65 research outputs found

    A coalgebraic semantics for causality in Petri nets

    Get PDF
    In this paper we revisit some pioneering efforts to equip Petri nets with compact operational models for expressing causality. The models we propose have a bisimilarity relation and a minimal representative for each equivalence class, and they can be fully explained as coalgebras on a presheaf category on an index category of partial orders. First, we provide a set-theoretic model in the form of a a causal case graph, that is a labeled transition system where states and transitions represent markings and firings of the net, respectively, and are equipped with causal information. Most importantly, each state has a poset representing causal dependencies among past events. Our first result shows the correspondence with behavior structure semantics as proposed by Trakhtenbrot and Rabinovich. Causal case graphs may be infinitely-branching and have infinitely many states, but we show how they can be refined to get an equivalent finitely-branching model. In it, states are equipped with symmetries, which are essential for the existence of a minimal, often finite-state, model. The next step is constructing a coalgebraic model. We exploit the fact that events can be represented as names, and event generation as name generation. Thus we can apply the Fiore-Turi framework: we model causal relations as a suitable category of posets with action labels, and generation of new events with causal dependencies as an endofunctor on this category. Then we define a well-behaved category of coalgebras. Our coalgebraic model is still infinite-state, but we exploit the equivalence between coalgebras over a class of presheaves and History Dependent automata to derive a compact representation, which is equivalent to our set-theoretical compact model. Remarkably, state reduction is automatically performed along the equivalence.Comment: Accepted by Journal of Logical and Algebraic Methods in Programmin

    Coalgebraic minimization of HD-automata for the π-calculus using polymorphic types

    Get PDF
    AbstractWe introduce finite-state verification techniques for the π-calculus whose design and correctness are justified coalgebraically. In particular, we formally specify and implement a minimization algorithm for HD-automata derived from π-calculus agents. The algorithm is a generalization of the partition refinement algorithm for classical automata and is specified as a coalgebraic construction defined using λ→,Π,Σ, a polymorphic λ-calculus with dependent types. The convergence of the algorithm is proved; moreover, the correspondence of the specification and the implementation is shown

    Families of Symmetries as Efficient Models of Resource Binding

    Get PDF
    AbstractCalculi that feature resource-allocating constructs (e.g. the pi-calculus or the fusion calculus) require special kinds of models. The best-known ones are presheaves and nominal sets. But named sets have the advantage of being finite in a wide range of cases where the other two are infinite. The three models are equivalent. Finiteness of named sets is strictly related to the notion of finite support in nominal sets and the corresponding presheaves. We show that named sets are generalisd by the categorical model of families, that is, free coproduct completions, indexed by symmetries, and explain how locality of interfaces gives good computational properties to families. We generalise previous equivalence results by introducing a notion of minimal support in presheaf categories indexed over small categories of monos. Functors and categories of coalgebras may be defined over families. We show that the final coalgebra has the greatest possible symmetry up-to bisimilarity, which can be computed by iteration along the terminal sequence, thanks to finiteness of the representation

    Revisiting causality, coalgebraically

    Get PDF
    In this paper we recast the classical Darondeau–Degano’s causal semantics of concurrency in a coalgebraic setting, where we derive a compact model. Our construction is inspired by the one of Montanari and Pistore yielding causal automata, but we show that it is instance of an existing categorical framework for modeling the semantics of nominal calculi, whose relevance is further demonstrated. The key idea is to represent events as names, and the occurrence of a new event as name generation. We model causal semantics as a coalgebra over a presheaf, along the lines of the Fiore–Turi approach to the semantics of nominal calculi. More specifically, we take a suitable category of finite posets, representing causal relations over events, and we equip it with an endofunctor that allocates new events and relates them to their causes. Presheaves over this category express the relationship between processes and causal relations among the processes’ events. We use the allocation operator to define a category of well-behaved coalgebras: it models the occurrence of a new event along each transition. Then we turn the causal transition relation into a coalgebra in this category, where labels only exhibit maximal events with respect to the source states’ poset, and we show that its bisimilarity is essentially Darondeau–Degano’s strong causal bisimilarity. This coalgebra is still infinite-state, but we exploit the equivalence between coalgebras over a class of presheaves and History Dependent automata to derive a compact representation, where states only retain the poset of the most recent events for each atomic subprocess, and are isomorphic up to order-preserving permutations. Remarkably, this reduction of states is automatically performed along the equivalence

    A network-conscious π-calculus and its coalgebraic semantics

    Get PDF
    Traditional process calculi usually abstract away from network details, modeling only communication over shared channels. They, however, seem inadequate to describe new network architectures, such as Software Defined Networks, where programs are allowed to manipulate the infrastructure. In this paper we present the Network Conscious @p-calculus ( NCPi), a proper extension of the @p-calculus with an explicit notion of network: network links and nodes are represented as names, in full analogy with ordinary @p-calculus names, and observations are routing paths through which data is transported. However, restricted links do not appear in the observations, which thus can possibly be as abstract as in the @p-calculus. Then we construct a presheaf-based coalgebraic semantics for NCPi along the lines of Turi-Plotkin's approach, by indexing processes with the network resources they use: we give a model for observational equivalence in this context, and we prove that it admits an equivalent nominal automaton (HD-automaton), suitable for verification. Finally, we give a concurrent semantics for NCPi where observations are multisets of routing paths. We show that bisimilarity for this semantics is a congruence, and this property holds also for the concurrent version of the @p-calculus

    A compositional coalgebraic model of a fragment of fusion calculus

    Get PDF
    This work is a further step in exploring the labelled transitions and bisimulations of fusion calculi. We follow the approach developed by Turi and Plotkin for lifting transition systems with a syntactic structure to bialgebras and, thus, we provide a compositional model of the fusion calculus with explicit fusions. In such a model, the bisimilarity relation induced by the unique morphism to the final coalgebra coincides with fusion hyperequivalence and it is a congruence with respect to the operations of the calculus. The key novelty in our work is to give an account of explicit fusions through labelled transitions. In this short essay, we focus on a fragment of the fusion calculus without recursion and replication

    A compositional coalgebraic model of a fragment of fusion calculus

    Get PDF
    This work is a further step in exploring the labelled transitions and bisimulations of fusion calculi. We follow the approach developed by Turi and Plotkin for lifting transition systems with a syntactic structure to bialgebras and, thus, we provide a compositional model of the fusion calculus with explicit fusions. In such a model, the bisimilarity relation induced by the unique morphism to the final coalgebra coincides with fusion hyperequivalence and it is a congruence with respect to the operations of the calculus. The key novelty in our work is to give an account of explicit fusions through labelled transitions. In this short essay, we focus on a fragment of the fusion calculus without recursion and replication

    A Network-Aware Process Calculus for Global Computing and its Categorical Framework

    Get PDF
    An essential aspect of distributed systems is resource management, concerning how resources can be accessed and allocated. This aspect should also be taken into account when modeling and verifying such systems. A class of formalisms with the desired features are nominal calculi: they represent resources as atomic objects called names and have linguistic constructs to express creation of new resources. The paradigmatic nominal calculus is the π-calculus, which is well-studied and comes with models and logics. The first objective of this thesis is devising a natural and seamless extension of the π-calculus where resources are network nodes and links. The motivation is provided by a recent, successful networking paradigm called Software Defined Networks, which allows the network structure to be manipulated at runtime via software. We devise a new calculus called Network Conscious π-calculus (NCPi), where resources, namely nodes and links, are represented as names, following the π-calculus guidelines. This allows NCPi to reuse the π-calculus name-handling machinery. The semantics allows observing end-to-end routing behavior, in the form of routing paths through the network. As in the π-calculus, bisimilarity is not closed under input prefix. Interestingly, closure under parallel composition does not hold either. Taking the greatest bisimulation closed under all renamings solves the issue only for the input prefix. We conjecture that such closure yields a full congruence for the subcalculus with only guarded sums. We introduce an extension of NCPi (κNCPi) with some features that makes it closer to real-life routing. Most importantly, we add concurrency, i.e. multiple paths can be observed at the same time. Unlike the sequential version, bisimilarity is a congruence from the very beginning, due to the richer observations, so κNCPi can be considered the “right” version of NCPi when compositionality is needed. This extended calculus is used to model the peer- to-peer architecture Pastry. The second objective is constructing a convenient operational model for NCPi. We consider coalgebras, that are categorical representation of system. Coalgebras have been studied in full generality, regardless of the specific structure of systems, and algorithms and logics have been developed for them. This allows for the application of general results and techniques to a variety of systems. The main difficulty in the coalgebraic treatment of nominal calculi is the presence of name binding: it introduces α-conversion and makes SOS rules and bisimulations non-standard. The consequence is that coalgebras on sets are not able to capture these notions. The idea of the seminal paper by Fiore and Turi is resorting to coalgebras on presheaves, i.e. functors C → Set. Intuitively, presheaves allow associating to collections of names, seen as objects of C, the set of processes using those names. Fresh names generation strategies can be formalized as endofunctors on C, which are lifted to presheaves in a standard way and used to model name binding. Within this framework, a coalgebra for the π-calculus transition system is constructed: the benefit is that ordinary coalgebraic bisimulations for such coalgebra are π-calculus bisimulations. Moreover, Fiore and Turi show a technique to obtain a new coalgebra whose bisimilarity is closed under all renamings. This relation is a congruence for the π-calculus. Presheaves come with a rich theory that can help deriving new results, but coalgebras on presheaves are impractical to implement: the state space can be infinite, for instance when a process recursively creates names. However, if we restrict to a class of presheaves (according to Ciancia et al.), coalgebras admit a concrete implementation in terms of HD-automata, that are finite-state automata suitable for verification. In this thesis we adapt and extend Fiore-Turi’s approach to cope with network resources. First we provide a coalgebraic semantics for NCPi whose bisimulations are bisimulations in the NCPi sense. Then we compute coalgebras and equivalences that are closed under all renamings. The greatest such equivalence is a congruence w.r.t. the input prefix and we conjecture that, for the NCPi with only guarded sums, it is a congruence also w.r.t. parallel composition. We show that this construction applies a form of saturation. Then we prove the existence of a HD-automaton for NCPi. The treatment of network resources is non-trivial and paves the way to modeling other calculi with complex resources

    Fresh-Register Automata

    Get PDF
    What is a basic automata-theoretic model of computation with names and fresh-name generation? We introduce Fresh-Register Automata (FRA), a new class of automata which operate on an infinite alphabet of names and use a finite number of registers to store fresh names, and to compare incoming names with previously stored ones. These finite machines extend Kaminski and Francez’s Finite-Memory Automata by being able to recognise globally fresh inputs, that is, names fresh in the whole current run. We exam-ine the expressivity of FRA’s both from the aspect of accepted languages and of bisimulation equivalence. We establish primary properties and connections between automata of this kind, and an-swer key decidability questions. As a demonstrating example, we express the theory of the pi-calculus in FRA’s and characterise bisimulation equivalence by an appropriate, and decidable in the finitary case, notion in these automata
    corecore