triangle (M = 279, SD = 123), p =.002, r = 0.18. Similarity did not significantly 

decrease the efficiency of touchless target selection by crossing. H1 was not supported. 

Accuracy. We found significant effects of structure F(2, 187) = 8.31, p < .001, 

angle, F(3, 187) = 65.69, p < .001, and structure x angle interaction, F(6, 187) = 5.08, p 

< .001 (Figure 9.8, right). Participants made significantly smaller angular error in the 

circle—triangle condition (M = 3.97, SD = 2.68) than triangle—triangle (M = 5.19, SD = 

3.62), p < .001, d = .38, and circle—circle (M = 5.08, SD = 2.85), p < .001, d = .40. 

Similarity significantly decrease the accuracy of touchless target selection by crossing. 

H2 was supported. 

The effects of the direction of movement (angle) on user performance was similar 

to findings previously reported in Chapter 5 and 6.  
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9.4. Experiments on Gestalt continuity 

Tasks and procedure 

 

Figure 9.9. Examples of menu structures with no good continuation (A, Zhao, & 

Balakrishnan, 2004 © 2004 Association for Computing Machinery, Inc. Reprinted by 

permission; B, Lepinski et al., 2010 © 2010 Association for Computing Machinery, Inc. 

Reprinted by permission) and good continuation that can be organized as a perceptual 

whole (e.g., a semi-circle) (C). 

This experimental task was inspired by two existing menu structures that employ 

the crossing interaction primitive—pen and touch-based marking menus (Zhao, & 

Balakrishnan, 2004; Lepinski et al., 2010; Figure 9.9) and touchless circular menus 

(Chapter 6, Figure 9.9). However, it is important to note that marking menus employ 

directional strokes that are delimiter-independent and do not require explicit crossing for 

target selection in expert mode (Kurtenbach & Buxton, 1994). Compared with pen or 

mouse (where pen up or coming off the screen means delimiting an action), touchless 

do not provide an easy way to indicate the end of a selection (action delimiter). Thus, 
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touchless approximation of marking menus has used explicit delimiters, such as a closed 

fist (Bailly et al., 2011) or crossing (Ren & O'Neill, 2012). 

The continuity experiment was designed same as the similarity experiment, 

except the task included targets of different shape and orientation. Three levels of the 

independent variable, continuity was tested: good continuity, no continuity, and 

distractors (Figure 9.4). Measures were same as in the previous experiment. Trials were 

randomized within subjects. The total number of trials for this study was: 18 

(participants) x 4 (angles) x 3 (structures—good continuity, no continuity, no continuity 

with distractors) x 8 (blocks or repetitions) = 1728. 

Results 

 

Figure 9.10. Good continuity in UI components significantly affected performance times, 

but not accuracy. Participants were significantly faster with good continuity than no 

continuity. 

Efficiency. We found significant effects of structure F(2, 187.01) = 8.87, p < .001, 

and angle, F(3, 187.01) = 5.35, p = .001, but no significant interaction effect (Figure 

9.10, left).  Participants took significantly less time in the good continuity condition (M = 

138 ms, SD = 62) than no continuity (M = 153, SD = 78), p < .001, d = .21. Participants 

were also significantly faster with the distractor condition (M = 139, SD = 76) than the no 

continuity condition, p =.001, r = .19. Continuity significantly increases the efficiency of 

touchless target selection by crossing. H3 was supported. 

Accuracy. We only found significant effects of angle, F(3, 187) = 15.46, p < .001 

(Figure 9.10, right). Continuity did not significantly decrease the accuracy of touchless 

target selection by crossing. H4 was not supported. 
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9.5. Discussion 

 Our results showed that Gestalt similarity of shape and Gestalt continuity in user 

interface (UI) components significantly affects user performance. However, the influence 

of similarity and continuity differed in terms of performance times and accuracy. 

Similarity made users less accurate, but did not affect performance times (Figure 9.8). 

H2 was supported. H1 was not supported.  Good continuity made users faster, but did 

not affect task accuracy (Figure 9.10). H3 was supported. H4 was not supported.  

 Gestalt principles of visual perception are not mutually exclusive. They often act 

together, sometimes trumping one effect for another (e.g., proximity for similarity or 

similarity for continuity, Wagemans et al., 2012a). In this chapter, we studied the Gestalt 

effects of similarity and continuity on touchless motor action. Before discussing the 

results in detail and generalizing the design implications, it is important to note some 

limitations of the study. 

 Limitations. For motion tracking, we used an off-the-shelf tracking sensor 

Kinect™. It tracks users at 30 frames per second and suffers from occasional jitter that 

makes it suitable as a gaming console but not at par with the sub-millimeter accurate, 

marker-based tracking systems, such as VICON or OptiTrack. This tracking noise may 

have affected our findings.  

Research and design implications  

Gestalt similarity. In the similarity experiment, we found no significant 

improvement in efficiency for the dissimilar condition. We hypothesized that perceptual 

similarity between the signifier of an action (a cursor) and the object of an action would 

inhibit a crossing-to-select action because the UI components will tend to group strongly 

into a perceptual whole. Our findings, here, was different than our findings with expert 

users (n = 3), who were faster when crossing-to-select a rectangular menu option with a 

circular cursor than a circular menu option with a circular cursor (see Appendix B). A 

direct comparison between these two findings is infeasible because of the difference in 

participant types, task, and task parameters. Furthermore, our objective in this study was 

not to replicate prior findings, but conduct a more systematic, internally valid, 

exploration. However, it is interesting that between the two similar conditions, circle—

circle condition was significantly faster than both circle—triangle (dissimilar) and 

triangle—triangle (similar) condition. This may be explained by legacy bias (Morris et al., 

2014)—prior, extensive familiarity in a similar interaction context (circular cursors in 

current touchless applications), but needs further research. As expected, accuracy and 



149 

task times were not significantly correlated. Our findings may also be explained by the 

typicality of the triangular shape over a vertex-less circle or less-angular straight line (like 

used in touchless circular menus, Chapter 6). The deviation of this study’s findings from 

our preliminary results is not a limitation of this work; rather it opens up new research 

questions about touchless Gestalt: how familiarity and shape parameters mediate the 

effects of Gestalt principles on touchless. Such mediating effects are not new in HCI 

research. Pertinently, research shows the effect of familiarity on the use of image 

schema and metaphors in interaction (Blackler, Popovic, & Mahar, 2010) and shape on 

visual search (Smith & Thomas, 1964; Wolfe, 1998).   

 Gestalt continuity. In the continuity experiment, we found that good continuity 

made users faster than no continuity, which provides support to the premise that 

continuity created a perceptual grouping, thereby increasing the effective target width. 

However, there was no significant effect of continuity on accuracy (angular error). That 

accuracy was not significantly affected by continuity suggests that an increase in 

effective target width did not decrease users’ targeting precision. This is an interesting 

finding and merits further exploration and explanations.  

Furthermore, UI with no continuity and distractors also made users faster than 

the no continuity condition. This may be explained by the symmetrical structure used in 

the experimental task. If the increase in efficiency is caused by the increase in effective 

target width, the symmetry in the menu structure (Figure 9.4, right) may have caused it 

to appear as a perceptual whole (principle of Gestalt symmetry, Figure 9.2-G) instead of 

distractors. Whether symmetry prevailed over continuity in this occasion needs further 

exploration. In sum, in this very first study on touchless Gestalt, we showed some effects 

of Gestalt principles of perceptual grouping on touchless interactions. 

9.6. Motor Gestalt in touchless 

 Apart from perceptual Gestalt, this chapter also reviewed recent findings of 

Gestalt principles affecting motor action (Klapp & Jagacinski, 2011). Although we did not 

empirically study motor Gestalt in touchless, we found that findings from a prior 

experiment (Chapter 4) could be explained using the lens of motor Gestalt. 
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Figure 9.11. A holistic motor Gestalt exemplifying the Law of Prägnanz affected gesture 

intuitiveness: When intending to make mid-air movements perpendicular to a vertical 

display, such as a pull gesture, users repeatedly made oblique motions toward the 

center of their torso—to optimally reach static equilibrium, thus minimizing their body’s 

energy expenditure. 

Prägnanz affects intuitiveness of Gesture primitives 

In a study on visual feedback, we explored push-to-select and pull-to-deselect 

gestures (Chapter 4). In a drag-and-drop task on a large display, we observed users 

often trying to select targets by following the shortest, oblique path, instead of a set of 

orthogonal paths. Similarly, when pulling to deselect, instead of a decoupled set of 

orthogonal movements (parallel to the display for translation and perpendicular for 

action), users intuitively made oblique motions toward the center of their torso (Figure 

9.11). Such tendencies exemplify motor planning routines that seek to minimize our 

metabolic energy costs (Alexander, 1997). Overall, the holistic nature of this oblique 

motion can be explained by the concept of physical Gestalten or motor Gestalt (Klapp & 

Jagacinski, 2011), which is derived from a more general Law of Prägnanz: all physical 

systems, when left alone, tend to achieve a state of maximum equilibrium with minimum 

energy expenditure (Wagemans et al., 2012a). 
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Chapter 10. General discussion 

10.1. Discussion 

 This dissertation studied the interaction mechanics of device-less, touchless 

target selection—on large, 2D, vertical, distant displays. Currently, predominant 

approaches to touchless interaction design are either exploring intuitive touchless 

gestures—using gesture elicitation studies—or introducing interaction techniques 

through expert design. Few researchers have also explored types of feedback or motor 

skills involved in touchless interactions. In this dissertation, I shift away from existing 

approaches toward understanding touchless as a sensorimotor phenomenon. I look at 

the device-less property of touchless from an embodied interaction perspective—what 

does the lack of tool entail? What is intuitive in touchless? How do the extreme reliance 

on proprioception and visual perception affect user performance? What theories and 

frameworks in visual perception and motor training and control can inform any future 

design of touchless techniques? This dissertation evolves from a theoretical stance 

(Chapter 2) to a pragmatic operationalization of intuitiveness (Chapter 5) to investigation 

of both interaction mechanics (e.g., feedback in chapters 4 and 7, motor control in 

Chapter 8, or interface affordances in Chapter 9) and interaction technique proposals 

(Chapter 6). As I claimed in the introduction, this work’s theoretical investigation is a 

crucial stepping stone to generating fundamental knowledge about the potential and 

limitations of touchless as an interaction modality. Knowledge resulting from this work 

can drive the design of next-generation touchless systems based on fundamental 

interaction principles—instead of a reactive adaptation to the sensing technologies. In 

what follows, I highlight the results from the different chapters, discuss common patterns 

emerging from them, and indicate areas that merit further research. 

 In sum, the major findings of this work can be classified into the two classical 

aspects of any sensorimotor phenomenon: visual perception and motor action. This 

discussion will not attempt to generalize these findings into design implications. Some of 

the chapters already enumerated possible design directions. Rather, in this chapter, I will 

discuss research implications. Furthermore, it is important to note that the interaction 

techniques proposed in this work (Chapter 6) primarily contributed to the study of 

interaction mechanics—they served more as an apparatus than as a final proposal for 

future designers. So what is the takeaway for future designers of touchless systems from 

this dissertation? I address this question in Table 10.1. I also revisit each area of 

exploration and explain the emerging patterns.   
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Table 10.1. Dissertation findings on interaction mechanics for touchless target selection. 

Primary 

category 
Theme Finding Chapters 

Visual 

perception 

Gestalt 

principles of 

visual 

perception 

Similarity of UI components made users 

less accurate but did not affect 

performance times. 

9 Good continuity made users faster but did 

not affect task accuracy. 

Symmetry trumped the lack of good 

continuity and increased accuracy. 

Visual 

perception 

semantic visual 

feedback 

Persistent visual feedback increased 

users’ efficiency to return to the display 

range when gestures went off 

accidentally. 4, 6 

Visual feedback assisted users, when 

they confused pseudo-haptic resistance 

as motion-sensing malfunction. 

Motor 

action 

Hemispheric 

asymmetry 

Right-hand accuracy was superior to left 

hand. 

8 
Angular accuracy of mid-air directional 

strokes (within dominant hand) 

significantly increased as strokes became 

longer. 

Motor 

action 

Bilateral 

transfer of 

motor skill 

Transfer of learning was significant when 

users performed tasks with their right 

hand and used pseudo-haptic feedback in 

some of the trials. 

8 

Motor 

action 

motor-intuitive 

interaction 

We classified intuitiveness in touchless 

according to the continuum of knowledge 

in intuitive interaction. Motor-intuitive 

interaction draws on sensorimotor level of 

knowledge. 

5 
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Motor 

action 

2D directional 

stroke 

interaction 

primitive 

Average angular accuracy of 2D mid-air 

directional strokes was 12 degrees 

compared with the infeasibility of 3D 

angular strokes. 

5, 6 

Although 2D directional strokes are 

motor-intuitive and draw on the 

sensorimotor level of knowledge, we 

showed that bio-mechanical factors affect 

the performance of the interaction 

primitive (e.g., bilateral inhibition). 

Touchless circular menus, build upon the 

2D directional stroke primitive, was faster 

in target selection than contextual linear 

menus using grab gestures. 

Motor 

action 

pseudo-haptic 

feedback 

Pseudo-haptic feedback increased users’ 

accuracy in difficult steering-targeting 

tasks. 
6, 7 

Due to user expectation of high fluidity in 

touchless, pseudo-haptic resistance was 

often perceived as sensor malfunctions. 

 

The core research areas that this dissertation set out to explore were input, 

feedback, and interface affordances in touchless target selection (see Figure 3.2., 

Chapter 3). However, the findings can be better categorized as informing visual 

perception and motor action. 

Visual perception 

 I explored visual perception primarily through visual feedback (Chapter 4) and 

Gestalt theories (Chapter 9)—both in 2D. Understanding visual perception was also 

significant to represent image schemas while designing motor-intuitive touchless 

interaction primitives (directional strokes, Chapter 5) and augmenting pseudo-haptic 

feedback in touchless steering-targeting (interface topographies, section 6.2). Notably, 

all these findings cannot be generalized to three-dimensional systems, such as gestural 

interaction in augmented or mixed reality or with head-mounted displays.  
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 We found continuous visual feedback significantly improving user performance 

over object-oriented partial feedback (e.g., continually showing user’s position as a 

touchless cursor on the display rather than highlighting a folder when the user is over it); 

50% transparent cursors were preferred over opaque ones; semantic feedback and 

feedforwarding assisted users to reorient themselves when their gestures were out of 

the display range, but feedback echoing users’ trajectory degraded performance during 

drag-and-drop tasks. Results suggest that, although touchless heavily relies on visual 

feedback, suitable feedback is not about providing maximum information, but sufficient 

information to allow users build a mental model of the interaction at hand.  

 While designing touchless interaction primitives (e.g., directional strokes), visual 

cues played an important role in representing image schemas and ensuring that users 

draw from the sensorimotor level of knowledge. We used an allocentric frame of 

reference instead of an egocentric one commonly found in immersive, avatar-based 

games. The space schemas in mid-air directional strokes were represented as straight 

lines in eight compass directions (e.g., north, south, or north-east). Although, user 

performance of crossing in different directions was affected by bio-mechanical 

constraints (see Chapter 5), average accuracy was around 12 degrees—compared with 

multiple earlier findings, where users’ 3D strokes were inaccurate, to the extent of being 

infeasible.  

 Visual perception also became important when designing pseudo-haptic 

feedback for touchless steering-targeting. Manipulating visual feedback (in terms of 

control-display gain of the cursor, isometric to the users’ motor movements) is a crucial 

ingredient in pseudo-haptic feedback (see chapters 6 and 7). But we augmented the 

traditional method with additional visual feedback to address users’ confusion between 

haptic resistance and technological failure. Pseudo-haptic feedback generates the 

illusion of lateral forces when perusing an interface, similar to force-feedback devices. In 

touchless, this kind of feedback can address the lack of any haptic guidance. However, 

because of no input device and extreme reliance on proprioception, pseudo-haptic 

feedback in touchless was often confused as malfunctioning motion tracking—in a sense 

that any resistance to move freely was perceived as a constraint than a guidance. The 

expectation of abundant fluidity in touchless was violated by traditional rendering of 

pseudo-haptic feedback. Thus we augmented pseudo-haptic feedback with semantic 

visual feedback: a visualization of how much tensor force is currently at play and how 

much more is required to free the resistance (see Figure 6.13). Our design heuristics 
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illustrate how visual feedback can bridge the gap between user expectation of fluidity in 

touchless and user requirement of guidance for improvements in task accuracy.     

 Finally, visual perception was explored through Gestalt theories of similarity and 

continuity. Similarity between user interface (UI) components—the action signifier and 

the object of action—decreased user accuracy, but did not affect performance time. 

Good continuity in UI components made users faster, but did not affect accuracy. 

Results also suggested that symmetry in UI—another Gestalt principle in visual 

perception (see Figure 9.2)—may have trumped a lack of good continuity in increasing 

user efficiency.    

 Overall, our findings indicate the crucial role of visual perception in touchless 

interactions, informing future designs of feedback and feedforward routines and the 

design of UI components.  

Motor action 

 Motor action in touchless target selection was primarily explored through the 

work on touchless input and nondominant hand performance. Across the dissertation 

research, we studied three kinds of target selection methods. Mostly, we studied target 

selection by crossing. Chapter 4 also reports target selection by the dynamic gesture 

push—making orthogonal movements toward the display, and Chapter 7 discusses 

target selection by steering along a vertical or circular path. 

 Chapter 6 detailed the bio-mechanical factors affecting touchless target selection 

by crossing. We found user performance excels in their dominant sub-hemisphere, 

degrading at the poles and at the nondominant sub-hemisphere due to bilateral 

inhibition. We also found, quite interestingly, that accuracy of directional strokes (within 

dominant hand) significantly increased as movements became longer (see Figure 5.6). 

We think that this finding can be attributed to Todor & Doane’s (1978) theory of motor 

behavior and its relation to hemispheric asymmetry: short movements using 

preprogrammed motor plans was inhibited by the use of dominant hand compared with 

more feedback control required in longer movements.   

In Chapter 5, we explained why making orthogonal movements toward the 

display—in a push or hover gesture—can create ambiguity between translation and 

intended action. When reaching for targets on a distant display, users tend to choose a 

motion trajectory based on minimum energy cost (similar to what we do in our everyday 

environment while reaching for a physical object)—not a set of orthogonal movements. 
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We think that this tendency can also be explained by motor Gestalt—human preference 

toward making holistic gestures or chunking motor actions. 

 Results suggested that the untrained nondominant hand does not perform better 

than the dominant hand in touchless steering-targeting. However, the experimental task 

we used may have limited the generalizability of the results: the circular steering task 

(with or without pseudo-haptic feedback) may have required greater demands of 

feedback control, thus neutralizing the advantage of preprogrammed motor plans in 

touchless. When users first performed the task with their dominant hand with pseudo-

haptic feedback in some of the trials, their left hand performance was significantly better 

than no prior learning. These findings suggest that the additional feedback in dominant-

hand condition must have augmented the motor skill learning in touchless circular 

steering-targeting, which was later transferred to the nondominant hand. 

 Through this dissertation, I uncovered fundamental knowledge about touchless 

interaction mechanics in target selection. Broadly speaking, we found support that (1) 

Gestalt principles of visual perception affect touchless performance; (2) hemispheric 

asymmetry plays a role in bilateral transfer of motor skill and touchless performance with 

the dominant hand improves when pre-programmed motor planning is less involved than 

feedback control; (3) semantic visual feedback is more advantageous than echo 

feedback; (4) motor-intuitive interaction primitives must draw on users’ sensorimotor 

level of knowledge; (5) 2D directional strokes based on space schemas are motor-

intuitive; and (6) pseudo-haptic feedback can improve accuracy of steering-targeting 

tasks requiring greater overall precision.  

These findings are, however, limited to our controlled lab settings. Future work 

needs to build touchless systems informed by these results and test them in different 

contexts of use. In the last Chapter, I conclude with overall contributions of this 

dissertation, and discuss some future directions for touchless interaction research.  

10.2. Reflections 

In this section, I reflect on the evolution of this dissertation as a scientific inquiry 

and discuss my methodological stance in HCI research. I also comment on the concept 

of natural or intuitive, particularly how this dissertation research shaped my 

understanding of intuitiveness as a property of an interaction modality. By reflecting on 

this research holistically, this is an attempt to capture a personal trajectory of this work. 
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10.2.1. Is naturalness a legacy bias? 

So far, the biggest propeller of touchless interactions has been the often-used 

adjective ‘natural’. Because computerized systems, such as the TV, oven, or the car 

dashboard involves different interaction modalities and techniques, a majority of which 

needs extensive learning, natural user interfaces imply a panacea—no prerequisite to 

familiarize.  

The alternative claim that natural user interfaces are not natural served as the 

starting point for this dissertation. That touchless gestures do not equate to everyday 

gestures was strongly argued by Norman in 2010. Indeed, touchless interactions 

resemble day-to-day gestures, but that does not deem them to be natural or intuitive. 

Over the last few years, many researchers have urged not to make that precipitous 

conclusion. I agree with them. My work began with operationalizing intuitiveness using 

the concept of the continuum of knowledge in intuitive interaction (Chapter 5). Similar to 

the intuitive interaction continuum where the higher up the framework the specialized the 

knowledge, what kind of user abilities interactions draw on would determine its 

naturalness. For example, since image schema is a sensorimotor knowledge, interaction 

primitives based on image schema would be natural; rather more natural than using a 

random combination of fingers as commands, because finger combination to touchless-

command mapping would be an expertise. This is a positivistic approach toward 

naturalness—determining what is natural vs. what is not. Alternatively, 

phenomenological approaches, particularly the situated approach would look at how 

touchless experience blend into communities of practice. If the blending entails a natural 

experience, then the interaction modality in use is natural or intuitive in that context. 

Nevertheless, these two approaches are complementary.  

Although the dissertation always remained at the level of interaction mechanics, 

i.e., exploring sensorimotor relations, the later chapters focused on uncovering 

affordances in touchless interactions primarily. For instance, consider the work on 

perceptual Gestalt (chapter 9). In the phenomenology of perception, Merleau-Ponty 

deems perception as a dialectical relation between the body and the world and 

acknowledges that the concept of Gestalt is essential to understand the basis of 

perception. To that end, instead of attempting to represent intuitiveness, that chapter 

uncovered perceptual grouping effects in touchless interactions, thus contributing to 

understating the role of physicality in embodied sensemaking. Although the primary role 

of Gestalt grouping principles is helping individuals perceive the world, my findings 
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indicated that perceptual grouping on visual displays could affect motor actions, 

particularly in interaction modalities relying heavily on visual perception. Studying 

touchless interaction with 2D displays provided the unique opportunity to discover how 

perceptual grouping effects extend beyond visual sensemaking to motor responses. 

While I argued for operationalizing intuitiveness using the extent to which prior 

knowledge can be unconsciously applied, the legacy bias concept considers prior 

experience a hindrance in capitalizing the full potential of novel interaction modalities. 

Legacy bias has been observed in touchless gesture elicitation studies: Users draw 

heavily on the skills of traditional interactions, such as the mouse or keyboard. 

Researchers report an explicit desire of users to transfer knowledge from legacy 

modalities, thus limiting the elicitation of interaction possibilities. When asked to propose 

different interaction possibilities in terms of touchless gestures, individuals frequently 

thought within the frame of reference of the known interaction techniques, primarily to 

minimize the physical and mental exertion. For example, a mid-air gesture resembling 

the mouse click, but without the mouse and in a vertical stance, is often described by 

users as a natural way for target selection. It is important to note that this kind of ‘natural’ 

designation is biased by legacy interaction techniques, which is different from the 

operationalization of naturalness or intuitiveness provided in chapter 5.  

In sum, my research inquiry focused on investigating intuitiveness in touchless 

interactions through uncovering affordances. I argue that this approach can inform future 

explorations of intuitiveness in touchless interactions or other novel interaction 

modalities, which are susceptive to legacy bias and whose technological possibilities are 

still evolving.  

10.2.2. Why study interaction mechanics? 

As I discussed in the introduction, a majority of the current touchless research 

focuses on input and interface design separately. For example, elicitation studies 

determine which mid-air gestures users would find natural as touchless commands and 

interface design studies user performance for interaction techniques. What remains little 

explored are the interaction mechanics or understanding touchless interaction as a 

sensorimotor phenomenon. Investigating interaction mechanics give researchers a 

unique opportunity to study an interaction modality in a bottom-up approach: to take a 

theoretical stance and understand what user abilities can inform interaction primitives or 

interface commands. Furthermore, it paves the way for a systematic exploration of how 

factors affecting those user abilities influence the interaction performance. For example, 
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because touchless interactions rely heavily on visual perception, the Gestalt principles of 

perceptual grouping were studied in chapter 9. 

Studying interaction mechanics can play a significant role in designing 

techniques for interaction modalities that are like real, but not a replica of the physical 

world. In line with the forecast of ubiquitous computing, computers are increasingly 

getting blended into our daily life. Moreover, interaction modalities that draw on people’s 

perceptual senses, such as touch, voice, or even smell, and day-to-day actions, such as 

gesture, speech, or applying force, are becoming popular. As this trend continues, it is 

essential that we determine the similarities of these modalities with the real-word—and 

their differences. Looking at interactions as a sensorimotor phenomenon helps in 

studying input, interface, and feedback altogether, which can inform the design of future 

interfaces. 

Similarities of interaction modalities to day-to-day actions can lead to new 

challenges, such as mode switching. For instance, when are people using gestures for 

communicating with a friend, or a pet, compared with gestures for interacting with their 

TV? Or when is someone forcing on a device for getting a grip, compared to force touch 

as a command? When is speech a voice command? Both research studies and 

commercial solutions continue to explore mode switching in such ‘natural’ user 

interaction modalities, like voice commands. The more interaction modalities resemble 

people’s daily actions, the more important it is to provide effective ways for mode 

switches.  

10.2.3. HCI as problem-solving 

This dissertation presented use-driven basic research, which entails conducting 

basic research inspired by use cases. Touchless interaction with distant, vertical, 2D, 

large displays was selected owing to its increasing exploration in a variety of domains 

(reviewed in chapter 2). Although controlled studies cannot cater to the contextual 

understanding of interactions, they play an important role in exploring well-defined 

phenomena. For instance, in graphical user interfaces, pointer acceleration or adaptive 

control-display gain was first investigated in controlled settings with proven benefits, and 

then adapted widely in both Windows and Macintosh operating systems in practice. A 

similar research trajectory was followed in other interaction designs, such as the 

Microsoft Office ribbon or semantic pointing. Because in-the-wild studies suffer from 

limited control, it is often challenging to uncover what design decisions ultimately went 

on to benefit the overall user performance.  
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But then what aspects of interaction design should be tested in controlled 

studies? I argue for grounding empirical investigation in pertinent theories. For example, 

experiments in this dissertation tested hypothesis generated from theories in more 

traditional fields, cognitive science and motor behavior. A theoretical grounding can 

provide testable hypothesis when inquiring HCI design principles. This approach is 

complementary to implementing prototypes and studying them in practice.  While the 

situated approach possesses higher ecological validity and generalizability, controlled 

experiments provide high internal validity. Furthermore, it is important to note that the 

research approach must be justified by the research question at hand. Technology 

adoption of robotic nurses is not suited to be studied in controlled laboratory settings. 

Similarly, whether UI components exhibiting the Gestalt principle of symmetry decreases 

user accuracy is unlikely to be figured out through field deployments of a mid-air 

keyboard. I chose the controlled laboratory setting because of this dissertation’s 

research questions, which were well-defined and well-grounded in theory and 

susceptible to external confounds such as the context of use (gaming vs. work or sitting 

vs. standing). However, I believe the next step to controlled studies is in-the-wild follow-

ups in different contexts. Contextual studies integrating the results of controlled studies 

are not suitable for hypothesis testing, but for exploring generalizability and ecological 

validity. Maybe one finding from a laboratory study would not improve user experience 

substantially, as perceived within a context of use, but a set of findings would sum up to 

a better user experience. 
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Chapter 11. Conclusion and open problems 

In this final Chapter of the dissertation, I revisit the premise of this work, provide 

a summary of contributions, and discuss two future directions for exploring touchless 

interaction mechanics. 

11.1. Conclusion 

 The premise of this work was to understand touchless as a sensorimotor 

phenomenon and present the generated knowledge to inform future touchless 

interaction design. Instead of a reactive adaptation to the ever-evolving sensing 

technology, I urged for an exploration of touchless interaction mechanics. To that end, I 

focused on the device-less property of touchless, looking at it from an embodied 

interaction perspective: what does a ‘lack of a tool’ entail in touchless interaction 

mechanics? I particularly studied target selection in touchless—a key user interaction, 

and found significant effects of several facets of visual perception and motor action, such 

as a good Gestalt continuity in user interface (UI) components made users faster and a 

hemispheric asymmetry improved the dominant hand performance when pre-

programmed motor planning was less involved than feedback control. 

 This dissertation presented basic findings that can inform touchless interaction 

design and also introduced two novel interaction techniques: touchless circular menus 

and interface topographies. Touchless circular menus demonstrated target selection 

using 2D directional strokes—a motor-intuitive touchless interaction primitive. They were 

found to be more efficient but less accurate than grab-gesture based linear menus—and 

further affected by biomechanical factors. To improve touchless accuracy, interface 

topographies employed pseudo-haptic feedback; but accuracy improved only for difficult 

steering-targeting tasks.    

11.2. Contribution to human-computer interaction 

 This work contributes to human-computer interaction by informing future 

touchless interaction designs. Within target selection, I presented several findings on 

touchless interaction mechanics—broadly classified into aspects of visual perception 

and motor action. In what follows, I highlight the most significant contributions of this 

work: 

 Motor-intuitive touchless interactions. This work operationalized intuitiveness 

in touchless interactions using the continuum of knowledge in intuitive interaction. 

I further defined motor-intuitive as a property of a touchless interaction primitive, 

where the interaction mechanics draw from users’ sensorimotor level of 
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knowledge. We demonstrated this with an example primitive, two-dimensional 

directional strokes that draw on space schemas, and also evaluated their 

performance in controlled settings. 

 Touchless interaction primitives. Instead of eliciting gestures from users or 

directly emulating interaction primitives of more traditional modalities (e.g., 

mouse- or pen-based interfaces), my work urged for examining touchless 

interaction primitives through the lens of affordance and ability: how interaction 

techniques can realize interface affordances and user abilities suitably. For 

example, I identified the strength and limitations of several interaction primitives 

that make up target-selection controls, such as the translation-action ambiguity in 

a push gesture or the gesture-relaxation problem in a crossing gesture. My 

stance is not that touchless systems should always be designed bottom-up, from 

interaction primitives to interface controls. Rather, my work can complement the 

top-down touchless research that elicits user-preferred gestural interactions by 

identifying the primitives involved and gauging their effectiveness.   

 Touchless user interface. Findings of this dissertation also contribute to the 

design of user interfaces (UI) for touchless systems. For example, we found that 

Gestalt theories of visual perception and biomechanical factors affected user 

performance. Drawing on these findings, we proposed design guidelines for UI 

components as well as implications for further research (e.g., making UI 

components represent good continuity to make users faster or providing less 

frequently used commands on the non-dominant hemisphere in a circular menu). 

 Touchless circular menus (TCM). For interacting with large displays, we 

introduced a touchless command selection technique using 2D directional 

strokes. TCM is an alternative to posture-based selection techniques, such as 

finger menus or grab. In our user evaluations, TCM was faster but less accurate 

than a grab-based linear menu. 

 Interface topographies. Touchless interactions afford ample fluidity due to the 

absence of an input device constraining free movements. Such fluidity, however, 

makes touchless input imprecise, difficult to control, and frequently tiring. We 

introduced interface topographies to provide guidance around UI components 

using pseudo-haptic feedback. While some techniques like air voxels and tactile 

feedback have been previously explored to provide haptic feedback in touchless, 

they use dedicated setups or wearable hand gloves. In contrast, our proposed 
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method only involved manipulating the control-display ratio of the touchless 

interface. 

 Touchless transfer of training. Finally, we provided insights on bilateral 

transfer of training in touchless interactions. In circular steering-targeting tasks, 

we found dominant hand excels in performance over the nondominant hand; but 

the nondominant hand performs significantly better, if the dominant hand is 

trained with pseudo-haptic feedback before. However, further research is 

required to investigate transfer of training in other touchless tasks. 

 Overall, this work took a basic science approach toward understanding touchless 

interaction and presented design insights. Future work needs to explore their relevance 

in actual systems, such as in large display interaction or mixed-device ecologies. Other 

than adapting the proposed design insights into building touchless systems in different 

domains, two other important directions for future work on touchless interaction 

mechanics are motor Gestalt and touchless pointing.   

11.3. Motor Gestalt 

 Recent advances in motor science have found the effect of Gestalt theories in 

motor action (Klapp & Jagacinski, 2011). A recent review analyzed reaction-time results 

from previous studies and argued that four fundamental Gestalt principles in perception 

also apply to the control of motor action—holism, constancy, mutual exclusivity, and 

grouping in apparent motion. For example, certain motor actions, such as articulating a 

syllable during speech or making quick taps indicate the presence of motor Gestalts 

(chunks). In other works, the effect of Gestalt principles has been found in tactile 

perception (Gallace & Spence, 2011). This dissertation showed that touchless user 

interface (UI) designs can also be informed by Gestalt theories. But our focus was the 

visual design of the UI. An obvious trajectory of this research is to investigate motor 

Gestalt in touchless: How touchless gesture design can draw on Gestalt principles in the 

control of motor action? This research is both timely and significant, as it complements 

the ongoing research on mid-air text entry (Markussen et al., 2014), mid-air drawing 

(Taele & Hammond, 2014), and the general pursuit of an intuitive touchless gesture 

vocabulary. 

 Recent research has already begun to look at aspects similar to motor Gestalt, 

such as rhythmic patterns in touchless gestures (Carter, Velloso, Downs, Sellen, O'Hara, 

& Vetere, 2016) or the unique stimulus-response incompatibility due to the decoupling 
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between visual and motor space (Markussen et al., 2014). It will be interesting to explore 

what features of touchless gestures are favorable to make the interactions intuitive.  

11.4. Touchless pointing 

 This dissertation did not explore touchless pointing. Pointing in mid-air, however, 

is a significant area of research. Although pointing is extensively studied in desktop 

interfaces (Casiez et al., 2008), touchless pointing involves several new challenges, 

some of which are specific to application domains. For example, while interacting with 

large displays, pointing in the mid-air involves large gains in the control-display ratio and 

clutching issues. Furthermore, there may be pointer acceleration and variable control-

display gains. Ongoing research is exploring these issues, such as designing sub-space 

gestures, where users can dynamically design a personal interaction space for effective 

clutching (Rateau, Grisoni, & De Araujo, 2014), or using the tow-part Welford’s model to 

capture mid-air pointing in large-display interaction (Shoemaker et al., 2012).  

 Shoemaker et al. (2012) found that Fitts’s law does not appropriately model mid-

air pointing on very large displays; instead, they showed that the two-part Welford’s 

model is a better fit for constant control-display gains in large-display pointing. 

Previously, Fitts’s law has been adapted in several ways, like for semantic pointing 

(Blanch, Guiard, & Beaudouin-Lafon, 2004) or virtual worlds (Balakrishnan, 2004). The 

overarching theory supporting the two-part model argues that pointing involves two 

distinct sensorimotor processes, one causing the initial ballistic movement and another 

the corrective movement, and while the ballistic movement depends on the amplitude of 

a target, the corrective movement depends on the target width. Thus, if these two 

processes occur at different rates, they would require different coefficients. 

 Future research could explore two directions related to touchless pointing: (1) 

model pointer acceleration and variable gain in touchless pointing on large displays or 

(2) investigate visual and pseudo-haptic feedback toward improving pointing accuracy. 

Effective clutching techniques in touchless pointing also remains an open problem.  
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Appendices 

Appendix A. Visual Feedback 

A.1.Training 

During the training session in the first round of the study (experiments 1 - 5), 

participants practiced select and de-select gestures by solving a picture puzzle (Figure 

A1). They rearranged a puzzle using drag-and-drop operations. Each participant 

completed three picture puzzles, and on average took 10 – 15 minutes to complete all 

three of them.  

 

Figure A1. During the training session in the first round of the study, participants 

practiced select and de-select gestures by solving a picture puzzle. 

A.2. Color Conversion from Munsell Notation to RGB 

Five Munsell colors (Fig.1, p. 139, Smith and Thomas, 1964)—red, green, blue, 

yellow and white was used in experiment 2. Munsell notation was converted to RGB hex 

values using an R script. An example of the conversion code for color green (2.5G 5/8) 

is given below: 

library(aqp) 

library(colorspace) 

rgbVal <- expand.grid(hue='2.5G', value=5,chroma=8) 

rgbVal.rgb <- with(rgbVal, munsell2rgb(hue, value, 

chroma,return_triplets=TRUE)) 

newRgb = rgb(rgbVal.rgb$r, rgbVal.rgb$g, rgbVal.rgb$b) 

After conversion, each color corresponded to a hex color code: green (2.5G 5/8) 

to #238C57; blue (5BG 4/5) to #156D69; white (5Y 8/4) to #D9CA93; red (5R 4/9) to 

#A34143; and yellow (10YR 6/10) to #C68A13. 
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A.3. Stoppers—Semantic Feedback for Out-of-Range Gestures 

 

Figure A2. A user points in mid-air to a target folder on a large display (left); Stoppers 

provide visual feedback as the user’s gesture goes out of the display range (center) and 

guide her back within the display range (right). 

 

Figure A3. By introducing persistent visual feedback as users move out of the display 

range (center), Stoppers decrease users’ disorientation and facilitate the recovery of 

touchless gestures within the display range (right). 

 

Figure A4. In the second round, participants performed a pointing task with targets (256 

pixels x 256 pixels) randomly appearing at the top, left or right border of the large 

display. 
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Appendix B. Preliminary work on touchless Gestalt 

While conducting controlled experiments to study command-selection techniques 

(Chapter 6) for large-display touchless interactions, we observed certain performance 

trends that were unnoticed by users. Visual elements of the UI affected users’ 

effectiveness (e.g., aiming a menu for command-selection). Interestingly, our findings 

could be explained by Gestalt principles of perceptual grouping: similarity of shape. 

Across our experiments, users sat about 1.5 – 2.5m away from a large display (4 

x 1.5m) and were tracked by Kinect sensors.  

 

Figure B1. Perceptual grouping by Similarity of shape principle affected the efficiency of 

touchless interaction: Expert users were faster when crossing-to-select a rectangular 

menu option than a circular menu option with a circular cursor. 

Similarity of shape decreases efficiency  

To relieve users from strictly complying with system-defined postures as 

interaction commands, we introduced a command-selection technique using mid-air 

strokes—Touchless Circular Menus (Chapter 6). To trigger the contextual TCM, users 

would land on the target folder, and to select a command, users would simply cross the 

menu option (Figure B2). In our early iterations, the menu options (230px) were circular, 

isomorphic to the cursor (256px). During pilot testing with three expert users, we found 

them slowing down while crossing the menu-option. When the cursor was over the 

menu-option, users would tend to slow down as if they were placing the cursor over the 

menu-option, rather than crossing it (in spite of prior instructions and practice trials). The 

menu options were about 800 pixels away from the folder (13.7cm in control space). 

When the menu options were modified to rectangles (at the same distance), users 

became significantly faster. This occurred in spite of users essentially traversing the 

same distance: For circular options, users had to move across half the menu-option, and 
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for rectangles cross the entire menu-option. Shape of the menu options (circular, M = 

2.99s, SD = 2.0; rectangular, M = 2.31s, SD = 0.76) significantly affected efficiency 

(Log10 reaction time) with a small effect size, n = 161, t(160) = 4.19, p < .001, d = .33.  

This finding can be explained using the Gestalt principle of perceptual grouping 

by similarity of shape: all else being equal, the most similar visual elements in shape 

tend to be grouped together (Wagemans et al., 2012a). Our results suggested that users 

must have perceived the circular cursor and the circular menu-option as a group—at 

least momentarily—and thus slowed their motor action to discriminate between the 

object of action (the circular menu option) and the symbolic referent of their action (the 

circular cursor).   

Limitations 

Our findings are posteriori arguments and are limited by our tracking sensors. 

Other limitations include not explicitly controlling for the index of difficulty in the crossing-

based trials, expert users, and a small sample size. 
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