6,409 research outputs found

    A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.

    Get PDF
    Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden

    Self-Aligning Finger Exoskeleton for the Mobilization of the Metacarpophalangeal Joint

    Get PDF
    In the context of hand and finger rehabilitation, kinematic compatibility is key for the acceptability and clinical exploitation of robotic devices. Different kinematic chain solutions have been proposed in the state of the art, with different trade-offs between characteristics of kinematic compatibility, adaptability to different anthropometries, and the ability to compute relevant clinical information. This study presents the design of a novel kinematic chain for the mobilization of the metacarpophalangeal (MCP) joint of the long fingers and a mathematical model for the real-time computation of the joint angle and transferred torque. The proposed mechanism can self-align with the human joint without hindering force transfer or inducing parasitic torque. The chain has been designed for integration into an exoskeletal device aimed at rehabilitating traumatic-hand patients. The exoskeleton actuation the unit has a series-elastic architecture for compliant human-robot interaction and has been assembled and preliminarily tested in experiments with eight human subjects. Performance has been investigated in terms of (i) the accuracy of the MCP joint angle estimation through comparison with a video-based motion tracking system, (ii) residual MCP torque when the exoskeleton is controlled to provide null output impedance and (iii) torque-tracking performance. Results showed a root-mean-square error (RMSE) below 5 degrees in the estimated MCP angle. The estimated residual MCP torque resulted below 7 mNm. Torque tracking performance shows an RMSE lower than 8 mNm in following sinusoidal reference profiles. The results encourage further investigations of the device in a clinical scenario

    On the role of stability in animal morphology and neural control

    Get PDF
    Mechanical stability is vital for the fitness and survival of animals and is a crucial aspect of robot design and control. Stability depends on multiple factors, including the body\u27s intrinsic mechanical response and feedback control. But feedback control is more fragile than the body\u27s innate mechanical response or open-loop control strategies because of sensory noise and time-delays in feedback. This thesis examines the overarching hypothesis that stability demands have played a crucial role in how animal form and function arise through natural selection and motor learning. In two examples, finger contact and overall body stability, we investigated the relationship between morphology, open-loop control, and stability. By studying the stability of the internal degrees of freedom of a finger when pushing on a hard surface, we find that stability limits the force that we can produce and is a dominant aspect of the neural control of the finger\u27s muscles. In our study on whole body lateral stability during locomotion in terrestrial animals, we find that the overall body aspect ratio has evolved to ensure passive lateral stability on the uneven terrain of natural environments. Precisely gripping an object with the fingertips is a hallmark of human hand dexterity. In Chapter 2, we show how human fingers are intrinsically prone to a buckling-type postural instability and how humans use careful neural orchestration of our muscles so that the elastic response of our muscles can suppress the intrinsic instability. In Chapter 3, we extend these findings further to examine the nature of neuromuscular variability and how the nervous system deals with the need for muscle-induced stability. We find that there is structure to neuromuscular variability so that most of the variability lies within the subspace that does not affect stability. Inspired by the open-loop stable control of our index fingers, in Chapter 4, we derive open-loop stability conditions for a general mechanical linkage with arbitrary joint torques subjected to holonomic constraints. The solution that we derive is physically realizable as cable-driven active mechanical linkages. With a user-prescribed cable layout, we pose the problem of actuating the system to maintain stability while subject to goals like energy minimization as a convex optimization problem. We are thus able to use efficient optimization methods available for convex problems and demonstrate numerical solutions in examples inspired by the finger. Chapter 5 presents a general formulation of the stability criteria for active mechanical linkages subject to Pfaffian holonomic and non-holonomic constraints. Active mechanical linkages subject to multiple constraints represent the mechanics of systems spanning many domains and length scales, such as limbs and digits in animals and robots, and elastic networks like actin meshes in microscopic systems. We show that a constrained mechanical linkage with regular stiffness and damping, and circulation-free feedback, can only destabilize by static buckling when subject to holonomic constraints. In contrast, the same mechanical linkage, subject to a non-holonomic constraint, such as a skate contact, can exhibit either static buckling or flutter instability. Chapter 6 moves away from neural control and studies the shape of animal bodies and their relationship to stability in locomotion. We investigate why small land animals tend to have a crouched or sprawled posture, whereas larger animals are generally more upright. We propose a new hypothesis that the scaling of body aspect ratio with size is driven by the scale-dependent unevenness of natural terrain. We show that the scaling law arising from the need for stability on rough natural terrain correctly predicts the frontal aspect ratio scaling law across 335 terrestrial vertebrates and invertebrates, spanning eight orders of magnitude in mass so that smaller animals have a wider aspect ratio. We also carry out statistical analyses that consider the phylogenetic relationship among the species in our dataset to show that the scaling is not due to gradual changes of the traits over time. Thus, stability demands on natural terrain may have driven the macroevolution of body aspect ratio across terrestrial animals. Interrogating unstable and marginally stable behaviors has helped us identify the morphological and control features that allow animals to perform robustly in noisy environments where perfect sensory feedback cannot be assumed. Although the thesis identifies the `what\u27 and `why,\u27 further studies are needed to understand `how\u27 mechanics and development intertwine to give rise to control and form in growing and adapting biological organisms

    Novel Methods for Weak Physiological Parameters Monitoring.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2017

    Development and Implementation of an Ultrasonic Method to Characterize Acoustic and Mechanical Fingernail Properties

    Get PDF
    The human fingernail is a vital organ used by humans on a daily basis and can provide an immense supply of information based on the biological feedback of the body. By studying the quantitative mechanical and acoustic properties of fingernails, a better understanding of the scarcely-investigated field of ungual research can be explored. Investigating fingernail properties with the use of pulse-echo ultrasound is the aim of this thesis. This thesis involves the application of a developed portable ultrasonic device in a hospital-based data collection and the advancement of ultrasonic methodology to include the calculation of acoustic impedance, density and elasticity. The results of the thesis show that the reflectance method can be utilized to determine fingernail properties with a maximum 17% deviation from literature. Repeatability of measurements fell within a 95% confidence interval. Thus, the ultrasonic reflectance method was validated and may have potential clinical and cosmetic applications

    Development of a batteryless RF receiver based on MEMS technology

    Get PDF
    The main goal of this project is to develop a wireless receiver and batteryless based on the use of microelectromechanical structures as electromagnetic energy transducer, which is able to demodulate the amplitude modulated signal received and produce an audible sound pressure level. Along the project, it has been established the background related to microstrip antennas and microelectromechanical systems design. Besides, it has been done the analysis, design and modelling of the receiver, taking int account different types of structures based on MEMS technology. At the end, it has been done the measurements and analysis of the results obtained in the laboratory

    An open-source robotic tool for the simulation of quasi-static finger pressing on stationary and vibrating surfaces

    Get PDF
    The Bogus Finger is a remote-controllable tool for simulating vertical pressing forces of various magnitude as exerted by a human finger. Its main application is the characterization of haptic devices under realistic active touch conditions. The device is released as an open-source hardware and software DIY project that can be easily built using off-the-shelf components. We report the characterization of the quasi-static properties of the device, and validate its dynamic response to pressing on a vibrating surface by comparison with human fingers. The present prototype configuration accurately reproduces the mechanical impedance of the human finger in the frequency range 200-400 Hz

    Dynamic relationship between cardiac imaging and physiological measurements

    Get PDF
    PhD ThesisImpedance cardiography (ICG) is a non-invasive technique to measure the dynamic changes in electrical impedance of the thorax. Photoplethymgraphy (PPG) is an optical- based non-invasive physiological measurement technique used to detect the blood volume pulses in the microvascular bed of tissue. These two physiological measurements have potential clinical importance to enable simple and cost-efficient ways to examine cardiovascular function and provide surrogate or additional clinical information to the measures from cardiac imaging. However, because the origins of the characteristic waveforms of the impedance and pulse are still not well understood, the clinical applications of these two techniques are limited. There were two main aims in this study: 1) to obtain a better understanding of the origins of the pulsatile impedance changes and peripheral pulse by linking their characteristic features beat-by-beat to those from simultaneous echocardiograms; 2) to validate the clinical indices from ICG and PPG with those well-established echocardiographic indices. Physiological signals, including ECGs, impedance, the first derivative impedance and finger and ear pulses, were simultaneously recorded with echocardiograms from 30 male healthy subjects at rest. The timing sequence of cardiovascular events in a single cardiac cycle was reconstructed with the feature times obtained from the physiological measurements and images. The relations of the time features from the impedance with corresponding features from images and pulses were investigated. The relations of the time features from peripheral pulses with corresponding features from images were also investigated. Furthermore, clinical time indices measured from the impedance and pulse were validated with the reference to the echocardiograms. Finally, the effects of age, heart rate and blood pressure on the image and physiological measurements were examined. According to the reconstructed timing sequence, it was evident that the systolic waves of the thoracic impedance and peripheral pulse occurred following left ventricular ejection. The impedance started to fall 26 ms and the pulse arrived at the fingertip 162 ms after the aortic valve opened. A diastolic wave was observed during the ventricular passive filling phase on the impedance and pulse. The impedance started to recover during the late ventricular ejection phase when the peripheral pulse was rising up. While the pulsatile impedance changes were mainly correlated with valve movement, the derivative impedance (velocity of impedance change) was more correlated with aortic flow (velocity of blood 2 flow). The foot of the finger pulse was significantly correlated with aortic valve open (R = 0.361, P < 0.05), while its systolic peak was strongly correlated with the aortic valve 2 closing (R = 0.579, P < 0.001). Although the pulse had similar waveform shapes to the inverted impedance waveform, the associations between the time features of these two signals were weak. During the validation of potential clinical indices from ICG, significant correlation was found between the overall duration of the derivative impedance systolic wave (359 ms) and the left ventricular ejection time (LVET) measured by aortic valve open duration from M- 2 mode images (329 ms) (R = 0.324, P < 0.001). The overall duration from the finger pulse foot to notch (348 ms) was also significantly correlated with the LVET from M-mode 2 images (R = 0.461, P < 0.001). Therefore, both ICG and PPG had the potential to provide surrogates to the LVET measurement. Age influenced the cardiovascular diastolic function more than systolic function on normal subjects. With age increasing, the reduction of the left ventricular passive filling was compensated by active filling. The ratio of the passive filling duration to the active 2 filling duration decreased with age (R = 0.143, P < 0.05). The influence of age on the diastolic wave of the impedance signals was striking. The impedance diastolic wave disappeared gradually with age. The effects of age on the peripheral pulse were mainly on the shortened pulse foot transit time (PPT) and prolonged pulse rise time. The large artery f stiffness index (SI) increased with age. Most time intervals were prolonged with heart rate slowing down. The effects of systolic blood pressure were evident on pulse transit time and pulse diastolic rising time. Driven by higher systolic blood pressure, both PPT and rising f time decreased significantly (P < 0.001). In conclusion, from the analysis based on simultaneous physiological measurements and echocardiograms, both the pulsatile impedance changes and peripheral volume pulse were initiated by left ventricular ejection. The thoracic impedance changes reflected volume changes in the central great vessels, while the first derivative impedance was associated with the velocity of blood flow. Both ICG and PPG had the potential to provide surrogates for the measures of cardiac mechanical functions from images. The PPG technique also enabled the assessment of changes in vascular function caused by age.Institute of Cellular Medicine Newcastle Universit
    corecore