-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

scuencE@DmEcT° Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 331 (2005) 325—365

www.elsevier.com/locate/tcs

Coalgebraic minimization of HD-automata for the
n-calculus using polymorphic typ&s

Gianluigi Ferrari, Ugo Montanafj Emilio Tuosto

Dipartimento di Informatica, Via F. Buonarroti 2, 56127 Pisa, Italy

Abstract

We introduce finite-state verification techniques forthealculus whose design and correctness are
justified coalgebraically. In particular, we formally specify and implement a minimization algorithm
for HD-automata derived from-calculus agents. The algorithm is a generalization of the partition
refinement algorithm for classical automata and is specified as a coalgebraic construction defined
using4~ ¥ a polymorphici-calculus with dependent types. The convergence of the algorithm is
proved; moreover, the correspondence of the specification and the implementation is shown.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Name passing calculi; Finite state verification; Partition refinement algorithm; Bisimulation
checking; Dependent types; Co-algebras

1. Introduction

One of the main advantages of applying formal methods to system design is the possibility
of constructing an abstraction of systems and their computations that are, at least at a certain
extent, amenable of automatic verification. Several process-algebraic techniques have been
developed forreasoning about concurrent and distributed systems. For instance, itis possible
to verify whether an implementation is “coherent” with its specification by checking a
suitable behavioural equivalence among them. Another example isftirenation leak
detection; in[7] the analysis of information flow is done by modelling the system as a

* This work has been supported by EU-FET projeROFUNDIS IST-2001-33100.
* Corresponding author.

E-mail addressesgiangi@di.unipi.it (G. Ferrari), ugo@di.unipi.it (U. Montanari), etuosto@di.unipi.it
(E. Tuosto).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.09.021

https://core.ac.uk/display/82711448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:giangi@di.unipi.it
mailto:ugo@di.unipi.it
mailto:etuosto@di.unipi.it

326 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

CCS-proces® and then verifying that it is equivalent to reg®), another process obtained
by opportunely restricting the behaviour Bf A similar idea has been exploited [ib] for
analysing cryptographic protocols in the spi-calculus.

Finite state automata (e.g., labelled transition systems) provide a foundational model
underlying effective verification techniques of process-algebraic theories of concurrent and
distributed systems. From a theoretical point of view, many behavioural properties of con-
currentand distributed systems can be naturally defined directly as properties over automata.
From a practical point of view, efficient algorithms and verification techniques have been
developed and widely applied to case studies of substantial complexity in several areas of
computing such as hardware, compilers, and communication protocols. We rgfefdo
a review.

A fundamental property of automata is the possibility, given an automaton, to construct
its canonical form: The minimal automaton. The theoretical foundations guarantee that
the minimal automaton is indistinguishable from the original one with respect to many
behavioural properties (e.g., bisimilarity) and properties expressed in suitable modal or
temporal logics. Minimal automata are very important also in practice. For instance, the
problem of deciding bisimilarity is reduced to the problem of computing the minimal tran-
sition systen}3,9,20] The algorithm yields the minimal realization of the initial automaton
by “grouping” all the equivalent states in a single state. Moreover, it is often convenient,
from a computational point of view, to verify properties on the minimal automaton rather
than on the original one. Indeed, minimization algorithms can be used to attack the state
explosion: They yield a small state—space, but still retain all the relevant information for the
verification.

Global computingi.e., networks of stationary and mobile components, are becoming
the prominent example of large-scale distributed systems. The primary features of a global
computing systems are that components are autonomous, software versioning is highly
dynamic, the network coverage is variable and often components reside over the nodes of
the network (WEB services), membership is dynamic and often ad hoc without a centralized
authority. Global computing systems must be made very robust since they are intended to
operate in potentially hostile environments. Moreover, they are hard to construct correctly
and very difficult to test in a controlled way. Although, significant progresses have been made
in developing foundational models and effective techniques to support formal verification
of global computing systems, current software engineering technologies provide limited
solutions to some of the issues discussed above. As pointed out by NiRjea great
challenge is to “develop calculi, theories and automated tools that allows descriptive and
predicative analysis of global computing systems at each level of abstraction”.

Name passing calculi (e.g., thecalculus[11,13,26) probably are the best known and
acknowledged models which provide a rich set of techniques for reasoning about global
computing systemdHistory-dependent automataiD-automata for short) have been pro-
posed in[4,17,18,21]Jas a new effective automata-based model for name passing calculi.
HD-automata are made out of states and labelled transitions; their peculiarity resides in
the fact that states and transitions are equipped with names which are no longer dealt with
as syntactic components of labels, but become explicit part of the operational model. This
allows one to model explicitly name creation/deallocation or name extrusion: These are the
basic linguistic mechanisms of name passing calculi.

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 327

Depending on the level of abstraction, different definitions of HD-automata have been
provided. They have been characterized as automata over permutation algebras, whose
ingredients are sets of names and groups of permutations (renaming substitutions) on them.
This foundational framework is sufficient to describe and reason about formalisms with
name-binding operations. It includes various kinds of transition systems providing syntax-
free models of name-passing cald8lil8,22] At a more concrete level, HD-automata have
been introduced by exploiting the notionsrdmed seteindnamed functionselements
of a named set are equipped with names that are defined up to specific groups of name
permutations calleslymmetriesHD-automata are defined as coalgebra on a category whose
objects are named sets and whose arrows are named functions. The two definitions above
are, atthe same time, equival§i] and complementary; indeed, the former is more natural,
but yields infinite automata in all but the simplest cases, while the latter generates finite
(actually quite compact) automata in many cases.

General results concerning coalgebras guarantees the existence of the minimal HD-
automaton up to bisimilarity. 1f4] two of the authors specify a declarative coalgebraic
procedure to perform minimization of (finite state) HD-automata according to the second
definition. The algorithm is a generalization of the partition refinement algorithm for min-
imizing ordinary automata (up to bisimilaritj9].

Coalgebraic specifications have been proved very useful to formally describe the be-
haviour of process calculi. However, the development of effective verification techniques
based on coalgebraic foundations has had more limited success. The present paper intends
to explore this issue. In particular, we will address the following question:

Can we define effective verification techniques for name passing calculi which can be

justified coalgebraically?

The main results of this paper are

(1) acoalgebraic theory for thecalculus,
(2) a minimization algorithm whose design and correctness are justified coalgebraically.
In particular, we illustrate the features of the framework in the development of a toolkit,
calledMihda, providing facilities to minimize labelled transition systems for name passing
calculi.

A distinguished feature of our approach is the exploitation of a polymorphalculus,
27™*[16], for describing data and control components of the minimization procedure.
The type system of.”""* encompasses polymorphic and dependent types. We exploit
polymorphism for abstracting from unimportant features (with respect to the minimization
algorithm); for example, it does not matter which is the type used for representing the states
of HD-automata, the relevant information being the number of names and the symmetry
of each state. Dependent types are useful for expressing functional dependencies among
the components of a given construction. For instance, the type of the symmetries of a
named set element includes those groups of permutations which act on the names of the
element.

The calculusi™"™* is also an effective basis:

e to drive the implementation choices; for instance, the specification naturally suggests an

ML-like language (we chosecaml) since the type system af""* is a generalization

of the ML-type system.

e to show the correctness of the implementation.

328 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

A pure set-theoretic presentation of HD-automata would have work as well (see the inter-
pretation of.~""* constructs in Sectiod.2). However, in this case we would have two main
drawbacks. First, the sets corresponding to the models of the types should explicitly appear
in all constructions instead of the more compact-type expressions. Second, the connection
between the coalgebraic framework and the implementd#linda would no longer be
explicit. Indeed,Mihda builds directly on thei™"* specification: theML-types of the
implementation are in one-to-one correspondence withithé> specification. In other
words, the set-based description would have been heavier and the correctivibdaf
would have been more obscure than in the"* presentation.

Structure of the papefSection2 collects the formal ingredients our work bases on. More
precisely, Sectior.1introduces the basic definitions of coalgebras and shortly discusses
their adequacy for representing transition systems. Se2t@describesi”"*. Finally,
Section2.3briefly reviewsr-calculus and its early semantics.

The main results of the paper are in Sectbitin Section3.1, the types for the coalge-
braic presentation of HD-automata are given. Se@i@mntroduces the formal coalgebraic
specification of HD-automata for thecalculus. Sectiod.2.1details the types needed by
n-calculus coalgebras. SectiBrR2.2specifies il some auxiliary operations exploited
in the definition of the functor, that is presented in Sec8¢h3 Section3.2.4defines how
m-agents can be mapped into HD-automata (preserving early bisimulation). The minimiza-
tion algorithm is given in Sectio.3where also its convergence on finite HD-automata is
proved.

Section4 shows the correspondence betweenithé* specification of the minimization
algorithm andMihda, its actual implementation iacaml.

2. Preliminaries

This section collects the three ingredients used in the rest of the paper; namely, coalgebras,
4~'"* and ther-calculus.

2.1. Coalgebras

Coalgebras provides a very elegant mathematical machinery to describe the behaviour of
process calculi. This section reviews some elementary notions of coalgebras. In particular,
we will restrict our attention on coalgebras over sets and functions.

Definition 2.1 (Functor). LetC be a category; arefde)functor.F overC maps objects to
objects and arrows to arrows as follows:

e foreach arrowf : A — B, F(f) : F(A) — F(B);

o for each objectd, F(id4) = idr(a);

e forallarrowsf : A — Bandg : B — C, F(f;g) = F(f); F(g).

Fig. 1 gives a graphical representation of how a functor acts over the category of sets
and functions. The identity mapping of sets and functions, or the mapping that associates
a constant seL to any setA are functors over§et Another functor that will be very
important in defining coalgebras is tip@werset functarLet us consider the operation

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 329

Set Set

....... _,4"".”}-‘.(1‘111,):

i\ W a

A ARFa)?

l ; F(f)l
. F(fig) =
f9l B : -7'—(3) F(f): Flg)
g F(9)

Fig. 1. Functor oveBet

A — p(A), i.e., the function that associates to a set the set of all its subsets and, for a
function f : A — B, let us consider

P(f):pA) > eB), ©(f):Ur {fu) | uel}.

Then, by definition,

o p(ids)(U) = {ida(u) | u € U}, foranyU < A hencegp (ids)(U) = U

e p(f;0)WU) = {g(f(u) | u € U}, foranyU < dom(f), hence, by definition,
o (f;8)U) = p (@) (fHU)), forall U < dom(f) which amounts tao (f; g) =

£ () o).
This proves that the powerset operation is functorial.

Definition 2.2 (Coalgebras, morphism of coalgebjad et F be a functor on the category
C. A F-coalgebraconsists of a pai(A, o) such thatt : A — F(A).
Let (A, o), (B, p) be F-coalgebras. A functiorf : A — B is called aF-morphismif

w F(f) = f;P.

A F-coalgebrais apaifA, o : A — F(A)) wherex is a function that, given an element
of A, returns “informations” on the element. For instance let us con§idé&n = L x X,
where L is a fixed set, then the coalgebt@, « : Q — L x Q) can be though of as a
deterministic automaton such that, for each siate Q, if «(q) = (I, ¢') theng’ is the
successor state gfreached with a transition labellédSimilarly, let7S(X) = g (L x X),
then the coalgebréQ, o : O — o (L x Q)) defines a labelled transition system oyer

Example 2.1. Let us consider a finite-state automaton and its coalgebraic formulation via
the mapping.

o (0) = {fa,, b,47}
—2 e 1@_/ a (1) ={&20, 3], b4}

Bo b boigb nml e
c\%@% i tes

330 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

Notice how, for each statge {0, ..., 5}, a(g) yields all the immediate successor stateg of
and the corresponding labels. Nonetheless, the coalgebraic theory we developed is sufficient

to effectively address verification issues. Inde@dg’) € a(q) if, and only if, ¢ 4 q'.

A F-coalgebra(A, «) is final provided that for anyF-coalgebra(B, f5) there exists
precisely one coalgebra morphisfn: (B, f) — (A,). Final coalgebras enjoy some
interesting properties: IfA, «) is a final coalgebra thenis an isomorphism and can be
regarded as giving the canonical solution of the equatica F(A).

Final coalgebras do not always exist. For instance, standard cardinality arguments show
that the powerset funct@s () does not admit final coalgebra. For many functors over sets,
however, the final coalgebra exists. It is well known that for continuous functors the final
coalgebra is obtained as the limit of the terminal sequence
F2(h
< ...

R}

1< Fa) 22 2

where! : F(1) — 1 is the unique morphism fronf (1) to the one element sédt For
instancepolynomialfunctors are continuous and hence have a final sysf28js

The class of polynomial functors consists of all the functors that we can build from the
constant functor, the identity functor, sum, and product functor. Notice that the powerset
functor is not polynomial. However, the functor

pin(S) ={S" | §' < S ands’ finite}

has a final coalgebra. The powerset fungtgr() is the standard example dbunded
functor. It has been proved that bounded functors admit final coalgit8hs

Throughout this paper, we will exploit standard coalgebraic techniques to define HD-
automata and their finite state verification techniques. In particular, the iteration of the
functor along the terminal sequence will converge in a finite number of steps and will
construct the minimal HD-automaton when applied to a finite HD-automaton. Since all our
coalgebraic constructions live in the category of finite (named) sets we will not construct
the final coalgebra: The image of the functor along the terminal sequence is not final
in such a category because it still is a finite set. Nonetheless, the coalgebraic theory we
developed is sufficient to effectively address the issues related to the design of verification
techniques. Indeed, the iteration of the functor along the terminal sequence provides a
declarative specification of the minimization algorithm and the formal machinery to prove
its termination is justified coalgebraically.

2.2. Overview of. 1>

This section reviews some basic type-theoretic notions underlying the description of
languages which support the organization of applications into autonomous (compilable)
modules exploiting explicit-type information (e.g., the ML module language). We refer to
[16] for a detailed introduction to these issues.

In type theory, a polymorphic type describes a structure “having many types”. Two
powerful constructs to describe polymorphic types areggreeral product and sutypes.
Afunction typer — ¢’ describes the type of a function mapping elementsrmtb elements
of ¢'. Sometimes to specify the dependence of the result type on the value of the argument

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 331

type (i.e., the type’ is an expression with free variabteof type), the function type is
written as[[,., ’. This function type is calledeneral producbf ¢ over the index set

Atype (z, ') describes a pair whose components are elements of gpe elements of
typer’. When the value of the type of the first component determines the value of the type
of the second component (i.e., the typés an expression with free variahteof type r)
the pair type is written a3, ., ¢". This type is calledyeneral sunof 1" over the index set
t. The elements of this types are pafus b) with a : + andb : ¢'[a/x]. General sums are
equipped with projections to extract their components.

General sum types encompass tuple types, indeed, provideddbat not occur free in
',y ., 1t is equivalent ta x ¢'. In these cases, we will sometime writex ¢’ instead of
Zx it I/

We now introduce a summary of ttie"* predicative calculus with products and sums
as reported if16]. We letU1 andU> to denote the universes nbrrpolymorphic (basic)
and polymorphic types, respectively. We assume that the universe of non-polymorphic types
contains a collection di/pe constructorand it is closed under product and function space
(notice thatU; does not belong t&>). This allows us to assume type constructors such
as lists, trees or enumeration types over a typs basic structures of our calculus. The
universe of polymorphic types can be made as rich as the universe of basic types.

The syntax of (pre-)termaf of i~ is given by

M:u=Up | U | bt | M> M |]‘[M} ZM
x| x|c| dx: Mm|MM
X | (x:M=MM:M) | (M) | I(M).

The first line of the grammar gives the syntax of tyyge expressionshe third line describes
the structure associated with general sums; expressidfsand (M) are the projections
on the components of a pair (i.e({M1, M2)) = My and ll((M1, M2)) = M>). The second
line gives the productions of a (typeécalculus. We will use to denote types.

The type system is defined by type judgemdritsM : T wherel is type context of the
form{x1 : 71, ..., x, : 7.}, giving the types of variables,, . . ., x,,. Any of the types; can
be a basic type or a polymorphic type. Type contexts have to satisfy some well-formedness
constraints. Here, we do not present all the inference rules which express when a context
is well formed. To give the flavour of the type system we present, instead, a sample of the
typing rules. In particular, we will focus on general products and sums.

The following inference rules describe the conditions for forming and handling general
products.

I't:U; Tx:w>d:Uz IoM:[].,7 I>N:t
I>[..7: 02 I'>MN : [N /x]

I'>t:Us x>t : U0 Ix:m>M: 7
I'six:wM : [],..7 .

332 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

The notation of general product types is reminiscent of the standard notation for the cartesian
products over a family of sets indexed by an index4et

HaeABa:{f:A_) U Ba|vaEA~f(a)EBa}» 1)
acA

where, the elements of this type are functighsuch thatf (a) : '[a/x], for eacha : ¢.
The four inference rules below provide the conditions for forming general sums and for
handling the associated terms.

I't:Us I''x:m>7:Up

’

oy 702
FI>M : ZXIT T/ FI>M : Z)C:‘E ‘C/
I'sI(M):t reIM) : 7[1(M)/x]

I'>M:t I x:mw>1t:U0s I'>N[M/x]: 7 [M/x]
I'>(x:t=M,N:7):Y .7 .

X:T

Similarly to general products, the type of general sums correspond to the disjoint union of
sets
> Bys={{a,b)la € AAND € B}. 2

acA

General products and sums of "* can be set-theoretically interpreted exactly as in
(1) and Q). For instanceHenkin modelgsee[16, Chapter 9] interpret each type as a set
and, given the polymorphic type= [[,.,, w2, if 71 is interpreted asl, the interpretation
of 7 is (1), namely, the elements that inhabire functions fromA to |, 4 B, (that is the
interpretation ofr[t1/x]) such thatf (a) € B,, for anya € A.

acA

2.3. Ther-calculus

This section briefly summaries syntax and semantics oftbalculus[13]. We refer to
[10,26]for more detailed presentations.

Given a denumerable infinite set odmesN = {xg, x1, x2, ...}, the set ofr-calculus
processess defined by the syntax

Pu=0|oP | PLIP| PL+ P2 | vxP | [x=yIP | A(x1,....Xr(a)),
=7 ’ Xy ‘ Xy,

wherer (A) is the rank of theorocess identified. The occurrences ofin x(y).P andv y P
are boundjfree namesare defined as usual and(#) indicates the set of free names of

agentP. We assume that, for each identifigrthere is a definitiom (y1, . . ., yr(4)) def Pa

(with y; all distinct and friPa) < {y1...yr)}) and we assume that each identifietAn
is in the scope of a prefix (guarded recursion).

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

Table 1
Early operational semantics

333

TAUT.P = P

p5 P

sum —1 =
Pi+Py— P

- Xy
OUTxy.P = P

INxy.P 35 P{z/y}

5 P

PAR#
P Pp— Py | P2

if bn(p) Nfn(Pp) =0

x(y) Xy

xy xy , ,
P P, P P. P P, P P
com L1 f277 %2 CLOSE—+ 21 27252 ity gin(py)
P1| Pp— Py | Py P1| Pp— vy(Py| Py
pLp P p
RES T it x £ OPEN ——— == ifx#y.zgh@yP)
VxP — vxP VyP = P'{z/y}
M / Pa{vi/x1, ...,) i) P’
MATCH P Pﬂ DE aly1/x1)r(A)/Xr!(lA)}/
[x =x]P — P’ A1, -, Yr(a)) = P
_ pl K /I _
STRUCT%
— 0

Theobservable actionthat agents can perform are defined by the following syntax:
pu=t | ¥y | ¥@@) | xy;

wherex andy are free names of (fn(w)), whereas is a bound name (kip)); finally
n(u) = fn(w) U bn(w). Usually, x is thesubjectname whereas andz are calledobject
names.

The operational rules for trearly operational semantiare defined in Tablg. As usual,
we considert-agents up tetructural equivalence= defined as the smallest congruence
with respect to
the monoidal laws for the parallel and choice operators,
a-conversion of bound names,
[x =y]0=0,
(vx)(vy)P = (vy)(vx)P and
(vx)(P| Q) =P | (vx)Q,if x & fn(P).
Several bisimulation equivalences have been introduced for-ttedculus[26]; they are
based on direct comparison of the observable activagents can perform. They can be
strong or weak, early, latd 3] or open[25]. In this paper, we consider early bisimilarity
since it provides the simplest setting for presenting the basic results of our framework.
However, it is possible to treat also other behavioural equivalences and other dialects of the
n-calculus (e.g., asynchronouscalculus)[21].

Definition 2.3 (Early bisimulatior). A binary relation over a set of agenfsis a strong

early bisimulation if it is symmetric and, whenevBrB Q, we have that:

e if P& P and fn(P, Q) N bn(x) = @, then there exist®)’ such thatQ 5 Q' and
P' B Q.

Two agents are sagtrong early bisimilarwritten P ~ Q, if there exists a bisimulatio8

such that? B Q.

334 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365
3. A minimization procedure for HD-automata

This section introduces the formal definitions for types and operations exploited in the
minimization algorithm on HD-automata faragents. Our approach consists of formally
describing the data and the control components of the minimization procedure”as
expressions. This provides us with some benefits. First, it enables us to formally prove
termination of the minimization algorithm. Second, the"* specification has to be con-
sidered as an intermediate step toward the actual implementitibda. In Sectiord, we
will show the strict correspondence between thi€"* specification andihda.

Since our construction consists of several interrelated components the types"of
provide an effective mechanism to deal with and control the dependencies among the various
components. Moreover, the formal specification of each component is rather compact and
self contained. The set-theoretic presentation of HD-automata has been given in previous
works [18,21] The set-theoretic presentations can be viewed as a “macro expansion” of
/7% types (see Exampld.1). Indeed, all the types introduced in this paper have set-
theoretic models due to the fact that we stick to the finite case.

Before providing the formal definition, we present an intuitive description of
HD-automata. HD-automata aim at giving a finite representation of otherwise infinite label
transition systems. Similarly to ordinary automata, HD-automata are made out of states
and labelled transitions. Their peculiarity resides in the fact that states and transitions
are equipped with names which are no longer dealt as syntactic components of labels,
but become an explicit part of the operational model. This permits to model name cre-
ation/deallocation or name extrusion that are typical linguistic mechanisms of name passing
calculi.

Names in states of HD-automata hdweal meaningFor instance, ifA(x, y, z) denotes
an agenthavingthree free names andz, then agent (y, x, z) isdifferentfromA(x, y, z),
however, they can be both represented by means of a single stajepsayHD-automaton
simply by considering a “swapping” operation on the local names (corresponding to)
andy of g. More generally, states that differs only for renaming of their local names are
identified.

Local meaning of names requires a mechanism for describing how names correspond each
other along transitions. Graphically, we can represent such correspondences using “wires”
that connect names of label, source and target states of transitions. For instan@e, Fig.
depicts a transition from source statto destination statd. States has three names, 1, 2
and 3 whiled has two names 4 and 5 which correspond to name ao#l to the new name 0,

Fig. 2. A HD-automaton transition.

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 335

respectively. The transition is labelled hyb and exposes two names: Name Z@nd a
fresh name 0. Notice that name 350 “deallocated” along such transition.
It is worth to emphasize that name creation is simply handled by associating in the target
state a name not in the source state, while a name in asstatebe deallocated when it is
not involved in any transition from.

Remark 3.1. Inorder to avoid cumbersome details regarding the definitionas df* types,

we make some simplifying assumptions. First, we assume as given the primitive types (e.g.,
boolean, integers, strings, etc.) and also that the type expressions include enumeration types.
Second, we consider sets and operations on sets as primitive in our type language. This is
not problematic since we will deal with finite collection of elements.

3.1. Types for HD-automata

This section introduces the types of named sets, named functions together with their main
features. We describe HD-automata and their minimization algorithm as a coalgebra over a
functor defined on the category of named sets. Such category has named sets as objects and
named functions as morphisms. Heig,”* types will be exploited for specifying both
objects and morphisms of the category of named sets. Clearly, because of the set-theoretic
interpretation of.~""*, the category of named sets is a subcatego8ebMoreover, since
all our constructions lives in the category of finite named sets, the minimal automaton can
be represented by simply exploiting non recursive types. Indeed, polymorphism allows us to
pass to the functor a different type at each iteration obtained by applying the finite powerset
functor; however, all such types can be casted to the type for named sets because of the
finiteness constraint.

A first choice concerns the representation of names. Names must be totally ordered
because names have a meaning local to the state of HD-automata, hence, they can be
arbitrarily renamed. Instead of considerialgstractnames (as done if18]) we exploit a
concrete representation of names in terms of natural nurab@ssth the usual order). We
also need to represent finite sets of names, hence Weddbe the type defined as

N2 []1-- n.

n.

For instanceN(4) is the interval of the natural numbers from 1 to 4. By convention, type
N(O) is interpreted as the empty set. It is useful to reserve integer 0 for a special purpose,
i.e., it always denotes a newly generated name. Hence, 0 only appears in transition labels,
while names local to states start from 1.

A permutation algebras an algebra whose operations finite kerneft permutations of
names. In a permutation algebra, permutations are considered as operations that transform
the elements of the support.[lt8] a permutation algebra farcalculus has beenintroduced;
the support of the algebra is the setmwégents where(P) is interpreted a® p, namely

1A permutation of names is a bijective functiopson the set of names/. A finite kernelpermutation is a
permutatiorp such thatp(n) # n for finitely many names.

336 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

the application of substitutiomto the agenf. In this context syraP), the symmetry o,

is defined to be syiiP) 2 {p|Pp = p} (notice that symP) is a group of permutations).
Named sets represent states of HD-automata.

Definition 3.1 (Named sels The type of named sets is

NS= Y > Y T em(NGgh — Ndgl).

o <:0xQ—bool [_|:0—w q:0

As a matter of notation, for denoting the component of a named,sge write Q 4, < 4,
|_]a andG,4 in place of using the unwieldy (and less readable) notatiotrdf* based on
projections () and II(). Given a named set, we writea € A instead ofz : Q4.

A named se# lives in a generalized sum tyBewhose first component is a tyg2, , the
second component is again a sum type with a functignthat represents a total order on
0 4 and will be used for determining the canonical representative in a set of states; function
|_]4 is called the weight function (afl) and associates the number of names to elements
in 0 4; the generalized product type of the last component assigns a set of permutations of
names of;, namely, the symmetry @f. In the following we writeg < ¢’ (¢ £ 4¢’) instead
of writing <, (¢, ¢") =true (S,(q, ¢') =false).

Example 3.1. Let us consider the-calculus agent (x, y) given by

Alx, y) 2 (v2)(F2.P + 72.P).

The statey4 that representd (x, y) has two local names 1 and 2 (namely, | = 2); the
symmetry ofg4 is the set containing the identity permutations (of names 1 and 2) and the
permutation that exchanges 1 with 2.

The typeNSis the finite counterpart of permutation algebras. In other words, we do not
consider permutations as bijections of the whole set of names, but only as bijections of the
“relevant” names of a state that, according to Definitdofy are finite. Indeed, notice that
Ga(q) plays the role of a symmetry and is a list of permutationsl@§|), the names aof,

(the natural numbers in the interval.1., |¢|).

Lemma 3.1. Let 0 be the empty substitutiofi.e., the substitution whose domain is the
empty set of namgghenG,(g) = {0} < |q| = 0.

Proof. The proof follows by Definitior8.1 and by the fact that ifg| = n > 0 and id, is
the identity onN(n) then idg) = ¢. O

Hereafter, we often have to compose functions with sets of functions, hence we adopt the
following notation. Given a set of functiodand a functiorg such that it can be composed

2 Formally, A should be written a$0 4. (S 4. (I_l4. G4))). When it is clear from the context, we adopt the
compact notatiodQ 4, <4, I_la, Ga) that avoids writing many brackets. The same notational abuse is adopted
throughout this paper.

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 337

with all functions inF', we let F'; g to denote the set of functions given by; ¢g|f € F}
(symmetrically forg; F). Similarly, if G is a set of functions that can be composed with all
functions inF, thenF; G = {f; g|f € F andg € G}.

Transitions among states are represented by mearemoéd functions

Definition 3.2 (Named functions The type ofnamed functionss defined as follows:

NFE Y Sons 2 T #m(N(R@)Ip) — Nigls).)
S:NS h:Qs—0p q:Qs

Given a named functiof : NF, we use the following shorthands:

e domy = I(H), o hg = (I (H))),
e cody = I(Il (H)), o Xy =I1I(I(I(H))),

which correspond to the projections of the sum tix#e
We implicitly assume that, for all elemenjse domy
(1) Yo € Zu(q)-Geody (hu(9)); 0 = Zu(q),

(2) Yo € Zy(q).0; Gdomy (9) S ZH(q),
(3) any function of2'y (¢) is injective.

The type of named functions is a generalized sum type containing the named sets for
source and destination (notice that the type of the destination does not depend on the type
of the source), a mappirigfrom the source to the destination and, for eaéh the source,
there is a set of functions from the names:¢§) to names of.

The intuition behind conditions (1)—(3) naturally emerges from the interpretation of
named functior{ as a coalgebraic description of a HD-automaton: Elemeritg (ig) are
the possible transitions out gfand X (¢) are the mappings of names of target states of
those transitions to names @f Symmetries ofiy (¢) are those name permutations that
when applied do not chandeg; (¢), the set of transition frorg. Condition (1) states that
any permutation belongs to the symmetries:gf(¢) if, and only if, when it is applied to
any name correspondenadrom the names of the transitions to the namesg gfelds a
map inX gz (¢). Condition (2) states that the group of the starting sjadees nogenerate
transitions that are not id gy (¢). Finally, condition (3) ensures that any naméghhas a
unique “meaning” along transitions iy (¢).

Remark 3.2. If iy (q) has no name (i.elhy(¢q)| = 0) thenG,(hy(g)) is the singleton
{0} that in turn implies thaany o € 2y (¢g) is the empty substitutio@.

An ordinary functionf on sets induces a partition on its domain. The relationc
domy x dom; given by

e=re < fle) = f(e)

is an equivalence relation. Thernel of f (ker f) is the partition induced on domby
=y, namely dom/=,. Let f andg be two functions such that dom= dom,, we can
definef >~ ¢ <= ker f = kerg. Relation~ is an equivalence relation on functions with
common domain.

338 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365
We can lift the concept of kernel to named functions.

Definition 3.3 (Kernel of named functiofis Thekernel of named function k$ the named

set such that

e The underlying set is kéry;

e given A, B € kerhy, A<B if, and only if, for somea € A and someb € B,
hy (a)SCOdH hy(b);

o the weight of an elememt € kerhy is |hy (a)|cody , fOra € A;

e the group ofA € kerhy is Geody, (hu (a)), fora € A.

The named set ke is obtained by considering the partition induced /oy on its
domain and by exploiting the named set structure of,céat the order, weight and group
components. Notice that, in Definitidh3, those components do not depend on the choice
of a or b, since any element iQyer i is a set whose elements have the same image through
hy.

Definition 3.4 (Composition of named functionsLet H, K : NFbe two named functions.
We say that andK can becomposedf, and only if, cody = domg, thence theomposition
of H and K is the named functio/; K such that dorg.x = domy, cody.x = codk,
hu.x =hy; hg and2py,x = Aq € domy. k. 2k (hu(q)); Zu(q)-

Proposition 3.1. Let H and K be two named functions that can be composed. Fhek
is a named functian

Proof. Let us considey € domy.x ando € 2.k (g). First, recall thatX .5 (¢) =
2k (hg(q)); Zu(q), therefore, there are; € Xk (hy(g)) andoz € 2y (g), such that
o = o1; o2. We have to show that the conditions (1)—(3) hold.

Condition 1. We must prove thacody,. « (hu:x(q)): 0 = 2.k (q). We first considec:

gcodH:K (hH;K(Q))§ a

= Definition3.4ando = 01; 02
Geody (hx (hu(9))); (01; 02)

= associativity of composition
(Geodg (hk (hu(q))); 01); 02

= Definition 3.2 (condition 1 onk)
2k (hu(q)); 02

C def. of 2. ¢

2H.k(q).

For the reverse inclusion, we must prove thaan be written as composition of a permuta-
tioninGeody, x (ha:x (9)) and &’ €X . (q). By Definition3.2, o1€Geods (hx (h1(9))): 64,
for a suitables} € Xk (hy(q)); this proves the inclusion.

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 339

Condition 2. We must prove that; Ggom,,. (¢) S 2.k (g), namely, by Definitior8.4,
75 Gdomy (q) € 2k (hu(q)); ZH(q):

(015 62); Gdomy (q)

= associativity of composition
01; (02; Gdomy (9))

C Definition 3.2 (condition 2 onH)
o1; (2H(q))

that completes the proof.

Condition 3. This trivially holds because injectivity is preserved by composition and, by
definition of named function, botbx (h y (¢)) andX i (¢) contains only injective functions
and, for anyg, 2 p.x (q) = 2k (hu(q)); Zu(g), by Definition3.4. [

We conclude this section by emphasizing that named functions will provide the formal
mean to describe a generic step of the iterative minimization algorithm. Intuitively, named
functions map states of the automaton in a minimal representative state (at the current
iteration). In Sectiord4, the notion of kernel of a named function will be exploited for
specifyingblocks the main data structure dfihda. Basically, a block collects those states
considered equivalent at a generic iteration. Hence, the block intuitteetgsponddo an
element of the partition induced by the kernel of the named function associated to a generic
step of the iterative algorithm.

3.2. HD-automata for-calculus

We now present the coalgebraic specification of HD-automata for the early semantics of
ther-calculus. Even if our constructions are tailored tothealculus they can be extended
to handle name passing calculi in general.

3.2.1. Bundles for the-calculus
We represent-calculus labels through the enumeration typgiven by

A
L = TAU, IN, OUT, BOUT BIN.

We assume that the position of the elementk gfves the ordering relation. Lét| be the
weight map associating to eaeHabel! a set having as many indexes as are the ndmes
refers to. The weight map is defined as follows:

ITAU =¢ |IN| =|out ={1,2} |BOUT = |BIN| = {1}.

No name is associated to the synchronization lakel two names (the subject and the
object of the transition) are associatedNoandouT, whereas one name is associated to
BouTandBIN labels. All but labeBIN have a corresponding label in the transition system of
n-calculus illustrated in Sectio®.3. Transitions labelled bgIN correspond tor-calculus

input transitions whose object name is fresh, namely, the object name does not appear in the
free names of the agent performing the transition. As usual in4baculus literature, we

call bound inputsuch transitions, whilbound transitiongither are bound output or bound

340 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

input transitions. Non bound transitions are called free transitions. Notice that, according to
the early semantics of-calculus, there is an infinite number of bound transitions out of a
state of the formxy. P or (v y)xy. P, however, they all are equivalent up to renaming of the
fresh name. Therefore, they can be represented by means of aminglesouTtransition

in the HD-automata for-calculus.

Since names are local to states, it is necessary to specify how names occurring in a
transition are related to names of source and target states. Therefore, we have the following
definitions.

The typeqd of quadrupleds given by

W=1 2% ¥ Niglp - o

D:NSqgeD: 'L m:|l|—>w

Let D : NSbe a named set and qd (D) be a quadruple of, then to enhance readability
we will adopt the following shorthands:

u 210, 621N, m 2 1AA@)), o 2 0ALA@))).

A quadrupler over a named seb represents a transition to statewith label ¢,. Each
transition is equipped with two functions; anda, that map indexes of; and names of

7, to suitable names (of the source state of the transition), respectivelyzBattdo, are

needed to establish a relationship between indexes in labels and names local to states or
between names of different states.

Example 3.2(Transitions of HD-automaja Let A(x, y) 2 (vz)(xz.P + yz.P) the
n-agents introduced in Exampg1 the transitions from the statg,(, ,) corresponding
to A(x, y) are described by the quadruples

= {qp, {1, m1,01), t2=1{(qp, L2, T2, 02)

wheregp is the state corresponding ®, {1 = £, = BOUTz1 : 1 +— x andmp : 1+ y.
Moreover, assuming thate fn(P), botho1 ando, mapz to the fresh name 0. Finally, if
fn(P) = ¢ then botho1 andao, would be the empty substitutidhand the symmetry of p
would have been the singleton containihg

Remark 3.3. In the case oBouTtandsIN labels have to deal with name generation events.

The information about new names is giveijnAs shown in Exampl8.3, if ¢ is a transition

which refers to a bound name, thenmaps the bound name (gfto 0. In this respect, 0

should be properly considered as a placeholder that signals name generation events, namely
that a name of the target state has been generated during the transition. No name is mapped
to 0 by, when{, iSTAU, IN Or OUT

Definition 3.5(). Given two totally ordered setst1, <;) and(A2, <,), we define< to

be the relation on functions from; to A such thatf <g if, and only if,

e either,Vq € A1.f(q) = g(q)

e or, there isy € A1 such thatf(q) # g(g) andVq’ € A1.9'<19 = f(q') = g(g") A
F(@)Z28(q).

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 341
Proposition 3.2. Relation< is a partial order.

Quadruples can be totally ordered. We have that:’ if, and only if,
T SpTr AT =10 = 4 <y A (b =€y = 1<y A (T = 1y = 0,d0y)).

The intuition is thatC is a lexicographic ordering obtained by taking advantage of the
ordering relations on the quadruple components. The relevancendli emerge later to
define the action of the functor over HD-automatasesgents.

Proposition 3.3. RelationC is a total ordet

We callbundlethe collection of transitions out of a state. Bundles are described by type
B below:

2

B= > fin(qd(D)).

D:NS
A bundle over a named sét is a pair(D, S) whereD is a named set an8lis a finite set
of quadruples orD. As usual, we assign names to the components of a byhdE; the
support off is I(f) and is denoted by, while thestep off}, denoted bysy, is 11(f).
We can lift the total ordering to bundles (over the same support).

Definition 3.6 (Bundles’ordering. Let 1, B, : B be two bundles such thds, = Dy,
and let; be the minimal quadruple ifig. (fori = 1, 2). We say thap, is smaller thar,
(and writef3; 2 f3,) if, and only if,

e eitherSy, is empty,

e Orf1 C 1 andry # 1o,

e orelser =tz and(Dg,, Sﬁl\{tl})j(Dﬁl, Sp\l2}).

Intuitively, = corresponds to the lexicographic order on the second components of the
bundles.

Proposition 3.4. Relationz is a total order

3.2.2. Auxiliary operations

We now show how bundles can bastedto named sets. Since Definitié6 provides
an order on bundles, it suffices to define the names and the group of a bundle.

The names of a bundle are those names that “appear” in the rangesuod o, of its
guadruples, namely:

I_h228:B U U (m®, o (m)\0)
IES/; n: |l
m :N(|T¢|p)

the weight function on bundles is the cardinality{gf|} (for any bundles) and is denoted
by LA].

342 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

In the minimization algorithm, bundles play the role of states along the iterations of the
algorithm. Hence, the names of a bundle obey the same constraints of names of states and,
according to RemarB.3, the natural number 0 should not be considered a name of the
bundle.

Let be a bundle and be a permutation of its namesjgermuteq $ }). Thenfp denotes
the bundle whose supporti3; and whose step is given by

{{ts, &, T p, 045 p)| is @ permutation of B} A 1 € Sp).

The symmetry off, Gr(f3), consists of all the bijections dff |} that leave (the step ofj
unchanged,

Gr(f) = {plpis apermutation of B} A Sp = Sg,}.

The mostimportant operation on bundles@malization This operation is needed because
(i) we must establish a canonical way of choosing the step component of a bundle among
a number of different equivalent ways; (i) more importantgdundantinput transitions
must be removed. Redundancy is strictly connected to the concagtivé namesA name
n is inactivefor an agent? wheneverP is bisimilar to(vn) P, otherwise it isactivefor P.
Intuitively, a name is inactive if it will not be used in the future transitions of the process. In
general, deciding whether a name is active or not is as difficult as deciding the bisimilarity
of two processes.

Redundant transitions are free input transitions where the received name is inactive in
the source of the transition.

The importance of redundancy emerges when we try to establish the equivalence of states
that have different numbers of free names. For instance, the follorvamgents:

pa x(u)vv(vz +uy), Q 2 x(u).uy,

are bisimilar only if, for any name substituted fiortheir continuations remain bisimilar.
However, P has a free input transition which corresponds to choice of naime¢he early
semantics, whileQ has not. Thus, unless this transition is recognized as redundant and
removed, the automata fat and Q would not be bisimilar. The transition is redundant
since it isdominatedby the bound input transition af, where a fresh name is considered.
Beingz inactive in P, choosing name is like choosing a fresh name.

Redundant transitions occur when HD-automata are built freagents. During this
phase, it is not possible to decide which free input transitions are required, and which
transitions are redundartThe solution to this problem consists of adding all the free input
transitions when HD-automata are built, and to exploit a reduction function (at every step
of the patrtition algorithm) to remove those that are unnecessary.

Fig. 3 illustrates the HD-automata corresponding®@nd Q (the formal construction
will be presented in Sectio®i2.4. 4 Transition with labeIN x z (drawn with dashed lines)

SIn general, to decide whether a free input transition is redundant or not is equivalent to decide whether a name
is active or not; therefore, it is as difficult as deciding bisimilarity.

4The convention adopted for names in theomponent of transitions in Fi@ is that the name in théth
position ism(i). For instance, sequengey stands form(1l) = x andn(2) = y.

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 343

(b)

Fig. 3. Redundant transitions: (a) HD-automatonfoand (b) HD-automaton fo@.

is redundant in the automata Bf Stategg andqg in Fig. 3 are bisimilar because transition
from pg to p» is redundant since is inactive inpg. Transition{pz, IN, xz, 62) expresses
exactly the behaviour of the bound input, except that a free redundant input transition is
used rather than a bound one. In other words, when the bisimulation game is played, the
free input transition tg, from pg plays the same role as the bound input that “assigns”
a name ta: that is “not known” inpj. This means that the automaton #ris equivalent
to the automaton obtained by removing the redundant input transition which is exactly the
automaton forQ.

Intuitively, during the iterations of the minimization algorithm the sets of redundant
transitions of bundles decrease. When the iterative construction terminates, only those free
inputs that are really redundant will be removed from the bundles.

Notation 3.1. Given a functionf, in the rest of the paper, then:
e f[x +— y]abbreviatesu.if u = x then y else f (u).
e f1p is the restriction off to the setB € domy.

The normalization of a bundle is done in different steps. First, the bundle is reduced by
removing all the possibly redundant input transitions by applying the functiduce
reduce= 4P :BADg, Sp\{t € Sgldominatedp)(r)})
where dominatecexpresses the condition for quadruples’ redundancy (for the early seman-
tics) and it is defined as follows:

dominated A+ B.At 1 qd(Dp).
6=IN A (1, BIN, 7|11y, 0:[07 1 (2) = 0]) € S

The underlying intuition is that a transitiaris dominated in a bundIg when it is a free
input transition ang contains a bound input transition to the same targe{of the same
channel) and such that the object name isfmapped on to the 0 name in the bound input
transition.

Notice that not all dominated transition are redundant transitions. Dominated transitions
are only used to compute tlaetive names of a bundl&he active names are those names

344 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365
of the reduced bundle defined by:

an 2 AP : B.{reducép) |

We want to point out that the concept of active names of a bundle is different from the
concept of active names of a process. Active names of a bundle do not involve any notion
of “future” behaviour; they are characterized in terms of a local property of the bundle.

We use function rem_in to remove input transitions from a bundle if their object names
are not in a given set of names. Function rem_in is defined as follows:

rem_in= Af : BAN : prin(0).Sp\{t € Spl =IN A 7,(2) & N).
Finally, the normalization of a bundle is obtained by applying the function norm.

norm = AP : B.
let B/ = rem_inp (an(B))
in minz (B0] 0 : an() — N(Jan()|) is a bijective substitution).

We also definé); to be the bijective substitution for which the minimal bundle is achieved,
i.e., (rem_inf (an(B)))0p = norm§p.

Observation 3.1. The definition of norm requires existence of a minifnapresentative
bundle. Recalling thafor any bundles, Sy is finite (by definitior) and the set of names of
p is finite, we conclude that the set

(B'0]0:anB) — N(lan(B)|) is a bijective substitutioh

is finite as welltherefore the minimal element exists sinceis a total order

Basically, norm, applied to a bundi filters those input transitions that are dominated
in f and whose object names are no longer active names of the (reduced) bundle. The
remaining transitions are collected in a bungleand the substitution which makeg#
minimal is applied to it.

We have the following results.

Lemma 3.2. If §, ' : B are such thatSy € Sy, and letf; = norm f and #; = norm f

thenS,;l; 071 - Sﬁll’ 0

-1
B g

Proof. The thesis easily follows from the definition of application of a substitution to a
bundle. O

Lemma 3.3. For eachf : B, Snorm s € S Gl}l.

Proof. By construction, norng is the bundle obtained by removing dominated quadruples
from f and by renaming its names throu@pl. O

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 345

71 274 NS
(B= 04 x gfin(qd(Q4)),
< =B, B):BxB.
if Sp =0
thentt
else
letr = minc (Sp) in
let? = ming (Sp)in
1A =1 = Sp\SSp\'D,
I_I=72B:B.1B]
AP B.Gr(p)
)

Fig. 4. Functor on named sets.

T20H : NF.
let S = T1(domy)
and D = Ty(cody)
andh’ = f € S.
(cody, {(hy(q), L, m,0'50) | (g, 6, m,0) €S A o € Zy@))
andh = /8 € S.normh’(B)
andX = AB € S.{p: Hh‘,}ﬁ)\p € Grh(P)))
in (S, D, h, %)

Fig. 5. Functor on named functions.

Intuitively, Lemma3.3states thaf “includes” the bundle resulting from its normalization.
Sometimes we will writg8; € f3, instead ofS, < Sp,.

3.2.3. The functor for-calculus
This section describes the functbifor the n-calculus. As usugP4], we represent as
a pair(T1, T»), whereTy maps objects to objects, while maps morphisms to morphisms.
Map Ty is defined in Fig4. When applied to a named sét it returns a named set whose
components are described below:
e the underlying set is characterized by the type of bundles dyer
e the order relation is the order on bundles induced by the ordar(Bfefinition 3.6);
e the weight function is the function that gives the number of nhames appearing in the
guadruples of the bundle;
Notice thatTy requires the existence of a minimal quadruple; this is indeed the case because
Sy is afinite set of quadruples, for any bungle
Fig. 5illustrates the actions of the bundle on named functions through thefmagne
named function resulting from applyiri to H is a function such that
e the domain is obtained by applyirfg to domy;

346 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

e the codomain is obtained by applyifg to cody;

e the functioniz,(yy maps each bundle in the domain to a normalized bundle in the
codomain;

e foreach bundlg, the set of its name correspondences is obtained by composing symme-
try Gr(hr,(m)(f)) with 9/;1 to undo the normalization of names performed by computing
norm

We now prove that ma> is functorial, i.e., it preserves composition and identity.

Proposition 3.5. LetH : NF, K : NFbe two named functions that can be composed. ,Then

T2(H: K) = T2(H); T2(K). ®)

Proof. First, we prove that both sides of E®) have the same domain and codomain.

domy,(x: k) Ti(domy.x) by def. of 7>
Ti(domy) by def. of ¥’
doMyy(my; To(k) = dOMpy () by def. of %’

T1(domy) by def. of T>.

A similar proof shows that cogu. k) = COUr,(H): 1>(k) -
Second, we show théir, y.x) = hrm): (k). By definition 3.4 and the definition of
T», we have, for any} € domy,x),

hry). 126)(B) = hryk) (hromy (B)) = norm(codr, k), Qp)

whereQy is the setof quadrupléax (f'), ¢/, 7', ; o) suchthatf', ¢/, 7', ¢’) € Shryan B
anda € Xk (), while the step ofiz, () is the step of the bundle

norm <codr2(y>, U {(hu(g). ¢ m,6:6)|0 € ZH(q)}>
(q,f,ﬂ,&)ES/g

and, by Lemma.3,

Shran® S U {hu(9). €, 7, 0;6)|0 € ZH(g)). (4)
(q.£,m,6)eSg

Let us now consider functiolz, g k):
hr,H: k) (f) = norm (codr, g k). U {(hex@). €, n,0;6)|6 € Xnk(q)}).
(q.6.m.6)eSy

Hence,hr,(u.x)(f) = norm (codyr, k), S) where,S contains all quadruples of the form
(hx (hu (@), ¢, &, 7; 6) such that

(.8, m,6) €S and 6 € 2k(hu(q)); Zu(q).

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 347

This, together with4), implies that (for any) Qg < Shrzm;m(ﬂ)- Moreoverfir,(u),x(x) <
hr, . k) () follows by Lemma3.2

Inorderto prove thdir, u). 7,k)=h1>(H: k) (B) holds, itremains to show thag, . k) ()
€ hryHy1a(k)- I 1 € Sppyy i) @nd the label of is notiN, thent € Spp,). 1« Since
r can be NSk 11.1) \Shry ;101 only if ¢ is (_jomlnated INShzy11y.75 k) 1N this case there
is aBIN transition inSj,,, ...« that dominates and, recalling thas,,, . .. «,(» <
Shrzm;m(ﬁ)’ thenr would’ be dominated also s}, This contradicts the ?hypothesis
thatr € ShTz(H:K)(ﬁ)'

Finally, we show thal'r,(u. k) = 21,(H): 72(k) By definition of composition of named
functions we have

TH:K) (D)

21,H): oK) (B) = Z15) (M) (B))s 210y (B),
hence

21H): k) (B) = (Gr(hTz(K)(hTz(H)(B))))H;le(H)(ﬁ)i (Gf(hTz(H)(ﬁ))%l).
Moreover,HhT
of T») then we have

2,1y, 12k) (B) = Gr(hry)y (h oy (B))); (Gr(hrycmy (B)); 051)

— U Gr(hr, k) () (B)); @ (5)
o€ X7, k) (hryay (B))

_l(H)(ﬁ) is the identity (becauder, () (f) is a normalized bundle, by definition
2

(equality 6) by associativity of composition). By Definitiah 2, we conclude fromg) that
20y nk)B) = 2ok (). U

Proposition3.5 shows thatl» preserves composition. It remain to prove that identities
are also preserved.

Proposition 3.6. Map T» preserves identities

Proof. Given a named set : NS id,4 : NFis the named functions such that dgm = A
andhig, is the identity onQ 4 and, 2iq, (¢) only contains the identity on names gf for
anyq : Q4. Thence, itis trivial to see that, by constructida(id,) is the identity named
function onT1(A). O

Proposition 3.7. Map T is functorial

3.2.4. Fromr-calculus to HD-automata

Following[18], we now construct the HD-automaton corresponding to the early semantics
of the n-calculus. We assume existence of a functidihat, given ar-agentsP, returns a
pair (P, 0p) = n(P), whereP is the representative of the class of agents differing from
P for a bijective substitutiondp, such thatP = P0p and Pp = P, for any bijective

348 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

substitutionp. Hereafter, we consideX” = {xo, x1, ..., } totally ordered by relation<,
wherex; <x; if, and only if,i <.

In order to have a standard way to choose way the canonical transition (up to permutations
of names) we borrow frorf21] the definition ofrepresentative transitions

Definition 3.7 (Representative transitign A transition P L Pisa representative

transitionif one of the following conditions applies:
e eithery=rtoru=xy;

e u=Xx(y)andy = min(AM\fn(P));

e u=xyandy € fn(P) U {min(NV\fn(P))}.

Intuitively, a representative transition is exploited to single out a transition in a canon-
ical way from a bunch of bound outputs (that differ only for the extruded name), and
from a bunch of input transitions (that differ in the fresh name that is received from the
environment).

We only use representative transitions in HD-automata that correspandgents. The
following lemma ensures that these transitions are enough to capture agents’ behaviour.
Lemma 3.4(Pistore[21, Lemma 7.6). If P = p (resp, P) P’) is not a representa-

tive transition then there is a representative transitiégh— P” (resp, P @ P") such

that P” = P'[*Y/, _].

Let P be an-calculus agent and lgtP, 0p) = n(P). The coalgebraic specification
of the corresponding HD-automaton #f is obtained via a named functiaki[P] with
domg(p) = D[P] and cogkp; = T1(D[P]).

We first determingd p[py, the set of the states, as follows:

A
Opipr= U QprpUSLP],
P’eS[P]

whereS[P] 2 {P} U (P’ | P £ P’is arepresentative transition n(P’) = (P’, 0p:)}.

Intuitively, O p(py is the set of (the canonical representative) agents that can be reached from

P (through representative transitions). It is straightforward to e@uipp; with a named

set structure, Indeed

e the orders , p) On O pip) is the lexicographic order on processes;

e foranyq € Qpipy, the weight functionq | prpy yields the cardinality of fiy);

e for anyg € QOpipj, the group componerppi(q) is the identity on fiig) or is @,
depending on f(y) # ¢.

Function’ [p) associates to each state the bundle of its outgoing transitions and is defined

ashkp) = Ag.norm ﬁq where

ﬂq = (QD[p], {ty | q A g’ is a representative transitic)>1

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 349

and, if (¢’, 0,) = n(qg"), quadruple,, is defined as follows:

¢/, TAU 0. 0,1, p=rt
(¢',outm, 0.1, p=7xy, 1) =x, 12 =y
ty = (q',IN, 7, 0;,1), u=xy, yefn(g), n(l) =x, n(2) =y

(¢',BOUT T, 0,10y () = O, pu=3(y), (1) = x

(g".BIN. 7, 0,104 (») = O, p=xy, y ¢fn(g). m(D) = x.

Finally, we defineXxp)(q) = {p; 0;q1|p € Geody(p) (hk1P1(g))}, foOr any statey.

The HD-automaton obtained by this definition i% ecoalgebra by construction and it is
a valid HD-automaton.

The construction above may yield infinite HD-automata. However, there are interesting
classes ofti-agents that generate finite HD-automata: This is the caBeitary n-agents.
Thedegree of parallelisndeq P) of ar-calculus agenp is defined as follows:

deg0) = 0, degu.P) = degA(x1,...,xp) =1,
dedg(vx) P) = deq P), deg P|Q) = deg P) + deq Q),
deg[x=y]P) = deg P), deg P+Q) = max(degq P), deg Q)).

Agent P is finitary if max{deg P") | P B8 py <.

By taking advantage of the techniques introduced 8)21]we have:

Theorem 3.1. Let P be a finitaryr-agents. Then the HD-automataf P] is finite
Proof. Easy. It is sufficient to mimic the proof of Theorem 47[08]. O

Example 3.3. We show how the functor acts by constructing the HD-automaton of agent

P 2 x(u).(vv)(vz+uy) of Section3.2.2 Let us assume thdt already is the representative
element with respect to, i.e.,n(P) = (P, id). Then, by definition,P has the following
representative transitions:

P = vo(vz + 1y)

* P = vo(vz + 7y)

P/
\

zy N

Py = vo(vx + zy)

Py = vo(oz +)

350 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

Notice thatP; and P; are the same up-to a bijective substitution; therefore they have the
same canonical representation, namely= P, and are represented by means of a unique
state in the automaton. Transitions and xu are distinguished by a differemt in the

automaton. Finally, the remaining representative transitionPare> 0, P, = 0, and
- Yy
P3 = 0.

In the automaton, the information about the freshness of masgiven by thes-function

on the bound input transition (i.ery (1) = 0), while, here the new nameis the minimal
name not occurring in fP), and is used in the standard representativef P;.

3.3. The minimization algorithm ia~"*

This section specifies the minimization algorithm for HD-automata and proves that it con-
verges on finite HD-automata. The minimization algorithm builds the minimal realization
H of (finite) HD-automata by constructing (approximations of) the final coalgebra mor-
phism. The kernel off yields the equivalence classes where equivalent states are grouped
together. The active names of each staége those in the ranges bf; (¢). Let us observe
that condition 1 in Definitior8.2 guarantees that all functions X;(¢) have the same
range.

Given aT-coalgebrak : NF with named setA as source, we letnit : NS =
(unit, Ax, y : unittt , Ax : unit.0, ¢) to be theemptynamed set (i.e., the named set on the
vacuum typeunit having() as its unique element). The minimization algorithm is specified
in a declarative way by the equations below.

Initial approximation: Ho 2 (A, L, Ag: A.Q), 1q: A.0). (6)

Iterative constructionH; ;1 S K; T>(H;). (7

Intuitively, in the starting phase of the algorithm, all the states of autonfatne considered
equivalent, indeed, ketlp gives rise to a single equivalence class containing the whole
domg . At the (i + 1)th iteration, the image throudf of theith iteration is composed with

K as prescribed in7j.

At each iteration, two cases can arise: (i) a class is splitted because the states that it
contains are no longer considered equivalent or (ii) a new active name is discovered. The
algorithm terminates when both these two cases do not occur. This is equivalent to saying
that thereH,, ;1 is equalto H,, for somen.

Since we model iterations by means of named functions, we need to establish when two
named functions “are the same”.

Definition 3.8 (Equivalence of named functiond_et H1 and H2 be two named functions
such that dorg, = domg,. We say tha#{1 and H> are equivalent (writterH,~ H>) if, and
only if, the following conditions hold:

(1) kerhpy, = Kkerhp,;

(2) ¥ € domp.|h i, (@)leoq,,, = 1M (@lcog,,

() vq € domHl-gcodHl (hi (@) = gcodH2 (hHy(q))-

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 351

The equivalence of named functions imposes constraints both on names and groups of
partitions. Namely, the number of names and the group of the equivalence classefin ker
and kerH, must be the same. Notice that Definiti®8 does not imply thaH; and H» are
the same named function whéh~ H, because the underlying functiohg, and’ g, can
differ each other.

Proposition 3.8. ~ is an equivalence relation

In Definition 3.8, codomains of{; and H> do not play any role, indeed, only the sym-
metries of the images of elememt$n the domain are required to be preserved. Intuitively,
this means that we do not care of the “structure” of the elements in the codomains, but only
whetherH; and H, induce the same patrtition on their domains (condition 1) and names
have the same meaning (conditions 2 and 3). Equivalence of named functions is the formal
device exploited for expressing the halting condition of the iterative algorithm. Namely,
the algorithm terminates whei, 1~ H,,, for somen. This amounts to saying that, at the
(n + 1)th iteration, all the states remain in the same equivalence class they where in at the
nth iteration (i.e., keH, 11 = ker H,, by Definition 3.8) and that the number of active
names and symmetries remain unchanged (conditions 2 and 3 in Defthon

The proof of the convergence of the algorithm is based on the facTlista monotone
functor over a partial order set having finite chains only.

Definition 3.9 (Relation=<). Let Hy and H» be two named functions such that dgm=
domy,. RelationH; < H> holds if, and only if,

e partition Qer g, is coarser tha@yer i, ;

e YA € Qkert; VB € Qkert, ANB # 0 = |A|kerH1<|B|kerH2?

o VA € lerHl-VB S leer-Vf] eAN B.ZHl(q) - ZHZ(('I)'

Proposition 3.9. < is a pre-order
Proof. Straightforward. [J
Proposition 3.10. Let H; and H, be two named functionthen
Hi < H» N Hp < Hi = Hi{~H>. (8)

Proof. The first two conditions of DefinitioB.9 and the hypothesis o8) implies the first
two conditions of Definitior3.8. It remains to prove that the hypothesis implies the last
condition of Definition3.8.

Assume that there ig € domg, such thagcodH1 (hu(q)) # gcod,,z (hm,(g)). Then, for
alo e EHl(q),

Geod, (111,(9)): 7 # Geody, (h11,(@)): 0. 9)

352 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

Notice thatHy < H» A H =< Hp and Definition3.9 imply 2y, (¢) = 2n,(¢); and
conditions on named functions imply tf@godHi (hu,(q)); 0= Zhy,. (g) (fori =1, 2), that
contradicts). [

Proposition 3.11(Monotony ofT"). T, is monotone

Proof. Let H; : NF(i = 1, 2) be such that{; < Ho; we prove tha»(H1) < T2(H>). Let

(fori =1,2) Si = domyy(u,), Di = €OCry k), hi = hrymyy @nd2i = X7y

e By hypothesis, dom, = domg,, hence, by definition df1, D1 = D2 and, by construc-
tion, Sp, = Sp,-

e Givenp, B/ e S1 such thatha(B) = ha(B'), assume, by contradiction, thaf(f) #
h1(B). Then, by definition off», there is a quadruplein Sp (resp., inSﬁ/) s.t. for any
t'in Sﬁr (resp., inSp) (h1(z(1)), £(t), a(t); p) # (ha(z(t), L"), a(t'); w). This yields
a contradiction, since there is‘ac Sﬁ/ such that

(h2(z(1)), £(1), o (t);) = (ha(z (@), ('), a(t);)

and H1 < Hy implies thathy(t(r)) = hy(z(t')).

o Forallp e S, [hi(P)lp, = Lhi(B)] (i = 1,2). Hence|h1(B)|p, <|h2(B)|p, by con-
struction; indeed, for any quadruple Sg, |T(t)|COdH1 < |r(t)|c0dH2 (becauséd;, < H>),
hence the domain of the functionsin (z(¢)) is included in the domain of the functions
in 22(7(2)), therefore, also their ranges are in the same inclusion relations.

e Letff € domy, be such thati1(f)] = [h2(p)] and by constructioni (= 1, 2)

Zi =map(4p : N(Lhi (B)]) = N(Lhi (B)]D-p: 9,§1) Gr(hi(B)).
By hypothesis2 n, € 2n,, hence, by definition of», by applying
map(p: Zp(B)(hu (o), L, T, 005 1) 21 (Tr) (10)

to H1 we obtaining a number of quadruples less or equal that the applicatid®)ab(
H». ThereforeGr(h1(f)) € Gr(h2(f)) which imply thatX; € Xo. [

Monotony is preserved by composition of named functions, as stated by the following
proposition.

Proposition 3.12(Composition and ordering Let H1, H» be two named functions such
that H; < Hp. For any K : NFif cody = domy, = domy, thenk; H1 < K; Ho.

Proof.

e By definition of composition dom., = domg = domg.y, and the characteristic
functions ofK; H1 andK ; H, are obtained by composing the characteristic function of
K with those ofH; and Hy, respectively.

e For all ¢, q" € domg.n,, by definition (K; H)(¢q) = (K; H2)(q') if, and only fif,
H2(K (q)) = H2(K(q")). Hence H1(K (¢)) = H1(K (¢")) holds becausél; < H, and
this implies(K'; H1)(¢q) = (K; H1)(q").

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 353

e We have that

(9lcodg., = Iha(hk())leog, by definition of composition
Pty (K (9)lcoq,, SINCEH1 < Ha
= 19lcody. by definition of composition.

/N

o if ¢ € domk.y,, we haveXg.y, (q) = 21, (hk (q)); 2k (¢) (by definition of composi-
tion); sinceH; < Hp we haveX y, (hg (¢)) € 2u,(hk(g)) hence

2 (hx(q): 2k (q) € Xu,(hk(9)); 2k (q),

which is equivalent t& k. i, (¢) € Xk H,(q).
This concludes the proof.[]

Finally, we can prove the convergence of the iterative algorithm:

Theorem 3.2(Convergence The iterative algorithm expressed by E@6) and (7) is
convergent on finite state HD-automata

Proof. First, observe that, by monotonyBfand PropositioB.12 mapsFx (H)=K; T>(H)
is monotone. Second, for any, Fx (H) is finite. Finally, all chains irNF having finite
domain are finite, hence, the iterative algorithm definedéinahd (7) converges to the
maximal fix-point of Fg. [

By definition, for any named functioff, T>(H) and H differs each other because their
codomains always differs. However, in Theor8@we implicitly refer to the equivalence
on NF, i.e., ~ (Definition 3.8). Relation~ is based on the notion of kernel of named
functlons hence, the fix point is a named functions suchHTaFK(H) In other words,
H is an automaton isomorphic #x (H); indeed, despite the representation of the states
(i.e., the type of codomains) a bijective correspondence can be established betwegn dom
and don),K) such that order, weight and group components are preserved.

We can establish some basic properties of the outcome of the minimization algorithm
that can be formally characterized.

We first prove the following theorem that the minimization algorithm does not “collapse”
non bisimilar states.

Theorem 3.3. Let K[P] be the HD-automaton corresponding taaalculus finite control
agent P. IfH is the outcome of the minimization algorithm appliedktpP] then any two
states that are in the same equivalence clasggf ; are bisimilarz-calculus agents

Proof. First, by construction/f is a named function such that dom= Qp(p) (the set
of the processes reachable framup to bijective renaming, as defined3m2.4. Indeed,
ker H induces a partition o/ prp1; two processes, saf andR, are in the same class iff
hy(Q) = hy(R). Ifthis is the case, the@ and R are early bisimilar. Indeed, if we let

R={Q.R)Q.R € Qpipy A hy(Q) =hy(R)}, (11)

354 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

thenR is an early bisimulation. In order to prov&1), without loss of generality, we can
consider only the representative transitions (see Le®wa

Letr : QO 2 Q’ be a representative transition. By constructi&tiP](Q) contains a
transition representing sayf, built as described in Secti@?2.4 We distinguish two cases:
(1) If o is not an input transition, thene Sh 1 (0) because, at each iteration, the functor

can only remove input transitions; hences Shﬁ(R) and, therefore is in K[R], that,

by construction, means th&t — R’, for someR’
(2) if ois an input transition, theﬁhﬁ(g) either contains a transition corresponding tor
it contains aIN transition that coves. In both cases, we can apply the same reasoning
above to constru® — R’
We still have to prove the transfer property of bisimulation, namely, we must also guarantee
(Q', R) € R. Let assume that such a transition does not exist; héngeR") # h; (R’
for all R’ that arex-derivatives ofR. By explicitly expanding the functor definition, at each
step, we have

hy, . (X) = norm <T1(codHl.), U {(hu (X)), L. 7,0 0) | o2y (X/)}>
(X' £, 70.0)€8) (x)

then, Sh () contains a quadruple whose label and mapping correspond dad
whose target state ibsﬁ(Q/) and sinceShﬁ(Q) = Shﬁ(R) this quadruple must also be
in k5 (R) meaning that for some-derivativeR’ of R, 1 4, (Q') = h ;(R’), which gives the
contradiction. [J

Another property of the algorithm is that it does not distinguishes bisimilar processes.

Theorem 3.4. Let P and Q be two bisimilar-calculus agents and? the outcome of the
minimization algorithm oK [R], whereR = 1.P + t.Q. Thenh ;(P) = h;(Q), where

n(P) = (P, 0p)andn(Q) = (Q, 0p).

Proof. First notice thatP ~ Q iff R ~ 7.P and thatP andQ are both inK[R] since they
aret-derivatives ofR. We prove by induction that at each iteratiéi, / g, (P)=nh H; (0).
The proof is trivial for the initial step. Assume thbxyl.(ﬁ) = hHi(Q) holds at the step
i > 0. By expliciting the computation of the iteration step

hp;,,(P) = norm <T1(COdHi), U e (P). b5 0) | o*’:ZH,.(I"’)}>,
(P’,é,n,a)eShK(,;)

hp;,,(Q) = norm <T1(COdH,-), U @)t d0) | o ZH,-(Q/)}>~
(0" L. 1.0)eS, (o)

Assume thatt = (hy,(P'), 0,7, 0) € Sy 5\Sp, @ and thatP = P” (where

n(P"”)y = (P’, Opr)) is the transition corresponding to the quadruple. We now reason by

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 355

case analysis:

e If no quadruple i“SH,-H(Q) has label corresponding tathenQ 7Z> and this contradicts
the hypothesig ~ Q.

o Let iy (P) # hyg (Q') hold for any Q' o-derivative of 0. SinceP ~ Q, there is
0 Y Q" such thatP” ~ Q" andn(Q”) = (Q’, 0y) that, by induction, implies
hu, (P") = hy (Q), yielding a contradiction.

e The last possibility is that theormoperation removesfrom ShH,.@ while leaving itin
ShHM([;). This is not possible because it would mean thata free inputry and there
is a bound input quadruple LﬁhHl+i(Q) with a name correspondence function differs

from ¢ just becauséy (x) is mapped on 0. However, in this case such a bound input

quadruple would also belong 'lﬁhHi(,;) becauseP and Q are bisimilar and the target

states of the transitions that bisimulates must have the same set of active names.
This concludes the proof.[J

The proof of Theoren3.4builds the automaton far. P + . Q instead of the simpler one
for P+ Q because we need an automaton that has two states that “syntactically” correspond
to P andQ.

Theorems3.3and3.4basically state that, for finite HD-automata, the minimization algo-
rithm preserves the-calculus early bisimulation and can be used for checking bisimilarity
between processes.

4. Mihda

The algorithm in SectioB has been specified by exploiting the parametric polymorphism
of 27""* in a coalgebraic framework. It remains to show that these elegant theories can be
used as a basis for the design and development of effective and usable verification toolkits.

This section describes our experience in designing and implemeliinda, a min-
imization toolkit for verifying finite state mobile systems represented inztfoalculus
or in other name passing calculi. TMihda toolkit® cleanly separates facilities that are
language-specific (parsing, transition system calculation) from those that are independent
from the calculus notation (bisimulation) in order to facilitate modifications. The type sys-
tem ofocaml offers all the necessary features for implementingithé* specification of
the minimization algorithm. The main featuresaafaml exploited in our implementation
are polymorphism and encapsulation.

Encapsulationis achieved by tirodule systemf ocaml. The module system afcamlis
similar to the module system bfL[14,15,28] its main ingredients aggnaturesstructures
andfunctors The module system separates the signature, a sort of interface (i.e., definition
of abstract data typefrom structures, that are the realizations and roughly are sets of types
and values. A structure satisfying a given signature is tsandatchthat signature and may
be parameterized usirignctors that are functions from structures to structuresosaml

SMihda is available at http://jordie.di.unipi.it:8080/mihda , where also documenta-
tion and examples are provided. A web interface kdihda can be accesses via browser at
http://jordie.di.unipi.it:8080/pweb

356 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

functor constructs new modules by mapping modules of a given signature on structures of
other signatures.

The following example (borrowed frofid6]) defines a structure and its matching signa-
ture:

structure S = signature SIG =
struct sig
type t = nat type t
val x : t =7 val x :t
end; end;
If S.t (resp.,S.x) is the type (resp., the value) 8f a functor can be defined as
functor F (X : SIG) : SIG = struct S’ =
struct struct
type t = Xt * Xt type t = nat * nat
val x 1t = (X, XXX) val x : nat * nat = (7,7)
end end,

whereS’ is the structure obtained by applyiigo S.
There exists a strong relationships betwger"* and the module system otaml. On
the one hand, structu@can be written im.~"* as

S=(:U1=w,7:1): Y 1,
t:U1
which amounts to saying that sum types signatures correspond and expression with that
type are the structures matching the signature. For instancecdmel programS.x * 3
becomes I{S) « 3= 11 ({t : U1 = w, 7 : t)) * 3; notice that, since the type of(l§) is I(S),
the whole program has type. On the other hand, product types correspond to functors,
for instance- can be written as

IS Y (s 1 Up = 1(S) x 1(S), (I1(S), 11(S)) : 5)
t:Uy

which has typd [5.7 > ., 5, WhereT = >, t. Even though expressive enough for
our purposes, the kind of polymorphism provided by the module systesnanfil is less
powerful than the polymorphism of~"*; the reason is that signatures, structure and
functors can be only used at “top-level” and recursion is not allowed in their definitions.
The reader is referred {&6] for a deeper discussion on this topic.

Fig. 5 illustrates the modules d¥lihda and their dependencies. For instanS&te is
the module which provides all the structures for handling states and its main type defines
the type of the states of the automdd@mination is the module containing the structures
underlying bundle normalization. The connections express typing relationships among the
modules. For instance, since states in bundles and transitions must have the same type, then
a connection exists betwe®&undle andTransitions modules.

The iterative construction of the minimal automaton is parameterized with respect to the
modules of Fig5. Indeed, the same algorithm can be applied to different kind of automata
and bisimulation, provided that these automata match the constraints on types imposed by the

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 357

Domination

. . /s
« P .

N, e
'S "

N L v
Bundle L7 Automaton) -/
. - K K
H e /"’ /7 /7
: K R /; ,
1 ! Kig : 0
H .~/ ,,/ /7 K4
L% 7
Transitions s
e . N s
g N\, R
- ‘\. :I R4 ’
’.. .\. ./ 2
»” \ ¥
Labels

Fig. 6.Mihda Software Architecture.

software architecture. For instance, the architectuiibfla has been exploited to provide
minimization of both HD-automata and ordinary automata (up to strong bisimilarity).

4.1. Main data structures

We describe the main data structures usddiimda together with the properties that are
relevant to show adequacy of our implementation to the coalgebrafc® specification.
Moreover, relationships between the “theoretical” objects and Migida counterpart is
pointed out.

In the rest of the paper, we will use slanted symbols to denote namesdion functions
and variables. A list is written as[e1; ...; e,] while | ; denotes itsth element (i.e.g;).
Finally, we writee € | toindicate thae is anitem of list . As a general remark, notice that
finite sets will be generally represented as lists. We say thatxa tistresponds to a finite
setX if, and only if, for each elementin X there exist® € x such that corresponds
toe.

An automaton is made of three ingredients: Initial state, states and arrows. As far as finite
state automata are concerned, it is possible to represent (finite) automata by enumerating
states and transitions.

Observation 4.1. We assume thdt .., n are the names of a state having n names. A per-
mutation over n names may be simply expressed by means of a list of distinct ireaghrs
belonging to segmerit ..., n; for instance below we show how the classical notation for
permutations is represented pya list of integers

(il in) o P= [i1; .5 in].

With these notation$2; 1; 3] represents a permutation 8felementsNamely the permu-
tation that exchangesand2, and leave$ unchanged

358 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

We adopt the notation of Observatidril also to represent other functions on names. In
particular, given a quadruplg, ¢, ©, g), m is represented by means of a list of integars
whose length i$¢| and whoseth position containg(i) (fori = 1, ..., |£]). Finally, g is a
list of integerssigma whose length is:, the number of names gfand whoséth element
isao(i), fori =1, ..., m. We say thapi (resp.,sigma) corresponds ta (resp.,o).

HD-automata are an extension of ordinary automata, since states and labels have a richer
structure carrying information on names. A state may be concretely represented as a triple

type State_t =
| State of id: string = namesint list * group: (int list) list

whereid is the name of the stateamesare the local names of the state and are represented
as a list of integers; thgroupcomponent is its symmetry, i.e., the set of those permutations
that leave the state unchanged. By the previous observation, we can represent it as a list of
lists of integers.

Definition 4.1 (States correspondenceletg be a state ofanamed set= (Q, <, |_|, G).
An elementState(q, names, group) corresponddo ¢ if, and only if,

e qe(

e |g| = length names

e group corresponds ta;.

Arrows are represented as triples wéthurceanddestinationstates, anthbel.

type labeltype =string * intlist x int list

type Arrow_t = Arrow of
source: State_tx label: labeltype = destination: State_t

Note that type of arrows relies on type for labels. A labelfeagents is a triple whose
first component is an element af;; the second component of a label is the list of names
exposed in the transition; finally, the last component of a label is a function mapping names
in the destination to names of the source state. An alternative, more simple, definition could
have been obtained by embedding ldeeltype in Arrow. Although more adherent to
the definition of bundle given in Sectidh2.1 this solution is less general than the one
adopted, because different transition systems have different labels.

Now we can give the structure which represents automata:

type Automaton_t =
start: State_t « states: State_t listx arrows: Arrow_t list

The first component is the initial state of the transition system, then the Igat#sand
arrowsare given.

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 359

Bundles rely on quadruples over named sets. Essentially, a quadruple is the transition
from a state to another state. Transitions are labelled and, our implementation represents
part of information carried by quadruples into labels:

type quadtype =Qd of Arrow.labeltype x State_t

type Bundle_t = quadtype list

Note that the first component of bundles is not represented. This choice is possible because
implementation always deals with bundles that are obtained by applying the iterative con-
structionH; 1 = K;T>(H;). Therefore, the first component of these bundles alwayg js
the set of states of the initial automaton.

We can establish a precise connection between quadruples and inhabitpradtype
and, therefore, between automata and elemersiiomaton_t

Definition 4.2 (Correspondence of quadrup)ed_et ¢d be the quadrupléy, ¢, =, o). We
say thatQd((lab , pi , sigma), q) correspondgo ¢d, if, and only if,

e lab is a string with valuée,

e pi corresponds ta,

e Ssigma corresponds ta,

e (corresponds tq.

Definition 4.3 (Automata correspondenceThe tuple(q, gs, as, S) corresponds tdhe
named functiork = (Q, 7 (Q),k : Q — T(Q), 2) iff, gs corresponds t@; for eactr €
k(g) there exista € as such that, ifa = (s, (lab , pi , sigma), t), thenQd((lab , pi ,
sigma), t) corresponds tp, and, for eacls € X (¢) thereiss € Ssuch thas corresponds
too.

4.2. The main cycle

The generic step of the minimization algorithifi;(.1 = K; T»>(H;)) can be explicitly
written ash g, ,, (¢) = norm(71(cody;), f), where

p= U @)t d50) | o 2y} (12)
(q/,E,TC,G)EShK(q)

Following Eq. (L2), we can computé g, , (¢) through the following steps:

(a) determine the bundle gfin the automaton, i.ehk (¢);

(b) foreachquadruplg/’, ¢, n, o) inhk (q), applyh g, toq’, the target state of the quadruple
(yielding the bundle of’ in the previous iteration of the algorithm);

(c) compose alb € X(q") with ¢’;

(d) normalize the resulting bundle.

Mihda stores the representation of the minimized automaton étftfteration (i.e.1z;) ina

list of blockswhich are the mostimportant data structureldlisfda. As said, blocks represent

360 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

the equivalence classes of the kernel of each iteration and contain all those information for
computing the iteration steps of the algorithm. Indeed, blocks represent both the (finite)

named functions corresponding to the current iteration and its kernel. Hence, at the last
iteration a block corresponds to a state of the minimal automaton. A block has the following

structure:

type Block_t=
Block of
id : string %
states : State_t listx
norm :Bundle_t %
names int list
group :intlistlist
) . (Stater — (int % int) list list) =
O~1 :(State_t— (int * int) list)

The fields represent

e the name of the blockd); it is used to identify the block in order to construct the minimal
automaton at the end of the algorithm,

e the statesgqtate3 considered equivalent with respect the equivalence relation used in the

algorithm® (i.e., early bisimulation),

the normalized bundle with respect to the block considered as stat®)(

the list of names of the bundle imorm (hames,

the group of the blockgroup),

the functions of the names of the bundi (

the function(©~1) that maps the names appearingiérminto the name of.

Basically, ®(q) is the function which establishes a correspondence between the bundle

of ¢ and the bundle of the corresponding representative element in the equivalence class of

the minimal automaton.

A graphical representation of a block is reported in Fig.he elemenx is the “represen-
tative state”, namely it is the representative element of the equivalence class corresponding
to the block. The names of the block and its group, respectively, are the names and the group
of x (graphically represented by the arrow fronto itself in Fig.7 that aims at recording
that a block also has symmetries on its names). All those states of the autapmasgpped
onx are collected in the block. Functidly describes “how” the block approximates the
stateq at a given iteration. Bundleormof block x is computed by exploiting the ordering
relations over names, labels and states.

A graphical representation of steps (a)—(d) above in terms of blocks is illustrated & Fig.
Step (a) is computed by the facilijutomaton.bundle that filters all transitions of the
automaton whose source corresponds.t&ig. 8(a) shows that a stagis taken from a
block and its bundle is computed.

6 We recall thaMihda is parametrized with respect to the equivalence relation.

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 361

\(,9

Fig. 7. Graphical representation of a block.

ql
.

1, BIN x o/*y]

— 042

BIN x o /[%y]

Tau o3 Tau o3
0g3

@) (b)

BIN x ©2:07%y, BIN x 602;07%y

(C) Tau 63;03 (d) Tau 63:03
Fig. 8. Computinng[.H: (a) step 1, (b) step 2, (c) step 3 and (d) step 4.
Step (b) is obtained by applying faciliglock.next to the bundle ofy. The operation

Block.next substitutes all target states of the quadruples with the corresponding current
block and computes the new mappings (see &ig)).

Step (c) does not seem to correctly adhere to the corresponding step aPEidwever,
if we consider that) functions are computed at each step by composing symmetsias

362 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

can easily see tha@tfunctions exactly play the role ef's. Finally, step (d) is represented
in Fig. 8(d) and is obtained via the functioormalize in moduleBundle .

The previous operations are computed by funcsiplit 7 that divides the states among
the partitions relative to the current iterations.

let split blocks block =
let minimal =
(Bundle.minimize red
(Block.next (h_n blocks) (state_of blocks)
(Automaton.bundle aut (List.hd (Block.states blockj)))
Some (Block.split
minimal
(fungq—
let normal =
(Bundle.normalize
red
(Block.next (h_n blocks) (state_of blocks)
(Automaton.bundle aut g)i
Bisimulation.bisimilar minimal normal)
block)

Letblock be a block in the lisblocks , functionsplit computesninimal by mini-
mizing the reduced bundle of the first statdtifck . The choice of the state for computing
minimal is not important: Without loss of generality, given two equivalent stqtasd

g’ ,itis possible to map names@into namesofl’ preserving their associated normalized
bundle if, and only if, a similar map from names@f into names ofj exists.

Onceminimal has been computedplit invokesBlock.split with parameters
minimal andblock , while the second argument Bfock.split is a function that
computes the current normalized bundle of each staibirk and checks whether or not
it is bisimilar tominimal . This computation is performed by functidsimilar (in
the moduleBisimulation). If bisimilarity holds throughq thenSome 04 is returned,
otherwiseNone is returned.

We are now ready to comment on the main cycleMihda reported in Fig.9. Let
k = (start ,states ,arrows) be an automaton. When the algorithm stabtecks
is the list that contains a single block collecting all the states of the autdmata

At each iteration, the list of blocks is splitted, as much as possible, by the function
split_iter that returns a list obucketswhich have the same fields of a block apart
from the name, symmetries and the functions mapping names of destination states into
names of source states. Basically, the split operation checks if two states in a block are
equivalent or not. States which are no longer equivalent to the representative element of the
block are removed and inserted into a bucket. Then, by mea@isck.close_block ,

7We exploit twoocaml primitive functions on lists. Functiohead List.hd that takes a list and returns the
first element of the list; Functiohist.map is the usuamapfunction of functional languages; given a function
List.mapf [f (e)q;...; e,]is the list[f (e1); ...; T (ep)]).

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 363

let blocks = ref [(Block.from_states statesin|
let stop = ref falsein

while not (!stop)do
begin
let oldblocks = !blocksn
let buckets = split_iter (split oldblocks) oldblocks
begin
blocks := (List.map (Block.close_block (h_n oldblocks)) buckets);
stop :=
(List.length !blocks) = (List.length oldblocks) &&
(List.for_all2
(fun x y — (Block.compare x y) == 0)
Iblocks
oldblocks)
end
end
done;
Iblocks

Fig. 9. The main cycle dflihda.

all buckets are turned into blocks which are assigndaldoks . Finally, the termination
conditionstop is evaluated. This condition is equivalent to say that an isomorphism can be
established betweeartdblocks (thatcorresponds to kéf;) andblocks (corresponding

to ker H;+1). Moreover, since order of states, names and bundles is always maintained along
iterations, both lists of blocks are ordered. Hence, the condition reduces to test whether
blocks andoldblocks have the same length and that blocks at corresponding positions
are equal.

5. Concluding remarks

This paper develops coalgebraic framework to specify HD-automata and their finite
state verification techniques. The formal devices used in this work are coalgebras and
27™* apolymorphici-calculus. On the one hand, coalgebras allow us to express transition
systems in an elegant mathematical framework. On the other harfd, is used as a formall
specification language that drives to a smooth implementation.

This approach has a twofold advantage. First, the coalgebraic mathematical framework
accounts for the convergence proof of the minimization algorithm on finite HD-automata.
Second, using~""* as a specification language aschml as the implementation language
of Mihda, permits to point out the tight correspondence between the specification and the
implementation.

From a programming perspective, our approach enjoys a high level of modularization.
Indeed, product types and thetaml| counterpart, i.e., modules, provide the programming
guidelines for adding or changing facilities that are neatly separated in different modules. For
instanceMihda can be used for minimizing both HD-automata and traditional automata; or
else, automata can be minimized according to different notions of equivalences. We plan to

364 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365

extend theMihda toolkit with facilities to handle other notions of equivalences (e.g., open
bisimilarity) and other foundational calculi for global computing (e.g., the asynchronous
n-calculus, the fusion calculus).

Some preliminary results can be foundj while some experimental results lihda
can be found in5,27]; and seem quite promising. Thecalculus specification of the
Handover Protocol (borrowed frofit9,29]) has been minimized runnirgihda on a ma-
chine equipped with an AMD Athlon™XP 1800+ dual processor with 1 G RAM. The time
required for minimizing the automata is very contained (few seconds). The size of the mini-
mal automata in terms of states and transitions is sensibly smaller than their non-minimized
version (the number of states and transitions in the minimal automaton are reduced of a
factor 7). In the future, we plan to improve efficiency incorporating supports for symbolic
approaches based on Binary Decision Diagrams.

As a final comment, we remark that relying on well-known results in coalgebras (e.g.,
[23,30), different strategies for the convergence theorem (The®@&np. 34) can be
developed. However, the proofs given in this paper have two advantages: First, they are
conceptually more simple and, second, they are based on those constructions used in the
implementation thus providing hints for correctnes$/itida.

Acknowledgements

We would like to thank the anonymous referees for their comments and suggestions. We
are very grateful to Marco Pistore for many interesting discussions on HD-automata and the
minimization algorithm. We express our gratitude to Roberto Raggi who had a great role in
the implementation of the algorithm. Finally, we would like to thank Marcello Bonsangue
and Frank de Boer for the way they handled our submission.

References

[1] M. Abadi, A. Gordon, A calculus for cryptographic protocols: the spi calculus, Inform. Comput. 148 (1)
(1999) 1-70.

[2] E. Clarke, J. Wing, Formal methods: state of the art and future directions, ACM Comput. Surveys 28 (4)
(1996) 626—643.

[3] J. Fernandez, An implementation of an efficient algorithm for bisimulation equivalence, Sci. Comput.
Programming 13 (2—-3) (1990) 219-236.

[4] G. Ferrari, U. Montanari, M. Pistore, Minimizing transition systems for name passing calculi: a co-algebraic
formulation, in: M. Nielsen, U. Engberg (Eds.), FOSSACS 2002, Lecture Notes in Computer Science, Vol.
2303, Springer, Berlin, 2002, pp. 129-143.

[5] G. Ferrari, U. Montanari, E. Tuosto, From co-algebraic specifications to implementatidviilide toolkit,
in: F. de Boer, M. Bonsangue, S. Graf, W. de Roever (Eds.), Second International Symposium on Formal
Methods for Components and Objects, Lecture Notes in Computer Science, Vol. 2852, Springer, Berlin, 2002,
pp. 319-338.

[6] G. Ferrari, U. Montanari, E. Tuosto, B. Victor, K. Yemane, Modelling and minimising the fusion calculus
using hd-automata, draft, January 2004.

[7] R. Focardi, R. Gorrieri, A classification of security properties, J. Comput. Security 3(1) (1995).

[8] M. Gabbay, A. Pitts, A new approach to abstract syntax involving binders, in: G. Longo (Ed.), Proceedings
of the 14th Annual Symposium on Logic in Computer Science (LICS'99), IEEE Computer Society Press,
Trento, Italy, 1999, pp. 214-224.

G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325-365 365

[9] P. Kanellakis, S. Smolka, CCS expressions, finite state processes and three problem of equivalence, Inform.
Comput. 86 (1) (1990) 272-302.

[10] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[11] R. Milner, Communicating and Mobile Systems: Th&alculus, Cambridge University Press, Cambridge,
1999.

[12] R. Milner, Theories for the global ubiquitous computer, in: Foundations of Software Science and Computation
Structures, Lecture Notes in Computer Science, Vol. 2987, Springer, Berlin, 2004, pp. 5-11.

[13] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, | and Il, Inform. Comput. 100(1) (1992)
1-40, 41-77.

[14] R. Milner, M. Tofte, Commentary on Standard ML, MIT Press, Cambridge, MA, 1991.

[15] R. Milner, M. Tofte, R. Harper, D. MacQueen, The Definition of Standard ML (Revised), The MIT Press,
Cambridge, MA, 1997.

[16] J. Mitchell, Foundations for Programming Languages, MIT press, Cambridge, MA, 1996.

[17] U. Montanari, M. Pistore, History dependent automata, Technical Report, Computer Science Department,
Universita di Pisa, tR-11-98, 1998.

[18] U. Montanari, M. Pistoreg-calculus, structured coalgebras, and minimal HD-automata, in: M. Nielsen, B.
Roman (Eds.), MFCS: Symposium on Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science, Vol. 1983, Springer, Berlin, 2000, pp. 569-578; Theoret. Comput. Sci., to be published
(extended version).

[19] F. Orava, J. Parrow, An algebraic verification of a mobile network, Formal Aspects Comput. 4 (5) (1992)
497-543.

[20] R. Paige, R. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16 (6) (1987) 973—-989.

[21] M. Pistore, History dependent automata, Ph.D. Thesis, Computer Science Department, Universita di Pisa,
1999.

[22] A. Pitts, M. Gabbay, A metalanguage for programming with bound names modulo renaming, in: R. Backhouse,
J. Oliveira (Eds.), Mathematics of Program Construction, MPC2000, Proceedings, Ponte de Lima, Portugal,
July 2000, Lecture Notes in Computer Science, Vol. 1837, Springer, Berlin, 2000, pp. 230-255.

[23] J. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (1) (2000) 3—80.

[24] D. Rydeheard, R. Burstall, Computational Category Theory, Prentice-Hall, New York, 1988.

[25] D. Sangiorgi, A theory of bisimulation for the pi-calculus, Lecture Notes in Computer Science, Vol. 715
(2000).

[26] D. Sangiorgi, D. Walker, Ther-Calculus: A Theory of Mobile Processes, Cambridge University Press,
Cambridge, 2002.

[27] E. Tuosto, Non-functional aspects of wide area network programming, Ph.D. thesis, Dipartimento di
Informatica, Universita di Pisa, Pisa, Italy, May 20Q8tp://www.di.unipi.it/phd/tesi/
tesi _2003/PhDthesis _Tuosto.ps.gz

[28] J. Ullman, Elements of ML Programming, second ed., ML97 ed., Prentice-Hall, Englewood Cliffs, NJ, 1997.

[29] B. Victor, F. Moller, The mobility workbench—a tool for the-calculus, in: D. Dill (Ed.), Proceedings of
CAV'94, Lecture Notes in Computer Science, Vol. 818, Springer, Berlin, 1994, pp. 428-440.

[30] J. Worrell, Terminal sequences for accessible endofunctors, in: B. Jacobs, J. Rutten (Eds.), Electronic Notes
in Theoretical Computer Science, Vol. 19, Elsevier, Amsterdam, 1999.

http://www.di.unipi.it/phd/tesi/tesi2003/PhDthesisTuosto.ps.gz
http://www.di.unipi.it/phd/tesi/tesi2003/PhDthesisTuosto.ps.gz

	Coalgebraic minimization of HD-automata for the pppp-calculus using polymorphic types62626262
	Introduction
	Preliminaries
	Coalgebras
	Overview of lambda,Pi,Sigma
	The pi-calculus

	A minimization procedure for HD-automata
	Types for HD-automata
	HD-automatafor pi-calculus
	Bundles for the pi-calculus
	Auxiliary operations
	The functor for pi-calculus
	From pi-calculusto HD-automata

	The minimization algorithm in lambda,Pi,Sigma

	Mihda
	Main data structures
	The main cycle

	Concluding remarks
	Acknowledgements
	References

