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Abstract

In this paper we revisit some pioneering efforts to equip Petri nets with compact operational models
for expressing causality. The models we propose have a bisimilarity relation and a minimal repre-
sentative for each equivalence class, and they can be fully explained as coalgebras on a presheaf
category on an index category of partial orders. First, we provide a set-theoretic model in the form
of a a causal case graph, that is a labeled transition system where states and transitions represent
markings and firings of the net, respectively, and are equipped with causal information. Most im-
portantly, each state has a poset representing causal dependencies among past events. Our first
result shows the correspondence with behavior structure semantics as proposed by Trakhtenbrot
and Rabinovich. Causal case graphs may be infinitely-branching and have infinitely many states,
but we show how they can be refined to get an equivalent finitely-branching model. In it, states only
keep the most recent causes for each token, are up to isomorphism, and are equipped with a sym-
metry, i.e., a group of poset isomorphisms. Symmetries are essential for the existence of a minimal,
often finite-state, model. This first part requires no knowledge of category theory. The next step
is constructing a coalgebraic model. We exploit the fact that events can be represented as names,
and event generation as name generation. Thus we can apply the Fiore-Turi framework, where the
semantics of nominal calculi are modeled as coalgebras over presheaves. We model causal relations
as a suitable category of posets with action labels, and generation of new events with causal de-
pendencies as an endofunctor on this category. Presheaves indexed by labeled posets represent the
functorial association between states and their causal information. Then we define a well-behaved
category of coalgebras. Our coalgebraic model is still infinite-state, but we exploit the equivalence
between coalgebras over a class of presheaves and History Dependent automata to derive a com-
pact representation, which is equivalent to our set-theoretical compact model. Remarkably, state
reduction is automatically performed along the equivalence.
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1. Introduction

Petri Nets are a well-known graphical and formal notation for representing concurrent com-
putations. An interesting aspect of Petri Nets is that they allow for the representation of causal
dependencies among actions. This kind of information can be useful for debugging distributed sys-
tems or for tracing expected or unwanted causal dependencies, and it is usually not provided by
interleaving models.

In order to carry out verification on Petri nets, it is convenient to have an operational model,
that is a model representing single steps of computation and their observable actions. In Petri
nets, steps are typically firings and actions are action labels of transitions. One important class of
operational models for Petri Nets are behavior structures [27]. They are automata where each state
is equipped with a partial order over events: events represent different occurrences of actions and
the poset describes causal dependencies among such occurrences. Behavior structures come with a
notion of behavioral equivalence, which later has been called history preserving bisimilarity [14].

Other causal models, such as event structures [20], do not come with a built-in operational
notion of bisimilarity. Such a notion is essential to compute minimal models, where all states
with the same behavior are identified. Open maps [16] can be used to derive hereditary history
preserving bisimulations (HHPBs), but the existence of minimal representatives is not guaranteed
by that theory. Indeed, the general agreement is that HHPB is more suited to capture concurrency,
whereas the non-hereditary version deals better with causality. The latter equivalence is coarser, but
still causality is informative enough to characterize key security properties, such as non-interference
[4]. Moreover, the non-hereditary equivalence has better decidability properties than the hereditary
one [14].

The main issue with causal operational models is that they often have infinitely many states, so
model checking is unfeasible. This is indeed the case of behavior structures, where posets of states
are enlarged at each transition, because a new event for the corresponding action is generated. Even
if we minimize w.r.t. bisimilarity, there is no way of throwing away “useless” events or decreasing
the size of posets.

In this paper we present an approach to obtain compact, and in many cases finite, operational
models for causality in Petri nets. They will be presented in two “flavors”: a set-theoretic and a
categorical one, based on coalgebras [22, 1]. In addition to the theoretical and practical interest of
reconducting our problem to unifying and well studied models such as coalgebras, we emphasize
that our coalgebraic model is simpler than the set theoretical one. In fact, even if deriving a naive
set-theoretic model from a Petri net is not difficult, the technical development required to obtain a
compact model is quite involved and requires some ingenuity. Instead, in a categorical setting, this
machinery will become remarkably simpler and natural. Actually, in a precise sense, the construction
of the compact model will be automatic, thus providing a mathematical justification of the otherwise
ad hoc set-theoretic constructions.

1.1. Set-theoretic models

After some preliminaries on Petri nets and the presentation of a running example in section 2,
in section 3 we model the behavior of a labeled Petri net as a causal case graph (CG). Recall that
a case graph is a labeled transition graph where states are markings and transitions are steps,
representing many firings happening simultaneously. In causal case graphs, transitions are single
firings, and causal data are used to encode information about concurrency. More precisely (see
Definition 3.3, where CGs are called “concrete” as opposed to “abstract” CGs, introduced later):
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• states are of the form O ⊳ c, where: O is a poset describing causal dependencies among a finite
collection of events; c is a marking where each token is decorated with its causes, i.e. the set
of events that led to its creation (included in O);

• the transition relation is written
K⊢ea
ÐÐÐ→, where: K is the set of most recent causes of tokens

that enabled the firing; e is a fresh event, different from all those occurring in the source state;
and a is the action label of the fired transition.

We define a notion of bisimilarity for CGs where causal information plays a key role: only states
with the same causal dependencies among past events, namely the same poset, are compared. This
fact is crucial for the equivalence with history preserving bisimilarity described in section 4.

Another important aspect is that transitions draw fresh events from an infinite set of event
names. For each firing, we have infinitely many transitions in the CG, one for each possible fresh
event. In this way we implement event generation in the same way name generation is represented,
e.g., in nominal calculi. This fact will be crucial for our categorical models.

We, then, derive three consecutive refinements of the CG, described in Table 1, each improving
the CG on one aspect:

CGAC (Definition 3.8): the transition relation becomes finitely branching, because we don’t dis-
tinguish between posets with the same structure. In fact, it is enough to generate one canonical
event, instead of all possible ones, for each firing. Consequently, states contain canonical rep-
resentatives of events and only the action label of the new event is recorded in the transition.

CGIC (Definition 3.17): removing all but immediate causes, and identifying isomorphic states,
may significantly reduce the state space, and even make it finite.

CGICS (Definition 3.27): we equip each state with a set of isomorphisms acting as the identity
on the state. These isomorphisms must form a symmetry, i.e., a group of automorphisms, on
the state’s poset. Transitions are reduced accordingly: we select one representative for each
collection of “symmetric” transitions. Two transitions are symmetric whenever they can be
obtained from each other via isomorphisms belonging to the symmetries of source and target
states. Symmetries allow for the computation of minimal models, because CGs that are not
isomorphic, but bisimilar under a given isomorphism, have a unique minimal realization, where
that isomorphism becomes part of the symmetry of a state.

These steps do not change the overall semantics (Theorems 3.12 and 3.22).
Finally, in Theorem 4.6 we establish a connection between CGs and behavior structures.

1.2. Categorical models

In the second part of the paper (Sections 5-7) we assume the reader has some familiarity with
category theory. Some preliminaries about presheaves and coalgebras are recalled in section 5.

Coalgebras are convenient models of dynamic systems. Their theory is rich and well-developed,
and many kinds of systems have been characterized in this setting. Coalgebras are also of practical
interest: minimization procedures such as partition refinement [17] can be defined in coalgebraic
terms (see, e.g., [2]). This further motivates the coalgebraic framework: algorithms implemented at
this level of abstraction can be instantiated to many classes of systems.

Our coalgebraic causal model of Petri nets, presented in section 6, is based on the fact that we
represent events as names and event generation as name generation, in the style of nominal calculi.
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States Transition relation

Causal case graph (CG)

O ⊳ c

• O is a finite poset describing causal depen-
dencies among events

• c is a marking including causes for each token

K⊢ea
ÐÐÐ→

• K is the set of most recent causes of tokens
consumed by the transition

• e is a fresh event

• a is the fired transition’s action label

Abstract CG (CGAC)

O ⊳ c

• O is a canonical representative of isomorphic
posets

• c contains canonical events

K⊢a
ÔÔ⇒

• K as in CG

• a is the action label for the canonical fresh
event

Immediate causes CG (CGIC)

O � c

• O and c contain only the most recent causes
w.r.t. each token (immediate causes)

• each state is a canonical representative of iso-
morphic states

∣
K⊢a
ÔÔ⇒

h

• K and a as in CGAC

• h is a map telling how events in the target
state correspond to those of the source state

Immediate causes CG with symmetries (CGICS)

O �Φ c

• O and c as in CGIC

• Φ is a symmetry on O

∥
K⊢a
ÔÔ⇒

h

• K,a and h as in CGIC

• transitions are canonical representatives of
“symmetric” ones

Table 1: Set-theoretic models.
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This allows us to construct a coalgebra where states are equipped with nominal structures, namely
causal relations between events, and event generation is explicit, along the lines of [13]. The key
idea is to define coalgebras over presheaves, that are functors from a certain index category C to
Set, the category of sets and functions. Presheaves formalize the association between a collection of
names, seen as an objects of C, and a set of processes within Set, indexed by names of the collection.
Fresh name generation can be formalized as an endofunctor on C, that is lifted to presheaves and
used in the definition of coalgebras.

We take as index category for presheaves a suitable category of labeled posets up to isomorphism,
representing causal relations between events decorated with actions. This category provides us with
the needed structure to model operations over causal relations. In fact, we use colimits to implement
a well-behaved functorial model of event generation, which augments a given poset with fresh events
and relations to their causes. Our definition ensures that its lifting to presheaves, when used to define
coalgebras, yields a category of coalgebras with a final object and a final semantics in agreement
with coalgebraic bisimilarity. This is essential for a correct notion of minimal model. Then, we define
a presheaf of causal markings, yielding, for each poset, the set of causal markings whose causes are
“compatible” with that poset. We construct a causal coalgebra by translating the abstract CG. The
important result is that coalgebraic and ordinary bisimilarity are equivalent (Theorem 6.16).

The infinite state issue still exists in the causal coalgebra, because the poset of a causal marking
keeps growing along transitions. However, if the presheaf of states is “well-behaved”, according
to [10], it is always possible to recover the support of a causal marking, that is the minimal poset
including all and only events that appear in the marking. This is the key condition for the equivalence
between presheaf-based coalgebras and History Dependent (HD) automata [21].

HD-automata are coalgebras with states in named-sets [11], that are sets whose elements are
equipped with symmetry groups over finite collections of names. They have two main features:

• a single state can represent the whole orbit of its symmetry, namely all the states reachable
via poset isomorphisms;

• the names of each state are local, related to those of other states via suitable mappings.

Both features are important for applying finite state methods, such as minimization and model-
checking, to nominal calculi. In particular, the latter point captures deallocation: maps between
states can discard unused names and “compact” remaining ones, much like garbage collectors do for
memory locations. A minimization procedure for HD-automata for the (finite-control) π-calculus
has been shown and implemented in [12].

Interestingly, we are able to define the presheaf of causal markings in a way that computing the
support corresponds to discarding all but the immediate causes. Therefore, in section 7 we show
that the aforementioned equivalence amounts to deriving the immediate causes CG. Actually, it
also equips states with symmetries, achieving the last refinement step. We emphasize that such
equivalence is completely standard in the theory of nominal calculi. In our case, it is extended
to labeled posets and allows the automatic derivation of an HD-automaton over a named set of
minimal causal markings.

2. Basic definitions and running example

Given a set of labels L, we call L-labeled poset (or just labeled poset, when L is clear from
the context) on a set S a triple O = (XO,≼O, lO), where XO ⊆ S, ≼O is a reflexive, transitive
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and antisymmetric relation on XO and lO ∶XO → L is a labeling function. A morphism of labeled
posets O → O′ is a function σ∶XO →XO′ that preserves order and labeling, namely x ≼O y implies
σ(x) ≼O′ σ(y) and lO = lO′○σ. We say that σ reflects order whenever σ(x) ≼O′ σ(y) implies x ≼O y; σ
is an order-embedding whenever it both preserves and reflects order. Notice that isomorphisms reflect
order, because their inverses preserve order, and it can be easily checked that order-embeddings are
always injective. To simplify notation, we sometimes regard O as a poset on S ×L, we write ∣O∣ for
the underlying set of pairs and xl ∈ XO × L for the pair (x, l) ∈ ∣O∣. A set K ⊆ ∣O∣ is down-closed
w.r.t. O whenever y ∈K and x ≼O y implies x ∈K. We say that a poset O is a prefix of O′ if O is a
subposet of O′ and ∣O∣ is down-closed w.r.t. O′.

In this paper we consider the following kind of Petri nets, which we call just nets.

Definition 2.1 (Net). A net is a tuple (S,T,F, l) where:

• S is a set of places and T is a set of transitions, with S ∩ T = ∅;
• F ⊆ (S × T )∪ (T × S) is the flow relation;

• l∶T → Act is a labeling function, where Act is a fixed set of action labels.

If x ∈ S ∪ T then ●x = {y ∣ (y, x) ∈ F} and x● = {y ∣ (x, y) ∈ F} are called the pre-set and post-set
of x, respectively; for all t ∈ T , we assume ●t, t● ≠ ∅. A marking m is a multiset over S. A transition
t ∈ T is enabled at marking m if s ∈m, for all s ∈ ●t, in which case it can fire, written m [t⟩m′, i.e., a
new marking m′ = (m∖ ●t)∪ t● is produced. We say that a net is marked whenever it has an initial
marking m0. We denote by [m0⟩ the set of markings reachable from m0 by a (finite) sequence of
firings.

We require that elements of initial markings have multiplicity one. This implies that m0 is
actually a set, in agreement with the fact that pre-sets and post-set in nets are sets, meaning that
they can only consume one token at a time from a given place. In typical P/T nets transitions may
consume many tokens from the same place, but this difference is inessential for the development of
our theory.

Running example. As a running example, we will use the marked net defined as follows: S =
{s1, s2}, T = {t1, t2, t3}, F includes (si, ti), (si, t3) (for i = 1,2) and symmetric pairs, and l(t1) =
l(t2) = a, l(t3) = b. The initial marking is m0 = {s1, s2}. This net is depicted below: circles denote
places, squares denote transitions, edges describe the flow relation, and filled circles indicate the
position of tokens in m0. Notice that [m0⟩ = {m0}.

s1 s2

b

t3

a

t1

a

t2

3. Causal semantics for Petri nets

In this section we introduce our causal labeled semantics for nets. It will be in the form of a
causal case graph (CG in short), that is a labeled transition graph whose states are markings with
causal information and transitions represent firings. We start from a naive CG, derived from a given
net in the simplest way, and then we give three subsequent refinements that will lead to a compact
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and, in some cases, finite-state CG. Throughout this section we fix a net N = (S,T,F, l) and we
assume that an infinite set E of event names (or just events) is available.

The key idea is to equip markings with information about the occurrences of actions that led
to the creation of each token. An occurrence of a transition labeled by a ∈ Act is represented as an
Act-labeled event ea. Formally, a causal marking c is a set of the form

{K1 ⊢ s1, . . . ,Kn ⊢ sn}

where Ki ⊆ Pf(E ×Act) is the set of causes of si ∈ S, for i = 1, . . . , n. More specifically, if ea ∈ Ki

then the sequence of firings that generated the token includes a transition with action label a. We
write K (c) for K1 ∪ ⋅ ⋅ ⋅ ∪Kn and ∣c∣ for the underlying marking {s1, . . . , sn} of c. Given a marking
m and K ⊆ Pf(E ×Act), K ⊢m is the causal marking obtained by assigning causes K to each s ∈m.

Transitions of our CGs will generate new events and their causal dependencies. In order to
keep track of these data, we equip causal markings with Act-labeled posets, describing the causal
relations between events which are occurrences of past actions.

Definition 3.1 (P-marking). A P-marking is a pair O ⊳ c, where c is a causal marking and O is a
finite Act-labeled poset on E such that: if K ⊢ s ∈ c then K is down-closed w.r.t. O.

Down-closure requires each set of causes to contain the whole “history” of its events, as described
by O. Nevertheless, O may contain events that are unrelated to or caused by those of K (c), but
that are not among them.

Posets will have different purposes in the different classes of CGs we are going to introduce: they
will be used to record either all the events happened so far or the “most recent” ones. The shape
of P-markings will not change, but there will be additional requirements on their components.

We introduce a useful operation on P-markings. Their posets can be enlarged by adding events
from which existing events causally depend on, but a closure operator must be applied, in order to
retain down-closure of sets of causes.

Definition 3.2 (Closure operator). Given K ⊆ ∣O∣ and O′ such that O is a subposet of O′, the
closure of K w.r.t. O′ is given by

K↓O′ = ⋃
x∈K

{y ∈ ∣O′∣ ∣ y ≼O′ x}

Its extension to causal markings is (K ⊢ s)↓O′ =K↓O′ ⊢ s and acts element-wise on sets.

Given a P-marking O ⊳ c and O′ ⊇ O, it can be easily verified that O′ ⊳ c↓O′ is a proper
P-marking.

3.1. Concrete CG

The first step is deriving a CG from the net. Its states are P-markings O ⊳ c such that O

contains the whole history of past events and transition labels are of the form K ⊢ ea, meaning
that an a-labeled transition t is fired: ea is an event fresh w.r.t. all the previous ones (i.e., those
in O) and K is the set of most recent causes associated to tokens that enabled t. We call this CG
concrete because posets with the same structure but different event names are distinguished.
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Definition 3.3 (Concrete CG). The concrete CG (CGC) is the smallest CG generated by the
following rule

t ∈ T ∣c∣ = ●t a = l(t) e ∈ E ∖XO K =maxO K (c)

O ⊳ c ∪ c′ K⊢ea
ÐÐÐ→ δ(O,K, ea) ⊳ (K (c) ∪ {ea} ⊢ t●) ∪ c′

where maxOK, for K ⊆ ∣O∣, is the set of maximal elements in K according to O, and δ(O,K,x) =
(O ∪ (K × {x}))∗.

Given a P-marking, the rule above checks whether it includes a causal marking c such that its
underlying marking is the pre-set of a transition t (∣c∣ = ●t). If this is the case, t is turned into a CG
transition whose label K ⊢ ea is formed by the maximal causes K of c w.r.t. O and by a labeled
event ea, where e does not occur in the source poset (e ∉ E ∖XO). The target state is obtained by
replacing c with the tokens produced by the firing, each equipped with the whole set of causes of
c plus the new event ea. Since ea is causally dependent on the causes of c, the poset in the target
state is updated with new pairs representing such dependencies by taking δ(O,K, ea).

Note that event generation is similar to name generation in nominal calculi.1 For instance, in a π-

calculus extrusion transition (y)xy.p
x(z)
ÐÐ→ p[z/y] we observe a free name x and a fresh name z, which

then becomes free in the continuation. Analogously, in a transition O ⊳ c
K⊢ea
ÐÐÐ→ δ(O,K, ea) ⊳ c′

the elements of K are “free” events, in the sense that they occur in c, and e is a fresh one, which
is then added to the continuation. As in the π-calculus, event generation causes CGC to have
infinitely-many states and to be infinitely-branching , because there are infinitely-many transitions
and continuations from any state, differing only for the identity of the fresh event.

Remark 3.4. Even if initial markings are sets, firings may eventually produce a proper multiset, for
instance when a transition puts a token in a place s that is already marked. Instead, our causal
markings are sets: they can never contain two occurrences of K ⊢ s, for any K. In fact, suppose
the first of the described firings becomes a CG transition that goes to a P-marking including K ⊢ s.
Then, since the second transition fires later, it will generate an event ea ∉K and a target P-marking
that includes both K ⊢ s and a new K ′ ⊢ s such that ea ∈K ′, so K ≠K ′.
Example 3.5. Figure 1 depicts some transitions of the CGC for the running example. It shows only
the reachable part from ∅ ⊳ ∅ ⊢m0, up to a certain depth. Each state has three kinds of outgoing
transitions, corresponding to the three net transitions. The figure only shows one transition for each
kind, but there are actually infinitely many ones, one for each fresh event.

We now introduce bisimulations for CGC.

Definition 3.6 (Concrete causal bisimulation). A concrete causal bisimulation (C-bisimulation in
short) is a family of relations {RO} on P-markings, indexed by Act-labeled posets, such that:

• whenever (O1 ⊳ c1,O2 ⊳ c2) ∈ RO then O1 = O2 = O;

• whenever (O ⊳ c1,O ⊳ c2) ∈ RO and O ⊳ c1
K⊢ea
ÐÐÐ→ O′ ⊳ c′1 then O ⊳ c2

K⊢ea
ÐÐÐ→ O′ ⊳ c′2 and

(O′ ⊳ c′1,O′ ⊳ c′2) ∈ RO′ (and viceversa).

The concrete causal bisimilarity is the greatest such family and is denoted by ∼C.

1The relationship between π-calculus and causality has been investigated in [6].
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{ea ≼ e′a} ⊳ {{ea, e′a} ⊢ s1,∅ ⊢ s2}

{ea} ⊳ {{ea} ⊢ s1,∅ ⊢ s2}

{ea}⊢e
′

a

22

{ea}⊢e
′

b //

∅⊢e′a ,,

{ea ≼ e′b} ⊳ {{ea, e
′
b} ⊢ s1,{ea, e′b} ⊢ s2}

{ea, e′a} ⊳ {{ea} ⊢ s1,{e′a} ⊢ s2}

{eb ≼ e′a} ⊳ {{eb, e′a} ⊢ s1,{eb} ⊢ s2}

∅ ⊳ {∅ ⊢ s1,∅ ⊢ s2}

∅⊢ea

==⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤
∅⊢eb //

∅⊢ea

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇
{eb} ⊳ {{eb} ⊢ s1,{eb} ⊢ s2}

{eb}⊢e
′

a

22

{eb}⊢e
′

b//

{eb}⊢e
′

a ,,

{eb ≼ e′b} ⊳ {{eb, e
′
b} ⊢ s1,{eb, e′b} ⊢ s2}

{eb ≼ e′a} ⊳ {{eb} ⊢ s1,{eb, e′a} ⊢ s2}

{ea, e′a} ⊳ {{e′a} ⊢ s1,{ea} ⊢ s2}

{ea} ⊳ {∅ ⊢ s1,{ea} ⊢ s2}

∅⊢e′a
22

{ea}⊢e
′

b //

{ea}⊢e
′

a ,,

{ea ≼ e′b} ⊳ {{ea, e
′
b} ⊢ s1,{ea, e′b} ⊢ s2}

{ea ≼ e′a} ⊳ {∅ ⊢ s1,{ea, e′a} ⊢ s2}

(∀e ∈ E) (∀e′ ∈ E ∖ {e})

Figure 1: CGC for the running example (initial fragment).
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3.2. Abstract CG

We now introduce an abstract CG, where we only take posets up to isomorphism. We write [O]≅
for the isomorphism representative of O, and we call it abstract poset. We call abstract a P-marking
of the form [O]≅ ⊳ c.

Given an abstract poset O, K ⊆ ∣O∣ and a ∈ Act, we assume the following operations:

• δ(O,K,a), generating [δ(O,K, ea)]≅, for any ea; the actual identity of ea is not relevant,
because of the quotient up to isomorphism;

• new(O,K,a), giving the unique new event in δ(O,K,a);

• the morphism old(O,K,a), embedding O into δ(O,K,a);

These operations can be used to define the extension of σ∶O → O′ (with O,O′ abstract posets) to
a morphism σ+K,a∶ δ(O,K,a) → δ(O′, σ(K), a) given by

σ+K,a(x) =
⎧⎪⎪⎨⎪⎪⎩

new(O′, σ(K), a) x = new(O,K,a)
old(O′, σ(K), a)(σ(y)) x = old(O,K,a)(y)

The intuition is that σ+K,a does not mix up old and new events: it acts “as” σ (modulo suitable
embeddings) on events that were already in O, and maps the new event in δ(O,K,a) to the new
one in δ(O′, σ(K), a). To ease notation, we will just write σ+ when K and a are clear from the
context.

Example 3.7. Suppose O1 = {xa, x
′
b} and O2 = {ya, y′b, y′′c } are discrete abstract posets, and let

σ∶O1 → O2 map xa to ya and x′b to y′b. Let x̂z (resp. ŷz) be the image of xz via old(O,{xa, x
′
b}, d)

(resp. via old(O′,{ya, y′b}, d)), for z ∈ {a, b}. Then we have

δ(O1,{xa, x
′
b}, d) =

new(O1,{xa, x
′
b}, d)

x̂a

;;✇✇✇✇✇✇✇✇✇
x̂′b

cc●●●●●●●●●
δ(O2,{ya, y′b}, d) =

new(O2,{ya, y′b}, d)

ŷa

;;✇✇✇✇✇✇✇✇✇
ŷ′b

OO

ŷ′′c

where arrows represent ordered pairs (reflexive pairs are omitted). Then σ+∶ δ(O1,{xa, x
′
b}, d) →

δ(O2,{ya, y′b}, d) maps x̂a to ŷa, x̂
′
b to ŷ′b and new(O,{xa, x

′
b}, d) to new(O2,{ya, y′b}, d).

We now introduce the abstract CG. Its states are abstract P-markings and its labels have the
form K ⊢ a. Labels have the same meaning as in CGC, but here there is no need to observe the
generated event: it will always be new(O,K,a), if O if the source P-marking’s poset.

In order to translate concrete P-markings, and their transitions, to their abstract counterparts
in CGAC, we fix an abstraction isomorphism αO ∶O → [O]≅, for each poset O, giving a canonical
representative of each event in O. In the following we write ∥x∥O for the “abstract version” of
x, namely xαO. We also introduce an operation ∥c∥O,K,ea . It will be applied to causal markings c
appearing in continuations of transitions of CGC, namely those P-markings of the form δ(O,K, ea) ⊳
c. Intuitively, given a transition in CGC, the operation ∥−∥O,K,ea applies the abstraction isomorphism
of the source P-marking to its continuation, so that events of source and continuation are consistent
with each other and the fresh event generated by the transition always becomes the canonical new
one. Formally, ∥c∥O,K,ea is defined as follows: events in O are mapped via αO and then embedded
into [δ(O,K, ea)]≅ via old([O]≅, ∥K∥O, a) (notice that [δ(O,K, ea)]≅ = δ([O]≅, ∥K∥O, a), because
they are isomorphic); and ea is embedded into [δ(O,K, ea)]≅ as new([O]≅, ∥K∥O, a).
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Definition 3.8 (abstract CG). The abstract CG (CGAC) is the smallest CG generated by the
following rule

O ⊳ c K⊢ea
ÐÐÐ→ δ(O,K, ea) ⊳ c′

[O]≅ ⊳ ∥c∥O ∥K∥O⊢a
ÔÔÔ⇒ δ([O]≅, ∥K∥O, a) ⊳ ∥c′∥O,K,ea

The most important fact to notice is that CGAC is finitely branching. In fact, even if there are
infinitely-many concrete P-markings that generate the transitions of an abstract P-marking O ⊳ c,
they are all isomorphic. To see this, take any two P-markings O1 ⊳ c1 and O2 ⊳ c2 such that
∥c1∥O1

= ∥c2∥O2
= c. Then we have c = c1α

−1
O1
= c2α

−1
O2

, so c2 = c1σ, where σ is the isomorphism

α−1O2
○αO1

. The following lemma states the correspondence between transitions of such P-markings.

Lemma 3.9. Let σ∶O1 → O2 be an isomorphism. Then O1 ⊳ c1 K⊢ea
ÐÐÐ→ δ(O1,K, ea) ⊳ c′1 if and only

if O2 ⊳ c1σ σ(K)⊢e′a
ÐÐÐÐÐ→ δ(O2, σ(K), e′a) ⊳ c′1σ[e′a/ea], for any e′ ∉XO2

.

If we take any two transitions of O1 ⊳ c1 and O2 ⊳ c2 that correspond by this lemma, and we
apply the rule in Definition 3.8 to them, it can be easily verified that we get the same transition,
no matter the choice of ea and e′a. Therefore, all the infinitely-many P-markings whose abstract
version is O ⊳ c generate precisely the same transitions of O ⊳ c, and transitions that differ for the
choice of the fresh event are all identified. This means that CGAC is finitely-branching.

There is again a similarity with the π-calculus. A well-known technique to make the π-calculus
LTS finitely-branching is to only take α-equivalence representatives. For instance, if (y)xy.p is

such a representative, then the transition (y)xy.p
x(y)
ÐÐ→ p is enough to represent all the analogous

transitions from α-equivalent processes. We can also omit y from the label, because its identity
uniquely depends on the free names of (y)xy.p. This is similar to the presentation of the π-calculus
using abstraction and concretion operators [23, 4.3.1]. Here a transition from (y)xy.p is labeled by
x and goes to the concretion ⟨νy⟩p, where y is bound. Incidentally, this presentation naturally arises
from the coalgebraic semantics of the π-calculus [13], and its implementation in logical frameworks.

Example 3.10. The CGAC for the running example can be represented again by Figure 1. If we
assume that depicted posets are abstract (i.e., translation maps from concrete to abstract posets
are identities) then, in order to get a CGAC, we just have to remove the universal quantification
over events, and also remove the generated event from the label. The result is a finitely-branching
CG, where each state has only one transition for each net transition. The state-space is still infinite,
because posets keep growing along transitions.

Definition 3.11 (Abstract causal bisimilarity). An abstract causal bisimulation (AC-bisimulation
in short) is a family of relations {RO}, indexed by abstract posets, such that:

• whenever (O1 ⊳ c1,O2 ⊳ c2) ∈ RO then O1 = O2 = O;

• whenever (O ⊳ c1,O ⊳ c2) ∈ RO and O ⊳ c1
K⊢a
ÔÔ⇒ O′ ⊳ c′1 then O ⊳ c2

K⊢a
ÔÔ⇒ O′ ⊳ c′2 and

(O′ ⊳ c′1,O′ ⊳ c′2) ∈ RO′ (and viceversa).

The greatest such relation is denoted by ∼AC.

We have the following correspondence between ∼C and ∼AC.

11



s1 r1

s2 r2

s3
a

b

c

Figure 2: Example net.

Theorem 3.12. Let O ⊳ c1 and O ⊳ c2 be (concrete) P-markings. Then O ⊳ c1 ∼C O ⊳ c2 if and
only if [O]≅ ⊳ ∥c1∥O ∼AC [O]≅ ⊳ ∥c2∥O.

We list some closure properties, which will be important in the following.

Proposition 3.13. Transitions of CGAC are preserved and reflected by order-embeddings σ∶O → O′,
that is:

(i) If O ⊳ c
K⊢a
ÔÔ⇒ δ(O,K,a) ⊳ c′ then O′ ⊳ (cσ)↓O′

σ(K)⊢a
ÔÔÔ⇒ δ(O′, σ(K), a) ⊳ (c′σ+)↓δ(O′,σ(K),a)

(preservation);

(ii) If O′ ⊳ (cσ)↓O′
K′⊢a
ÔÔ⇒ δ(O′,K ′, a) ⊳ c′ then there are K and c′′ such that σ(K) = K ′,

(c′′σ+)↓δ(O′,K′,a) = c′ and O ⊳ c K⊢a
ÔÔ⇒ δ(O,K,a) ⊳ c′′ (reflection).

The definition of preservation and reflection are quite involved, due to the presence of event
generation and the need of applying the closure operator to compute proper continuations. We will
see that the categorical counterparts of these properties will be remarkably simpler.

Example 3.14. We motivate the requirement of order-reflection by showing that transitions of
CGAC are not reflected by functions without such property.

Consider the marked net of Figure 2. We can derive its CGAC as shown for the running example.
In it, from the initial P-marking ∅ ⊳ {∅ ⊢ s1,∅ ⊢ s2} we can reach the transition

{ea, e′b} ⊳ {{ea} ⊢ r1,{e′b} ⊢ r2}
{ea,e

′

b}⊢c
ÔÔÔÔ⇒ {ea ≼ e′′c , e′b ≼ e′′c } ⊳ {{ea, e′b, e′′c } ⊢ s3}

Consider the function σ∶{ea, e′b} → {ea ≼ e′b}, mapping events to themselves. Clearly σ does not
reflect posets. If we apply σ and then ↓{ea≼e′b} to the source P-marking we get

{ea ≼ e′b} ⊳ {{ea} ⊢ r1,{ea, e′b} ⊢ r2}

but its c transition is

{ea ≼ e′b} ⊳ {{ea} ⊢ r1,{ea, e′b} ⊢ r2}
{e′b}⊢c
ÔÔ⇒ {ea ≼ e′′c ≼ e′b} ⊳ {{ea, e′b, e′′c } ⊢ s3}

because only e′b is maximal. However, this transition cannot be obtained from the one of {ea, e′b} ⊳
{{ea} ⊢ r1,{e′b} ⊢ r2} via an application of σ.

The following theorem is a consequence of Proposition 3.13.

Theorem 3.15. ∼AC is closed under order-embeddings. Explicitly: for all order-embeddings σ∶O →
O′, we have O ⊳ c ∼AC O ⊳ c′ if and only if O′ ⊳ (cσ)↓O′ ∼AC O′ ⊳ (c′σ)↓O′ .

12



3.3. Immediate causes CG

We now introduce a further refinement of CGAC, called immediate causes CG (CGIC): we keep
only immediate causes, i.e., causes that are maximal w.r.t. at least one of the tokens, and we identify
isomorphic states. Immediate causes of a causal marking w.r.t. a poset O are given by

icO(K ⊢ s) =maxO(K) icO(c1 ∪ c2) = icO(c1) ∪ icO(c2)
We define isomorphism of P-markings as follows:O ⊳ c ≅ O′ ⊳ c′ if and only if there is an isomorphism
σ∶O → O′ such that cσ = c′. We denote by [O ⊳ c]≅ a chosen representative for the isomorphism
class of O ⊳ c.
Definition 3.16 (Minimal P-marking). A minimal P-marking O�c is an abstract P-marking such
that:

• ∣O∣ =K (c);

• for each K ⊢ s ∈ c, K ⊆ icO(c);
• it is a canonical isomorphism representative, i.e., O � c = [O ⊳ c]≅.
Consider an abstract P-marking O ⊳ c. In order to compute the corresponding minimal P-

marking JO ⊳ cK, we first take immediate causes for each token. Then, since the resulting P-marking
may not be abstract, we take its canonical isomorphism representative. Formally, let OI be O

restricted to icO(c), then
JO ⊳ cK = [OI ⊳ normOI

(c)]≅

where normO(K ⊢ s) =K ∩ ∣OI∣ ⊢ s and has an element-wise action on sets. We denote by jO ⊳ co
the map [OI]≅ → O obtained by composing a chosen isomorphism [OI]≅ → OI and the embedding
OI ↪ O.

Definition 3.17 (Immediate causes CG). The immediate causes CG (CGIC) is the smallest CG
generated by the following rule

O ⊳ c K⊢a
ÔÔ⇒ O′ ⊳ c′

O � c ∣
K⊢a
ÔÔÔ⇒
jO′⊳c′o

JO′ ⊳ c′K

This rule relies on the fact that minimal P-markings are also ordinary ones, so it takes the
transition in CGAC from a minimal P-marking, replaces the continuation O′ ⊳ c′ with its minimal
version JO′ ⊳ c′K and, in order to keep track of the original identity of events, equips the transition
with a history map jO′ ⊳ c′o, mapping canonical events to the original ones. In particular, the one
with image new(O′,K, a) is the fresh event generated by the original transition.

The CGIC has a finite state-space in many cases. We give a sufficient condition on the net from
which the CGIC is generated.

Proposition 3.18. Given a net N with initial marking m0, if [m0⟩ is finite then the corresponding
CGIC, reachable from ∅�∅ ⊢m0, has a finite state-space.
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Example 3.19. In order to derive a CGIC for the running example, we take the P-markings of
Figure 1 and we compute their minimal versions. For instance, we have

{eb ≼ e′b} ⊳ {{eb, e′b} ⊢ s1,{eb, e′b} ⊢ s2}

immediate causes

��

{e′b} ⊳ {{e′b} ⊢ s1,{e′b} ⊢ s2}

canonical representative

��

{eb}� {{eb} ⊢ s1,{eb} ⊢ s2}

because we assumed that {eb} is an abstract poset. Notice that the resulting P-marking is already
in Figure 1. This is a crucial fact: minimization identifies many states and in some cases it even
produces a finite state-space, as stated in Proposition 3.18. This is indeed the case for the running
example.

Figure 3 shows the part of the running example’s CGIC that is reachable from {eb}� {{eb} ⊢
s1,{eb} ⊢ s2}. Most history maps are irrelevant, so they are omitted. Notice that in the CGAC,
from this P-marking, there are infinitely many transitions with action b. These all become a single
loop over the same P-marking in the CGIC; the associated history map h1 tells that eb, after the
transition, represents the most recent event, and that the previous event is discarded. Analogously
for the two loops over {ea, e′a}� {{ea} ⊢ s1{e′a} ⊢ s2}. The interesting fact to notice is that our
definition of h2 and h3 is not the only possible one. For instance, we could exchange the images of
ea and e′a in the definition of h2. This is due to the fact that {ea, e′a} has an automorphism that
swaps ea and e′a.

Remark 3.20. The generation of the CGIC from a net has been performed in two steps for the sake of
clarity, but we can easily imagine an algorithm that performs it in a single step and incrementally.
Given any P-marking, this is turned into a minimal one by taking immediate causes and then
its canonical representative. Then outgoing transitions are computed from this P-marking, and
the algorithm is applied to their continuations. Notice that minimizing a P-marking may yield a
previously computed one: in this case the algorithm is not reapplied on that P-marking.

The notion of bisimilarity for CGIC is more involved: while, given two P-markings, we may find
a common poset for them (if any), which enables them to be compared w.r.t. ∼AC, this is not always
possible for posets of minimal P-markings. In other words, events in ordinary P-markings have
a global identity, while those in minimal P-markings have a local identity. Therefore, we need to
introduce an explicit correspondence between them. This correspondence can be a partial function,
because some events may not be observable.

Definition 3.21 (Immediate causes bisimilarity). An immediate causes bisimulation R (IC-
bisimulation in short) is a ternary relation such that, whenever (O1 � c1, σ,O2 � c2) ∈ R:

• σ is a partial isomorphism (i.e., an isomorphism between subposets) from O1 to O2;

• if O1 � c1 ∣
K⊢a
ÔÔ⇒
h1

O′1 � c′1 then σ is defined on K, and there are O2 � c2 ∣
σ(K)⊢a
ÔÔÔ⇒

h2

O′2 � c′2 and σ′

14



{eb ≼ e′a}� {{eb, e′a} ⊢ s1,{eb} ⊢ s2}
✔✔

{eb}⊢a

%-❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

❚

❚❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚

✺✺

{eb}⊢b

ow

♦♦

{e′a}⊢a

��

{eb}� {{eb} ⊢ s1,{eb} ⊢ s2}
❁❁

{eb}⊢a

08

♦♦

{eb}⊢b

h1 ��

✂✂

{eb}⊢a

&.

{ea, e′a}� {{ea} ⊢ s1,{e′a} ⊢ s2}✤✤{ea,e
′

a}⊢bks
♦♦

{ea}⊢a

h2 ��

❖❖

{e′a}⊢a

h3

S[

{eb ≼ e′a}� {{eb} ⊢ s1,{eb, e′a} ⊢ s2}❖❖

{e′a}⊢a

S[

✯✯

{eb}⊢a

19❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥✠✠

{e′a}⊢b

go

h1∶{eb}→ {eb ≼ e′b} h2∶{ea, e′a}→ {ea ≼ e
′′
a , e

′
a} h3∶{ea, e′a}→ {ea, e

′
a ≼ e

′′
a}

eb ↦ e′b ea ↦ e′′a ea ↦ ea

e′a ↦ e′a e′a ↦ e′′a

Figure 3: CGIC for the running example.

such that (O′1 � c′1, σ
′,O′2 � c′2) ∈ R and the following diagram commutes

O′1
h1 //

σ′

��

δ(O1,K, a)

σ+

��

O′2 h2

// δ(O2, σ(K), a)

• if O2 � c2 ∣
K⊢a
ÔÔ⇒
h2

O′2 � c′2 then σ is defined on K, and there are O1 � c1 ∣
σ(K)−1⊢a
ÔÔÔÔ⇒

h1

O′1 � c′1 and σ′

as in the previous item.

The greatest such bisimulation is denoted ∼IC. We write O1 � c1 ∼σIC O2 � c2 to mean

(O1 � c1, σ,O2 � c2) ∈∼IC .

The commuting diagram essentially says that σ′ should never map old events to new ones (or
viceversa). More precisely, given x ∈ ∣O′1∣, we have two cases:

• h1(x) = new(O1,K, a), then, by definition, h1(x) is mapped by σ+ to new(O2, σ(K), a), so
σ′(x) = y such that h2(y) = new(O2, σ(K), a);

• h1(x) = old(O1,K, a)(x′), for some x′, then h1(x) is mapped by σ+ to old(O2, σ(K), a)(σ(x′)),
so σ′(x) = y such that h2(y) = old(O2, σ(K), a)(σ(x′)).

15



We have the following correspondence between ∼IC and ∼AC.

Theorem 3.22. ∼IC is fully abstract w.r.t. ∼AC in the following sense:

(i) If O ⊳ c1 ∼AC O ⊳ c2 then JO ⊳ c1K ∼IC JO ⊳ c2K;

(ii) If O1 � c1 ∼σIC O2 � c2 then for all O ⊳ ĉ1 and O ⊳ ĉ2 such that:

(a) JO ⊳ ĉ1K = O1 � c1 and JO ⊳ ĉ2K = O2 � c2;

(b) jO ⊳ ĉ1o∣dom(σ) = jO ⊳ ĉ2o ○ σ;
we have O ⊳ ĉ1 ∼AC O ⊳ ĉ2.

Statement (i) is self-explanatory. Statement (ii) says that if we have two equivalent minimal
P-markings O1 � c1 ∼σIC O2 � c2 and we take any two P-markings O ⊳ ĉ1 and O ⊳ ĉ2 whose minimal
versions are O1�c1 and O2�c2 respectively ((ii)(a)), these are equivalent provided that local events
matched by σ have the same global interpretation as events of O ((ii)(b)).

3.4. Immediate causes CG with symmetries

The final step is to introduce symmetries over states of CG. Given an abstract poset O, a
symmetry over O is a set Φ of automorphisms O → O (called just permutations hereafter) such that
id ∈ Φ and it is closed under composition. This section is an adaptation of the work in [21, 19] on
the set-theoretic version of HD-automata for the π-calculus.

We now motivate the introduction of symmetries. We say that two CGICs are isomorphic when
there is a bijective correspondence ω between their P-markings and, for each P-marking O � c of
the former such that ω(O�c) = O′�c′, transitions from O′�c′ can be obtained from those of O�c

via an isomorphism. In the case of ordinary labeled transition systems (LTSs), one can compute
minimal versions w.r.t. bisimilarity, where all bisimilar states have been identified. Bisimilar LTSs
have isomorphic minimal versions, so we may use any of them as canonical representative of the
class of bisimilar LTSs. This cannot be done for CGICs, because of the following fact.

Proposition 3.23. There are minimal CGICs that are ∼IC-bisimilar but not isomorphic.

Example 3.24. Consider the P-marking {ea, e′a}� {{ea} ⊢ s1,{e′a} ⊢ s2} of Example 3.19 and its
looping transitions. Take another P-marking {ea, e′a} � {{ea} ⊢ s′1,{e′a} ⊢ s′2} with the following
transitions

{ea, e′a}� {{ea} ⊢ s′1,{e′a} ⊢ s′2}
♦♦

{ea}⊢a

h4 ��

❖❖

{e′a}⊢a

h5

S[

h4∶{ea, e′a} ↦ {ea ≼ e′′a , e′a} h5∶{ea, e′a} ↦ {ea, e′a ≼ e′′a}
ea ↦ e′′a ea ↦ e′′a
e′a ↦ e′a e′a ↦ ea

Notice that we have h4 = h2 and h5 = h3 ○ φ, where φ switches ea and e′a.
Suppose we want to find a minimal realization of these CGs. They are not isomorphic, in the

sense that there is no permutation on {ea, e′a} that, applied to labels and composed with history
maps, turns transitions of the former CG into those of the latter. However, we have

{ea, e′a}� {{ea} ⊢ s1,{e′a} ⊢ s2} ∼φIC {ea, e
′
a}� {{ea} ⊢ s′1,{e

′
a} ⊢ s′2} ,
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so these states should be identified in some way. This way is provided by symmetries: minimal
behavior, according to ∼ICS, is invariant under φ, so we can identify those P-markings, provided
that the resulting state is annotated with φ and possibly other permutations that fix the state.

The same argument applies when considering versions of the same CGIC that only differ for the
choice of history maps: if s′1 = s1 and s′2 = s2 in the P-marking {ea, e′a}�{{ea} ⊢ s′1,{e′a} ⊢ s′2} above,
then the P-marking {ea, e′a}� {{ea} ⊢ s′1,{e′a} ⊢ s′2} is bisimilar to itself under the permutation
φ. This has a practical consequence: when constructing the CGIC for a given net, one should not
spend computational effort in computing the “right” history maps, because the choice of history
maps does not affect bisimilarity and thus minimal models.

Definition 3.25 (Minimal P-marking with symmetry). A minimal P-marking with symmetry is a
triple O �Φ c, where O � c is a minimal P-marking and Φ is a symmetry over O such that cφ = c,
for all φ ∈ Φ.

Symmetries allow us to remove some transitions from CGIC: we can only take one representative
transition among all the symmetric ones, i.e., those whose observable causes and history maps only
differ for some permutations in the symmetries of source and target states.

Definition 3.26 (Symmetric transitions). Given O �Φ c, O′ �Φ′ c
′ and two transitions

O � c ∣
K1⊢a
ÔÔ⇒

h1

O′ � c′ O � c ∣
K2⊢a
ÔÔ⇒

h2

O′ � c′

they are symmetric if and only if there are φ ∈ Φ and φ′ ∈ Φ′ such that K2 = φ(K1) and the following
diagram commutes

O′
h1 //

φ′

��

δ(O,K1, a)

φ+

��

O′
h2

// δ(O,K2, a)

We write HKI and HhI for a canonical choice of K and h among those of all the symmetric transitions.
Actually H−I depends on the considered symmetries Φ and Φ′, but they are omitted to simplify
notation: they will always be clear from the context.

Definition 3.27 (CGICS). The CGIC with symmetries (CGICS) is the smallest CG generated by
the following rule

O � c ∣
K⊢a
ÔÔ⇒

h
O′ � c′

O �Φ c ∥
HKI⊢a
ÔÔ⇒

HhI
O′ �Φ′ c′

The notion of bisimulation is analogous to IC-bisimulation. However, P-markings are required
to simulate each other only up to symmetries. More specifically, when comparing O1 �Φ1

c1 and
O2 �Φ2

c2 under a mediating map σ, for each permutation in Φ1 and each transition of the first
P-marking, we have to find a permutation in Φ2 and a transition of the second P-marking. The
correspondence between observable causes and between history maps must be as in IC-bisimulations,
but the action of mediating maps is changed according to the considered permutations.
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Definition 3.28 (Immediate causes bisimulation with symmetries). An immediate causes bisim-
ulation with symmetries R (ICS-bisimulation in short) is a ternary relation such that, whenever
(O1 �Φ1

c1, σ,O2 �Φ2
c2) ∈ R:

• σ is a partial isomorphism from O1 to O2;

• for each φ1 ∈ Φ1 and O1 �Φ1
c1 ∥

K1⊢a
ÔÔ⇒

h1

O′1 �Φ′
1
c1
′, σ is defined on φ1(K) and there are φ2 ∈ Φ2

and O2 �Φ2
c2 ∥

K2⊢a
ÔÔ⇒

h2

O′2 �Φ′
2
c2
′ such that:

– K2 = γ(K1), for γ = φ−12 ○ σ ○ φ1;

– there is σ′ such that (O′1 �Φ′
1
c′1, σ

′,O′2 �Φ′
2
c′2) ∈ R and the following diagram commutes

O′1
h1 //

σ′

��

δ(O1,K1, a)

γ+

��

O′2 h2

// δ(O2,K2, a)

(and viceversa)

The greatest such relation is denoted ∼ICS and we write O1 �Φ1
c1 ∼σICS O2 �Φ2

c2 whenever (O1 �Φ1

c1, σ,O2 �Φ2
c2) ∈∼ICS.

As mentioned, symmetries allow computing minimal realizations, where all bisimilar P-markings
are identified. More precisely, we can identify ∼ICS-equivalent P-markings, namely O1 �Φ1

c1 and
O2�Φ2

c2 that are related by ∼σICS, for some σ. Then σ becomes part of the state symmetry. Actually,
σ is a permutation between subposets of O1 and O2, but it can be shown that all ∼ICS-equivalent
P-markings have the same poset of observable events on which σ is defined. This means that σ is
indeed a permutation on that poset.

Definition 3.29 (Minimal CGICS). The minimal CGICS is defined as follows:

• states are canonical representatives of ∼ICS-equivalence, namely O�Φc such that Φ = {σ ∣ ∃Φ′ ∶
O �Φ′ c ∼σICS O �Φ′ c};

• transitions are derived according to Definition 3.27.

In order to compute the symmetry Φ of a canonical representative O�Φ c, we take P-markings
of the form O�Φ′ c and we consider triples where O�Φ′ c is bisimilar to itself. Notice that Φ may be
different than Φ′: some φ ∈ Φ, in fact, may not act as the identity of c; with a little abuse of notation,
O�Φ c stands for a P-marking where every φ ∈ Φ has identical action on c up to bisimilarity. It can
be proved that we do not need to consider non-canonical P-markings for the computation of Φ (see,
e.g., [19, 5.2]).

Example 3.30. Consider the CGIC of Example 3.19. It can be regarded as a CGICS where all
states have the singleton symmetry {id}. Its minimal version is depicted in Figure 4. Notice that
the P-marking {ea, e′a} �Φ3

{{ea} ⊢ s1,{e′a} ⊢ s2} has a non-trivial symmetry, because we have

{ea, e′a}�{id} {{ea} ⊢ s1,{e′a} ⊢ s2} ∼
(ea e′a)
ICS {ea, e′a}�{id} {{ea} ⊢ s1,{e′a} ⊢ s2}.
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{eb}�Φ1
{{eb} ⊢ s1,{eb} ⊢ s2}

♦♦♦♦

{eb}⊢b

��

✗ ✗✗ ✗
{eb}⊢a

!)

{ea, e′a}�Φ3
{{ea} ⊢ s1,{e′a} ⊢ s2}✤✤ ✤✤{ea,e

′

a}⊢bks ♦♦♦♦

{ea}⊢a

��

PPPP

{e′a}⊢a

S[

{eb ≼ e′a}�Φ2
{{eb, e′a} ⊢ s1,{eb} ⊢ s2}

✗✗ ✗✗
{e′a}⊢b

ai

PPPP

{e′a}⊢a

S[

✮✮✮✮

{eb}⊢a

08✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

Φ1 = Φ2 = {id} Φ3 = {(ea e′a), id}

Figure 4: Minimal CGICS for the running example.

4. Causal case graphs and behavior structures

In the pioneering work [27] of Trakhtenbrot and Rabinovich, behavior structures have been
introduced as causal models for Petri nets. In this section we compare them with our causal models.
We recall a slightly simplified definition.

Definition 4.1 (Behavior structure). Let Act be a set of action labels. A behavior structure (BS
in short) is a triple B = (M,P,φ), where:

• M is an automaton such that:

– transitions have the form n
a
Ð→B m, with a ∈ Act;

– all states are reachable from the initial one r;

– there are no oriented cycles, i.e., sequences of transitions where the first and last state
coincide;

– there are no parallel edges, i.e., n
a
Ð→B m and n

b
Ð→B m implies a = b.

• P is a family Pn of Act-labeled posets of events, one for each state n of M (for the root state
r we must have Pr = ∅);

• φ is a family of labeled posets morphisms: for each pair of states n and m such that n
a
Ð→B m

– φn,m is an isomorphic embedding of Pn as a prefix of Pm;

– ∣Pm∣ ∖ ∣φn,m(Pn)∣ = {ea}, for some event e;

In a BS, each state n has a poset Pn over labeled events, describing causal dependencies among

occurrences of actions that led to n. For each transition n
a
Ð→B m we have a map φn,m telling the

correspondence between Pn and Pm: Pn is required to be isomorphic to a prefix of Pm because it
should specify causal dependencies for all the previous actions. The only additional event in Pm

represents an occurrence of the most recent action a.
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The associated notion of behavioral equivalence is called BS-bisimilarity. In [27], this equivalence
compares two different behavior structures. Here states belong to the same behavior structure.

Definition 4.2 (BS-bisimulation). Given a behavior structure B, a BS-bisimulation on B is a
relation R on triples such that, whenever (n1, σ, n2) ∈ R:

• σ is an isomorphism between Pn1
and Pn2

;

• if n1

a
Ð→B m1 then there exist m2, σ

′ such that n2

a
Ð→B m2 with (m1, σ

′,m2) ∈ R and the

following diagram commutes

Pn1

σ //

φn1,m1

��

Pn2

φn2,m2

��

Pm1
σ′

// Pm2

(and viceversa)

The greatest such relation, denoted ∼bs, is called BS-bisimilarity.

Notice that states are related by BS-bisimulations up to an isomorphism of their posets. This
is because the actual identity of events should not matter when comparing states. Only the causal
dependencies between occurrences of actions are relevant. BS-bisimilarity has been called history
preserving bisimilarity [14] in later work.

4.1. Relationship with causal case graphs

When used to represent the behavior of Petri nets, states of behavior structures are states of
deterministic, non-sequential processes equipped with information about the past history of events.
They can equivalently be seen as tokens equipped with causal information (see, e.g., [18]). Therefore,
we will consider behavior structures over causal markings. This will enable a more direct comparison
with our causal case graphs.

We characterize a sub-LTS of CGC that is equivalent to a BS.

Definition 4.3 (Reachable CGC). The reachable CGC (CGr
C) is defined as follows:

• it has an initial P-marking ∅ ⊳ ∅ ⊢m0, where m0 is an initial marking for N ;

• transitions are only those reachable from ∅ ⊳ ∅ ⊢m0.

CGr
C enjoys some properties that allow us to define a BS on top of it.

Lemma 4.4.

(i) Each state Oc ⊳ c of CGr
C has a unique possible poset, i.e., for any other state O ⊳ c we have

O = Oc; moreover, we have ∣Oc∣ =K (c).

(ii) CGr
C does not have parallel transitions and directed cycles.

Proposition 4.5. The triple BC = (M C, φC, P C) is a behavior structure, where
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• M C is the smallest automaton generated from CGr
C via the following rule

Oc ⊳ c K⊢ea
ÐÐÐ→ Oc′ ⊳ c′
c

a
Ð→BC c

′

• P C = {Oc ∣ Oc ⊳ c is a state of CGr
C};

• φC = {φC
c,c′ ∶ Oc ↪ Oc′ ∣ Oc ⊳ c K⊢ea

ÐÐÐ→ Oc′ ⊳ c′}.
We have the following relation between ∼C and BS bisimilarity.

Theorem 4.6. Let c1, c2 be states of BC. Then

(i) If O ⊳ c1 ∼C O ⊳ c2 and there is an isomorphism σ∶Oc1 → Oc2 then c1 ∼σbs c2;

(ii) c1 ∼σbs c2 implies Oc2 ⊳ c1σ ∼C Oc2 ⊳ c2.

Statement (i) says that two states c1 and c2 in BC with isomorphic posets are ∼bs-bisimilar
whenever any two P-markings over c1 and c2 are ∼C-bisimilar. Statement (ii) is somewhat dual: if c1
and c2 are ∼bs-bisimilar under an isomorphism σ, then we can use σ to turn them into ∼C-bisimilar
P-markings.

Remark 4.7. The behavior structure we have introduced has some common aspects with CGIC: for
both, posets in states have local meanings; in fact, bisimilarities require explicit mappings between
posets of simulating states. However, CGIC can discard event names along transitions and go back
to an already visited state, whereas this is explicitly forbidden for BSs.

5. Background on category theory

We assume that the reader is familiar with elementary category theory. In this section we recall
some notions that will be needed in the following.

5.1. Functor categories
Definition 5.1 (Functor category). Let C and D be two categories. The functor category DC has
functors C →D as objects and natural transformations between them as morphisms.

Functors from any category C to Set are called (covariant) presheaves. Hereafter we assume
that the domain category C for presheaves is small, i.e., its collection of objects is actually a set. A
presheaf P can be intuitively seen as a family of sets indexed over the objects of C plus, for each
σ∶ c → c′ in C, an action of σ on Pc, which we write

p[σ]P = Pσ(p) (p ∈ Pc) ,

omitting the subscript P in [σ]P when clear from the context. This notation intentionally resembles
the application of a renaming σ to a process p, namely pσ: it will, in fact, have this meaning in
later sections. The set ∫ P of elements of a presheaf P is

∫ P ∶= ∑
c∈∣C∣

Pc

where the sum symbol denotes the coproduct in Set, and we denote by c ⊳ p a pair belonging to

∫ P . Presheaf categories have the following nice property.

Property 5.2. For any C, SetC has all limits and colimits, both computed pointwise.
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5.2. Coalgebras

The behavior of systems can be modeled in a categorical setting through coalgebras [22, 1].
Given a behavioral endofunctor B∶C → C, describing the “shape” of a class of systems, we have a
corresponding category of coalgebras.

Definition 5.3 (B-Coalg). The category B-Coalg is defined as follows: objects are B-coalgebras,
i.e., pairs (X,h) of an object X ∈ ∣C∣, called carrier, and a morphism h∶X → BX , called structure
map; B-coalgebra homomorphisms f ∶ (X,h) → (Y, g) are morphisms f ∶X → Y in C making the
following diagram commute

X
h //

f

��

BX

Bf

��

Y
g

// BY

For instance, given a set of labels L, consider the functor

Bflts ∶= Pf(L × −)

where Pf ∶Set → Set is the finite powerset functor, defined on a set A and on a function h∶A → A′

as follows
PfA ∶= {B ⊆ A ∣ B finite} Pfh(B) ∶= {h(b) ∣ b ∈ B}

Bflts-coalgebras (X,h) are finitely-branching labeled transition systems, with labels L and states X .

The function h(x) returns the set of labeled transitions x
a
Ð→ y such that (a, y) ∈ h(x). Homomor-

phisms of Bflts-coalgebras are functions between states that preserve and reflect transitions.
Many notions of behavioral equivalence can be defined for coalgebras (see [25]). We adopt the

one by Hermida and Jacobs and we simply call it B-bisimulation. To introduce it, we need some
preliminary notions. A (binary) relation on X ∈ ∣C∣ is a jointly-monic span X ← R → X in C. An
image of a morphism f ∶A → C is a monomorphism m∶B ↣ C through which f factors, such that
if f factors through any other mono B′ ↣ C, then B is a subobject of B′. The factoring morphism
A → B is called cover. In Set all these notions become the usual ones: a relation R is a binary
relation on X and the span is made of left/right projections; the image of f is f(A) ↪ C, and its
cover is f with restricted codomain f(A). Given a relation R on X , the relation lifting BR is the
image of the morphism BR → B(X ×X)→ BX ×BX , taking R to a relation on BX .

Definition 5.4 (B-bisimulation). Given a B-coalgebra (X,h), a B-bisimulation on it is a relation
R on X such that there is r making the following diagram commute

X

h

��

Roo //

r
��

X

h

��

BX BRoo // BX

The greatest such relation is called B-bisimilarity.

A Bflts-bisimulation R on a Bflts-coalgebra is an ordinary bisimulation on the corresponding
transition system. In fact, BR is the set of pairs (X1,X2) ∈ BX ×BX such that (l, x′) ∈ X1 only if
there is some (l, (x′, y′)) ∈ BR, but then we also have (l, y′) ∈ X2 and (x′, y′) ∈ R (the symmetric
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statement holds if (l, x′) ∈ X2). Clearly r exists if and only if R is a bisimulation, and is given by
(x, y) ∈ R ↦ (h(x), h(y)).

An important property of categories of coalgebras is the existence of the terminal object; the
unique morphism from each coalgebra to it assigns to each state its abstract semantics. The ideal
situation is when the induced equivalence, relating all the states with the same abstract semantics,
agrees with B-bisimilarity. A sufficient condition for this property is when B covers pullbacks.

Property 5.5 (B covers pullbacks). Consider a cospan X1 →X3 ←X2, and the morphism m from
the image of the pullback (the left square below) to the pullback of the image

X1

!!❉
❉❉❉

P ⑧
❄

>>⑥⑥⑥⑥

  ❆
❆❆

❆ X3

X2

==③③③③

BX1

$$■
■■

■

BP
m //

Bπ1 ..

Bπ2

00

P ′ ⑧
❄

<<①①①①

""❋
❋❋❋

❋ BX3

BX2

::✉✉✉✉

Then B covers pullbacks if m is always a cover.

For the best-known Aczel-Mendler bisimulations, defined as spans of coalgebras, the condition on
B that guarantees the agreement of behavioral equivalences is more demanding: B should preserve
weak pullbacks. The finite powerset functor on Set preserves weak pullbacks, but other finite
powerset functors do not, for instance the one on presheaves that we will use, which instead covers
pullbacks. This motivates our preference of Hermida-Jacobs bisimulations over Aczel-Mendler ones
(another important reason for this will be explained in section 6).

A sufficient condition for the existence of the final coalgebra is that B is an accessible functor
on a locally finitely presentable category (see [3, 29, 1] for details). A category C is filtered if each
finite diagram is the base of a cocone in C; filtered categories generalize the notion of directed
preorders, that are sets such that every finite subset has an upper bound. For any category D, a
filtered colimit in D is the colimit of a diagram of shape C, i.e., a functor C →D, such that C is a
filtered category.

Definition 5.6 (Locally finitely presentable category). An object c of a category C is finitely
presentable if the functor HomC(c,−)∶C → Set preserves filtered colimits. A category C is locally
finitely presentable if it has all colimits and there is a set of finitely presentable objects X ⊆ ∣C∣
such that every object is a filtered colimit of objects from X .

For instance, locally finitely presentable objects in Set are precisely finite sets. Set is locally
finitely presentable: every set is the filtered colimit, namely the union, of its finite subsets and the
whole Set is generated by the set containing one finite set of cardinality n for all n ∈ N.

For functor categories we have the following.

Proposition 5.7. For each locally finitely presentable category C and small category D, the functor
category CD is locally finitely presentable.

In particular, since Set is locally finitely presentable, we have that the presheaf category SetD

is locally finitely presentable as well.

Definition 5.8 (Accessible functor). Let C and D be locally finitely presentable categories. A
functor F ∶C→D is accessible if it preserves filtered colimits.
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Here are some useful properties of accessible functors: their products, coproducts and composi-
tion is accessible as well; adjoint functors between locally finitely presentable categories are accessi-
ble. Moreover, it is a well-known fact that the finite powerset functor Pf introduced in section 5.2
is accessible.

5.3. Coalgebras over presheaves

Coalgebras for functors B∶SetC → SetC are pairs (P,ρ) of a presheaf P ∶C → Set and a natural
transformation ρ∶P → BP . The naturality of ρ imposes a constraint on behavior

c

f

��

p ∈ Pc❴

[f]P

��

✤ ρc // beh(p)
❴

[f]BP

��

c′ p[f]P ∈ P (c′) ✤ ρc′

// beh(p)[σ]BP

Intuitively, this diagram means that, if we take a state, apply a function to it and then compute
its behavior, we should get the same thing as first computing the behavior and then applying the
function to it. In other words, behavior must be preserved and reflected by the index category
morphisms.

B-bisimulations have a similar structure. A B-bisimulation R is a presheaf in SetC and all the
legs of the bisimulation diagram in Definition 5.4 are natural transformations. In particular, the
naturality of projections implies that, given (p, q) ∈ Rc and f ∶ c → c′ in C, (p[f], q[f]) ∈ R(c′), i.e.,
B-bisimulations are closed under the index category morphisms.

6. Coalgebraic semantics

In this section we construct a coalgebraic causal semantics for Petri Nets. We first show that the
notions of section 3.2 have a categorical interpretation. Then we translate CGAC into a coalgebra.

We introduce two categories of Act-labeled posets. Recall that, given a category C, a skeletal
category is a full subcategory of C such that each object is isomorphic to one of C and two distinct
objects cannot be isomorphic.

Definition 6.1 (Category O and O). Let O be the skeletal category of the category of Act-labeled
posets and their morphisms. The category O is the subcategory of O whose morphisms are order-
embeddings.

Taking a skeletal category amounts to choosing one canonical representative of each isomorphism
class of posets, i.e., using the terminology of section 3.2, the objects of O and O are abstract posets.
The difference between O and O is similar to that between F, the category of finite ordinals and all
functions, and its subcategory I, including only injective functions (indeed O only includes injective
morphisms). Presheaves over these categories are used in [13] to give a coalgebraic semantics for
the π-calculus.

Remark 6.2. In [7] we have introduced the category P of finite posets up to isomorphisms and
its subcategory Pm with only order-embeddings. The category O can be understood as a comma
category U ↓ Act, where U ∶P → Set takes a poset to its underlying set and Act is the constant
functor mapping every set to Act. Similarly for O, whenever U ∶Pm → Set.
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Proposition 6.3. The category O is small and has pullbacks.

The category O lacks colimits, but the ones we are interested in can be computed in O. We will
be more precise when presenting such colimits.

We introduce some notation for particular objects and morphisms of O. We denote by [k]l the
discrete poset with k elements and labeling function l; if k = 1 then we simply write [1]a to assign
label a to the only event. We write [k]al for the poset [k]l plus a top element with label a. Two
maps will be useful:

[k]l
b([k]al )// [k]al [1]a

⊺([k]al )oo

the left map picks the bottom elements in [k]al , and the right one picks the top element.
In O we can use a pushout to compute δ(O,K,a), the associated maps old(O,K,a) and

new(O,K,a), and the extension σ+ of a morphism σ∶O → O′, all defined in section 3.2. Given
O ∈ ∣O∣, let K ∶ [k]l ↪ O be the subobject in O picking K within O. Then we have

[k]l
K //

b([k]al )

��

O

old(O,K,a)

��

σ // O′

old(O′,σ(K),a)

��

[k]al

id

��

Ka
// δ(O,K,a)

❴✤

σ
+

''❖
❖❖❖❖❖

[k]al (σ(K))a
// δ(O,σ(K), a)

❴✤

new(O,K,a) =Ka
○ ⊺([k]al ) (1)

Explicitly, δ(O,K,a) is constructed as follows: the disjoint union of O and [k]al is made, and then
the bottom elements of [k]al and the causes K are identified, resulting in O plus a fresh a-labeled
top event for K; the transitive closure of this relation gives δ(O,K,a). Notice that, since K reflects
order, causes of the fresh event must be incomparable, i.e., they are maximal events in O. This agrees
with the definition of K in Definition 3.3. The map σ+∶ δ(O,K,a) → δ(O′, σ(K), a) is induced by
the universal property of pushouts: we compute δ(O′, σ(K), a) via the pushout of

[k]l [k]al
b([k]al )oo σ○K //O′

that is the outer pushout in (1), and then we define σ+ as the mediating morphism between the
inner and the outer pushout. It can be easily verified that σ+ indeed acts as described in section 3.2.
All these constructions has been given in O but we have the following property.

Lemma 6.4. The diagram (1) also exists in O.

Now we want to turn the computation of δ(O,K,a) into a functorial operation on O. This
operation can only have O as parameter. The dependency from a and K is removed by adding a
new event for each set of independent causes and each action. Formally, consider all K1∶ [k1]l1 ↪
O, . . . ,Km∶ [km]lm ↪ O. Suppose Act = {a1, . . . , an}. Then we can compute δ(O) via the colimit
shown in Figure 5. It is the colimit of m cospans with vertex [ki]li . Each cospan is similar to the
cospan in (1), but its legs include all morphisms Ka

i ∶ [ki]ali → δ(O), for all a ∈ Act, instead of a
single morphism for a given a. This means that, for each set of causes Ki, in δ(O) we have fresh
events labeled by all possible actions.
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��
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rr
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K
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1

ooO
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m
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Figure 5: Colimit computing δ(O).

Notice that δ(O) and old(O) do not depend on K and a. We can recover new maps as follows

new(O,Ki, a) =Ka
i ○ ⊺([k]

a
li
)∶ [1]a → δ(O)

Given a morphism σ∶O → O′, we denote δ(σ)∶δ(O) → δ(O′) the corresponding morphism induced
by the universal property of the above colimit. Since the colimit in Figure 5 is formed by many
diagrams like the inner pushout in (1), by the universal property of pushouts there are unique maps

ǫ(O,Ki, a)∶ δ(O,Ki, a) → δ(O) .

Then we can relate δ(O) and each old(O,Ki, a)

old(O) = ǫ(O,Ki, a) ○ old(O,Ki, a)∶O → δ(O)

and see how each σ+ “embeds” into δ(σ), namely

δ(O,Ki, a)

σ+

��

ǫ(O,Ki,a)
// δ(O)

δ(σ)

��

δ(O′, σ(Ki), a)
ǫ(O′,σ(Ki),a)

// δ(O′)

The intuition is that δ(σ) acts as σ on old events (as all σ+ do) and as the specific σ+ on new ones.
Since each σ+ is an order-embedding (Lemma 6.4), also δ(σ) is, so δ(σ) is a morphism of O. This
means that δ defines a proper allocation endofunctor on O.

Example 6.5. Suppose Act = {c, d} and let O be the discrete abstract poset {ea, e′b}. Then δ(O)
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contains new(O,∅, c), new(O,∅, d), and the following pairs (we omit reflexive ones):

ea ≼ new(O,{ea}, c) ea ≼ new(O,{ea}, d)
ea ≼ new(O,{ea, e′b}, c) ea ≼ new(O,{ea, e′b}, d)

e′b ≼ new(O,{e′b}, c) e′b ≼ new(O,{e′b}, d)
e′b ≼ new(O,{ea, e′b}, c) e′b ≼ new(O,{ea, e′b}, d)

Remark 6.6. Our definition of δ may not seem the best one, as it generates a new event for
each possible set of causes and each label, whereas a transition only generates one of these events.
However, having a functor on O allows us to lift it to presheaves in a way that ensures the existence
of both left and right adjoint (giving Kan extensions along δ) for the lifted functor, and then
preservation of both limits and colimits, which is essential for coalgebras employing such functor.
Generation of unused events is not really an issue: as we will see later, it is always possible to recover
the support of a P-marking, i.e., the poset formed by events actually appearing in it.

Now we look at the category SetO of presheaves on labeled posets. Since O is small it follows
that SetO is locally finitely presentable and has all limits and colimits, in particular products and
coproducts. The following functors are relevant for us.

Presheaf of event names. E ∶O → Set maps O to the set ∣O∣. Formally

E = ∑
a∈Act

HomO([1]a,−)

where ea ∈ ∣O∣ is represented as a morphism [1]a → O. The action of E on a morphism σ∶O → O′

gives the function λea ∈ E(O).σ ○ ea, which renames the event ea according to σ.

Finite powerset. Pf ∶Set
O → SetO, defined as Pf ○ (−), where Pf is the finite powerset on Set.

Event allocation operator. ∆∶SetO → SetO, given by (−) ○ δ. Explicitly, for P ∶O → Set and O ∈ ∣O∣,
∆P (O) = P (δ(O)). Intuitively, it generates causal markings with additional fresh events.

Presheaf of labels. L∶O → Set given by

L(O) = Act ×PfE(O)

For each O ∈ ∣O∣, this functor gives pairs (a,K) of an action a and a finite set of causes K, selected
among events in O.

We use these operators to define our behavioral endofunctor.

Definition 6.7 (Behavioral functor). The behavioral functor B∶SetO → SetO is

BP =Pf (L ×∆P ) .

To understand this definition, consider a B-coalgebra (P,ρ). Given O ∈ ∣O∣ and p ∈ P (O), ρO(p)
is a finite set of triples (a,K, p′), meaning that p′ is the continuation of p after observing K ⊢ a.
The continuation always belongs to ∆P (O), because every transition allocates a new event.

The categoryB-Coalg is well-behaved: it has a final B-coalgebra, and the behavioral equivalence
it induces coincides with B-bisimilarity. This is thanks to the following properties.
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Proposition 6.8. B is accessible and covers pullbacks.

B-coalgebras can be regarded as particular LTSs whose states are elements of presheaves, i.e.,
pairs O ⊳ p.
Definition 6.9 (O-ILTS). An O-indexed labeled transition system (O-ILTS) is a pair (P, �)
of a presheaf P ∶O→ Set and a finitely-branching transition relation �⊆ ∫ P × ∫ L× ∫ P of the
form:

O ⊳ p K⊢a
�δ(O) ⊳ p′ (a,K) ∈ L(O)

such that, for each morphism σ∶O → O′ in O:

(i) if O ⊳ p l
�δ(O) ⊳ p′ then O′ ⊳ p[σ] l[σ]

�δ(O′) ⊳ p′[δ(σ)] (transitions are preserved by
σ);

(ii) if O′ ⊳ p[σ] l
�δ(O′) ⊳ p′ then there are l′ and δ(O) ⊳ p′′ such that l′[σ] = l, p′′[δ(σ)] = p′

and O ⊳ p l′

�δ(O) ⊳ p′′ (transitions are reflected by σ);

Now, notice that labels and continuations of O-ILTSs agree with those generated by B, and (i)
and (ii) say that the transition relation behaves like a natural transformation. Therefore we have
the following correspondence.

Proposition 6.10. O-ILTSs are in bijection with B-coalgebras.

The natural notion of bisimulation for these transition systems is O-indexed bisimulation.

Definition 6.11 (O-indexed bisimulation). An O-indexed bisimulation on an O-ILTS (P, �)
is an indexed family of relations {RO ⊆ P (O) ×P (O)}O∈∣O∣ such that, for all (p, q) ∈ RO:

(i) if O ⊳ p K⊢a
�δ(O) ⊳ p′ then there is δ(O) ⊳ q′ such that O ⊳ q K⊢a

�δ(O) ⊳ q′ and (p′, q′) ∈
Rδ(O);

(ii) for all σ∶O → O′, (p, q) ∈ RO if and only if (p[σ]P , q[σ]P ) ∈ RO′ .

This definition closely resembles that of AC-bisimulations (Definition 3.11). We have an ad-
ditional condition (ii), requiring closure under morphisms of O. This is not satisfied by all AC-
bisimulations, but it holds for the greatest one (Theorem 3.15). We have the following correspon-
dence.

Proposition 6.12. Let (P,ρ) be a B-coalgebra. Then B-bisimulations on (P,ρ) are in bijection
with O-indexed bisimulations on the induced O-ILTS.

Notice that, unlike Aczel-Mendel bisimulations, a B-bisimulation (namely, a Hermida-Jacobs
one) needs not be the carrier of a B-coalgebra in order to be a bisimulation. This strong requirement
is the reason why some O-indexed bisimulations cannot be turned into Aczel-Mendler ones (see [24,
3.3, Anomaly]).

We now show that CGAC can be represented as an O-ILTS. We form a presheaf from P-markings
as follows.
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Definition 6.13 (Presheaf of P-markings). The presheaf of P-markings M ∶O → Set is given by

M (O) = {c ∣ O ⊳ c is an abstract P-marking} M (σ∶O → O′) = λ(O ⊳ c).O′ ⊳ (cσ)↓O′
The action of M on morphisms needs to apply the closure operator, after renaming the causal

marking: this guarantees that the result is a proper P-marking. The functor M has the following
useful property.

Lemma 6.14. M preserves pullbacks.

Intuitively, thanks to this property, if we take c ∈M (O) and all subposets O′ of O such that
M (O′) contains a “version” of c (typically with fewer events) then the set obtained by applying M

to the pullback of these subposets, i.e., to their minimal common subposet, still contains a version
of c. This will be essential, in the next section, to compute minimal representatives of P-markings.

We are ready to translate CGAC to an O-ILTS.

Definition 6.15 (Causal O-ILTSAC). The Causal O-ILTS (O-ILTSAC) (M , �) is the smallest
one generated by the rule

O ⊳ c K⊢a
ÔÔ⇒ δ(O,K,a) ⊳ c′

O ⊳ c K⊢a
�δ(O) ⊳ c′[ǫ(O,K,a)]

This translation does not affect bisimilarities: two states can do the same transitions in CGAC

if and only if they can do the same transitions also in O-ILTSAC; continuations only differ for an
order-embedding, but by Theorem 3.15 and Definition 6.11(ii), the O-indexed bisimilarity and ∼AC
are closed under order-embeddings.

We call causal coalgebra the B-coalgebra equivalent to (M , �). We have the following
theorem, which collects the results of this section, instantiated to the causal coalgebra.

Theorem 6.16. O-indexed bisimulations on (M , �) are equivalent to:

• B-bisimulations on the causal coalgebra;

• AC-bisimulations closed under order-embeddings.

In particular, we have that the greatest O-indexed bisimulation, B-bisimilarity on the causal
coalgebra and ∼AC are all equivalent, thanks to Theorem 3.15. These, by Proposition 6.8, are equiv-
alent to the kernel of the unique morphism from the causal coalgebra to the final one.

7. From coalgebras to HD-automata

In order to give a characterization of the causal coalgebra in terms of named sets, we employ
the results of [10]. Here authors define a symmetry group over a category C to be a collection of
morphisms in C[c, c], for any c ∈ ∣C∣, which is a group w.r.t. composition of morphisms. Then they
take families of such groups as their notion of generalized named sets. A first result establishes the
equivalence between these families and coproducts of symmetrized representables, that are functors
of the form

∑
i∈I

HomC(ci, )/Φi
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where Φi is a symmetry group over C with domain ci, and the quotient identifies morphisms that
are obtained one from the other by precomposing elements of Φi. These functors, in turn, are shown
to be isomorphic to wide-pullback-preserving presheaves on C, a wide pullback being the limit of
a diagram with an arbitrary number of morphisms pointing to the same object (pullbacks are a
special case, with two such morphisms). The described results are summarized in the following
theorem from [10].

Theorem 7.1. Let C be a category that is small, has wide pullbacks, and such that all its morphisms
are monic and those in C[c, c] are isomorphisms, for every c ∈ ∣C∣. Then every wide-pullback-
preserving P ∈∣SetC∣ is equivalent to a coproduct of symmetrized representables.

Our category O satisfies the hypothesis of this theorem: it is small and has wide pullbacks due
to the existence of pullbacks. In fact, the diagram of a wide pullback in O is formed by a finite
number of morphisms, because a finite poset always has a finite number of ingoing poset-reflecting
monomorphisms, so its limit can be computed via binary pullbacks. Moreover, O has only monos,
as order-embeddings are always monic, and O[O,O] clearly has only isomorphisms, for each O ∈ ∣O∣.
Finally, our presheaf of causal markings M preserves (wide) pullbacks (Lemma 6.14), so there exists
an equivalent coproduct of symmetrized representables.

Theorem 7.1 indeed describes an equivalence between pullback-preserving presheaves and fam-
ilies, which induces one on coalgebras. We shall now investigate this point. Let SetO◇ be the full
subcategory of SetO formed by pullback-preserving presheaves. We have that our behavioral endo-
functor B indeed defines an endofunctor on SetO◇ .

Proposition 7.2. All the endofunctors on SetO in Definition 6.7 can be restricted to endofunctors
on SetO◇ .

Let B◇∶Set
O

◇ → SetO◇ be the restricted behavioral endofunctor. The causal coalgebra is clearly a
B◇-coalgebra. Restricting to SetO◇ does not affect the final coalgebra: B-Coalg and B◇-Coalg have
the same final object and final morphisms from common objects. In fact, the terminal sequence
starts from the final presheaf 1, pointwise defined as the singleton set, which trivially preserves
pullbacks, and goes through Bn(1) = Bn

◇ (1), for any n.

Corollary 7.3 (of Theorem 7.1). Let B̃ be the behavioral endofunctor on families defined by lifting
all functors in Definition 6.7 along the equivalence. Then the category B◇-Coalg is equivalent to
B̃-Coalg.

In particular, the equivalence relates the final B◇-coalgebra and the final B̃-coalgebra, and their
final morphisms. Moreover, since kernels are preserved by equivalence, identifications made by the
final morphisms are preserved, hence behavioral equivalence is preserved too.

Now that we have proved that our categorical setting is suitable for HD-automata, we can
translate the causal coalgebra to a HD-automaton. We adopt the definition of HD-automaton given
in [11]: a HD-automaton is a(ny) coalgebra over a named set. We introduce a notion of named set
closer to a more traditional one, but indeed equivalent to the families mentioned above. Given a
set S of morphism and a morphism σ in O, we write S ○ σ for the set {τ ○ σ ∣ τ ∈ S} (analogously
for σ ○ S).

Definition 7.4 (Category Sym(O)). Let Sym(O) be the category defined as follows:

• objects Φ are subsets of O[O,O] that are groups w.r.t. composition in O;
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• morphisms Φ1 → Φ2 are sets of morphisms σ ○ Φ1 such that σ∶dom(Φ1) → dom(Φ2) and
Φ2 ○ σ ⊆ σ ○Φ1.

Definition 7.5 (Category O-Set). The category O-Set is defined as follows:

• objects are O-named sets, that are pairs N = (QN ,GN) of a set QN and a function GN ∶QN →
∣Sym(O)∣. The local poset of q ∈ QN , denoted ∥q∥, is dom(σ), for any σ ∈ GN(q).

• morphisms f ∶N →M are O-named functions, that are pairs (h,Σ) of a function h∶QN → QM

and a function Σ mapping each q ∈ QN to a morphism GM(h(q))→ GN(q) in Sym(O).

In the rest of this section we give an explicit description of the O-named set produced from
M by the equivalence. Its elements will be minimal P-markings with symmetries. We will show
that the translation from P-markings to minimal ones with symmetries is achieved via categorical
constructions. We need the notions of support, seed and orbit.

Definition 7.6 (Support and seed). Given O ⊳ c, its support, denoted supp(c), is the wide-pullback-
object of the following morphisms

{σ∶O′ → O ∣ ∃O′ ⊳ c′ ∶ c′[σ] = c}
Let Σc be the embedding supp(c)↪ O given by the pullback. Then the seed of c, denoted seed(c),
is the unique element of M (supp(c)) such that seed(c)[Σc] = c.

As shown in [10, 15], preservation of pullbacks by M is essential to ensure existence and unique-
ness of seeds. The seed operation achieves the first two properties of minimal P-markings (see
Definition 3.16): seed(c) just contains immediate causes for each token and supp(c) contains all
and only those causes. This is illustrated by the following example.

Example 7.7. Consider the following P-marking for the running example

{ea ≼ e′a, e′′a ≼ e′′′a } ⊳ {{ea, e′a} ⊢ s1,{e′′a , e
′′′
a } ⊢ s2}

which is reachable after firing t1 and t2 twice. The set of morphisms of Definition 7.6 has four
elements

f1, f2∶{ea ≼ e′a, e′′a}→ {ea ≼ e′a, e′′a ≼ e′′′a } f3, f4∶{ea, e′a}→ {ea ≼ e′a, e′′a ≼ e′′′a }

f1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ea z→ ea

e′a z→ e′a

e′′a z→ e′′′a

f2 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ea z→ e′′a

e′a z→ e′′′a

e′′a z→ e′a

f3 =
⎧⎪⎪⎨⎪⎪⎩

ea z→ e′a

e′a z→ e′′′a
f4 =
⎧⎪⎪⎨⎪⎪⎩

ea z→ e′′′a

e′a z→ e′a

In fact, we have

({ea ≼ e′a, e′′a} ⊳ {{ea, e′a} ⊢ s1,{e′′a} ⊢ s2}) [f1]

({ea ≼ e′a, e′′a} ⊳ {{e′′a} ⊢ s1,{ea, e′a} ⊢ s2}) [f2]

({ea, e′a} ⊳ {{ea} ⊢ s1,{e′a} ⊢ s2}) [f3]

({ea, e′a} ⊳ {{e′a} ⊢ s1,{ea} ⊢ s2}) [f4]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= {ea ≼ e′a, e′′a ≼ e′′′a } ⊳ {{ea, e′a} ⊢ s1,{e′′a , e
′′′
a } ⊢ s2}
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Recall that each [fi] = M (fi) is a function that, when applied to a P-marking, replaces events
according to fi and then down-closes the result w.r.t. {ea ≼ e′a, e′′a ≼ e′′′a }. It is easy to check that
the pullback object of all four morphisms is {ea, e′a}, so the corresponding seed is

{ea, e′a} ⊳ {{ea} ⊢ s1,{e′a} ⊢ s2}.

Notice that two events have been discarded, because they are not immediate causes.

Definition 7.8 (Orbit). The orbit of O ⊳ c is

orb(c) = {c[σ] ∣ σ ∈ O[O,O]}

We denote by [c]o a canonical choice of an element of orb(c).

The orbit of c is the set of causal markings obtained by applying to c all functions induced
by poset automorphisms. Automorphisms are isomorphisms, so taking a canonical representative
for this orbit achieves the third requirement of minimal P-markings: it amounts to applying the
operation [O ⊳ c]≅, i.e., choosing a representative of isomorphism classes for O ⊳ c.
Definition 7.9. The O-named set of minimal P-markings is (M,GM), where

M = {supp(c)� [seed(c)]o ∣ O ⊳ c ∈ ∫ M }

GM = λO � c.{Φ ∈ ∣Sym(O)∣ ∣ dom(Φ) = O ∧ ∀σ ∈ Φ ∶ c[σ] = c}
The set M is produced from elements of M : for each of these, we compute the seed, and then we

only take the canonical representative for the seed’s orbit. As explained, the final result is indeed a
minimal P-marking O�c. This P-marking is associated a symmetry by GM , namely Φ = GM(O�c),
so it becomes the P-marking with symmetry O �Φ c.

The derivation of an HD-automaton on (M,GM) in B̃-Coalg from the causal coalgebra, along
the equivalence, is the category-theoretic counterpart of the derivation of CGICS from CGAC. The
correspondence between CGICSs and coalgebras over named sets is analogous to the π-calculus case,
where we have set-theoretical HD-automata on one side [19] and categorical ones, namely coalgebras
over named sets, on the other side. The correspondence for the π-calculus has been worked out in
[9, 11], and the theory introduced therein seems robust enough to accommodate different notions
of named sets such as ours. In particular, functors used to define coalgebras over named sets, such
as powerset and allocation functors, should be very similar to those defining B̃.

We briefly illustrate the B̃-coalgebra for the running example. The O-named set (M,GM) is
as follows: M includes all P-markings in Figure 3, and GM returns the symmetry {id} for each of
them. Transitions are represented as a O-named function (h,Σ)∶ (M,GM) → B̃(M,GM), where h

maps each state O �{id} c to its label and continuation, and Σ(O �{id} c) encodes all history maps
for outgoing transitions.

We leave a deeper investigation of the category of O-named sets and of B̃-coalgebras for future
work.

8. Conclusions

In this paper we have introduced an approach to derive compact operational models for causality
in Petri nets. In order to do this, we have constructed a labeled semantics of Petri nets in terms
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of causal case graphs, and we have given a procedure to refine them in order to get minimal,
possibly finite-state, representations. We have then modeled causal case graphs in a categorical
setting, exploiting a nominal representation of causal relations: they are modeled as posets over
event names with action labels. Our categorical treatment is simpler and more natural than the
set-theoretic one, and employs standard constructs and results for nominal calculi, namely presheaf-
based coalgebras and their equivalence with HD-automata. In particular, reducing the state-space
and showing that this operation preserves the semantics require some technical effort in the set-
theoretic version, whereas the categorical version employs a general construction that automatically
performs this reduction in a semantics-preserving way.

Our approach has a practical significance: we show how to synthesize HD-automata from Petri
nets, and how to compute minimal realizations for them, in order to detect bisimilar states. As
mentioned, minimization of HD-automata is possible in many cases. Even if our approach does not
actually provide a way to minimize nets themselves, one can still decide bisimilarity of markings by
minimizing their reachable HD-automata and matching the results.

Finally, our contribution is also methodological: we provide a further example in which the
presheaf/HD-automata framework is successfully applied. We emphasize that this framework is
highly parametric and can possibly be useful in many other cases.

8.1. Related work

This paper follows a line of research on coalgebraic models of causality, started in [7] by the same
authors. The categorical machinery is the same in both papers, namely presheaf-based coalgebras,
HD-automata, and the equivalence among them. However, this paper takes a further step towards
a general categorical theory of causality. In [7], in fact, we have provided models for a particular
class of causal LTSs, namely Degano-Darondeau ones. In this paper, instead, we treat Petri nets,
which are much more general. For instance, unlike Degano-Darondeau LTSs, Petri nets can describe
synchronizations of more than two processes.

In [7] we start from existing set-theoretic models, similar to abstract CGs, whereas the models
we introduce here are novel. In both papers we represent causal dependencies as posets over events,
but in [7] events are unlabeled and are canonically represented as natural numbers. Here we have
labels and we take a more general approach: instead of choosing specific representatives of events,
we make abstract CGs parametric in this choice. This requires more technical work and it further
validates the categorical approach, where book-keeping details are abstracted away. The categorical
environment in this paper is more elaborate than [7], due to labeling. In particular, event generation
is more complex, and is studied in greater detail. Another difference is that here we give conditions
under which the model with only immediate causes is finite, whereas in [7] decidability is not
treated.

A first version of HD-automata for Petri nets, called causal automata, has been introduced in
[18]. However, their construction is purely set-theoretical and does not include symmetries, so the
existence of a minimal model is not guaranteed. This version of HD-automata is similar to what we
call immediate causes CG (without symmetries). HD-automata with symmetries were developed for
the π-calculus in [21, 19], and a general categorical treatment was provided in [11]. In all these cases
nominal structures associated to states are just a sets of (event) names, whereas we have posets,
which are more adequate to represent causal dependencies.

We can cite [8] for the introduction of transitions systems for causality whose states are elements
of presheaves, intended to model the causal semantics of the π-calculus as defined in [6]. However,
the index of a state is a set of names, without any information about events and causal relations.
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The advantage of our index category is that it allows reducing the state-space in an automatic way,
exploiting a standard categorical construction. This cannot be done in the framework of [8]. Finally,
an HD-automaton for causality has been described in [11], but it is derived as a direct translation
of causal automata and its states do not take into account causal relations.

Other related works are [26, 28], where event structures have been characterized as (contravari-
ant) presheaves on posets. While the meaning of presheaves is similar, the context is different: we
consider the more concrete realm of coalgebras and nominal automata. A more precise correspon-
dence with such models should be worked out.

8.2. Future work

Logics for causality have been recently studied in [5]. As future work, we would like to understand
whether they can be captured in our coalgebraic setting. Another open research question is how
to obtain coalgebraic models for other notions of causal bisimulation, such as hereditary history
preserving bisimulation.
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A. Proofs

We first introduce some technical lemmata. Then we give proofs for the claims in the paper.

A.1. Additional lemmata

Lemma A.1. Let O1,O2 be finite Act-labeled posets and let σ∶O1 → O2 be an order-embedding.
Then:

(i) O1 ⊳ c
K⊢ea
ÐÐÐ→ δ(O1,K, ea) ⊳ c′ implies O2 ⊳ (cσ)↓O2

σ(K)⊢e′a
ÐÐÐÐÐ→ O′2 ⊳ (c′σ[e′a/ea])↓O′2 , for any

e′ ∉XO2
, with O′2 = δ(O2, σ(K), e′a);

(ii) O2 ⊳ c
K⊢ea
ÐÐÐ→ δ(O2,K, ea) ⊳ c′ implies O1 ⊳ c′′

K′⊢e′a
ÐÐÐ→ δ(O1,K

′, e′a) ⊳ c′′′, with c′′σ = c,
σ(K ′) =K and c′′′σ[ea/e′a] = c′, for any e′ ∉ XO1

.

Proof. We prove item (i), the other one is analogous. Suppose O1 ⊳ c
K⊢ea
ÐÐÐ→ δ(O1,K, ea) ⊳ c′ is

derived from the rule of Definition 3.3 as follows

t ∈ T ∣c1∣ = ●t a = l(t) e ∉XO1
K =maxO1

K (c1)

O1 ⊳ c1 ∪ c2 K⊢ea
ÐÐÐ→ δ(O1,K, ea) ⊳ (K (c1) ∪ {ea} ⊢ t●) ∪ c2

where c = c1 ∪ c2 and c′ = (K (c1) ∪ {ea} ⊢ t●) ∪ c2. Clearly we have (cσ)↓O2
= (c1σ)↓O2

∪ (c2σ)↓O2
,

with ∣(c1σ)↓O2
∣ = ∣c1∣, because σ only affects events, not tokens. Moreover, it can be easily verified

that maxO2
K ((c1σ)↓O2

) = σ(maxO1
K (c1)) = σ(K). In fact, causes of (c1σ)↓O2

are: those of c1σ,
related exactly as their counterimages, due to σ preserving and reflecting order; additional causes,
smaller than those of c1σ, added by the closure. Therefore we can again apply the rule as follows

t ∈ T ∣(c1σ)↓O2
∣ = ●t a = l(t) e′ ∉XO2

σ(K) =maxO2
K ((c1σ)↓O2

)

O2 ⊳ (c1σ)↓O2
∪ (c2σ)↓O2

σ(K)⊢e′a
ÐÐÐÐÐ→ O′2 ⊳ (K ((c1σ)↓O2

) ∪ {e′a} ⊢ t●) ∪ (c2σ)↓O2

where O′2 = δ(O2, σ(K), e′a). Now, observe that, by definition of δ, we have

K ((c1σ)↓O2
) ⊆K ((c1σ)↓O′

2
) {e′a}↓O′2 =K ((c1σ)↓O′

2
) ∪ {e′a}

which implies

K ((c1σ)↓O2
) ∪ {e′a} ⊢ t● = (K (c1σ) ∪ {e′a})↓O′2 ⊢ t●

= (K (c1) ∪ {ea})σ[e′a/ea]↓O′
2
⊢ t●

= (K (c1) ∪ {ea} ⊢ t●)σ[e′a/ea]↓O′
2

From this equation, and from (c2σ)↓O2
= (c2σ[e′a/ea])↓O′

2
, because ea ∉ K (c2), it follows that the

continuation derived from the above rule has the required shape.

Lemma A.2. Let σ∶O → O′ be an isomorphism. Then O ⊳ c1 ∼C O ⊳ c1 implies O′ ⊳ c1σ ∼C O′ ⊳
c2σ.
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Proof. We will prove that the following relation is a C-bisimulation

RO′ = {(O′ ⊳ c1σ,O′ ⊳ c2σ) ∣ O ⊳ c1 ∼C O ⊳ c2, σ∶O → O′ is an isomorphism}

Take (O′ ⊳ c1σ,O′ ⊳ c2σ) ∈ RO′ and

O′ ⊳ c1σ
K′⊢e′a
ÐÐÐÐ→ δ(O′,K ′, e′a) ⊳ c

′
1

We have to find a simulating transition of O′ ⊳ c2σ. Let e ∉ XO. We can apply Lemma 3.9, using
the isomorphism σ−1[ea/e′a], and get

O ⊳ c1
σ
−1(K)⊢ea
ÐÐÐÐÐÐ→ δ(O,σ−1(K), ea) ⊳ c′1σ

−1[ea/e′a]

Since O ⊳ c1 ∼C O ⊳ c2, there is a simulating transition

O ⊳ c2
σ−1(K)⊢ea
ÐÐÐÐÐÐ→ δ(O,σ−1(K), ea) ⊳ c′2 .

Applying again Lemma 3.9 with σ[e′a/ea] to this transition, we get

O′ ⊳ c2σ
K′⊢e′a
ÐÐÐÐ→ δ(O′,K ′, e′a) ⊳ c

′
2σ[e

′

a/ea] .

This is the required simulating transition. In fact, since

δ(O,σ−1(K), ea) ⊳ c′1σ
−1[ea/e′a] ∼C δ(O,σ−1(K), ea) ⊳ c′2

and σ[e′a/ea] is an isomorphism, by definition of RO′ we have

( δ(O′,K ′, e′a) ⊳ c
′
1 , δ(O′,K ′, e′a) ⊳ c

′
2σ[e

′

a/ea] ) ∈ RO′ .

Lemma A.3. Let O ⊳ c1 and O ⊳ c2 be abstract P-markings. Then O ⊳ c1 ∼C O ⊳ c2 if and only if
O ⊳ c1 ∼AC O ⊳ c2.

Proof. We show the left-to-right implication, the other one is analogous. We prove that the following
relation is an AC-bisimulation

RO = {(O ⊳ c1,O ⊳ c2) ∣ O ⊳ c1 ∼C O ⊳ c2}
Take (O ⊳ c1,O ⊳ c2) ∈ RO and suppose

O ⊳ c1
K⊢a
ÔÔ⇒ δ(O,K,a) ⊳ c′1

then we must find a simulating transition of O ⊳ c2. By Definition 3.8, the above transition can be
derived from

O ⊳ c1
K⊢ea
ÐÐÐ→ δ(O,K, ea) ⊳ c′′1

with c′′1old(O,K, ea)[new(O,K,ea)/ea] = c′1. Since O ⊳ c1 ∼C O ⊳ c2 by hypothesis, this transition can
be simulated by

O ⊳ c2
K⊢ea
ÐÐÐ→ δ(O,K, ea) ⊳ c′′2 .
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Applying again Definition 3.8, we get the required transition

O ⊳ c2
K⊢a
ÔÔ⇒ δ(O,K,a) ⊳ c′′2(old(O,K, ea)[new(O,K,ea)/ea]).

In fact, from δ(O,K, ea) ⊳ c′′1 ∼C δ(O,K, ea) ⊳ c′′2 , using Lemma A.2 with the isomorphism
old(O,K, ea)[new(O,K,ea)/ea], we get

δ(O,K,a) ⊳ c′1 ∼C δ(O,K,a) ⊳ c′′2(old(O,K, ea)[new(O,K,ea)/ea])

and we can conclude that these P-markings are related by Rδ(O,K,a), by its definition.

Lemma A.4. Let O2 O
σ2oo

σ1 //O1 be a span in O and let

O

σ2

��

σ1 // O1

p1

��

O2 p2

// O3

❴✤

be its pushout in P. Then it is also a pushout in O, with

lO3
(x) =

⎧⎪⎪⎨⎪⎪⎩

lO1
(y) x = p1(y)

lO2
(y) x = p2(y)

Proof. In [7, Lemma 8] we have proved that pushouts in P are computed as in Graph, plus
transitive closure of the pushout object. We will use this fact to prove our claim.

First of all, we check that lO3
is well-defined. We only have to verify that its definition is correct

for x = p1(y1) = p2(y2). If p1(y1) = p2(y2) then y1 and y2 are images via σ1 and σ2 of the same
element of O, by definition of pushout in Graph. Since σ1 and σ2 preserve labels, we must have
lO1
(y1) = lO2

(y2), so lO3
(x) is well-defined on x.

Preservation of labels by p1 and p2 follows immediately from the definition of lO3
.

Now we prove that the square is indeed a pushout in O. Consider the following situation:

O

σ2

��

σ1 // O1

p1

�� q1

��

O2

q2 //

p2

// O3

❴✤

m

  

O4

We have to check that, when q1 and q2 preserve labels, also the unique mediating morphism m,
as computed in P, does. We prove it by contradiction. Suppose m does not preserve labels, then
there exists x ∈ XO3

such that lO4
(m(x)) ≠ lO3

(x). Suppose x is image of y ∈ XO1
via p1 (the case

y ∈XO2
and x = p2(y) is analogous). Then we have

lO1
(y) = lO3

(x) (by p1 preserving labels)
≠ lO4

(m(x)) (by hypothesis)
= lO4

(q1(y)) (by q1 =m ○ p1)
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which implies that q1 does not preserve labels, a contradiction.

A.2. Main proofs

Proof of Lemma 3.9. It is just a corollary of Lemma A.1.

Proof of Proposition 3.13. We prove (i), the other point is similar. Suppose

O ⊳ c K⊢a
ÔÔ⇒ δ(O,K,a) ⊳ c′.

Then, by Definition 3.8, this transition can be derived from

O ⊳ c K⊢ea
ÐÐÐ→ δ(O,K, ea) ⊳ c′′

with c′ = c′′old(O,K, ea)[new(O,K,ea)/ea], for any e ∉ XO. Suppose e ∉ XO′ . By Lemma A.1(i), we
have

O′ ⊳ cσ σ(K)⊢ea
ÐÐÐÐÐ→ δ(O′, σ(K), ea) ⊳ (c′′σ[ea/ea])↓δ(O′,σ(K),ea)

from which, using Definition 3.8, we get

O′ ⊳ cσ σ(K)⊢a
ÔÔÔ⇒ δ(O′, σ(K), a) ⊳ (c′′σ[ea/ea])↓δ(O′,σ(K),ea)ω

where ω = old(O′, σ(K), ea)[new(O
′,σ(K),ea)/ea]. We have to prove that the continuation of this

transition has the required form.
It is immediate to verify that, for any isomorphism σ∶O → O′ and causal marking c such that

K (c) ⊆ ∣O∣, we have
(cσ)↓O′ = c↓Oσ

which, for σ = ω, implies

(c′′σ[ea/ea])↓δ(O′,σ(K),ea)ω = (c′′σ[ea/ea]ω)↓δ(O′,σ(K),ea) . (A.1)

Now, observe that, by the definition of σ+ we have

σ[ea/ea]ω = old(O,K, ea)[new(O,K,ea)/ea]σ+

therefore (A.1) is equal to

(c′′old(O,K, ea)[new(O,K,ea)/ea]σ+)↓δ(O′,σ(K),a) = (c′σ+)↓δ(O′,σ(K),a)
as required.

Proof of Theorem 3.12. Both implications can be proved by combining Lemma A.3 and
Lemma A.2.

Proof of Theorem 3.22. This is proved as [7, Theorem 2], where specific choices for abstract posets
and old and new maps are made in order to accommodate Darondeau-Degano LTSs. The proof is
exactly the same, where each specific operation is replaced by its general version described in this
paper.
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Proof of Proposition 3.18. Take c ∈ [n0⟩. Then its tokens have been created by at most ∣c∣ transitions.
Since we only take immediate causes, i.e., events generated when those transitions were fired, each
O � c is such that ∣O∣ contains at most ∣c∣ events. O can be any poset on those events but, since
posets of minimal P-markings must be abstract, there are finitely-many such posets.

Proof of Lemma 4.4.

(i) Immediately from the fact that any path from ∅ ⊳ ∅ ⊢ m0 to Oc ⊳ c builds Oc and c

incrementally, adding one event for each transition.

(ii) Suppose there are two parallel transitions from O ⊳ c to O′ ⊳ c′, with labels a and b. Then
O′ = δ(O,K, ea) = δ(O,K ′, e′b), which can only happen when K = K ′ and ea = e′b, i.e., when
the two transitions coincide.

Suppose there is a directed cycle starting and ending at O ⊳ c. Each transition in the cycle
would add a new event to O, so the final state would be O′ ⊳ c, with O′ a strict superposet of
O, a contradiction.

Proof of Theorem 4.6.

(i) Consider a transition c1
a
Ð→BC c

′
1 and suppose the corresponding transition in CGr

C is

Oc1 ⊳ c1 K⊢ea
ÐÐÐ→ δ(Oc1 ,K, ea) ⊳ c′1

Now, observe that there is a trivial embedding of Oc1 into O. In fact, causes of c1 are down-
closed w.r.t. both posets, so Oc1 must be a prefix of O. Then, using Lemma A.1(i) and the
embedding Oc1 ↪ O on the above transition, we get

O ⊳ c1 K⊢e′a
ÐÐÐ→ δ(O,K, e′a) ⊳ c′1[e′a/ea]

for any e′ ∉ XO. By the hypothesis O ⊳ c1 ∼C O ⊳ c2, this transition can be simulated by

O ⊳ c2
K⊢e′a
ÐÐÐ→ δ(O,K, e′a) ⊳ c

′
2

with δ(O,K, e′a) ⊳ c′1[e
′

a/ea] ∼C δ(O,K, e′a) ⊳ c′2. Using Lemma A.1(ii) on the embedding of
Oc2 into O, and noting that e′ ∉XOc2

, we recover a transition

Oc2 ⊳ c2
K⊢e′a
ÐÐÐ→ δ(Oc2 ,K, e′a) ⊳ c

′
2

and from this, using the rule in Proposition 4.5, we get c2
a
Ð→BC c

′
2. In order to show that this

transition simulates c1
a
Ð→BC c

′
1, we have to find an isomorphism σ′∶Oc′

1
→ Oc′

2
such that the

following diagram commutes

Oc1
�

�

φC

c1,c′
1 //

σ

��

Oc′
1

σ′

��

Oc2
�

�

φ
C

c2,c′
2

// Oc′
2
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We can define σ′(x) as σ(x) if x ∈ ∣Oc1 ∣ and as e′a if x = ea.
(ii) We want to prove that the following relation is an AC-bisimulation

ROc2
= {(Oc2 ⊳ c1σ,O ⊳ c2) ∣ c1 ∼σbs c2}

Suppose c1 ∼σbs c2 and

Oc2 ⊳ c1σ
K⊢ea
ÐÐÐ→ δ(Oc2 ,K, ea) ⊳ c′1. (A.2)

We have to find a simulating transition of Oc2 ⊳ c2. Applying Lemma 3.9 to the last transition,
with isomorphism σ−1, we get

Oc1 ⊳ c1
σ−1(K)⊢e′a
ÐÐÐÐÐÐ→ δ(Oc1 , σ

−1(K), e′a) ⊳ c
′′
1

where c′′1 = c′1σ−1[e′a/ea], for any e′ ∉XOc1
. This transition corresponds, via Proposition 4.5, to

the following transition in BC

c1
a
Ð→BC c

′′
1

which, by the hypothesis c1 ∼σbs c2, can be simulated by

c2
a
Ð→BC c

′
2 (A.3)

with c′1 ∼σ
′

bs c
′′
1 such that

φC
c2,c

′

2

○ σ = σ′ ○ φC
c1,c

′′

1

(A.4)

Now, suppose for simplicity {ea} = ∣Oc′
2
∣ ∖ ∣Oc2 ∣ (the general case where ∣Oc′

2
∣ ∖ ∣Oc2 ∣ contains

any event fresh w.r.t. Oc2 requires minor changes). By definition of φC
c2,c

′

2

and φC
c1,c

′′

1

, and by

(A.4), σ′ should act as σ on Oc1 , so σ′ = σ[ea/e′a]. Moreover, since σ′ is an isomorphism, we
have that the maximal causes of e′a, namely σ−1(K), are mapped by σ′ to the maximal causes
of e′′a , which then are σ′(σ−1(K)) = σ(σ−1(K)) = K, where the first equation follows from
e′a ∉ σ−1(K). Therefore Oc′

2
= δ(Oc2 ,K, ea) and (A.3) is derived, using Proposition 4.5, from

Oc2 ⊳ c2 K⊢ea
ÐÐÐ→ δ(Oc2 ,K, ea) ⊳ c′2

This transition is the required one simulating (A.2). In fact, c′′1 ∼σ
′

bs c
′
2 implies

(δ(Oc2 ,K, ea) ⊳ c′′1σ
′, δ(Oc2 ,K, ea) ⊳ c′2) ∈ Rδ(Oc2

,K,ea)

by definition of R, and for the first P-marking we have c′′1σ
′ = c′′1σ[ea/e′a] =

(c′1σ−1[e
′

a/ea])σ[e′a/ea] = c′1, which is the causal marking in the continuation of (A.2).

Proof of Proposition 6.3. Smallness follows from skeletality. In [7] we have proved that pullbacks
in Pm are computed as the category Graph of graphs and their homomorphisms. It can be easily

verified that, given a cospan O1

f
// O3 O2

g
oo in O, we can forget labels and compute the pullback

as in Graph. In fact, the pullback poset O has an element y for each pair of elements x1 ∈ XO1

and x2 ∈ XO2
such that f(x1) = g(x2). But then, since f and g preserve labels, we must have

lO1
(x1) = lO2

(x2) = a, so lO(y) = a and the pullback maps preserve labels. It is easy to check that
pullback mediating morphisms preserve labels, as they must commute with morphisms with such
property.
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Proof of Lemma 6.4. In ([7, Lemma 8]) we have proved that pushouts of order-embeddings in P
are commuting squares in Pm. Therefore we can compute the two pushouts of (1) in P, take the
corresponding commuting squares in Pm and then use Lemma A.4 to get labeling functions for
their bottom-right corners. Diagrams in Pm made of label preserving functions are also diagrams
in O.

Finally, the fact that σ+ reflects orders follows from its definition.

Proof of Proposition 6.8. B is obtained by composition and product of accessible functors: Pf is
known to be accessible; L is accessible, because it can be regarded as a constant endofunctor on
SetO; ∆ is accessible, because it has a right adjoint, namely the functor computing right Kan
extensions along δ.

In order to show that B covers pullbacks, we will show that it has the form Pf ○ B
′, with

B′ a pullback preserving endofunctor on SetO. The thesis will follow from Pf covering pullbacks
(see [25]). ∆ has a left adjoint, namely the functor computing left Kan extensions along δ, then it
preserves pullbacks; L can be seen as a constant, hence pullback-preserving, endofunctor on SetO.
B′ is the product of these two functors, so it preserves pullbacks.

Proof of Proposition 6.12. Requirement Definition 6.11(ii) corresponds to the fact that a B-
bisimulation R on (P,ρ) is a functor and its projections are natural transformations, so we have
(p, q)[σ]R = (p[σ]P , q[σ]P ), for any morphism σ in O. Requirement (i) corresponds to the fact
that RO is “almost” an ordinary bisimulation, because computing BR(O) essentially amounts to
computing Bflts(RO) (see section 5.2) for each O ∈ ∣O∣, as images in SetO are computed pointwise
in Set, with the difference that continuations are not in RO, but in R(δO).

Proof of Lemma 6.14. We have to prove that if the square on the left is a pullback then so is the
outer square on the right.

O
❴✤

p1
//

p2

��

O1

σ1

��

O2 σ2

// O3

M (O)
µ

$$

[p1]
//

[p2]

��

M (O1)

[σ1]

��

P
❴
✤

π2zz✉✉✉
✉✉✉

π1

::✉✉✉✉✉✉

M (O2)
[σ2]

// M (O3)

In the right diagram, let P be the pullback in Set of [σ1] and [σ2], namely

P = {(c1, c2) ∣ c1[σ1] = c2[σ2]}

We will show that that the mediating morphism µ is an isomorphism, which implies that M (O) is
a pullback object.

Take (c1, c2) ∈ P and c = c1[σ1] = c2[σ2]. Then these causal markings must be of the form

c1 = {K1 ⊢ s1, . . . ,Kn ⊢ sn} c2 = {H1 ⊢ s1, . . . ,Hn ⊢ sn} c = {L1 ⊢ s1, . . . , Ln ⊢ sn}

because [σ1] and [σ2] do not affect tokens. Moreover, we must have

Li = σ1(Ki)↓O1
= σ2(Hi)↓O2

(i = 1, . . . , n)
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by definition of the action of M on morphisms, and in particular

max
O1

σ1(Ki) =max
O2

σ2(Hi) =maxO3
Li

because Ki,Hi and Li are down-closed sets, so they coincide with the closure of their maxima. It
is easy to check that order-preserving and reflecting morphisms preserve maxima, so we have

σ1(maxO1
Ki) =max

O3

σ1(Ki) =max
O2

σ2(Hi) = σ2(maxO2
Hi).

Therefore, by definition of pullback in O (computed as in Graph), there are Ji ⊆ ∣O∣ such that

p1(Ji) =max
O1

Ki p2(Ji) =max
O2

Hi (A.5)

and we can define the following causal marking in M (O)

c′ = {Ĵ1 ⊢ s1, . . . , Ĵn ⊢ sn}

where Ĵi = Ji↓O.
Now, observe that c′[p1] = c1 and c′[p2] = c2, because (A.5) implies p1(Ĵi)↓O1

= Ki and
p2(Ĵi)↓O2

= Hi. Therefore letting µ(c′) = (c1, c2) makes the whole right diagram commute. So far
we have proved that µ is surjective. For injectivity, suppose there is another c′′ ∈M (O) such that
µ(c′′) = (c1, c2). Since c′′[p1] = c1 and c′′[p2] = c2, c′′ is again of the form {M1 ⊢ s1, . . . ,Mn ⊢ sn},
with p1(Mi)↓O1

= Ki. Since also Ki = p1(Ĵi)↓O1
, Mi and Ĵi must have the same set X of maxima.

But then we have Mi =X↓O = Ĵi, so c′′ = c′.

Proof of Theorem 6.16. The first item is just an instance of Proposition 6.12.
For the second item, we shall show that R is an AC-bisimulation closed under order-embeddings

if and only if it is a O-indexed bisimulation:

Ô⇒ : take (O ⊳ c,O ⊳ c̃) ∈ RO and suppose

O ⊳ c K⊢a
�δ(O) ⊳ c′. (A.6)

Then, by Definition 6.15, there is

O ⊳ c K⊢a
ÔÔ⇒ δ(O,K,a) ⊳ c′′

such that c′ = c′′[ǫ(O,K,a)]. Since R is an AC-bisimulation, there is

O ⊳ c̃ K⊢a
ÔÔ⇒ δ(O,K,a) ⊳ c̃′

such that (δ(O,K,a) ⊳ c′′, δ(O,K,a) ⊳ c̃′) ∈ Rδ(O,K,a). Again by Definition 6.15, from the last
transition we get

O ⊳ c̃ K⊢a
�δ(O) ⊳ c̃′[ǫ(O,K,a)].

This is a simulating transition for (A.6), because (δ(O,K,a) ⊳ c′′, δ(O,K,a) ⊳ c̃′) ∈ Rδ(O,K,a)

implies (δ(O) ⊳ c′,δ(O) ⊳ c̃′[ǫ(O,K,a)]) ∈ Rδ(O), by closure of R under order-embeddings.
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⇐Ô : analogous to the previous point. Closure under order-embeddings of R follows from
Definition 6.11(ii).

Proof of Proposition 7.2. Analogous to the proof of [7, Proposition 8].
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