
The Effect of Heterogeneity on Invasion in Spatial
Epidemics: From Theory to Experimental Evidence in a
Model System
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Abstract

Heterogeneity in host populations is an important factor affecting the ability of a pathogen to invade, yet the quantitative
investigation of its effects on epidemic spread is still an open problem. In this paper, we test recent theoretical results,
which extend the established ‘‘percolation paradigm’’ to the spread of a pathogen in discrete heterogeneous host
populations. In particular, we test the hypothesis that the probability of epidemic invasion decreases when host
heterogeneity is increased. We use replicated experimental microcosms, in which the ubiquitous pathogenic fungus
Rhizoctonia solani grows through a population of discrete nutrient sites on a lattice, with nutrient sites representing hosts.
The degree of host heterogeneity within different populations is adjusted by changing the proportion and the nutrient
concentration of nutrient sites. The experimental data are analysed via Bayesian inference methods, estimating pathogen
transmission parameters for each individual population. We find a significant, negative correlation between heterogeneity
and the probability of pathogen invasion, thereby validating the theory. The value of the correlation is also in remarkably
good agreement with the theoretical predictions. We briefly discuss how our results can be exploited in the design and
implementation of disease control strategies.
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Introduction

Host heterogeneity is receiving increasing attention as one of the

factors affecting the dynamics of epidemic spread. The properties

of individual hosts, such as contact rate, susceptibility, or

infectiousness, can vary across a population as a result of

environmental [1,2], genetic [3] and immunogenetic [4] factors.

Such variability is typically difficult to measure empirically, and

has been successfully quantified only in a few significant cases,

concerning plant [5], animal [6–10], and human diseases [6,7,11].

Even more important, a few studies [6,8–10,12] succeeded in

addressing a key epidemiological question: what is, if any, the

effect of individual variability on the risk of epidemic invasion [13]

(that is, the chance that a pathogen, starting from a single or a few

infected hosts, will be able to infect a significant proportion of the

whole population). For example, it was found that variations in

prevalence of E. coli O157 among cattle populations were best

explained by individual variability in bacterial load and infec-

tiousness[8]; in plant populations, the rate and pattern of disease

invasion were found to be influenced by variations in individual

susceptibility and transmission rates [2,14]. An important

consequence of these findings is that variability can affect invasion

thresholds, i.e., the critical values of the parameters of the system

(transmission rate, host density, etc.) that determine whether or not

a pathogen can invade [13,15]. Since invasion thresholds are a

central idea underlying most control strategies [13], the practical

implications are huge: it is known that control strategies can

benefit from the knowledge of host variability [11,12]; on the other

hand, such strategies can fail if variability is ignored and ‘‘averaged

out’’ [6,7,12], due to serious misestimation of the parameters of

the epidemic model [14]. However, despite such implications, and

a continuing effort to explore the problem with theoretical models

(e.g., for fully mixed populations [16–20], metapopulations models

[21,22], and complex networks [23–25]), rigorous experimental

testing has been limited, restricting our understanding of the

problem.

The experimental results presented here test for the first time

the existence of a link between host heterogeneity and epidemic

thresholds in a broad, relevant class of spatially-extended systems,

thereby confirming recent theoretical predictions [26]. The class

comprises those systems where the pathogen is transmitted

between neighbouring hosts: such mode of transmission is typical

of many diseases, such as soil-borne diseases in plant populations

[27–29]; plant pathogens spreading among neighbouring fields or
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farms [30]; animal pathogens spreading within populations of

hosts living in a fixed habitat [31,32]. A ‘‘percolation framework’’

[33], commonly used to describe these systems, is adopted here to

model epidemic spread and invasion. Percolation theory provides

conceptual tools that allow ‘‘scaling up’’ from pathogen

transmission at the small (between-host) scale to epidemic

invasion at the large (population) scale [27]. The use of this

framework for the identification of invasion thresholds has been

experimentally validated in a few remarkable cases [27,28,31,32].

Many diseases characterized by short-range transmission are also

well described by an SIR (susceptible–infected–removed) sto-

chastic model, where an infected host (I) can transmit the

pathogen to its susceptible (S) neighbours for some interval of

time, after which it is permanently recovered or removed (R); the

probability that transmission actually occurs before removal is the

transmissibility.

Previous experiments [27,28], using replicable microcosm

lattice systems as models for SIR soil-borne plant diseases,

succeeded in validating two key predictions from percolation

theory [34]: that invasion and threshold behaviour for SIR

diseases are controlled by the transmissibility; and that the

epidemic threshold value of the transmissibility coincides within

experimental precision with the ‘‘bond-percolation’’ threshold for

the system ([33]; see Text S1 for details). Hence, a pathogen

spreading on a lattice will never invade the population when the

transmissibility is lower than the bond percolation threshold, while

there will be a risk of invasion when the transmissibility is higher

[27,34].

The experiment described in the present paper is inspired by a

model by Neri et al. [26] that goes beyond the percolation-based

theory of SIR epidemics by including host variability in the

probability of transmission. In a homogeneous system, all the

hosts (once infected) are able to transmit the pathogen with the

same probability. Conversely, a heterogeneous system, typical of

most natural host populations, can be modelled by assuming that

the transmissibility is not constant across the population, but is a

random variable, drawn for each host from a given common

distribution [26]. Epidemic invasion in such systems can then be

characterized by two parameters: the average value of the

transmissibility over the population and its variance. The

variance is used as a measure of the heterogeneity of the system.

It was found [26] that both the average and variance of the

transmissibility contribute to invasion, but with opposite effects:

while the former increases the probability of invasion, the latter

leads to a decrease (Figure 1A). As a consequence, invasion can

be described by a phase diagram in the two-dimensional

parameter space for the average and variance of the transmis-

sibility (Figure 1B). The phase diagram contains two distinct

regions: a region with low average transmissibility and large

variance, where an epidemic will never invade the system (non-

invasive regime), and a region with large average transmissibility

and low variance, where the epidemic can invade (invasive

regime). Instead of a single threshold value for the transmisibility,

a threshold curve (phase boundary) separates the two regimes. A

further important result is that, in a given region of the phase

diagram (Figure 1B), it appears to be possible to ‘‘switch’’ a

system from being invasive to being non-invasive (or vice-versa) by

keeping the average transmissibility constant and changing only

the variance, i.e., by changing only the heterogeneity of the

system. The latter result is the main motivation for the present

experiment.

We use replicable microcosms [27,28] to test the predictions of

the heterogeneous SIR model[26]. We take advantage of an

experimentally validated paradigm [27,28], whereby the spread of

an SIR epidemic in a discrete host population is equivalent to, and

can be investigated by, the spread of fungi by mycelial growth

among a population of nutrient sites. We analyse the growth of the

ubiquitous pathogenic fungus Rhizoctonia solani in microcosm

populations composed of nutrient sites arranged on a lattice.

Here, the term ‘‘transmissibility’’ (which in this particular case is

related to infectiousness of donor sites, see Text S1) represents the

probability of fungal spread from one site to another. Our main

aim is to answer the following questions: does host heterogeneity

(measured by the variance of the transmissibility) affect the

probability of invasion, and if this is the case, how? We also ask: is

it possible to see an effect of heterogeneity on the threshold for

invasion of the system? Since our experiments are conducted on

relatively small populations, while tresholds are rigorously defined

only for infinite systems (Figure 1), we also address the question:

can thresholds for invasion be estimated from a small-scale

experiment?

We set up a series of notional experimental treatments

(replicated populations), designed in such a way to ensure an

appropriate range for the average and variance of the transmis-

sibility. The notional values of the parameters are chosen

according to the theoretical predictions of Neri et al. [26]: the

average transmissibility is the same for all the populations, while

the variance differs amongst treatments (cf. the dash-dotted line in

Figure 1D). This design allows us to determine how the probability

of invasion, calculated using spatio-temporal experimental maps,

changes with the variance. In practice, because of inherent

variability of the systems, replicates within the same treatment

differ. Accordingly, at the end of the experiment, we re-estimate

the values of the average and variance of the transmissibility for

each individual replicate from spatio-temporal maps, using

Bayesian Markov-chain Monte Carlo (MCMC) methods [35].

The new estimated parameters are then used for a statistical

analysis carried out on the pooled set of all the populations. The

pooled analysis proves to be effective in assessing the joint

contribution of average and variance of the transmissibility to the

probability of invasion.

Author Summary

Pathogen spread and epidemic invasion in plant, animal
and human populations depend on host properties
(infectivity, susceptibility) that can vary amongst hosts
within the same population. However, such host variability
(or heterogeneity) is typically difficult to control experi-
mentally, and little explicit research has been done on its
effects on pathogen invasion. We present the first
systematic investigation on the spread of a pathogen
(the fungal plant pathogen Rhizoctonia solani) in repeat-
able microcosm populations (nutrient sites, representing
hosts, on a lattice) with varying heterogeneity. Recent
theoretical models for heterogeneity make the following
prediction, that we set as our hypothesis: increasing
heterogeneity (keeping all other properties fixed) results in
a decrease of the probability of pathogen invasion. We
validate the hypothesis using a combination of statistical
methods. Moreover, we find that the decrease in
probability of invasion is also in good quantitative
agreement with the theoretical predictions. We discuss
how our results can be exploited for disease control
strategies that increase the heterogeneity of a system in
order to limit pathogen spread.

Effect of Heterogeneity on Epidemic Invasion
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Results

Invasive spread and individual rates in heterogeneous
populations

Six experimental treatments, labelled from A to F, were

designed (see below and Table S1), with 30 replicated populations

for each treatment. Each treatment corresponded to a population

of 217 nutrient sites (agar dots) arranged on a triangular lattice,

comprising a fraction, r, of ‘‘occupied’’ sites (randomly selected to

be occupied with nutrient), the remaining fraction 1{r being left

empty. Henceforth, the symbol y will used to denote transmis-

sibility in general; ysite for the transmissibility of a site with

nutrient; SyTpop and s2
pop for the mean and variance, respectively,

of the transmissibility over a population. The value of ysite

depends on the amount of nutrient (see Text S2 for the

determination of ysite). The population mean and variance of

the transmissibility of the experimental populations are given by:

SyTpop~rysite ð1aÞ

s2
pop~r 1{rð Þy2

site, ð1bÞ

and were controlled by adjusting r and ysite in order to keep

SyTpop^0:5 approximately constant for all treatments (cf. the

dash-dotted line in Figure 1D), while s2
pop was increased by regular

intervals, in alphabetical order, from A (homogeneous system) to F

(maximally heterogeneous system; see Text S1 for more details).

Figure 1. Epidemic invasion in heterogeneous populations: invasion probability and phase diagram. We consider systems of two
different sizes, on triangular lattices with the same topology as for the populations used in the experiment. The graphs were obtained with numerical
simulations (see Text S1 for details). The probability of epidemic invasion, P inv , is studied as a function of the mean, SyTpop, and the variance, s2

pop , of
the transmissibility over the system. (A) Probability of invasion for the larger system (24031 sites) as a function of the mean and variance of the
transmissibility. (B) Phase diagram for invasion, calculated numerically from (A). The solid line marks the phase boundary where the transition
between the invasive and the non-invasive regimes occurs (corresponding to the sharp jump in (A)). The quantities pbond

c ^0:347 and psite
c ~0:5 are

the bond- and site-percolation thresholds, respectively, for the triangular lattice. The white region beyond the parabolic thick curve corresponds to
combinations of values of SyTpop and s2

pop that are theoretically impossible. The large-size phase boundary is shown here to exemplify the (more
rigorously defined) phase boundary for infinite-size systems (see discussion in Text S1), for which it provides a good numerical approximation. (C)
P inv for the smaller system (217 sites). (D) Effective phase diagram for invasion in the small-size system calculated from (C): as expected for such
systems, the transition between the two regimes is ‘‘smeared out’’ across a broader region (delimited by solid lines corresponding to the values
P inv~0:05 and P inv~0:95). For systems of both sizes, it is possible to change invasion regime by changing the variance s2

pop only, with the average
SyTpop kept constant (dash-dotted lines in (B) and (D); the position of the line for the two systems is different owing to finite-size effects).
doi:10.1371/journal.pcbi.1002174.g001

Effect of Heterogeneity on Epidemic Invasion
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Spatio-temporal maps of fungal colonisation dynamics were

used, in order to count the cumulative number of colonised sites

over time, and to identify those replicates in which the fungus

spreads invasively (Figure 2). For each treatment, a fraction of the

replicates had to be discarded because of contamination from

external sources, leaving a total of 151 replicated populations out

of the initial 180. The fraction of invading replicates (Figure 2)

shows that the probability of invasion (P inv) decreased from

treatments A to F, following the predicted trend (Table S1). Going

from A to F, the fractions of available sites (i.e., occupied by

nutrient) reached by the colony also decreased (with the exception

of treatments E and F, probably due to stochasticity).

The variability in the final number of colonised sites amongst

replicates of the same treatment (Figure 2) can be attributed to two

distinct factors: (1) it was partly an effect of the stochastic nature of

the colonisation process, which is taken into account by our model,

but (2) it could also be caused by variations in the value of ysite

amongst different replicates, due to uncontrollable factors such as

variations in the environmental conditions amongst replicate

populations contained within different Petri plates. Within-

treatment variation of ysite, which is not accounted for in our

model, can also significantly change the probability of fungal

invasion. For this reason, re-assessment of ysite was conducted for

each individual replicate in order to test within-treatment

variation. In what follows, we call ysite(T ,r) the transmissibility

for replicate r of treatment T (T~A, . . . ,F), and byysite(T ,r) the

corresponding estimate (see Materials and Methods for definitions

and an explicit example).

In order to estimate ysite, we modelled the time evolution of the

probability of transmission between nutrient sites with a Weibull

function (see Materials and Methods for details), initially

characterized by a single rate of spread. However, preliminary

inspection of the population data showed two distinct stages for the

fungal colony spread: an initially slower process (first stage),

followed by a transition to a faster process (second stage). This

behaviour can be explained as an effect of nutrient translocation,

common to several fungal species [36,37]: mycelial colonies

growing from different nutrient sites are able to share resources, so

that their rate of spread increases with the number and

connectivity of colonised sites in the system. We accounted for

this effect by using a modified Weibull model: the new model

included two distinct rates, corresponding to the two stages of the

process, and the ‘‘switching’’ time of the transition from the slower

to the faster stage. We found that the two-rate model could

parametrise the data very efficiently, and provided a good

estimation of the posterior distribution for ysite (see Figures S2–4

in Text S3).

The analysis of posterior distributions for ysite(T ,r) for different

replicates, r, of the same treatment T , revealed considerable

differences from the notional values used for the experimental

design (summary statistics in Table S1; see Text S3 for the

complete set of results). In particular, byysite(T ,r) showed a

systematic shift to lower values of y for treatments D, E, F. On

average, byysite(T ,r) between treatments still increased from treat-

ment A to F. However, and most important, within-treatment

heterogeneity of ysite(T ,r) was in general large (Table S1). Such

Figure 2. Experimental colonisation curves for the six different treatments. (A–F) Individual colonisation curves for each of the replicates of
a treatment (thin lines) and the average over all the replicates (bold solid line). The upper limit of the vertical axis in all the panels concides with the
total number of sites in the population (i.e., 217), while the horizontal dashed line in treatments B to F marks the number of available sites (i.e.,
occupied by nutrient). The fraction of invading replicates per treatment is displayed in each panel as ‘‘number of invading replicates divided by total
number of replicates’’. (G) Comparison of average colonisation curves for all the treatments. (H) Comparison of average colonisation curves,
normalised to the total number of occupied sites per treatment.
doi:10.1371/journal.pcbi.1002174.g002

Effect of Heterogeneity on Epidemic Invasion
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heterogeneity can be modelled explicitly using a hierarchical

model [35] (Text S3). For the purpose of the present experiment,

however, the main outcome of this analysis is that deviations from

the initial, notional values of ysite (hence, of SyTpop and s2
pop)

within each treatment are significant. Hence, instead of the

nominal values of the parameters, we used the re-estimated values

for the final statistical analysis (Figure 3), which was carried out on

the pooled set of all the populations. For each population,byysite(T ,r) was used to obtain new estimates for the mean and

variance of the transmissibility, SbyyTpop(T ,r) and bs2s2
pop(T ,r)

(represented by circles and crosses, respectively, in the

SyTpop,s2
pop

� �
plane shown in Figure 3).

Experimental phase diagram for invasion
The data presented in Figure 3 provide evidence for the main

hypothesis of the paper: namely, that the variance as well as the

mean influence the probability of invasion. Two different statistical

tests were used to test the hypothesis. Linear discriminant analysis

(LDA) was used to find a linear separatrix between the invasive and

non-invasive regimes in the parameter space (solid line in Figure 1C;

discriminant function {3:56z10:46SyTpop{9:62s2
pop). The func-

tion classified correctly 75 out of the 79 non-invasive points in the

graph (95% success rate) and 49 out of the 72 invasive points (68%
success rate). Goodness-of-fit tests gave Wilks’L~0:503, pv0:001.

Remarkably, the linear separatrix approximates very well the

theoretical prediction for the phase boundary in an infinite system

(see Text S1), shown by the dash-dotted line in Figure 3 (and

approximated by the solid line for the large system in Figure 1B).

A multiple logistic regression test (function Y~b0zb1SyTpopz
b2s2

pop, with Y~ ln (P inv=(1{P inv))) was also conducted, moti-

vated by the fact that the theoretical 3D invasion curves (Figure 1)

can be well fitted by a multivariate logistic model. The values of

SyTpop(T ,r) and s2
pop(T ,r) for each population were weighted

with the reciprocal of the variance, calculated from the correspond-

ing posterior curves. The test yielded the estimated parameter

values (95% confidence intervals are indicated): b0~{9:4+1:9,

b1~29:6+5:4, b2~{25:8+5:9 (pv0:001 for all the parame-

ters). The coefficient ratio {b1=b2~1:15+0:47 is compatible with

the slope 1:09 found with LDA. Both tests show the statistical

significance of s2
pop as a predictor for P inv.

Discussion

We have shown experimentally that between-host variability

affects the nearest-neighbour spread of a pathogen in a population:

when the variability is increased, the probability of epidemic

invasion decreases. From a broad point of view, our results answer

a very general question: what is the effect of individual variability

on disease spread? [6,7,38], the answer being valid for systems

with a locally spreading pathogen. We have exploited a

percolation-based approach, which is widely used for such systems,

and which has been experimentally tested for disease invasion in

plant [27,28] and animal populations [31], under the assumption

that these populations were homogeneous. Theoretical work

[26,39] has shown how to include heterogeneity in the percolation

paradigm, by introducing a quantitative measure of between-host

variability [26] (defined as the variance, s2
pop, of the transmissi-

bility y within a population). This way, it becomes possible to

make quantitative predictions on pathogen invasion in the

presence of heterogeneity.

Here, for the first time, the approach and quantitative predictions

of Neri et al. [26] have been validated experimentally. We have

exploited the saprotrophic spread of R. solani , a ubiquitous plant

pathogen, in simplified microcosms of hosts represented by agar

dots arranged on regular lattices. Previous work showed that such

simple microcosm systems are representative of epidemic systems

Figure 3. Estimated population parameters and linear discriminant analysis for invasion in the plane SyTpop,s2
pop

� �
. Red crosses and

blue circles correspond to invasive and non-invasive replicates, respectively (error bars not shown here). The green thick line is the discriminant
function separating the invasive and non-invasive regimes. The purple dash-dotted line is the phase boundary for an infinite system with the same
topology (see Text S1), and is close to the solid line for the large-system phase boundary in Figure 1B.
doi:10.1371/journal.pcbi.1002174.g003

Effect of Heterogeneity on Epidemic Invasion
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that can be described by SIR spatial models [27,28]. We have

been able to show quantitatively (Figure 3) the effect of within-

population heterogeneity (s2
pop) on the probability of epidemic

invasion, P inv, and demonstrated the existence of a statistically

significant, negative correlation between P inv and s2
pop. At the

same time, our results and analysis show that the phase diagram

for invasion (in principle, defined only for infinite systems), which

includes the effects of the variance, can be well approximated

using small-scale experiments.

Our analysis showed that within-treatment variability can be

large enough to mask the effects of experimental treatments in

replicated populations (see Table S1 and Text S3). The

methodology we adopted is relevant, in general, to the case

when experimental factors are subject to environmental stochas-

ticity, thus are not under the full control of the experimenter.

Specifically, while one of our experimental factors (the fraction r
of occupied sites in a population) was known exactly, the other

(ysite) could vary considerably amongst different replicates of the

same putative treatment (Figures S2 and S3 in Text S3). Such

within-treatment variability is not always necessarily relevant

(e.g., in [27,28]), but it can interfere with the statistical analysis

when the values of the experimental parameters need to be

known with high precision, as in our case. We showed that

within-treatment variability can be efficiently assessed, via

MCMC Bayesian techniques, with a post-hoc estimation of ysite

from each individual replicate. The parameter estimation step

has also provided an efficient tool to overcome the difficulties due

to within-treatment variability. It was indeed possible to analyse

the pooled set of the replicates from all the treatments (Figure 3)

instead of the average response of a treatment: this approach has

proved to be successful in estimating the phase boundary for

invasion.

Variability and implementation of control strategies
Our results have a potentially high impact in finding control

strategies for the spread of disease. Let us consider a homogeneous

system, with the same topology as for our experimental

microcosms (Figure 4), but where all the sites have initially a high

transmissibility (ysite~1, yielding a probability of pathogen

invasion P inv~1). Assume that an epidemic is about to start from

the central site, and we can control disease spread by applying,

only once, a control agent (a protectant) to all or part of the sites.

The effect of the agent on a site is (for simplicity) linear, so that an

amount c of control agent brings ysite to the value

ysite 1{c=cmaxð Þ, where cmax is the amount needed to make the

site non-infectious (i.e., ysite~0). If the amount of control agent at

our disposal is fixed and less than N cmax (which would be needed

to make all the sites non-infectious), the question is how best to

allocate such amount amongst the sites (a similar problem is

discussed in [26]).

In particular, if we assume that the amount of control agent is

equal to N cmax=2, different allocation strategies correspond to our

experimental treatments. We could opt for a homogeneous

strategy, applying an amount cmax=2 of agent to each individual

site, and reducing its transmissibility from ysite~1 to ysite~0:5
(exemplified by treatment A, Figure 4A). Alternatively, we could

apply a heterogeneous strategy: for example, selecting a fraction

r~3=4 of the sites to be treated with an amount cmax=3 (bringing

their transmissibility to ysite~0:66), and the remaining fraction

(1=4) of the sites to be treated with cmax and made non-infectious

(exemplified by treatment C, Figure 4C). For any strategy, the

value of the final mean transmissibility is always SyTpop~0:5, and

only s2
pop changes. The results presented in this paper show that, if

the cost of any strategy is constant (i.e., it depends only on the

amount of control agent applied), the maximally heterogeneous

Figure 4. Three experimental treatments for heterogeneous populations of nutrient sites. The treatments presented here are slightly
idealized versions of the real experimental treatments A, C, F (the condition SyTpop~0:5 is used here instead of SyTpop^0:5). The fraction r of sites
with nutrient and the transmissibility ysite are ajdusted so that SyTpop~0:5 (given by Equation 1) for all the treatments, while heterogeneity
(measured by s2

pop and given by Equation 2) increases. (A) Treatment A: homogeneous system, with all the N sites occupied (r~1) and s2
pop~0. (B)

Treatment C, heterogeneous system with r^0:67 and s2
pop~0:12. (C) Treatment F: heterogeneous system with r~0:5 and s2

pop~0:25 (the
‘‘maximally heterogeneous’’ treatment that maximising the variance given the mean SyTpop~0:5).
doi:10.1371/journal.pcbi.1002174.g004

Effect of Heterogeneity on Epidemic Invasion
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strategy (exemplified by treatment F, Figure 4C) gives the maximal

decrease of the probability of invasion in every finite system (see

[26] for a discussion of analogous results for infinite systems).

Materials and Methods

Experimental design
In the experimental design and the subsequent analysis, the

parameters were evaluated in two steps, before and after the

population experiment. Before the population experiment, the

dependence of ysite on the agar dot nutrient concentration was

estimated by means of ‘‘placement’’ experiments involving only

pairs of sites [27,28] (see Text S2 for the details of the placement

experiments and the estimation of ysite). The results of pair

experiments were used to select the values of the parameters r and

ysite for the notional treatments of the population experiment

(Table S1; three of the treatments are exemplified in Figure 4).

The real values of ysite, however, can be affected by environmen-

tal conditions, and can change significantly amongst replicates of

the same treatment. Therefore, after the end of the experiment,

new estimates of ysite were obtained for each population

individually, using Markov-chain Monte Carlo (MCMC) methods,

in order to assess within-treatment variability. The new estimates

were then used for the pooled analysis shown in Figure 3.

In our experimental systems, each agar dot consisted of a small

aliquot (10 mL, 3 mm diameter) of potato dextrose agar (PDA),

with nutrient concentrations ranging from 3% to 10%. Sites of

agar dots were spotted onto a triangular lattice in large Petri

plates (140-mm diameter) at 8-mm apart (from centre to centre).

Each treatment was replicated 30 times using independent

randomisation schemes, leading to a total of 180 populations.

The central agar site of each population was inoculated with a

single hyphal strand removed from the growing edge of a 4d-old

colony of R. solani R5 (AG 2-1) grown on water agar. Moist filter

paper was placed in the lid of each Petri plate to avoid desiccation

of the agar and the plates were sealed and incubated in the dark

at 230C and assessed for 41d using a binocular microscope (40x),

recording the number and locations of colonised sites. For each

treatment, 20 replicates were assessed every 2 days, and the

remaining 10 replicates were assessed weekly. Spatio-temporal

maps (snapshots of colonisation over time) were therefore

produced.

Criteria for invasion. The fact that the transition between

the invasive and the non-invasive regime is ‘‘smeared out’’

(Figure 1C) raises the question of how accurately the transition

can be approximated in small experimental microcosms. This

depends in a crucial way on the criterion used to define invasion.

Previous authors [27,28] considered reaching at least one edge of the

system boundaries at the end of the experiment (starting from a

single infected site at the center) as equivalent to invasion, on the

basis that the epidemic is certainly non-invasive when no edge is

reached. In this paper, we adopt a different criterion: invasion

occurs when all the edges are reached by the pathogen at the end of

the experiment (i.e., six edges in our case, which is the criterion

used in Figure 1). Our choice was made after comparing the

probability of invasion for simulated epidemics calculated with the

two different criteria (results not shown here). We found that (i) for

large system sizes (cf. Figure 1A) the values of P inv calculated with

the two criteria tend to coincide, but (ii) the deviation in

probability between large and small systems (Figure 1A versus

Figure 1C) is systematically smaller when the ‘‘six-edges’’ criterion

is used. Hence, the latter criterion gives a better prediction of the

large-scale behaviour of an epidemic from its small-scale

behaviour.

Fungal spread, parameter estimation and data analysis
The value of ysite was re-estimated for each individual

population at the end of the experiment, using an MCMC

method [35]. The growth of the fungal colony between two

neighbouring sites was modelled as a time-inhomogeneous Poisson

process [40] described by a Weibull distribution multiplied by the

transmissibility:

fW (t)~ysite tk{1=lk
� �

e{ t=lð Þk ð2aÞ

FW (t)~ysite(1{e{(t=l)k ), ð2bÞ

where fW (t) is the distribution of colonisation times, and FW (t) is

the probability of colonisation as a function of t; l is the time scale

of the process and k is a shape parameter. In order to account for

the observed transition in rates (slower spread at the beginning,

faster spread towards the end of the experiment), we introduced a

‘‘switching time’’ tsw, such that l~l1 for tƒtsw and l~l2 for

twtsw (in general, l2vl1). Thus, the model has 5 parameters,

Figure 5. Within-treatment variation of ysite, re-estimated with
Monte Carlo methods. (A) Posterior distributions for ysite for four
different replicates of treatment C (coloured lines). The means of the
posteriors (coloured circles) shift away from the value ysite~0:73 (red
circle) used for the experimental design (Table S1). (B) The mean of the
posterior is used to re-calculate SyTpop and s2

pop for each replicate
(coloured diamonds and squares, respectively), using the 95% credible
interval as the error bar. The new values differ from the nominal values
SyTpop~0:49 and s2

pop~0:12 (red diamond and square, respectively,
marked by arrows) used in the experimental design (Table S1).
doi:10.1371/journal.pcbi.1002174.g005
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represented by the vector h~(ysite,l1,l2,k,tsw). In order to

estimate the parameters, we adopted a Bayesian framework,

treating the parameters as random variables themselves. The

posterior distribution for h given the observed data D, p(hjD), is

given by Bayes’ formula p(hjD)!Pr(Djh)p(h), where p(h) is the

prior distribution of the parameters (reflecting our initial belief in

their values), and Pr(Djh) is the likelihood (the probability of the

observed data given h). The posterior p(hjD) was estimated

numerically with the MCMC method and a Metropolis-Hastings

algorithm (see e.g. [35]). We refer the reader to Text S3 for details

about the algorithm and the estimation process, and for more

explicit results.

We analysed the posterior distribution for the replicate

transmissibility ysite(T ,r) for each replicate r of treatment T .

Figure 5A shows as an example the distributions for four different

replicates of the same treatment. The mean of the posterior for

ysite(T ,r) was chosen as the new estimated value of the

transmissibility, byysite(T ,r) (with error bar corresponding to the

95% credible interval, Figure 5B). The new estimates for the mean

and variance for each population, SbyyTpop(T ,r) and bs2s2
pop(T ,r)

(with the associated confidence intervals), were re-calculated from

Equation 0 using byysite(T ,r), and plotted in the plane

SyTpop,s2
pop

� �
(Figure 5B). In order to assess the dependence

of P inv on the estimated values of SyTpop and s2
pop, we used

multiple logistic regression [41], supplemented by linear discrim-

inant analysis (LDA) [42], to find the line in the plane

SyTpop,s2
pop

� �
that best separates the two groups of invasive

and non-invasive replicates. All the tests were performed with the

R statistical package [43].

Supporting Information

Table S1 Notional treatments of the population exper-
iment. Parameter estimates used for the experimental design are

shown here, compared with the corresponding post-hoc estimates

from the population experiment. The treatments were devised to

achieve an approximately constant value of SyTpop^0:5, and

values of s2
pop decreasing by approximately regular intervals from

0 to 0:25. The total number of sites (with and without nutrient) for

each population is N~217. Columns 4 to 7: estimates of ysite,

SyTpop, and s2
pop as a function of the nutrient concentration from

pair experiments (see Text S2). For each parameter, the best-fit

value is indicated in bold face, the 95% confidence interval is in

parentheses. The suffix (a) indicates parameters obtained by

interpolation between those for 3% and 5% nutrient concentra-

tions. P inv is calculated with numerical simulations (cf. manuscript

Figure 1 and see Text S1 for details). Columns 8 to 11: summary

statistics for the estimates ŷysite(T ,r), ŷypop(T ,r) and ŝs2
pop(T ,r), in

the form (mean + standard deviation); distributions for treatments

E and F are significantly asymmetric, see comment in Text S3.

The estimate for the probability of invasion, P̂Pinv, is calculated as

the ratio of the number of invading replicates divided by total

number of replicates, for each treatment (cf. manuscript Figure 2).

(PDF)

Text S1 We give a theoretical background on percola-
tion theory and epidemic processes in heterogeneous
systems.

(PDF)

Text S2 We describe the colonisation experiments
performed to find the value of the transmissibility as a
function of the nutrient concentration.

(PDF)

Text S3 We give more details on the MCMC methods
used for parameter estimation. We also provide a complete

survey of the results of the estimation, and show how heterogeneity

in transmissibility can be described by a simple hierarchical model.

(PDF)
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