3,928 research outputs found

    Active flow control systems architectures for civil transport aircraft

    Get PDF
    Copyright @ 2010 American Institute of Aeronautics and AstronauticsThis paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study application. The mass model parameters are based on first-principle physical analysis of electric and pneumatic power systems combined with empirical data on system hardware from existing equipment suppliers. Flow control methods include direct fluidic, electromechanical-fluidic, and electrofluidic actuator technologies. The mass cost of electrical power distribution is shown to be considerably less than that for pneumatic systems; however, this advantage is reduced by the requirement for relatively heavy electrical power management and conversion systems. A tradeoff exists between system power efficiency and the system hardware mass required to achieve this efficiency. For short-duration operation the flow control solution is driven toward lighter but less power-efficient systems, whereas for long-duration operation there is benefit in considering heavier but more efficient systems. It is estimated that a practical electromechanical-fluidic system for flow separation control may have a mass up to 40% of the slat mass for a leading-edge application and 5% of flap mass for a trailing-edge application.This work is funded by the Sixth European Union Framework Programme as part of the AVERT project (Contract No. AST5-CT-2006-030914

    Magnetic resonance elastography: design and implementation as a clinical tool

    Get PDF
    Tese de mestrado integrado em, Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia) apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012A viscoelasticidade é uma propriedade física dos tecidos, que se altera quando estes sofrem modificações. Desta forma, esta característica é uma propriedade importante no diagnóstico de doenças que alteram as capacidades elásticas dos tecidos. A palpação manual é uma técnica milenar que é geralmente utilizada para identificar lesões, como por exemplo nódulos e quistos. No entanto, esta técnica depende fortemente da experiência do médico e da região onde se encontra a lesão. Deste modo, na última década tem havido um esforço acrescido para serem desenvolvidas novas técnicas de imagem médica que forneçam informação sobre a elasticidade dos tecidos de uma forma quantitativa. Surge assim a elastografia. Esta técnica é baseada na detecção da deformação do tecido provocada por stresses internos ou externos e tem sido fortemente utilizada, combinada com outras técnicas como a ultrassonografia e a ressonância magnética, no diagnóstico de doenças que influenciam as propriedades elásticas dos tecidos. Inicialmente, a técnica de elastografia começou por ser combinada apenas com ultrassons. Porém, esta técnica apresenta algumas desvantagens devido à sua baixa resolução espacial e devido a apresentar resultados apenas na direcção de propagação da onda. Estas limitações têm servido de incentivo à exploração de técnicas alternativas, como a Elastografia por Ressonância Magnética (MRE, do inglês “Magnetic Resonance Elastography”) e à sua aplicação ao diagnóstico de doenças como a cirrose hepática ou a detecção de tumores. A MRE é uma técnica não invasiva, capaz de detectar a propagação de ondas em tecidos sujeitos a estimulação mecânica, permitindo assim o cálculo do módulo de elasticidade dos tecidos in vivo. Nesta nova modalidade, é usado um sistema convencional de ressonância magnética, em simultâneo com um sistema de actuação que provoca vibrações no tecido de interesse. De modo a que seja possível medir o deslocamento sofrido pelos spins em movimento devido à vibração induzida, é adicionado um gradiente sensível ao movimento (MEG, do inglês “Motion Encoding Gradient”) a uma simples sequência spin-echo EPI. Por fim, esta técnica usa um algoritmo de inversão que se baseia nos deslocamentos medidos, para calcular os mapas de elasticidade do tecido de interesse. O desenvolvimento de equipamentos para MRE representa um desafio devido às inúmeras considerações e limitações que é necessário ter em conta. Por exemplo, o hardware tem de possuir um design que permita uma excitação mecânica dos tecidos, adequada, dentro do campo magnético do equipamento de ressonância magnética e tem de ser confortável para o sujeito que está a ser submetido ao exame. Por outro lado, a optimização dos procedimentos de análise de dados é também uma questão crucial. É no âmbito do desenvolvimento de novas técnicas, métodos e equipamentos de MRE que surge o presente projecto. Este projecto foi desenvolvido no Wolfson Brain Imaging Center (WBIC), no Hospital de Addenbrooke’s, em Cambridge, e teve como objectivos o melhoramento de vários aspectos relacionados com o equipamento e os métodos de aquisição de imagens de um sistema de MRE de aquisição recente no WBIC. Estes melhoramentos traduziram-se em alterações ao nível do hardware e do software. Ao longo dos anos têm sido desenvolvidos vários tipos de actuadores que permitem a excitação dos tecidos. Entre os mais usados estão os actuadores piezoeléctricos, os actuadores pneumáticos e os actuadores electromagnéticos. O actuador piezoeléctrico, produzido pelo grupo do Charité do Instituto de Informática Médica, da Universidade de Berlim, e adquirido pelo WBIC possui dois tipos de set-up; um para a excitação do cérebro e um para a excitação do fígado. Com vista a ter uma perspectiva geral das vantagens e desvantagens dos actuadores piezoeléctricos e dos actuadores pneumáticos, as características de cada um destes, foram criteriosamente estudadas, o que permitiu melhorar e optimizar o actuador piezoeléctrico. Assim, algumas das alterações que foram efectuadas neste sistema foram: alteração da head cradle (set-up do cérebro) para aumentar o conforto do paciente e a eficiência, e a alteração do controlo remoto do amplificador e gerador de ondas, de modo a não ser necessário o deslocamento do técnico na modificação dos parâmetros de MRE. De modo a poder comparar os dois tipos de actuação nos tecidos, foi também um dos objectivos deste projecto desenvolver um sistema pneumático e comparar a sua performance com o equipamento piezoeléctrico comercial desenvolvido pela Mayo-Clinic, Mayo Foundation for Medical Education and Research, e com o actuador piezoeléctrico do WBIC. Com esse fim, foi desenvolvido um actuador pneumático de raiz, a custo reduzido, e o seu desempenho foi avaliado. Para comparar os dois tipos de actuação, efectuaram-se testes de deflexão de movimento num fantoma de gelatina, através do uso de um acelerómetro comercial, para várias frequências de excitação. Três sistemas diferentes foram testados: o piezoeléctrico e dois sistemas pneumáticos: entre eles o actuador desenvolvido no WBIC e o actuador pneumático comercial, desenvolvido na clínica Mayo. A utilização de dois tipos de actuadores pneumáticos permitiu testar se a propagação da onda nos tecidos depende somente do tipo de actuação utilizada (se é através de um actuador pneumático ou piezoeléctrico) ou se está também relacionada com características específicas de hardware de cada actuador. Com este estudo concluiu-se que, tal como seria esperado, o set-up desenhado para o fígado, do actuador piezoeléctrico, induziu um maior deslocamento nos tecidos do que qualquer um dos outros actuadores, quer para baixas frequências (20Hz), quer para altas frequências (80-100 Hz). No entanto, o set-up pneumático da Clínica Mayo induziu um maior deslocamento no fantoma do que o actuador piezoeléctrico para frequências entre os 30 e os 50 Hz. Estes resultados comprovaram a consistência e reprodutibilidade do actuador piezoeléctrico, bem como a sua precisão e controlo para altas frequências. O actuador pneumático desenvolvido no WBIC provou ter pouca potência e induziu um pequeno deslocamento no material comparativamente com os outros actuadores. Contudo, este sistema é de fácil aplicação e introdução no ambiente e na sala de Ressonância Magnética, a custo reduzido. O módulo de elasticidade para um fantoma de gelatina, para o fígado e para o cérebro, foi também calculado através de MRE, quer com o actuador piezoeléctrico quer com o actuador pneumático desenvolvido no WBIC. Concluiu-se que, apesar das desvantagens do actuador pneumático desenvolvido no WBIC, obtiveram-se valores de elasticidade, com este actuador, consistentes e na mesma ordem de grandeza que os valores obtidos com o actuador piezoeléctrico. A literatura de MRE apresenta contradições em diversos estudos, sendo indicados diferentes valores do módulo da elasticidade para o mesmo tecido. Esta incongruência é em parte devida à grande variedade de parâmetros que influencia os resultados de MRE e às condicionantes e limitações do hardware. Desta forma, torna-se essencial a utilização de métodos de validação desta nova modalidade de diagnóstico médico. Neste projecto, foram utilizados modelos de elementos finitos (FEM, do inglês “Finite Element Modelling”) e foi efectuada uma análise dinâmica da elasticidade (DST, do inglês “Dynamic Shear Testing”) de modo a validar os resultados obtidos experimentalmente pela MRE. Identificaram-se dois tipos de parâmetros que influenciam os resultados de MRE: os parâmetros puramente computacionais e os parâmetros experimentais. A validação através de FEMs foi dividida em dois estudos principais: um primeiro estudo que examinou a influência dos parâmetros puramente computacionais e um segundo estudo que examinou a influência dos parâmetros experimentais nos resultados. Em ambos os estudos, desenvolveram-se modelos simétricos relativamente a um eixo e rectangulares prismáticos que representam uma secção semi-axial de um fantoma de gelatina cilíndrico. A face inferior dos modelos foi restringida na direcção y e aplicou-se uma análise dinâmica transiente. O primeiro estudo de FEMs efectuado teve como principal objectivo estudar a influência dos parâmetros puramente computacionais e tentar eliminar a sua influência nos resultados obtidos pelos FEMs. Neste estudo, as condições de fronteira (BC: do inglês “Boundary Conditions”) e a densidade da malha de elementos finitos foram alterados. Para estudar as BC, foram criados dois modelos com dimensões diferentes (100x10 mm e 100x20 mm) e concluiu-se que o modelo com espessura de 20 mm apresentou resultados mais próximos da curva teórica do comprimento de onda em função do módulo de Young. Para estudar a densidade da malha de elementos finitos, foram também criados dois modelos com elementos de dimensões diferentes (1x1 mm e 2x2 mm). As imagens de propagação da onda, ao longo da direcção x do modelo, e o respectivo perfil de deslocamento ao longo da mesma direcção da face superior do fantoma, revelaram que o modelo com elementos de dimensões 2x2mm não foi capaz de detectar a propagação da onda, ao contrário do que aconteceu com o modelo com elementos de dimensões 1x1 mm. Este estudo comprovou a importância da escolha criteriosa quer das condições de fronteira, quer da densidade da malha na criação de modelos finitos, e mostrou que os resultados sofrem modificações importantes aquando da modificação destes dois parâmetros. As conclusões obtidas neste estudo foram aplicadas no segundo estudo com FEMs de modo a eliminar a influência dos parâmetros computacionais. O segundo estudo de FEMs teve como principal objectivo estudar a influência dos parâmetros experimentais, como por exemplo a densidade do material. Para tal, foram criados modelos com diferentes densidades e módulos de Young. Com este estudo, concluiu-se que a propagação da onda nos tecidos (modelo de FEMs) e o correspondente comprimento de onda variam bastante consoante a densidade dos tecidos. Constatou-se que os resultados obtidos para o modelo com densidade de 1kg/mm3 foram os que mais se aproximaram da curva teórica. Por fim, concluiu-se que a densidade dos tecidos altera grandemente os resultados obtidos. A validação através da DST permitiu comparar os resultados obtidos através de MRE com os resultados obtidos através desta técnica de validação, para amostras de três fantomas de gelatina com diferentes concentrações. A análise dinâmica da elasticidade já provou ser, em estudos anteriores, uma técnica capaz de medir o módulo de elasticidade dos tecidos de forma precisa e viável, apesar das suas limitações na vibração a elevadas frequências (frequências em que a MRE opera). Com ambas as técnicas (MRE e DST), obtiveram-se resultados do módulo da elasticidade com a mesma ordem de magnitude. No entanto, com MRE os valores obtidos foram significativamente mais elevados para os três fantomas de concentração de gel diferente. Este resultado deve-se à dependência de ambas as técnicas, relativamente a factores que dificilmente podem ser controlados, como sejam: a espessura das amostras e a sua não uniformidade no caso da DST; e, no caso da MRE, todos os parâmetros que foram descritos e avaliados ao longo deste projecto como as limitações do hardware e possíveis erros induzidos pelo algoritmo de inversão. Em suma, é importante realçar a importância que este projecto teve no desenvolvimento da técnica de MRE no WBIC. É ainda de salientar que este trabalho representou um passo adicional no caminho da aprovação do projecto de MRE na prática clínica, pelo comité ético do hospital de Addenbrooke’s, e uma contribuição para a aceitação desta técnica como método de diagnóstico em meio clínico.Palpation has been used for centuries to detect changes in elasticity in several body regions. However, this technique is clearly limited to regions that are accessible to physician’s hands. Therefore, over the last decades there has been an attempt to develop methods for imaging tissue stiffness that are not hindered by this limitation, such as Magnetic Resonance Elastography (MRE). MRE is a non-invasive technique that can directly measure propagating strain waves due to harmonic mechanical excitation, hence allowing for the in vivo computation of the shear modulus of tissues. One main issue with MRE is the design of an actuation system that enables adequate mechanical excitation within the magnetic field of the magnetic resonance scanner. Pneumatic, electromagnetic, and piezoelectric actuation systems have been employed for MRE examinations of the brain, and abdominal organs such as the liver. One of the goals of the current project was the comparison between the setup already in use at the host laboratory (based on a piezoelectric actuator, connected to a wave generator and a high voltage amplifier), a custom-made pneumatic device developed from scratch during the project and a commercial pneumatic actuator developed by Mayo-Clinic. The comparison involved motion deflection tests carried out in a gelatine phantom with a commercial accelerometer, and obtaining elasticity maps of the gelatine phantom, liver and brain. It was shown that the piezoelectric actuator is more powerful and enables a higher degree of control than the pneumatic actuator. Despite the disadvantages of the custom-made pneumatic system presented, shear elasticity measurements obtained with this system were consistent with the values for elasticity obtained with the piezoelectric set-up for phantom and liver experiments. Another goal of the project was the validation and reliability test of MRE results using two different methods: Finite Element Modelling (FEM) and Dynamic Shear Testing (DST). In spite of the frequency limitations inherent to the DST technique, it was concluded that DST results can be extrapolated to higher frequencies and compared with experimental MRE. The results obtained with both techniques showed good agreement, confirming the validity of MRE for measuring tissue elasticity parameters. This project was crucial in the development of the MRE technique at the host institution and represents a step further towards the acceptance of this new and promising diagnostic technique in clinical practice

    Advances in Piezoelectric Systems: An Application-Based Approach.

    Get PDF

    Design and Implementation of Position Estimator Algorithm on Voice Coil Motor

    Get PDF
    Voice Coil Motors (VCMs) have been an inevitable element in the mechanisms that have been used for precise positioning in the applications like 3D printing., micro-stereolithography., etc. These voice coil motors translate in a linear direction and require a high accuracy position sensor that amounts for a major part in the budget. In this research work., an effort has been made to design and implement an algorithm that would predict the displacement of VCM and eliminate the need of high cost sensors. VCM was integrated with dSPACE DS1104 R&D controller via linear current amplifier (LCAM) which acts as a driver circuit for VCM. Sine input was given to VCM with various amplitude and frequency and the corresponding displacement is measured by using linear variable differential transformer (LVDT). The position estimator algorithm is also implemented at the same time on VCM and its output is compared with that of LVDT. It is observed that there is 97.8 % accuracy in between algorithm output and LVDT output. Further., PID controller is used in integration with the novel algorithm to minimize the error. The estimator algorithm is tested for various amplitudes and frequencies and it is found that it has a very good agreement of 99.2% with the actual displacement measured with the help of LVDT

    EAGLE multi-object AO concept study for the E-ELT

    Full text link
    EAGLE is the multi-object, spatially-resolved, near-IR spectrograph instrument concept for the E-ELT, relying on a distributed Adaptive Optics, so-called Multi Object Adaptive Optics. This paper presents the results of a phase A study. Using 84x84 actuator deformable mirrors, the performed analysis demonstrates that 6 laser guide stars and up to 5 natural guide stars of magnitude R<17, picked-up in a 7.3' diameter patrol field of view, allow us to obtain an overall performance in terms of Ensquared Energy of 35% in a 75x75 mas^2 spaxel at H band, whatever the target direction in the centred 5' science field for median seeing conditions. The computed sky coverage at galactic latitudes |b|~60 is close to 90%.Comment: 6 pages, to appear in the proceedings of the AO4ELT conference, held in Paris, 22-26 June 200

    Development of a Tactile Thimble for Augmented and Virtual Reality Applications

    Get PDF
    The technologies that have gained a renewed interest during the recent years are Virtual Reality (VR) and Augmented Reality (AR), as they become more accessible and affordable for mass-production. The input device which allows us to interact with the virtual environment is a very crucial aspect. One of the main barriers to immerse ourselves in virtual reality is the lack of realistic feedback. The user has to almost rely entirely on visual feedback without any haptic feedback, and this increases the user's workload and decreases the performance. In this thesis, a functional demonstrator of a tactile feedback device which conveys compelling interactions with not just VR, but also AR is presented. The device is designed such that there is realistic feedback for virtual touches and least obstruction during contact of a real object in AR applications. New design principle of introducing small actuators allows the device to be compact and increases its portability. In contrast to actuators that are placed on the finger pad in most of the available input devices for VR, a tactile device with two actuators that are arranged laterally on the finger, so that the underside of the fingertip is free is proposed. The output from these actuators generate a tactile stimulus by stimulating a sense of touch, which helps the user to manipulate virtual objects. The actuators are designed to independently generate vibrations and this coupled tactile feedback enhances the stimulation resulting in a wide variety of stimulation patterns for the sense of touch. Preliminary experimental evaluation for design and location of actuators has been carried out to measure the vibration intensity. In addition, user experiments for design evaluation of the two actuators based on different vibration patterns have also been conducted

    High-Performance Tracking for Piezoelectric Actuators Using Super-Twisting Algorithm Based on Artificial Neural Networks

    Get PDF
    Piezoelectric actuators (PEA) are frequently employed in applications where nano-Micr-odisplacement is required because of their high-precision performance. However, the positioning is affected substantially by the hysteresis which resembles in an nonlinear effect. In addition, hysteresis mathematical models own deficiencies that can influence on the reference following performance. The objective of this study was to enhance the tracking accuracy of a commercial PEA stack actuator with the implementation of a novel approach which consists in the use of a Super-Twisting Algorithm (STA) combined with artificial neural networks (ANN). A Lyapunov stability proof is bestowed to explain the theoretical solution. Experimental results of the proposed method were compared with a proportional-integral-derivative (PID) controller. The outcomes in a real PEA reported that the novel structure is stable as it was proved theoretically, and the experiments provided a significant error reduction in contrast with the PID.This research was funded by Basque Government and UPV/EHU projects

    Inductorless bi-directional piezoelectric transformerbased converters: Design and control considerations.

    Get PDF

    Characterisation and Integration of Piezoelectric Trimorph Actuators for Blade Active Surface Control on a Scaled Wind Turbine

    Get PDF
    The paper investigates the integration of piezoelectric bending actuators on trailing edge flaps (TEF). The characterisation of piezoelectric actuators is of great importance due to differences in performance resulting from sample variability, actuator construction, circuit type and equipment. For the application of trailing edge flaps in scaled turbines, the total deflection these actuators can produce determines the possible flap angles and, consequently, the potential effects on wake evolution downwind of the wind turbine. In this paper, we fully characterise the performance of the piezoelectric bending actuator under a variety of operating conditions. The bridged bi-polar circuit is used to drive the piezoelectric actuators with both a static and a dynamic signal. Deflection results demonstrate that the piezoelectric actuator is capable of achieving flap angles of β ± 3° with a static signal, and β = 2.3° and β = −3.2° angles with a dynamic signal. Experimental force measurements using a dynamic signal result in a force reduction of up to 33% when compared to a static signal. Force values at increasing frequencies do not show a depreciation in force. Additionally, initial aerodynamic loads exerted on TEF are presented based on XFoil simulations to ensure that the piezoelectric actuating force can overcome aerodynamic loads for future experiments. Experimental force measurements from the piezoelectric actuator demonstrate that aerodynamic forces can be overcome. This work serves as the first step towards implementing the TEF technology in lab-scaled wind turbine models
    corecore