7,815 research outputs found

    The Method of Auxiliary Sources as an Efficient Numerical Technique for Large 3D Semi Open Structures

    Get PDF
    The method of auxiliary sources (MAS) has been demonstrated as suitable for solution of diffraction and inverse problems in complex 2D large objects. Based on MAS numerical study of 3D RCS, EMC/EMI and SAR problems, related to the EM field resonance enhancement inside vehicles and the interaction of the cellular telephone radiation with the user\u27\u27s head are given in other work. The objective of this paper is to present details of MAS application to the wide 3D electrodynamic problems. The area of its efficient application, some features and advantages to achieving efficient solutions, are discussed. The extension of the MAS for semi-open structures with partitions is also presented

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Improved electromagnetic compatibility standards for the interconnected wireless world

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The future is wireless, a world where everything is interconnected. However, the current standards for ensuring the electromagnetic compatibility (EMC) and the coexistence of such wireless systems urge for a major update. It is shown how novel statistical approaches based on the amplitude probability distribution detector and time-domain measurements are better suited for estimating the degradation caused by electromagnetic interferences on digital communication systems than the established practice of determining compliance according to the quasi-peak detector levels using a pass/fail criterion. Therefore, a redefinition of the test methods and of the compliance requirements in terms of EMC standards must be a priority of the international standardization bodies. Finally, a discussion of the fundamental challenges involved in this standardization breakthrough for EMC is delivered.Postprint (author's final draft

    A3 thinking approach to support knowledge-driven design

    Get PDF
    Problem solving is a crucial skill in product development. Any lack of effective decision making at an early design stage will affect productivity and increase costs and the lead time for the other stages of the product development life cycle. This could be improved by the use of a simple and informative approach which allows the designers and engineers to make decisions in product design by providing useful knowledge. This paper presents a novel A3 thinking approach to problem solving in product design, and provides a new A3 template which is structured from a combination of customised elements (e.g. the 8 Disciplines approach) and reflection practice. This approach was validated using a case study in the Electromagnetic Compatibility (EMC) design issue for an automotive electrical sub-assembly product. The main advantage of the developed approach is to create and capture the useful knowledge in a simple manner. Moreover, the approach provides a reflection section allowing the designers to turn their experience of design problem solving into proper learning and to represent their understanding of the design solution. These will be systematically structured (e.g. as a design checklist) to be circulated and shared as a reference for future design projects. Thus, the recurrence of similar design problems will be prevented and will aid the designers in adopting the expected EMC test results

    FDTD modeling of heatsink RF characteristics for EMC mitigation

    Get PDF
    Due to their size and complex geometry, large heatsinks such as those used in the power electronics industry may enhance the radiated emissions produced by the circuits employing them. Such enhancement of the radio frequency (rf) radiation could cause the equipment to malfunction or to contravene current EMC regulations. In this paper, the electromagnetic resonant effects of heatsinks are examined using the finite-difference time-domain (FDTD) method and recommendations are made concerning the optimum geometry of heatsinks and the placement of components so as to mitigate potential EMC effects

    What Do Americans Think About Federal Tax Options To Support Transportation? Results From Year Nine of a National Survey

    Get PDF
    This report summarizes the results of the ninth year of a national random-digit-dial public opinion survey asking 1,201 respondents if they would support various tax options for raising federal transportation revenues. The ten specific tax options tested were seven variations on raising the federal gas tax rate, two variations on a new mileage tax, and creating a new federal sales tax. In addition, the survey collected data on standard sociodemographic factors, travel behavior (annual miles driven and vehicle fuel efficiency), respondents’ views on the quality of their local transportation system, and their priorities for government spending on transportation in their state. All of this information is used to assess support levels for the tax options among different population subgroups. The survey results show that a majority of Americans would support higher taxes for transportation – under certain conditions. For example, 72% of respondents supported a gas tax increase of 10¢ per gallon to improve road maintenance, whereas support dropped to just 34% if the revenues were to be used more generally to maintain and improve the transportation system. For tax options where the revenues were to be spent for undefined transportation purposes, support levels varied considerably by what kind of tax would be imposed, with a sales tax much more popular than either a gas tax increase or a new mileage tax

    Emc aerospace systems analysis Interim scientific report

    Get PDF
    Analysis and data requirements for solving potential aerospace electromagnetic compatibility problem

    Span morphing using the compliant spar

    No full text
    This paper develops and models the Compliant Spar concept that allows the wing span to be varied to provide roll control and enhance the operational performance for a medium altitude long endurance (MALE) UAV. The wing semi-span is split into morphing partitions and the concept maybe incorporated in each partition; however only the tip partition is considered here. The Compliant Spar is made of compliant joints arrange in series to allow the partition to be flexible under axial (spanwise) loads but at the same time stiff enough to resist bending loads. Each compliant joint consists of two concentric overlapping AL 2024-T3 tubes joined together using elastomeric material. Under axial (spanwise) loading, the elastomeric material deforms in shear allowing the overlapping distance between the tubes to vary and hence the length (in the spanwise direction) of the joint/spar to vary. High fidelity modelling of the concept is performed. Then, structural optimisation studies are performed to minimise the axial stiffness and the structural mass of the concept for various design constraints. The flexible skin and actuation system to be used are also addressed
    • …
    corecore