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�-calculus using polymorphic types�

Gianluigi Ferrari, Ugo Montanari∗, Emilio Tuosto
Dipartimento di Informatica, Via F. Buonarroti 2, 56127 Pisa, Italy

Abstract

We introduce finite-state verification techniques for the�-calculuswhose design and correctness are
justified coalgebraically. In particular, we formally specify and implement a minimization algorithm
for HD-automata derived from�-calculus agents. The algorithm is a generalization of the partition
refinement algorithm for classical automata and is specified as a coalgebraic construction defined
using�→,�,�, a polymorphic�-calculus with dependent types. The convergence of the algorithm is
proved; moreover, the correspondence of the specification and the implementation is shown.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Oneof themain advantagesof applying formalmethods to systemdesign is the possibility
of constructing an abstraction of systems and their computations that are, at least at a certain
extent, amenable of automatic verification. Several process-algebraic techniques have been
developed for reasoningabout concurrent anddistributed systems.For instance, it is possible
to verify whether an implementation is “coherent” with its specification by checking a
suitable behavioural equivalence among them. Another example is theinformation leak
detection; in[7] the analysis of information flow is done by modelling the system as a
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CCS-processP and then verifying that it is equivalent to restr(P ), another process obtained
by opportunely restricting the behaviour ofP . A similar idea has been exploited in[1] for
analysing cryptographic protocols in the spi-calculus.
Finite state automata (e.g., labelled transition systems) provide a foundational model

underlying effective verification techniques of process-algebraic theories of concurrent and
distributed systems. From a theoretical point of view, many behavioural properties of con-
current anddistributed systemscanbenaturally defineddirectly as properties over automata.
From a practical point of view, efficient algorithms and verification techniques have been
developed and widely applied to case studies of substantial complexity in several areas of
computing such as hardware, compilers, and communication protocols. We refer to[2] for
a review.
A fundamental property of automata is the possibility, given an automaton, to construct

its canonical form: The minimal automaton. The theoretical foundations guarantee that
the minimal automaton is indistinguishable from the original one with respect to many
behavioural properties (e.g., bisimilarity) and properties expressed in suitable modal or
temporal logics. Minimal automata are very important also in practice. For instance, the
problem of deciding bisimilarity is reduced to the problem of computing the minimal tran-
sition system[3,9,20]. The algorithm yields theminimal realization of the initial automaton
by “grouping” all the equivalent states in a single state. Moreover, it is often convenient,
from a computational point of view, to verify properties on the minimal automaton rather
than on the original one. Indeed, minimization algorithms can be used to attack the state
explosion: They yield a small state–space, but still retain all the relevant information for the
verification.

Global computing, i.e., networks of stationary and mobile components, are becoming
the prominent example of large-scale distributed systems. The primary features of a global
computing systems are that components are autonomous, software versioning is highly
dynamic, the network coverage is variable and often components reside over the nodes of
the network (WEB services), membership is dynamic and often ad hocwithout a centralized
authority. Global computing systems must be made very robust since they are intended to
operate in potentially hostile environments. Moreover, they are hard to construct correctly
andverydifficult to test in a controlledway.Although, significant progresseshavebeenmade
in developing foundational models and effective techniques to support formal verification
of global computing systems, current software engineering technologies provide limited
solutions to some of the issues discussed above. As pointed out by Milner[12] a great
challenge is to “develop calculi, theories and automated tools that allows descriptive and
predicative analysis of global computing systems at each level of abstraction”.
Name passing calculi (e.g., the�-calculus[11,13,26]) probably are the best known and

acknowledged models which provide a rich set of techniques for reasoning about global
computing systems.History-dependent automata(HD-automata for short) have been pro-
posed in[4,17,18,21]as a new effective automata-based model for name passing calculi.
HD-automata are made out of states and labelled transitions; their peculiarity resides in
the fact that states and transitions are equipped with names which are no longer dealt with
as syntactic components of labels, but become explicit part of the operational model. This
allows one to model explicitly name creation/deallocation or name extrusion: These are the
basic linguistic mechanisms of name passing calculi.
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Depending on the level of abstraction, different definitions of HD-automata have been
provided. They have been characterized as automata over permutation algebras, whose
ingredients are sets of names and groups of permutations (renaming substitutions) on them.
This foundational framework is sufficient to describe and reason about formalisms with
name-binding operations. It includes various kinds of transition systems providing syntax-
freemodels of name-passing calculi[8,18,22].At a more concrete level, HD-automata have
been introduced by exploiting the notions ofnamed setsandnamed functions; elements
of a named set are equipped with names that are defined up to specific groups of name
permutations calledsymmetries. HD-automata are defined as coalgebra on a categorywhose
objects are named sets and whose arrows are named functions. The two definitions above
are, at the same time, equivalent[18] andcomplementary; indeed, the former ismorenatural,
but yields infinite automata in all but the simplest cases, while the latter generates finite
(actually quite compact) automata in many cases.
General results concerning coalgebras guarantees the existence of the minimal HD-

automaton up to bisimilarity. In[4] two of the authors specify a declarative coalgebraic
procedure to perform minimization of (finite state) HD-automata according to the second
definition. The algorithm is a generalization of the partition refinement algorithm for min-
imizing ordinary automata (up to bisimilarity)[9].
Coalgebraic specifications have been proved very useful to formally describe the be-

haviour of process calculi. However, the development of effective verification techniques
based on coalgebraic foundations has had more limited success. The present paper intends
to explore this issue. In particular, we will address the following question:
Can we define effective verification techniques for name passing calculi which can be
justified coalgebraically?
The main results of this paper are

(1) a coalgebraic theory for the�-calculus,
(2) a minimization algorithm whose design and correctness are justified coalgebraically.
In particular, we illustrate the features of the framework in the development of a toolkit,
calledMihda, providing facilities to minimize labelled transition systems for name passing
calculi.
A distinguished feature of our approach is the exploitation of a polymorphic�-calculus,

�→,�,�[16], for describing data and control components of the minimization procedure.
The type system of�→,�,� encompasses polymorphic and dependent types. We exploit
polymorphism for abstracting from unimportant features (with respect to the minimization
algorithm); for example, it does not matter which is the type used for representing the states
of HD-automata, the relevant information being the number of names and the symmetry
of each state. Dependent types are useful for expressing functional dependencies among
the components of a given construction. For instance, the type of the symmetries of a
named set element includes those groups of permutations which act on the names of the
element.
The calculus�→,�,� is also an effective basis:
• to drive the implementation choices; for instance, the specification naturally suggests an

ML-like language (we choseocaml) since the type system of�→,�,� is a generalization
of theML-type system.

• to show the correctness of the implementation.
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A pure set-theoretic presentation of HD-automata would have work as well (see the inter-
pretation of�→,�,� constructs in Section2.2). However, in this casewewould have twomain
drawbacks. First, the sets corresponding to the models of the types should explicitly appear
in all constructions instead of the more compact-type expressions. Second, the connection
between the coalgebraic framework and the implementationMihda would no longer be
explicit. Indeed,Mihda builds directly on the�→,�,� specification: theML-types of the
implementation are in one-to-one correspondence with the�→,�,� specification. In other
words, the set-based description would have been heavier and the correctness ofMihda
would have been more obscure than in the�→,�,� presentation.

Structure of the paper: Section2collects the formal ingredients our work bases on. More
precisely, Section2.1 introduces the basic definitions of coalgebras and shortly discusses
their adequacy for representing transition systems. Section2.2 describes�→,�,�. Finally,
Section2.3briefly reviews�-calculus and its early semantics.
The main results of the paper are in Section3. In Section3.1, the types for the coalge-

braic presentation of HD-automata are given. Section3.2introduces the formal coalgebraic
specification of HD-automata for the�-calculus. Section3.2.1details the types needed by
�-calculus coalgebras. Section3.2.2specifies in�→,�,� some auxiliary operations exploited
in the definition of the functor, that is presented in Section3.2.3. Section3.2.4defines how
�-agents can be mapped into HD-automata (preserving early bisimulation). The minimiza-
tion algorithm is given in Section3.3where also its convergence on finite HD-automata is
proved.
Section4shows the correspondence between the�→,�,� specification of theminimization

algorithm andMihda, its actual implementation inocaml.

2. Preliminaries

This section collects the three ingredients used in the rest of thepaper; namely, coalgebras,
�→,�,� and the�-calculus.

2.1. Coalgebras

Coalgebras provides a very elegant mathematical machinery to describe the behaviour of
process calculi. This section reviews some elementary notions of coalgebras. In particular,
we will restrict our attention on coalgebras over sets and functions.

Definition 2.1 (Functor). LetC be a category; an (endo-)functorF overC maps objects to
objects and arrows to arrows as follows:
• for each arrowf : A→ B, F(f ) : F(A)→ F(B);
• for each objectA, F(idA) = idF(A);
• for all arrowsf : A→ B andg : B → C, F(f ; g) = F(f );F(g).

Fig. 1 gives a graphical representation of how a functor acts over the category of sets
and functions. The identity mapping of sets and functions, or the mapping that associates
a constant setL to any setA are functors oversSet. Another functor that will be very
important in defining coalgebras is thepowerset functor. Let us consider the operation
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Fig. 1. Functor overSet.

A �→ ℘(A), i.e., the function that associates to a set the set of all its subsets and, for a
functionf : A→ B, let us consider

℘(f ) : ℘(A)→ ℘(B), ℘ (f ) : U �→ {f (u) ∣∣ u ∈ U}.
Then, by definition,
• ℘(idA)(U) = {idA(u)

∣∣ u ∈ U}, for anyU ⊆ A hence,℘(idA)(U) = U ;
• ℘(f ; g)(U) = {g(f (u)) ∣∣ u ∈ U}, for anyU ⊆ dom(f ), hence, by definition,
℘(f ; g)(U) = ℘(g)(℘ (f )(U)), for all U ⊆ dom(f ) which amounts to℘(f ; g) =
℘(f );℘(g).

This proves that the powerset operation is functorial.

Definition 2.2 (Coalgebras, morphism of coalgebras). LetF be a functor on the category
C. A F-coalgebraconsists of a pair(A, �) such that� : A→ F(A).
Let (A, �), (B,�) beF-coalgebras. A functionf : A −→ B is called aF-morphismif

�;F(f ) = f ;�.
A F-coalgebra is a pair〈A, � : A→ F(A)〉 where� is a function that, given an element

of A, returns “informations” on the element. For instance let us considerT (X) = L× X,
whereL is a fixed set, then the coalgebra〈Q, � : Q→ L×Q〉 can be though of as a
deterministic automaton such that, for each stateq ∈ Q, if �(q) = (l, q ′) thenq ′ is the
successor state ofq reached with a transition labelledl. Similarly, letT S(X) = ℘(L×X),
then the coalgebra〈Q, � : Q→ ℘(L×Q)〉 defines a labelled transition system overL.

Example 2.1. Let us consider a finite-state automaton and its coalgebraic formulation via
the mapping�.

0
a   

b     
 

1

b    
  

 

a

b     
  

 2
a

  

b    
  

 

3

c     
  

 4

c    
  

 

5

 

φ

∨

∨

∨

∨

∨

∨ ∨

∨∨

=
=
=
=
=
=

α (0)
α (1)

α (2)

α (3)

α (4)

α (5)

{〈 c,5 }〈

{〈 a,1 , 〈b,4 }〈 〈

{〈 a,2  , 〈b,3  , 〈b,4 }〈〈〈

{〈 a,1  , 〈b,4 }〈 〈

 {〈 c,5 }〈



330 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325–365

Notice how, for each stateq ∈ {0, ...,5}, �(q) yields all the immediate successor states ofq

and the corresponding labels. Nonetheless, the coalgebraic theorywe developed is sufficient

to effectively address verification issues. Indeed,(�, q ′) ∈ �(q) if, and only if,q
�−→ q ′.

A F-coalgebra(A, �) is final provided that for anyF-coalgebra(B,�) there exists
precisely one coalgebra morphismf : (B,�) → (A, �). Final coalgebras enjoy some
interesting properties: If(A, �) is a final coalgebra then� is an isomorphism andA can be
regarded as giving the canonical solution of the equationA = F(A).
Final coalgebras do not always exist. For instance, standard cardinality arguments show

that the powerset functor℘(_) does not admit final coalgebra. For many functors over sets,
however, the final coalgebra exists. It is well known that for continuous functors the final
coalgebra is obtained as the limit of the terminal sequence

1
!←− F(1)

F(!)←− F2(1)
F2(!)←− . . . ,

where! : F(1) → 1 is the unique morphism fromF(1) to the one element set1. For
instance,polynomialfunctors are continuous and hence have a final systems[23].
The class of polynomial functors consists of all the functors that we can build from the

constant functor, the identity functor, sum, and product functor. Notice that the powerset
functor is not polynomial. However, the functor

℘fin(S) = {S′
∣∣ S′ ⊆ S andS′ finite}

has a final coalgebra. The powerset functor℘fin(_) is the standard example ofbounded
functor. It has been proved that bounded functors admit final coalgebras[23].
Throughout this paper, we will exploit standard coalgebraic techniques to define HD-

automata and their finite state verification techniques. In particular, the iteration of the
functor along the terminal sequence will converge in a finite number of steps and will
construct the minimal HD-automaton when applied to a finite HD-automaton. Since all our
coalgebraic constructions live in the category of finite (named) sets we will not construct
the final coalgebra: The image of the functor along the terminal sequence is not final
in such a category because it still is a finite set. Nonetheless, the coalgebraic theory we
developed is sufficient to effectively address the issues related to the design of verification
techniques. Indeed, the iteration of the functor along the terminal sequence provides a
declarative specification of the minimization algorithm and the formal machinery to prove
its termination is justified coalgebraically.

2.2. Overview of�→,�,�

This section reviews some basic type-theoretic notions underlying the description of
languages which support the organization of applications into autonomous (compilable)
modules exploiting explicit-type information (e.g., the ML module language). We refer to
[16] for a detailed introduction to these issues.
In type theory, a polymorphic type describes a structure “having many types”. Two

powerful constructs to describe polymorphic types are thegeneral product and sumtypes.
A function typet → t ′ describes the type of a function mapping elements oft into elements
of t ′. Sometimes to specify the dependence of the result type on the value of the argument
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type (i.e., the typet ′ is an expression with free variablex of type t), the function type is
written as

∏
x:t t ′. This function type is calledgeneral productof t ′ over the index sett .

A type 〈t, t ′〉 describes a pair whose components are elements of typet and elements of
type t ′. When the value of the type of the first component determines the value of the type
of the second component (i.e., the typet ′ is an expression with free variablex of type t)
the pair type is written as

∑
x:t t ′. This type is calledgeneral sumof t ′ over the index set

t . The elements of this types are pairs〈a, b〉 with a : t andb : t ′[a/x]. General sums are
equipped with projections to extract their components.
General sum types encompass tuple types, indeed, provided thatx does not occur free in

t ′,
∑

x:t t ′ is equivalent tot × t ′. In these cases, we will sometime writet × t ′ instead of∑
x:t t ′.
We now introduce a summary of the�→,�,� predicative calculus with products and sums

as reported in[16]. We letU1 andU2 to denote the universes ofnon-polymorphic (basic)
and polymorphic types, respectively.We assume that the universe of non-polymorphic types
contains a collection oftype constructorsand it is closed under product and function space
(notice thatU1 does not belong toU2). This allows us to assume type constructors such
as lists, trees or enumeration types over a typet as basic structures of our calculus. The
universe of polymorphic types can be made as rich as the universe of basic types.
The syntax of (pre-)termsM of �→,�,� is given by

M ::= U1
∣∣ U2

∣∣ bt
∣∣ M → M

∣∣ ∏
x:M

M
∣∣ ∑

x:M
M

× ∣∣ x
∣∣ c

∣∣ �x : M.m
∣∣ MM

× ∣∣ 〈x : M = M,M : M〉 ∣∣ I(M)
∣∣ II (M).

The first line of the grammar gives the syntax of thetype expressions, the third line describes
the structure associated with general sums; expressions I(M) and II(M) are the projections
on the components of a pair (i.e., I(〈M1,M2〉) = M1 and II(〈M1,M2〉) = M2). The second
line gives the productions of a (typed)�-calculus. We will use� to denote types.
The type system is defined by type judgements��M : � where� is type context of the

form {x1 : �1, . . . , xn : �n}, giving the types of variablesx1, . . . , xn. Any of the types�i can
be a basic type or a polymorphic type. Type contexts have to satisfy some well-formedness
constraints. Here, we do not present all the inference rules which express when a context
is well formed. To give the flavour of the type system we present, instead, a sample of the
typing rules. In particular, we will focus on general products and sums.
The following inference rules describe the conditions for forming and handling general

products.

��� : U2 �, x : ���′ : U2

��∏
x:� �′ : U2

��M :∏x:� �′ ��N : �
��MN : �′[N/x]

��� : U2 �, x : ���′ : U2 �, x : ��M : �′
���x : �.M : ∏

x:� �′
.
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Thenotation of general product types is reminiscent of the standard notation for the cartesian
products over a family of sets indexed by an index setA:∏

a∈ABa =
{
f : A→ ⋃

a∈A
Ba|∀a ∈ A.f (a) ∈ Ba

}
, (1)

where, the elements of this type are functionsf such thatf (a) : t ′[a/x], for eacha : t .
The four inference rules below provide the conditions for forming general sums and for

handling the associated terms.

��� : U2 �, x : ���′ : U2

��∑
x:� �′ : U2

,

��M :∑x:� �′

��I(M) : �
��M :∑x:� �′

��II (M) : �′[I(M)/x],

��M : � �, x : ���′ : U2 ��N [M/x] : �′[M/x]
��〈x : � = M,N : �′〉 :∑x:� �′

.

Similarly to general products, the type of general sums correspond to the disjoint union of
sets ∑

a∈A
Ba = {〈a, b〉|a ∈ A ∧ b ∈ Ba}. (2)

General products and sums of�→,�,� can be set-theoretically interpreted exactly as in
(1) and (2). For instanceHenkin models(see[16, Chapter 9]) interpret each type as a set
and, given the polymorphic type� = ∏

x:�1 �2, if �1 is interpreted asA, the interpretation
of � is (1), namely, the elements that inhabit� are functions fromA to

⋃
a∈A Ba (that is the

interpretation of�2[�1/x]) such thatf (a) ∈ Ba , for anya ∈ A.

2.3. The�-calculus

This section briefly summaries syntax and semantics of the�-calculus[13]. We refer to
[10,26] for more detailed presentations.
Given a denumerable infinite set ofnamesN = {x0, x1, x2, . . .}, the set of�-calculus

processesis defined by the syntax

P ::= 0
∣∣ �.P

∣∣ P1 | P2
∣∣ P1+ P2

∣∣ 	 xP
∣∣ [x = y]P ∣∣ A(x1, . . . , xr(A)),

� ::= �
∣∣ x̄y

∣∣ xy,

wherer(A) is the rank of theprocess identifierA. The occurrences ofy in x(y).P and	 yP
are bound;free namesare defined as usual and fn(P ) indicates the set of free names of

agentP .We assume that, for each identifierA, there is a definitionA(y1, . . . , yr(A))
def= PA

(with yi all distinct and fn(PA) ⊆ {y1 . . . yr(A)}) and we assume that each identifier inPA

is in the scope of a prefix (guarded recursion).
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Table 1
Early operational semantics

TAU �.P
�−→ P OUT x̄y.P

x̄y−→ P IN xy.P
xz−→ P {z/y}

SUM
P1


−→ P ′
P1 + P2


−→ P ′
PAR

P1

−→ P ′1

P1 | P2 
−→ P ′1 | P2
if bn(
) ∩ fn(P2) = ∅

COM
P1

x̄y−→ P ′1 P2
xy−→ P ′2

P1 | P2 �−→ P ′1 | P ′2
CLOSE

P1
x(y)−→ P ′1 P2

xy−→ P ′2
P1 | P2 �−→ 	 y(P ′1 | P ′2)

if y �∈ fn(P2)

RES P

−→ P ′

	 xP

−→ 	 xP ′

if x �∈ n(
) OPEN P
x̄y−→ P ′

	 yP
x(z)−→ P ′{z/y}

if x �= y, z �∈ fn(	 yP ′)

MATCH P

−→ P ′

[x = x]P 
−→ P ′
IDE

PA{y1/x1, . . . , yr(A)/xr(A)} 
−→ P ′

A(y1, . . . , yr(A))

−→ P ′

STRUCT
P ≡ P ′ 
−→ Q′ ≡ Q

P

−→ Q

Theobservable actionsthat agents can perform are defined by the following syntax:


 ::= �
∣∣ x̄y

∣∣ x̄(z)
∣∣ xy;

wherex andy are free names of
 (fn(
)), whereasz is a bound name (bn(
)); finally
n(
) = fn(
) ∪ bn(
). Usually,x is thesubjectname whereasy andz are calledobject
names.
The operational rules for theearly operational semanticsare defined in Table1.As usual,

we consider�-agents up tostructural equivalence≡ defined as the smallest congruence
with respect to
• the monoidal laws for the parallel and choice operators,
• �-conversion of bound names,
• [x = y]0≡ 0,
• (	 x)(	 y)P = (	 y)(	 x)P and
• (	 x)(P | Q) ≡ P | (	 x)Q, if x �∈ fn(P ).
Several bisimulation equivalences have been introduced for the�-calculus[26]; they are
based on direct comparison of the observable actions�-agents can perform. They can be
strong or weak, early, late[13] or open[25]. In this paper, we consider early bisimilarity
since it provides the simplest setting for presenting the basic results of our framework.
However, it is possible to treat also other behavioural equivalences and other dialects of the
�-calculus (e.g., asynchronous�-calculus)[21].

Definition 2.3 (Early bisimulation). A binary relation over a set of agentsB is a strong
early bisimulation if it is symmetric and, wheneverP B Q, we have that:

• if P

−→ P ′ and fn(P,Q) ∩ bn(
) = ∅, then there existsQ′ such thatQ


−→ Q′ and
P ′ B Q′.

Two agents are saidstrong early bisimilar, writtenP ∼ Q, if there exists a bisimulationB
such thatP B Q.
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3. A minimization procedure for HD-automata

This section introduces the formal definitions for types and operations exploited in the
minimization algorithm on HD-automata for�-agents. Our approach consists of formally
describing the data and the control components of the minimization procedure as�→,�,�

expressions. This provides us with some benefits. First, it enables us to formally prove
termination of the minimization algorithm. Second, the�→,�,� specification has to be con-
sidered as an intermediate step toward the actual implementation,Mihda. In Section4, we
will show the strict correspondence between the�→,�,� specification andMihda.
Since our construction consists of several interrelated components the types of�→,�,�

provideaneffectivemechanism todealwith and control the dependencies among the various
components. Moreover, the formal specification of each component is rather compact and
self contained. The set-theoretic presentation of HD-automata has been given in previous
works [18,21]. The set-theoretic presentations can be viewed as a “macro expansion” of
�→,�,� types (see Example3.1). Indeed, all the types introduced in this paper have set-
theoretic models due to the fact that we stick to the finite case.
Before providing the formal definition, we present an intuitive description of

HD-automata. HD-automata aim at giving a finite representation of otherwise infinite label
transition systems. Similarly to ordinary automata, HD-automata are made out of states
and labelled transitions. Their peculiarity resides in the fact that states and transitions
are equipped with names which are no longer dealt as syntactic components of labels,
but become an explicit part of the operational model. This permits to model name cre-
ation/deallocation or name extrusion that are typical linguisticmechanisms of name passing
calculi.
Names in states of HD-automata havelocal meaning. For instance, ifA(x, y, z) denotes

anagenthaving three freenamesx,y andz, thenagentA(y, x, z) is different fromA(x, y, z),
however, they can be both represented by means of a single state, sayq, of a HD-automaton
simply by considering a “swapping” operation on the local names (corresponding to)x

andy of q. More generally, states that differs only for renaming of their local names are
identified.
Localmeaningof names requiresamechanism for describinghownamescorrespondeach

other along transitions. Graphically, we can represent such correspondences using “wires”
that connect names of label, source and target states of transitions. For instance, Fig.2
depicts a transition from source states to destination stated. States has three names, 1, 2
and 3whiled has two names 4 and 5which correspond to name1 ofs and to the newname0,

σ ds

1
2

3

4

5

lab
02

Fig. 2. A HD-automaton transition.



G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325–365 335

respectively. The transition is labelled bylab and exposes two names: Name 2 ofs and a
fresh name 0. Notice that name 3 ofs is “deallocated” along such transition.
It is worth to emphasize that name creation is simply handled by associating in the target

state a name not in the source state, while a name in a states can be deallocated when it is
not involved in any transition froms.

Remark 3.1. In order toavoid cumbersomedetails regarding thedefinitionsof�→,�,� types,
wemake some simplifying assumptions. First, we assume as given the primitive types (e.g.,
boolean, integers, strings, etc.) and also that the type expressions include enumeration types.
Second, we consider sets and operations on sets as primitive in our type language. This is
not problematic since we will deal with finite collection of elements.

3.1. Types for HD-automata

This section introduces the types of named sets, named functions together with their main
features.We describe HD-automata and their minimization algorithm as a coalgebra over a
functor defined on the category of named sets. Such category has named sets as objects and
named functions as morphisms. Here,�→,�,� types will be exploited for specifying both
objects and morphisms of the category of named sets. Clearly, because of the set-theoretic
interpretation of�→,�,�, the category of named sets is a subcategory ofSet. Moreover, since
all our constructions lives in the category of finite named sets, the minimal automaton can
be represented by simply exploiting non recursive types. Indeed, polymorphismallows us to
pass to the functor a different type at each iteration obtained by applying the finite powerset
functor; however, all such types can be casted to the type for named sets because of the
finiteness constraint.
A first choice concerns the representation of names. Names must be totally ordered

because names have a meaning local to the state of HD-automata, hence, they can be
arbitrarily renamed. Instead of consideringabstractnames (as done in[18]) we exploit a
concrete representation of names in terms of natural numbers� (with the usual order). We
also need to represent finite sets of names, hence we letN to be the type defined as

N
 = ∏

n:�
1 · · · n.

For instanceN(4) is the interval of the natural numbers from 1 to 4. By convention, type
N(0) is interpreted as the empty set. It is useful to reserve integer 0 for a special purpose,
i.e., it always denotes a newly generated name. Hence, 0 only appears in transition labels,
while names local to states start from 1.
A permutation algebrais an algebra whose operations arefinite kernel1 permutations of

names. In a permutation algebra, permutations are considered as operations that transform
theelementsof thesupport. In[18] apermutationalgebra for�-calculushasbeen introduced;
the support of the algebra is the set of�-agents where�(P ) is interpreted asP�, namely

1A permutation of names is a bijective functions� on the set of namesN . A finite kernelpermutation is a
permutation� such that�(n) �= n for finitely many names.
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the application of substitution� to the agentP . In this context sym(P ), the symmetry ofP ,

is defined to be sym(P )
 = {�|P� = �} (notice that sym(P ) is a group of permutations).

Named sets represent states of HD-automata.

Definition 3.1 (Named sets). The type of named sets is

NS
 = ∑

Q:U1

∑
�:Q×Q→bool

∑
|_|:Q→�

∏
q:Q

℘fin(N(|q|)→ N(|q|)).

As a matter of notation, for denoting the component of a named setA, we writeQA,�A,|_|A andGA in place of using the unwieldy (and less readable) notation of�→,�,� based on
projections I(_) and II(_). Given a named setA, we writea ∈ A instead ofa : QA.
A named setA lives in a generalized sum type2 whose first component is a typeQA, the

second component is again a sum type with a function�A that represents a total order on
QA and will be used for determining the canonical representative in a set of states; function
|_|A is called the weight function (ofA) and associates the number of names to elements
inQA; the generalized product type of the last component assigns a set of permutations of
names ofq, namely, the symmetry ofq. In the following we writeq�Aq

′ (q ��Aq
′) instead

of writing �A(q, q
′) = true (�A(q, q

′) = false ).

Example 3.1. Let us consider the�-calculus agentA(x, y) given by

A(x, y)
 = (	 z)(x̄z.P + ȳz.P ).

The stateqA that representsA(x, y) has two local names 1 and 2 (namely,|qA| = 2); the
symmetry ofqA is the set containing the identity permutations (of names 1 and 2) and the
permutation that exchanges 1 with 2.

The typeNSis the finite counterpart of permutation algebras. In other words, we do not
consider permutations as bijections of the whole set of names, but only as bijections of the
“relevant” names of a state that, according to Definition3.1, are finite. Indeed, notice that
GA(q) plays the role of a symmetry and is a list of permutations ofN(|q|), the names ofq,
(the natural numbers in the interval 1, . . . , |q|).

Lemma 3.1. Let 0 be the empty substitution(i.e., the substitution whose domain is the
empty set of names), thenGA(q) = {0} ⇐⇒ |q| = 0.

Proof. The proof follows by Definition3.1and by the fact that if|q| = n > 0 and idn is
the identity onN(n) then id(q) = q. �
Hereafter, we often have to compose functions with sets of functions, hence we adopt the

following notation. Given a set of functionsF and a functiong such that it can be composed

2 Formally,A should be written as〈QA, 〈�A, 〈|_|A,GA〉〉〉. When it is clear from the context, we adopt the
compact notation〈QA,�A, |_|A,GA〉 that avoids writing many brackets. The same notational abuse is adopted
throughout this paper.
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with all functions inF , we letF ; g to denote the set of functions given by{f ; g|f ∈ F }
(symmetrically forg;F ). Similarly, ifG is a set of functions that can be composed with all
functions inF , thenF ;G = {f ; g|f ∈ F andg ∈ G}.
Transitions among states are represented by means ofnamed functions:

Definition 3.2 (Named functions). The type ofnamed functionsis defined as follows:

NF
 = ∑

S:NS

∑
D:NS

∑
h:QS→QD

∏
q:QS

℘fin(N(|h(q)|D)→ N(|q|S).)

Given a named functionH : NF, we use the following shorthands:

• domH = I(H),
• codH = I(II (H)),

• hH = I(II (II (H))),
• �H = II (II (II (H))),

which correspond to the projections of the sum typeNF.
We implicitly assume that, for all elementsq ∈ domH

(1) ∀
 ∈ �H (q).GcodH (hH (q));
 = �H (q),
(2) ∀
 ∈ �H (q).
;GdomH

(q) ⊆ �H (q),
(3) any function of�H (q) is injective.

The type of named functions is a generalized sum type containing the named sets for
source and destination (notice that the type of the destination does not depend on the type
of the source), a mappingh from the source to the destination and, for eachq in the source,
there is a set of functions from the names ofh(q) to names ofq.
The intuition behind conditions (1)–(3) naturally emerges from the interpretation of

named functionH as a coalgebraic description of a HD-automaton: Elements inhH (q) are
the possible transitions out ofq and�H (q) are the mappings of names of target states of
those transitions to names ofq. Symmetries ofhH (q) are those name permutations that
when applied do not changehH (q), the set of transition fromq. Condition (1) states that
any permutation belongs to the symmetries ofhH (q) if, and only if, when it is applied to
any name correspondence
 from the names of the transitions to the names ofq yields a
map in�H (q). Condition (2) states that the group of the starting stateq does notgenerate
transitions that are not in�H (q). Finally, condition (3) ensures that any name in|q| has a
unique “meaning” along transitions inhH (q).

Remark 3.2. If hH (q) has no name (i.e.,|hH (q)| = 0) thenGA(hH (q)) is the singleton
{0} that in turn implies thatany
 ∈ �H (q) is the empty substitution0.

An ordinary functionf on sets induces a partition on its domain. The relation=f⊆
domf × domf given by

e =f e′ ⇐⇒ f (e) = f (e′)

is an equivalence relation. Thekernel off (kerf ) is the partition induced on domf by
=f , namely domf /=f

. Let f andg be two functions such that domf = domg, we can
definef $ g ⇐⇒ kerf = kerg. Relation$ is an equivalence relation on functions with
common domain.
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We can lift the concept of kernel to named functions.

Definition 3.3 (Kernel of named functions). Thekernel of named function His the named
set such that
• The underlying set is kerhH ;
• given A,B ∈ kerhH , A�B if, and only if, for somea ∈ A and someb ∈ B,
hH (a)�codH hH (b);

• the weight of an elementA ∈ kerhH is |hH (a)|codH , for a ∈ A;
• the group ofA ∈ kerhH is GcodH (hH (a)), for a ∈ A.

The named set kerH is obtained by considering the partition induced byhH on its
domain and by exploiting the named set structure of codH for the order, weight and group
components. Notice that, in Definition3.3, those components do not depend on the choice
of a or b, since any element inQkerH is a set whose elements have the same image through
hH .

Definition 3.4 (Composition of named functions). LetH,K : NFbe two named functions.
Wesay thatH andK canbecomposedif, andonly if, codH = domK , thence thecomposition
of H andK is the named functionH ;K such that domH ;K = domH , codH ;K = codK ,
hH ;K = hH ;hK and�H ;K = �q ∈ domH ;K.�K(hH (q));�H (q).

Proposition 3.1. Let H and K be two named functions that can be composed. Then,H ;K
is a named function.

Proof. Let us considerq ∈ domH ;K and
 ∈ �H ;K(q). First, recall that�H ;K(q) =
�K(hH (q));�H (q), therefore, there are
1 ∈ �K(hH (q)) and
2 ∈ �H (q), such that

 = 
1;
2. We have to show that the conditions (1)–(3) hold.
Condition 1.We must prove thatGcodH ;K (hH ;K(q));
 = �H ;K(q). We first consider⊆:

GcodH ;K (hH ;K(q));

= Definition3.4and
 = 
1;
2
GcodK (hK(hH (q))); (
1;
2)
= associativity of composition

(GcodK (hK(hH (q)));
1);
2
= Definition3.2(condition 1 onK)

�K(hH (q));
2
⊆ def. of�H ;K
�H ;K(q).

For the reverse inclusion, we must prove that
 can be written as composition of a permuta-
tion inGcodH ;K (hH ;K(q))anda
′∈�H ;K(q).ByDefinition3.2,
1∈GcodK (hK(hH (q)));
′1,
for a suitable
′1 ∈ �K(hH (q)); this proves the inclusion.
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Condition 2.We must prove that
;GdomH ;K (q) ⊆ �H ;K(q), namely, by Definition3.4,

;GdomH

(q) ⊆ �K(hH (q));�H (q):

(
1;
2);GdomH
(q)

= associativity of composition

1; (
2;GdomH

(q))

⊆ Definition3.2(condition 2 onH )

1; (�H (q))

that completes the proof.
Condition 3. This trivially holds because injectivity is preserved by composition and, by
definition of named function, both�K(hH (q)) and�H (q) contains only injective functions
and, for anyq, �H ;K(q) = �K(hH (q));�H (q), by Definition3.4. �
We conclude this section by emphasizing that named functions will provide the formal

mean to describe a generic step of the iterative minimization algorithm. Intuitively, named
functions map states of the automaton in a minimal representative state (at the current
iteration). In Section4, the notion of kernel of a named function will be exploited for
specifyingblocks, the main data structure ofMihda. Basically, a block collects those states
considered equivalent at a generic iteration. Hence, the block intuitivelycorrespondsto an
element of the partition induced by the kernel of the named function associated to a generic
step of the iterative algorithm.

3.2. HD-automata for�-calculus

We now present the coalgebraic specification of HD-automata for the early semantics of
the�-calculus. Even if our constructions are tailored to the�-calculus they can be extended
to handle name passing calculi in general.

3.2.1. Bundles for the�-calculus
We represent�-calculus labels through the enumeration typeL given by

L
 = TAU, IN , OUT, BOUT, BIN .

We assume that the position of the elements ofL gives the ordering relation. Let|_| be the
weight map associating to each�-label l a set having as many indexes as are the namesl

refers to. The weight map is defined as follows:

|TAU| = ∅ |IN | = |OUT| = {1,2} |BOUT| = |BIN | = {1}.
No name is associated to the synchronization labelTAU, two names (the subject and the
object of the transition) are associated toIN andOUT, whereas one name is associated to
BOUTandBIN labels. All but labelBIN have a corresponding label in the transition system of
�-calculus illustrated in Section2.3. Transitions labelled byBIN correspond to�-calculus
input transitions whose object name is fresh, namely, the object name does not appear in the
free names of the agent performing the transition. As usual in the�-calculus literature, we
callbound inputsuch transitions, whilebound transitionseither are bound output or bound
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input transitions. Non bound transitions are called free transitions. Notice that, according to
the early semantics of�-calculus, there is an infinite number of bound transitions out of a
state of the formxy.P or (	 y)x̄y.P , however, they all are equivalent up to renaming of the
fresh name. Therefore, they can be represented by means of a singleBIN or BOUTtransition
in the HD-automata for�-calculus.
Since names are local to states, it is necessary to specify how names occurring in a

transition are related to names of source and target states. Therefore, we have the following
definitions.
The typeqd of quadruplesis given by

qd
 = ∏

D:NS

∑
q∈D:

∑
l:L

∑
�:|l|→�

N(|q|D)→ �.

LetD : NSbe a named set andt : qd(D) be a quadruple onD, then to enhance readability
we will adopt the following shorthands:

�t
 = I(t), �t

 = I(II (t)), �t
 = I(II (II (t))), 
t

 = II (II (II (t))).

A quadruplet over a named setD represents a transition to state�t with label �t . Each
transition is equipped with two functions:�t and
t that map indexes of�t and names of
�t to suitable names (of the source state of the transition), respectively. Both�t and
t are
needed to establish a relationship between indexes in labels and names local to states or
between names of different states.

Example 3.2(Transitions of HD-automata). Let A(x, y)
 = (	 z)(x̄z.P + ȳz.P ) the

�-agents introduced in Example3.1 the transitions from the stateqA(x,y) corresponding
toA(x, y) are described by the quadruples

t1 = 〈qP , �1,�1,
1〉, t2 = 〈qP , �2,�2,
2〉
whereqP is the state corresponding toP , �1 = �2 = BOUT�1 : 1 �→ x and�2 : 1 �→ y.
Moreover, assuming thatz ∈ fn(P ), both
1 and
2 mapz to the fresh name 0. Finally, if
fn(P ) = ∅ then both
1 and
2 would be the empty substitution0 and the symmetry ofqP
would have been the singleton containing0.

Remark 3.3. In the case ofBOUTandBIN labels have to deal with name generation events.
The information about new names is given in
t .As shown in Example3.3, if t is a transition
which refers to a bound name, then
t maps the bound name (oft) to 0. In this respect, 0
should be properly considered as a placeholder that signals name generation events, namely
that a name of the target state has been generated during the transition. No name is mapped
to 0 by
t when�t is TAU, IN or OUT.

Definition 3.5 (�). Given two totally ordered sets(A1,�1) and(A2,�2), we define� to
be the relation on functions fromA1 toA2 such thatf�g if, and only if,
• either,∀q ∈ A1.f (q) = g(q)

• or, there isq ∈ A1 such thatf (q) �= g(q) and∀q ′ ∈ A1.q
′�1q ⇒ f (q ′) = g(q ′) ∧

f (q)�2g(q).
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Proposition 3.2. Relation� is a partial order.

Quadruples can be totally ordered. We have thatt % t ′ if, and only if,

�t�D�t ′ ∧ (�t = �t ′ ⇒ �t ��t ′ ∧ (�t = �t ′ ⇒ �t��t ′ ∧ (�t = �t ′ ⇒ 
t�
t ′))).

The intuition is that% is a lexicographic ordering obtained by taking advantage of the
ordering relations on the quadruple components. The relevance of% will emerge later to
define the action of the functor over HD-automata for�-agents.

Proposition 3.3. Relation% is a total order.

We callbundlethe collection of transitions out of a state. Bundles are described by type
B below:

B
 = ∑

D:NS
℘fin(qd(D)).

A bundle over a named setD is a pair〈D, S〉 whereD is a named set andS is a finite set
of quadruples onD. As usual, we assign names to the components of a bundle� : B; the
support of� is I(�) and is denoted byD�, while thestep of�, denoted byS�, is II(�).
We can lift the total ordering% to bundles (over the same support).

Definition 3.6 (Bundles’ ordering). Let �1,�2 : B be two bundles such thatD�1 = D�2
and letti be the minimal quadruple inS�i (for i = 1,2). We say that�1 is smaller than�2
(and write�1��2) if, and only if,
• eitherS�1 is empty,• or t1 % t2 andt1 �= t2,
• or elset1 = t2 and〈D�1,S�1\{t1}〉�〈D�1,S�2\{t2}〉.

Intuitively, � corresponds to the lexicographic order on the second components of the
bundles.

Proposition 3.4. Relation� is a total order.

3.2.2. Auxiliary operations
We now show how bundles can becastedto named sets. Since Definition3.6provides

an order on bundles, it suffices to define the names and the group of a bundle.
The names of a bundle are those names that “appear” in the ranges of�t and
t of its

quadruplest , namely:

{|_|}  = �� : B.
⋃
t∈S�

⋃
n : |�t |

m : N(|�t |D)

{�t (n),
t (m)}\{0};

the weight function on bundles is the cardinality of{|� |} (for any bundle�) and is denoted
by '�(.
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In the minimization algorithm, bundles play the role of states along the iterations of the
algorithm. Hence, the names of a bundle obey the same constraints of names of states and,
according to Remark3.3, the natural number 0 should not be considered a name of the
bundle.
Let� be a bundle and� be a permutation of its names (� permutes{|� |}). Then�� denotes

the bundle whose support isD� and whose step is given by

{〈�t , �t ,�t ;�,
t ;�〉| is a permutation of{|� |} ∧ t ∈ S�}.
The symmetry of�, Gr(�), consists of all the bijections of{|� |} that leave (the step of)�
unchanged,

Gr(�) = {�|� is a permutation of{|� |} ∧ S� = S��}.
Themost important operation on bundles isnormalization. This operation is needed because
(i) we must establish a canonical way of choosing the step component of a bundle among
a number of different equivalent ways; (ii) more importantly,redundantinput transitions
must be removed. Redundancy is strictly connected to the concept ofactive names. A name
n is inactivefor an agentP wheneverP is bisimilar to(	 n)P , otherwise it isactivefor P .
Intuitively, a name is inactive if it will not be used in the future transitions of the process. In
general, deciding whether a name is active or not is as difficult as deciding the bisimilarity
of two processes.
Redundant transitions are free input transitions where the received name is inactive in

the source of the transition.
The importance of redundancy emerges whenwe try to establish the equivalence of states

that have different numbers of free names. For instance, the following�-agents:

P
 = x(u).	 v(v̄z+ ūy), Q

 = x(u).ūy,

are bisimilar only if, for any name substituted foru, their continuations remain bisimilar.
However,P has a free input transition which corresponds to choice of namez in the early
semantics, whileQ has not. Thus, unless this transition is recognized as redundant and
removed, the automata forP andQ would not be bisimilar. The transition is redundant
since it isdominatedby the bound input transition ofP , where a fresh name is considered.
Beingz inactive inP , choosing namez is like choosing a fresh name.
Redundant transitions occur when HD-automata are built from�-agents. During this

phase, it is not possible to decide which free input transitions are required, and which
transitions are redundant.3 The solution to this problem consists of adding all the free input
transitions when HD-automata are built, and to exploit a reduction function (at every step
of the partition algorithm) to remove those that are unnecessary.
Fig. 3 illustrates the HD-automata corresponding toP andQ (the formal construction

will be presented in Section3.2.4). 4 Transition with labelIN x z (drawn with dashed lines)

3 In general, to decide whether a free input transition is redundant or not is equivalent to decide whether a name
is active or not; therefore, it is as difficult as deciding bisimilarity.

4 The convention adopted for names in the�-component of transitions in Fig.3 is that the name in theith
position is�(i). For instance, sequencex y stands for�(1) = x and�(2) = y.
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(a) (b)

Fig. 3. Redundant transitions: (a) HD-automaton forP and (b) HD-automaton forQ.

is redundant in the automata ofP . Statesp0 andq0 in Fig.3are bisimilar because transition
from p0 to p2 is redundant sincez is inactive inp0. Transition〈p2, IN , xz,
2〉 expresses
exactly the behaviour of the bound input, except that a free redundant input transition is
used rather than a bound one. In other words, when the bisimulation game is played, the
free input transition top2 from p0 plays the same role as the bound input that “assigns”
a name tou that is “not known” inp1. This means that the automaton forP is equivalent
to the automaton obtained by removing the redundant input transition which is exactly the
automaton forQ.
Intuitively, during the iterations of the minimization algorithm the sets of redundant

transitions of bundles decrease. When the iterative construction terminates, only those free
inputs that are really redundant will be removed from the bundles.

Notation 3.1. Given a functionf , in the rest of the paper, then:
• f [x �→ y] abbreviates�u.if u = x then y elsef (u).
• f |B is the restriction off to the setB ⊆ domf .

The normalization of a bundle is done in different steps. First, the bundle is reduced by
removing all the possibly redundant input transitions by applying the functionreduce:

reduce
 = �� : B.〈D�, S�\{t ∈ S�|dominated(�)(t)}〉

where,dominatedexpresses the condition for quadruples’ redundancy (for the early seman-
tics) and it is defined as follows:

dominated
 = �� : B.�t : qd(D�).

�t = IN ∧ 〈�t , BIN ,�t |{1},
t [
−1t (�t (2)) �→ 0]〉 ∈ S�.

The underlying intuition is that a transitiont is dominated in a bundle� when it is a free
input transition and� contains a bound input transition to the same target oft (on the same
channel) and such that the object name oft is mapped on to the 0 name in the bound input
transition.
Notice that not all dominated transition are redundant transitions. Dominated transitions

are only used to compute theactive names of a bundle. The active names are those names
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of the reduced bundle defined by:

an
 = �� : B.{| reduce(�) |}.

We want to point out that the concept of active names of a bundle is different from the
concept of active names of a process. Active names of a bundle do not involve any notion
of “future” behaviour; they are characterized in terms of a local property of the bundle.
We use function rem_in to remove input transitions from a bundle if their object names

are not in a given set of names. Function rem_in is defined as follows:

rem_in
 = �� : B.�N : ℘fin(�).S�\{t ∈ S�|�t = IN ∧ �t (2) �∈ N}.

Finally, the normalization of a bundle is obtained by applying the function norm.

norm
 = �� : B.

let �′ = rem_in� (an(�))
in min%(�′� | � : an(�)→ N(|an(�)|) is a bijective substitution).

We also define�� to be the bijective substitution for which the minimal bundle is achieved,
i.e.,(rem_in� (an(�)))�� = norm�.

Observation 3.1. The definition of norm requires existence of a minimal(representative)
bundle. Recalling that, for any bundle�, S� is finite(by definition) and the set of names of
� is finite, we conclude that the set

{�′� | � : an(�)→ N(|an(�)|) is a bijective substitution}
is finite as well, therefore, the minimal element exists since% is a total order.

Basically, norm, applied to a bundle�, filters those input transitions that are dominated
in � and whose object names are no longer active names of the (reduced) bundle. The
remaining transitions are collected in a bundle�′ and the substitution which makes�′
minimal is applied to it.
We have the following results.

Lemma 3.2. If �,�′ : B are such thatS� ⊆ S�′ , and let�1 = norm� and�′1 = norm�′

thenS�1; �−1� ⊆ S�′1; �
−1
�′ .

Proof. The thesis easily follows from the definition of application of a substitution to a
bundle. �

Lemma 3.3. For each� : B, Snorm � ⊆ S�; �−1� .

Proof. By construction, norm� is the bundle obtained by removing dominated quadruples
from � and by renaming its names through�−1� . �
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T1
 =�A : NS.
〈 B = QA × ℘fin(qd(QA)),

� = �(�,�′) : B × B.

if S� = ∅
thentt
else

let t = min%(S�) in
let t ′ = min%(S�′ ) in
t % t ′ ∧ (t = t ′ ⇒ S�\{t}�S�′ \{t ′}),

|_| = �� : B. '�(,
�� : B.Gr(�)
〉

Fig. 4. Functor on named sets.

T2
 =�H : NF.

let S = T1(domH )

andD = T1(codH )

andh′ = �� ∈ S.

〈codH , {〈hH (q), �,�,
′;
〉 | 〈q, �,�,
〉 ∈ S� ∧ 
′ ∈ �H (q)}〉
andh = �� ∈ S.normh′(�)
and� = �� ∈ S.{�; �−1

h′(�)|� ∈ Gr(h(�))}
in 〈S,D, h,�〉

Fig. 5. Functor on named functions.

Intuitively, Lemma3.3states that� “includes” thebundle resulting from itsnormalization.
Sometimes we will write�1 ⊆ �2 instead ofS�1 ⊆ S�2.

3.2.3. The functor for�-calculus
This section describes the functorT for the�-calculus. As usual[24], we representT as

a pair(T1, T2), whereT1 maps objects to objects, whileT2 maps morphisms to morphisms.
MapT1 is defined in Fig.4. When applied to a named setA, it returns a named set whose
components are described below:
• the underlying set is characterized by the type of bundles overA;
• the order relation is the order on bundles induced by the order ofA (Definition3.6);
• the weight function is the function that gives the number of names appearing in the
quadruples of the bundle;

Notice thatT1 requires the existence of aminimal quadruple; this is indeed the case because
S� is a finite set of quadruples, for any bundle�.
Fig. 5 illustrates the actions of the bundle on named functions through the mapT2. The

named function resulting from applyingT2 toH is a function such that
• the domain is obtained by applyingT1 to domH ;
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• the codomain is obtained by applyingT1 to codH ;
• the functionhT2(H) maps each bundle in the domain to a normalized bundle in the
codomain;

• for each bundle�, the set of its name correspondences is obtained by composing symme-
tryGr(hT2(H)(�))with �−1� to undo the normalization of names performed by computing
norm.

We now prove that mapT2 is functorial, i.e., it preserves composition and identity.

Proposition 3.5. LetH : NF,K : NFbe two named functions that can be composed. Then,

T2(H ;K) = T2(H); T2(K). (3)

Proof. First, we prove that both sides of Eq. (3) have the same domain and codomain.

domT2(H ;K) = T1(domH ;K) by def. ofT2
= T1(domH ) by def. of ’;’

domT2(H);T2(K) = domT2(H) by def. of ’;’
= T1(domH ) by def. ofT2.

A similar proof shows that codT2(H ;K) = codT2(H);T2(K).
Second, we show thathT2(H ;K) = hT2(H);T2(K). By definition3.4 and the definition of

T2, we have, for any� ∈ domT2(H),

hT2(H);T2(K)(�) = hT2(K)(hT2(H)(�)) = norm〈codT2(K),Q�〉

whereQ� is the set of quadruples〈hK(�′), �′,�′, 
̄;
′〉 such that〈�′, �′,�′,
′〉 ∈ ShT2(H)(�)

and
̄ ∈ �K(�
′), while the step ofhT2(H)(�) is the step of the bundle

norm

〈
codT2(H),

⋃
〈q,�,�,
̂〉∈S�

{〈hH (q), �,�, 
̄; 
̂〉|
̄ ∈ �H (q)}
〉

and, by Lemma3.3,

ShT2(H)(�) ⊆ ⋃
〈q,�,�,
̂〉∈S�

{〈hH (q), �,�, 
̄; 
̂〉|
̄ ∈ �H (q)}. (4)

Let us now consider functionhT2(H ;K):

hT2(H ;K)(�) = norm

〈
codT2(H ;K),

⋃
〈q,�,�,
̂〉∈S�

{〈hH ;K(q), �,�, 
̄; 
̂〉|
̄ ∈ �H ;K(q)}
〉
.

Hence,hT2(H ;K)(�) = norm 〈codT2(K),S〉 where,S contains all quadruples of the form
〈hK(hH (q)), �,�, 
̄; 
̂〉 such that

〈q, �,�, 
̂〉 ∈ S� and 
̄ ∈ �K(hH (q));�H (q).
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This, togetherwith (4), implies that (for any�)Q� ⊆ ShT2(H ;K)(�).Moreover,hT2(H);T2(K) ⊆
hT2(H ;K)(�) follows by Lemma3.2.
Inorder toprove thathT2(H);T2(K)=hT2(H ;K)(�)holds, it remains toshow thathT2(H ;K)(�)

⊆ hT2(H);T2(K). If t ∈ ShT2(H ;K)
and the label oft is not IN , thent ∈ ShT2(H);T2(K)

. Since
t can be inShT2(H ;K)

\ShT2(H);T2(K)
only if t is dominated inShT2(H);T2(K)

, in this case there
is aBIN transition inShT2(H);T2(K)(�) that dominatest and, recalling thatShT2(H);T2(K)(�) ⊆ShT2(H ;K)(�), thent would be dominated also inShT2(H ;K)(�). This contradicts the hypothesis
thatt ∈ ShT2(H ;K)(�).
Finally, we show that�T2(H ;K) = �T2(H);T2(K). By definition of composition of named

functions we have

�T2(H);T2(K)(�) = �T2(K)(hT2(H)(�));�T2(H)(�),

hence

�T2(H);T2(K)(�) = (Gr(hT2(K)(hT2(H)(�))))�
−1
hT2(H)(�)

; (Gr(hT2(H)(�))�
−1
� ).

Moreover,�−1
hT2(H)(�)

is the identity (becausehT2(H)(�) is a normalized bundle, by definition

of T2) then we have

�T2(H);T2(K)(�)=Gr(hT2(K)(hT2(H)(�))); (Gr(hT2(H)(�)); �−1� )

= ⋃

∈�T2(K)(hT2(H)(�))

Gr(hT2(K)(hT2(H)(�)));
 (5)

(equality (5) by associativity of composition). By Definition3.2, we conclude from (5) that
�T2(H);T2(K)(�) = �T2H ;K(�). �

Proposition3.5 shows thatT2 preserves composition. It remain to prove that identities
are also preserved.

Proposition 3.6. MapT2 preserves identities.

Proof. Given a named setA : NS, idA : NF is the named functions such that domidA = A

andhidA is the identity onQA and,�idA(q) only contains the identity on names ofq, for
anyq : QA. Thence, it is trivial to see that, by construction,T2(idA) is the identity named
function onT1(A). �

Proposition 3.7. MapT2 is functorial.

3.2.4. From�-calculus to HD-automata
Following[18],wenowconstruct theHD-automatoncorresponding to theearly semantics

of the�-calculus. We assume existence of a functionn that, given a�-agentsP , returns a
pair 〈P̄ , �P 〉 = n(P ), whereP̄ is the representative of the class of agents differing from
P for a bijective substitution,�P , such thatP̄ = P�P andP� = P̄ , for any bijective
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substitution�. Hereafter, we considerN = {x0, x1, . . . , } totally ordered by relation� ,
wherexi �xj if, and only if, i�j .
In order to have a standardway to chooseway the canonical transition (up to permutations

of names) we borrow from[21] the definition ofrepresentative transitions.

Definition 3.7 (Representative transition). A transition P

−→ P ′ is a representative

transition if one of the following conditions applies:
• either
 = � or 
 = x̄y;
• 
 = x̄(y) andy = min(N \fn(P ));
• 
 = xy andy ∈ fn(P ) ∪ {min(N \fn(P ))}.

Intuitively, a representative transition is exploited to single out a transition in a canon-
ical way from a bunch of bound outputs (that differ only for the extruded name), and
from a bunch of input transitions (that differ in the fresh name that is received from the
environment).
We only use representative transitions in HD-automata that correspond to�-agents. The

following lemma ensures that these transitions are enough to capture agents’ behaviour.

Lemma 3.4(Pistore[21, Lemma 7.6]). If P
xy−→ P ′ (resp., P

x̄(y)−→ P ′) is not a representa-

tive transition, then there is a representative transitionP
xz−→ P ′′ (resp., P

x̄(z)−→ P ′′) such
thatP ′′ = P ′[z,y/y,z].

Let P be a�-calculus agent and let〈P̄ , �P 〉 = n(P ). The coalgebraic specification
of the corresponding HD-automaton ofP is obtained via a named functionK[P ] with
domK[P ] = D[P ] and codK[P ] = T1(D[P ]).
We first determineQD[P ], the set of the states, as follows:

QD[P ]
 = ⋃

P ′∈S[P ]
QD[P ′] ∪ S[P ],

whereS[P ]  = {P̄ } ∪ {P ′ ∣∣ P

−→ P ′ is a representative transition∧ n(P ′) = 〈P ′, �P ′ 〉}.

Intuitively,QD[P ] is the set of (the canonical representative) agents that can be reached from
P (through representative transitions). It is straightforward to equipQD[P ] with a named
set structure, Indeed
• the order�D[P ] onQD[P ] is the lexicographic order on processes;
• for anyq ∈ QD[P ], the weight function|q|D[P ] yields the cardinality of fn(q);
• for any q ∈ QD[P ], the group componentGD[P ](q) is the identity on fn(q) or is ∅,
depending on fn(q) �= ∅.

FunctionhK[P ] associates to each state the bundle of its outgoing transitions and is defined
ashK[P ] = �q.norm�q where

�q =
〈
QD[P ], {t


∣∣ q

−→ q ′ is a representative transition}

〉
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and, if〈q ′, �q ′ 〉 = n(q ′), quadruplet
 is defined as follows:

t
 =




〈q ′, TAU,∅, �−1
q ′ 〉, 
 = �

〈q ′,OUT,�, �−1
q ′ 〉, 
 = x̄y, �(1) = x, �(2) = y

〈q ′, IN ,�, �−1
q ′ 〉, 
 = xy, y ∈ fn(q), �(1) = x, �(2) = y

〈q ′, BOUT,�, �−1
q ′ [�q ′(y) �→ 0]〉, 
 = x̄(y), �(1) = x

〈q ′, BIN ,�, �−1
q ′ [�q ′(y) �→ 0]〉, 
 = xy, y �∈ fn(q), �(1) = x.

Finally, we define�K[P ](q) = {�; �−1�q
|� ∈ GcodK[P ](hK[P ](q))}, for any stateq.

The HD-automaton obtained by this definition is aT -coalgebra by construction and it is
a valid HD-automaton.
The construction above may yield infinite HD-automata. However, there are interesting

classes of�-agents that generate finite HD-automata: This is the case offinitary �-agents.
Thedegree of parallelismdeg(P ) of a�-calculus agentP is defined as follows:

deg(0) = 0, deg(
.P ) = deg(A(x1, . . . , xn)) = 1,
deg((�x) P ) = deg(P ), deg(P |Q) = deg(P )+ deg(Q),

deg([x=y]P) = deg(P ), deg(P+Q) = max(deg(P ),deg(Q)).

AgentP is finitary if max{deg(P ′) ∣∣ P

1−→ · · · 
i−→ P ′} <∞.

By taking advantage of the techniques introduced in[18,21]we have:

Theorem 3.1. LetP be a finitary�-agents. Then the HD-automatonK[P ] is finite.

Proof. Easy. It is sufficient to mimic the proof of Theorem 47 of[18]. �

Example 3.3.We show how the functor acts by constructing the HD-automaton of agent

P
 = x(u).(	 v)(v̄z+ūy) of Section3.2.2. Let us assume thatP already is the representative

element with respect ton, i.e.,n(P ) = 〈P, id〉. Then, by definition,P has the following
representative transitions:
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Notice thatP1 andP ′1 are the same up-to a bijective substitution; therefore they have the
same canonical representation, namelyP1 = P2 and are represented by means of a unique
state in the automaton. Transitionsxx andxu are distinguished by a different
 in the

automaton. Finally, the remaining representative transitions areP1
ūy−→ 0, P2

z̄y−→ 0, and

P3
ȳy−→ 0.
In the automaton, the information about the freshness of nameu is given by the
-function

on the bound input transition (i.e.,
1(u) = 0), while, here the new nameu is the minimal
name not occurring in fn(P ), and is used in the standard representativeP1 of P1.

3.3. The minimization algorithm in�→,�,�

This section specifies theminimization algorithm forHD-automata and proves that it con-
verges on finite HD-automata. The minimization algorithm builds the minimal realization
H̄ of (finite) HD-automata by constructing (approximations of) the final coalgebra mor-
phism. The kernel ofH̄ yields the equivalence classes where equivalent states are grouped
together. The active names of each stateq are those in the ranges of�H̄ (q). Let us observe
that condition 1 in Definition3.2 guarantees that all functions in�H̄ (q) have the same
range.
Given a T -coalgebraK : NF with named setA as source, we letunit : NS =

〈unit, �x, y : unit.tt , �x : unit.0,∅〉 to be theemptynamed set (i.e., the named set on the
vacuum typeunit having() as its unique element). The minimization algorithm is specified
in a declarative way by the equations below.

Initial approximation:H0
 = 〈A, ⊥, �q : A.(), �q : A.∅〉. (6)

Iterative construction:Hi+1
 = K; T2(Hi). (7)

Intuitively, in the startingphaseof thealgorithm, all the statesof automatonK are considered
equivalent, indeed, kerH0 gives rise to a single equivalence class containing the whole
domK . At the(i+1)th iteration, the image throughT2 of theith iteration is composed with
K as prescribed in (7).
At each iteration, two cases can arise: (i) a class is splitted because the states that it

contains are no longer considered equivalent or (ii) a new active name is discovered. The
algorithm terminates when both these two cases do not occur. This is equivalent to saying
that thereHn+1 is equaltoHn, for somen.
Since we model iterations by means of named functions, we need to establish when two

named functions “are the same”.

Definition 3.8 (Equivalence of named functions). LetH1 andH2 be two named functions
such that domH1 = domH2.We say thatH1 andH2 are equivalent (writtenH1∼H2) if, and
only if, the following conditions hold:
(1) kerhH1 = kerhH2;
(2) ∀q ∈ domH1.|hH1(q)|codH1 = |hH2(q)|codH2 ;
(3) ∀q ∈ domH1.GcodH1 (hH1(q)) = GcodH2 (hH2(q)).
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The equivalence of named functions imposes constraints both on names and groups of
partitions. Namely, the number of names and the group of the equivalence classes in kerH1
and kerH2 must be the same. Notice that Definition3.8does not imply thatH1 andH2 are
the same named function whenH1∼H2 because the underlying functionshH1 andhH2 can
differ each other.

Proposition 3.8. ∼ is an equivalence relation.

In Definition 3.8, codomains ofH1 andH2 do not play any role, indeed, only the sym-
metries of the images of elementsq in the domain are required to be preserved. Intuitively,
this means that we do not care of the “structure” of the elements in the codomains, but only
whetherH1 andH2 induce the same partition on their domains (condition 1) and names
have the same meaning (conditions 2 and 3). Equivalence of named functions is the formal
device exploited for expressing the halting condition of the iterative algorithm. Namely,
the algorithm terminates whenHn+1∼Hn, for somen. This amounts to saying that, at the
(n+ 1)th iteration, all the states remain in the same equivalence class they where in at the
nth iteration (i.e., kerHn+1 = kerHn, by Definition3.8) and that the number of active
names and symmetries remain unchanged (conditions 2 and 3 in Definition3.8).
The proof of the convergence of the algorithm is based on the fact thatT2 is a monotone

functor over a partial order set having finite chains only.

Definition 3.9 (Relation,). LetH1 andH2 be two named functions such that domH1 =
domH2. RelationH1 , H2 holds if, and only if,
• partitionQkerH1 is coarser thanQkerH2;
• ∀A ∈ QkerH1.∀B ∈ QkerH2.A ∩ B �= ∅ ⇒ |A|kerH1

� |B|kerH2
;

• ∀A ∈ QkerH1.∀B ∈ QkerH2.∀q ∈ A ∩ B.�H1(q) ⊆ �H2(q).

Proposition 3.9. , is a pre-order.

Proof. Straightforward. �

Proposition 3.10. LetH1 andH2 be two named functions, then

H1 , H2 ∧ H2 , H1 ⇒ H1∼H2. (8)

Proof. The first two conditions of Definition3.9and the hypothesis of (8) implies the first
two conditions of Definition3.8. It remains to prove that the hypothesis implies the last
condition of Definition3.8.
Assume that there isq ∈ domH1 such thatGcodH1 (hH1(q)) �= GcodH2 (hH2(q)). Then, for

all 
 ∈ �H1(q),

GcodH1 (hH1(q));
 �= GcodH2 (hH2(q));
. (9)
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Notice thatH1 , H2 ∧ H2 , H1 and Definition3.9 imply �H1(q) = �H2(q); and
conditions on named functions imply thatGcodHi

(hHi
(q));
 = �hHi

(q) (for i = 1,2), that
contradicts (9). �

Proposition 3.11(Monotony ofT ). T2 is monotone.

Proof. LetHi : NF (i = 1,2) be such thatH1 , H2; we prove thatT2(H1) , T2(H2). Let
(for i = 1,2) Si = domT2(Hi),Di = codT2(Hi), hi = hT2(Hi) and�i = �T2(Hi):• By hypothesis, domH1 = domH2, hence, by definition ofT1,D1 = D2 and, by construc-

tion,�D1
= �D2

.
• Given �,�′ ∈ S1 such thath2(�) = h2(�

′), assume, by contradiction, thath1(�) �=
h1(�

′). Then, by definition ofT2, there is a quadruplet in S� (resp., inS�′ ) s.t. for any
t ′ in S�′ (resp., inS�) 〈h1(�(t)), �(t),
(t);
〉 �= 〈h1(�(t ′)), �(t ′),
(t ′);
〉. This yields
a contradiction, since there is at ′ ∈ S�′ such that

〈h2(�(t)), �(t),
(t);
〉 = 〈h2(�(t ′)), �(t ′),
(t ′);
〉
andH1 , H2 implies thath1(�(t)) = h1(�(t ′)).

• For all � ∈ S1, |hi(�)|Di
= 'hi(�)( (i = 1,2). Hence,|h1(�)|D1

� |h2(�)|D2
by con-

struction; indeed, for any quadruplet ∈ S�, |�(t)|codH1 � |�(t)|codH2 (becauseH1 , H2),
hence the domain of the functions in�1(�(t)) is included in the domain of the functions
in �2(�(t)), therefore, also their ranges are in the same inclusion relations.

• Let � ∈ domH1 be such that'h1(�)( = 'h2(�)( and by construction (i = 1,2)

�i = map(�� : N('hi(�)()→ N('hi(�)().�; �−1� ) Gr(hi(�)).

By hypothesis,�H1 ⊆ �H2, hence, by definition ofT2, by applying

map(�
 : �H (�).〈hH (�t ), �t ,�t ,
t ;
〉) �H (�t ) (10)

toH1 we obtaining a number of quadruples less or equal that the application of (10) to
H2. Therefore,Gr(h1(�)) ⊆ Gr(h2(�)) which imply that�1 ⊆ �2. �
Monotony is preserved by composition of named functions, as stated by the following

proposition.

Proposition 3.12(Composition and ordering). Let H1, H2 be two named functions such
thatH1 , H2. For anyK : NF if codK = domH1 = domH2 thenK;H1 , K;H2.

Proof.
• By definition of composition domK;H1 = domK = domK;H2 and the characteristic
functions ofK;H1 andK;H2 are obtained by composing the characteristic function of
K with those ofH1 andH2, respectively.

• For all q, q ′ ∈ domK;H1, by definition (K;H2)(q) = (K;H2)(q
′) if, and only if,

H2(K(q)) = H2(K(q ′)). Hence,H1(K(q)) = H1(K(q ′)) holds becauseH1 , H2 and
this implies(K;H1)(q) = (K;H1)(q

′).
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• We have that

|q|codK;H1 = |hH1(hK(q))|codH1 by definition of composition

� |hH1(hK(q))|codH2 sinceH1 , H2

= |q|codK;H2 by definition of composition.

• if q ∈ domK;H1, we have�K;H1(q) = �H1(hK(q));�K(q) (by definition of composi-
tion); sinceH1 , H2 we have�H1(hK(q)) ⊆ �H2(hK(q)) hence

�H1(hK(q));�K(q) ⊆ �H2(hK(q));�K(q),

which is equivalent to�K;H1(q) ⊆ �K;H2(q).
This concludes the proof.�

Finally, we can prove the convergence of the iterative algorithm:

Theorem 3.2(Convergence). The iterative algorithm expressed by Eqs.(6) and (7) is
convergent on finite state HD-automata.

Proof. First, observe that, bymonotonyofT andProposition3.12,mapsFK(H)=K; T2(H)

is monotone. Second, for anyH , FK(H) is finite. Finally, all chains inNF having finite
domain are finite, hence, the iterative algorithm defined in (6) and (7) converges to the
maximal fix-point ofFK . �
By definition, for any named functionH , T2(H) andH differs each other because their

codomains always differs. However, in Theorem3.2we implicitly refer to the equivalence
on NF, i.e.,∼ (Definition 3.8). Relation∼ is based on the notion of kernel of named
functions, hence, the fix point is a named functions such thatĤ∼FK(Ĥ ). In other words,
Ĥ is an automaton isomorphic toFK(Ĥ ); indeed, despite the representation of the states
(i.e., the type of codomains) a bijective correspondence can be established between dom

Ĥ
and dom

FK(Ĥ )
such that order, weight and group components are preserved.

We can establish some basic properties of the outcome of the minimization algorithm
that can be formally characterized.
We first prove the following theorem that theminimization algorithm does not “collapse”

non bisimilar states.

Theorem 3.3. LetK[P ] be the HD-automaton corresponding to a�-calculus finite control
agent P. IfĤ is the outcome of the minimization algorithm applied toK[P ] then any two
states that are in the same equivalence class ofQkerĤ are bisimilar�-calculus agents.

Proof. First, by construction,Ĥ is a named function such that dom
Ĥ
= QD[P ] (the set

of the processes reachable fromP up to bijective renaming, as defined in3.2.4). Indeed,
kerĤ induces a partition onQD[P ]; two processes, sayQ andR, are in the same class iff
h
Ĥ
(Q) = h

Ĥ
(R). If this is the case, thenQ andR are early bisimilar. Indeed, if we let

R = {〈Q,R〉|Q,R ∈ QD[P ] ∧ h
Ĥ
(Q) = h

Ĥ
(R)}, (11)
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thenR is an early bisimulation. In order to prove (11), without loss of generality, we can
consider only the representative transitions (see Lemma3.4).

Let t : Q �−→ Q′ be a representative transition. By construction,K[P ](Q) contains a
transition representingt , sayt̂ , built as described in Section3.2.4.We distinguish two cases:
(1) If � is not an input transition, then̂t ∈ Sh

Ĥ
(Q) because, at each iteration, the functor

can only remove input transitions; hence,t̂ ∈ Sh
Ĥ
(R) and, therefore,̂t is inK[R], that,

by construction, means thatR
�−→ R′, for someR′

(2) if � is an input transition, thenSh
Ĥ
(Q) either contains a transition corresponding to� or

it contains aBIN transition that cover�. In both cases, we can apply the same reasoning
above to constructR

�−→ R′.
We still have to prove the transfer property of bisimulation, namely, wemust also guarantee
(Q′, R′) ∈ R. Let assume that such a transition does not exist; hence,h

Ĥ
(Q′) �= h

Ĥ
(R′)

for all R′ that are�-derivatives ofR. By explicitly expanding the functor definition, at each
step, we have

hHi+1(X) = norm

〈
T1(codHi

),
⋃

〈X′,�,�,
〉∈ShK (X)

{〈hHi
(X′), �,�,
′;
〉 ∣∣ 
′ : �Hi

(X′)}
〉

then, Sh
Ĥ
(Q) contains a quadruple whose label and mapping correspond to� and

whose target state ish
Ĥ
(Q′) and sinceSh

Ĥ
(Q) = Sh

Ĥ
(R) this quadruple must also be

in h
Ĥ
(R)meaning that for some�-derivativeR′ of R, h

Ĥ
(Q′) = h

Ĥ
(R′), which gives the

contradiction. �
Another property of the algorithm is that it does not distinguishes bisimilar processes.

Theorem 3.4. Let P and Q be two bisimilar�-calculus agents and̂H the outcome of the
minimization algorithm onK[R], whereR = �.P + �.Q. Thenh

Ĥ
(P̄ ) = h

Ĥ
(Q̄), where

n(P ) = (P̄ , �P ) andn(Q) = (Q̄, �Q).

Proof. First notice thatP ∼ Q iff R ∼ �.P and thatP̄ andQ̄ are both inK[R] since they
are�-derivatives ofR. We prove by induction that at each iterationHi , hHi

(P̄ ) = hHi
(Q̄).

The proof is trivial for the initial step. Assume thathHi
(P̄ ) = hHi

(Q̄) holds at the step
i > 0. By expliciting the computation of the iteration step

hHi+1(P̄ ) = norm

〈
T1(codHi

),
⋃

〈P̄ ′,�,�,
〉∈ShK (P̄ )

{〈hHi
(P̄ ′), �,�,
′;
〉 ∣∣ 
′ : �Hi

(P̄ ′)}
〉
,

hHi+1(Q̄) = norm

〈
T1(codHi

),
⋃

〈Q̄′,�,�,
〉∈ShK (Q̄)

{〈hHi
(Q̄′), �,�,
′;
〉 ∣∣ 
′ : �Hi

(Q̄′)}
〉
.

Assume thatt = 〈hHi
(P ′), �,�,
〉 ∈ SHi+1(P̄ )\SHi+1(Q̄) and thatP

�−→ P ′′ (where
n(P ′′) = (P ′, �P ′′)) is the transition corresponding to the quadruple. We now reason by
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case analysis:

• If no quadruple inSHi+1(Q̄) has label corresponding to� thenQ � �−→ and this contradicts
the hypothesisP ∼ Q.

• Let hHi
(P ′) �= hHi

(Q′) hold for anyQ′ �-derivative ofQ. SinceP ∼ Q, there is

Q
�−→ Q′′ such thatP ′′ ∼ Q′′ andn(Q′′) = (Q′, �Q′) that, by induction, implies

hHi
(P ′) = hHi

(Q′), yielding a contradiction.
• The last possibility is that thenormoperation removest fromShHi (Q̄)

while leaving it in
ShH1+i (P̄ )

. This is not possible because it would mean that� is a free inputxy and there
is a bound input quadruple inShH1+i (Q̄)

with a name correspondence function differs

from 
 just because�Q(x) is mapped on 0. However, in this case such a bound input
quadruple would also belong inShHi (P̄ )

becauseP andQ are bisimilar and the target
states of the transitions that bisimulates must have the same set of active names.

This concludes the proof.�

The proof of Theorem3.4builds the automaton for�.P + �.Q instead of the simpler one
forP +Q becausewe need an automaton that has two states that “syntactically” correspond
to P andQ.
Theorems3.3and3.4basically state that, for finite HD-automata, the minimization algo-

rithm preserves the�-calculus early bisimulation and can be used for checking bisimilarity
between processes.

4. Mihda

The algorithm in Section3has been specified by exploiting the parametric polymorphism
of �→,�,� in a coalgebraic framework. It remains to show that these elegant theories can be
used as a basis for the design and development of effective and usable verification toolkits.
This section describes our experience in designing and implementingMihda, a min-

imization toolkit for verifying finite state mobile systems represented in the�-calculus
or in other name passing calculi. TheMihda toolkit 5 cleanly separates facilities that are
language-specific (parsing, transition system calculation) from those that are independent
from the calculus notation (bisimulation) in order to facilitate modifications. The type sys-
tem ofocaml offers all the necessary features for implementing the�→,�,� specification of
the minimization algorithm. The main features ofocaml exploited in our implementation
are polymorphism and encapsulation.
Encapsulation is achievedby themodule systemofocaml.Themodule systemofocaml is

similar to themodule systemofML[14,15,28]; itsmain ingredients aresignatures,structures
andfunctors. The module system separates the signature, a sort of interface (i.e., definition
of abstract data type) from structures, that are the realizations and roughly are sets of types
and values. A structure satisfying a given signature is saidto matchthat signature and may
be parameterized usingfunctors, that are functions from structures to structures: Anocaml

5Mihda is available at http://jordie.di.unipi.it:8080/mihda , where also documenta-
tion and examples are provided. A web interface toMihda can be accesses via browser at
http://jordie.di.unipi.it:8080/pweb .



356 G. Ferrari et al. / Theoretical Computer Science 331 (2005) 325–365

functor constructs new modules by mapping modules of a given signature on structures of
other signatures.
The following example (borrowed from[16]) defines a structure and its matching signa-

ture:

structure S =
struct

type t = nat
val x : t = 7

end;

signature SIG =
sig

type t
val x : t

end;

If S.t (resp.,S.x ) is the type (resp., the value) ofS, a functor can be defined as

functor F (X : SIG) : SIG =
struct

type t = X.t * X.t
val x : t = (X. x,X.x)

end

struct S’ =
struct

type t = nat * nat
val x : nat * nat = (7,7)

end,

whereS’ is the structure obtained by applyingF toS.
There exists a strong relationships between�→,�,� and the module system ofocaml. On

the one hand, structureS can be written in�→,�,� as

S = 〈t : U1 = �,7 : t〉 : ∑
t :U1

t,

which amounts to saying that sum types signatures correspond and expression with that
type are the structures matching the signature. For instance, theocaml programS.x * 3
becomes II(S) ∗ 3= II (〈t : U1 = �,7 : t〉) ∗ 3; notice that, since the type of II(S) is I(S),
the whole program has type�. On the other hand, product types correspond to functors,
for instanceF can be written as

�S : ∑
t :U1

t.〈s : U1 = I(S)× I(S), 〈II (S), II (S)〉 : s〉

which has type
∏

S:T
∑

s:U1
s, whereT = ∑

t :U1
t . Even though expressive enough for

our purposes, the kind of polymorphism provided by the module system ofocaml is less
powerful than the polymorphism of�→,�,�; the reason is that signatures, structure and
functors can be only used at “top-level” and recursion is not allowed in their definitions.
The reader is referred to[16] for a deeper discussion on this topic.
Fig. 5 illustrates the modules ofMihda and their dependencies. For instance,State is

the module which provides all the structures for handling states and its main type defines
the type of the states of the automata.Domination is the module containing the structures
underlying bundle normalization. The connections express typing relationships among the
modules. For instance, since states in bundles and transitions must have the same type, then
a connection exists betweenBundle andTransitions modules.
The iterative construction of the minimal automaton is parameterized with respect to the

modules of Fig.5. Indeed, the same algorithm can be applied to different kind of automata
andbisimulation,provided that theseautomatamatch theconstraintson types imposedby the
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Fig. 6.Mihda Software Architecture.

software architecture. For instance, the architecture ofMihda has been exploited to provide
minimization of both HD-automata and ordinary automata (up to strong bisimilarity).

4.1. Main data structures

We describe the main data structures used inMihda together with the properties that are
relevant to show adequacy of our implementation to the coalgebraic�→,�,� specification.
Moreover, relationships between the “theoretical” objects and theirMihda counterpart is
pointed out.
In the rest of the paper, we will use slanted symbols to denote names forocaml functions

and variables. A listl is written as[e1; ...;eh] while l i denotes itsith element (i.e.,ei).
Finally, wewritee ∈ l to indicate thate is an item of listl .As a general remark, notice that
finite sets will be generally represented as lists. We say that a listx corresponds to a finite
setX if, and only if, for each elemente in X there existse ∈ x such thate corresponds
to e.
An automaton is made of three ingredients: Initial state, states and arrows.As far as finite

state automata are concerned, it is possible to represent (finite) automata by enumerating
states and transitions.

Observation 4.1.We assume that1, .., n are the names of a state having n names. A per-
mutation over n names may be simply expressed by means of a list of distinct integers, each
belonging to segment1, ..., n; for instance below we show how the classical notation for
permutations is represented by�, a list of integers(

1 ... n

i1 ... in

)
, � = [i1; ...; in].

With these notations, [2;1;3] represents a permutation of3 elements: Namely, the permu-
tation that exchanges1 and2,and leaves3 unchanged.
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We adopt the notation of Observation4.1also to represent other functions on names. In
particular, given a quadruple〈q, �,�,
〉, � is represented by means of a list of integerspi
whose length is|�| and whoseith position contains�(i) (for i = 1, ..., |�|). Finally,
 is a
list of integerssigma whose length ism, the number of names ofq and whoseith element
is 
(i), for i = 1, ..., m. We say thatpi (resp.,sigma ) corresponds to� (resp.,
).
HD-automata are an extension of ordinary automata, since states and labels have a richer

structure carrying information on names. A state may be concretely represented as a triple

typeState_t =
| State of id: string ∗ names:int list ∗ group: (int list) list

whereid is the name of the state;namesare the local names of the state and are represented
as a list of integers; thegroupcomponent is its symmetry, i.e., the set of those permutations
that leave the state unchanged. By the previous observation, we can represent it as a list of
lists of integers.

Definition 4.1 (States correspondence). Letq beastateof anamedsetA = 〈Q,�, |_|,G〉.
An elementState(q, names, group ) correspondsto q if, and only if,
• q ∈ Q

• |q| = length names
• group corresponds toG.

Arrows are represented as triples withsourceanddestinationstates, andlabel.

type labeltype =string ∗ int list ∗ int list

typeArrow_t = Arrow of
source: State_t∗ label: labeltype ∗ destination: State_t

Note that type of arrows relies on type for labels. A label for�-agents is a triple whose
first component is an element ofL�; the second component of a label is the list of names
exposed in the transition; finally, the last component of a label is a function mapping names
in the destination to names of the source state.An alternative, more simple, definition could
have been obtained by embedding thelabeltype in Arrow. Although more adherent to
the definition of bundle given in Section3.2.1, this solution is less general than the one
adopted, because different transition systems have different labels.
Now we can give the structure which represents automata:

typeAutomaton_t =
start: State_t ∗ states: State_t list∗ arrows: Arrow_t list

The first component is the initial state of the transition system, then the list ofstatesand
arrowsare given.
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Bundles rely on quadruples over named sets. Essentially, a quadruple is the transition
from a state to another state. Transitions are labelled and, our implementation represents
part of information carried by quadruples into labels:

type quadtype =Qd of Arrow.labeltype ∗ State_t

typeBundle_t = quadtype list

Note that the first component of bundles is not represented. This choice is possible because
implementation always deals with bundles that are obtained by applying the iterative con-
structionHi+1 = K;T2(Hi). Therefore, the first component of these bundles always isSK ,
the set of states of the initial automaton.
We can establish a precise connection between quadruples and inhabitants ofquadtype

and, therefore, between automata and elements inAutomaton_t .

Definition 4.2 (Correspondence of quadruples). Let qd be the quadruple〈q, �,�,
〉. We
say thatQd((lab , pi , sigma ), q) correspondsto qd, if, and only if,
• lab is a string with value�,
• pi corresponds to�,
• sigma corresponds to
,
• q corresponds toq.

Definition 4.3 (Automata correspondence). The tuple(q,qs ,as ,S) corresponds tothe
named functionK = 〈Q, T (Q), k : Q→ T (Q),�〉 iff, qs corresponds toQ; for eacht ∈
k(q) there existsa ∈ as such that, ifa = (s , (lab ,pi , sigma ), t ), thenQd((lab ,pi ,
sigma ), t ) corresponds tot , and, for each
 ∈ �(q) there iss ∈ Ssuch thats corresponds
to 
.

4.2. The main cycle

The generic step of the minimization algorithm (Hi+1 = K; T2(Hi)) can be explicitly
written ashHi+1(q) = norm〈T1(codHi

),�〉, where

� = ⋃
〈q ′,�,�,
〉∈ShK (q)

{〈hHi
(q ′), �,�,
′;
〉 ∣∣ 
′ : �Hi

(q ′)}. (12)

Following Eq. (12), we can computehHi+1(q) through the following steps:
(a) determine the bundle ofq in the automaton, i.e.,hK(q);
(b) for eachquadruple〈q ′, �,�,
〉 inhK(q), applyhHi

toq ′, the target state of thequadruple
(yielding the bundle ofq ′ in the previous iteration of the algorithm);

(c) compose all
 ∈ �(q ′) with 
′;
(d) normalize the resulting bundle.
Mihdastores the representationof theminimizedautomatonat theith iteration (i.e.,hHi

) in a
list ofblockswhichare themost importantdatastructuresofMihda.Assaid, blocks represent
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the equivalence classes of the kernel of each iteration and contain all those information for
computing the iteration steps of the algorithm. Indeed, blocks represent both the (finite)
named functions corresponding to the current iteration and its kernel. Hence, at the last
iteration a block corresponds to a state of theminimal automaton.A block has the following
structure:

typeBlock_t =
Block of

id : string ∗
states : State_t list∗
norm : Bundle_t ∗
names :int list ∗
group : int list list ∗
� : (State_t → (int ∗ int) list list) ∗
�−1 : (State_t→ (int ∗ int) list)

The fields represent
• the nameof the block (id); it is used to identify the block in order to construct theminimal
automaton at the end of the algorithm,

• the states (states) considered equivalent with respect the equivalence relation used in the
algorithm6 (i.e., early bisimulation),

• the normalized bundle with respect to the block considered as state (norm),
• the list of names of the bundle innorm(names),
• the group of the block (group),
• the functions of the names of the bundle (�),
• the function(�−1) that maps the names appearing innorm into the name ofq.
Basically,�−1(q) is the function which establishes a correspondence between the bundle
of q and the bundle of the corresponding representative element in the equivalence class of
the minimal automaton.
A graphical representation of a block is reported in Fig.7. The elementx is the “represen-

tative state”, namely it is the representative element of the equivalence class corresponding
to the block. The names of the block and its group, respectively, are the names and the group
of x (graphically represented by the arrow fromx to itself in Fig.7 that aims at recording
that a block also has symmetries on its names). All those states of the automatonq mapped
on x are collected in the block. Function�q describes “how” the block approximates the
stateq at a given iteration. Bundlenormof blockx is computed by exploiting the ordering
relations over names, labels and states.
A graphical representation of steps (a)–(d) above in terms of blocks is illustrated in Fig.8.

Step (a) is computed by the facilityAutomaton.bundle that filters all transitions of the
automaton whose source corresponds toq. Fig. 8(a) shows that a stateq is taken from a
block and its bundle is computed.

6We recall thatMihda is parametrized with respect to the equivalence relation.
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Fig. 7. Graphical representation of a block.

(a) (b)

(c) (d)

Fig. 8. ComputinghHi+1: (a) step 1, (b) step 2, (c) step 3 and (d) step 4.

Step (b) is obtained by applying facilityBlock.next to the bundle ofq. The operation
Block.next substitutes all target states of the quadruples with the corresponding current
block and computes the new mappings (see Fig.8(b)).

Step (c) does not seem to correctly adhere to the corresponding step of Eq. (12). However,
if we consider that� functions are computed at each step by composing symmetries
’s we
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can easily see that� functions exactly play the rôle of
’s. Finally, step (d) is represented
in Fig. 8(d) and is obtained via the functionnormalize in moduleBundle .
The previous operations are computed by functionsplit 7 that divides the states among

the partitions relative to the current iterations.

let split blocks block =
let minimal =

(Bundle.minimize red
(Block.next (h_n blocks) (state_of blocks)
(Automaton.bundle aut (List.hd (Block.states block)))))in

Some (Block.split
minimal
(fun q→
let normal =

(Bundle.normalize
red
(Block.next (h_n blocks) (state_of blocks)

(Automaton.bundle aut q)))in
Bisimulation.bisimilar minimal normal)

block)

Let block be a block in the listblocks , functionsplit computesminimal by mini-
mizing the reduced bundle of the first state ofblock . The choice of the state for computing
minimal is not important: Without loss of generality, given two equivalent statesq and
q’ , it is possible tomap names ofq into names ofq’ preserving their associated normalized
bundle if, and only if, a similar map from names ofq’ into names ofq exists.
Onceminimal has been computed,split invokesBlock.split with parameters

minimal andblock , while the second argument ofBlock.split is a function that
computes the current normalized bundle of each state inblock and checks whether or not
it is bisimilar tominimal . This computation is performed by functionbisimilar (in
the moduleBisimulation ). If bisimilarity holds through�q thenSome�q is returned,
otherwiseNone is returned.
We are now ready to comment on the main cycle ofMihda reported in Fig.9. Let

k = (start , states ,arrows ) be an automaton. When the algorithm starts,blocks
is the list that contains a single block collecting all the states of the automatak .
At each iteration, the list of blocks is splitted, as much as possible, by the function

split_iter that returns a list ofbucketswhich have the same fields of a block apart
from the name, symmetries and the functions mapping names of destination states into
names of source states. Basically, the split operation checks if two states in a block are
equivalent or not. States which are no longer equivalent to the representative element of the
block are removed and inserted into a bucket. Then, by means ofBlock.close_block ,

7We exploit twoocaml primitive functions on lists. Functionhead, List.hd, that takes a list and returns the
first element of the list; FunctionList.map, is the usualmapfunction of functional languages; given a functionf ,
List.mapf [f (e)1; ...;eh] is the list[f (e1); ...; f (eh)]).
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let blocks = ref [ (Block.from_states states) ]in
let stop = ref falsein

while not ( !stop )do
begin
let oldblocks = !blocksin
let buckets = split_iter (split oldblocks) oldblocksin
begin

blocks := (List.map (Block.close_block (h_n oldblocks)) buckets);
stop :=

(List.length !blocks) = (List.length oldblocks) &&
(List.for_all2

(fun x y→ (Block.compare x y) == 0)
!blocks
oldblocks)

end
end

done ;
!blocks

Fig. 9. The main cycle ofMihda.

all buckets are turned into blocks which are assigned toblocks . Finally, the termination
conditionstop is evaluated. This condition is equivalent to say that an isomorphism can be
establishedbetweenoldblocks (that corresponds to kerHi) andblocks (corresponding
to kerHi+1). Moreover, since order of states, names and bundles is alwaysmaintained along
iterations, both lists of blocks are ordered. Hence, the condition reduces to test whether
blocks andoldblocks have the same length and that blocks at corresponding positions
are equal.

5. Concluding remarks

This paper develops coalgebraic framework to specify HD-automata and their finite
state verification techniques. The formal devices used in this work are coalgebras and
�→,�,�, a polymorphic�-calculus. On the one hand, coalgebras allow us to express transition
systems in an elegantmathematical framework.On the other hand,�→,�,� is used as a formal
specification language that drives to a smooth implementation.
This approach has a twofold advantage. First, the coalgebraic mathematical framework

accounts for the convergence proof of the minimization algorithm on finite HD-automata.
Second, using�→,�,� as a specification language andocaml as the implementation language
of Mihda, permits to point out the tight correspondence between the specification and the
implementation.
From a programming perspective, our approach enjoys a high level of modularization.

Indeed, product types and theirocaml counterpart, i.e., modules, provide the programming
guidelines for addingor changing facilities that areneatly separated indifferentmodules.For
instance,Mihda can be used for minimizing both HD-automata and traditional automata; or
else, automata can be minimized according to different notions of equivalences.We plan to
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extend theMihda toolkit with facilities to handle other notions of equivalences (e.g., open
bisimilarity) and other foundational calculi for global computing (e.g., the asynchronous
�-calculus, the fusion calculus).
Some preliminary results can be found in[6] while some experimental results ofMihda

can be found in[5,27]; and seem quite promising. The�-calculus specification of the
Handover Protocol (borrowed from[19,29]) has been minimized runningMihda on a ma-
chine equipped with an AMDAthlon™XP 1800+ dual processor with 1G RAM. The time
required for minimizing the automata is very contained (few seconds). The size of the mini-
mal automata in terms of states and transitions is sensibly smaller than their non-minimized
version (the number of states and transitions in the minimal automaton are reduced of a
factor 7). In the future, we plan to improve efficiency incorporating supports for symbolic
approaches based on Binary Decision Diagrams.
As a final comment, we remark that relying on well-known results in coalgebras (e.g.,

[23,30]), different strategies for the convergence theorem (Theorem3.2, p. 34) can be
developed. However, the proofs given in this paper have two advantages: First, they are
conceptually more simple and, second, they are based on those constructions used in the
implementation thus providing hints for correctness ofMihda.
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