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Abstract

An essential aspect of distributed systems is resource management, concerning how resources

can be accessed and allocated. This aspect should also be taken into account when modeling

and verifying such systems. A class of formalisms with the desired features are nominal

calculi: they represent resources as atomic objects called names and have linguistic constructs

to express creation of new resources. The paradigmatic nominal calculus is the π-calculus,

which is well-studied and comes with models and logics.

The first objective of this thesis is devising a natural and seamless extension of the π-

calculus where resources are network nodes and links. The motivation is provided by a

recent, successful networking paradigm called Software Defined Networks, which allows

the network structure to be manipulated at runtime via software. We devise a new calculus

called Network Conscious π-calculus (NCPi), where resources, namely nodes and links, are

represented as names, following the π-calculus guidelines. This allows NCPi to reuse the

π-calculus name-handling machinery. The semantics allows observing end-to-end routing

behavior, in the form of routing paths through the network. As in the π-calculus, bisimilarity

is not closed under input prefix. Interestingly, closure under parallel composition does not

hold either. Taking the greatest bisimulation closed under all renamings solves the issue

only for the input prefix. We conjecture that such closure yields a full congruence for the

subcalculus with only guarded sums.

We introduce an extension of NCPi (κNCPi) with some features that makes it closer to

real-life routing. Most importantly, we add concurrency, i.e. multiple paths can be observed

at the same time. Unlike the sequential version, bisimilarity is a congruence from the very

beginning, due to the richer observations, so κNCPi can be considered the “right” version of

NCPi when compositionality is needed. This extended calculus is used to model the peer-

to-peer architecture Pastry [59].

The second objective is constructing a convenient operational model for NCPi. We

consider coalgebras, that are categorical representation of system. Coalgebras have been

studied in full generality, regardless of the specific structure of systems, and algorithms and

logics have been developed for them. This allows for the application of general results and

techniques to a variety of systems.

The main difficulty in the coalgebraic treatment of nominal calculi is the presence of name
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binding: it introduces α-conversion and makes SOS rules and bisimulations non-standard.

The consequence is that coalgebras on sets are not able to capture these notions. The idea

of the seminal paper [28] is resorting to coalgebras on presheaves, i.e. functors C → Set.

Intuitively, presheaves allow associating to collections of names, seen as objects of C, the

set of processes using those names. Fresh names generation strategies can be formalized as

endofunctors on C, which are lifted to presheaves in a standard way and used to model

name binding. Within this framework, a coalgebra for the π-calculus transition system is

constructed: the benefit is that ordinary coalgebraic bisimulations for such coalgebra are π-

calculus bisimulations. Moreover, [28] shows a technique to obtain a new coalgebra whose

bisimilarity is closed under all renamings. This relation is a congruence for the π-calculus.

Presheaves come with a rich theory that can help deriving new results, but coalgebras on

presheaves are impractical to implement: the state space can be infinite, for instance when a

process recursively creates names. However, if we restrict to a class of presheaves (according

to [17]), coalgebras admit a concrete implementation in terms of HD-automata [50], that are

finite-state automata suitable for verification.

In this thesis we adapt and extend [28] to cope with network resources. First we provide

a coalgebraic semantics for NCPi whose bisimulations are bisimulations in the NCPi sense.

Then we compute coalgebras and equivalences that are closed under all renamings. The

greatest such equivalence is a congruence w.r.t. the input prefix and we conjecture that, for

the NCPi with only guarded sums, it is a congruence also w.r.t. parallel composition. We

show that this construction applies a form of saturation, in the sense of [10]. Then we prove

the existence of a HD-automaton for NCPi. The treatment of network resources is non-trivial

and paves the way to modeling other calculi with complex resources.
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Chapter 1

Introduction

1.1 Nominal calculi

An essential aspect of distributed systems is resource management, concerning how resources

can be accessed and allocated. An example of popular distributed systems where this

aspect is preponderant is Cloud Computing, whose main function is the remote, on-demand

provisioning of various kinds of resources (storage, computational power, networking

infrastructure,. . . ) to users, who then do not need to maintain their own computing

hardware and software.

Until the nineties, the available formalisms for modeling distributed systems, such as

Hoare’s CSP [37] or Milner’s CCS [47], lacked constructs for expressing resource allocation:

they could only model fixed communication infrastructure. An important breakthrough

was made in 1992, when Milner et al. introduced the π-calculus [48]. This is based on

the notion of names, that are entities characterized only by their identity, used to model

communication channels along which processes can exchange messages. A key feature is

mobility: messages are names themselves, so channels can move among processes, with the

effect of reconfiguring the communication infrastructure. The additional expressive power

with respect to previous calculi comes from the possibility of communicating local names.

Consider, for instance, the CCS process (p | q)\b, denoting two parallel processes p and

q that share a private port b. The π-calculus counterpart is (b)(p | q): the restriction operator

(b) binds b in both p and q and makes it unguessable by other processes in the environment.

However b, like any other name, can be communicated. To see this, suppose that p has the

form ab.p′, meaning that it can send b along channel a, and suppose there is another process

in the environment made of two components, one of which is waiting for some datum at a:

(b)(ab.p′ | q)︸ ︷︷ ︸
p1

| (a(x).r | s)︸ ︷︷ ︸
p2

.

Then, any input performed by a(x).r is seen by p1 as coming from the whole p2. However, if
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the received value is b, only r is entitled to use this channel after its reception, while s should

not able to guess it. This is formally stated by requiring that b does not occur free in s. If this

condition is satisfied, then b can be communicated, resulting in

(b)(ab.p′ | q | r[b/x] | s)

Notice that the communication of b caused its scope to be extended to p2 (although s will

not be able to use such channel). This mechanism is called scope extrusion.

The π-calculus is the forefather of a whole class of formalisms known as nominal

calculi. Their common features are: representation of resources as names and the presence

of linguistic constructs to express creation of new resources. Other examples of nominal

calculi are: the spi-calculus [3], where encrypted values can be modeled, and passed in

form of variables/names, and key generation as restriction; the ambient calculus [16], where

names denote computational ambients that delimit the communication environment of

processes, and restriction expresses the creation of a new ambient; the applied π-calculus [2],

an extension of the π-calculus with the possibility of passing terms, generated from any

given signature with equations; and others [58, 7, 12].

1.2 Coalgebraic models of nominal calculi

Category theory provides a convenient way of modeling the behavior of dynamic systems

as coalgebras [60, 4], that are pairs (X, h) of a collection (not necessarily a set) of states X and a

map h from each state to its possible evolution(s). The theory of coalgebras is rich and well-

developed, and many kinds of systems have been characterized in this setting. For instance,

finite branching LTSs on a set of labels L can be modeled as coalgebras of the form

X −→ P f (L× X) , (1.1)

mapping each state x ∈ X to the finite set of pairs (l, x′) ∈ L× X such that x l−→ x′.

Various notions have been captured at this abstract level. We have coalgebraic behavioral

equivalences (see e.g. [64]) which, in the case of coalgebras of the form (1.1), coincide with

standard ones for LTSs. We also have a characterization of abstract semantics and minimal

models: the final object in a category of coalgebras, when it exists, describes the universe of

all possible abstract behaviors, and the image of a coalgebra through the final morphism is

its minimal version. The final coalgebra for (1.1) contains synchronization trees, and each

state of a coalgebra is mapped to the tree representing its computation. Moreover, we have

coalgebraic modal logics [55, 40], which include Hennessy-Milner logic [34] for coalgebras

(1.1).

Coalgebras are also of practical interest: minimization procedures such as partition

refinement [39], which are essential for finite-state verification, have been formulated in

coalgebraic terms (see e.g. [5]). This further motivates the coalgebraic framework: algorithms

implemented at this level of abstraction can be easily instantiated to many classes of systems.
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Unfortunately, the operational semantics of nominal calculi does not easily fit into a

coalgebraic description. This is mainly due to the presence of name binding operators in

the syntax, which come with notions such as free and bound names, α-conversion, capture

avoiding substitutions. In fact, SOS rules and bisimulations are subject to special side

conditions, intended to enforce freshness of names. To see this, consider the following π-

calculus SOS rule for parallel composition

p
µ−→ p′

p | q µ−→ p′ | q
bn(µ)∩fn(q)=∅

where the side condition is essential to ensure that the free names of q are not mistaken for

bound names of the whole process, and thus possibly instantiated as a consequence of an

interaction with the environment. As for bisimulations, they are not the ordinary ones for

LTSs. For instance, every π-calculus bisimulation has the following freshness requirement:

R is a bisimulation if, for each (p, q) ∈ R, whenever p
µ−→ p′, with

bn(µ) fresh w.r.t. q. . .

The reason is that bn(µ) can be regarded as a variable (due to α-conversion), so its identity

is irrelevant and should be chosen in a way that does not affect the ability of q to simulate

the transition of p.

On the practical side, model-checking is quite problematic: the transition system can be

infinite-branching, because all the possible instances of bound names in transition labels

must be considered; moreover, a loop generating new names can make the number of states

infinite.

All these issues arise if one attempts a set-based approach to the semantics of nominal

calculi, for instance employing coalgebras of the form (1.1). A more satisfactory approach

has been devised by Fiore and Turi in [28] for the paradigmatic case of the π-calculus. The

idea is to make coalgebras “resource-aware” by considering processes in contexts C ` p, where

C is an over-approximation of the amount of resources owned by p (its free names, in the

case of the π-calculus).

We sketch the categorical implementation of this idea. Given a category C of collections

of resources, processes in contexts are formalized as a presheaf, that is a functor P : C →
Set giving the set of processes indexed by each C ∈ |C|. The category C is equipped with

allocation operators δ : C → C, adding a unique fresh resource to C ∈ |C|. This new resource

canonically represents all the ones fresh with respect to C.

The operational semantics is modeled as a coalgebra on the presheaf of processes. This

coalgebra can be understood as a transition system on indexed states, of the form

C ` p
µ−→ C′ ` p′

Allocation transitions of the ordinary transition system, when they differ only for the

identity of the communicated fresh names, can all be represented as a unique indexed
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transition where C′ = δC, for a suitable allocation operator δ, and bn(µ) is exactly the new

resource in δC. This representation makes the model finite-branching. As for bisimulations,

processes are compared for equivalence only if they have the same amount of resources C:

freshness requirements become useless, because the only possible fresh name is the new one

in δC.

Unfortunately, the state space explosion issue still exists: there is no way of deallocating

resources along transitions, so a recursive process may give rise to an infinite chain of

transitions

C ` p
µ−→ C′ ` p′

µ′−→ C′′ ` p′′
µ′′′−→ . . .

with C ⊂ C′ ⊂ C′′ ⊂ . . . , even if some of the reached processes are not actually using

the new resources. However, if the presheaf of states is “well-behaved”, according to [17], it

is always possible to compute the minimal amount of resources a process uses. This is the

key condition for the equivalence between presheaf-based coalgebras and History Dependent

(HD) automata [50], that are automata with allocation and deallocation along transitions. HD

automata modeling finite-control processes, i.e. processes without parallel composition inside

recursions, admit minimal representatives, where all bisimilar states are identified. These

can can be computed as shown and implemented in [25].

It is worth pointing out that [28] is not the first model of resource handling based

on functor categories: the denotational semantics of variable allocation in block-structured

languages (ALGOL) has been given in terms of functors from a category of store shapes and

store expansions [56].

1.3 Subject of this thesis

The trend in networking is going towards more “open” architectures, where the infras-

tructure can be manipulated in software. This trend started in the nineties, when OpenSig

[14] and Active Networks [65] were presented, but neither gained wide acceptance due

to security and performance problems. More recently, OpenFlow [45, 1] or, more broadly,

Software Defined Networking has become the leading approach, supported by Google,

Facebook, Microsoft and others.

Software defined networks (SDNs) allow network administrators to control traffic via

software installed on a centralized controller. This machine is connected to all switches

in the network, and instructs them to install or uninstall forwarding rules and report

traffic statistics. The single most important function of SDNs is controlling flows, that are

the routing paths of data characterized by specific properties, e.g. certain values of QoS

parameters.

Traditional process calculi, such as π-calculus [48], CCS [47] and others, seem inadequate

to describe these kinds of networks. In fact, they abstract away from network details,

as two processes are allowed to communicate only through shared channels. Complex
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infrastructural elements, such as network links, could be described in terms of processes,

and routing protocols in terms of consecutive step-by-step forwardings. However, end-to-

end routing behavior could not be observed in a single transition, e.g. as the the path for

a SDN flow. This information can be useful for the analysis of routing algorithms, e.g. to

determine whether they are always able to construct a valid/optimal path for given source

and destination.

To give better visibility to the network architecture, in recent years network-aware

extensions of known calculi have been devised [29, 21]. However, they do not allow

observing multi-hop routing paths, which then are not taken into account by bisimulations,

and their underlying calculi have not been studied from a coalgebraic perspective.

1.3.1 A network-conscious π-calculus

In this thesis we introduce the Network Conscious π-calculus (NCPi), a seamless extension

of the π-calculus with a natural notion of network: nodes and links are regarded as

computational resources that can be created, passed and used to transmit, so they are

represented as names, following the π-calculus methodology. The main features of NCPi

are the following:

• There are two types of names: sites, which are the nodes of the network, and links,

named connectors between pairs of sites. Sites are not locations where processes run,

like in [29], but they can be regarded as network interfaces. In fact, we allow each process

to use more than one site. Both are atomic names, but links are equipped with source

and target operations that give their endpoints; for convenience we write lab for a

link l from a to b. Free sites and links of a process form the network it can use to

communicate. The structure of this network should be respected by renamings, so we

only allow for graph homomorphisms.

• The syntax can express the creation of a link through the restriction operator, and the

activation of a transportation service over a link through a dedicated prefix. Separating

these operations agrees with the π-calculus, where creating and using a channel as

subject are two distinct operations. This is different from [29, 21], where pieces of

network, once created, are always available. In fact, in [29] the connectivity of a process

P is described as a context ∆ � P, which can be augmented through scope extrusion.

In [21] there are special processes {l1 ↔ l2} representing bidirectional connections

between l1 and l2, which can be used by the processes in parallel with them. There is a

dedicated primitive to spawn link processes.

• Observations of the labelled semantics represent transmissions in the form of routing

paths, i.e. sequences of links used for communications. This, as mentioned, is moti-

vated by the possibility of modeling and analyzing routing algorithms.
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We choose to have named links, whereas in [29] and [21] links are anonymous pairs of

locations. There are two main reasons for our choice. First of all, this allows distinguishing

two links between the same pair of nodes, which could represent connections with different

features (cost, bandwidth. . . ). These pieces of information could be associated to links via

suitable operations, as it happens for source and target, and used to model routing that

depends on quantities, e.g. QoS-based routing. Second, this enables reusing most of the

notions of the π-calculus (renaming, α-conversion, extrusion. . . ), suitably extended. In any

case, NCPi allows one to recover anonymous connectors through the restriction operator.

One of the non-trivial aspects of NCPi is the presence of parametric names: links, in

fact, are parametrized by other names, i.e. their endpoints. While this is a natural choice,

it requires some care. Consider in fact a process p with a free occurrence of a link lab. If

we render a unobservable, as in (a)p, such link would appear “dangling” to an external

observer. A first solution is establishing that the link is private as well. A more elegant

solution is identifying a class of well-behaved processes, where only private links can have

private endpoints, i.e. (a)(lab)p is correct. Notice, however, that (lab)p is also correct: it means

that the link is private, but it still can be used to connect public sites.

We remark that also the ψ-calculus [7] and the π-calculus with polyadic synchronization

[15] can represent connectors, respectively as nominal terms and tuples of names. The

former representation is closer to ours, while the latter is too “flat”, in the sense that it

does not capture the graph-structure of network and the fact that renamings should respect

it. Moreover, the semantics of connectors is different. In [15] and [7] they are used as π-

calculus channels, i.e. synchronization involves two processes, and happens on shared, or

equivalent, connectors, which are then rendered unobservable. In our calculus, instead:

communications involve synchronizations between many processes, namely those that are

willing to communicate and those that provide links, which cooperate to construct a routing

path; synchronizations can happen on the two endpoints of a link, separately; (global) links

are always observable when used in a communication.

The last aspect we discuss is congruence. As in the π-calculus, bisimilarity is not closed

under input prefix. The interesting fact is that it not closed under parallel composition,

either. The intuition is that adding router processes could allows some processes to send

data through longer paths. We conjecture that, for NCPi processes with guarded sums, the

greatest bisimulation closed under all renamings is a congruence with respect to input prefix,

as in the π-calculus, and to parallel composition. This issue completely disappears for the

concurrent version of NCPi that will be described later.

1.3.2 NCPi categorical operational semantics

We construct two presheaf-based coalgebraic operational models for NCPi, one for obser-

vational equivalence and one, closed under all renamings, whose equivalence is closed

under input prefix and is conjectured to be a full congruence for NCPi with guarded sums.
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Our approach follows and generalizes the one of [28]. The main novelty is the treatment

of complex resources, namely communication networks, where some names (links) are

parametrized by other names (sites).

Here is an overview of our approach. We represent communication networks as a

category of finite, directed multigraphs, equipped with two allocation operators that create

fresh vertices and edges. Then, we construct a category of coalgebras on presheaves indexed

by such graphs, where allocation happens according to the allocation operators. In this

category, we model the NCPi operational semantics and characterize its observational

equivalences. Then, employing categorical constructs called right Kan extensions, we transfer

the semantics to another category of coalgebras, gaining closure under all renamings. These,

roughly, are the steps described in [28].

We go a little further: we give an explicit characterization of coalgebras in the last

category as saturated indexed transition systems [10], and we show that right Kan extension

performs saturation. Finally, we show that the categorical operational semantics of our

calculus can be implemented as a HD-automaton.

The purpose of this construction is: on the one hand, validating the technique of [28] on

a calculus with much richer resources than atomic channels; on the other hand, integrating

different models that take this additional complexity into account, such as presheaf-based

coalgebras, saturated transition systems and HD-automata. This paves the way for the

treatment of other complex calculi.

1.3.3 A concurrent semantics for NCPi

Interleaving semantics can be considered inadequate for distributed systems with partially

asynchronous behavior, because reducing parallelism to sequential nondeterminism can be

regarded as imposing a centralized resource manager that grants access to resources in some

order. This criticism is particularly relevant for NCPi, because it aims at modeling systems

that can easily have a high degree of parallelism, therefore the presence of a centralized

resource manager is unrealistic.

Our answer is an extended version of NCPi, called concurrent NCPi (κNCPi), where

observations include additional routing information and are multisets of routing paths.

The concurrent nature of the semantics allows distinguishing concurrent from interleaving

behavior, in fact we have (using a π-calculus notation)

ac.0 | b(x).0
ac | b(x)−−−−→ 0 ac.b(x).0 + b(x).ac.0����ac | b(x)−−−−→

whereas they are bisimilar in the π-calculus. This causes bisimilarity not to be closed under

input prefix. In fact, if we prefix both processes with d(a) we get:

d(a).(ac.0 | b(x).0) db−→ bc.0 | b(x).0 τ−→ 0

d(a).(ac.b(x).0 + b(x).ac.0) db−→ bc.b(x).0 + b(x).bc.0 6 τ−→
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A suitable syntactic restriction of κNCPi will allow us to equip the π-calculus with a

concurrent semantics whose bisimilarity is a congruence.

1.3.4 Pastry model

A peer-to-peer system provides the networking substrate for the execution of distributed

applications. It is made of peers that interact over an application-level overlay network, built

on top of the physical one. An overlay network is highly dynamic, as peers can join and

leave it at any time, and this causes continuous reconfigurations of its topology.

The dynamic nature of peer-to-peer overlay networks makes them an interesting case

study for our calculus. Our reference architecture will be Pastry [59]. In Pastry, peers have

unique identifiers, logically ordered in a ring. The main operation is routing by key: given a

message and a target key, the message is delivered to the peer whose identifier is numerically

closest to the key. Pastry is typically used for implementing Distributed Hash Tables (DHT),

that are hash tables whose entries are distributed among peers: routing by key in this context

amounts to hash table lookup.

Our Pastry model is as follows. We begin by formalizing the features of Pastry routing

that ensure its convergence. These are informally stated in [59], but we need a rigorous

formulation so that we can prove the correctness of our model. Then we give a κNCPi

implementation of a Pastry peer. The basic idea is capturing the overlay as a collection

of links between peers. Our implementation of a Pastry peer has two functions: handling

of node joins and provision of routing services to applications. Node joins trigger a complex

procedure, ending up with the creation of new links from/to the joining peer. We show that

the resulting overlay still guarantees routing convergence. Finally, we model a simple DHT,

where lookups are represented as routing paths from the peer that invoked the lookup to

the one responsible for the target key. These are derived by composing atomic forwarding

services provided by peers. We prove that we have routing convergence also in this scenario,

i.e. lookups always reach the correct peer.

1.4 Contributions

We summarize the main contributions of this thesis. Some are developments of results that

have already been published in three works by the author:

1. [52], published in the proceedings of Mathematical Foundations of Programming Seman-

tics XXVIII;

2. [53], to appear in Theoretical Computer Science;

3. a technical report [51].

In the following we will explicitly cite the main source for each contribution. The Pastry

model is unpublished.
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A seamless extension [53]. We introduce a network-aware extension of the π-calculus which

is seamless, in the sense that we reuse concepts and mechanisms of the π-calculus to represent

and operate on network resources. In particular, we have that links, like π-calculus channels,

can be explicitly activated, whereas networks are always active in [29, 21]. Our networks

are more programmable, in the sense that we can program creation, activation and usage of

network resources.

Non-compositionality of interleaving routing. The fact that bisimulation for NCPi is not

closed under parallel composition is an interesting result. It essentially says that routing

is intrinsically non-compositional, if one considers interleaving computations. In fact, this

issue disappears for κNCPi, where parallelism can be explicitly observed.

Complex resources [53]. We study resources that are considerably more complex than π-

calculus channels. The main difficulty is that we have parametric names. At the linguistic

level, this may produce meaningless process expressions, so we have to identify a class of

well-formed processes. At the level of models, we represent such names as graphs, which are

important and well-studied in computer science; the novelty (to the best of our knowledge)

is using graphs as index category for presheaves with the purpose of modeling allocation

of network resources. We manage to give a formulation of allocation operations in a way

that confers good properties to coalgebras using them: the existence of a final coalgebra and

the fact that minimal coalgebras are indeed those quotiented by bisimilarity. Since graphs

are widely used, such an abstract and well-behaved notion of allocation for graphs could be

useful in other contexts.

Saturation as Right Kan extension [53]. We develop the characterization of saturation as right

Kan extension discussed in [8]. In particular, we give an explicit characterization of extended

coalgebras in terms of saturated indexed transition systems. This has been done also in

[8], but in a concise way. The novelty is that we consider more complex categories, prove

some additional results (e.g. existence of the final coalgebra) and we consider coalgebras

over sheaves, unlike both [28] and [8]. The scope of these results is potentially broader than

the specific incarnation treated in this thesis, as saturation is a well-known and general

technique to get closures under many kinds of contexts (see e.g. [54]).

History Dependent Automata [53]. We show that the NCPi coalgebraic semantics can be

implemented as a HD-automaton, which could allow checking properties of finite-control

NCPi processs in an efficient way. This result follows from various properties of our index

category for presheaves and of the specific presheaf of processes we employ, the most

important being the possibility of computing minimal support, i.e. the minimal network a

process uses. Thanks to this property, bisimilar processes with the same minimal network
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can be collapsed to a canonical representative, with the consequence that the state space

becomes finite. This is essential for verification.

Congruence via concurrency [52]. We prove that observing concurrency makes bisimilarity

for our calculus a congruence. This is a desirable property for a process calculus, because

it allows for the compositional analysis of systems and enables categorical models such as

bialgebras [66] without resorting to saturation.

The authors of [21, 29] treat bisimilarity and achieve compositionality for their network-

aware calculi. Their approach, considered standard in the literature, is the following: they

start from a reduction semantics, guess a suitable notion of barb, define barbed congruence

by closing w.r.t. all the contexts, and then characterize it as a bisimulation equivalence

on a labelled version of the transition system. In general, this approach yields labelled

transition systems with succinct observations, but requires a reduction semantics and may

produce a non-standard notion of bisimilarity, where closure under contexts is enforced

in the definition. For instance, the notion of bisimulation of [21] requires a process to be

embedded in a bigger network, which in some sense provides the missing facilities, in order

to be compared with a process that exhibits a certain kind of label. We show that we can

gain the congruence property through a concurrent labelled semantics, while keeping the

notion of bisimilarity as standard as possible. We argue that a barb-based approach for

κNCPi would not be of particular interest: barbs would be inputs and outputs without links,

and the missing network would be provided by contexts, as in [21].

We exploit this result to equip the π-calculus with a concurrent and compositional

semantics. The π-calculus, in fact, can be easily characterized as a syntactic restriction of

κNCPi, where sites play the role of channels and links are forbidden. This shows that

bisimilarity not being a congruence for the ordinary π-calculus depends on the interleaving

nature of the semantics, and not on the language itself. An analogous result is [42, 43],

but the semantics presented there allows observing the channel where a synchronization

is performed, whereas our concurrent semantics for the π-calculus is more faithful, in the

sense that we adopt a synchronization mechanism that hides such a channel. A comparison

with other concurrent semantics for the π-calculus can be found in §7.1.3.

A significant case study. Our model of Pastry gives an evidence of how expressive κNCPi

can be. In fact, the synchronization mechanism allows deriving the complete routing path

for a given key, in the form of a sequence of links from the sender to the key’s owner. While

an implementation in the π-calculus is feasible, where links are modeled as forwarding

processes, this would not yield the same semantics: each transition would allow observing

one single-hop communication.
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1.5 Map and origin of the chapters

This thesis is organized into five chapters. We give a brief synopsis of each one.

Chapter 2: Background. In this chapter we survey some background needed for the rest of the

thesis. First, we recapitulate the π-calculus syntax and semantics. Then we introduce some

category-theoretic concepts such as presheaves and sheaves, locally presentable categories,

accessible functors, Kan extensions, coalgebras and coalgebras over presheaves. Finally, we

give an overview of the model [28], with the purpose of highlighting the important features

of presheaf-based coalgebraic models of nominal calculi.

Chapter 3: Network-Conscious π-calculus. In this chapter we introduce NCPi. We begin with

an illustrative example, aimed at showing the capability of our language to model networks

with reconfigurable structure. Then we describe the syntax and semantics of the calculus,

and we list some relevant properties that make the transition system and its bisimulations

well suited for a coalgebraic representation. Next we discuss the congruence property: this

does not hold for the full calculus, even considering bisimulations that are closed under all

renamings, but we hint at a syntactic restriction that could enable congruence. Finally, we

demonstrate the convenience of our calculus by making a comparison with the π-calculus.

This chapter is the revised and extended version of [53, §3].

Chapter 4: Coalgebraic Semantics of NCPi. We begin with an overview of the general

approach, inspired by [28]. Then we systematically apply it to model the operational

semantics of NCPi. Here the main results are: Theorem 4.3.10, which provides a coalgebraic

characterization of observational equivalence; Theorem 4.5.7, which does the same for the

greatest equivalence closed under all renamings, thus under input prefix; §4.4, where we

discuss the existence of HD-automata for NCPi. This chapter comes from [53, §4].

Chapter 5: Concurrent NCPi. In this chapter we extend the NCPi syntax and semantics

with new constructs and observations, with the purpose of describing a more realistic

network behavior. The main result is Theorem 5.2.7, stating that concurrent bisimilarity is a

congruence. Finally, we give a simple model of the Border Gateway Protocol. The main source

for this chapter is [51], summarized in [53, §5].

Chapter 6: Case study: Pastry . In this chapter we use κNCPi to model two aspects of the

peer-to-peer protocol Pastry: reconfiguration due to node joins and routing. We formalize

convergence of routing in Pastry as Property 6.1.2, and we prove that node joins preserve

this property (Theorem 6.3.1). Then we give a simple model of a Distributed Hash Table,

equipped with a semantics that captures routing of DHT key lookups. Theorem 6.4.2 states

that routing converges also in this scenario.
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Chapter 2

Background

2.1 The π-calculus

In this section we recall the syntax and semantics of the π-calculus. Our main references are

[57, 48, 62].

2.1.1 Syntax

We assume a countable set of names N , ranged over by a, b, x, y, . . . These denote communi-

cation channels, and are the building blocks of processes.

Definition 2.1.1 (Processes). π-calculus processes are generated by the following grammar

p ::= 0 | π.p | p + p | p | p | (x)p | A(y1, . . . , yn)

π ::= ax | a(x) | τ

A(x1, . . . , xn)
def
= p i 6= j =⇒ xi 6= xj

Process terms have the following meaning: 0 is the process that cannot perform any

action, p + q is the process behaving non-deterministically as p or q, p | q denotes the

concurrent execution of p and q, (x)p is the process where x is private to p, and A(y1, . . . , yn)

can be thought of as the invocation of a process previously defined using def
= , where the

formal parameters x1, . . . , xn have been replaced by the formal ones y1, . . . , yn. A prefix π

can be:

• the output prefix ax.p, meaning that the process can send x on channel a and continue

as p;

• the input prefix a(x).p, meaning that the process can input some name, to be bound to

x, on channel a and continue as p;



14 Background

α-conversion:

(x)p ≡ (y)p[y/x] a(x).p ≡ a(y)p[y/x] y # p

Commutative monoidality of | and +:

p | 0 ≡ p p + 0 ≡ p

p1 | p2 ≡ p2 | p1 p1 + p2 ≡ p2 + p1

p1 | (p2 | p3) ≡ (p1 | p2) | p3 p1 + (p2 + p3) ≡ (p1 + p2) + p3

Scope extension

p1 | (x)p2 ≡ (x)(p1 | p2) x # p1

Unfolding law

A(y1, . . . , yn) ≡ p[y1/x1, . . . , yn/xn] A(x1, . . . , xn)
def
= p

Figure 2.1: Structural congruence for π-calculus processes.

• the silent prefix τ.p, meaning that the process can perform an internal, unobservable

action denoted by τ and continue as p.

We denote by n(p) the set of names occurring in p, and by fn(p) the free names of p, defined

as follows

fn(0) := ∅ fn(ax.p′) := {a, x} ∪ fn(p′)

fn(a(x).p′) := {a} ∪ (fn(p′) \ {x}) fn((x)p) := fn(p) \ {x}

fn(p1 + p2) := fn(p1 | p2) := fn(p1) ∪ fn(p2) fn(τ.p′) := fn(p′)

fn(A(x1, . . . , xn)) := {x1, . . . , xn}

and we must have fn(p) ⊆ {x1, . . . , xn} whenever A(x1, . . . , xn)
def
= p. The bound names

bn(p) are given by

bn(a(x).p′) := bn((x)p′) := {x} ∪ bn(p′)

and as the union of the bound names of the operator’s arguments in all the other cases. In

the following we write x # p to mean that x is fresh with respect to p, i.e. x /∈ fn(p); this

notation is extended to sets of names N, namely N # p, with the expected meaning.

Now we recall the notion of renaming.
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Definition 2.1.2 (Renaming). A renaming is a function σ : N → N . We denote by

[y1/x1, . . . , yn/xn] the renaming that replaces x1 with y1, . . . , xn with yn. Given a process p,

pσ denotes the result of applying σ to the free names of p, in a way that avoids captures.

A renaming is said to be capture avoiding if it never replaces free occurrence of names

with bound ones. One way to guarantee this is via α-conversion: if σ performs [y/x] and

p has (y)p′ or a(y).p′ as subprocess, with x ∈ fn(p′), then σ is applied to an α-converted

version of p, where y has been replaced with a fresh name, so that y is free in pσ. The formal

definition of α-conversion is given in Figure 2.1 and, as usual, is “mutually recursive” with

that of renaming.

The π-calculus processes come equipped with a structural congruence relation ≡,

defined in Figure 2.1, telling which processes should be considered equivalent. Besides α-

conversion, there are other axioms stating that: the order of processes and how they are

associated in a parallel composition or sum does not count; we can always bring a restriction

outside a parallel composition, provided that in doing so the restriction does not capture free

occurrences of its argument; a process definition invocation corresponds to replacing formal

parameters with actual ones in its body.

2.1.2 Operational semantics

The standard π-calculus semantics is defined as a labelled transition system, derived

through structural operational semantics rules. We have five kinds of labels:

• the internal action τ, meaning that an unobservable action is performed;

• the free input action ab, meaning that the value b is received along channel a;

• the bound input action a(x), meaning that some value is received along channel a, but

its value will be bound to x as soon as it becomes known;

• the free output action ab, meaning that the name b is emitted along channel a;

• the bound output action a(x), meaning that the local name x is published along channel

a; this is called extrusion.

Given an action µ, its subject subj(µ), object obj(µ), free names fn(µ) and bound names bn(µ)

are defined in Table 2.1.

The early and late π-calculus transition systems, denoted respectively by −→e and −→l

(when no subscript is specified, the transition can be of either kind), are the smallest

ones generated by the rules in Figure 2.2. “Early” and “late” refer to the moment the

input placeholder is instantiated with an actual value: (INe) instantiates it as soon as the

input prefix is consumed, producing a free input action, while (INl ) leaves the placeholder

symbolic, yielding a bound input action. This distinction gives rise to two different rules for

free names communication: (COMe) requires that the input object in the premises is chosen to
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(OUT)
ab.p ab−→ p

(INT)
τ.p τ−→ p

(RES)
p

µ−→ p′

(x)p
µ−→ (x)p′

x/∈n(µ) (OPEN)
p ax−→ p′

(x)p
a(x)−−→ p′

a 6=x

(SUM)
p

µ−→ p′

p + q
µ−→ p′

(PAR)
p

µ−→ p′

p | q µ−→ p′ | q
bn(µ) # q

(STRUCT)
p ≡ p′ p′

µ−→ q′ q′ ≡ q

p
µ−→ q

Early semantics

(INe)
a(x).p ab−→e p[b/x]

(COMe)
p ab−→e p′ q ab−→e q′

p | q τ−→e p′ | q′

Late semantics

(INl )
a(x).p

a(x)−−→l p
(COMl )

p ab−→l p′ q
a(x)−−→l q′

p | q τ−→l p′ | q′[b/x]

Figure 2.2: Structural operational semantics rules for the π-calculus.
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µ subj(µ) obj(µ) fn(µ) bn(µ)

ab a b {a, b} ∅
a(x) a x {a} {x}
ab a b {a, b} ∅
a(x) a x {a} {x}
τ − − ∅ ∅

Table 2.1: Notation for π-calculus actions.

coincide with the output object; (COMl ) does not impose such requirement, but instantiates

the input placeholder in the inferred continuation.

We briefly recall what the other rules mean. (OUT) infers an output. (RES) and (OPEN)

turn an action µ of p into one of (x)p: (RES) is applied when x does not appear in µ, and

binds x in the continuation while leaving the action unchanged; (OPEN) is applied when µ

is a free output with object x, and binds x in the action but not in the continuation, meaning

that x becomes global after the transition. In other terms, bound output actions express the

allocation of a fresh name. (SUM) states that the sum of two processes behaves as either

of them. (PAR) states that, if we put in parallel two processes, one of which stays idle, the

actions of the overall process are those of the active one, provided that the bound names in

these actions are fresh w.r.t. the other process. Finally, (STRUCT) allows one to use structural

congruence during inference.

Scope extension axioms can be replaced by a rule (CLOSE), dual to (OPEN), which extends

the scope of a bound name as effect of its communication:

(CLOSE)
p

a(x)−−→ p′ q
a(x)−−→ q′

p | q τ−→ (x)(p′ | q′)

This requires including a bound input action also in the early transition system, specifically

intended for the reception of bound names.

Now we list some properties of the transition systems.

Proposition 2.1.3. Transitions are reflected and preserved by any injective substitution σ,

explicitly:

• if p
µ−→ p′ then pσ

µσ−→ p′σ (preservation);

• if pσ
µ−→ p′ then there are µ′ and p′′ such that µ = µ′σ, p′ ≡ p′′σ and p

µ′−→ p′′ (reflection).

Remark 2.1.4. Preservation also holds for generic substitutions, while reflection does not. In

fact, consider the process

p def
= ab.0 | c(x).0
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and the renaming σ = [a/c]. Then we have

pσ = ab.0 | a(x).0 τ−→ 0

but p 6 τ−→ 0.

2.1.3 Behavioral equivalences

There are various notions of bisimulation for the π-calculus. Here we recall the fundamental

ones.

Definition 2.1.5 (Early and late bisimulations). A binary, symmetric and reflexive relation

R is a (early/late) bisimulation if, for all (p, q) ∈ R:

(i) Early bisimulation: p
µ−→e p′, with bn(µ) fresh w.r.t. q, implies that there is q′ such that

q
µ−→e q′ and (p′, q′) ∈ R.

(ii) Early bisimulation with late semantics: p
µ−→l p′, with bn(µ) fresh w.r.t. q, implies the

following:

(a) if µ = a(x) then, for all y ∈ N , there is q′ such that q
a(x)−−→l q′ and (p′[y/x], q′[y/x]) ∈

R;

(b) otherwise there is q′ such that q
µ−→l q′ and (p′, q′) ∈ R.

(iii) Late bisimulation: p
µ−→l p′, with bn(µ) fresh w.r.t. q, implies the following:

(a) if µ = a(x) then there is q′ such that q
a(x)−−→l q′ and (p′[y/x], q′[y/x]) ∈ R, for all

y ∈ N ;

(b) otherwise there is q′ such that q
µ−→l q′ and (p′, q′) ∈ R.

The greatest such relations are called bisimilarities, and are denoted by ∼e, ∼l
e and ∼l ,

respectively.

A relation being “early” or “late” depends on whether the input value is chosen before

or after the continuation for q. In the early semantics this always happens before, according

to the early SOS rules. In the late semantics we can have both situations: the difference

is the relative order of the universal quantifier, ranging over all instantiations, and of the

existential quantifier, expressing the existence of the continuation. The two notions of early

bisimulations yield the same relations.

Proposition 2.1.6. Early and late bisimilarities are closed under injective renamings, i.e. for all

injective renamings σ we have that p ∼ q implies pσ ∼ qσ, where ∼ is any of the mentioned

bisimilarities.

Now we recall the concept of congruence.
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Definition 2.1.7 (Congruence). A relation R is a congruence if, for any π-calculus operator

op, (p, q) ∈ R implies (op(p), op(q)) ∈ R.

Theorem 2.1.8. ∼e,∼l and ∼l
e are congruences w.r.t. all operators except the input prefix.

To see this in the case of early bisimilarity (other cases are analogous), consider the

following processes (we omit objects as they are not relevant)

p def
= a | b q def

= a.b + b.a .

We have p ∼e q but c(a).p 6∼e c(a).q, because

c(a).(a | b) cb−→ b | b τ−→ c(a).(a.b + b.a) cb−→ b.b + b.b 6 τ−→ .

However, bisimulations that also are congruences have the following characterization.

Definition 2.1.9 (Early and late congruence). Early (resp. late) congruences are those early

(resp. late) bisimulations closed under all renamings.

Closure under all renamings implies closure under the input prefix, so these relations

indeed are congruences.

2.2 Categorical notions

In this section we recall some notions of category theory that will be needed for the rest of the

thesis: (pre)sheaves, locally presentable categories and accessible functors, Kan extensions,

generic coalgebras and coalgebras over presheaves.

2.2.1 Presheaves and sheaves

Definition 2.2.1 (Functor category). Let A and B be two categories. The functor category BA

has functors A→ B as objects and natural transformations between them as morphisms.

Our development will be based on a class of functors, called presheaves. These are functors

from any category C to Set. A presheaf P can be intuitively seen as a family of sets indexed

over the objects of C plus, for each f : c→ c′ in C, an action of f on Pc, which we write

p[ f ]P := P f (c) (p ∈ Pc) .

We will omit the subscript when clear from the context. The set
∫

P of elements of a presheaf

P is ∫
P := ∑

c∈|C|
Pc

and we denote by c ` p a pair belonging to
∫

P.
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Recall that, given two categories J and C, a diagram of type J in C is a functor D : J → C,

and C is said to have limits of type J whenever all diagrams of type J in C have a limit. For

C with this property, there is a functor that computes such limits:

Lim : CJ → C

Analogously for colimits of type J: when they exist, there is a functor Colim : CJ → C

computing them.

Proposition 2.2.2. Any category of presheaves SetC has all limits and colimits. Given a diagram

D : J→ SetC, for all c ∈ |C| we have

LimD(c) = Lim(D(−)(c))

where D(−)(c) : J→ Set is given by D(x)(c) = Dx(c), for x an object of morphism of J. Similarly

for colimits.

In other words: limits and colimits in presheaf categories are computed pointwise in Set.

We will also use a special class of “well-behaved” presheaves, called sheaves. Before

giving their definition, we need some additional notions (see [38],[63, Chapter 4] for details).

Definition 2.2.3 (Coverage). Let C be a small category (i.e. a category whose objects form

a set). A coverage on C is a function assigning to each object c of C a collection T(c) of

families { fi : c → ci}i∈I of morphisms with common domain c, called T-covering families.

These families must satisfy the following requirement:

(C-Ax) for every T-covering family { fi : c → ci}i∈I and every morphism g : c → c′, there

exists a T-covering family {hj : c′ → c′j}j∈J such that, for each j ∈ J, there are fi and

u : ci → c′j making the following diagram commute

c

g
��

fi
// ci

u
��

c′
hj

// c′j

(2.1)

Given a T-covering family F = { fi : c → ci}i∈I and a functor P : C → Set, a family

{pi ∈ P(ci)}i∈I is compatible with P and F if, for every g : ci → c′ and h : cj → c′ such that

g ◦ fi = h ◦ f j, we have pi[g]P = pj[h]P. We say that P is a T-sheaf if, for every T-covering

family { fi : c → ci}i∈I and compatible family {pi ∈ P(ci)}, there is a unique p ∈ Pc such

that p[ fi]P = pi, for each i ∈ I.

Definition 2.2.4 (Sheaves on a site). A site is a pair (C, T) of a category C and a coverage T

on C. The category Sh(C, T) of sheaves on the site (C, T) is the full subcategory of SetC whose

objects are T-sheaves. We write Sh(C), and we call its objects sheaves, when the covering is

clear from the context.
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Now, consider another small category D and a functor F : C → D. Under certain

conditions, (−) ◦ F : SetD → SetC restricts to a functor between categories of sheaves.

Definition 2.2.5 (Reflection of covers). Let (C, T) and (D, S) be sites. Then a functor F : C→
D reflects covers if, for every c ∈ |C| and every S-covering family s ∈ S(Fc) there is a T-

covering family t ∈ T(c) such that {F f | f ∈ t} is contained in s.

Proposition 2.2.6. Let (C, T) and (D, S) be sites, and consider F : C → D and P : D → Set. If F

reflects covers and PF is a T-sheaf then P is a S-sheaf.

2.2.2 Locally presentable categories and accessible functors

Our theory will be developed using locally presentable categories as domains and accessible

functors as constructors for syntax and semantics. Here we illustrate these notions and

related results. Our main reference is [6].

Definition 2.2.7 (λ-filtered category.). Let λ be an infinite regular cardinal. Then a small

category A is λ-filtered if, for any category B such that the cardinality of |B| is less than λ,

any diagram D in A of type B has a cocone in A. A colimit is λ-filtered when it is a colimit of

a functor F : A→ C, with A a λ-filtered category.

λ-filtered categories generalize the notion of directed preorders, that are sets such that

every finite subset has an upper bound.

Definition 2.2.8 (Locally λ-presentable category.). An object c of a category C is λ-

presentable if the functor HomC(c,−) : C → Set preserves λ-filtered colimits. A category

C is locally λ-presentable if it has all limits and there is a set of λ-presentable objects X ⊆ |C|
such that every object is a λ-filtered colimit of objects from X.

For instance, in the category Set, locally λ-presentable objects are precisely the finite sets

with cardinality less than λ. Set is locally ω-presentable: every set is a ω-filtered colimit of

its finite subsets and there is a set of cardinality ω that generates the whole Set, namely the

one containing one finite set of cardinality n, for all n ∈N.

Since we will work with functor categories, we need the following result.

Proposition 2.2.9. For each locally λ-presentable category A and small category B, the functor

category AB is λ-presentable.

In particular, since Set is ω-presentable, we have that the presheaf category SetB is ω-

presentable as well.

Definition 2.2.10 (Accessible functor.). Let A and B be locally λ-presentable categories. A

functor F : A → B is λ-accessible if it preserves λ-filtered colimits. We just say that F is

accessible if it is λ-accessible for some λ.

We recall some constructions which yield accessible functors.
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Proposition 2.2.11.

(i) Products, coproducts and composition of accessible functors are accessible.

(ii) Left and right adjoints between locally presentable categories are accessible ([6, Proposition

2.2.3]).

2.2.3 Kan extensions

Important operations on functor categories are Kan extensions [41, X]. Consider three

categories A, B and C and a functor J : A → B. There is an obvious functor R : CB → CA,

given by precomposition with J. Under certain conditions, this functor has right and left

adjoints, which we denote by ER and EL, computing right and left Kan extensions. Their name

is justified by observing that, whenever A is a subcategory of B, then R restricts the domain

of functors B→ C to A, and ER, EL extend the domain of a functor A→ C to the whole B.

We now show the construction of ER described in [41, X.3]. That of EL is analogous and

dual. Consider a functor G : A→ C. Fixed b ∈ |B|, the idea is to compute ERG(b) via a limit

construction. Recall that the comma category b ↓ J is defined as follows: its objects are pairs

( f : b→ Ja, a) and its morphisms ( f : b→ Ja, a)→ ( f ′ : b→ Ja′, a′) are morphisms Ja→ Ja′

in B that commute with f and f ′. Now, consider the functor P : b ↓ J → A, given by

( f : b→ Ja, a) 7−→ a

h : ( f : b→ Ja, a)→ ( f : b→ Ja′, a′) 7−→ h : a→ a′
(2.2)

Its composition with G gives a functor b ↓ J → C, which can be depicted as

b
f

��

f ′
��

��

Ja
h
// Ja′ // · · · � P

// a
h
// a′ // · · · � G

// Ga
Gh
// Ga′ // · · ·

This functor can be regarded as a diagram of type b ↓ J in C. Provided that C has suitable

limits, the vertex of the limiting cone for GP (depicted below) gives the action of ERG on b

ERG(b)
λ f

{{

λ f ′
��

##

Ga //

Gh
// Ga′ // · · ·

(2.3)

The action of ERG on a morphism g : b→ b′ in B can be computed via the universal property

of limits. The key observation is that g yields a correspondence between b ↓ J and b′ ↓ J:

given ( f : b′ → Ja, a) in b′ ↓ J, there is an object in b ↓ J with the same codomain, namely

( f g : b → Ja, a); consequently, for each morphism h in b′ ↓ J there is a morphism h′ in

b ↓ J that has the same underlying morphism as h, and whose domain and codomain are
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determined by those of h as described. This situation is depicted as follows.

b

zz

f ◦g
��

f ′◦g
$$

))

g
// b′

f

uu

f ′

zz ��

. . . // Ja //

h
// Ja′ // · · ·

Now, let P′ : b ↓ J → C be defined similarly to (2.2). The described correspondence between

b ↓ J and b′ ↓ J implies that the image of GP′ is contained in that of GP, so there is a cone for

GP′ inside every limiting cone for GP, and these cones clearly share the same vertex ERG(b).

Then, the value of ERG at g is defined to be the unique morphism from ERG(b) to the vertex

of the limiting cone for GP′, namely ERG(b′).

ERG(b)

ww

λ f ◦g
��

λ f ′◦g

''
++

ERG(g)
// ERG(b′)

λ′f

ss

λ′f ′

ww ��

. . . // Ga //

h
// Ga′ // · · ·

(2.4)

Summarizing, we have the following result.

Theorem 2.2.12 ([41, X.3, Theorem 1]). Given J : A → B, let G : A → C be a functor such that

GP : b ↓ J → C has a limit in C, for each b ∈ |B|. Then the right Kan extension of G along J can

be computed as follows. Its action on b ∈ |B| is given by

ERG(b) := Lim(GP)

and its action on morphisms g : b → b′ gives the unique morphism ERG(b) → ERG(b′) that

commutes with the involved cones.

The following corollary spells out conditions for the existence of right Kan extensions.

Corollary 2.2.13 ([41, X.3, Corollary 2]). If A is small and C has all limits, any functor G : A→ C

has a right Kan extension along any J : A→ B.

Left Kan extension, dually, are computed as pointwise colimits

ELG(b) = Colim((J ↓ b)
Q−→ A G−→ C)

where J ↓ b is the comma category with objects of the form (a, f : Ja → b) and Q maps

(a, f : Ja→ b) to a.

2.2.4 Coalgebras

The behavior of a system can be modeled in a categorical setting through coalgebras [60, 4].

Given a behavioral endofunctor B : C → C, describing the “shape” of a class of systems, we

have a corresponding category of coalgebras.
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Definition 2.2.14 (B-Coalg). The category B-Coalg is defined as follows: objects are B-

coalgebras, i.e. pairs (X, h) of an object X ∈ |C|, called carrier, and a morphism h : X → BX,

called structure map; B-coalgebra homomorphisms f : (X, h)→ (Y, g) are morphisms f : X → Y

in C making the following diagram commute

X h
//

f
��

BX

B f
��

Y g
// BY

For instance, let P f : Set→ Set be the finite powerset functor, given by

P f X := {Y ⊆ X | X finite}

P f h := {h(Y) | Y ∈ P f X} (h : X → X′)

Given a set of labels L, a finite-branching labelled transition system (X,−→) with −→⊆
X× L× X, can be represented as a coalgebra (X, h) for the functor

Blts := P f (A×−) .

Its structure map is given by

h(x) := {(x′, l) | x l−→ x′}

The commutative diagram for a Blts-coalgebra homomorphism f amounts to saying that

transitions are preserved and reflected by f , i.e.:

• whenever x l−→ x′ then f (x) l−→ f (x′) (preservation);

• i.e. whenever f (x) l−→ x′ then there is x′′ such that x l−→ x′′ and x′ = f (x′′) (reflection).

Recall that a subobject of X ∈ |C| is an isomorphism class of monomorphisms s : S ↪→ X

(two morphisms f : S1 → X g : S2 → X are isomorphic whenever there is an isomorphism

S1 → S2 that commutes with f and g). Using this notion, we can characterize behavioral

equivalences in B-Coalg.

Definition 2.2.15 (B-bisimulation). Given two B-coalgebras (X, h) and (Y, k), a B-

bisimulation between them is a span (p1, p2) : R ↪→ X × Y in C such that there is r : R → BR

making the following diagram commute

X

h
��

R
p1

oo
p2
//

r
��

Y

k
��

BX BR
Bp1

oo

Bp2

// BY

If (Y, h) = (X, k) then we say that (p1, p2) is a B-bisimulation on (X, k). The greatest B-

bisimulation is called B-bisimilarity. In the following we will leave the span implicit, using

its vertex R to indicate the B-bisimulation.



2.2 Categorical notions 25

Blts-bisimulations on a Blts-coalgebra (X, h) are indeed ordinary bisimulations on the

equivalent LTS (X,−→h). In fact, subobjects in Set are subsets, so R is a relation on X; and,

given (p, q) ∈ R, for each transition p l−→h p′ we have one transition

(p, q) l−→r (p′, q′)

in (R,−→r), due to the commutativity of the left square, but this means that there is

a transition q l−→h q′ as well, due to the commutativity of the right square. Moreover,

(p′, q′) ∈ R, by definition of Blts.

The final coalgebra, whenever it exists, can be regarded as the universe of abstract

behaviors. Roughly speaking, the unique morphism from a coalgebra to the final one assigns

to each state its abstract semantics. A sufficient condition for the existence of final coalgebras

is the following.

Theorem 2.2.16. Every accessible endofunctor B : C→ C on a locally presentable category C has a

final coalgebra.

The functor Blts satisfies the hypothesis of Theorem 2.2.16, therefore admits a final

coalgebra: its carrier contains all the finitely branching trees (quotiented by bisimilarity)

whose edges are labelled by elements of L. The unique morphism from any coalgebra (X, h)

associates to each state x ∈ X the tree representing its computation.

Now we discuss the conditions under which abstract semantics and B-bisimilarity agree.

Recall that a kernel pair of f : c → c′ is a pair of morphisms p1, p2 : p → c such that the

following diagram is a pullback

p
p1
//

p2

��

c

f
��

c
f
// c′

A kernel pair of f in Set is indeed the kernel of f , i.e. the relation {(x, y) ∈ c× c | f (x) =

f (y)}, together with projections. Moreover, recall that a weak pullback is defined as a pullback,

except that the uniqueness property of the mediating morphism is dropped.

Theorem 2.2.17. If B preserves weak pullbacks, then the kernel pair of every B-coalgebra homo-

morphism from (X, h) is a B-bisimulation on (X, h). In particular, the kernel pair of the unique

homomorphism to the final coalgebra coincides with the B-bisimilarity; in other words: the abstract

semantics is fully abstract w.r.t. B-bisimulation.

This result, instantiated to Blts-coalgebras, says that two states of a coalgebra are Blts-

bisimilar if and only if they are are mapped to the same tree by the final morphism.

2.2.5 Coalgebras over presheaves

Whenever the behavioral endofunctor is of the form B : SetC → SetC, its coalgebras and

bisimulations have some properties that are worth discussing.
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B-coalgebras are pairs (P, ρ) of a presheaf P : C → Set and a natural transformation

ρ : P → BP. The naturality of ρ imposes a constraint on behavior: for any f : c → c′ the

following diagram must commute

p ∈ Pc
_

[ f ]P
��

� ρc
// ρc(p) ∈ BP(c)

_

[ f ]BP
��

p[ f ]P ∈ P(c′) �
ρc′

// ρc′(p)[ f ]BP ∈ BP(c′)

This diagram means that behavior must be preserved (top and right morphisms) and

reflected (left and bottom morphisms) by the action of P on the index category morphisms.

Also bisimulations have more structure. A B-bisimulation R on (P, ρ), with P : C→ Set,

is a presheaf such that Rc ⊆ Pc × Pc, so the morphisms from R to P in the diagram

of Definition 2.2.15 are projections. Moreover, since these are natural transformations, by

commutativity of the following diagram we have that R is closed under the action of P on

the index category morphisms.

p ∈ Pc
_

[ f ]P
��

(p, q) ∈ Rc
_

[ f ]R=[ f ]P×[ f ]P
��

�(π1)c
oo � (π2)c

// q ∈ Pc
_

[ f ]P
��

p[ f ]P ∈ P(c′) (p[ f ]P, q[ f ]P) ∈ R(c′)�
(π1)c′
oo �

(π2)c′
// q[ f ] ∈ P(c′)

In order to establish a correspondence between coalgebras over presheaves and transition

systems, and between coalgebraic and ordinary bisimulations, in [63] transition systems and

bisimulations over indexed states are introduced. The original definition is tailored for the π-

calculus, but we give a more general one. These transition systems will be used in Chapter 4

to relate coalgebraic and set-theoretic notions of behavior for our calculus.

Definition 2.2.18 (C-indexed labelled transition system). Given a set of labels L, a C-indexed

labelled transition system (C-ILTS) is a pair (P,−→) of a presheaf P : C→ Set and a transition

relation −→⊆
∫

P× L×
∫

P.

Definition 2.2.19 (C-indexed bisimulation). A C-indexed bisimulation on a C-ILTS (P,−→) is

an indexed family of relations {Rc ⊆ Pc× Pc}c∈|C| such that, for all (p, q) ∈ Rc

(i) if c ` p l−→ c′ ` p′ then there is c′ ` q′ such that c ` q l−→ c′ ` q′ and (p′, q′) ∈ Rc′ ;

(ii) for all f : c→ c′, (p[ f ], q[ f ]) ∈ Rc′ .

2.3 The π-calculus model

This section is devoted to the π-calculus model presented in [28, 63], which is the inspiration

of this thesis. We summarize the relevant results.
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2.3.1 Model of resources

Finite sets of names and renamings can be modeled as the category F.

Definition 2.3.1 (Category F). The category F has finite ordinals n := {1, . . . , n} as objects

and functions σ : n→ m as morphisms.

Each n ∈ |F| represents a set of n names, and each σ : n → m represents a renaming

that only affects those names, and leaves the other ones unchanged. This category is the

skeletal version (i.e. a small, equivalent subcategory such that no two different objects are

isomorphic) of the category of finite sets and functions FinSet. Since FinSet has finite limits

and colimits, by equivalence also F does.

Existence of coproducts allows modeling allocation of fresh names in F as

n
oldn
// n + 1 1

newn
oo

where newn picks the fresh name from n + 1 and oldn the old ones. This is a convenient

representation, because it automatically yields a notion of capture avoiding renaming: given

σ : n→ m, by the universal property of coproducts we have

n

σ

��

oldn
// n + 1

σ+id1

��

1
newn
oo

id1

��

m
oldm

// m + 1 1newm
oo

(2.5)

The morphism σ + id1 is “capture avoiding”, in the sense that it never replaces old names

with fresh ones and viceversa. These constructions can be used to define an allocation operator

δ : F→ F:

δn := n + 1 δσ := σ + id1 .

We will also need the subcategory of F with only injective morphisms, denoted by I. The

functor δ is defined on I as well.

2.3.2 Presheaf environment

The basic domains for processes and their semantics will be SetF and SetI. We list some

operators for these categories. Those in SetF also are defined in SetI as expected.

Presheaf of names. N : F → Set translates n into the corresponding set of names and each

morphism to the corresponding function. This is given by

N := HomF(1,−)

Explicitly, we have

N n = F[1, n] ∼= {1, . . . , n}
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and, given σ : n→ m and a ∈ N n (i.e. a : ?→ n), we have

a[σ]N = σ ◦ a

which is the analogous of the function application σ(a).

Allocation operator. ∆ : SetF → SetF is the lifting of δ to presheaves, given by precomposi-

tion with δ. Explicitly

∆P(n) = P(n + 1) [σ]∆P = [σ + id1]P

In words: ∆P generates processes with one additional name than those of P for the same

index, and gives renamings that preserve freshness of that name.

Finite powerset. P f : SetI → SetI, acting pointwise as P f (the finite powerset functor on

Set), i.e. maps each presheaf P to the presheaf n 7→ P f (Pn). There is also a non-empty version

P+
f , which discards the empty set from P f (Pn).

Exponential. PN : I → Set given by PN n = SetI(HomI(n,−)×N , P) [41, I.6]. In [27] it is

shown that a finitary description is permitted, namely

PN (n) = P(n)n × P(n + 1) ,

because, intuitively, each natural transformation in PN is fully characterized by its action on

“known” names and on a generic new name.

Partial exponential. P ⇀⇀ (−), with P : I → Set, mapping Q : I → Set to the set of partial

functions {Pn ⇀ Qn}.

Sheaves play an important role in this model. The category Sh(I) we consider is known

as the Schanuel topos: it consists of sheaves for the coverage Ts made of singleton families of

the form { f : n � m} (see [63, §4.2.1] for a proof that Ts is a proper coverage). The following

is a characterization result for Sh(I), given in [38, A.2.1,Example 2.1.11(h)].

Proposition 2.3.2. Sheaves in Sh(I) are presheaves I→ Set that preserve pullbacks.

Given a sheaf P, n ∈ |I| and p ∈ Pn, we have a notion of support and seed of p.

Definition 2.3.3 (Support and seed). We say that i : m ↪→ n supports p if, for all f , g : n → k

such that f ◦ i = g ◦ i, we have p[ f ] = p[g]. The unique p′ ∈ Pm such that p′[m ↪→ n] = p is

called seed of p at m.

Using sheaf-theoretic concepts introduced in §2.2.1, we can reformulate these definitions

as follows: m supports p ∈ Pn whenever {p} is compatible with the singleton family {m ↪→
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n}; the existence and uniqueness of the seed is precisely the characterizing property of Ts-

sheaves. Most importantly, as shown in [30], p admits a minimal support, given by intersecting

all its supports via pullbacks.

As for sheaves on F, it is easy to see that Ts is also a valid coverage for F and the

embedding I ↪→ F reflects this coverage. So, by Proposition 2.2.6, we have the following.

Proposition 2.3.4. A presheaf P in SetF is a sheaf whenever so is P ◦ (I ↪→ F).

2.3.3 Presheaf of processes

The π-calculus processes in [28] are computed as the initial algebra for a suitable signature,

which incorporates α-conversion by employing ∆ to model name binding (see [26] for a

detailed account of categorical abstract syntax in the presence of name binding). We are not

interested in the algebraic aspects, so we give a direct definition of the presheaf Π : F→ Set

of processes: its action on objects is

Πn := {[p]α | fn(p) ⊆ N n} .

where [p]α denotes a canonical representative of the α-equivalence of p; its action on a

morphism σ : n → m produces the homomorphic and capture-avoiding extension of σ to

processes in Πn (capture-avoidance is achieved as in (2.5)). Notice that the index of a process

is always an over-approximation of its free names: this is crucial to give the semantics of

name allocation.

Now, let ΠI be the restriction of Π to injective renamings, i.e.

ΠI := Π ◦ (I ↪→ F)

This functor can be shown to preserve pullbacks. Then, according to Proposition 2.3.2, it is

a sheaf, and from Proposition 2.3.4 we get that Π is a sheaf as well. As a consequence, we

gain (minimal) supports and seeds. The notion of support, for such functors, can be restated

as follows: given a process p ∈ ΠIn (=Πn), m ↪→ n supports p if fn(p) ⊆ m; clearly, minimal

support coincides with fn(p). In other words, it is always possible to find the actual free

names, and the corresponding seed, of an element of ΠI and Π.

2.3.4 Coalgebraic semantics

The π-calculus transition system and its bisimulations cannot be modeled in SetF. This

is due to the intrinsic structure of coalgebras and coalgebraic bisimulations in a presheaf

setting: as explained in §2.2.5, they can only model behavior and relations which are

closed under the index category morphisms. In the case of SetF, this means closure under

all renamings. However, the π-calculus transitions system is not closed under generic

renamings (Remark 2.1.4), but only under injective ones, so one can give a coalgebraic

semantics in SetI. We present the coalgebraic environment for the late π-calculus with early

bisimulation of [28].
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Definition 2.3.5 (Early behavioral functor). The behavioral functor Be : SetI → SetI for

early bisimulation is

BeP := N⇀⇀ (P+
f P)N (Input)

× N⇀⇀ P+
f (N × P) (Free output)

× N⇀⇀ P+
f (∆P) (Bound output)

× 1⇀⇀ P+
f P (Silent action)

To understand this definition, consider P : I→ Set and n ∈ |I|. Then we have

BePn = {n ⇀ ((P+
f Pn)n ×P+

f P(n + 1))}
× {n ⇀ P+

f (n× Pn)}
× {n ⇀ P+

f P(n + 1)}
× {1 ⇀ P+

f Pn}

Any structure map P→ BeP maps p ∈ Pn to a tuple of partial functions 〈in, out, bout, tau〉:
each is defined at a ∈ n whenever p can do the corresponding action with subject a, and its

image is the set of continuations after the action is performed. The interesting case is in: it

maps a to a pair ( f , X), where f (b) gives the set of continuations after receiving a known

name b (i.e. b ∈ n), and X those after receiving the fresh name; this models early input,

because the continuation depends on the chosen input value. Notice that we wrote “the

fresh name” because this is univocally determined by δ, according to the index of the source

process. This means that all the transitions of the π-calculus transition system, differing only

by the choice of the fresh communicated name, are collapsed to a unique element of X.

Definition 2.3.5 is the traditional presentation of Be, tailored to early bisimulation on late

semantics (see Definition 2.1.5), where the input channel is chosen first, and then all possible

instantiations of the continuations are compared. Non-input actions are formalized in the

same way for uniformity, but the following isomorphisms

P f (P + Q) ∼= P f (P)×P f (Q) P f (N × P) ∼= N⇀⇀ P+
f (P) P f (P) ∼= 1⇀⇀ P+

f (P)

allows one to give an alternative presentation:

BeP := N⇀⇀ (P+
f P)N︸ ︷︷ ︸

Input

×P f (N ×N × P︸ ︷︷ ︸
Free output

+ N × δP︸ ︷︷ ︸
Bound output

+ P︸︷︷︸
Silent action

)

The behavioral endofunctor for our calculus will have a similar shape.

In [28] it shown that each functor appearing in the definition of Be is accessible and

preserves weak pullbacks, so also Be has the same properties. Therefore, Be-Coalg has a

final coalgebra (Theorem 2.2.16) and Be-bisimilarity agrees with it (Theorem 2.2.17).

The set-theoretic counterparts of Be-coalgebras are I-ILTS based on the following

presheaf of early labels

Labe := N ×N︸ ︷︷ ︸
free input

+ N︸︷︷︸
bound input

+ N ×N︸ ︷︷ ︸
free output

+ N︸︷︷︸
bound output

+ 1︸︷︷︸
silent

.
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Definition 2.3.6 (I-indexed labelled early transition system). A I-indexed labelled ground

transition system (I-ILeTS) is a I-ILTS with labels in
∫

Labe such that:

(i) Each n ` p has finitely many transitions, all of the form:

• n ` p ab−→ n ` p′, a, b ∈ N n (free input);

• n ` p
a(?)−−→ δn ` p′, a ∈ N n (bound input);

• n ` p ab−→ n ` p′, a, b ∈ N n (free output);

• n ` p
a(?)−−→ δn ` p′, a ∈ N n (bound output);

• n ` p τ−→ n ` p′ (silent action).

(ii) For all σ : n � m in I and φ ∈ {δ, IdI}:

• if n ` p
µ−→ φn ` p′ then m ` p[σ]

µ[σ]−−→ φ(m) ` p[φσ] (transitions are preserved by

σ);

• if m ` p[σ]
µ′−→ φm ` p′′ then n ` p

µ−→ φn ` p′, with µ[σ] = µ′ and p′[φσ] = p′′

(transitions are reflected by σ).

Proposition 2.3.7. I-ILeTSs are in bijection with Be-coalgebras.

The idea behind this equivalence is that, fixed a presheaf of states P, each kind of

transition in (i) of Definition 2.3.6 “mimics” the corresponding component of BeP. For

instance, consider the function in, modeling input in the image of a Be-coalgebra structure

map; for this we have:

• n ` p ab−→ n ` p′ whenever ( f , X) ∈ in(a) and p′ ∈ f (b);

• n ` p
a(?)−−→ δn ` p′ whenever ( f , X) ∈ in(a) and p′ ∈ X.

Condition (ii) of Definition 2.3.6 says that the transition relation must behave like a natural

transformation. In the following we write (P,−→ρ) for the I-ILeTS induced by the Be-

coalgebra (P, ρ).

The notion of behavioral equivalence for I-ILeTSs is the following.

Definition 2.3.8 (I-indexed early bisimulation). I-indexed early bisimulations are I-indexed

bisimulations on I-ILeTSs.

There is an important aspect to highlight: I-indexed early bisimulations, unlike ordinary

early bisimulations, do not need special side conditions to enforce freshness of communi-

cated bound names. To see this, consider the simulation condition (i) of Definition 2.2.19

when two bound inputs are compared:

n ` p
a(?)−−→ δn ` p′ then n ` q

a(?)−−→ δn ` q′ ;
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the input bound name is always the new one in δn, so it is fresh w.r.t. both p and q by

construction.

Be-bisimulations and I-indexed early bisimulations are related by the following state-

ment.

Proposition 2.3.9 ([63, Proposition 3.3.13]). Every Be-bisimulation on a coalgebra (P, ρ) is

equivalent to an I-indexed early bisimulation on (P,−→ρ).

The idea is simple: any Be-bisimulation is also a Be-coalgebra so, by Proposition 2.3.7, it

can be turned into an I-indexed early transition system. The states of this transition system

are pairs of states of (P,−→ρ) that can simulate each other, and each pair of simulating

transitions is represented as a unique one going from the pair of sources to the pair of

continuations.

The opposite correspondence is not true: as explained in [63, §3.3.3,Anomaly], if an I-

ILeTS has presheaf of states that does not preserve injections, it might be the case that some

of its bisimulations cannot be turned into Be-bisimulations. This is where sheaves Sh(I)

comes into play: if, instead, the presheaf of states is a sheaf, this problem does not arise,

because sheaves preserve pullbacks, therefore also injections.

Theorem 2.3.10 ([63, Theorem 4.2.5]). Let (P, ρ) be a Be-coalgebra and suppose P is a sheaf. Then

Be-bisimulations on (P, ρ) are in bijection with I-indexed early bisimulations on (P,−→ρ).

Finally, let use instantiate this machinery to the π-calculus. We refer to [63, 3.3.3] for

the construction of an I-ILeTS (ΠI,−→π) for the π-calculus; this construction consists

in assigning indices to processes in early π-calculus transitions.1 Since ΠI is a sheaf,

by Proposition 2.3.7 Be-bisimulations on the Be-coalgebra induced by (ΠI,−→π) fully

correspond to I-indexed early bisimulation on (ΠI,−→π), which are clearly equivalent to

ordinary early bisimulations closed under injective renamings. Among these we also have

early bisimilarity, by Proposition 2.1.6.

2.3.5 Compositional semantics

Early congruence for the π-calculus is defined to be the greatest bisimulation closed under

all renamings, so the most natural environment for its coalgebraic representation is SetF.

Fiore and Turi in [28] illustrate a way of lifting the coalgebraic machinery introduced so far

to this category. The basic construct is the following adjunction

SetF
R &&

⊥ SetI

ER
ee

(2.6)

1Actually, the author of [63] works with presheaves on a category that is not skeletal, namely the category of finite

subsets of names and injections. Skeletality slightly complicates the translation, as we will show for our calculus.
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where R is precomposition with the embedding I ↪→ F and ER is the functor giving right

Kan extensions along I ↪→ F (see §2.2.3). Then, the lifting of Be to SetF is

B̂e := ERBeR

The category B̂e-Coalg contains coalgebras and bisimulations that are closed under all

renamings. The definition of B̂e ensures the existence of the final coalgebra: ER and R are

adjoints between locally presentable categories, so they are accessible and their composition

with Be is accessible as well (Proposition 2.2.11).

Moreover, since ER and R are both right adjoints, they preserve limits, in particular

(weak) pullbacks, and this property is preserved by composition. This implies that the

abstract semantics induced by the final coalgebra is fully abstract w.r.t. B̂e-bisimilarity.

The adjunction (2.6) gives a way of lifting Be-coalgebras to B̂e-coalgebras, and restricting

B̂e-coalgebras to Be-coalgebras. Consider, in fact, the associated bijection between mor-

phisms

HomSetI(RP, Q) ∼= HomSetF(P, ERQ) (P ∈ |SetF|, Q ∈ |SetI|)

This, instantiated with Q = BRP, yields

HomSetI(RP, BRP) ∼= HomSetF(P, ERBRP)

= HomSetF(P, B̂eP) .
(2.7)

which can be summarized as:

Proposition 2.3.11. B̂e-coalgebras on P ∈ |SetF| are in bijection with Be-coalgebras on RP.

This result can be instantiated to coalgebraic bisimulations, as they have associated

coalgebra structure maps, which then can be extended or restricted along the adjunction.

Corollary 2.3.12. Given a B̂e-coalgebra (P, ρ), let (RP, ρ′) be its restriction via (2.7). Then a

presheaf R : F → Set is a B̂e-bisimulation on (P, ρ) if and only if RR is a Be-bisimulation on

(RP, ρ′).

A further step can be taken: whenever P is a sheaf, then Theorem 2.3.10 can be applied to

Be-bisimulations RR characterized by Corollary 2.3.12, establishing that they are equivalent

to I-indexed early bisimulations on (RP,−→ρ′) that are closed under all renamings. This

result is [28, Proposition 3.1], except that P is not required to be a sheaf in the original

statement, which then is true only for the direction from B̂e-bisimulations to I-indexed early

bisimulations. The sheaf property ensures that the other direction works as well.

Proposition 2.3.13 ([28, Proposition 3.1]). Let (P, ρ) be a B̂e-coalgebra, with P a sheaf Sh(F),

and let (RP, ρ′) be its restriction via (2.7). Then B̂e-bisimulations on (P, ρ) are in bijection with

I-indexed bisimulations on (RP,−→ρ′) that are closed under all renamings.

This result can be used to get a coalgebraic characterization of π-calculus early congru-

ence. Take the Be-coalgebra induced by the π-calculus I-ILeTS (ΠI,−→π), and translate it to
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a B̂e-coalgebra using Proposition 2.3.11. Then Proposition 2.3.13 says that B̂e-bisimulations

on this B̂e-coalgebra are equivalent to I-indexed early bisimulations on (ΠI,−→π), and

thus to ordinary early bisimulations, that are closed under all renamings. In particular, the

greatest such B̂e-bisimulation coincides with early congruence.



Chapter 3

Network Conscious π-calculus

In this chapter we introduce the Network Conscious π-calculus (NCPi).

In §3.1 we motivate some design choices for our calculus through an illustrative example,

inspired by Software Defined Networks. We show that having creation, provision and usage

of network resources as distinct primitives is essential to model such systems.

In §3.2 we give the syntax of NCPi. We introduce site and link names and we use

them as building blocks for NCPi processes. All the definitions in this section are tailored

to the intuition that free names of processes should describe a graph. In fact, we take

graph homomorphisms as renamings and we define well-formed processes as those without

dangling links, i.e. free links with a bound endpoint. Structural congruence is given for such

processes only, as α-conversion w.r.t. dangling links would be impossible.

In §3.3 we give NCPi operational semantics. We define observations as routing paths

and we give SOS rules. These rules extend the π-calculus ones, but the synchronization

mechanism is more complex: besides complete communications, it also derives partial paths

by concatenating existing ones. Then we define network conscious bisimilarity as the standard

bisimilarity for the NCPi transition system. We conclude by showing how to recover the

π-calculus and its early semantics.

In §3.4 we give some closure properties of the transition systems, which fully reflect

analogous ones of the π-calculus.

In §3.5 we deal with the congruence property: this does not hold, even considering

bisimulations that are closed under all renamings, but we hint at a syntactic restriction that

could be better-behaved.

Finally, in §3.6 we demonstrate the convenience of our calculus, by discussing whether

and how the π-calculus can model network topologies and end-to-end routing.
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Figure 3.1: Example system.

3.1 Illustrative example

In order to have a first look at the calculus, consider the system depicted in Figure 3.1. Its

aim is modeling a network where the routing structure is determined at run-time, like in

SDNs. We have a network manager M, capable of creating new links and granting access to

them, and two processes P and Q, which access the network through a and b respectively;

they are willing to communicate, but no links exists between a and b, so P will ask M to create

such link.

The formal definition is as follows

M
def
= m(x).m(y).(lxy)(mlxy.M) P

def
= aa.ab.a(lab).(ac.P′ | L(lab))

L(lxy)
def
= lxy.L(lxy) Q

def
= b(x).Q′

It says that M can receive two sites at M, create a new link between them and send it from

M. The process P can send a and b from a, wait for a link at a and then become the parallel

composition of two components: the first one can send c from a; the second one invokes the

process L, whose function is activating the link lab. This activation is expressed as the link

prefix lab.− in the definition of L, and its effect is spawning a transportation service over lab,

which can be used by the execution context to forward a datum from a to b. The link prefix

expresses a single activation of the link, as input/output prefixes in the π-calculus express

a single usage of their subject channel. This explains the recursive definition of L, which

is intended to model a persistent connection. The process Q simply waits for a datum at b.

Finally, the whole system S is the parallel composition of P, Q, M and two processes modeling

a bidirectional persistent connection between a and M.

S
def
= P | M | Q | L(lam) | L(l′ma)

Before showing some steps of computation, we briefly introduce observations by compari-

son with the π-calculus.

As in the π-calculus, we have observations representing inputs, output and complete

communications. However, since NCPi allows for remote communications, they all include

the (possibly empty) sequence of links that are traversed in the communication. For instance,
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the process P can emit a at a as follows

P
•;aa−−→ ab.a(lab).(ac.P′ | L(lab))

The label •; aa is a zero-length (i.e. with empty sequence of links) output path, which can be

seen as the π-calculus action aa. The symbol • is syntactic sugar, indicating where the path

starts. In general, there may be a list of links between • and aa, describing the path a goes

through before being emitted.

Symmetrically, M can receive a at m

M
am;•−−→ (lay)mlay.M

where am; • is an input path, analogous to the early π-calculus input action ar. Input paths

always have length zero, as we only allow local receptions (this restriction will be dropped

in a later chapter).

Before introducing paths denoting complete communications, we introduce service paths,

which have no counterpart in the π-calculus. A service path has the form a; W; b, where W is

a sequence of links. It represents a transportation service that can be used by the execution

context to route a datum from a to b. For instance we have

L(lam)
a;lam ;m−−−−→ L(lam)

where a; lam; m is a transportation service from a to m over lam.

Finally, we have complete communication, denoted by a complete path •; W; •. Unlike the

π-calculus τ-action, this observation is not silent, but we allow the path W of the transmitted

datum to be observed; the datum itself remains unobservable. This is a precise design

choice we made: as mentioned, this could be useful when modeling and analyzing routing

algorithms. Another difference is that a complete path is usually produced by more than one

synchronization, each one concatenating a compatible pair of paths. For instance, in order

for P to communicate a to M, there must be a first synchronization between P and L(lab),

causing •; aa and a; lam; m to be concatenated

P | L(lam)
•;lam ;ma−−−−→ . . .

Here the continuation is the parallel composition of those shown above, and •; lam; ma is an

output path where a is emitted at m after traversing lam. A complete path is produced by

another, final synchronization between P | L(lam) and M

P | L(lam) | M
•;lam ;•−−−→ . . .

meaning that a complete communication over lab has happened.

Now we overview the steps S can perform:

1. P communicates to M the endpoints a and b of the link to be created: it is observed as

two consecutive occurrences of •; lab; •. The state of the system after this interaction is

a(lxy).(L(lxy) | ac.P′) | (lab)(mlab.M) | Q | L(lam) | L(l′ma) .
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2. mlab.M communicates lab to a(lxy).(L(lxy) | ac.P′): we first rearrange the processes using

structural congruence

(lab)( a(lxy).(L(lxy) | ac.P′) |mlab.M | L(l′ma) ) | Q | L(lam) .

Now the processes within the scope of lab can interact, and the resulting observation is

•; l′ma; •, with continuation

(lab)(L(lab) | ac.P′ | M | Q) | L(lam) | L(l′ma) .

3. ac.P′ communicates c to Q: in this case, despite lab is used for the transmission, only •; •
can be observed, because such link is restricted. This is analogous to the π-calculus τ

action. The continuation is

(lab)(L(lab) | P′ | M | Q′[c/x]) | L(lam) | L(l′ma) .

3.2 Syntax

We assume an enumerable set of site names S (or just sites) and an enumerable set of link

names L (or just links), equipped with two functions s, t : L → S , telling source and target

of each link. We denote by lab a link l such that s(l) = a and t(l) = b. We write Lab for the

set of links of the form lab and La for the union of all Lab and Lba, for all b.

The syntax of NCPi is given in Figure 3.2: n(r) denotes the names in r, including a and b

if r is lab. We have the usual inert process, sum and parallel composition. Prefixes can have

the following forms:

• The output prefix ar: ar.p can emit the datum r at a and continue as p.

• The input prefix a(r): a(r).p can receive at a a datum to be bound to r and becomes p.

• The link prefix lab: lab.p can offer to the environment the service of transporting a datum

from a to b through l and then continue as p.

• The τ prefix: τ.p can perform an internal action and continue as p.

We require that formal parameters in definitions do not have names in common, because

otherwise we might have type dependencies between parameters, e.g. in A(a, lab) one of the

second parameter’s endpoints depends on the first parameter.

The free names fn(p) of a process p are

fn(0) := ∅ fn(τ.p) := fn(p)

fn(ar.p) := {a} ∪ n(r) ∪ fn(p) fn(lab.p) := {lab, a, b} ∪ fn(p)

fn(b(a).p) := {b} ∪ (fn(p) \ ({a} ∪ La)) fn(a(lbc).p) := {a, b, c} ∪ fn(p) \ {lbc}

fn((a)p) := fn(p) \ ({a} ∪ La) fn((lab)p) := {a, b} ∪ fn(p) \ {lab}

fn(p + q) := fn(p | q) := fn(p) ∪ fn(q) fn(A(r1, . . . , rn)) := n(r1) ∪ · · · ∪ n(rn)
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p ::= 0 | π.p | p + p | p | p | (r)p | A(r1, r2, . . . , rn)

π ::= ar | a(r) | lab | τ

r ::= a | lab

A(r1, r2, . . . , rn)
def
= p i 6= j =⇒ n(ri) ∩ n(rj) = ∅

Figure 3.2: NCPi syntax.

where we must have fn(p) ⊆ fn(A(r1, . . . , rn)) whenever A(r1, r2, . . . , rn)
def
= p. Notice the

cases (a)p and b(a).p: a free link in p having a as endpoint is considered bound in (a)p and

b(a).p. This intuitively means that a global link cannot have private endpoints.

Now we define renamings. In the following, we shall use the usual notation

[r′1/r1, r′2/r2, . . . , r′n/rn] to indicate the substitution mapping r1 to r′1, r2 to r′2 . . . rn to r′n.

In our case, we call renaming a substitution that respects the graph-structure determined by

names: indeed, S and L, together with s and t, can be regarded as an infinite graph. In other

words, a renaming should be a graph homomorphism, i.e. each link should be mapped to one

whose endpoints are the image through the substitution of the original link’s endpoints.

Definition 3.2.1 (Renaming). A renaming σ is a pair of functions 〈σS : S → S , σL : L → L〉
such that

σL(lab) = l′a′b′ =⇒ σS (a) = a′ ∧ σS (b) = b′ .

It may seem that the premise of the implication is underspecified, because σL does not

say where a′ and b′ come from. This is not the case: a′ and b′ are uniquely determined by l′

(namely a′ = s(l′) and b′ = t(l′)).

In order to define the extension of renamings to processes, we need a notion of α-

conversion that establishes how to avoid captures. Such notion will rely on substitutions

of the form [a′/a] in order to α-convert w.r.t. sites. However, such a substitution does not

uniquely characterize a renaming. In fact, while surely ac[a′/a] = a′c, for lab[a
′/a] we only

know that it must belong to La′b. If, however, lab is bound, the choice of lab[a
′/a] is immaterial,

provided that we remain in the same α-equivalence class. This motivates the introduction

of well-formed processes. Informally, a process is well-formed if, in any of its subprocesses,

bound links are bound explicitly, and not as a side-effect of binding a site. For instance,

a(b).lbc.p is not well-formed because lbc is implicitly bound by a(b).

Definition 3.2.2 (Well-formed process). A NCPi process p is well-formed if for every subterm

q:
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α-equivalence

(a)p ≡ (a′)p[a′/a] b(a).p ≡ b(a′).p[a′/a] a′ # (a)p

(lab)p ≡ (l′ab)p[l′ab/lab] c(lab).p ≡ c(l′ab).p[l
′
ab/lab] l′ab # (lab)p

Commutative monoid laws for | and +

p1 | p2 ≡ p2 | p1 p1 | (p2 | p3) ≡ (p1 | p2) | p3 p | 0 ≡ p (similarly for +)

Scope extension laws

p1 | (r)p2 ≡ (r)(p1 | p2) r # p1

(r)(r′)p ≡ (r′)(r)p r /∈ n(r′)

Unfolding law

A(r′1, . . . , r′n) ≡ p[n(r′1)/n(r1), . . . , n(r′n)/n(rn)] if A(r1, . . . , rn)
def
= p

Figure 3.3: Structural congruence axioms for well-formed processes.

(i) q = (a)p′ implies fn(q) = fn(p′) \ {a};

(ii) q = b(a).p′ implies fn(q) = {b} ∪ fn(p′) \ {a};

Notice that, as a consequence of this definition, we do not need to subtract La when

computing the free names of b(a).p and (a)p, if these processes are well-formed. In the

following we assume that processes are always well-formed. This allows us to define the

extension of renamings to processes, which is in some sense “mutually recursive” with α-

conversion.

Definition 3.2.3 (Process renamings). Given a renaming σ and a well-formed process p, we

denote by pσ the result of applying σ to fn(p) with α-conversion of bound names to avoid

captures of sites and links.

Finally, structural congruence axioms for well-formed processes are listed in Figure 3.3.

Here we write n(r′)/n(r) for the substitutions a′/a, b′/b, l′a′b′/lab (resp. a′/a) whenever r = lab and

r′ = l′a′b′ (resp. r = a and r′ = a′). The interesting case is α-conversion w.r.t. a site: when

α-converting (a)p, [a′/a] is never applied to a link lab, since such link cannot be free in p

by well-formedness; if it is bound, i.e. if (lab)p′ is a subprocess of p, then we simply have

inductively ((lab)p′)[a′/a] ≡ (l′a′b)p′[l′a′b/lab][a
′/a], for any l′a′b fresh w.r.t. p. The axioms’ side

conditions guarantee preservation of well-formedness.
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α ::= a; W; b | •; W; • | ar; • | •; W; ar | •; W; a(r′) r′ /∈ n(W) ∪ {a}

r, r′ ::= a | lab

W ::= lab | W; W | ε

structural congruence ≡α is given by the monoidal axioms for strings, where ; is the

multiplication and ε the identity

Figure 3.4: Syntax of paths.

3.3 Semantics

Observations of the operational semantics are routing paths, whose syntax is given in

Figure 3.4. A path α can be of two general forms. It can be a service path a; W; b, representing

a transportation service from a to b that employs the links listed in W and possibly other

private, unobservable ones. Alternatively, it can be a string starting and/or ending with •,
which represents an actual transmission. More specifically, in this case α can be:

• an output path, if ar or a(r) occurs on the right, after a (possibly empty) sequence of links

W: in both cases α represents r being emitted at a after traveling along W; if r is free

then α is called free output path, otherwise α is called bound output path and represents

an extrusion.

• an input path, if ar is on the left, representing the reception of r at a.

• a complete path, if • is on both sides of W, meaning that a transmission over the links in

W has been completed.

Notice that input and output paths are not symmetrical: only output paths exhibit a list W of

employed links. This is mainly for simplicity of presentation, and follows the intuition that

a datum travels from the sender to its destination.

We call interaction sites of α, written is(α) and defined in Table 3.1, those sites where

the interaction with another process may happen. These correspond to subjects of the π-

calculus. Table 3.1 also defines the free names fn(), bound names bn() and objects obj().

Given a list of links W and a name r, W/r removes each occurrence of r from W if r ∈ L, it

does nothing if r ∈ S . We let α/r be α with /r applied to its list of links

Definition 3.3.1 (NCPi transition system). The NCPi transition system is the smallest tran-

sition system generated from the rules in Figure 3.5, where observations are up to ≡α and

transitions are closed under ≡, i.e. if p α−→ q, p ≡ p′, q ≡ q′ and α′ ≡α α then p′ α′−→ q′.

Now we briefly explain the rules. (OUT) and (IN) infer a zero-length path representing the

beginning and the end of a transmission, respectively. We implicitly assume that r and r′ in
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path α fn bn obj is

a; W; b n(α) ∅ ∅ {a, b}
•; W; • n(α) ∅ ∅ ∅
•; W; ar n(α) ∅ n(r) {a}
•; W; a(r) n(α) \ {r} {r} n(r) \ {r} {a}
ar; • n(α) ∅ n(r) {a}

Table 3.1: Free names, bound names, objects, input objects and interaction sites of a path α.

(IN) are of the same type, i.e. both sites or links. As in the early π-calculus, a renaming must

be applied to the continuation in the free input case; if the input object is a site, then we have a

substitution between sites, which can be turned into a proper renaming by well-formedness.

(LINK) infers a service path made of one link. (INT) infers an internal action, represented as

a complete path where everything is unobservable. (RES) computes the paths of a process

with an additional restriction (r) from those of the unrestricted process, provided that r is

not already bound and is not an object or an interaction site. This side condition reflects

the one of the corresponding π-calculus rule, where r must not be the subject or the object

of the premise’s action, and its purpose is to avoid captures. In fact, suppose b(c).p can

perform ba; • and c ∈ fn(p): if (a)b(c).p is allowed to perform the same path then a would be

captured in its continuation (a)p[a/c]. As a result of the restriction, r becomes unobservable,

so it is removed from the list of employed links in the inferred path. Notice that, if r is a site,

then it is already unobservable. In fact, if r appeared as endpoint of a link in the premise’

label, then this link would be free in p and (r)p would not be well-formed. This justifies the

fact that /r has no effect when r is a site. (OPEN) treats the case, excluded by (RES), when

r is the datum of a free output path: such path is turned into a bound output path, again

rendering r unobservable when needed. (SUM) and (PAR) are as expected. (ROUTE), (COMP)

and (COM) concatenate paths that meet at an interaction site: (ROUTE) extends an output

path, provided that the transported name, whenever bound, is fresh w.r.t. the process that

offers the transportation service; (COMP) composes two service paths; (COM) completes a

communication.

Remark 3.3.2. For the sake of symmetry, we could have input paths that include a W

component, like output paths, listing the links that a datum can traverse in order to reach

the site where an input is performed. Moreover, we could have an additional inference

rule, dual to (ROUTE), for adding links to such paths. However, these paths would not

increase the discriminating power of the semantics. In fact, complete paths can always be

derived starting with (OUT), then using (ROUTE) to attach transportation services provided

by parallel processes and finally (COM) to finalize the communication.

We have that the transition system generated by these rules behaves well w.r.t. well-

formedness.
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(OUT)
ar.p •;ar−−→ p

(IN)
a(r).p ar′ ;•−−→ p[r′/r]

(LINK)
lab.p

a;lab ;b−−−→ p
(INT)

τ.p •;•−→ p

(SUM)
p α−→ p′

p + q α−→ p′
(OPEN)

p •;W;ar−−−→ q

(r)p
•;W/r;a(r)−−−−−−→ q

r 6=a

(RES)
p α−→ q

(r)p α/r−−→ (r)q
r/∈bn(α)∪obj(α)∪is(α) (PAR)

p1
α−→ q1

p1 | p2
α−→ q1 | p2

bn(α) # p2

(ROUTE)
p1
•;W;ax−−−→ q1 p2

a;W;b−−−→ q2

p1 | p2
•;W;W ′ ;bx−−−−−→ q1 | q2

bn(x) # p2

(COMP)
p1

a;W;b−−−→ q1 p2
b;W ′ ;c−−−→ q2

p1 | p2
a;W;W ′ ;c−−−−−→ q1 | q2

(COM)
p1
•;W;ar−−−→ q1 p2

ar;•−−→ q2

p1 | p2
•;W;•−−−→ q1 | q2

Figure 3.5: NCPi SOS rules.
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Proposition 3.3.3. If p is well-formed and p α−→ q then q is well-formed.

Proof. See A.1.1.

The notion of behavioral equivalence is the following one, called network conscious

bisimulation.

Definition 3.3.4 (Network conscious bisimulation). A binary, symmetric and reflexive

relation R is a network conscious bisimulation if (p, q) ∈ R and p α−→ p′, with bn(α) # q, implies

that there is q′ such that q α−→ q′ and (p′, q′) ∈ R. The bisimilarity is the largest such relation

and is denoted by ∼NC.

Notice that a consequence of defining the semantics up to structural congruence is that

≡⊆∼NC.

It is easy to see that the π-calculus is included in NCPi.

Definition 3.3.5 (Linkless NCPi). We call linkless NCPi (NCPi-`) the subcalculus of NCPi

such that no links appear in processes.

Clearly, NCPi-` processes are π-calculus processes. The induced restriction on SOS rules

in Figure 3.5, together with the following encoding of π-calculus actions

ax 7−→ •; ax x ∈ {b, (b)}

ab 7−→ ab; •

τ 7−→ •; •

give the following proposition. The proof is immediate: rules in Figure 3.5 boil down to the

early π-calculus ones (see Figure 2.2) under the given encoding.

Proposition 3.3.6. NCPi-` transitions are in bijective correspondence with π-calculus early

transitions.

3.4 Closure properties

Here we list some properties of the transition system and its bisimulations, namely closure

under some classes of renamings and contexts. Their proofs are standard.

We say that a renaming σ is injective if so are σS and σL. We have that the transition

system is closed under injective renamings.

Proposition 3.4.1. Let p be a process and σ an injective renaming, then:

(i) if p α−→ p′ then pσ
ασ−→ p′σ (transitions are preserved by σ);

(ii) if pσ
α−→ p′ then there is p α′−→ p′′ such that α′σ ≡α α and p′′σ ≡ p′ (transition are reflected by

σ).
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Remark 3.4.2. Transitions are not reflected by generic renamings. In fact, consider the process

p = ac.0 | lab.0 | b′(x).0

and the renaming σ that maps b′ to b and acts as the identity elsewhere. Then we have

pσ
•;lab ;•−−−→ 0

but there is no α′ such that p α′−→ 0 and α′σ ≡α •; lab; •.

Proposition 3.4.3. ∼NC is closed under injective renamings, i.e. p ∼NC q implies pσ ∼NC qσ, for

all injective σ.

3.5 Congruence property

Now we investigate closure under operators of the syntax. As expected, closure under input

prefix does not hold. Unfortunately, also the parallel composition operator is problematic.

Example 3.5.1. Consider the following processes

p = lab | l′cd q = lab.l′cd + l′cd.lab ,

the latter being the interleaving unrolling of the former. We have p ∼NC q, but if we put l′′bc

in parallel to both processes

p | l′′bc
a;lab ;l′′bc ;l′cd ;d
−−−−−−→ 0 q | l′′bc�

����a;lab ;l′′bc ;l′cd ;d
−−−−−−→

so p | l′′bc 6∼
NC q | l′′bc.

So the closure result is the following.

Theorem 3.5.2. ∼NC is closed under all operators except input prefix and parallel composition.

Proof. See §A.1.2.

However, closure under renamings does help. Consider the following relation.

Definition 3.5.3. Let ≈NC be the greatest bisimulation closed under all renamings, namely

≈NC := {(p, q) | ∀σ : pσ ∼NC qσ} .

Proposition 3.5.4. ≈NC is also closed under input prefix.

Proof. See §A.1.3.

Moreover,≈NC is able to distinguish the processes p and q of Example 3.5.1. In fact, if we

take any renaming σ that maps b to c, lab to l̃ac and l′cd to l̃′cd, we have

pσ
a;l̃ac ;l̃′cd ;d
−−−−−→ 0 but qσ����a;l̃ac ;l̃′cd ;d

−−−−−→

The discriminative power of ≈NC is still not enough, as the following example shows.
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Example 3.5.5. For the following processes

p′ = ar | lab | c(x)

q′ = ar | ( (lab | c(x)) + (lab.c(x) + c(x).lab) )

we have p′ ≈NC q′, but again p′ | l′bc
•;lab ;l′bc ;•
−−−−−→ 0, which q′ | l′bc cannot simulate. This is because

lab | c(x) is within a sum in q′, so it is forced to interact in an interleaving manner with ar.

This example suggests that some combinations of parallel and sum should be forbidden.

Finding a suitable syntactic restriction for which ≈NC is a congruence remains an open

problem. We conjecture that a good candidate is NCPi with guarded sums, where prefixes and

sums are replaced with

∑
i=1,...,n

πi.pi (n ∈N) .

In fact, we only have processes that are structurally congruent to:

(R)( ∑
i=1,...,n1

π1
i .p1

i | . . . | ∑
i=1,...,nk

πk
i .pk

i )

where R is a sequence of restrictions; q′ in Example 3.5.5 is not of this form, so it is ruled out.

This supports the validity of the following conjecture.

Conjecture 3.5.6. ≈NC is a congruence for NCPi with guarded sums.

3.6 NCPi vs the π-calculus

Here we want to discuss how convenient is NCPi with respect to the π-calculus, when one

wants to model network topologies and end-to-end routing. We can imagine to represent a

link lab as a π-calculus link process L(l, a, b) whose core is a forwarding process of the form

a(x).bx. A network would be represented as the parallel composition of link processes. In

the following we give evidence that this is not convenient.

First of all, since we want to observe links used in a communication, L(l, a, b) should

explicitly exhibit l, a and b each time the link is used, for instance through output actions

involving these names, before forwarding the datum. This is because the forwarding gives

rise to a completely silent action. The same behavior in NCPi is achieved in a simpler way,

through a dedicated prefix.

Even if we admitted link processes, we would not be able to observe whole routing paths

in a single π-calculus transition. This has consequence on bisimulation: in the π-calculus we

compare processes according to their possible forwarding alternatives, in NCPi according

to traces made of such forwardings. We could define an ad-hoc π-calculus bisimulation that

considers sequences of transitions, but the theory would be quite complex.

Simulating link passing in the π-calculus would be cumbersome: it requires a higher-

order calculus. Even if only the link name l is passed, instead of the whole process L(l, a, b),
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there would be a considerable overhead in keeping track of which names denote links. This

would possibly require a type system.

Finally, in the π-calculus we would completely lose the graph structure at the level

of names, so a renaming could have an inconsistent behavior, e.g. it could substitute link

names for site names. In order to recover such structure, and to force renamings to respect it,

we could introduce a suitable type system, but its complexity would be comparable, if not

greater, to that of an ad-hoc extension like ours.
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Chapter 4

Coalgebraic semantics of NCPi

Coalgebras are convenient operational models, as they have been studied in full generality,

regardless of the specific structure of systems, and algorithms and logics have been

developed for them. Therefore, once one characterizes the operational semantics and

behavioral equivalence of a language in coalgebraic terms, a plethora of results and

techniques become available, e.g. minimization algorithms.

The goal of this chapter is the coalgebraic treatment of NCPi. The general results are:

1. Validation of the presheaf-based coalgebraic approach of [28] by applying it to a case

which is substantially more complex than the π-calculus;

2. Integration of models with such additional expressivity, namely presheaf-based coal-

gebras, HD-automata and saturated semantics.

In §4.1 we give an overview of the steps we will follow.

In §4.2 we introduce our categorical environment. The most innovative part is the

categorical characterization of networks and their allocation operators. In particular, we

are able to model allocation of links in a way that is independent from the structure of

the involved network, thus functorial: we allocate links between every pair of nodes. This

is possible because our networks are multigraphs, so we can always add a new edge

between two nodes; plain graphs would be harder to handle. Then we introduce presheaves

and sheaves over networks, and we give some operators that will be used to construct

coalgebras. We prove that all these categories and operators have the “right” properties that

allow them to fit in the framework of [28].

In §4.3 we introduce the coalgebraic environment. We define a behavioral functor for

NCPi which uses allocation operators to model input and output paths of fresh data.

This requires some ingenuity: while our allocation operator for links creates all possible

fresh links, the behavioral functor selects a specific one; this allows us to recover the

correspondence with the labelled semantics. This functor is well-behaved, in the sense that

its category of coalgebras has the final object, and coalgebraic bisimulations are fully abstract
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with respect to the final semantics. Then we construct the coalgebra for NCPi and we show

that processes indeed form a sheaf. This is necessary for establishing the equivalence of

ordinary bisimulations and coalgebraic ones. In order to prove this equivalence, we adopt an

intermediate representation of coalgebras as transition systems with indexed states, which

enables us to use results from [63].

In §4.4 we apply a result of [17] to prove the existence of HD-automata for NCPi. In other

words, we show that is possible to do finite-state verification of our calculus.

In §4.5 we construct a new NCPi coalgebra in a category where behavior is closed

under renamings. This is done through Kan extensions, as in [28], but we give an explicit

characterization of Kan extensions as saturation, developing the results of [8]. Other

differences with [28] and [8] are: more complex categories, additional results (e.g. existence

of the final coalgebra) and the fact that we consider coalgebras over sheaves. Again, sheaves

allow us to relate coalgebraic and ordinary bisimulations closed under renamings.

4.1 The approach

We begin by summarizing the method for constructing coalgebraic models of nominal

calculi. The high level steps are:

(i) selecting a category C of indices which represents resources and their operations,

together with endofunctors δ : C→ C that model resource generation;

(ii) modeling processes and renamings as a syntactic presheaf in SetC;

(iii) modeling the transition system as a coalgebra over the syntactic presheaf, for a

behavioral endofunctor where each δ is used to represent a way of allocating resources

along transitions.

Recall from §2.3.1 that C, in the case of the π-calculus, is the category F of finite ordinals and

functions, equipped with an endofunctor δ : F → F that adds a fresh name to its argument.

The syntactic presheaf, described in §2.3.3, maps each set of names to processes where (at

most) those names occur free. However, there is a difficulty in step (iii): while syntax can be

modeled in SetF, the transition system and its bisimilarity cannot, because they do not fulfill

the requirement of closure under the index category morphisms. The solution is splitting

step (iii) in two substeps:

(iii.a) identify a subcategory C′ of C such that the transition system is closed under its

morphisms, and construct a coalgebra in SetC′ by suitably restricting the syntactic

presheaf;

(iii.b) recover a coalgebra in SetC via right Kan extension (see §2.2.3 and [41]) along the

embedding C′ ↪→ C.
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The category C′, for the π-calculus, is I, the subcategory of F with only injections. As shown

in §2.3.4, a faithful coalgebraic representation of the π-calculus transition system and of

observational equivalence is then feasible, as these are known to be closed under injective

renamings. Step (iii.b) is illustrated in §2.3.5: it consists in lifting the coalgebra of (iii.a)

to SetF along the adjunction associated to right Kan extensions. In the resulting category

of coalgebras the greatest bisimulation characterizes observational (early/late) congruence,

because behavior is always closed under all renamings.

We will consider all these steps. As mentioned in §3.5, the last step will not produce

observational congruence for full NCPi, as closure under parallel operator remains to

be fixed. However, closure under all renamings can possibly give closure under parallel

composition for NCPi with guarded sums (Conjecture 3.5.6). We will also consider the

construction of a finite-state representation of our coalgebraic semantics, in the form of a

HD-automaton. Such coalgebraic semantics, in fact, will have an infinite number of states,

due to lack of deallocation along transitions. For the π-calculus, this has been done by

exploiting the equivalence between coalgebras on Sh(I) and HD-automata [30, 63]. A recent

generalization [17] characterizes a spectrum of presheaf categories that admit HD-automata.

We will employ this result to show the existence of a HD-automaton corresponding to the

NCPi coalgebra with ordinary bisimulation.

4.2 Categorical environment

The development of §2.3.1 suggests some guidelines for the formal modeling of resources:

one should have a small category made of finite collections of resources and their mor-

phisms, with enough limits and colimits. In fact, for the π-calculus, finite sets of channels and

renamings are modeled as F, a skeleton of the category of finite sets and functions FinSet,

from which F inherits universal structures. Following these guidelines, we model resources

of NCPi processes, namely communication networks, as finite, directed multigraphs, and

we define a category made of this kind of graphs and their homomorphisms. We adopt the

presentation of such graphs as functors from the category ⇒ with two objects, representing

vertices and edges, and two parallel morphisms, representing source and target operations,

to the category FinSet. However, we just take a skeletal category of FinSet⇒.

Definition 4.2.1 (Category G). We denote by G the skeletal category of FinSet⇒.

We don’t give an explicit construction for G: all choices are consistent, since they are all

isomorphic. This is why we refer to G as “the” skeletal category.

Concretely, we can regard each g ∈ |G| as a tuple (vg, eg, sg, tg), where vg, eg are the sets

of vertices and edges of g, and sg, tg : eg → vg tell the source sg(e) and target tg(e) of each

e ∈ eg. A morphism σ : g→ g′ is a natural transformation, i.e. a pair of functions (σv, σe) that

commute with the source and target functions of g and g′, which is exactly the definition of

graph homomorphism.
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We state some properties of G that will be important in the following. Recall that

monomorphisms are stable under pushouts if, given any pushout

g1
σ1
//

σ2

��

g2

σ3

��

g3 σ4
// g4

σ1 (resp. σ2) monic implies σ4 (resp. σ3) monic.

Proposition 4.2.2. The category G is small, has finite colimits and pullbacks, and monos are stable

under pushouts in it.

Proof. See §A.2.1.

FinSet⇒ is locally small, but not small: this is why we consider a skeletal version of it.

Some notation: we write [n] for the discrete graph with n vertices, and kn for the graph with

n vertices and with one edge between every (ordered) pair of vertices.

Thanks to Proposition 4.2.2, we can exploit colimits to implement two allocation

operators, one for vertices and one for edges. The former is very similar to the allocation

endofunctor δ : F→ F presented in §2.3.1 (in fact, the action on discrete graphs is the same).

The latter is more involved, and has no counterpart in the π-calculus model.

Allocation of vertices. Given g ∈ |G|, we can express the allocation of a fresh, disconnected

vertex ? as a coproduct

[1]
new•g

// g + [1] g
old•g
oo

This induces the endofunctor δ• : G→ G given by

δ•g := g + [1] δ•σ := σ + id[1] .

Allocation of edges. Given g ∈ |G| with n vertices, we can add a new edge ?ij between each

ordered pair of vertices i and j through a pushout

[n]� _

��

� � // g

old•→•g

��

kn new•→•g

// g∗

that makes the disjoint union of the items of kn and g, and then identifies the vertices that are

image of the same vertex in [n] through the embeddings. Given g1 and g2 in G, with n1 and

n2 vertices respectively, every σ : g1 → g2 in G can be canonically extended to a morphism
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σ∗ : g∗1 → g∗2 via the universal property of pushouts as follows

[n1]
� � //
� _

��

g1
σ
//

��

g2

��

kn1
//

σ̂
��

g∗1
σ∗

��

kn2
// g∗2

where σ̂ is the (unique) morphism between kn1 and kn2 that acts on vertices like σ (the action

on edges is obvious).

Proposition 4.2.3. The following maps

δ•→•g := g∗ δ•→•σ := σ∗

define a functor δ•→• : G→ G.

Proof. See §A.2.2.

Example 4.2.4. Consider the following graph

g :=
•a l
!!

•b •c

δ•g and δ•→•g are (isomorphic to)

•a′ l′
""

•b′ •c′

•d

•a′′

?6

��

?

		

l′′

��

?2

##

•b′′

?7

WW

?1

HH

?5

22 •c′′

?8

WW

?3

bb

?4
rr

where a′, b′, c′ and l′ (resp. a′′, b′′, c′′, l′′) are the images of a, b, c and l via old• (resp. old•→•),

d is the image of • via new• and ?, ?1, . . . , ?8 are the images of the edges in k3 via new•→•.

We denote by GI the subcategory of G with only monos. We remark that GI lacks

pushouts, but we can compute them in G, since monos are stable under pushouts in G.

Consequently, δ• and δ•→• are well-defined also in GI.

Now we look at the category SetG of presheaves on graphs. Since G is small, then SetG

is locally presentable (Proposition 2.2.9), which allows endofunctors on this category to be

accessible. We introduce some operators on G and SetG. Most of them have a π-calculus

counterpart in §2.3.2, which inspired their definition.
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Name functors. S ,L : G → Set giving, for each g ∈ |G|, the set of sites and links

corresponding to the vertices and edges of g. Formally, let • be the graph with one vertex

and no edges, and • → • the graph with two vertices and one edge between them. We define

S := HomG(•,−) L := HomG(• → •,−) N := S + L

Explicitly, S sends g ∈ |G| to G[•, g], which is isomorphic to the set of vertices of g, and

sends σ : g → g′ to the function λs ∈ HomG(•, g).σ ◦ s, which renames the site s according

to σ; similarly for L. In order to keep the same notation for names introduced in §3.2, we

use a to indicate the homomorphism • → g in Sg that maps • to a ∈ vg; and lab to indicate

the homomorphism (• → •) → g in Lg that maps the edge in the domain to l ∈ eg, and

consequently its endpoints to a = sg(l) and b = tg(l).

Countable powerset. Pc : SetG → SetG, acting pointwise as the functor Pc : Set → Set

given by

PcX := {Y ⊆ X | Y is countable}

Pc f := { f (Y) | Y ∈ PcX} ( f : X → X′)

Allocation functors. ∆•, ∆•→• : SetG → SetG, given by precomposition with δ• and δ•→•,

respectively. Namely

∆•P(g) := g + [1] ∆•→•P(g) := g∗ .

Proposition 4.2.5. λP ∈ |SetG|.S , λP ∈ |SetG|.L (i.e. S and L seen as constant endofunctors on

SetG), Pc, ∆• and ∆•→• are accessible and preserve weak pullbacks.

Proof. See §A.2.3.

Finally, we are interested in characterizing sheaves on GI and G. Taking inspiration from

the definition of Sh(I) (see §2.3.2), we can define Sh(GI) as the category of sheaves for

the coverage made of singleton families { f : g � g′}. This is a proper coverage. In fact,

given f in such a coverage family, we can compute the morphisms required by C-Ax of

Definition 2.2.3 by letting diagram (2.1) be a pushout: by Proposition 4.2.2, its leg parallel to

f is monic, then forms a coverage family. Since Sh(GI) and Sh(I) use very similar coverages,

[38, A.2.1,Example 2.1.11(h)] can be easily adapted to Sh(GI), and gives us the following

result.

Proposition 4.2.6. Sheaves in Sh(GI) are presheaves GI → Set that preserve pullbacks.

Now, consider the embedding J : GI ↪→ G and the functor R : SetG → SetGI , given by

precomposition with J. Since the singleton coverage is also valid for G, and J trivially reflects

covers, we can restate Proposition 2.2.6 in this context as follows.

Proposition 4.2.7. Given P : G→ Set, if RP is a sheaf in Sh(GI) then P is a sheaf in Sh(G).
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Remark 4.2.8. Our edge allocation operator δ•→• may seem inefficient: it generates fresh

edges between every pair of vertices, but only one of them will appear in the continuation

after an allocating transition. However, this operation is uniform on all graphs, so it is

functorial. Having a functor on G allows us to lift it to presheaves in a way that ensures

the existence of both left and right adjoint (giving Kan extensions along δ•→•) for the lifted

functor, and then preservation of both limits and colimits, which is essential for coalgebras

employing such functor. Generation of unused resources is not really an issue: as we will see

later, NCPi processes form a sheaf, so it is always possible to recover their minimal support,

i.e. the minimal amount of resources they use.

We could give an alternative definition, that operates directly on presheaves:

∆•→•P(g) := ∑
` : [2]→g

P(g`)

where ` picks a pair of vertices in g and g` is g with a new edge between those vertices.

On the one hand, this avoids wasting resources, because it generates processes indexed by

graphs with just one additional edge. On the other hand, this definition has the conceptual

disadvantage of using "implementation details" of resources at the level of syntax and

semantics. Moreover, it does not have clear properties.

4.3 Coalgebraic semantics

Our aim now is to construct a coalgebra that models the NCPi transition system. Its

carrier will be a suitable presheaf modeling processes and renamings. However, since

transitions are not reflected by generic renamings (Remark 3.4.2), but only by injective ones

(Proposition 3.4.1), according to step (iii.a) of §4.1 we first give a semantics in SetGI .

Definition 4.3.1 (Behavioral endofunctor). Let L? = ∑i∈ω Li. The behavioral endofunctor

Bn : SetGI → SetGI is

BnP =Pc(S × L? × S × P (Service Path)

+ L? × P (Complete Path)

+ S ×N × P (Known Name Input Path)

+ S × ∆•P (Fresh Site Input Path)

+ S × S × S × ∆•→•P (Fresh Link Input Path)

+ L? × S ×N × P (Free Output Path)

+ L? × S × ∆•P (Bound Site Output Path)

+ L? × S × S × S × ∆•→•P) (Bound Link Output Path)

To understand this definition, consider a Bn-coalgebra (P, ρ). Given g ∈ GI and p ∈ Pg,

ρg(p) is a countable set of tuples. These tuples can be seen as pairs (α, p′) of a path α and
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of a continuation from p after observing α, both built using the names corresponding to the

items of g and possibly some fresh ones.

We use the countable powerset, instead of the finite one, because p might have recursive

subprocesses that generate a countable number of looping paths. This does not affect

the formal properties of Bn-coalgebras. A finite-branching fragment of the calculus, more

suitable for model checking, could be obtained by preventing SOS rules from concatenating

paths that go through the same site. In fact, since our graphs are finite, there is only a finite

number of paths that touch all different sites.

Notice the bound output cases: the continuation is drawn from ∆•P(g) or ∆•→•P(g), i.e.

its index is δ•g or δ•→•g; the extruded name, which corresponds to the new vertex or one

of the new edges added to g by these functors, does not need to not appear in α, because its

identity is univocal. In the bound link output case the endpoints of the extruded link must be

included in α, in order to allow processes that extrude links with different endpoints through

the same path to be distinguished. The W component in Figure 3.4 is modeled through the

functor L∗, which returns the set of finite strings on the alphabet Lg.

Example 4.3.2. To show how our formalization of bound link output works, let us assume

an informal notion of presheaf of processes, indexing processes with graphs that include the

graph of their free names (the formal definition will be given later). Consider the process

a(y) | (lab)alab.lab. It can be indexed by the graph g made of two nodes a and b. The NCPi

semantics yields transitions

a(y) | (lab)alab.lab
•;a(l′ab)−−−−→ a(y) | l′ab ,

for all possible l′ab. However, Definition 4.3.1 states that the index of the continuation must

be

δ•→•g = •a

?aa

�� ?′ab
// •b

?′′bb

��

so we only know that some fresh links have been generated along the transition. More

information is given by the bound output path constructed by Bn: the last two occurrences of

S in its definition indicate the endpoints of the fresh link. In this case Bn selects the following

transition only:

g ` a(y) | (lab)alab.lab
•;a(?′ab)−−−−→ δ•→•g ` a(y) | ?′ab .

We remark that the name of the fresh link does not actually appear in the path generated by

Bn, because it is unique.

Input transitions are modeled similarly to free and bound output ones, even if there is no

explicit binding: we distinguish between the reception of a known name, i.e. a name already

in N g, and of a fresh one; in the latter case, the index is augmented. This allows us to give

a finite representation of an infinite number of transitions. Notice that we do not need an
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exponential to model input, as in Definition 2.3.5, because NCPi input already has an early

semantics.

Proposition 4.3.3. Bn is accessible and preserves weak pullbacks.

This immediately follows from Proposition 4.2.5 and the fact that products, coproducts

and composition preserve such properties. The consequence is that the category Bn-Coalg

is well-behaved: it has a final object, and the final morphism gives two states the same

semantics only if they are Bn-bisimilar.

As Be-coalgebras are equivalent to early indexed labelled transition systems (see §2.3.4),

our coalgebras are equivalent to the following kind of GI-indexed labelled transition

systems.

Definition 4.3.4 (Network conscious GI-ILTS). Given the following presheaf of labels

Labnc :=

service path︷ ︸︸ ︷
S × L? × S +

complete path︷︸︸︷
L? +

known name input path︷ ︸︸ ︷
S ×N +

fresh site input path︷︸︸︷
S +

fresh link input path︷ ︸︸ ︷
S × S × S

+ L? × S ×N︸ ︷︷ ︸
free output path

+ L? × S︸ ︷︷ ︸
bound site output path

+ L? × S × S × S︸ ︷︷ ︸
bound link output path

a network conscious GI-ILTS (GI-ILncTS) is a GI-ILTS (P,−→) with labels in
∫

Labnc, such

that:

(i) Each g ` p has countably many transitions, all of the form:

• g ` p α−→ δ•g ` p′, with α = •; W; a(?) (bound site output) or α = a?; • (fresh site

input);

• g ` p α−→ δ•→•g ` p′, with α = •; W; a(?bc) (bound link output) or α = a?bc; •
(fresh link input);

• g ` p α−→ g ` p′ for all the other α ∈ Labnc(g).

(ii) For each morphism σ : g → g′ in GI and each ϕ ∈ {Id, δ•, δ•→•}: g ` p α−→ ϕg ` p′

if and only if g′ ` p[σ]
α[σ]−−→ ϕ(g′) ` p′[ϕσ] (transition are preserved and reflected by

morphisms).

Proposition 4.3.5. Bn-coalgebras are in bijective correspondence with GI-ILncTSs.

Proof. See §A.2.4.

For behavioral equivalences on GI-ILncTSs, namely GI-indexed bisimulations (Defini-

tion 2.2.19 instantiated with C = GI), we have the following correspondence.

Proposition 4.3.6. Let (P, ρ) be a Bn-coalgebra. Then every Bn-bisimulation is equivalent to a GI-

indexed bisimulation on the induced GI-ILncTS.

Proof. See §A.2.5.
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As in the case of the π-calculus, the other direction holds only if the coalgebra’s carrier

preserves monomorphisms, which is a property that sheaves in Sh(GI) enjoy. We recall

Theorem 4.2.5 of [63], adapted to our context: it is easy to see that GI-ILncTSs satisfy the

relevant axioms characterizing the class of I-ILTSs treated in [63].

Proposition 4.3.7. Let (P, ρ) a Bn-coalgebra. If P is a sheaf in Sh(GI) then every GI-indexed

bisimulation on the induced GI-ILncTS is also a Bn-bisimulation on (P, ρ).

Now we manufacture a sheaf out of the collections of well-formed processes. For the

sake of simplicity we do not follow [28], where such a functor is obtained as the carrier of

the initial algebra for a signature endofunctor, but we give an explicit definition:

N g := {p well-formed | fn(p) ⊆ N g}/ ≡ N (σ : g→ g′) := λp ∈ N g.pσ̃

where σ̃ is the extension of [σ]N to processes. For the purpose of defining the NCPi GI-

ILncTS, we just need the functor

NI := RN

which only applies injective renamings. The following lemma tells us that NI indeed belongs

to Sh(GI) (see Proposition 4.2.6).

Lemma 4.3.8. NI preserves pullbacks.

Proof. See §A.2.6.

The transition relation −→ν for our GI-ILncTS is the smallest one generated by the rules

in Figure 4.1, which associate indices to ordinary NCPi transitions. Actually, since there

are infinitely many g ∈ |GI| such that p ∈ NIg, each untyped transition has many typed

counterparts. Notice the first five rules, inferring input and output paths: they collapse

transitions that differ only for the fresh sent/received name to a single one, whose shape

agrees with (ii) of Definition 4.3.4. This requires a “normalization step”: the fresh name is

replaced with ? (resp. ?bc), and the free names of p are replaced in the continuation through

the colimit map involved in the definition of δ• (resp. δ•→•). Satisfaction of condition

(ii) follows from the fact that the transition system is closed under injective renamings

(Proposition 3.4.1). The translation from ordinary to indexed π-calculus transition system

given in [63, 3.3.3] is based on the same idea. However, it does not need the normalization

step, because it uses finite sets of names as indices instead of their skeletal versions; the

drawback of this is a higher number of states and transitions.

Example 4.3.9. Consider the transition

(xab)(lac.ac.0 | axab.xab.0)
•;lac ;c(xab)−−−−−−→ ac.0 | xab.0 ;

The source process can be indexed by g of Example 4.2.4. Now, according to

Figure 4.1, the continuation should be indexed by δ•→•g, but we have to rename it
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p ar;•−−→ p′

g ` p ar;•−−→ν g ` p′
r∈N g

p ab;•−−→ p′

g ` p a?;•−−→ν δ•g ` p′[?/b, old•g]
b/∈N g

p
albc ;•−−−→ p′

g ` p
a?bc ;•−−−→ν δ•→•g ` p′[?bc/lbc, old•→•g ]

lbc /∈N g
p
•;W;a(b)−−−−→ p′

g ` p
•;W;a(?)−−−−−→ν δ•g ` p′[?/b, old•g]

p
•;W;a(lbc)−−−−−→ p′

g ` p
•;W;a(?bc)−−−−−→ν δ•→•g ` p′[?bc/lbc, old•→•g ]

p •;W;ar−−−→ p′

g ` p •;W;ar−−−→ν g ` p′

p a;W;b−−−→ p′

g ` p a;W;b−−−→ν g ` p′

p •;W;•−−−→ p′

g ` p •;W;•−−−→ν g ` p′

Figure 4.1: Rules generating the transitions of p ∈ NIg in the NCPi GI-ILncTS.

via [a′′/a, b′′/b, c′′/c, l′′a′′c′′/lac, ?a′′b′′/xab]. The resulting transition in the NCPi GI-ILncTS is

g ` (xab)(lac.ac.0 | axab.xab.0)
•;lac ;c(?a′′b′′ )−−−−−−−→ δ•→•g ` a′′c′′.0 | ?a′′b′′ .0 .

Finally, we have the following result, which relates Bn-bisimulations on the NCPi Bn-

coalgebra and a class of network conscious bisimulations.

Theorem 4.3.10. GI-indexed bisimulations on (NI,−→ν) are in bijection with:

(i) Bn-bisimulations on the corresponding B-coalgebra;

(ii) network conscious bisimulations closed under injective renamings.

Proof. See §A.2.7.

In particular, we have that the greatest GI-indexed bisimulation, the Bn-bisimilarity and

∼NC are all equivalent, thanks to Proposition 3.4.3.

4.4 History dependent automata

HD-automata are coalgebras with states in named-sets [18], that are sets whose elements are

equipped with a symmetry group over finite sets of names. They have two main features:

• one single state can represent the whole orbit of its symmetry;
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• the names of each state are local, related to those of other states via suitable mappings.

Both are important for applying finite state methods, such as minimization and model-

checking, to nominal calculi. In particular, the latter point captures deallocation: map between

states can discard unused names and “compact” remaining ones, much like garbage collectors

do for memory locations.

In coalgebras on presheaves names have global meanings, and an allocating transition

always adds a globally fresh name to its target state. This may generate infinite-state

transition systems. However, if we take only sheaves, we gain notions such as minimal

support and seeds. These are used in [30] to establish the equivalence between sheaf-based

coalgebras and HD-automata.

In our category Sh(GI) minimal supports and seeds exist, for essentially the same

reasons explained in §2.3.2. In order to give a characterization of our coalgebras in terms

of named sets, we employ the results of [17]. Here authors define a symmetry group over

a category C to be a collection of morphisms in C[c, c], for any c ∈ |C|, which is a group

w.r.t. composition of morphisms. Then they take families of such groups as their notion of

generalized named sets. A first result establishes the equivalence between these families and

coproducts of symmetrized representables, that are functors of the form

∑
i∈I

HomC(ci,−)/Φi

where Φi is a symmetry group over C with domain ci, and the quotient identifies morphisms

that are obtained one from the other by precomposing elements of Φi. These functors, in turn,

are shown to be isomorphic to wide-pullback-preserving presheaves on C, a wide pullback

being the limit of a diagram with an arbitrary number of morphisms pointing to the same

object (pullbacks are a special case, with two such morphisms). The following theorem

summarizes the described results.

Theorem 4.4.1. Let C be a category that is small, has wide pullbacks, and such that all its morphisms

are monic and those in C[c, c] are isomorphisms, for every c ∈ |C|. Then every wide-pullback-

preserving P∈|SetC| is equivalent to a coproduct of symmetrised representables.

Our category GI satisfies the hypothesis of this theorem: by Proposition 4.2.2, it is small

and has wide pullbacks due to the existence of pullbacks. In fact, the diagram of a wide

pullback in GI is formed by a finite number of morphisms, because a finite graph always

has a finite number of ingoing injective homomorphisms, so its limit can be computed via

binary pullbacks. Moreover, GI has only monos, by definition, and GI[g, g] clearly has only

isomorphisms, for each g ∈ |GI|. Finally, our presheaf of processes NI preserves (wide)

pullbacks, so there exists an equivalent coproduct of symmetrized representables.

In other words, we can construct an HD-automaton whose states are NCPi processes.

Each state is equipped with its minimal network and a group of automorphisms on that

network that preserve the state’s behavior. Therefore we can perform minimization and
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finite-state verification on finite-control NCPi processes. For instance, we could verify that

a routing algorithm does not exhibit an unwanted behavior, or that it always converges, or

other properties.

Notice that G does not satisfy Theorem 4.4.1, due to the presence of non-monic

morphisms. Therefore we cannot apply the theory of [17] to the extended coalgebra we will

give in the next section.

4.5 Saturated coalgebraic semantics

Right Kan extensions provide a canonical way of closing the coalgebraic semantics under

non-injective morphisms, as shown in §2.3.5. The fundamental construction here is the

following adjunction

SetG
R &&

⊥ SetGI

ER
cc

(4.1)

which exists because GI is small and Set has all limits (Corollary 2.2.13). According to

Theorem 2.2.12, ER : SetGI → SetG can be computed pointwise as a limit in Set, which

can be given the following explicit description.

Proposition 4.5.1. Given P : GI → Set, its right Kan extension along GI ↪→ G is

ERP(g) =

t ∈ ∏
σ : g→g′∈‖G‖

P(g′)

∣∣∣∣∣∣∣∣
∀σ : g→ g′,

ρ : g′ � g′′ ∈ ‖G‖ :

tσ[ρ]P = tρ◦σ


ERP(σ) = λt ∈ RP(g).{(tσ◦σ′)σ′}σ′ : g′→g′′ (σ : g→ g′)

Proof. See §A.2.12.

In words, ERP(g) is a set of tuples with one component for each morphism from g in

G. The tuples’ components are taken from P according to the corresponding morphism’s

codomain, and must satisfy a “closure under monos” condition, namely: selecting the σ-

component of a tuple and applying Pρ to it, where ρ is any applicable morphism (i.e. σ and

ρ must be composable), must yield the same result as selecting the (ρ ◦ σ)-component of

the same tuple. As for ERP(σ), it takes a tuple and builds another tuple out of it, whose

σ′-component is the (σ ◦ σ′)-component of the original tuple.

Unit and counit of (4.1) are natural transformations η : IdSetG → ERR and ε : RER →
IdSetGI . For P : G→ Set, Q : GI → Set and g ∈ |G|, they are given by

(ηP)g = λp ∈ Pg.{(p[σ])σ}σ : g→g′

(εQ)g = λt ∈ RERQ(g).tidg
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The intuition, in terms of processes, is that (ηP)g maps a process p ∈ Pg to a tuple obtained

by applying every possible renaming σ : g → g′ to p. Viceversa, (εQ)g takes a tuple of

processes in RERQ(g) and extracts the one with identity index.

The well-known equations relating unit and counit ensure that the operations they

perform are consistent with each other. In fact, these equations amount to the commutativity

of the following diagrams

R
Rη
//

idR
##

RERR

εR
��

R

(4.2)
ER

ηER
//

idER ##

ERRER

ERε

��

ER

(4.3)

which, instantiated, become

p ∈ RP(g) � (RηP)g
//

�

(idRP)g
((

{(p[σ]P)σ} ∈ RERRP(g)
_

(εRP)g

��

p[idg]P = p ∈ RP(g)

(4.2)

t ∈ ERQ(g) � (ηER P)g
//

�

(idERQ)g

((

{(t[σ]ERQ)σ} ∈ ERRERQ(g)
_

(ERεQ)g

��

t[idg]ERQ = t ∈ ERQ(g)

(4.3)

In words: diagram (4.2) says that if we take a process p, rename it via η and then take the

identity renaming via ε, we get p again; diagram (4.3) says the same thing about tuples.

As shown in §2.3.5, this adjunction allows us to define an extended well-behaved

behavioral functor and to establish a relationship between coalgebras on this new functor

and those on the old one.

Proposition 4.5.2. The functor B̂n := ERBnR is accessible and preserves weak pullbacks.

Proof. See §A.2.8.

Proposition 4.5.3. For every P : G → Set, there is a bijection between B̂n-coalgebras having P as

carrier and Bn-coalgebras having RP as carrier.

Proof. See §A.2.9.
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This bijection works as follows. Given a Bn-coalgebra (RP, ρ), the structure map of the

corresponding B̂n-coalgebra, when applied to p ∈ Pg, builds a tuple whose σ-component

is the set of transitions of p[σ] according to ρ. Viceversa, given a B̂n-coalgebra (P, φ), one

can recover a Bn-coalgebra whose structure map gives, for each p ∈ RP(g), only the idg-

component of the tuple φ(p).

B̂n-coalgebras can be characterized as indexed transition systems with richer labels than

those of GI-ILncTSs. This is similar to what was done in [8], whereas there is no analogous

result in [28]. We call such transition systems saturated; this term is borrowed from [10].

Definition 4.5.4 (Saturated GI-ILncTS). Given the following presheaf of labels

LabSAT := ∑
g′∈G

HomG(−, g′)× Labnc(g′)

a saturated GI-ILncTS (GI-ILncTSSAT) is a G-ILTS (P,−→) with labels in
∫

LabSAT , such that:

(i) Transitions are of the form g ` p
(σ,α)−−→ g′′ ` p′, where σ ∈ G[g, g′],α ∈ Labnc(g′) and

g′′ ` p′ is a valid continuation for α according to (ii) of Definition 4.3.4;

(ii) Transitions are such that, for all σ : g→ g′ in G:

(a) for all σ′ : g′ � g′′ and ϕ ∈ {Id, δ•, δ•→•}, g ` p
(σ,α)−−→ ϕ(g′) ` p′ if and only if

g ` p
(σ′◦σ,α[σ′ ]Labnc )−−−−−−−−−→ ϕ(g′′) ` p′[ϕ(σ′)] (closure under monos);

(b) g ` p
(σ′◦σ,α)−−−−→ g′′ ` p′ if and only if g′ ` p[σ]

(σ′ ,α)−−−→ g′′ ` p′ (transitions are

preserved and reflected by morphisms);

Proposition 4.5.5. B̂n-coalgebras are in bijection with GI-ILncTSSATs.

Proof. See §A.2.10.

Behavioral equivalences for GI-ILncTSSATs, according to Definition 2.2.19, now are

indexed over G: condition (ii), for every such a relation R, requires that, whenever (p, q) ∈
Rg, then (p[σ], q[σ]) ∈ Rg′ , for all σ : g → g′ in G. In other words, we have closure under all

renamings.

Now, consider the NCPi GI-ILncTS (NI,−→ν). Proposition 4.5.3 can be equivalently

restated on indexed transitions systems: it allows us to derive a GI-ILncTSSAT (N ,−→νSAT )

as follows
σ : g→ g′ ∈ ‖G‖ p ∈ NIg g′ ` p[σ] α−→ν g′′ ` p′

g ` p
(σ,α)−−→νSAT g′′ ` p′

Now it is clear why we use the term “saturated”: GI-ILncTSSATs are the saturated (according

to [9]), but equivalent, version of the corresponding GI-ILncTSs, with contexts being the

morphisms of G. To the best of our knowledge, the fact that right-Kan-extending amounts

to saturating has been first observed in [8].
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Example 4.5.6. Consider the process

p def
= ac.0 | lab.0 | b′(x).0 ,

which can be indexed by the graph

g :=

•a

l
��

•c

•b •′b

As shown in Remark 3.4.2, its transitions are not reflected by non-injective morphisms, so

they cannot be represented as a natural transformation in SetG. The reason is that, if b and

b′ are merged, an additional transition is triggered. However, this problem disappears in

(N ,−→νSAT ). To show why, we check the naturality of the corresponding B̂n-coalgebra:

p
_

[b′ 7→b]N

��

� (νSAT)g
//


{ (•; lab; bc, b′(x).0) , (b′c; •, ac.0 | lab.0) , . . . }idg ,{

(•; lab; bc, b(x).0) , (bc; •, ac.0 | lab.0) ,

(•; lab; •, 0) , . . .

}
b′ 7→b

, . . .


_
[b′ 7→b]B̂nN

��

p[b′ 7→ b]N
�
(νSAT)g′

//


{

(•; lab; bc, b(x).0) , (bc; •, ac.0 | lab.0) ,

(•; lab; •, 0) , . . .

}
idg′

, . . .


where g′ is g without the vertex b′. We only depicted some relevant transitions.

On the top right corner, with index idg, there are an input and an output path for p as

given by the original NCPi GI-ILncTS. These paths cannot be concatenated because their

interaction sites are different. Then, with index b′ 7→ b, we have the renamed versions of the

same paths, plus the underlined transition enabled by the identification of their interaction

sites.

On the bottom right corner: the same transitions as above for b′ 7→ b, except that now

they are indexed by idg′ . In fact, according to Proposition 4.5.1, the function [b′ 7→ b]B̂nN

takes the (b′ 7→ b ◦ σ)-component of the top tuple and turns it into the σ-component of the

bottom tuple; in the specific case, σ = idg′ .

In conclusion, the fusion b 7→ b′ here is harmless, because the additional transition it

triggers, the underlined one, is already among those of the unrenamed process.

Finally, we want to relate the various notions of bisimulation we have introduced in

this section, but the usual issue arises: the correspondence between B̂n-bisimulations and

G-indexed bisimulations only holds for B̂n-coalgebras and GI-ILncTSSATs over sheaves.

However, since NI is a sheaf, Proposition 4.2.7 tells us that N is a sheaf as well, so we

have the following result.
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Theorem 4.5.7. G-indexed bisimulations on (N ,−→νSAT ) are in bijection with:

(i) B̂n-bisimulations on the corresponding B̂n-coalgebra;

(ii) network conscious bisimulations closed under all renamings.

Proof. See §A.2.11.

By Proposition 3.5.4, the B̂n-bisimilarity is also closed under input prefix. Unfortunately

we do not get a full congruence, as explained in §3.5. However, if Conjecture 3.5.6 turns out

to be true, we would have the following result.

Conjecture 4.5.8. B̂n-bisimilarity is a congruence for NCPi with guarded sums.



66 Coalgebraic semantics of NCPi



Chapter 5

Concurrent NCPi

In this chapter we present κNCPi, the concurrent version of NCPi. We briefly introduce and

motivate the main differences with NCPi.

First of all, the input primitive is more flexible: it can express the reception of a link

together with its endpoints. This feature has not been included in NCPi for simplicity, but

can be simulated as the sequential reception of the link’s endpoints and then of the link itself.

In κNCPi these actions can be performed atomically and in parallel.

Secondly, the output primitive is closer to actual routing protocols: it also specifies the

destination site. This information is essential for routing algorithms, because they typically

construct the “best” path towards a given destination address.

The last, but the most important, difference is that the semantics allows observing

simultaneous actions taking place in the network, in the form of multisets of paths. This

follows the intuition that processes should act in a truly distributed manner, without a

central coordinator that imposes an interleaving order to their actions. The theoretical

consequence is that bisimilarity becomes a congruence, thanks to the richer observations.

This is a surprising result, given the fact that the interleaving NCPi bisimilarity is not even

closed under parallel composition.

The κNCPi syntax and semantics are presented in §5.1 and §5.2, respectively. The latter

section contains the main result of this chapter, namely the congruence property of κNCPi

bisimilarity. In §5.3 we introduce a mechanism for controlling the inference of routing paths

according to a given strategy. This allows for the implementation of routing algorithms. §5.4

applies all this machinery to a real-life routing algorithm, namely Border Gateway Protocol

[67].

5.1 Syntax

The syntax of κNCPi processes is given in Figure 5.1. For convenience, we distinguish names

that can be output or restricted (syntactic category r) and those that can be input or can be
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p ::= 0 | π.p | p + p | p | p | (r)p | A(r1, r2, . . . , rn)

π ::= abr | a(s) | lab | τ

r ::= a | lab

s ::= a | l(ab)

A(s1, s2, . . . , sn)
def
= p i 6= j =⇒ n(si) ∩ n(sj) = ∅

Figure 5.1: Syntax of κNCPi processes

α-equivalence:

(a)p ≡ (a′)p[a′/a] b(a).p ≡ b(a′).p[a′/a] a′ # (a)p

(lab)p ≡ (l′ab)p[l′ab/lab] l′ab # (lab)p

a(l(bc)).p ≡ a(l′(b′c′)).p[l
′
b′c′/l(bc)] b′, c′, l′b′c′ # a(l(bc)).p

Unfolding law:

A(r1, . . . , rn) ≡ p[r1/s1, . . . , rn/sn] if A(s1, . . . , sn)
def
= p

Figure 5.2: Structural congruence for well-formed κNCPi processes.

formal parameters of process definitions (syntactic category s); l(ab), belonging to the latter

category, denotes a link whose endpoints are both bound and we let n(l(ab)) := {lab, a, b}.
Input and output prefixes have the following forms: abr means that abr.p can emit the

datum r, having destination b, at a and continue as p; a(s) means that a(s).p can receive at a

a datum to be bound to s and continue as p. The intuitive meaning of c(l(ab)).p is an atomic,

polyadic version of c(a).c(b).c(lab).p. Notice that formal parameters of process definitions

are of type s so, when they are links, their form is l(bc); actual parameters instead are of type

r. The intuition, as in the input prefix, is that a formal link parameter can be instantiated

with any link, not necessarily between the same endpoints.

The definition of fn(p) for the new constructs is

fn(abr.p) := {a, b} ∪ n(r) ∪ fn(p)

fn(a(l(bc)).p) := {a} ∪ fn(p) \ ({b, c} ∪ Lb ∪ Lc)

Now we introduce the notion of well-formedness for κNCPi processes. The only additional
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Paths

α ::= a; W; b | •; W; • | •; W; abr | abr; W; •

| ab(s); W; • n(s) ∩ (n(W) ∪ {a, b}) = ∅

W ::= lab | W; W | ε

r ::= a | lab s ::= a | l(ab)

Concurrent paths

Λ ::= 1 | α | Λ1|Λ2 | (r)Λ

Figure 5.3: Syntax of concurrent paths.

condition w.r.t. Definition 3.2.2 concerns the input prefix.

Definition 5.1.1 (Well-formed κNCPi process). A κNCPi process p is well-formed if every

subterm q satisfies requirements (i) and (ii) of Definition 3.2.2 and, moreover, (iii) q =

c(l(ab)).p′ implies fn(q) = {c} ∪ fn(p′) \ {a, b, lab}.

We introduce the following notation for substitutions: [l′a′b′/l(ab)] stands for

[a′/a, b′/b, l′a′b′/lab]. Structural congruence, shown in Figure 5.2, is minimal: we only have

α-conversion and unfolding; other axioms are moved to observations or implemented

through the rules. In particular, we replace monoidicity of | with analogous axioms on

observations: this is quite natural, as our observations are multisets, i.e. lists quotiented

by monoidal axioms. As for scope extension, it is implemented through explicit close rule.

Removing axioms also allows for a simpler proof of the congruence property of bisimilarity.

5.2 Concurrent semantics

Observations for the concurrent semantics, defined in Figure 5.3, are multisets of paths,

called concurrent paths. For the purpose of describing a more realistic network behavior, we

equip paths α with some additional information:

• both input and output paths exhibit a list of links; in the case of input paths, they are

the links that can be potentially traversed in order to reach the destination;

• there is a bound input path ab(s); W; •, which represents the reception of a bound name;

this is needed because the concurrent semantics has an explicit scope closure rule;

• paths always specify a destination site, namely b in •; W; abr, abr; W; • and ab(s); W; •.
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Moreover, we remove extrusion paths: extrusions will be represented via concurrent paths,

as we will allow many paths to extrude the same name simultaneously. Concurrent paths

can be of the following forms:

• the empty concurrent path 1 indicates that no activity is performed;

• the singleton concurrent path α is a concurrent path made of a single path;

• the union Λ1 |Λ2 means that the paths in Λ1 and Λ2 are being traversed at the same

time;

• the extrusion restriction (r)Λ indicates that r is being extruded through one or more

paths in Λ.

We shall use Wα to denote the sequence of links of α and |Wα| to denote the set of links

appearing in Wα. The functions fn(α), bn(α) and obj(α) are defined on the old kinds of paths

as in Table 3.1, but fn(α) and obj(α) now include the destination site: this is analogous to

actual routing, where a payload and its destination address travel together within a packet.

If α is a free input path abr; W; •, then we have

fn(α) := n(α) bn(α) := ∅ obj(α) := n(r) ∪ {b}

and we introduce the notation

objin(α) := n(r) objin(α′) := ∅ (if a′ is not a free input path)

If, instead, α is a bound input path of the form ab(s); W; • then

fn(α) := n(α) \ n(s) bn(α) := n(s) obj(α) := {b}.

Given a concurrent path Λ, the functions Is(Λ), Fn(Λ), Bn(Λ), Obj(Λ) and Objin(Λ) are the

extensions to multisets of the corresponding functions on single paths. They are defined as

expected, but we have to be careful with the following cases:

Fn((a)Λ) = Fn(Λ) \ ({a} ∪ La) Bn((a)Λ) = Bn(Λ) ∪ {a} ∪ (La ∩ n(Λ))

that are treated analogously for the other functions.

Observations here have a more complicated binding structure than those of NCPi, so we

introduce a notion of well-formedness for them. Moreover, in order to be closer to actual

routing protocol, we only admit simple paths, i.e. those that do not go through the same link

twice.

Definition 5.2.1 (Well-formed, canonical, simple concurrent paths). Let Λ be a concurrent

path. Then it is:

• well-formed if for every subterm Λ′ of the form (a)Λ′′ we have Fn(Λ′) = Fn(Λ′′) \ {a};
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• Monoidal axioms for “;”, with ε as identity, and for | (plus commutativity), with 1 as

identity;

• Scope extension axioms:

(r)(r′)Λ ≡Λ (r′)(r)Λ r /∈ n(r′)

Λ1 | (r)Λ2 ≡Λ (r)(Λ1 |Λ2) r # Λ1

Figure 5.4: Structural congruence ≡Λ for well-formed concurrent paths.

• in canonical form if it has the form (R)Θ, where R is a sequence of restrictions and Θ

does not contain extrusion restrictions (binders of the form ab(s) are still allowed in

Θ);

• simple if, for all α ∈ Λ, each lab ∈ |Wα| appears in Wα once.

An example of non-well-formed, non-simple concurrent path is

(d)(•; lab; l′ba; lab; bcd | a; l′′ad; d) ,

because (d) implicitly binds l′′ad and there are two occurrences of lab in the first path.

Simplicity is just one of the possible conditions. In general, one might want to express

more complex requirements and apply static analysis methods to check them. This can be

achieved through suitable type systems. For instance, QoS requirements could be expressed

by associating quantitative information to links, e.g. we could say that each link lab has an

average latency λ, and that lab can be added to an output path only if the path’s total latency

plus λ does not exceed a certain threshold.

Well-formed paths are subject to some structural congruence axioms, shown in Figure 5.4.

They establish that paths are strings and concurrent paths are multisets, and that extrusion

restrictions can be swapped and grouped at the outermost level. Scope extension requires

some side conditions in order to avoid captures and enforce well-formedness. Clearly, any

concurrent path satisfying these conditions can be converted to canonical form. We do not

impose any α-conversion axiom because we cannot determine a priori which substitutions

of bound names are legal for Λ: they also depend on the free names of the process doing Λ.

For instance, in (b)aab | c(x)
(b)•;aab
====⇒ c(x) we cannot α-convert (b)•; aab to (c)•; aac, because

this is not a valid path for the source process. However, α-conversion of processes also affect

their concurrent paths, so we have a kind of induced α-conversion.

We write Λ( r for the operation that applies /r to each α ∈ Λ if r /∈ Bn(Λ), yields Λ

otherwise. We use the notation r #Λ Λ, extended to sets of names as expected, to mean r /∈
n(Λ).
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Definition 5.2.2 (κNCPi transition system). The κNCPi transition system is the smallest

transition system generated by the rules in Figure 5.5, where observations are up to ≡Λ

and transitions are closed under ≡, i.e. if p Λ
=⇒ q, p ≡ p′, q ≡ q′ and Λ ≡Λ Λ′, then p′ Λ′

=⇒ q′.

Axioms (OUT) and (IN) generate output and input paths of length zero. Such input paths

represent the reception of a datum at its destination, so their reception and destination site

coincide. We also have (BIN), which gives input paths with bound placeholder. Axioms (INT)

and (LINK) are the same as the interleaving case.

The axiom (IDLE) infers a “no-op” transition, enabling the parallel composition of

processes to behave in an interleaving style.

The rule (SUM-L) is obvious. It has a right counterpart, because we do not have a

structural congruence axiom for commutativity of +. This rule is omitted in Figure 5.5.

The rule (RES) and (OPEN) are an obvious extension of those in Figure 3.5. Notice that

(OPEN) allows one to “extrude” the destination site: the intuition is that we can use global

resources to send or receive a datum to/from a local site, which becomes global if the

communication is not complete.

The rule (PAR) makes the union of two concurrent paths, but only if bound names of each

concurrent path are fresh w.r.t. the other process and do not appear in the other concurrent

path. This last condition avoids inferring transitions where the extruded name is free in the

receiving process’s continuation even if it has not been actually received, which might cause

incorrect behaviors. For instance, consider the processes

p def
= (b)aab.b(c).p′ q def

= a(d).dde.q′

and suppose the following transition is allowed

p | q (b)•;aab | aab;•
=======⇒ b(c).p′ | bbe.q′[b/d] .

Now the two components of the continuation can synchronize on b even if its scope

extension has not actually been accomplished, which is clearly incorrect.

The remaining rules are used to synchronize processes. The synchronization is performed

in two steps:

(i) paths of parallel processes are collected through the rule (PAR);

(ii) (COM), (SRV-IN), (SRV-OUT) and (SRV-SRV) pick two compatible paths from the result-

ing multiset and replace them with their concatenation, without modifying the source

process; in other words, these rules synchronize two subprocesses of the source process.

All other paths remain in the resulting multiset, including other occurrences of those

that have been concatenated.

The rule (COM) covers all kinds of communications, yielding a complete path. In the case of

extrusions, input placeholders in the continuation are replaced with extruded names. These
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(IN) a(s).p aar;•
==⇒ p[r/s] (BIN) a(s).p

aa(s);•
===⇒ p (OUT) abr.p •;abr

==⇒ p (IDLE) p 1
=⇒ p

(INT) τ.p •;•=⇒ p (LINK) lab.p
a;lab ;b
===⇒ p

(SUM-L)
p Λ
=⇒ p′

p + q Λ
=⇒ p′

(RES)
p Λ
=⇒ q

(r)p
Λ( r
==⇒ (r)q

r/∈Obj(Λ)∪Bn(Λ)∪Is(Λ)

(OPEN)
p Λ
=⇒ q

(r)p
(r)(Λ( r)
====⇒ q

r∈Obj(Λ)\(Is(Λ)∪Objin(Λ))

(PAR)
p1

Λ1=⇒ q1 p2
Λ2=⇒ q2

p1 | p2
Λ1 |Λ2
===⇒ q1 | q2

Bn(Λi) # p3−i

Bn(Λi) #Λ Λ3−i

i=1,2

(COM)
p

(R) (•;W;abr | ab′x;W ′ ;• |Θ)
===============⇒ q

p
(R′) (•;W;W ′ ;• |Θ)
==========⇒ (R′′) q(σb ◦ σr)

R′=R∩Obj(Θ)

R′′=(R\R′)∩({b}∪n(r))

see tables (b) and (c)

(SRV-IN)
p

(R) (a;W;b | bcx;W ′ ;• |Θ)
=============⇒ q

p
(R) (acx;W;W ′ ;• |Θ)
===========⇒ q

(SRV-OUT)
p

(R) (•;W;abr | a;W ′ ;c |Θ)
=============⇒ q

p
(R) (•;W;W ′ ;cbr |Θ)
===========⇒ q

(SRV-SRV)
p

a;W;b | b;W ′ ;c |Λ
========⇒ q

p
a;W;W ′ ;c |Λ
======⇒ q

The concurrent path inferred by (COM), (SRV-IN), (SRV-OUT) and (SRV-SRV) must be simple.

(a)

• b′ = b

• σb = id

• b, b′ ∈ R

• σb = [b/b′]

(b)

• r /∈ R

• x = r

• σr = id

• r ∈ R

• x = (s)

• σr = [r/s]

(c)

Figure 5.5: κNCPi SOS rules: (a)shows the SOS rules; (b) and (c) are the possible

configurations for (COM). Any pair of configurations, one from (b) and one from (c), is valid

(four possibilities).
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names are removed from the resulting transition’s label, provided that there are no other

paths extruding them.

The rules (SRV-IN), (SRV-OUT) and (SRV-SRV) allow extending a path with a service path.

An alternative could be having a rewrite system on labels, but, since our proofs manipulate

derivation trees, we prefer path extension to be performed by explicit inference rules.

The premises of (COM), (SRV-IN) and (SRV-OUT) must have their concurrent paths in

canonical form: this is always possible, thanks to (PAR) side conditions.

Example 5.2.3 (Interleaving behavior). Consider the process

aab.0 | a(c).0

which can be regarded as the π-calculus process ab.0 | a(c).0. Its interleaving behavior can

be inferred as follows

(OUT)
aab.0 •;aab

==⇒ 0
(IDLE)

a(c).0 1
=⇒ a(c).0

(PAR)
aab.0 | a(c).0 •;aab | 1≡Λ•;aab

========⇒ a(c).0

This is analogous to the π-calculus transition ab.0 | a(c).0 ab−→ a(c).0.

Example 5.2.4 (Multiple extrusions of the same name). Consider the process

(a)(bca.p1 | dea.p2) | lbc.p3 | c(x).p4

which extrudes a twice and suppose that a and x are different from all other free and bound
names. If only one output is performed, we have the following derivation

(OUT)
bca.p1

•;bca
==⇒ p1

(IDLE)
dea.p2

1
=⇒ dea.p2

(PAR)
bca.p1 | dea.p2

•;bca | 1≡Λ•;bca
========⇒ p1 | p2

(OPEN)
(a)(bca.p1 | dea.p2)

(a)•;bca
====⇒ p1 | p2

(LINK)
lbc.p3

b;lbc ;c
==⇒ p3

(BIN)
c(x).p4

cc(x);•
===⇒ p4

(PAR)
lbc.p3 | c(x).p4

b;lbc ;c | cc(x);•
=======⇒ p3 | p4

(SRV-IN)
lbc.p3 | c(x).p4

bc(x);lbc ;•
=====⇒ p3 | p4

(PAR)
(a)(bca.p1 | dea.p2) | lbc.p3 | c(x).p4

(a)•;bca | bc(x);lbc ;•≡Λ(a)(•;bca | bc(x);lbc ;•)
========================⇒ p1 | p2 | p3 | p4

(COM)
(a)(bca.p1 | dea.p2) | lbc.p3 | c(x).p4

•;lbc ;•
===⇒ (a)((p1 | p2 | p3 | p4)[a/x]) = (a)(p1 | p2 | p3 | p4[a/x])

If also the other output is executed, i.e. (IDLE) on the top is replaced by

(OUT)
dea.p2

•;dea
==⇒ p2

then the last step becomes

(a)(bca.p1 | dea.p2) | lbc.p3 | c(x).p4
(a)(•;bca | •;dea | bc(x);lbc ;•)
===============⇒ p1 | p2 | p3 | p4(COM)

(a)(bca.p1 | dea.p2) | lbc.p3 | c(x).p4
(a)(•;dea | •;lbc ;•)
=========⇒ p1 | p2 | p3 | p4[a/x]
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The name a is global in the continuation because one bound output path does not have a

matching input path, so the scope of a cannot be closed. The missing input path could be

provided by a process of the form

l′de.p5 | e(y).p6 ,

in which case the last step of derivation would be

. . . | l′de.p5 | d(y).p6
(a)(•;bca | •;dea | bc(x);lbc ;• | de(y);l′de ;•)
=====================⇒ p1 | p2 | p3 | p4 | p5 | p6

(COM)
. . . | l′de.p5 | d(y).p6

•;lbc ;• | •;l′de ;•
=======⇒ (a)(p1 | p2 | p3 | p4[a/x] | p5 | p6[a/y])

The following proposition states that the transition system generated by these rules is

well-behaved. Notice that simplicity of paths is forced by the rules.

Proposition 5.2.5. If p Λ
=⇒ q then Λ is simple and well-formed, and q is well-formed.

Proof. See §A.3.1.

The behavioral equivalence for κNCPi processes is called concurrent network conscious

bisimilarity, and is an obvious extension of Definition 3.3.4.

Definition 5.2.6 (Concurrent network conscious bisimulation). A binary, symmetric and

reflexive relation R is a concurrent network conscious bisimulation if (p, q) ∈ R and p Λ
=⇒ p′,

with Bn(Λ) # q, implies that there is q′ such that q Λ
=⇒ q′ and (p′, q′) ∈ R. The bisimilarity is

the largest such relation and is denoted by ∼NC
κ .

Theorem 5.2.7. ∼NC
κ is a congruence with respect to all κNCPi operators.

Proof sketch. We have to prove that ∼NC
κ is closed under each operator. The difficult case

is the input prefix, since a renaming, possibly not injective, is involved. The idea behind

the proof is that, even though a renaming σ may enable some (COM), (SRV-IN), (SRV-OUT)

or (SRV-SRV) rules in the proof of a transition of pσ, the paths these rules concatenate are

renamed versions of paths already observable from p, and thus from every q bisimilar to p.

We give an overview of the proof steps. The full proof can be found in §A.3.2.

(i) We prove that, given any transition p Λ
=⇒ q and renaming σ such that Λσ is simple, we

have pσ
Λσ
=⇒ qσ.

(ii) We give a result about the possibility of permuting rules in proofs with a certain shape.

Consider a transition p Λ
=⇒ q with proof Π, and suppose that this proof ends with the

application of a rule that concatenates two paths α1 and α2 (namely one among (COM),

(SRV-IN), (SRV-OUT) or (SRV-SRV)) , followed by the application of a non-concatenating

rule (all the other ones). Moreover, suppose that the common interaction sites of α1

and α2 are free in p. Then the last two rules of Π can be permuted. In fact, if the latter

rule is (OPEN) or (RES), the requirement about interaction sites ensures that they are
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not involved in any of the rule’s side conditions, so swapping the order of binding

and concatenation is allowed. The result is the proof for a transition p′ Λ
=⇒ q∗ such

that p′ ≡ p and q∗ is q with some unguarded restrictions at the outmost level (scope

extension is not an axiom, but we show that it is included in the bisimilarity). In fact,

when the operation just described is applied to an instance of (COM), the application of

this rule is delayed, so the scope closures it infers may embrace more processes.

(iii) We prove that, for any σ and p, if pσ
Λ
=⇒ q has proof Π, and interaction sites or objects

of paths concatenated throughout Π are not in the image of (the non-identity part of)

σ, then we can recover a transition p Λ′
=⇒ q′ such that Λ′σ = Λ and q′σ = q. In other

words, if σ did not enable any concatenations in Π, then pσ
Λ
=⇒ q is the renamed version

of a transition of p.

(iv) We show that, given a transition pσ
Λ
=⇒ q with proof Π, we can always recover a

transition p Λ′
=⇒ q′ and a sequence of inference steps from pσ

Λ′σ
=⇒ q′σ to pσ

Λ
=⇒ q∗, where

q∗ is q with some unguarded restrictions at the outmost level. The idea is to collect all

the concatenation steps enabled by σ at the bottom of the proof via (ii) (some restrictions

may float, that’s why we have q∗). This produces a new proof where we have an upper

part ending with a transition that satisfies (iii), thus of the form pσ
Λ′σ
=⇒ q′σ, for some

Λ′ and q′; and a bottom part made of concatenations steps starting from this transition,

thus satisfying our claim.

(v) Finally, we prove that we can construct a bisimulation R containing all the pairs

(pσ, qσ), with p ∼NC
κ q, which is also closed under restrictions (i.e. ((r)p, (r)q) ∈ R

whenever (p, q) ∈ R) and contains scope extension (i.e. if q is p with some restrictions

brought at the top level, then (p, q) ∈ R). In fact, given (p, q) ∈ R and pσ
Λ
=⇒ p′,

we can use (iv) to get a transition p Λ′
=⇒ p′′ and a sequence Ω of rule instances that

concatenate pairs of paths. Such transition can be simulated by q Λ′
=⇒ q′, by definition

of R. Using (i) we get qσ
Λ′σ
=⇒ q′σ and, applying a suitably adapted version of Ω,

we get qσ
Λ
=⇒ (R)(q′σ)σ′, where R and σ′ are added by instances of (COM) treating

extrusions. Since Ω has the same effect on p′′σ, i.e. it binds R and applies σ′, we have

that (R)(p′′σ)σ′ is p′ with some restrictions collected at the topmost level. Now, since

p′′ ∼NC
κ q′, by definition of R, and R is closed under under scope extension and

restrictions, we can conclude (p′, (R)(q′σ)σ′) ∈ R.

This result allows us to equip the π-calculus with a concurrent semantics. In fact, we can

characterize π-calculus processes via a syntactic restriction, as done in Definition 3.3.5.

Definition 5.2.8 (Concurrent linkless NCPi). We call concurrent linkless NCPi (κNCPi-`) the

subcalculus of κNCPi where:
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• no links appear in processes;

• every occurrence of the output prefix is of the form aab.

Then, we have the following correspondences. A π-calculus output ab becomes aac, if

used as prefix, or •; aab, if used as action; and the input action ax becomes aax; •, x ∈ {b, (b)}.
The π-calculus rules for parallel composition are emulated by two steps of derivations: for

(PAR), this is shown Example 5.2.3; for (COM) we have

(COM)
p ab−→ p′ q ab−→ q′

p | p′ τ−→ q | q′
7−→

(COM)

(PAR)
p •;aab
==⇒ p′ q aab;•

==⇒ q′

p | q •;aab | aab;•
======⇒ p′ | q′

p | q •;•=⇒ p′ | q′

In addition to the ordinary π-calculus behavior, in κNCPi-` we also have concurrent

observations, which lead to the following result.

Corollary 5.2.9 (of Theorem 5.2.7). The bisimilarity on the concurrent π-calculus transition

system is a congruence.

Another evidence of this result is the classical counterexample not applying: we have

aar | a(x) 6∼NC
κ aar.a(x) + a(x).aar, because

aar | a(x)
•;aar | aar;•
======⇒ 0 aar.a(x) + a(x).aar�����•;aar | aar;•

======⇒

This result is analogous to that in [43] but, as already mentioned, there the synchronization

mechanism is not faithful to the π-calculus: in [43] the synchronization channel is observed

unless restricted, for instance a | a τa=⇒ 0, while for our calculus a | a •;•=⇒ 0, which corresponds

to τ. Comparisons with other concurrent semantics for the π-calculus can be found in

chapter 7.

5.3 Implementing routing algorithms

Actual routing algorithms usually build a specific path for each sender-destination pair,

for instance the shortest path between them. However, our semantics non-deterministically

generates all possible paths. In order to make this generation deterministic, we introduce

forwarding predicates.

Definition 5.3.1 (Forwarding predicate). A forwarding predicate is a boolean-valued function

ϕ : L× S × Proc→ {true, false}

where Proc is the collection of κNCPi processes.

Intuitively, ϕ(lde, c, p) tells wether p can use lde to forward a datum that has destination

c. In this way, for instance, we could exclude non-optimal links according to some metric
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(cost, latency, distance, and others). SOS rules that derive extended input/output paths are

modified accordingly.

(SRV-IN)
p

(R) (a;W;b | bcx;W ′ ;• |Θ)
=============⇒ q

p
(R) (acx;W;W ′ ;• |Θ)
===========⇒ q

(SRV-OUT)
p

(R) (•;W ′ ;acr | a;W;b |Θ)
=============⇒ q

p
(R) (•;W ′ ;W;bcr |Θ)
===========⇒ q


∀lde ∈ |W| : ϕ(lde, c, p)

These rules are sound, because they infer a subset of the paths that the original rules infer.

5.4 Example: a routing protocol

Here we give a non-trivial example of how κNCPi can be used to model a routing protocol,

similar to Border Gateway Protocol (BGP) [67]. This protocol assumes that the network is

composed of disjoint groups of networks, each referring to a single administrative authority,

called Autonomous Systems (AS). Some of the ASs’ routers act as gateways between the AS they

belong to and other networks. The protocol takes care of the routing mechanism between

ASs in a distributed manner: each gateway has a routing table, filled by the protocol, whose

entries specify which is the next hop along the “best” path towards some destination; this

information will be used to forward the incoming data.

In our model, both routers and hosts are represented as sites, and network connections

are represented as links. The whole network is modelled as the parallel composition of some

autonomous systems plus the connections among them (parameters of a recursive definition

are omitted when unimportant)

Net
def
= AS1 | . . . | ASk | Overlay Overlay

def
= . . . | L(li

gihi
) | . . .

L(l(xy))
def
= lxy.L(lxy)

Here L(li
gh) is a process that recursively offers a transportation service over li

gh from gateway

g to h. We denote by G the set fn(Overlay) ∩ S , which contains the gateways.

An autonomous system ASk is

ASk
def
= (Lk)(Lk | Ak) Lk

def
= . . . | L(li,k

ab ) | . . .

where Lk = fn(Lk) ∩ L are the local links of ASk, invisible to any other AS. We have two

components: Lk, which keeps providing the local services, and Ak, which is the parallel

composition of generic processes using some sites of ASk to send and receive data, i.e. of

the form a(s).p or abr.p. We call these sites local sites of Ak, denoted by Loc(Ak): formally

they are Loc(a(s).p) = Loc(abr.p) = {a}. The set Loc(ASk) of local sites of ASk is
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Figure 5.6: Example network.

(fn(Lk) ∩ S) ∪ Loc(Ak). For these we require Loc(ASi) ∩ Loc(ASj) = ∅, for all i 6= j, reflecting

the fact that autonomous systems are disjoint. We write Gk for the set Loc(ASk) ∩ G, i.e. the

set of ASk’s gateways.

Now we want to model the routing mechanism. The routing tables are modelled as a

collection of functions RTg, one for each gateway g, such that RTg(x) is a link from g to some

other gateway h, representing the next hop of the best path towards x. The forwarding is

implemented via the following forwarding predicate

ϕBGP(lab, x, p) :=∃k : a ∈ Gk =⇒

if x ∈ Loc(ASk) then b ∈ Loc(ASk) else lab = RTa(x)

which means that, whenever a is a gateway of ASk, we have two cases: if x is in ASk then

a local link must be used to extend the path, otherwise the link of the overlay network

specified in a’s routing table. If a is not a gateway, by definition only local links are available

to extend the path. These links can be used in an arbitrary way, because they are out of the

scope of BGP. Instead of having a forwarding predicate, we could turn routing tables into

processes, but the model would be much more complicated. In fact, one could have, for each

gateway, one site for each reachable destination, and a link between two gateway sites only

if they correspond to the same destination and belong to gateways involved in the optimal

path toward that destination. This would rule out non-optimal complete paths.

Now, consider the network depicted in Figure 5.6. We have three ASs: an Italian one, a

German one and an English one; and two processes willing to communicate from ASit to

ASen. Suppose the routing tables are such that RTit(b) = lit de and RTde(b) = l′de en. A possible

transition is

ASit | ASen | ASde | Overlay
•;lit de ;l′de en ;•
======⇒ AS′it | AS′en | ASde | Overlay .

Notice that only the part of the path between the gateways is observable.

We can give some examples of analyses that can be carried out in this scenario. We could

verify that routing tables are consistent, i.e. that routing paths always reach their destination.



80 Concurrent NCPi

We could also compare paths generated by different routing algorithms, implemented via

different forwarding predicates. Moreover, as mentioned, equipping links with quantitative

information would allow further, more refined analyses.



Chapter 6

Case study: Pastry

In this chapter we model Pastry [59] and Distributed Hash Tables (DHT) using κNCPi.

We begin in §6.1 by giving an overview of Pastry: we describe its routing data structures

and explain how routing works; then we illustrate how node joins are handled. We also

formalize conditions under which Pastry routing converges. These will be used to prove

the correctness of our model.

Then in §6.2 we introduce introduce some minor domain-specific extensions to the

language. This is standard practice when modeling complex scenarios such as Pastry.

The following sections illustrate the model. It is organized into a network level and

an application level, reflecting the fact that Pastry provides networking functionalities to

applications.

In §6.3 we deal with the network level: we model routing data structures and their

operations, reconfiguration due to joining peers, and the provision of routing functionalities

to applications. Routing of messages that accomplish node joins is controlled via code in a

hop-by-hop manner, because at each hop some operations must be performed. The main

result of this section is that node joins preserve convergence of routing.

§6.4 is about the application level: we model a simple DHT using network-level routing

to implement lookups. Unlike the previous section, routing is implemented at the SOS level,

so that whole paths from the lookup invoker to the target peer can be observed. We show

that routing converges also at this level: lookups always get to the correct peer.

6.1 Overview of Pastry

In Pastry peers and keys have identifiers, which are sequences of δ digits taken from an

alphabet of σ symbols. Identifiers can be regarded as arranged in clockwise order on a ring,

so that the greatest identifier is followed by the smallest one. An example system is shown

in Figure 6.1, where identifiers are binary strings (σ = 2) of 4 digits (δ = 4).

Let x, y two identifiers: we denote by shl(x, y) the length of the longest prefix shared by
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1000
1010

1111

101

1

1011
1000

1
-

10

0

10111000

Routing Table

Leaf Set
1011

1100

1111

Figure 6.1: Pastry example system, with δ = 4 and σ = 2. Routing data for peer 1010 are

shown. Grey cells in the routing table are either empty or non non valid. For instance, the

cell with coordinates (10, 1) should contain an identifier starting with 101, but this is again a

prefix of 1010, so the correct place for this identifier is row 101.

x and y. We define the ring distance dr between x and y as the number of identifiers between

x and y on the ring. Formally, if I is the size of the space of identifiers, we have

dr(x, y) :=

I − |x− y| |x− y| > bI/2c

|x− y| otherwise

The first case happens when x and y have numerical distance greater than half the ring: then

we must consider the complementary arc.

The main service provided by Pastry is routing by key: given a key k, Pastry delivers

the message to the peer which is responsible for k, i.e. the one whose identifier is numerically

closest to k than all other peers. Routing is implemented as follows. Each peer with identifier

id maintains two data structures: a routing table and a leaf-set1. The routing table has

δ × σ entries: rows are indexed by prefixes of id, and columns by single digits; the cell

(id1 . . . idn, di) contains a peer whose identifier begins with id1 . . . idndi. The leaf-set is a set

of λ peers (leaves) such that: λ/2 are the ones with numerically closest larger identifiers, and

λ/2 are the ones with numerically closest smaller identifiers, relative to id. An example of

routing table and leaf-set can be found in Figure 6.1.

Whenever a peer with identifier id receives a message with target key k, it checks whether

k belongs to the leaf-set range [`m, `M], where `m and `M are respectively the smallest and

the greatest identifiers in the leaf-set. If k belongs to this interval, then id retrieves the leaf

whose identifier ` is numerically closest to key: if ` = id, then id itself is responsible for k;

1In [59] routing data also include a neighborhood set, containing references to peers that are closest to id according

to a given metric. This is not relevant for routing, so it is omitted.
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otherwise, the message is forwarded to `. If k does not belong to the leaf-set interval, then

the routing table is used: the next hop is taken from the entry in the row identified by the

longest shared prefix of id and k and in the column given by the digit following such prefix

in k. This ensures that the message is forwarded to a peer whose identifier has at least one

more digit in common with k than id.

Example 6.1.1. Consider the peer with identifier 1010 in Figure 6.1, and suppose 1100 is

responsible for the key 1101. A message from 1010 with target key 1101 is routed as follows.

Since 1101 does not belong to the interval [1000, 1011] spanned by the leaf-set of 1010, the

routing table is used: the longest prefix shared by 1010 and 1101 is 1, so the message is

forwarded to the peer in the cell (1, 1), namely 1111. Once 1111 receives the message, it

discovers that 1101 is in its leaf-set range, so it forwards the message to the leaf closest to

1101, that is 1100.

One important property of Pastry routing procedure is convergence: the message

eventually gets to its destination. This is formally stated as follows.

Property 6.1.2. The routing procedure always converges: given a message with target key k and a

peer id, either id is responsible for k or can forward the message to id′ such that dr(id′, k) < dr(id, k).

Reconfiguration of the overlay happens when peers join or leave. We will only consider

the case of joins, because it is the most interesting and involved ones. When a peer with

identifier idnew intends to join the ring, it asks another peer, already in the overlay, to send a

join request message on its behalf. This message is routed as its destination key were idnew.

Each traversed peer sends its routing table back to idnew, so that it can initialize its own

routing table; the last peer also sends its leaf-set, which contains the peers around idnew in

the ring. Finally, idnew advertises its existence to all the peers in its routing table and leaf-set,

which may update their own routing structures.

6.2 Notation and language extensions

We shall use some shorthands: the π-calculus output prefix ab will stand for aab; newc(lab)

will stand for the allocation of a fresh link lab at c, namely (lab)clab; we will often omit process

parameters for readability.

A common pattern we will use for programming operations on data structures is the

following

Op
def
= (x)op x.x(a1). · · · .x(an).

〈computation on a1, . . . , am, yielding results b1, . . . , bm〉

x b1. · · · .x bm

This implements an operation op with n input parameters and m results as follows: the

special site op provides the caller with a fresh site x, which is used to receive actual
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parameters and communicate results. Freshness of x avoids interferences among concurrent

calls of the same operations. Whenever the operation has one input argument and no return

values, then x is not needed, so Op will use op(a) to take its argument a. For the sake of

succinctness, we adopt the following notation

b1, . . . , bm ← op〈a1, . . . , an〉.p

meaning

op(x).xa1. · · · .xan.x(b1). · · · .x(bm).p ;

again, if n = 1 and m = 0, the latter process becomes opa1.p.

We will use anonymous links, i.e. the name of a link will not be specified, just its endpoints.

Moreover, links will be typed: there will be an additional decoration that specifies the link’s

function. We will write a τ b for a link of type τ from a to b. Anonymity is allowed by the

fact that there will be at most one link for each type between any pair of sites. We have the

following types of links:

• a� b is a generic network-level link from a to b;

• a� b is a link t o b in a’s routing table;

• a � b is a link to b in a’s leaf-set;

• a � k is a link indicating that a is responsible for the key k in the DHT.

Endpoints between square brackets indicate that the link is argument of a link input, e.g.

c((a)� (b)). SOS rules are extended as expected, assuming that labels always show the type

of links.

Finally, we extend the language with boolean expressions and conditional statements of

the form

if bexp then p else q ;

we will omit the else branch when q = 0.

6.3 Network level

We model identifiers as site names with further structure: they are sequences of (at most) δ

names taken from an alphabet {d1, . . . , dσ}. Given an identifier a, we denote its i-th digit by

ai. For simplicity, we will use a peer name a both as its identifier and its physical address.

Moreover, we assume that there is a total order relation ≺ on identifiers and that arithmetic

operations on them are defined.

The key idea is modeling the routing table and the leaf-set of a peer as two collections of

links LRT and LLS, which form the overlay network of a peer. Our general model of a peer
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with identifier a is

Peer(a,LRT ,LLS)
def
= (ORT)(OLS) Control(a,ORT ,OLS) | RT(LRT ,ORT) | LS(LLS,OLS)

Control(a,ORT ,OLS)
def
= JoinH(a) + Route(ORT ,OLS)

The process Control implements the control logic of a peer: JoinH handles join messages

and Route provides routing services to the application level. These operations must be

performed in a mutually exclusive way, as they read and write the routing structures. This is

why we have a sum between the corresponding processes. The remaining processes model

the routing table (RT) and the leaf-set (LS). These data structures are equipped with some

operations, which are called internally via the names in ORT and OLS.

A Pastry system made of n peers with identifiers a1, . . . , an is modeled as the parallel

composition of peer processes. For the system Figure 6.1 we have

Sys
def
= Peer(1000) | Peer(1010) | Peer(1011) | Peer(1100) | Peer(1111)

where we omitted some parameters for the sake of simplicity.

The remainder of this section is devoted to describing each component of Peer.

6.3.1 Data structures

The basic construct, modeling a named cell with mutable content, is the following:

Cell(c, v) def
= cv.Cell(c, v) + c(v′).Cell(c, v′)

Output models a “get” operation, while input models a “set” operation. The cell may be

empty, in which case v is either the special site e or a “dummy“ link to this site, depending

on the kind of name the cell is intended to contain.

Routing table

The routing table of a is modeled as the process

RT(a,LRT, nextRT, updRT, listRT)
def
=

(CRT) OpsRT(nextRT, updRT, listRT, CRT) | CntRT(CRT,LRT)

This makes three operations available to other processes: getting the best link in the routing

table towards a given key (via nextRT); listing all the links in the table (via listRT); updating

the table with a new peer (via updRT). Operations are implemented in OpsRT, while CntRT

models the table’s content. These processes interact via the names in CRT, each denoting a

cell in the table.
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The process CntRT stores the routing table’s links in δ× σ cells (hereafter we denote this

number by ρ)

CntRT
def
= Cell(cd1 , a� b1,1) | . . . | Cell(cdσ

, a� b1,σ) |

Cell(ca1d1 , a� b2,1) | . . . | Cell(ca1dσ
, a� b2,σ) |

. . .

Cell(ca1 ...aδ−1d1 , a� bδ,1) | . . . | Cell(ca1a2dσ
, a� bδ,σ)

where ca1 ...akdi
denotes the cell located at (a1 . . . ak, di). For all i = 1, . . . , δ− 1, we assume that

the cell in the i-th row denoted by ca1 ...ai−1ai , i.e. such that the digit identifying the column is

in a, contains the dummy link a� e, because a1 . . . ai concerns the i + 1-th row.

The process OpsRT is the sum of four processes, one for each operation

OpsRT
def
= GetNext+ Update+ List .

Computation of the next hop is performed by

GetNext
def
= (x)nextRTx.x(k).if (k1 . . . kδ−1 = a1 . . . aδ−1 ∧ kδ 6= aδ) then

ck1 ...kδ
((a)� (b)).x a� b.OpsRT

else case of prefix k1 . . . kδ−2 . . .

This process determines the coordinates of the cell storing the best link towards a given key

k as follows. The row, i.e. the longest common prefix of a and k, is determined by comparing

each prefix a1, . . . , ai−1, in decreasing order of length, with the prefix of k of the same length,

via a chain of nested if-then-else. The column is given by the first digit of k after such prefix.

The update handler replaces the content of a cell with a fresh link to a given site, provided

that this site is not the empty one e or is already in the table. The cell’s coordinates are

computed as in GetNext:

Update
def
= updRT(b).if b 6= e then

if (b1 . . . bδ−1 = a1 . . . aδ−1 ∧ bδ 6= aδ) then

cb1 ...bδ
((a)� (b′)).if b 6= b′ then

newa(a� b).cb1 ...bδ
a� b.OpsRT

else case of prefix b1 . . . bδ−2 . . .

Process List is given by

List
def
= (x)listLSx.c1((a)� (b1)).x a� b1. · · · .cρ((a)� (bρ)).x a� bρ.OpsRT

It simply lists all the links in the table.
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Leaf-set

The process expression for the leaf-set of a is

LS(a,LLS, maxLS, minLS, closLS, updLS, listLS)
def
=

(CLS) OpsLS(a, maxLS, minLS, closLS, updLS, listLS) | CntLS(CLS,LLS)

This defines the following operations: getting the leaf with the lowest (via minLS) and

greatest (via maxLS) identifier; getting a link to the leaf closest to a given key (via closLS);

updating the leaf-set with a new leaf (via updLS); listing all the links in the leaf-set (via

listLS).

The process CntLS has the form

CntLS
def
= Cell(c−λ/2, a � b−λ/2) | . . . | Cell(c−1, a � b−1)

| Cell(c0, a� a) | Cell(c1, a � b1) | . . . | Cell(cλ/2, a � bλ/2)

where cells with negative (resp. positive) index contain names ≺ a (resp. � a). We

assume that the cell with index 0 is reserved for a link from a to itself: this simplifies the

implementation of some operations.

Operations are given by

OpsLS
def
= GetMin+ GetMax+ GetClosest+ Update+ List .

The computation of the minimum is performed by the process

GetMin
def
= (x)minLSx.c−1((a)� (b−1)). · · · .c−λ/2((a)� (b−λ/2))

〈find m := min{b−1, . . . , b−λ/2, a}〉

x m.OpsLS

The comparison between leaves for finding the minimum could be implemented as a tree

of nested conditional statements. The process GetMax is similar: it computes the maximum

between b1, . . . , bλ/2, a.

The following process returns the link pointing to the leaf closest to a given key

GetClosest
def
= (x)closLSx.x(k).c−λ/2((a)� (b−λ/2)). · · · .cλ/2((a)� (bλ/2))

〈find c := arg min
x∈{b−λ/2,...,bλ/2}\{e}

|k− x|〉

x a � c.OpsLS
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The addition of a new leaf is implemented by the following process

Update
def
= updLS(b).c−λ/2((a)� (b−λ/2)). · · · .cλ/2((a)� (bλ/2)).

if b 6= b−λ/2 ∧ · · · ∧ b 6= bλ/2 ∧ b 6= e then

newa(a � b).

if b ≺ a then

if b−λ/2 = e then c−λ/2 a � b.OpsLS else

. . .

if b−1 = e then c−1 a � b.OpsLS else

〈find bmin := min{b−λ/2, . . . , b−1}〉

if bmin ≺ b then cmin a � b.OpsLS

else

〈look for an empty cell among c1, . . . , cλ/2〉

〈if no cell is empty and b ≺ bmax, replace the content of cmax〉

This process retrieves the content of all the cells and checks whether the provided site b is

not already in one of them. If it is not, then creates a fresh link a � b and looks for an empty

cell (i.e. one containing the dummy link) among those where this link should be placed,

determined according to the position of b w.r.t. a; if no empty cell exists and b is between a

and the extremal leaf, then a � b is placed in the cell containing the link to the extremal leaf.

Let us briefly discuss the correctness of this procedure. If there is an empty cell, it means that

there are not enough peers in the system. Then a � b can be placed in any cell in the correct

half of the leaf-set, as cells in the same half are not ordered. Otherwise a � b should take part

in the leaf-set, i.e. should replace one of the existing leaves, only if b falls inside the current

leaf-set range. The leaf to be replaced is one of the extremal leaves, because the existence of

b suggests that there are enough leaves in a smaller interval.

Finally, the process List is defined as its counterpart in RT.

6.3.2 Join Handler

The join procedure is implemented by JoinH. It aims at setting up routing table and leaf-set

of a joining peer. This involves exchanging a variety of messages. We will represent a mes-

sage of type msg_type and content c1, . . . , cn as a sequence of names msg_type, c1, . . . , cn,

and we will denote it as msg_type[c1, . . . , cn]. Whenever we write such expression as object

of an output prefix, we mean that all the elements of the message are sent in sequence.

Incoming messages are handled as follows: after receiving a name msg_type on the peer

site a, a number of other receptions is performed, depending on the message type, to receive

the message payload, and then the appropriate handler is activated. Therefore, using an
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intuitive notation, we have:

JoinH
def
= a(b).case b :

msg1[c1, . . . , cn1 ]⇒ handler1

msg2[d1, . . . , dn2 ]⇒ handler2

. . .

We can have the following types of messages:

• join_req[b]: join request from peer b;

• join_ack[R]: join acknowledgement, answering a join request with the list R of peers

occurring in the sender’s routing table.

• join_ack_leaf[R, L]: join acknowledgement with leaf-set; this is the last answer to a

join request, coming from the peer whose identifier is the closest to the joining one; R

and L are the peers in the sender’s routing table and leaf-set.

• join_ntf[b]: join notification, informing that b has successfully joined the ring.

Handlers for these messages are shown in Figure 6.2.

A join request from a peer b is always answered with an acknowledgement via a

temporary link a� b. The content of such message depends on how close is a to b. If b belongs

to the interval [`min, `max] spanned by the leaf-set of a, then the link to the leaf d closest to b

is retrieved, and we have the following cases:

• If d 6= a, then the join request is forwarded to d, and the join acknowledgement

carries the identifiers of a’s routing table. Sending the acknowledgement takes ρ + 1

activations of lab: one for the name denoting the message type and one for each

identifier.

• if d = a then the join request does not need to be further forwarded; the response

acknowledgement is like in the previous case, but it also contains a’s leaf-set, so that b

can form its own leaf-set out of it.

If b does not belong to the leaf set, then it is forwarded according to the routing table, and

the join acknowledgement again contains the routing table’s entries of a.

The reception of a join acknowledgements causes the routing table and leaf-set to be

updated with the content of the message. After receiving the last acknowledgement (case

join_ack_leaf), a notifies its existence to all the peers in its routing data structures. A join

notification triggers an update to both the routing table and the leaf-set of the receiving peer;

additional actions may be undertaken, for instance the redistribution of hash-table entries

among peers in a DHT, but these are not the concern of our model.

Finally, we give a correctness result for our implementation of the join procedure.
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join_req[b] ⇒ (a� b)

`min ← minLS.

`max ← maxLS.

a� c1, . . . , a� cρ ← listRT.

if `min ≺ b ≺ `max then

a � d← closLS〈b〉.
if d 6= a then

ρ+1︷ ︸︸ ︷
a� b | . . . | a� b | ab join_ack[c1, . . . , cρ] |
a � d | a � d | ad join_req[b] | Control

else

a� e1, . . . , a� eλ ← listLS.

a� b | . . . | a� b︸ ︷︷ ︸
ρ+λ+1

| ab join_ack_leaf[c1, . . . , cρ, e1, . . . , eλ] | Control
else

ρ+1︷ ︸︸ ︷
a� b | . . . | a� b | ab join_ack[c1, . . . , cρ].

a� f ← nextRT〈b〉.
a� f | a� f | a f join_req[b] | Control

join_ack[R] ⇒ updRT〈R1〉. · · · .updRT〈Rρ〉.Control

join_ack_leaf[R, L] ⇒ updRT〈R1〉. · · · .updRT〈Rρ〉.
updLS〈L1〉. · · · .updLS〈Lλ〉.
a� b1, . . . , a� bρ ← listRT.

a � c1, . . . , a � cλ ← listLS.

a� b1 | a� b1 | ab1 join_ntf[a] |
. . .

| a � cλ | a � cλ | acλ join_ntf[a]

| Control

join_ntf[b] ⇒ updRT〈b〉.updLS〈b〉.Control

Figure 6.2: Code handling join messages.
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Theorem 6.3.1. Consider a Pastry system with n peers a1, . . . , an. Let an+1 be the identifier of a

peer that intends to join the system. Let Lai
RT and Lai

LS be the links of ai’s routing table and leaf-set,

for i = 1, . . . , n + 1. Then, after the join procedure for an+1 has ended, the following property holds:

for each key k and each ai, either ai is responsible for k or there is a link from ai to b in Lai
RT ∪ L

ai
LS

such that b is closer to k than ai, i.e. ai, b and k satisfy Property 6.1.2 with id = ai and id′ = b.

Proof. See §A.4.1.

6.3.3 Routing services provider

The provision of routing services to applications is performed by

Route
def
= a� b1, . . . , a� bρ ← listRT. ∑

bi 6=e
a� bi.Control

+ a � c1, . . . , a � cλ ← listLS. ∑
cj 6=e

a � cj.Control

It activates any link from the routing table or leaf-set, provided that it is not the dummy link

(i.e. its target is not e).

6.4 Application level

Now we want to model routing behavior for a simple Distributed Hash Table, where

observations are routing paths taken by DHT lookups.

The Pastry routing strategy is implemented through the forwarding predicate ϕPastry,

shown in Figure 6.3. Let us explain it. The first case allows forwarding a message with target

k from a to b, via a link in a’s leaf-set, provided that: there is no other leaf b′ which is closer

to k than b; a has two leaves b1 and b2, on opposite sides of (but not necessarily distinct

from) a, and k is between them, i.e. k is within the leaf-set range. The second case allows a

forwarding through a link in the routing table whenever there is no better link in the leaf-set

and the identifier b of the reached peer shares (at least) one more digit with k than a. The

third case treats links that allows reaching a key k via the peer responsible for it: it required

that the the link’s target is indeed k.

We can model a Distributed Hash Table over a Pastry system with peers a1, . . . , an as

follows. Suppose the DHT has m key-value pairs 〈ki, vi〉, and let aki
be the identifier of the

peer responsible for ki, i.e. the closest to ki among a1, . . . , an. Then we have

DHT
def
= Peer(a1) | . . . | Peer(an) | H

H
def
= Entry(k1, v1, ak1) | . . . | Entry(km, vm, akm)

Entry(k, v, a) def
= a � k | k(b).abv.Entry(k, v, a)
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ϕPastry(lab, k, p) := case lab of

a � b ⇒



∀b′ 6= b : p a;a�b′ ;b′
====⇒ p′ =⇒ dr(k, b) < dr(k, b′)

∧

∃b1, b2 :

 p
a;a�b1;b1=====⇒ p1, p

a;a�b2;b2=====⇒ p2

∧
b1 � a � b2 ∧ b1 ≺ k ≺ b2





a� b ⇒

 ∀b′ 6= b : p a;a�b′ ;b′
====⇒ p′ =⇒ dr(k, b) < dr(k, b′)

∧
shl(b, k) > shl(a, k)



a � b ⇒ b = k

(SRV-IN)
p

(R) (d;W;c | ckx;W ′ ;• |Θ)
=============⇒ q

p
(R) (dkx;W;W ′ ;• |Θ)
===========⇒ q

(SRV-OUT)
p

(R) (•;W ′ ;ckr | c;W;d |Θ)
=============⇒ q

p
(R) (•;W ′ ;W;dkr |Θ)
===========⇒ q


∀lab ∈ |W| : ϕPastry(lab, k, p)

Figure 6.3: Pastry forwarding predicate and rules.
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Here H represents the DHT content as the parallel composition of processes that handle the

table’s entries. The idea is implementing a DHT lookup request for a key k as a message

with destination k, carrying the identifier b of the sender. Upon receiving this message, the

handler for 〈k, v〉 replies to b with a message containing v.

We provide an account of Property 6.1.2 in this scenario.

Lemma 6.4.1. For every peer a and key k there is DHT a;a�b;b
===⇒ DHT′, where � ∈ {�,�, �}, such

that either b = k or b is closer to k than a, i.e. a, b, k satisfy Property 6.1.2.

Proof. See §A.4.2.

The following result is an immediate consequence of Lemma 6.4.1 and of the definition

of ϕPastry. It says that, given a key k and a peer a, there always is a path from a routing a

lookup request for k.

Theorem 6.4.2. Let k be a key in the DHT and ak the peer responsible for it. Then, for every peer a,

there exists a transition

DHT
aaka;a�a1;...;an�ak ;ak�k;•
==============⇒ DHT′

with � ∈ {�,�, �} and n ≥ 0.

As an example, we show how to compute a routing path in the system of Figure 6.1. For

simplicity, let us consider a DHT with only one key-value pair (1101, v) located at 1100:

H
def
= 1100 � 1101 | 1101(a).1100 a v.H DHT

def
= Sys | H

Consider the following process, representing a user application running at 1010

App
def
= 1010 1101 1010.1010(v′).App′(v′) .

This sends a lookup request for the key 1101, receives the result and uses it for some

computations. So we have

App
•;1010 1101 1010
========⇒ 1010(v′).App′(v′) .

The routing steps for this request are those of Example 6.1.1. In this context, they become the

following ones, depicted in Figure 6.4

Peer(1010) 1010;1010�1111;1111
===========⇒ Peer(1010)

Peer(1111) 1111;1111�1100;1100
===========⇒ Peer(1111)

These paths can be concatenated with the one of App using (SRV-OUT) in Figure 6.3. The

result is

•; 1010� 1111; 1111 � 1100; 1100 1101 1010

The complementary path can be inferred using (SRV-IN) in Figure 6.3

H
1100 1101 1010;1100�1101;•
===============⇒ 1100 1010 v.H .
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1010

1011

1111

1000

1100

1101

Figure 6.4: Routing path from 1010 for the key 1101 in the system of Figure 6.1.

Finally, we can concatenate all these paths through (COM) and get

App | DHT •;1010�1111;1111�1100;1100�1101;•
====================⇒ 1010(v′).App(v′) | Sys | 1100 1010 v.H

which exhibits the whole routing path from 1010 to 1100. Finally, assuming that the overlay

network has a path back to 1010, the following configuration is reached

App(v) | DHT .



Chapter 7

Conclusions

In this thesis we presented NCPi, an extension of π-calculus with an explicit notion of

network. To achieve this, we enriched the syntax with named connectors and defined

a semantics whose observations are routing paths. We constructed operational models

for our calculus, in terms of presheaf-based coalgebras: one characterizing the ordinary

observational equivalence, with an equivalent HD-automaton, and a saturated one. Then we

introduced a concurrent extension of our calculus, with additional constructs and multisets

of paths as observations, and we proved that observing concurrency makes the bisimilarity

of our calculus compositional. Finally, we illustrated the expressive power of our calculus

by modeling network reconfiguration and routing in Pastry systems.

7.1 Related work

7.1.1 Other network-conscious calculi

The works most closely related to ours are [29] and [21] where network-aware extensions of

Dπ [35] and KLAIM[19] are presented, called respectively DπF and TKLAIM. KLAIM is quite

far from the synchronous π-calculus, because it models a distributed tuple-space modifiable

through asynchronous primitives, but an encoding to the asynchronous π-calculus exists

[20].

Both DπF and TKLAIM are located process calculi, which means that processes are

deployed in locations, modeling physical network nodes. In κNCPi, instead, processes access

the network through sites, possibly more than one for each process, rather than being inside

of it. However, locations can be easily introduced in κNCPi by a typing mechanism which

limits the number of subject names in processes. For instance, we could introduce location

types and associate them to sites, with the meaning that each site belongs to a location. Then,

we could forbid processes where the same site occurs with different location types.

The network representations are quite different: in DπF locations are explicitly associated
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with their connectivity via a type system, TKLAIM has a special process to represent

connections, while in our calculus connections are just names, so the available network

nodes and connections correspond to the standard notion of free names. This brings simpler

primitives, but also a higher level of dynamics: connections can be created and passed

among processes, as shown in the introductory example §3.1; this example, in our opinion,

is not easily implementable in TKLAIM and DπF.

Finally, our calculus is more programmable: processes explicitly activate transportation

services over connections via the link prefix, while in the cited calculi the network is always

available.

We can also cite [32, 33, 22] as examples of calculi where resources carry some extra

information: they explicitly associate costs with π-calculus channels through a type system.

In our case, links could also be typed in order to model services with different features, e.g.

performance, costs and access rights.

7.1.2 Other presheaf models

Besides the π-calculus, other calculi have been equipped with a presheaf-based semantics:

the open π-calculus in [31], where processes are indexed by structured sets of names that

represent distinctions; the explicit fusion calculus in [8], where processes are indexed by

fusions in the form of equivalence classes of names; and the fusion calculus in [46], where

the author uses the same presheaf category as [28] and incorporates fusions in the behavioral

functor.

7.1.3 Other concurrent semantics for the π-calculus

There are other notions of concurrent semantics for the π-calculus. Some of them are

obtained indirectly, via an encoding to existing concurrent semantics. In [36, 24], which

inspired [43], π-calculus sequential processes are encoded as hyperedges in a synchronized

hyperedge replacement system, where nodes model channels. The semantics is generated by

means of rewrite productions and SOS rules that combine them. Many rewritings, thus many

actions, can be observed happening in parallel. Observations are π-calculus actions, but

they are always located, i.e. they are associated to a node; instead, we hide the node where

a synchronization happens, as in the π-calculus. Moreover, it is not possible to perform

two simultaneous actions on the same node, while in κNCPi this is allowed. In [13] π-

calculus processes are encoded to Petri nets with inhibitor arcs: places represent the syntactic

structure, and tokens the possible control flows; inhibitor arcs avoid unwanted parallel

computations. The resulting semantics forbids parallel extrusions of the same name, while

we allow them (see e.g. Example 5.2.4). Finally, in [49], the π-calculus semantics is emulated

through a (double pushout-based) graph transformation system: as in [36], processes are

encoded to hyperedges and channels as nodes; there is a special unary hyperedge indicating

that the name it is connected to is unrestricted, and then can be used as subject in a
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communication. Observations are those of the π-calculus, but they are computed in two

steps, because much more information needs to be observed in order for rewriting to happen;

this information is then discarded. This approach also accounts for parallel extrusion.

There are notions of bisimulations that take into account concurrency: in [61] π-calculus

processes are equipped with locations in order to observe the degree of parallelism, but

the obtained observational equivalence is not a congruence; in [11, 23] causal relations

are used to keep track of dependencies among actions, however these relations exclude

parallel extrusions. These bisimulations are rather involved, and are defined on top of the

interleaving π-calculus transition system. We, instead, take the ordinary bisimilarity on a

concurrent operational semantics, which makes explicit the amount of parallelism available.

7.2 Future research directions

7.2.1 Variants of NCPi

Our calculus only captures point-to-point communication, but a network could be used for

more complex forms of interaction, e.g. multicast. One possible development direction might

be allowing different mechanisms of message exchanging, for instance broadcast, multicast,

and others.

We could also equip sites and links with pieces of information such as access rights,

bandwidth, costs. For instance, just like we have source and target operations on links,

we could have operations rL : L → A and rS : S → A that assign to each link and site,

respectively, an access right in a lattice A. This information could be used to control the

inference of paths.

This would be useful for modeling the Infrastructure-as-a-Service layer of Cloud Com-

puting Systems, where users can request network resources with specific features.

Finally, in NCPi there is room for asynchronous variations. For instance, we can think of

a fully asynchronous version, based on the asynchronous π-calculus, where the semantics

shows single forwarding steps. This could be implemented via the following SOS rules:

abr •;abr−−→ 0
p •;abr−−→ p′ q a;lac ;c−−−→ q′

p | q •;lac ;•−−−→ cbr | p′ | q′

p •;aar−−→ p′ q aar;•−−→ q′

p | q •;•−→ p′ | q′

The idea, as in the asynchronous π-calculus, is to allow only outputs without continuation.

These outputs can “move” along links (second rule) and trigger a local synchronization at

its destination site, provided that there is a matching input (third rule).

7.2.2 A general framework

This thesis is a first step towards a general framework for constructing operational models

of resource-aware calculi. It validates the approach [28] and shows how it can be applied
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to a calculus with resources that are significantly more complex than π-calculus channels.

Moreover, this approach is integrated with different models that take this additional

complexity into account, such as saturated transition systems and HD-automata.

Our next step will be considering the ψ-calculus [7], which is an extension of the π-

calculus with nominal data types for data structures and for logical assertions representing

facts about data. These can be exchanged between processes using the standard π-calculus

mechanisms. Collections of nominal data could be modeled as a suitable category of

resources for presheaves, and we could have allocation operators on them, e.g. modeling

the introduction of a new assertion.

We also plan to investigate other extensions of the π-calculus, adding other pieces

of information to sites and links, e.g. access rights as mentioned in §7.2.1, and study the

corresponding presheaf semantics. The idea is that, since the category of resources can be

constructed as a category of algebras, as we did for graphs, associating more information

to resources means adding sorts (objects) and operations (morphisms) to the category

describing the algebraic specification. Sorts and operations should be interpreted in suitable

domains, e.g. we may want access rights to have a lattice structure.



Appendix A

Proofs

We make the following assumption about bound names of processes.

Convention A.1. When considering a collection of renamings and processes, we assume that

bound names of processes are distinct from their free names and from the names involved

in renamings, unless otherwise specified.

A.1 Proofs for Chapter 3

A.1.1 Proof of Proposition 3.3.3

By induction on the inference of p α−→ q. The only relevant case is whenever p α−→ q is inferred

through (RES). We have p ≡ (r)p′, α ≡α α′/r, q ≡ (r)q′ and the transition is inferred

from p′ α′−→ q′. Since ≡ preserves well-formedness, (r)p′ is well-formed as well and so is

p′. Therefore, by induction hypothesis, q′ is well-formed. Now we have to show that (r)q′ is

well-formed. Suppose it is not, then there must be lab ∈ fn(q′) such that r = a or r = b. We

show that lab ∈ fn(p′), which implies that (r)p′ is not well-formed, against the hypothesis.

By (RES) side conditions we have that α′ cannot be an output path where lab is bound or an

input path with object lab. These are the only kinds of paths that can create new free names.

Therefore, lab was already free in p′.

A.1.2 Proof of Theorem 3.5.2

We have to show that if p ∼NC q then op(p) ∼NC op(q), for each NCPi operator op. Most of

the cases are minor adjustements of standard π-calculus proofs (see e.g. [48]). We show the

cases that involve new operators and new SOS rules. For each case we define a relation R
and prove that it is a bisimulation. We make the following simplification: for each considered

R we assume that (p, q) ∈ R is such that bn(p) # q and viceversa, and we will only consider

transitions that are inferred direclty through the rules, without using structural congruence.
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This is allowed by a direct consequence of Definition 3.3.1: whenever R is a bisimulation,

also ≡ R ≡ is a bisimulation.

Case op = lab.−: We have to prove that

R = {(lab.p, lab.q) | p ∼NC q}∪ ∼NC

is a bisimulation. Clearly lab.p and lab.q can both do a; lab; b. Their continuations are

again p and q, which we assumed bisimilar, so are related byR.

Case op = (r)−: consider the relation

R = {((r)p, (r)q) | p ∼NC q}∪ ∼NC

We have to show that R is a bisimulation. Take ((r)p, (r)q) ∈ R and consider (r)p α−→
p′. It is easy to see that bn(α) ⊆ bn(p) and, since we assumed bn(p) # q, we have

bn(α) # q. This transition is inferred either via (RES) or via (OPEN):

• Case (RES): we have α ≡α (r)α′/r and the transition is inferred from p α−→ p′.

Then, by definition of R, there is q α′−→ q′, from which (RES) infers (r)q
(r)α′/r−−−−→ q′.

The claim follows from (p′, q′) ∈∼NC⊆ R.

• Case (OPEN): we have α ≡ •; W/r; a(r) and the transition is inferred from p •;W;ar−−−→
p′. By definition ofR there is q •;W;ar−−−→ q′, and using (OPEN) we get (r)q

•;W/r;a(r)−−−−−−→
(r)q′. From p′ ∼NC q′ it follows ((r)p′, (r)q′) ∈ R.

A.1.3 Proof of Proposition 3.5.4

We have to prove that

Rin = {(a(r).p, a(r).q) | p ≈NC q}∪ ≈NC

is a bisimulation and is closed under renamings. For a pair inRin, we have

a(r).p
a(r′)−−→ p[r′/r] a(r).q

a(r′)−−→ q[r′/r]

From p ≈NC q it follows p[r′/r] ≈NC q[r′/r], and also p[r′/r]σ ≈NC q[r′/r]σ, for all σ.

A.2 Proofs for Chapter 4

A.2.1 Proof of Proposition 4.2.2

Let F the small category of finite ordinals and functions. Being a skeleton of FinSet, F is

equivalent to it. Let F : F→ FinSet be the fully faithful and essentially surjective functor for

such equivalence. Then it is easy to check that the functor F ◦ (−) : F⇒ → FinSet⇒ is fully
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faithful and essentially surjective as well. This means that F⇒ and FinSet⇒ are equivalent,

so FinSet⇒ is essentially small and its skeletal category G is small.

As for finite colimits and pullbacks: they exist in FinSet⇒, because it is a topos [44], so also

in G, by equivalence. Finally, stability of monos under pushouts is a well-known property

of topoi.

A.2.2 Proof of Proposition 4.2.3

We prove each requirement for the functoriality (up to natural isomorphism):

• δ•→•(idg) = idδ•→•(g): by commutativity of (1) in the following diagram

[n] �
�

//
� _

��

g

(1)

idg
//

σ

��

g

σ

��

kn //

îdg=idkn
��

g∗

id∗g
""

kn // g∗

Notice that the mediating arrow may be any isomorphism i: in this case the vertical

leg of the outer pushout would be i ◦ σ. This is not an issue, since functoriality is up to

isomorphism.

• δ•→•(σ2 ◦ σ1) = δ•→•(σ2) ◦ δ•→•(σ1), for any σ1 : g1 → g2, σ2 : g2 → g3: by

commutativity of

[n1]
� � //
� _

��

g1
σ1

//

q1

��
(1)

g2

q2

��

σ2
//

(2)

g3

q3

��

kn1

σ̂1
��

p1
//

σ̂2◦σ1

��

(3)

g∗1

σ∗1

%%

kn2

σ̂2
��

p2
//

(4)

g∗2

σ∗2

%%

kn3 p3
// g∗3

In particular, we have

σ∗2 ◦ σ∗1 ◦ q1 = σ∗2 ◦ q2 ◦ σ1 (by commutativity of (1), precomposing σ∗2 )

= q3 ◦ σ2 ◦ σ1 (by commutativity of (2))
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and

σ∗2 ◦ σ∗1 ◦ p1 = σ∗2 ◦ p2 ◦ σ̂1 (by commutativity of (3), precomposing σ∗2 )

= p3 ◦ σ̂2 ◦ σ̂1 (by commutativity of (4))

= p3 ◦ σ̂2 ◦ σ1

which means that σ∗2 ◦ σ∗1 commutes with both the smallest and the biggest pushout.

By the universal property of the smallest one, this morphism is the unique mediating

morphism between them.

A.2.3 Proof of Proposition 4.2.5

It is well known that constant functors and Pc are accessible and preserve weak pullbacks;

∆• and ∆•→• have both left and right adjoints, namely functors computing left and right

Kan extensions along δ• and δ•→•, so they preserve limits, in particular weak pullbacks, and

(filtered) colimits.

A.2.4 Proof of Proposition 4.3.5

Given a coalgebra (P, ρ), the equivalent GI-ILncTS (P,−→ρ) is given by

g ` p α−→ρ g′ ` p′ ⇐⇒ (α, p′ ∈ Pg′) ∈ ρg(p)

In fact, (i) of Definition 4.3.4 reflects the definition of Bn, (ii) the naturality of ρ.

A.2.5 Proof of Proposition 4.3.6

Given a Bn-bisimulation R, we show that {Rg}g∈|GI| is a GI-indexed bisimulation. By

Definition 2.2.15 there is a coalgebra structure map ρ for R, so by Proposition 4.3.5 there

is an equivalent GI-ILncTS (R,−→ρ). Consider g ∈ |GI| and a a pair (p, q) ∈ Rg. Then there

is one transition of the form

g ` (p, q) α−→ρ g′ ` (p′, q′) , (p′, q′) ∈ Rg′ ,

for each transition of p. This gives the simulating transition of q required by (i) of

Definition 2.2.19. Condition (ii) just amounts to saying that R is a presheaf GI → Set.

A.2.6 Proof of Lemma 4.3.8

Let

g //
ρ1
//

��

ρ2

��

g1
��

σ1

��

g2 // σ2
// g3
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be any pullback in GI. It is a pullback also in FinSet⇒, therefore there is a unique

isomorphism i such that the following diagram in FinSet⇒ commutes

ĝ π̂1

��

π̂2

""

g
��

i

^^

//
ρ1
//

��

ρ2

��

g1
��

σ1

��

g2 // σ2
// g3

where

ĝ = { {(e1, e2) ∈ eg1 × eg2 | σ1(e1) = σ2(e2)},

{(v1, v2) ∈ vg1 × vg2 | σ1(v1) = σ2(v2)},

sĝ := λ(e1, e2).(sg1(e1), sg2(e2)),

tĝ := λ(e1, e2).(tg1(e1), tg2(e2)) }

and π̂1, π̂2 are the restrictions to ĝ of the projections from g1 × g2.

Let ĝ1, ĝ2 and ĝ3 denote π̂1(ĝ), π̂2(ĝ) and σ1(ĝ1) (= σ2(ĝ2)), respectively. Then we can

decompose each morphism as an isomorphism followed by an embedding as follows

ĝ π̂1

��

//

|π̂1|

�� ��

��

|π̂2|

!! !!
π̂2

""

g
^^

i

^^^^

//
|ρ1|
// //

��

|ρ2|
����

ĝ1
��

|σ1|
����

� � // g1
��

σ1

��

ĝ2 // |σ2|
// //

� _

��

ĝ3 � o

��

g2 // σ2
// g3

(A.1)

Our goal is showing that the following diagram is a pullback in Set

NIg //
[ρ1]NI

//

��

[ρ2]NI
��

NIg1
��

[σ1]NI
��

NIg2 //
[σ2]NI

// NIg3

All the legs are indeed injections: [ρi]N and [σi]N (i = 1, 2) are injective, because homset

functors preserve monomorphisms, thus so are their homomorphic extensions to processes.
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Consider the following pullback

X
πX

1
//

πX
2
��

NIg1
��

[σ1]NI
��

NIg2 //
[σ2]NI

// NIg3

where

X = {(p1, p2) ∈ NIg1 ×NIg2 | p1[σ1]NI
= p2[σ2]NI

}

and πX
1 , πX

2 are the restrictions to X of the projections from NIg1 ×NIg2. We shall show that

the mediating morphism I : NIg→ X for the following diagram

X πX
1

��

πX
2

&&

NIg

I

aa

//
[ρ1]NI

//

��

[ρ2]NI
��

NIg1
��

[σ2]NI
��

NIg2 //
[σ1]NI

// NIg3

is bijective, and thus, since limits are unique up to a unique isomorphism, the square is a

pullback.

The idea is “lifting” the decomposition of diagram (A.1) to Set. First of all, let

NF : FinSet⇒ → Set be the functor that acts as N on the whole FinSet⇒ and let

X̂i := {p ∈ NIgi | fn(p) ⊆ NF ĝi} i = 1, . . . , 3

be the subset of NIgi containing processes with free names in NI ĝi. Notice that img([ρi]NI
) =

X̂i and that img( [σi]NI

∣∣
X̂i
) = X̂3, by commutativity of A.1, so the following functions are

properly defined:

[̂ρi]NI
:= [ρi] : NIg→ X̂i [̂σi]NI

:= λp ∈ X̂i.p[σi] : X̂i → X̂3 i = 1, 2 (A.2)

These are the homomorphic extension to processes of [|ρi|]NF and [|σi|]NF , which are

bijections, so are themselves bijective. Their definition ensures the commutativity of

NIg //
[̂ρ1]NI

// //

��

[̂ρ2]NI
����

X̂1
��

[̂σ1]NI
����

X̂2 //

[̂σ2]NI

// // X̂3

(A.3)

Now we prove that all and only the processes in X̂1 and X̂2 occur in a pair in X, and each

process appears in only one pair. This will allow us to turn the projections from X into

bijective functions by restricting their codomains to X̂1 and X̂2.

Formally, we have to show that:
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(i) every (p1, p2) ∈ X is such that p1 ∈ X̂1 and p2 ∈ X̂2;

(ii) for all p1 ∈ X̂1 (resp. p2 ∈ X̂2) there is only one p2 ∈ X̂2 (resp. p1 ∈ X̂1) such that

(p1, p2) ∈ X;

As for (i), let S1 = fn(p1) ∩ (NFg1 \ NF ĝ1) and suppose that S1 is not empty. Let x ∈ S1

and x′ = x[σ1]NF . We have two cases:

1. Every y ∈ fn(p2) is such that y[σ2]NF 6= x′: then x cannot be in fn(p1), because

otherwise we would have p1[σ1]NI
6= p2[σ2]NI

;

2. There is y ∈ fn(p2) such that y[σ2]NF = x′: then x and y stem from items i of g1 and

j of g2, respectively, such that σ1(i) = σ2(j), so i appears also in ĝ1, which implies

x ∈ NF ĝ1.

Both cases imply x /∈ S1, which is absurd.

As for (ii), consider the following function

ϕ : X̂1
[̂ρ1]NI

−1

−−−−−→ NIg
[̂ρ2]NI−−−→ X̂2 ;

we can let p2 be ϕ(p1), in fact we have

p2[σ2]NI
= p2 [̂σ2]NI

(by p2 ∈ X̂2)

= p1 [̂σ1]NI
(by commutativity of (A.3))

= p1[σ1]NI
(by (A.2))

so (p1, p2) ∈ X. Now, suppose there is another p′2 such that (p1, p′2) ∈ X. By definition of X,

p1[σ1]NI
= p′2[σ2]NI

, but also p1[σ1]NI
= p2[σ2]NI

, so p2[σ2]NI
= p′2[σ2]NI

and, by injectivity

of [σ2]NI
, p′2 = p2.

Now, thanks to the above observations, we have that the two functions

π̂X
1 : X → X̂1 π̂X

2 : X → X̂2

are well-defined and bijective. Therefore we have that the following diagram commutes

X 00

π̂X
1

�� ��

��

π̂X
2

(( ((

  

I = π̂X
1

−1
◦[̂ρ1]NI

    

πX
1

��

πX
2

''

NIg //
[̂ρ1]NI

// //

��

[̂ρ2]NI
����

X̂1
��

[̂σ1]NI
����

� � // NIg1
��

[σ1]NI

��

X̂2� _

��

//

[̂σ2]NI

// // X̂3

NIg2 //
[σ2]NI

// NIg3
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A.2.7 Proof of Theorem 4.3.10

(i) One direction is given by Proposition 4.3.6, the other one by Proposition 4.3.7.

(ii) Given a GI-indexed bisimulation {Rg}g∈|GI| on (NI,−→ν), we will show that

R∗ :=
⋃

g∈|GI|
Rg

is a network conscious bisimulation that is closed under injective renamings. Consider

(p, q) ∈ R∗ and suppose p, q ∈ NIg. Condition (i) of Definition 2.2.19 says that p and

q are able to simulate each other and their continuations are again in R∗; freshness of

bn(α) w.r.t. q is guaranteed due to bn(α) being generated by δ• or δ•→•, thus fresh

by construction. Finally, closure under injective renamings is guaranteed by (ii) of

Definition 2.2.19.

Viceversa, consider a network conscious bisimulation R. Then is easy to see that the

following family of relations is a GI-indexed bisimulation on (NI,−→ν):

{Rg := R ∩NIg}g∈|GI|

A.2.8 Proof of Proposition 4.5.2

ER and R are a pair of adjoint functors between accessible categories, hence are accessible

themselves. Moreover, they are both right adjoints (R is right adjoint to the left Kan

extension along GI ↪→ G), thus preserve limits. Therefore, being B̂n the composition of three

accessible and weak-pullback-preserving functors, it has the same properties.

A.2.9 Proof of Proposition 4.5.3

One direction of the mapping is given by

(RP, ρ) 7−→ (P, ρ′) ρ′ : P
ηP
// ERRP

ERρ
// ERBnRP = B̂nP

the other one by

(P, φ) 7−→ (RP, φ′) φ′ : RP
Rφ
// R B̂nP = RERBnRP

εBnRP
// BnRP

A.2.10 Proof of Proposition 4.5.5

We show the direction from B̂-coalgebras to GI-ILncTSSATs, the other direction is analogous.

Consider a B̂n-coalgebra (P, ρ) and the transition relation −→ρ given by

g ` p
(σ,α)−−→ρ g′′ ` p′ ⇐⇒ (α, p′ ∈ P(g′′)) ∈ (ρg(p))σ . (A.4)
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We prove that (P,−→ρ) satisfies all the requirements of Definition 4.5.4. Let t be the tuple

ρg(p), then we have

t ∈ ∏
σ:g→g′∈‖G‖

BnRP(g′) .

So, for any transition as in (A.4) with σ : g → g′, we have (α, p′) ∈ tσ = BnRP(g′). Then

α ∈ Labnc(g′) and, since Bn and (ii) of Definition 4.3.4 have been shown to agree, we have

that g′′ ` p′ is a valid continuation for α according to (ii) of Definition 4.3.4. This proves (i)

of Definition 4.5.4.

As for (iii.a), it follows from the closure under monos condition characterizing the tuples

in B̂nP(g), namely tσ′◦σ = tσ[σ′]BnRP. According to (A.4), this equation says that each

transition of g ` p with σ in its label corresponds to a unique one with σ′ ◦ σ, and viceversa.

This correspondence is as follows. Let (σ, α) and g′′ ` p′ be label and continuation of a

transition of g ` p. Then α and p′ agree with (ii) of Definition 4.3.4, as we have already

proven, and the result of applying [σ′]BnRP to this pair is described by (ii) of Definition 4.3.4.

This indeed gives a path and continuation of the form required by (iii.a).

Finally, (iii.b) reflects the naturality of ρ, explicitly

p ∈ Pg � ρg
//

_

[σ]P
��

t s.t. (α, p′) ∈ tσ′◦σ_

[σ]B̂n P
��

p[σ]P ∈ Pg′ �
ρg′
// t′ s.t. (α, p′) ∈ t′σ′

A.2.11 Proof of Theorem 4.5.7

(i) Analogous to (i) of Theorem 4.3.10.

(ii) Each G-indexed bisimulations {Rg}g∈|G| on (N ,−→νSAT ) is equivalent to a B̂n-

bisimulation R, thanks to (i). By Proposition 4.5.3 (instantiated to those Bn-coalgebras

that are Bn-bisimulations) R is in turn equivalent to a Bn-bisimulation RR. By

Theorem 4.3.10, this corresponds to a network conscious bisimulation, and precisely to⋃
g∈|GI|RR(g), which is clearly equal to

⋃
g∈|G| Rg, thus is closed under all renamings.

A.2.12 Proof of Proposition 4.5.1

For the sake of simplicity, we let J := GI ↪→ G and, since GI and G have the same objects,

we shall use a instead of Ja.

We prove that the formula we have given for ERP(g) is correct. Recall from §2.2.3 that

ERP(g) is defined as the limit of the diagram P′ : g ↓ J → Set, given by

(σ : g→ g′, g′) 7−→ P(g′)

ρ : (σ : g→ g′, g′)→ (σ′ : g→ g′′, g′′) 7−→ ρ : g′ → g′′ ∈ ‖GI‖
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It is well known that limits can be computed via products and equalizers (see e.g. [41,

V,Theorem 2]): given the following morphisms ϕ and ψ

∏
a∈|g↓J|

P′a
ϕ
//

ψ
// ∏
ρ∈‖g↓J‖

P′(cod(ρ)) (ϕ(t))ρ = tcod(ρ) (ψ(t))ρ = tdom(ρ)[ρ]P′

then the limit of P′ is their equalizer, explicitly

{t ∈ ∏
a∈|g↓J|

P′a | ∀ρ ∈ ‖g ↓ J‖ : tcod(ρ) = tdom(ρ)[ρ]P′} .

Expanding the definition of P′ in the latter expression

∏
(σ : g→g′ ,g′)∈|g↓J|

P′(σ : g→ g′, g′) = ∏
σ : g→g′∈‖G‖

P(g′) tdom(ρ)[ρ]P′ = tdom(ρ)[ρ]P

and observing that if ρ has domain σ, then its codomain is ρ ◦ σ (where this ρ is in G), we get

the claim.

The correctness of our formula for ERP(σ) follows from the fact that the morphisms from

the vertex to the base in diagram (2.3) are projections: this turns (2.4) into the visual proof of

the claim.

A.3 Proofs for Chapter 5

A.3.1 Proof of Proposition 5.2.5

By induction on the inference of p Λ
=⇒ q. We show the most relevant case, i.e. when this

transition is inferred through (COM). We have that p Λ
=⇒ q is inferred from

p
Λ′=(R)(•;W;abr | ab′x;W ′ ;• |Θ)
=================⇒ q′ ,

so Λ ≡Λ (R′)(•; W; W ′; • |Θ) and q ≡ (R′′)q′(σb ◦ σr). By induction hypothesis Λ′ and q′ are

well-formed, so also Λ is well-formed, because it is obtained from Λ′ just by removing some

names, and it is simple, otherwise (COM) could not be applied.

We prove that (R′′)q′(σb ◦ σr) is well-formed. First, notice that q′(σb ◦ σr) is clearly well-

formed, because σb and σr avoid captures. Now we show that, if a ∈ R′′, then lab ∈ fn(q′(σb ◦
σr)) only if lab ∈ R′′. Suppose, by absurd, that lab ∈ fn(q′(σb ◦ σr)) but lab /∈ R′′. Then we

have that lab is either in fn(p) or in Bn(Λ) ∪ Objin(Λ), because this set contains the new

names in the continuation, i.e. those not in fn(p). By cases:

• lab ∈ fn(p) is forbidden due to a ∈ R′′ ⊆ bn(p), because we assumed that free and

bound names of p are distinct.

• if lab ∈ Bn(Λ) then either lab ∈ R′ or (l(ab)) is the placeholder of an input path in Λ. In

the first case also a must be in R′, because lab ∈ Obj(Θ) and thus a ∈ Obj(Θ), but then
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a cannot be in R′′, as it is defined so that R′′ ∩ R′ = ∅; this is a contradiction. In the

second case, a would be already bound in Λ, but this is not allowed by the inference

rules.

• lab ∈ Objin(Λ) is forbidden due to a ∈ R: in fact, if lab were free in Λ, (a) would capture

it, causing Λ not to be well-formed, against the inductive hypothesis.

Summarizing, either lab /∈ fn(q′(σb ◦ σr)) or lab ∈ fn(q′(σb ◦ σr)) and lab ∈ R′′, so q is well-

formed.

A.3.2 Proof of Theorem 5.2.7

We introduce the following notation:

Π, Π′, . . . , Π1, Π2, · · · : (forrests of) proof trees

Πσ : proof obtained by applying σ to every process and concurrent path in Π

dom(σ) : set of names that are not mapped to themselves by σ;

img(σ) : image of dom(σ) through σ;

ds(α) : destination site of a path α, if any.

xσ∗ : result of applying σ to both the free and bound names of x

We call non-linear rules those rules that depend on the equality of certain names in the

premises, namely (COM), (SRV-IN), (SRV-OUT), (SRV-SRV), which, in fact, can only be applied

to paths with matching interaction sites. We call all the other ones linear rules.

We need a plethora of lemmata in order to prove the main result.

Lemma A.3.1. Suppose p Λ
=⇒ q and let Ω be a sequence of non-linear rule instances inferring

p Λ′
=⇒ q′ from this transition. Then q′ is of the form (R)qσ, for some R and σ. Moreover, given any

other transition p′′ Λ
=⇒ q′′, there is a sequence of non-linear rule instances that infers p′′ Λ′

=⇒ (R)q′′σ

from it.

Proof. Non-linear rules, and in particular (COM), can only modify the continuation of the

premise by adding restrictions and renaming it. This justifies the first part of the statement.

The second part follows from observing that each rule instance in Ω does not look at the

source process, so we can replace p with p′′ and q with q′′ in Ω in order to infer p′′ Λ′
=⇒ (R)q′′σ

from p′′ Λ
=⇒ q′′.

Lemma A.3.2. We can define three operations on proofs:

(i) renaming: Given p Λ
=⇒ q, with proof Π, and a renaming σ such that Λσ is simple, then

pσ
Λσ
=⇒ qσ has proof Πσ.

(ii) α-conversion: Given p Λ
=⇒ q, with proof Π, for any σ = [r′/r] such that r ∈ Bn(Λ) and r′ is

fresh w.r.t. p and Λ, we have that pσ∗
Λσ∗
==⇒ qσ has proof Πσ∗.
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(iii) Input object restriction: Given p
(R)(abr;W;• |Θ)
========⇒ q, with proof Π, suppose a(s).p′ aar;•

==⇒
p′[r/s] is the axiom for the input path in Π. Then, for any fresh s′, there is a transition

p[s′/s]∗
(R)(ab(s′);W;• |Θ)
==========⇒ q′

whose proof is obtained from Π as follows:

(a) r is replaced with (s′) in each input path from which abr; W; • is constructed;

(b) p′[r/s] is replaced with p′[s′/s] throughout the proof.

Moreover, q′[r/s′] = q.

Proof. All the three statements can be proved by induction on the depth of Π.

(i) By cases on the type of the last rule applied in Π; we show some relevant ones:

Case (OPEN): Then p = (r′′)p′, Λ ≡Λ (r′′)(Λ′( r′′) and the transition is inferred from

p Λ′
=⇒ q. Suppose this last transition has proof Π′. Λ′σ is simple because, if r′′

is a link, σ does not map any other link to it by Convention A.1, so the induction

hypothesis can be applied, yielding p′σ Λ′σ
=⇒ qσ with proof Π′σ. This transition is a

valid premis for (OPEN) because σ, according to Convention A.1, does not replace

any free name with r′′. The application of (OPEN) gives the required transition

and, together with Π′σ, yields the required proof.

Case (PAR): Then p = p1 | p2, Λ ≡Λ Λ1 |Λ2 and the transition is inferred from p1
Λ1=⇒

q1 and p2
Λ2=⇒ q2, so q = q1 | q2. Suppose these transitions have proofs Π1 and

Π2. The fact that (Λ1 |Λ2)σ is simple clearly implies that so are Λ1σ and Λ2σ.

Therefore, by induction hypothesis, p1σ
Λ1σ
==⇒ q1σ and p2σ

Λ2σ
==⇒ q2σ have proofs

Π1σ and Π2σ, respectively. Moreover, by Convention A.1, σ cannot break (PAR)

side conditions, so an application of (PAR) gives the thesis.

Case (COM): Then the transition is inferred from p
(R)(α1 | α2 |Θ)
=======⇒ q, with α1 = •; W; abr

and α2 = ab′x; W ′; •, so Λ ≡Λ (R′)(•; W; W ′; • |Θ) and q = (R′′)q′σ′. Suppose

the premise has proof Π′. By Convention A.1, bound names in the label are not

affected by σ, so Λσ ≡Λ (R′)(•; Wσ; W ′σ; • |Θσ). This concurrent path is simple,

therefore also α1σ and α2σ are simple. Then, by induction hypothesis, we have

pσ
(R)(α1σ | α2σ |Θσ)
==========⇒ q′σ with proof Π′σ. We can conclude by applying (COM) to

this transition, which yields

pσ
(R′)(•;Wσ;W ′σ;• |Θσ)
============⇒ (R′′)q′(σ′ ◦ σ) = ((R′′)q′σ′)σ ,

where σ can be brought outside because σ′ is a map between bound names of p,

and Convention A.1 tells us that these names are not affected by σ.
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(ii) A straightforward adaptation of the proof above. The cases (RES) and (OPEN) are

treated by applying the renaming operation to the proof of the premise, with σ = [r′/r]

whenever p = (r)p′. Notice that σ∗ cannot make paths non-simple, because r and r′ are

both fresh w.r.t. the links appearing in the involved labels.

(iii) By cases on the type of the last applied in Π. We show two cases: the first clarifies the

most, the second exemplifies the inductive step.

Case (IN): Then p = a(s).p′, Λ is just aar; •, q = p′[r/s] and Π is an axiom. Then Π′ is

a(s′).p′[s′/s]
aa(s);•
===⇒ p′[s′/s]

which clearly satisfies (a) and (b). Finally, we have

(p′[s′/s])[r/s′] = p′[r/s] .

Case (OPEN): Then p = (r′)p′, Λ ≡Λ (r′)(R)(abr; W; •( r′ |Θ( r′) and the transition is

inferred from p′
(R)(abr;W;• |Θ)
========⇒ q. The proof for this transition clearly contains the

same input axiom for abr; W; • as Π so, by induction hypothesis, there is

p′[s′/s]∗
(R)(ab(s′);W;• |Θ)
==========⇒ q′

with a proof obtained according to (a) and (b). We get the required proof by

applying (OPEN) to this transition.

Lemma A.3.3. Suppose p Λ
=⇒ q has a proof with the following structure

Π
non-linear rule ρ1

linear rule ρ2

p Λ
=⇒ q

and let α1 and α2 be the paths concatenated by ρ1. Suppose is(α1)∩ is(α2)∩ bn(p) = ∅. Then there

are: a proof Π′, a linear rule instance ρ′2, a non-linear rule instance ρ′1, a process p∗ ≡ p and another

process q∗, which is obtained by bringing some unguarded restrictions of q to the top level, such that

the following is a valid proof

Π′

ρ′2
ρ′1

p∗ Λ
=⇒ q∗
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Proof. We have to consider all possible pairs of ρ1 and ρ2 such that the objects of α1 and α2

are involved in the side conditions of ρ2. If they are not, we can simply put ρ′1 = ρ2, ρ′2 = ρ1

and Π′ = Π. The only non-trivial cases are when ρ2 is (RES), (OPEN) or (PAR). We show the

proof of the statement for ρ1 being (COM), which is the most involved case.

Case ρ2 = (RES): Then p = (r′)p′ and the transition is inferred as follows

Π

p′
(R)(•;W;abr | ab′x;W ′ ;• |Θ)
==============⇒ q′

(COM)
p′

(R′)(•;W;W ′ ;• |Θ)
==========⇒ (R′′)q′(σb ◦ σr)(RES)

(r′)p′
Λ≡Λ(R′)(•;W/r′ ;W ′/r′ ;• |Θ( r′)
==================⇒ (r′)(R′′)q′(σb ◦ σr)

We want (COM) to appear after the rule treating the restriction of r′. We have two cases:

• r′ ∈ n(r): if x = r then the earlier restriction of r′ should be treated through

(OPEN). However, we need to make the input object in the top transition bound

in order to get a proper premise of (OPEN). Let s be the input placeholder in p′ for

ab′x; W ′; • and let s′ be fresh. Then we can apply (iii) of Lemma A.3.2 and get

p′[s′/s]∗
(R)(•;W;abr | ab′(s′);W ′ ;• |Θ)
================⇒ q′′;

where q′′[r/s′] = q′. Let Π′ be the proof of this transition We can put ρ′2 = (OPEN),

because (OPEN) side condition is satisfied due to (RES)’s one and the hypothesis

r′ 6= a, and ρ′1 = (COM). So we have

Π′

p′[s′/s]∗
(R)(•;W;abr | ab′(s′);W ′ ;• |Θ)
================⇒ q′′

(OPEN)
(r′)p′[s′/s]∗

(r′)(R)(•;W/r′ ;abr | ab′(s′);W ′/r′ ;• |Θ( r′)
=======================⇒ q′′

(COM)
(r′)p′[s′/s]∗

(R′)(•;W/r′ ;W ′/r′ ;• |Θ( r′)
===============⇒ (r′)(R′′)q′′([r/s′] ◦ σb)

Due to the freshness of s′, we can commute the two renamings in the continuation

and get (r′)(R′′)q′σb. This is equal to the continuation of the original proof, as x =

r implies σr = id. Finally, the case x = (s) is similar: again we have ρ′2 = (OPEN)

adding a restriction (r′) and ρ′1 = (COM) closing its scope; the remaining proof is

still Π.

• r′ = b /∈ n(r): in this case necessarily b /∈ R, so b = b′ and σb = id. We simply

have Π′ = Π, ρ′2 = (COM) and ρ′1 = (OPEN), which restricts b in the label.

Case ρ2 = (OPEN): Then p = (r′)p′ and the transition is inferred as follows



A.3 Proofs for Chapter 5 113

Π

p′
(R)(•;W;abr | ab′x;W ′ ;• |Θ)
==============⇒ q′

(COM)
p′

(R′)(•;W;W ′ ;• |Θ)
==========⇒ (R′′)q′(σb ◦ σr)(OPEN)

(r′)p′
Λ≡Λ(r′)(R′)(•;W/r′ ;W ′/r′ ;• |Θ( r′)
====================⇒ (R′′)q′(σb ◦ σr)

Then we have r′ ∈ Obj(Θ), by (OPEN) side condition. The proof of the previous case

still applies, with the only exception that the scope of r′ is never closed by ρ′1 = (COM),

i.e. r′ remains restricted in the label because r′ ∈ Obj(Θ).

Case ρ2 = (PAR): Then p = p1 | p2 and the transition is inferred as follows

Π1

p1
(R)(•;W;abr | ab′x;W ′ ;• |Θ)
==============⇒ q1(COM)

p1
(R′)(•;W;W ′ ;• |Θ)
==========⇒ (R′′)q1σ

Π2

p2
Λ2=⇒ q2(PAR)

p1 | p2
(R′)(•;W;W ′ ;• |Θ) |Λ2
============⇒ (R′′)q1σ | q2

Now, we would like to permute (COM) and (PAR), but some of the bound names

that (COM) removes from the label of p1 may conflict with Λ2, breaking (PAR) side

conditions. So we have to repeatedly apply (ii) of Lemma A.3.2 to α-convert Π1 w.r.t.

those names. Let σ∗α be the α-converting renaming. We can build the following proof

Π1σ∗α

p1σ∗α
(Rσ∗α )(•;W;aσαbσαrσα | aσαb′σαxσα ;W ′ ;• |Θ)
=======================⇒ q1σα

Π2

p2
Λ2=⇒ q2(PAR)

p1σ∗α | p2
(Rσ∗α )(•;W;aσαbσαrσα | aσαb′σαxσα ;W ′ ;• |Θ) |Λ2
==========================⇒ q1σα | q2(COM)

p1σ∗α | p2
(R′)(•;W;W ′ ;• |Θ) |Λ2
============⇒ (R′′σ∗α )(q1σα | q2)σ

′

Notice that σ∗α affects neither on W, W ′, as they contain only free names, nor Θ, as its

bound names are still in the consequence of (COM) in the original proof. We get the

claim thanks to the following:

p1σ∗α | p2 ≡ p1 | p2 (α-conversion)

(R′′σα)(q1σα | q2)σ
′ = (R′′σα)(q1(σ

′ ◦ σα) | q2) (freshness of dom(σ′) w.r.t. q2)

≡ (R′′)(q1σ | q2) (α-conversion)

where the last congruence holds because σ′ maps the α-coverted extruded names to

the α-converted input placeholders. Notice that the scope of R′′ now includes both q1σ

and q2.
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Lemma A.3.4. Given a process p and a renaming σ, consider any pσ
Λ
=⇒ q with proof Π. If every

application of a non-linear rule in Π concatenates paths α1 and α2 such that

img(σ)

∩
obj(α1) ∪ (is(α1) ∩ is(α2)) = ∅ ,

then p Λ′
=⇒ q′, where Λ = Λ′σ and q = q′σ.

Proof. By induction on the depth of Π. Suppose Π has depth at least one (the base cases are

trivial), the proof proceeds by cases on the last rule of Π. We show two of them, the other

ones are analogous:

Case (OPEN): Then p = (r′′)p′, Λ ≡Λ (r′′)(Λ′′( r) and the transition is inferred as follows

Π′

p′σ Λ′′
=⇒ q

(OPEN)
(r′′)p′σ

(r′′)(Λ′′( r)
======⇒ q

where we replaced ((r′′)p′)σ with (r′′)p′σ thanks to Convention A.1. By induction

hypothesis we have p′ Λ̃
=⇒ q̃, where Λ′′ = Λ̃σ and q = q̃σ. We can apply (OPEN) to this

transition because σ does not affect r′′, an thus the rule’s side condition. This yields

(r′′)p′
(r′′)(Λ̃( r′′)
======⇒ q̃, which satisfies the statement.

Case (COM): Then Λ ≡Λ (R′) (•; W; W ′; • |Θ), q = (R′′)q′σ and the transition is inferred as

follows

Π′

pσ
(R) (•;W;abr′′ | ab′x;W ′ ;• |Θ)
===============⇒ q′

(COM)
pσ

(R′) (•;W;W ′ ;• |Θ)
==========⇒ (R′′)q′σ′

By induction hypothesis we have p
(R̃) (α̃1 | α̃2 | Θ̃)
========⇒ q̃ where α̃1σ = •; W; abr′′, α̃2σ =

ab′x; W ′; •, R̃σ = R, Θ̃σ = Θ and q̃σ = q′. By the hypothesis of our claim, σ acts

as the identity on a, b and r′′, so we have: is(α̃1) = is(α̃2) = a; obj(α̃1) = obj(α̃2)

whenever r′′ /∈ R; ds(α̃1) = ds(α̃2) = b whenever b /∈ R. Therefore we can apply

(COM) again and get the desired transition. The continuation of such transition is

indeed renamed through the same σ′ as the original proof, because extruded names

and input placeholders are not affected by σ, by Convention A.1.
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Lemma A.3.5. Given a process p and a renaming σ, suppose pσ
Λ
=⇒ q has proof Π. Then there is a

transition p Λ′
=⇒ q′ and a sequence Ω of non-linear rule instances such that Ω infers pσ

Λ
=⇒ q∗ from

pσ
Λ′σ
=⇒ q′σ, where q∗ is q with some unguarded restrictions brought to the top level.

Proof. Since, by Convention A.1, img(σ)∩bn(p) = ∅, we can repeatedly use Lemma A.3.3 to

push towards the root of the proof all the instances of non-linear rules in Π that concatenate

α1 and α2 such that obj(α1) or is(α1) ∩ is(α2) are in the image of σ, i.e. those that violate the

hypothesis of Lemma A.3.4. More precisely:

1. Take the deepest subproof Π̃ of Π such that Lemma A.3.3 can be applied: let p̃ Λ̃
=⇒ q̃ be

its root transition.

2. Permute the last two rules in Π̃ using Lemma A.3.3: let Π̃′ the resulting proof and

p̃∗ Λ̃
=⇒ q̃∗ its root transition.

3. Replace Π̃ with Π̃′ in Π, and replace p̃ with q̃∗ and q̃ with q̃∗ in the piece of proof from

the root of Π̃ to the root of Π. The resulting proof is indeed valid, because step 2 does

not affect the label.

Repeat these steps until obtaining a new proof for p∗σ Λ
=⇒ q∗. This proof has an upper part Π′′

and a lower part Ω′, the latter containing all the non-linear rules that violate the hypothesis

of Lemma A.3.4 when considering the renaming σ. Now, suppose Π′′ has root p∗σ Λ̂
=⇒ q̂.

We can apply Lemma A.3.4 to this transition and get the required p∗σ(≡ p) Λ′
=⇒ q′ such that

Λ̂ = Λ′σ and q̂ = qσ. Finally, we have to use Lemma A.3.1 to recover Ω from Ω′, as they

infer transitions with different source processes.

Lemma A.3.6. LetR be the transitive closure of
⋃

n∈ωRn, where

R1 = {((r)p1 | p2, (r)(p1 | p2)) | r /∈ fn(p2)}
R2 = {(p1 | p2, p2 | p1)}

R3
n+1 = {((r)p, (r)q) | (p, q) ∈ Rn}
R4

n+1 = {(pσ, qσ) | (p, q) ∈ Rn}

R0 =∼NC
κ ∪R1 ∪R2 Rn+1 = R3

n+1 ∪R4
n+1 ∪Rn

ThenR is a concurrent network conscious bisimulation.

Proof. Given (p, q) ∈ R, we have to prove that p and q can simulate each other’s transitions

and that their continuations are related by R. To do this, we proceed by induction on n,

considering any p′ ≡ p and q′ ≡ q such that (p′, q′) ∈ Rn. It is enough to prove that
⋃

n∈ωRn

is a bisimulation, because the transitive closure of a bisimulation is clearly a bisimulation as

well. For the base case, we treat separately the case of (p′, q′) being in R1 and R2. For the
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inductive step, we do the same, considering R3
n+1 and R4

n+1, for n ≥ 0. Considering processes

that are structurally congruent to the original ones is harmless, because ≡⊆∼NC
κ ⊆ R, and

allows us to ignore transitions that are not inferred directly through the rules.

p ≡ (r)p1 | p2 , q ≡ (r)(p1 | p2) Suppose ((r)p1 | p2, (r)(p1 | p2)) ∈ R1 and consider a

transition (r)p1 | p2
Λ
=⇒ p′. We prove that (r)(p1 | p2) can simulate this transition by cases

on the last rule used to infer it.

Case (PAR): Suppose it is inferred as follows

p1
Λ1=⇒ q1(OPEN)

(r)p1
(r)(Λ1( r)
=====⇒ p′1

...
Ω
...

(r)p1
Λ′1=⇒ (R)p′1σ

...
Ω(r)

...

(r)p1
Λ′′1=⇒ (R′)(R)p′1(σ(r) ◦ σ) p2

Λ2=⇒ p′2(PAR)
(r)p1 | p2

Λ′′1 |Λ2
===⇒ (R′)(R)p′1(σ(r) ◦ σ) | p′2

where Ω and Ω(r) are sequences of non-linear rule instances (the rule on top may be

(RES): this case is analogous). In particular, suppose Ω(r) applies those rules that treat

the communication of (r). These might be zero or many, for instance whenever r is

extruded by more than one output path.

The idea is to build a new proof where (PAR) is applied before (OPEN). However, some

names in (Bn(Λ1)∪ {r}) \ Bn(Λ′′1 ) that are also in Fn(Λ2) may prevent the application

of these rules. So we use (i) and (ii) of Lemma A.3.2 to replace those names with fresh

ones. Let σ̂ be the mapping that performs this operation and let r̂ = rσ̂. The new proof

is
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p1σ̂∗
Λ1σ̂∗
==⇒ p′1σ̂ p2

Λ2=⇒ p2
(PAR)

p1σ̂∗ | p2
Λ1σ̂∗ |Λ2
=====⇒ p′1σ̂ | p′2

...
Ω′

...

p1σ̂∗ | p2
Λ̂1 |Λ2
===⇒ (Rσ̂)(p′1σ̂ | p′2)σ′(OPEN)

(r̂)(p1σ̂∗ | p2)
(r̂)(Λ̂1( r̂ |Λ2)
=======⇒ (Rσ̂)(p′1σ̂ | p′2)σ′

...
Ω′(r̂)

...

(r̂)(p1σ̂∗ | p2)
Λ′′1 |Λ2
===⇒ (R′σ̂)(Rσ̂)(p′1σ̂ | p′2)σ(r̂) ◦ σ′

This proof is structured as follows. After (PAR), we have a sequence Ω′ applying the

same kind of rules as Ω to the same pairs of paths (differences in the involved processes

are immaterial), except that some extruded names R may be affected by σ̂∗: this is why

we have (Rσ̂) in the inferred continuation. The concurrent path Λ̂1 in the label inferred

by Ω′ is “almost” Λ′1σ̂∗: it lacks (r̂), which in fact is added by (OPEN). Communications

of this name are derived by Ω(r̂): it mimics Ω(r) as Ω′ does with Ω. In the end we

recover Λ′′1 , because σ̂∗ was defined to act only on names that disappear throughout

the proof due to synchronizations, hence those not in Λ′′1 . Among these, we have names

extruded by Ω(r), which in fact appear in the inferred continuation as R′σ̂.

Now we have to check that processes in the two proofs match. By α-conversion we

have (r̂)(p1σ̂∗ | p2) ≡ (r)(p1 | p2) and

(R′σ̂)(Rσ̂)(p′1σ̂ | p′2)σ(r̂) ◦ σ′ = (R′σ̂)(Rσ̂)(p′1(σ(r̂) ◦ σ′ ◦ σ̂) | p′2)

≡ (R′)(R)(p′1(σ(r) ◦ σ) | p′2)

where the first equation holds due to freshness of dom(σ(r̂) ◦ σ′) w.r.t. p′2 and the last

congruence holds because σ̂ only affects names that are either being extruded or bound

input placeholders in Λ1, so σ′(r) ◦ σ′ ◦ σ̂ replaces the α-converted input placeholders

with α-converted extruded names, but these are again bound by (Rσ̂) and (R′σ̂) in the

continuation. The overall effect is the α-conversion of (R′)(R)(p′1(σ(r) ◦ σ) | p′2).

Finally, sinceR is closed under α-conversion and scope extension, we have

( (R′σ̂)(Rσ̂)(p′1σ̂ | p′2)σ(r̂) ◦ σ′, (R′)(R)p′1(σ(r) ◦ σ) | p′2 ) ∈ R .
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Case non-linear rule: Suppose the last part of the proof of (r)p1|p2
Λ
=⇒ p′ is a sequence

of non-linear rule applications Ω with an occurrence of (PAR) on top. By the pre-

vious case, the transition of (r)p1 | p2
Λ′
=⇒ q̃ inferred by (PAR) can be simulated by

(r)(p1 | p2)
Λ′
=⇒ q̃ such that ( p̃, q̃) ∈ R. Then, by Lemma A.3.1, p′ = (R) p̃σ, and there

is Ω′ that infers (r)(p1 | p2)
Λ
=⇒ (R)q̃σ from (r)(p1 | p2)

Λ′
=⇒ q̃. The thesis follows fromR

being closed under renamings and addition of restrictions.

Now consider a transition (r)(p1 | p2)
Λ
=⇒ p′. We prove the converse statement, again by cases

on the last rule used to infer it:

Case (OPEN): Suppose it is inferred as follows

p1
Λ1=⇒ p′1 p2

Λ2=⇒ p′2(PAR)
p1 | p2

Λ1 |Λ2
===⇒ p′1 | p′2

...
Ω1

...

p1 | p2
Λ′1 |Λ2
===⇒ (R1)(p′1 | p′2)σ1

...
Ω2

...

p1 | p2
Λ′
=⇒ (R′)(R1)(p1 | p2)σ ◦ σ1(OPEN)

(r)(p1 | p2)
(r)(Λ′( r)
=====⇒ (R′)(R1)(p′1 | p′2)σ ◦ σ1

where Ω1 contains instances of non-linear rules that only act on Λ1 and Ω2 all the other

ones.

Now we want to move (OPEN) before (PAR), but we have to take care of the following

situation: Ω1 and Ω2 may contain some occurrences of (COM) concatenating α1 and α2

such that α1 ∈ Λ1, α2 ∈ Λ2 and r ∈ objin(α2). Since we have to restrict r earlier in the

proof, r will become bound in each α1, so we must turn each α2 into a bound input

path via (iii) of Lemma A.3.2 in order for (COM) to be applied. Suppose Λ2 contains n

such input paths aibi(si); Wi; •. Let s′1, . . . , s′n be fresh names, σ2 := [s′1/s1, . . . , s′n/sn] and

σ̂2 := [r1/s′1, . . . , rn/s′n]. By repeatedly applying (iii) of Lemma A.3.2 we get a transition

p2σ∗2
Λ′2=⇒ p′′2 such that p′′2 σ̂2 = p′2, where Λ′2 is obtained by replacing each aibiri; Wi; • ∈

Λ2 with aibi(si); Wi; •, for i = 1, . . . , n. The new proof is
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p1
Λ1=⇒ p′1
...

Ω′1
...

p1
Λ′1=⇒ (R1)p′1σ1

(OPEN)
(r)p1

(r)(Λ′1( r)
=====⇒ (R1)p′1σ1 p2σ∗2

Λ′2=⇒ p′′2(PAR)
(r)p1 | p2

(r)(Λ′1( r) |Λ′2=======⇒ (R1)p′1σ1 | p′′2
...

Ω′2
...

(r)p1 | p2σ∗2
(r)(Λ′( r)
=====⇒ (R′)((R1)p′1σ1 | p′′2 )σ′

where Ω′1 and Ω′2 contain instances of the same kind of rules, and concatenate the same

pairs of paths, as Ω1 and Ω2, with the exception of input paths of the form abr; W; • in

Ω′2, replaced by bound versions as described.

We now prove that old and new proof have matching processes in their roots: we have

(r)p1 | p2σ∗2 ≡ (r)p1 | p2, by α-conversion, and

(R′)((R1)p′1σ1 | p′′2 )σ′ = (R′)((R1)p′1σ1 | p′′2 )σ ◦ σ̂2

= (R′)((R1)p′1σ1 | p′′2 σ2)σ by freshness of dom(σ2) w.r.t. p1

= (R′)((R1)p′1σ1 | p′2)σ (iii) of Lemma A.3.2

= (R′)((R1)p′1 | p′2)σ ◦ σ1 by freshness of dom(σ1) w.r.t. p2

where the first equation comes by observing that σ′, besides extrusions of the old proof,

also handles ones for the additional bound input paths; the renaming of placeholders

with extruded names for these new extrusions is exactly σ̂2.

Finally, by closure under scope extension and renamings

((R′)(R1)(p′1 | p′2)σ ◦ σ1, (R′)((R1)p′1 | p′2)σ ◦ σ1) ∈ R .

Case (RES): Analogous.

Non-linear rule: As before.

p ≡ p1 | p2, q ≡ p2 | p1 Suppose (p1 | p2, p2 | p1) ∈ R2 and p1 | p2
Λ
=⇒ p′. This transition can

be inferred through (PAR) or a non-linear rule. In the first case, p2 | p1 is able to simulate it,

by the commutativity of the parallel operator of concurrent paths. Its continuation is clearly

paired with p′ in R. The second case is analogous to the “non-linear rule” cases shown

above.
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p ≡ (r)p′, q ≡ (r)q′ Suppose ((r)p′, (r)q′) ∈ R3
n+1 and (r)p′ Λ

=⇒ p′′, with Bn(Λ) # (r)q′.

We have to prove that (r)q′ can simulate this transition. We proceed by cases on the last rule

used to infer it.

Case (OPEN): then the transition is inferred from p′ Λ′
=⇒ p′′ and Λ ≡Λ (r)(Λ′( r). Since

(p′, q′) ∈ Rn and clearly Bn(Λ′) # q′, by induction hypothesis q′ Λ′
=⇒ q′′, with (p′′, q′′) ∈

R, so we can apply (OPEN) to get (r)q′ Λ
=⇒ q′′.

Case (RES): analogous to (OPEN); the main difference is that the two transitions have (r)p′′

and (r)q′′ as continuations, which are paired in R by its closure under addition of

restrictions.

Case non-linear rule: Analogous to the “non-linear rule” cases above.

p ≡ p′σ, q ≡ q′σ Suppose (p′σ, q′σ) ∈ R4
n+1 and p′σ Λ

=⇒ p′′, with Bn(Λ) # q′σ. We can

safely assume that

bn(q′σ) are fresh w.r.t. p′σ and viceversa (A.5)

(we can obtain this by α-conversion, which is contained in the bisimilarity). By Lemma A.3.5

and A.3.1 there is a transition p′ Λ̃
=⇒ p̃ and a sequence Ω of non-linear rule instances such

that, if we apply Ω to p′σ Λ̃σ
=⇒ p̃σ, we get p′σ Λ

=⇒ (R)( p̃σ)σ′, for some R and σ′ according to

Lemma A.3.1, where the continuation is p′′ with some restrictions brought to the top level.

In order to apply the induction hypothesis (i.e. that Rn is a bisimulation) to p′ Λ̃
=⇒ p̃, we

have to show that Bn(Λ̃) # q′: this comes by observing that σ does not affect bound names

(Convention A.1), so we have bn(p′) # q′ by (A.5), which holds in particular for Bn(Λ̃) (as

Bn(Λ̃) ⊆ bn(p′)).

Therefore q′ Λ̃
=⇒ q̃, with ( p̃, q̃) ∈ R, which can be renamed to q′σ Λ̃σ

=⇒ q̃σ, by (i) of

Lemma A.3.2. By Lemma A.3.1 there are non-linear rules that act on this transitions by

applying the same renaming and restricting the same names as Ω, yielding q′σ Λ
=⇒ (R)(q̃σ)σ′.

By closure under renamings and addition of restrictions we have ((R)( p̃σ)σ′, (R)(q̃σ)σ′) ∈
R and, by closure under scope extension, we also have (p′′, (R)( p̃σ)σ′) ∈ R. Finally, by

transitivity we can conclude (p′′, (R)(q̃σ)σ′) ∈ R.

Proof of Theorem 5.2.7. By cases, considering all the operators: given an operator op, we

prove that the relation

R = {(op(p), op(q)) | p ∼NC
κ q}∪ ∼NC

κ

is a bisimulation.

Case op ∈ {abr._ , τ._ , lab._}: given a pair of processes inR, both can do the same paths,

inferred through an axiom. Their continuations are just the unprefixed processes,

which are bisimilar by definition ofR.
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Case op = a(s)._: given (a(s).p, a(s).q) ∈ R, both can do the same singleton free or bound

input paths. The continuations are p and q, possibly renamed, which are again paired

inR, by Lemma A.3.6.

Case op = _ + q: consider (p1 + q, p2 + q) ∈ R and suppose p1 + q Λ
=⇒ p′1 is inferred using

(SUM-L) from p1
Λ
=⇒ p′1. Then, by definition ofR, p2

Λ
=⇒ p′2, with p′1 ∼NC

κ p′2, so p2 + q Λ
=⇒

p′2, using (SUM-L), and (p′1, p′2) ∈ R. The (SUM-R) case is obvious. If the transition

is inferred via some non-linear rules, the usual argument applies: one finds the first

occurrence of (SUM-L) above these non-linear rules, recovers a simulating transition of

p2 + q as shown, and then uses Lemma A.3.1 on this transition to get a transition with

label Λ. The non-linear rules add the same restrictions and renaming to p′1 and p′2, so

the thesis follows by closure of ∼NC
κ under restrictions and renamings. The case q + _

is analogous.

Case op = _ | q: here we prove the claim for the relation

R′ :=
⋃
q
{(p1 | q, p2 | q) | p1 ∼NC

κ p2}∪ ∼NC
κ .

Consider (p1 | q, p2 | q) ∈ R′ and suppose p1 | q
Λ1 |Λ2
===⇒ p′1 | q′, with Bn(Λ1 |Λ2) # p2 | q,

is inferred from p1
Λ1=⇒ p′1 and q

Λ2=⇒ q′ using (PAR). Since p1 ∼NC
κ p2 and Bn(Λ1) # p2,

we also have p2
Λ1=⇒ p′2, so we can apply (PAR) and get p2 | q

Λ1 |Λ2
===⇒ p′2 | q′. Finally,

from p′2 ∼NC
κ p′1 it follows that (p′1 | q′, p′2 | q′) ∈ R′. If the transition is inferred through

non-linear rules, the usual argument applies. The case q | _ is analogous.

Case op = (r)_: directly by Lemma A.3.6.

A.4 Proofs for Chapter 6

A.4.1 Proof of Theorem 6.3.1

By induction on the number of peers. If there are no peers, the claim is trivially true, because

a0 is the only responsible for every k.

If there are n peers, suppose an+1 triggers the join procedure by sending join_req[an+1]

to ai0 . Let us consider the most general case: when shl(ai0 , an+1) = 0 and an+1 does not

belong to the interval spanned by ai0 ’s leaf-set. Then, when ai0 receives the join request,

the last else branch in the join_req handler (see Figure 6.2) is taken and the identifiers in

ai0 ’s routing table are sent back to a. Now, since shl(a, ai0) = 0, only the first row of an+1’s

routing-table, namely the one formed by cells with identifiers cd1 , . . . , cdσ
, is filled. Then the

join request is forwarded to a sequence of peers ai1 ,ai2 ,. . . , and each acknowledgement allows

an+1 to fill a single row of its routing table. In fact, by induction hypothesis, aij+1 shares one
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more digit than aij with an+1, so it will provide identifiers for the j + 2-th row of a’s routing

table. Eventually the closest peer to an+1, say c, is reached. This will let a populate its leaf-

set and possibly the last row of its routing table. Now we have to show that each ai is able

to forward messages for any key k to some b satisfying Property 6.1.2. We distinguish two

cases:

i = n + 1 : Suppose k is in the range of an+1’s leaf-set, then the forwarding happens along

a � b in Lan+1
LS , but b is also target of a link in Lc

LS, so the induction hypothesis applies.

Otherwise, if shl(k, an+1) = j, then a � b belong to the j + 1-th row of an+1’s routing

table, but b is also target of a link in L
aij
RT ; again, the claim follows by induction

hypothesis.

1 ≤ i ≤ n : if an+1 is not responsible for k, then the induction hypothesis gives the claim.

Otherwise, suppose an+1 is the new responsible for k and let rk be the old one. The

claim is clearly true for ai 6= rk,i = 1, . . . , n, because it already has a link that gets

closer to k. Instead, we have to verify the claim for rk, because it did not have any such

link before an+1 joined the ring. The key observation is that rk is in an+1’s leaf-set, so

it receives a join_ntf[an+1] message, sent by an+1 at the end of its join procedure. This

message triggers the creation of a new link to an+1, which becomes part of Lrk
LS and/or

Lrk
LS. This link satisfies the theorem’s requirements, because an+1 is closer to k than rk.

A.4.2 Proof of Lemma 6.4.1

If a it the responsible for k, then Entry(k, v, a) gives the required transition. Otherwise, this

is a transition of Route within Peer(a). In fact, thanks to Theorem 6.3.1, this process is able

to activate a link that satisfies Property 6.1.2.
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