19,768 research outputs found

    Stochastic collocation on unstructured multivariate meshes

    Full text link
    Collocation has become a standard tool for approximation of parameterized systems in the uncertainty quantification (UQ) community. Techniques for least-squares regularization, compressive sampling recovery, and interpolatory reconstruction are becoming standard tools used in a variety of applications. Selection of a collocation mesh is frequently a challenge, but methods that construct geometrically "unstructured" collocation meshes have shown great potential due to attractive theoretical properties and direct, simple generation and implementation. We investigate properties of these meshes, presenting stability and accuracy results that can be used as guides for generating stochastic collocation grids in multiple dimensions.Comment: 29 pages, 6 figure

    Bibliometric Mapping of the Computational Intelligence Field

    Get PDF
    In this paper, a bibliometric study of the computational intelligence field is presented. Bibliometric maps showing the associations between the main concepts in the field are provided for the periods 1996–2000 and 2001–2005. Both the current structure of the field and the evolution of the field over the last decade are analyzed. In addition, a number of emerging areas in the field are identified. It turns out that computational intelligence can best be seen as a field that is structured around four important types of problems, namely control problems, classification problems, regression problems, and optimization problems. Within the computational intelligence field, the neural networks and fuzzy systems subfields are fairly intertwined, whereas the evolutionary computation subfield has a relatively independent position.neural networks;bibliometric mapping;fuzzy systems;bibliometrics;computational intelligence;evolutionary computation

    Robust stability of fractional-order linear time-invariant systems: Parametric versus Unstructured Uncertainty Models

    Get PDF
    The main aim of this paper is to present and compare three approaches to uncertainty modeling and robust stability analysis for fractional-order (FO) linear time-invariant (LTI) single-input single-output (SISO) uncertain systems. The investigated objects are described either via FO models with parametric uncertainty, by means of FO unstructured multiplicative uncertainty models, or through FO unstructured additive uncertainty models, while the unstructured models are constructed on the basis of appropriate selection of a nominal plant and a weight function. Robust stability investigation for systems with parametric uncertainty uses the combination of plotting the value sets and application of the zero exclusion condition. For the case of systems with unstructured uncertainty, the graphical interpretation of the utilized robust stability test is based mainly on the envelopes of the Nyquist diagrams. The theoretical foundations are followed by two extensive, illustrative examples where the plant models are created; the robust stability of feedback control loops is analyzed, and obtained results are discussed.European Regional Development Fund under the project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376]; Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)

    A continuous analogue of the tensor-train decomposition

    Full text link
    We develop new approximation algorithms and data structures for representing and computing with multivariate functions using the functional tensor-train (FT), a continuous extension of the tensor-train (TT) decomposition. The FT represents functions using a tensor-train ansatz by replacing the three-dimensional TT cores with univariate matrix-valued functions. The main contribution of this paper is a framework to compute the FT that employs adaptive approximations of univariate fibers, and that is not tied to any tensorized discretization. The algorithm can be coupled with any univariate linear or nonlinear approximation procedure. We demonstrate that this approach can generate multivariate function approximations that are several orders of magnitude more accurate, for the same cost, than those based on the conventional approach of compressing the coefficient tensor of a tensor-product basis. Our approach is in the spirit of other continuous computation packages such as Chebfun, and yields an algorithm which requires the computation of "continuous" matrix factorizations such as the LU and QR decompositions of vector-valued functions. To support these developments, we describe continuous versions of an approximate maximum-volume cross approximation algorithm and of a rounding algorithm that re-approximates an FT by one of lower ranks. We demonstrate that our technique improves accuracy and robustness, compared to TT and quantics-TT approaches with fixed parameterizations, of high-dimensional integration, differentiation, and approximation of functions with local features such as discontinuities and other nonlinearities

    Stable, Robust and Super Fast Reconstruction of Tensors Using Multi-Way Projections

    Get PDF
    In the framework of multidimensional Compressed Sensing (CS), we introduce an analytical reconstruction formula that allows one to recover an NNth-order (I1×I2××IN)(I_1\times I_2\times \cdots \times I_N) data tensor X\underline{\mathbf{X}} from a reduced set of multi-way compressive measurements by exploiting its low multilinear-rank structure. Moreover, we show that, an interesting property of multi-way measurements allows us to build the reconstruction based on compressive linear measurements taken only in two selected modes, independently of the tensor order NN. In addition, it is proved that, in the matrix case and in a particular case with 33rd-order tensors where the same 2D sensor operator is applied to all mode-3 slices, the proposed reconstruction Xτ\underline{\mathbf{X}}_\tau is stable in the sense that the approximation error is comparable to the one provided by the best low-multilinear-rank approximation, where τ\tau is a threshold parameter that controls the approximation error. Through the analysis of the upper bound of the approximation error we show that, in the 2D case, an optimal value for the threshold parameter τ=τ0>0\tau=\tau_0 > 0 exists, which is confirmed by our simulation results. On the other hand, our experiments on 3D datasets show that very good reconstructions are obtained using τ=0\tau=0, which means that this parameter does not need to be tuned. Our extensive simulation results demonstrate the stability and robustness of the method when it is applied to real-world 2D and 3D signals. A comparison with state-of-the-arts sparsity based CS methods specialized for multidimensional signals is also included. A very attractive characteristic of the proposed method is that it provides a direct computation, i.e. it is non-iterative in contrast to all existing sparsity based CS algorithms, thus providing super fast computations, even for large datasets.Comment: Submitted to IEEE Transactions on Signal Processin

    Review of the mathematical foundations of data fusion techniques in surface metrology

    Get PDF
    The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed
    corecore