We study exponential families of distributions that are multivariate totally
positive of order 2 (MTP2), show that these are convex exponential families,
and derive conditions for existence of the MLE. Quadratic exponential familes
of MTP2 distributions contain attractive Gaussian graphical models and
ferromagnetic Ising models as special examples. We show that these are defined
by intersecting the space of canonical parameters with a polyhedral cone whose
faces correspond to conditional independence relations. Hence MTP2 serves as an
implicit regularizer for quadratic exponential families and leads to sparsity
in the estimated graphical model. We prove that the maximum likelihood
estimator (MLE) in an MTP2 binary exponential family exists if and only if both
of the sign patterns (1,−1) and (−1,1) are represented in the sample for
every pair of variables; in particular, this implies that the MLE may exist
with n=d observations, in stark contrast to unrestricted binary exponential
families where 2d observations are required. Finally, we provide a novel and
globally convergent algorithm for computing the MLE for MTP2 Ising models
similar to iterative proportional scaling and apply it to the analysis of data
from two psychological disorders