4,994 research outputs found

    Uncertainty Management and Evidential Reasoning with Structured Knowledge

    Get PDF
    This research addresses two intensive computational problems of reasoning under uncertainty in artificial intelligence. The first problem is to study the strategy for belief propagation over networks. The second problem is to explore properties of operations which construe the behaviour of those factors in the networks. In the study of operations for computing belief combination over a network model, the computational characteristics of operations are modelled by a set of axioms which are in conformity with human inductive and deductive reasoning. According to different topological connection of networks, we investigate four types of operations. These operations successfully present desirable results in the face of dependent, less informative, and conflicting evidences. As the connections in networks are complex, there exists a number of possible ways for belief propagation. An efficient graph decomposition technique has been used which converts the complicated networks into simply connected ones. This strategy integrates the logic and probabilistic aspects inference, and by using the four types of operations for its computation it gains the advantage of better description of results (interval-valued representation) and less information needed. The performance of this proposed techniques can be seen in the example for assessing civil engineering structure damage and results are in tune with intuition of practicing civil engineers

    The effect of heterogeneity on invasion in spatial epidemics: from theory to experimental evidence in a model system

    Get PDF
    Heterogeneity in host populations is an important factor affecting the ability of a pathogen to invade, yet the quantitative investigation of its effects on epidemic spread is still an open problem. In this paper, we test recent theoretical results, which extend the established “percolation paradigm” to the spread of a pathogen in discrete heterogeneous host populations. In particular, we test the hypothesis that the probability of epidemic invasion decreases when host heterogeneity is increased. We use replicated experimental microcosms, in which the ubiquitous pathogenic fungus Rhizoctonia solani grows through a population of discrete nutrient sites on a lattice, with nutrient sites representing hosts. The degree of host heterogeneity within different populations is adjusted by changing the proportion and the nutrient concentration of nutrient sites. The experimental data are analysed via Bayesian inference methods, estimating pathogen transmission parameters for each individual population. We find a significant, negative correlation between heterogeneity and the probability of pathogen invasion, thereby validating the theory. The value of the correlation is also in remarkably good agreement with the theoretical predictions. We briefly discuss how our results can be exploited in the design and implementation of disease control strategies

    The Cognitive Virtues of Dynamic Networks

    No full text
    For the most part, studies in the network science literature tend to focus on networks whose functional connectivity is largely invariant with respect to some episode of collective information processing. In the real world, however, networks with highly dynamic functional topologies tend to be the norm. In order to improve our understanding of the effect of dynamic networks on collective cognitive processing, we explored the problem-solving abilities of synthetic agents in dynamic networks, where the links between agents were progressively added throughout the problem-solving process. The results support the conclusion that (at least in some task contexts) dynamic networks contribute to a better profile of problem-solving performance compared to static networks (whose topologies are fixed throughout the course of information processing). Furthermore, the results suggest that constructive networks (like those used in the present study) strike a productive balance between autonomy and social influence. When agents are allowed to operate independently at the beginning of a problem-solving process, and then later allowed to communicate, the result is often a better profile of collective performance than if extensive communication had been permitted from the very outset of the problem-solving process. These results are relevant, we suggest, to a range of phenomena, such as groupthink, the common knowledge effect and production blocking, all of which have been observed in group problem-solving contexts

    The path inference filter: model-based low-latency map matching of probe vehicle data

    Full text link
    We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 10 seconds and 2 minutes. We introduce a new class of algorithms, called altogether path inference filter (PIF), that maps GPS data in real time, for a variety of trade-offs and scenarios, and with a high throughput. Numerous prior approaches in map-matching can be shown to be special cases of the path inference filter presented in this article. We present an efficient procedure for automatically training the filter on new data, with or without ground truth observations. The framework is evaluated on a large San Francisco taxi dataset and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The path inference filter has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco, Sacramento, Stockholm and Porto.Comment: Preprint, 23 pages and 23 figure

    Graph Structures for Knowledge Representation and Reasoning

    Get PDF
    This open access book constitutes the thoroughly refereed post-conference proceedings of the 6th International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2020, held virtually in September 2020, associated with ECAI 2020, the 24th European Conference on Artificial Intelligence. The 7 revised full papers presented together with 2 invited contributions were reviewed and selected from 9 submissions. The contributions address various issues for knowledge representation and reasoning and the common graph-theoretic background, which allows to bridge the gap between the different communities

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Total positivity in exponential families with application to binary variables

    Full text link
    We study exponential families of distributions that are multivariate totally positive of order 2 (MTP2), show that these are convex exponential families, and derive conditions for existence of the MLE. Quadratic exponential familes of MTP2 distributions contain attractive Gaussian graphical models and ferromagnetic Ising models as special examples. We show that these are defined by intersecting the space of canonical parameters with a polyhedral cone whose faces correspond to conditional independence relations. Hence MTP2 serves as an implicit regularizer for quadratic exponential families and leads to sparsity in the estimated graphical model. We prove that the maximum likelihood estimator (MLE) in an MTP2 binary exponential family exists if and only if both of the sign patterns (1,−1)(1,-1) and (−1,1)(-1,1) are represented in the sample for every pair of variables; in particular, this implies that the MLE may exist with n=dn=d observations, in stark contrast to unrestricted binary exponential families where 2d2^d observations are required. Finally, we provide a novel and globally convergent algorithm for computing the MLE for MTP2 Ising models similar to iterative proportional scaling and apply it to the analysis of data from two psychological disorders
    • 

    corecore