View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Queen Mary Research Online

‘aQs! Queen Mary

University of London

Fresh-Register Automata
Tzevelekos, N

For additional information about this publication click this link.
http://gmro.gmul.ac.uk/jspui/handle/123456789/7651

Information about this research object was correct at the time of download; we occasionally
make corrections to records, please therefore check the published record when citing. For
more information contact scholarlycommunications@gmul.ac.uk

https://core.ac.uk/display/30696913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/7651

Fresh-Register Automata

Nikos Tzevelekos

Oxford University Computing Laboratory
nikt@comlab.ox.ac.uk

Abstract Our model is based on the successful paradignFioite-
What is a basic automata-theoretic model of computatiorhwit Memory Automata (FMA) introduced by Kaminski and Francez

names and fresh-name generatiow® introduce Fresh-Register N (tjhe ea(;lé’ 90's [1.1(}' M_(?_tivated by If]eal-worlljd prgbldergs @b
Automata (FRA), a new class of automata which operate on an Ck? es, a ressesa:j entl me:c. ma;(/j fave un ounlnef. domains),
infinite alphabet of names and use a finite number of registers ~ 10S€ automata address a demand for a "natural” finite-state

store fresh names, and to compare incoming names with prtyio ~ chine model over infinite alphabets. An FMA is an automaton
stored ones. These finite machines extend Kaminski and &snc attached with a finite number of name-storing registerstitsture

Qs ; : looks identical to that of an ordinary finite-state autormatver a
Finite-Memory Automata by being able to recognise globfitgh o - .
inputs, that is, names fresh in the whole current run. We exam (inite setof labels generated by indices in the range. , n, where

ine the expressivity of FRA's both from the aspect of acagpte 7 IS the number of registers. Howevet, truly operates on the in-
languages and of bisimulation equivalence. We establishapy finite set of inputsA (the set of names), with indicéseferring to
properties and connections between automata of this kintaa- the names stored in theth register ofA. This simple idea lifts the

il . : tomaton from finite to infinite alphabet.
swer key decidability questions. As a demonstrating exampé au
express the theory of the pi-calculus in FRAS and charieter There are two ways in which an FMA can access its registers:

bisimulation equivalence by an appropriate, and decidabtae either by comparing an input name to a stored one, or by gfarin
finitary case, notion in these automata. input name in one of its registers but only in case lbtsally fresh

that is, it does not already appear in any of them. Thus, FNrs

Categories and Subject Descriptorg=.1.1 [Computation by Ab- history-free: their computational steps rely solely onirtlcairrent
stract Devicep Models of Computation; D.3.1Hrogramming registers. Here we introdudéresh-Register Automata (FRA)a
Languagel Formal Definitions and Theory—Semantics finite-register automaton model which extends FMA's digbal

freshnessecognition: an automaton can now accept (and store) an
input name just in case it is fresh in the whole run. For examal
transition

1. Introduction i®

qg—q

General Terms Theory, Languages, Verification

One of the most common and useful abstractions in programmin
is the assumption that entities of specific kinds can be edeat
will and, moreover, in such a manner that newly creatediestitre
alwaysfresh— distinct from any other such created thus far. This
is, for example, the case with mutable reference cells, piares
user-declared datatypestc.in languages like Standard ML [15].
Following a long tradition in computer science [20], we ¢akse
entitiesnamesand specify them as follows. Li={a1--ar € A" |Vi#jai#a;}

Names can be created fresh dynamically and locally, cordpare An intuitive way to view.L; is as the trace of a fresh-name gen-
for equality and communicated between agents or subrautine erator: one which returns reference cells in SML, object3ava,
gmemory addresses in €ic.

Research in FMAs and their formal languages has been ex-
tensive [2, 6, 11, 21, 25, 27]. It has been shown [11, 21] that
FMA-recognisable languages are closed under union, edgos),
concatenation and Kleene star; they are not closed undepleem
ment; emptiness of FMA's is decidable; and universality isler
cidable. Our first contribution is to answer this series aégtions
for FRA's. We show that for emptiness and universality tha-si
ation remains the same as in FMAs. On the other hand, FRA-
recognisable languages are still closed under union aedsit-
tion, but history-sensitiveness prohibits this for corcation and
Kleene star. Moreover, they are not closed under complearaht
in fact, there is an FMA-recognisable language whose camghé
is not recognised by FRAS.

means that if4 is at state; and the set of names that have appeared
inits registers so far iff, then.A can accept any name¢ H, store

itin its i-th register and proceed 6. This history-sensitive feature
precisely captures fresh-name creafiohhus, e.g. the following
language (not recognised by FMA's [11]) is recognised bygls-
state FRA with one register.

Apart from the uses mentioned above, names form the basis o
calculi of mobile processes (e.g. thecalculus [14]); appear in
network protocols and secure transactions; and are ggnesal
sential in programming for identifying variables, charméhreads,
objects, codes, and many other sorts of hame in disguiseuiTo o
knowledge, there has not been in the literature a proposabasic
automata-theoretic model of names, providing abstracthimas
underlying all these paradigms. We propose just such a nadel

INote that, although history-sensitive, the automaton dustshave full
)] access to the histor§f. In automata-theoretic jargon, the situation can be
Revised versionl8/11/2010 described as consulting an oracle who can decide the frestufi@mames.

Our main vehicle for studying equivalence between FRA'S is
bisimulation equivalence (also calldaisimilarity). The notion is
very relevant from the point of view of programming, and @Ees
calculi in particular, and in the case of FRA it implies ¢prage
equivalence. More importantly, we show that by examininghBR
at thesymbolic leveli.e. as ordinary finite-state automata on the
set of index-generated labels, it is possible to capturenbes-
ity by an appropriate symbolic notion; we thus prove that FRA
bisimilarity is decidable. A symbolic bisimulation relatstates of
two automata in specific environments, the latter spedfyiow
are the names which appear in their registers related.

As a demonstrating example, we expressthealculus in the
context of fresh-register automata. We introduce sthecalculus
system: a presentation of thecalculus with early transition se-
mantics [14, 26], in which processes are states of an infifiRA.
Transitions are given by FRA-transitions and the systemmitefiy
branching. More specifically, bound outputs are modelledIbi-
ally fresh transitions, while each input is decomposed fimitely
many cases: either the incoming name is locally fresh oréaly
appears in the registers. This clean treatment of fresh andd
names is the main advantage of the-calculus and allows for
the finite representation, as ordinary FRA', of finitaryqesseg.
Moreover, we characterise strong bisimilarity by an appedp
symbolic notion inxz. This gives an alternative proof of decid-
ability of bisimilarity for finitary processes.

Motivation and related work

Programming languages The idea of studying names in higher-
order languages and in isolation of other effects was finstymd by
Pitts and Stark [24]. They introduced thecalculus, an extension
of the simply-typed\-calculus with references of unit type. Inves-
tigations on the/-calculus were meticulously carried on by Stark
in his PhD thesis [28], which exposed a rather unexpected- com
plexity hidden behind names. It became evident that bettetals
for languages with names were needed. To address this, negv di
tions in denotational [1, 12, 13, 18] and operational [3, h@dels
were explored, significantly advancing our understandiihgom-
putation with names but, at the same time, leaving basictiqmss
unanswered. In particular, those works examined compumtatt
the higher level, that of programs and program equivalelee/-
ing open the question of a basic, lower-level model.

Interestingly, in their initial paper on FMA's [11], Kamikisand
Francez motivate their construction (also) by briefly pntisg an
idealised procedural language with names. There, name®tan

be freshly created, but they can be read from the environment

as inputs and stored in a finite memory. Moreover, stored Bame
can flow inside the memory from one register to another and can
also be compared for equality and thus triggeto’s. The authors
explain that FMA's operate like acceptors for that simpleérative
language with names. By analogy, FRA's describe the e)dart

the language with fresh-name generation.

Process calculi For mobile systems like ther-calculus [14],
where processes can create locally, receive or send nahes, t
use of ordinary labelled transition systems for its senean in
many ways unsatisfactory: for example, infinite branchinges
even in the case of very simple processes that receive dlyioca
fresh) name, or output a locally created (globally freshg.dduch
shortcomings naturally led to solutions involving repraations

of processes by formalisms which incorporate name-reagoofi
some sort [4, 5, 16]. The most notable paradigm in this dwact
is that of History-Dependent Automata (HD-Automafap, 22],
which are structures defined in a univers@aimed setandnamed
functions HD-automata can succinctly represent thealculus, as

2 A process idinitary if its it does not grow unboundedly in parallelism.

HD-transitions match ‘on-the-fly’ names between the soutae
get, and label ofr-calculus transitions, allowing thus for the use of
representatives of processes and transitions, ratheathaossible
ones under e.g. permutation of fresh names. The streameznas
on HD-automata has focussed both on foundational issue2P7
and on pragmatic applications [7]. The work presented hesiees
objectives with HD-automata, and to some extent can be dewe
as a complementary attempt to the same question, albeid losse
basic machines of “first principles”.

Outline

In the next section we give the basic definitions on FRAs1i8aS
provides some useful bisimilar constructions. In Sectiomedre-
call FMA's and establish their connection to FRA's. We exaei
WFRA's, a weaker notion of FRA's focussing on global frestge
in Section 5. In Section 6 we prove some technical resultarceg
ing closure properties for FRA's, and in Section 7 we showt tha
emptiness and bisimilarity are decidable using symbolithoues.
Section 8 examines the-calculus in the setting of FRA's.

2. Definitions

We distinguish between two sets of input symbols:
e an infinite set ohamesA, and
e afinite set ofconstantsC.

Constants have an auxiliary role and are non-storalile. leta, b,
etc. range over names. We write* for the set of finite strings
of names, and\® for its restriction to those containing pairwise
distinct names. Strings: - - - a,, Will be typically represented by
vectorsa, in which casémg(ad) = {a1,...,an}.

For eachn € w, we write[n] for the se{1,...,n}, and let

L,=CuU{i,i%i®lic[n]}.
be the set of labels generated [ny. Moreover, we define
Reg, = {0 :[n] —» AU{t}|Vi#j.o(i) =0(j) = o(i) =1}
to be the set ofegister assignmentsf sizen. We writeimg (o) for

the name-range af, i.e.img(o) = {a € A | Ji.o(i) = a}, and
letdom(c) = {i € [n] | o(i) € A}. Whenever ¢ img(c),

oliral ={(,a)}U{{,00)) 7€ [P\ {i}}
is anupdateof &, for anyi € [n].

Definition 1. A fresh-register automaton (FRAYf n registers is
a quintupled = (Q, qo, 00, 6, F') where:

* (Q is afinite set of states,

® o isthe initial state,

® 09 € Reg,, is the initial register assignment,
*) C Q x L, x Q isthe transition relation,
e ' C (@ isthe set of final states.

A is called aregister automaton (RAJf there are na, ¢, i such
that(q,i®,q") € 4.

Transitions containing labels of the forinare calledknown
transitions; those of the fornt arelocally freshones; andylob-
ally freshtransitions involvei®. Thus, an RA is an FRA with no
globally fresh transition8.

Here is an informal reading & SupposeA is at statez; with
current register assignment If input £ € C U A arrives therr

31n other presentations [11, 21] there is no such distingtimrt symbols
that appear in the initial register assignment can playdheaf constants.

4This yields the same notion of register automaton as thaf |
5Note that the same symbdl, is later used to range over elementdgf.

e If £ € Cand(q1,4, q2) € 6 thenA accepty and moves t@-.

o If £ € Aand(q1,1,¢2) € d ando (i) = £ then.A accepty and
moves togs.

e If £ € Aand(q1,:%,q2) € § and/ is not stored inr then A
acceptd, it setso (i) = £ and moves t@..

o If £ € Aand(q1,i®,q2) € 6 andl ¢ img(ao) and? has not
appeared in the current run thehacceptd, it setso (i) = ¢
and moves t@o.

The above is formally defined by means of configurations repre
senting the intended current state of the automaton, whjelnt a
from states contains information on the current registeigasnent
and the set of names having appeared thus farl{tstery). The
latter component is necessary for globally fresh transitio

Definition 2. A configurationof A is a triple(q, o, H) € Q, with

Q=0Qx Reg,, X Pn(A)
and Pn(A) being the set of finite subsets &f From§ define a
transition relation on configurations

—5C Qx(CUA) xQ
as follows. For al(q, o, H) € Q and(q,¢,¢') € &:

o If ¢ € Cthen(q,o, H) ——s (¢, 0, H).
o If ¢ =iando(i) = athen(q,o, H) 255 (¢',0, H U {a}).
e If £ = i®* anda ¢ img(o) then(q,0, H) —*5 (¢',0', H')
with o’ = o[i — a] andH' = H U {a}.
e If £ =4® anda ¢ HUimg(oo)then(q,o, H) =5 (¢',0’, H')
with o’ = o[i +— a]andH' = H U {a}.
We write — s for the reflexive transitive closure ef—;.

We say that configuratiod is reachableif (qo, o0, 0) i»é q
for somel € (A U C)*. We call A a closed FRA if, for all
reachable configurationg, o, H) and all(q,,q’) € 4, we have
thato (i) # f. Finally, the set of stringaccepteddy A is:

L(A) = {T€ (AUC)" | (g0,00,0) —»s (g0, H) A g € F}

and is called thdanguagerecognised byA. Two automata are
equivalentif they recognise the same language.

Remark 3. There is an equivalent definition of FRA's in which his-
tories includeimg(oo) by default, and in which reachable config-
urations are the ones reached frég, oo, img(oo)). Here instead
we have decided to separate the history of the run from it&ini
names, which appears to give a cleaner presentation buiytrie
means a substantial point of difference. Note also thathedzle
configurations contain names that have appeared beforemnerw
another: if(¢, o, H) is reachable theing (o) C img(oo) U H.

Example 4. The reader can check that the language= A®) of
the Introduction is recognised by the following FRA.

Ao = <{q0}7 qo, {(17 u)}7 {(q07 1®) qo)}7 {q0}>

Note that the FRAB = <{q0}7 qo, {(17 ﬁ)}7 {(q07 1.7 qO)}7 {q0}>
recognises the language:

52:{a1~~-ak€A*|/<:€w/\Vi.ai;éai+1}

and is therefore not equivalent i
A more elaborate example is the following. Lé&tbe the FRA:

1/1°
. 1@

with initial assignmen{(1, #)}. The automaton works as follows.
It receives a name and then keeps receivinguntil someb # a
arrives; then it keeps receiviriguntil a globally freshe arrives; it
then repeats from start. Thus, member£@f) are of the form

ko

al’ bg® coalt byt crafP by ca ... alt byt e

where, for alli, we havej;, k; > 0, a; # b; andc; differs from all

symbols preceding it. Formally, setting
L'(H)={a"b"c|n;i>0Aa#bAcg¢g HU{a,b}}

we have thatZ(A) = {J,.,, Li, where we sel’y = L'())) and

Lion={ablae L Nbe L (img(@))}.

Some basic results The languages of FMA's [11] are regular once

constrained to a finite number of symbols. Moreover, theuaag

accepted by an FMA is impervious to name-permutations tbat d

not affect its initial register. These properties carryraeeFRA'S,
and are proved as in [11].

Proposition 5. Let A = (Q, qo, 00, J, F') be an FRA of: registers
andS C A be finite. Then{(.A) N S™ is a regular language.

Proposition 6. For A as above, ifi € £(A) andr : A = A is
such thatr(a) = a for all a € img(oo) thenn(a) € L(A).

Bisimulation Bisimulation equivalence turns out to be a great
tool for relating automata, even from different paradigthisnplies
language equivalence and, in all our cases of interesthibtigoo
strict in this aspect. We choose it here as our main vehicituafy.

Definition 7. Let A; = (Qs, qos, 00s, i, F;) be FRAs withn;
registers, fori = 1,2. Arelation R C Q1 x Q2 is called a
simulationon A; and A if, for all (¢1,4¢2) € R,

o if W1(Q1) € thenm((h) € Fy,
o if G ——s, @) thengz ——s, G5 for some(d;, @) € R.
R is called abisimulation if both R and R~! are simulations. We

say thatA; and.A; arebisimilar, written A; ~ As, if there is a
bisimulationR such that(qo1, 001, 0), (goz, 702, 0)) € R.

Lemma8. If A; ~ As thenL(A;) = L(A2).

The above is proved using standard methods. Bisimilarilsis
calledbisimulation equivalencd-or instance, the automatoty of
example 4 is bisimilar to

B = <{q07 Q1}7 qo, {(17 ﬁ)}v {(QO: 1.7 q1)7 (q17 1®7 ql)}7 {q07 q1}>)
with a bisimulation witnessing this being the following,

{((q0,00,0), (g0, 00, 0)) }U{((q0, 01, H1), (q1,02, H2)) | H1 = H2)}
whereoo = {(1,1)}.

3. Bisimilar constructions

In this section we demonstrate some bisimilar construstihich
will be useful in the sequel. Starting from a fresh-registetoma-
ton A = (Q, qo, 00,0, F) of n registers, we effectively construct
the following bisimilar automata.

¢ The closed FRAA4, called theclosureof A.

e Forany@ € A® with img(oo) N img(@) = 0, the FRAA W G.
This is called thextensiorof A by @, and its initial assignment
iscot+ad=ocoU{(i+mn,a)|1<i<]|al}.

Our presentation will focus on constructing the bisimilatemata
and explaining the candidate bisimulation relati®nomitting the
actual proof thaR is a bisimulation, as these proofs are not difficult
(but tedious) and follow directly from the constructions.

Closures For .4 as above with registers we define itslosureto
be then-register FRAA = (Q’, ¢}, 04,6, F') given as follows.
We setQ" = Q x P([n]), ¢0 = (qo,dom(ay)), oy = oo and
F' ={(q,9) | q € F}. Recall we want to construct an automaton
which is closed, that is, whenever a configuration with steded
assignment is reached andy, i, ¢') is a transition, themr (i) € A
and therefore the transition is allowed. The extra compbadded

in @ monitors the registers that have been assigned a name (note, ;1omaton (FMA)of . registers is a sextupld =

that once a register has been assigned a name it cannottietben

state). Consequently, will be designed in such a way so that this
monitoring carries through and, moreover, the known ttars
included ind’ are always allowed:

&' ={((¢,9),4.(d",9)) | (¢.4,4) €A LECT)}
U{((g:9).4,(d',9)) | (g:3,¢') € ni € S)}
U{((,9),4°/i% (¢, 8)) | (¢,3°/i®,d') € 5 AS" = SU{i}}

Now, we can check that the following relation is a bisimwati

R={((¢.0,H),((¢.5),0,H)) | dom(c) = 5}

and therefore thatl ~ A. Moreover, the reachable configurations
of A are of the form((g, S), o, H) with dom(c) = S, and there-
fore the automaton is closed.

Remark 9. If A = (Q,qo,00,9, F) is a closed FRA then each

path qo A, q TN gm in A (where arrow notation

representg) yields is a configuration path
%
2.

4 2
(Qmﬂoﬂ)) —1’(5 ((I17017H1) —m’(S (Qm70'7n7Hm)

according to the definition of—s. For example, i;+1 = ¢ then
}+1 = O'j(i), Ojt+1 = 0j andeH = Hj U {0']‘ (Z)} In this case,
closedness aft guarantees that; (i) # 4

Name extension For A as above with registers andi € A® a
sequence of length such thaimg(co) N img(a@) = 0, we define
the extensiom Wa as the FRA witm+m registers and description
(@', q0, 00,8, F') given as follows. We set

Q' =Qx([n] = [n+m) xP({n+1,...,n+m})

andgy = (qo, ¢, {n+1,...,n+m}), with. the inclusion function,
F'={(q,f,5)€Q'|qec F}ando) = oo + a. Finally:

8 ={((@.£.9).1(0.(d.£.9) | LECA(a.£.q) € 5}
U{(g, f,9),5,(d", f,5)) | (¢,°,d') € 6 A j & img(f) }
U{ (¢, £.9),5: (', f',8") | (a3 ,q") €5 Aj €S}

where f(i®) = f(i)*, f(i®) = f(1)®, f(¢) = Lfor ¢ € C,

f'=fli—jlandS’ = S\ {j}.

The transition relation ind W @ proceeds as ind with the ex-
ception of locally/globally fresh transitions, where soexéra care

4. Finite-memory automata

We now present FMA's and examine their properties in refatio
to FRAs and RAs. In fact, RA's are equivalent to FMA's and in
the literature they have been used as synonyms (e.g. corfidjre
with [21]). The precise correspondence is stated in projoosil,
which is a folklore result.

Let us recall the original definition from [11]. Anite-memory

<Q7 4o, 00, P, 57 F>
where:

e (is afinite set of states, witly € Q initial, and ' C Q final.
® 0o € Reg,, is the initial register assignment.

® p:Q — [n] isthereassignmen(partial) function.

* 5 C Q x [n] x Q is the transition relation.

The intuitive reading of is the following. Supposel is at statey;
with register assignment and let(q1,¢,¢2) € 0. Ifinputa € A
arrives then:

e If o(i) = a then.A accepts: and moves to stai@.

o If a ¢ img(o) andp(q1) = i then A accepts, it setso (i) = a
and moves to staig.

Formally, a configuration is now a pdig, o) € Q, where
Q=Q xReg,,
and the transition relation—; C O x A x Q is defined as follows.
Forall(¢,0) € Q and(q,i,4") € §:
o If o(i) = athen(q,0) 5 (¢, 0).
e If p(q) = ithen, foralla ¢ img(a), (¢,0) —s (¢',ofi — a]).

The notions of reachable configurations and accepted steng
languages are defined just as in the case of FRA’s.

Example 10. Recall the languagé€- of example 4:
Lo = {a1~~'ak c A" |V7,a7, 7éai+1}
which is RA-recognisablel; is recognised by the FMA:

B = <Q: qo, 00, {(q07 1)7 (q17 2)}7 {(q07 1, ql)? (q17 2, QO)}7 Q>

where@ = {qo,q1} andoo = {(1,4), (2,£)}. Comparing this to

B of example 4, the reader can observe how the differencesbatw
RAs and FMA's in reassignment have been addressed heregby us
of the extra register.

The main properties of FMAs and FMA-recognisable lan-
guages have been established as follows.

(a). Emptiness is decidable for FMA's [11] (i.e.i$.4) = (?), and
in particular it is NP-complete [25].

is needed. Since the registers of the new automaton coni@ie m (b). The languages accepted by FMAs are closed under union,

names than those of the initial one, fresh transitionglia @ can
now capture fewer names. For examplegq ifs one of the added
names then aif transition from the initial configuration could cap-
ture it before, but this is no more the casesa@ppears irv(; in-
stead, we need an expligitransition for this purpose. This is what
the second clause of the definitiondfaddresses. For this to work
we need to introduce the componehto keep track of the corre-
spondences between old and new registers that arise in thiista
described. For globally fresh transitions a similar situatarises,

intersection, concatenation and Kleene star; they arelos¢d
under complement [11].

(c). Universality is undecidable [21] (i.e. 5(.A) = A* ?). Hence,
the equivalence and containment problems are undecidadle t
(i.,e.isL(A) =/ C L(B)?).

We shall see that the emptiness problem is also decidable for

FRA's (proposition 24). Clearly, FRA's being extensiond-dfiA’'s
implies that universality of the former is undecidable, Ardce the

only that this time we need only remember which of the names in same holds for equivalence and containment. In section 6 e w
the initial @ have not appeared in the history thus far, which is what examine closure properties of FRA's and show that closudeeun

the componens§ achieves. Thus, the following is a bisimulation

R={((q,0,H),((q, ,5),0" H)) |0 = o'of Nimg(d) C Heo'(S) }

and therefored ~ AW a.

concatenation and Kleene star are lost, closure under eongpit
still fails, but closure under union and intersection pileva

We now relate FMA's to the kind of automata we have intro-
duced previously: in essence, FMAs are the same as RAs. The

notions of simulation and bisimulation straightforwareitend to
FMA's. In fact, definition 7 applies to all machines opergton the
infinite alphabeC U A which have configuration graphs containing
initial and final configurations. It therefore makes sensextend
these notions to RA-FMA pairs (and FRA-WFRA pairs later on).

Proposition 11. For any FMA A of n registers there is an effec-
tively constructible RA8 of n registers such thatl ~ 5.
Conversely, for any RB of n registers there is an effectively con-
structible FMAA of n + 1 registers such tha#l ~ 5.

Proof. Going from FMA's to FRA's is simple: we use the same set

of states; we match each transition, ¢, g2) with (q1,1, ¢2); and,
additionally, for each transitiofy1, ¢, g2) wherep(q1) = ¢ we add

with 2 registers, both of them initially empty. Call the abot. We
claimthatC(A) = A*\ L3, thatis,s € L(A) <= s ¢ Lsforall
s € A*. The forward implication is clear: i € £(.A) then either
the same name appears three times in(via the pathgoqig2q4),
or names:; andas appear each twice inwithout interleaving (via
the pathgoqi g2g3g4). In both casess ¢ £'.

For the opposite direction, let ¢ L3 and feed it toA. Since
s ¢ A®, we can writes = s1a1s2a1s’ With s1a152 € A®. In A,
s1a152a1 leads control tae. Now, s ¢ L3 implies thata;s’ ¢ A®
so there is some; in a1 s’ such thati; s’ = a1sjazs”, arsi € A®
andas appears i1 sy. If a2 = a1 thens}as leadsA directly to
qa. Otherwise, it leads tg, via ¢s.

The reader may want to verify that changing the labels ofdbpd

atgo andg; above tol®, and the label frongo to ¢; to 2%, leads
to a WFRAA' that still satisfiesC(A") = A* \ Ls.

We show that any WFRA has a bisimilar FRA of the same
number of registers. The idea is to simulate the non-lineemory

(¢1,1%, g2). The other direction is more elaborate but apparently
the construction is already known [21], so we omit it. |

Corollary 12. The universality, equivalence and containment

problems are undecidable for RA’s and FRA's.

5. Weak fresh-register automata

In this section we examine a weaker version of FRA's by concen

trating on the aspect of global freshness while relaxingdahbcal
freshness. Even though this restriction leads us to masthivat do
not extend FMA's, we show that universality remains undaiid
(proposition 17).

The machines we introduce operate on sets of labels

Ly =Cu{i,i?,i® |i € [n]},

wherei? stands for “accept any name” transitions. Moreover, their

registers are now taken from the s®sg)) = [n] — A U {t}.

Definition 13. A weak fresh-register automaton (WFRA)f n
registers is a quintuplel = (Q, qo, 00, ¢, F') where:

¢ () is afinite set of states, witly € Q initial, and F' C @ final.
® 09 € Reg), is the initial register assignment.
e § C @ x L) x @ isthe transition relation.

The transition relation has the same intuitive meaning dken
case of FRA's, with the exception that in transitions of thenf
(q1,17,g2) € ¢ the automaton accepts any namestores it at its
i-th cell and moves to staig. Formally, a configuration is now
given as a tripldq, o, H) € Q, where

Q=Qx ([n] = (AUY)) x P(A),

and the transition relatior—;C Q x (CUA) x @ on configura-
tions is defined as follows. For dl, o, H) € Q and(q,4,q") € é:

o if £ € Cthen(q, 0, H) =5 (¢, 0, H);

e if £ =iando(i) = athen(q,o, H) 5 (¢, 0, H');

e if £ =i?then(q,o, H) %5 (¢, o', H');

e if £ =4i® anda ¢ HUimg(ao)then(q, o, H) =5 (¢, o', H');

with o’ = o[i — a]andH' = H U {a}. Reachable configurations
and accepted strings/languages are defined exactly as is.FRA

Example 14. Consider the following language,
L3 :{a1~~~akbl~--bl c A" |Vl7éjal ;éaj/\bi ;éb]}

which is in fact the concatenation Af° with itself, and the WFRA:

27 fq]\ 2

()

—{(490

1?7 17

(i.e. a set of registers that may contain names in commorneof t
WFRA by a linear memory plus eordering functioron the FRA
part. For example, here is such a simulation:

(0,0,20),6,5) — {{pm @say

The reordering functions will be attached to the states ®RRA.
Moreover, we shall simulate any-transitions (i.e. of therfa?) of
the WFRA by means of locally-fresh-transitioni8)(and known-
transitions §, for all j). In the end, defining the new transition
relation gets a bit involved as one has to bear reorderingsrid,
which need to be accounted for before making a transition and
updated afterwards.

Lemma 15. For any WFRAA of n registers there is an effectively
constructible FRA3 of n registers such thatl ~ 5.

Proof. Let A = (Q, qo, 00, d, F'); construct3 = (Q’, g4, 0¢, 6", F')
as follows. We se@’ = Q x ([n] — [n]) and write elements ap’

as(q, f). Simulation of non-linear memory by linear memory’

and reorderingf is defined in the obvious mannest = o’ o f.

Moreover, for eachi € [n], the multiplicity of o(7), i.e. the num-
ber of times it appears ia, is given by the size of ~*(f(i)); we

denote this by.(z). We let(og, fo) be a simulation of such that
o contains no more names thag, and sety, = (qo, fo) and
F' ={(q, f) | ¢ € F'}. We now define}":

&' ={((¢,;1):4,(d,) | (a,:4,d) €5 AL eC}

U{(g, 1), f(@), (¢, 1) | (¢,%,4") €6}

UL (g,) F@O)®, (@,) | (¢, ") € 5 A (i) =1}
U{(a:1):3%,(d 1) [(0:1%d") € 6 Ap@) >1A G ¢ img(f)}
U{((a.), f()*,(d)| (¢,3?,d') € 6 A (i) =1}
U{(g,1),3°(d,) | (¢,47,d") € A (@) > 1A & img(f)}
U{(g, /)3, (d) | (a,3?,d) €6}

where f' = f[i — j]. The first line is straightforward. The

second line says that receiving the name ofittieregister in4 is
simulated by receiving thg(7)-th name in3. The same rationale
is repeated in the third line, only that now we have to do a nrgmo
update and therefore we need to be careful with reorderiimgs.
particular, storing the new name, say in the f(i)-th register
should not be allowed whem(z) > 1: if this is the case and we set
o’'(f(3)) = a thena still appears irr but no longer appears i,
breaking thus the simulation. Nonethelessy(f) > 1 then there
must be somg which is free ino’ (i.e. 5 ¢ img(f)) and we can
safely store the new name in there, updating the reordenimgibn

accordingly. The last three lines @f implement the idea that
receiving any name can be matched by receiving either alyocal
fresh name or one of the stored ones. Thus,

R={((g,0,H),((q,f),0",H)) |o=0c"0of}

is a bisimulation and therefotd ~ 5. |

We next show that the absence of locally fresh transitions in
WFRA'’s renders them incapable of recognising FMA-recoajolis
languages. Combining this with the previous result we obtiaat
WFRA's are indeed strictly weaker than FRA's.

Lemma 16. The languagels = {a1 - - - ak | Vi. a;7#ai+1} of ex-
amples 4 and 10 is not WFRA-recognisable.

Proof. SupposeL, L(A), for a WFRA A with n registers.
Then, for anys € A® of lengthm > 1, we havess € L(A).
Let the following be the transition path iA accepting it,

(221 /a2 Am, /

’
Qo == =G0~ 1

with the subpath fromy; to ¢,,, accepting the second copy ef
Then, none of ther's can be of the form® as their names have
appeared before. Moreoverdf = j7 thena; can also accept the
preceding symbol, contradicting the fact th&tA) = L£2. Hence,
all o’s are in[n]. Choosingn > n we arrive to a contradiction. I

Emptiness is decidable for WFRA's, by inheritance. Moreiint
estingly, the universality problem remains undecidabfg laence
the same happens for equivalence and containment.

Proposition 17. Universality is undecidable for WFRA's.

Proof. The proof is by reduction from the Post Correspondence
Problem, and follows the track of the analogous proof in [24]
particular, we show that the locally fresh transitions of fRA's
constructed in that proof can be replaced by WFRA-transstio
Unlike [21], here it is necessary to use the@et a

6. Closure properties

In order to establish closure properties of FRA's, and feiig the
approach on FMAs in [11], it is useful to introduce a versiai
FRA's with multiple assignmentthat is, automata that can store
an input name at several of their registers at one step. ticphar,
assignments will now be taken from the sktg.. The set of labels
we shall use is the following.

L =CU(P([n]) x P([n]) x ({L} UP([n])))

Labels of the form(.S, T', L) are written simply(.S, T"), and when
we write (S, T, A) we assumed # L. If we want to allow forL,
we write (S, T, Ay).

Definition 18. An MFRA of n registers is a quintupled
(Q, qo, 00, 6, F') where:

e () is afinite set of stategy € Q isinitial andF' C Q are final.
® oo € Reg), is the initial register assignment.
e § C Q x L, x Q isthe transition relation.

The intuitive reading o is the following. If A is at stateg;
with register assignmert and input¢ € C U A arrives then:

o if £ € Cand(qi,?, g2) € ¢ thenA acceptd and moves t@;.

eif £ € Aand(qi,(S,T),q2) € §and(a[S — €)' () =T,
i.e. £ appears exactly in the registers’Ihafter it is assigned
to all registers inS, then A acceptd, it setso(S) = {¢} and
moves to statg..

eif £ € Aand(q, (S, T,A),q) €6, (0[S — £)"*() =T
and/ has not appeared in the history nor does it appeas ()
then.4 acceptd, it setso(S) = {¢} and moves to statg.

Thus, labels of the form(S,T") work in the same way as in
M-automata[11], and the main novelty here is the inclusion of
(S, T, A): in order for the transition to be allowed, the input name
a must be fresh in the history and in the pariefspecified byA.
This addition allows us to model globally fresh transitiamsl also
to combine automata unifying their initial assignments.

Formally, letQ = Q x Reg” x B.(A) be the set of con-
figurations and define—;C Q x (CUA) x O as follows.
Forall(q,0,H) € Q:

o If (¢,0,q') € 5 with ¢ € Cthen(q,o, H) —=5 (¢, 0, H).
o If (¢,(S,T),q') € 6,0’ = 0[S +— a] ando’~*(a) = T then
(¢,0,H) =5 (¢',0', H U {a}).
o If (¢,(S,T,A),q') € 6,0 = 0[S + a], s’ '(a) = T and
a¢ HUoo(A)then(q,0, H) 25 (¢, o', HU {a}).
Reachability and acceptance are defined as before. Notedlosi-
ble transition label§S, T', A,) satisfyS C T'. Moreover, ifS # T'
andA, # L then the transition can only be instantiated by a name

a € oo([n] \ A) that has not yet appeared in the history but is still
in some register.

Lemma 19. For any FRAA of n registers there is an effectively
constructible MFRAS of n + 1 registers such thatl ~ B

The other direction is a bit more elaborate and we achieve it i
two steps. Let us say that an MFRAIs pureif, for all transitions
(q,(S,T,A),q)of A, S =T andA = [n].

Lemma 20. For any MFRAA of n registers there is an effectively
constructible pure MFRA of 2n registers such thatl ~ B.

Lemma 21. For any pure MFRAA of n registers there is an
effectively constructible FRE of n registers such thatl ~ B.

We can now establish the following closure properties. Mies
under union and intersection is answered positively, wtibsure
under concatenation, Kleene star or complement fails.

Proposition 22. For FRA's A and 5, the language< (A) U £(B)
and L(A) N L(B) are FRA-recognisable.

Proof. Assume MFRAs A" = (Q1,qo01,001,01, F1) ~ A and
B' = (Q2, qo2, 002,62, F2) ~ B of n,m registers respectively.
For the union, construct an MFRA = (Q, qo, 00,6, F') of n +m
registers, where

Q = {q}¥Q1¥Q2, 00 = co1+0o02, F = FIUFRUG(FIUF,)

with ¢ : Q1 W Q2 — @ mappinggo: andgo2 t0 go, and being
elsewhere the identity. Finally:

§={(d",4,¢) | L€ CA(q,¢q)Es U}
U{(",(SUm™ TuUm|t™ AL),q") | (g, (S, T, AL),q) € 6:}
U { (qH7 ([n] U S+n7 [n] U T+n7 AJJ_rn)v q,) | (Q7 (57 T, AL)? ql) € 52}
whereq” € {q,6(q)} andS™ = {i+n|i € S}, for each
S Cw,andL™ = L. Itfollows that£(C) = L(A) U L(B).
For the intersection, construct an MFRA = (Q, o, 00,9, F)

of n + m registers wherd) = Q1 x Q2, qo (go1, qo2),
0o = 001 + 002, F' = F1 x F5 and, assuming_ UA = A :

§={(g:4,q) L CAVie 2. (mi(q),m(d)) €di}
U { (q7 (Sl U S;n7T1 UT;nvAJ-l UAIQn)?ql) |
Vi € [2]. (mi(q), (Si, Ti, ALi), mi(q')) € 6: }

It follows that £(C) = L(A) N L(B). O
Proposition 23. There are FRA'sA and B such that the language
L(A) = L(B) is not FRA-recognisable. Moreover, there is an FRA
A such that the languagé(.A)* is not FRA-recognisable. Finally,
there is an RAB such that the languag&™ \ £(B) is not FRA-
recognisable.

Proof. For the first part we show that the languagfe= £ * £1

is not FRA-recognisable, wherg; A®. SupposeL’ were
recognised by an FRA& of n registers, sas € £(C) with s being a
string of m distinct names. Let the following be the transition path
in C accepting it,

7o /a2 QXm, /
Qo == =gy g = S gy

with the subpath fromy) to ¢.,, call it p, accepting the second
copy of s. As all the symbols ok have already appeared before,
none of thea’s is of the form:®. Moreover, as all the symbols
in s are distinct, there cannot bee [n] andj < ;' such that
a; € {1,4*} andoyr = 4, asa;» would then repeat a name already
present in the subpath Moreover, there cannot biei’ € [n] and
j < j < j”suchthaty; € {i,i*}, a; = i* anda;n = i'°.
For suppose this were the case, and suppose thatsalietween
j andj’ are not in{i,i*}, and that allo’s between;’ and ;" are
notin{i’®|i’ € [n]}. Then,s = s1a1s2a283a354 With a1, az, a3
corresponding tey;, s, o respectively. Bug’® is also allowed
to acceptz1, hence there i), such thatsiaissasssaisy € L(C),
contradictingC(C) = £'. But now takingm > n + 1 we obtain a
contradiction.

The second part is shown in a similar manner, takingdathe
automaton accepting the language

Lo.ay ={aocar...ax € A" |Vi#j.a; #a;}

for some choseny. A similar argument to the above applies,
that is, we assume&; ,, = L(C) for some FRAC and select
aopsaos € L3 ,, Of size big enough to yield a contradiction.
Finally, it suffices to showt'= A*\ £(B) for an RAB. By example
14 we have that’ = A* \ £(A) for a WFRA A with no fresh
transitions. From that, we obtalfiby applying lemma 15. a

7. Symbolic methods

The automata we have introduced can be viewed in two differen
manners: either as ordinary finite-state automata opgratircon-
stant symbols and the symbols1®,1®,... n® (for machines

with n registers), or as machines which recognise languages from

an alphabet comprising a finite set of constants and an iefat
of names. We use the tersemantic levefor the latter interpre-
tation, andsymbolic leveffor the former one. The semantic is of
course the intended interpretation but, on the other haiegjing
our automata as operating on the finite alphdbeis much more
convenient. In this section we examine methods from the sjimb
level which characterise semantic notions. More specijicale
start by giving a simple proof of decidability of FRA-emss

by reducing the problem to FSA-emptiness. We then proceed to

our main point of focus, which is the definition of an appragei
notion of symbolic bisimilarity that is equivalent to thetimm of
bisimilarity we have been using thus far. As a corollary wever
that bisimilarity is decidable for FRA's.

Proposition 24. The emptiness problem is decidable for FRA's.

Proof. Given an FRAA of n registers, construct its closuwd and
take A’ to be the ordinary FSA with the same set of states, initial
state, transition relation and final states4sand operating on the
set of labeldL,,. We claim thatC(A) = 0 < L(A4) = 0.

Indeed, if.A accepts a string € C U A* then, the accepting path
in A yields a strings’ € L%, ands’ € £(A’). Conversely, ifA’
accepts a string’ then the accepting path i’ is also a path it4
ending in an accepting state. From remark 9, we have thaattes |
yields a strings € £(A). O

In order to define a symbolic notion of bisimulation equiva-
lence which captures its semantical analogue, we introduce
iliary structures which record the way in which two registes-
signments are related. In particular, they record the dosnai the
assignments and those indices on which the two assignmeints ¢
cide. A symbolic bisimulation between two automata relatages
of the automata in specific record environments. At eachiiksi-
tion step the records are updated according to the speaifibaiic
transitions taking place. This symbolic description isvehdo ac-
curately capture what happens at the semantical level.

We adapt Stark’s notion afpan[28]. We call

(S1,p,82) € P([n1]) x P([na] x [n2]) x P([nz])
atyped sparon (n1, n2) if:
e (i,7),(i',5') € pimpliesthati = i’ <— j =7,
* img(p) C S, whereimg(p) = {1 € [n] [3j. (4, i) € p },
e dom(p) C S1, wheredom(p) = {j € [n] | Fi. (4,%) € p }.

We write [n1] = [n2] for the set of typed spans dim1,n2). A
perhaps more intuitive way to view a typed sgah, p, S2) is as a
triple of relations:

S1 < dom(p) — img(p) < S

By abuse of notation, we writg for the whole of(S1, p, S2), in
which case we also use the notatisn(p) = S1 andSz(p) = Sa.
If p:[n1] = [n2] and(s, j) € [n1] x [n2] thenpli < j] : [n1] =
[n2] is the typed span:

(S1(p)U{i}, p\{(i',5) [= ¢'Vj = j'} U{(5,5)}, S2(p)U{s})

A typed span(Si, p, S2) relates register assignments and o2
just in casep is a bijection between the parts [of;] and [n2] that
have common images under ando-, while S; keeps track of (the
indices of) all names ia;. Formally,p = o1 < o2 if:

dom(o1) = Si(p)Adom(a2) = S2(p)Ap = {(i,J) [01 (i) = 02(j)}

In this case||p|| = |S1(p)| + |S2(p)| — |[dom(p)| gives the total
number of names ia; andos.

Suppose, for example, that we have related statef automa-
ton A; to stategs of A, with respect t. If (g1, 4,41) is a transi-
tionin A, and: € dom(p) then the name in registenf A; (in the
semantical scenario captured by the symbolic descriptiesiples
in registerp(i) of Az. Consequentlyd, can only simulate the tran-
sition by somegqz, p(4), g3). On the other hand, ifq1,4®,q1) is a
transition in.A; then there are several factors to consider:

e Any private name ofd» can be captured by . Hence,A> needs
a simulating transitioriqs, 7, g3) for everyj € S2(p) \ img(p).

e Moreover, A2 needs a transition for all names locally fresh
to both.4; and A,. This can be somég2, j°, ¢2) but, under
circumstances, it may also be sofe, j©, ¢5).

In order for (g2,4®, ¢5) to capture all names locally fresh i,

and A, it must be the case that all names in history are present
in the registers of4; and.A, (so that global freshness coincide
with mutual local freshness). I#l; hasn; registers and4, has

nz, and assuming that the initial register assignments4prand

A contain the same names, the latter can only happen in case les
thann, + ne names appear in the history.

We can therefore resolve the latter case by adding a componen names forchannel namesand letp range ovelprocess constants

which counts the names in the history, up7e + n2. In the
following we writen for nq +ns, and seh™ = [h+1]" (= h+1
if h < n, andn otherwise).

Definition 25. Let A = <Qz‘7q0i70'0i76i7Fi> be FRAs Ofnz-
registers, fori = 1,2, such thatimg(po1) img(po2) = Ho.
A symbolic simulationon.A; and.As is a relation

R C Q1 x([n]u{0}) x ([n1] = [n2]) x Q2

such that, wheneve(y, h, p,q2) € R, if g1 € Fi theng: € F>
and if (1,4, q1) € 61 then:

1. If £ € Cthen(ge, ¥, q5) € 62 for some(qi, b, p, q5) € R.

2.If ¢ = ¢ andi € dom(p) then (g2, p(z),q2) € &2 for some
(¢1,h,p,q2) € R.

3.1f¢ =iandi € Si(p) \ dom(p) then(gz,5°,¢2) € 2 for
some(qy, h, pli < jl, ¢2) € R.

4. If £ = i* then, for anyj € Sa(p) \ img(p), (g2, J, ¢2) € 52 for
some(qy, h, pli < jl, ¢2) € R.

5.1f ¢ = i®* andh = nor |p|| < h then(gz,j°,¢5) € 82 for
some(qy, h, pli < jl, g2) € R.

6. If £ € {i*,i®} then(qz, j®, q%) € 62, Or (g2, %, ¢%) € &2, for
some(q;, h™, pli < j], ¢5) € R.

Setting(S1, p, S2) ! = (S2,p~ 1, S1), the inverse ofR is:

R ={(q2,h,p, 1) | (@1, h,p" ", q2) € R}
We say thatR is a symbolic bisimulationif both R and R~!
are symbolic simulations. We say thdt; and .42 are symbolic
bisimilar, written 4; < A,, if there is a symbolic bisimulatio®
on A, andAg such that(qu, h07p07qO2) € R with ho = |H0|
andpo = 001 <> 002-
In the following propositions let us assume the hypotheges o

Definition 25. Let us also writéf for H U Hg, andn for ny + no.

Proposition 26. If R is a symbolic simulation onl; and.A; then
R ={((q1,01,H),(g2,02,H)) | (q1,h,p,q2) € R
Ap=o1< o2 ANh=T[|H||" Nimg(o;) C H}
is a simulation. Moreover, if? is a symbolic bisimulation theR’
is a bisimulation.

Proposition 27. If A; and A, are closed FRA's andR is a
simulation on4; and.A then

R = {(q17h7p7q2) | ((q17017H)7 (q27027H)) €ER
Ap=o1 < o2 ANh=[|H|]" A (gi,0:, H) reachable}

is a symbolic simulation. Moreover, R is a bisimulation thenR’
is a symbolic bisimulation.

Corollary 28. Bisimilarity is decidable for FRA's.

Proof. Let A; = (Q;, qos, 00i, 03, F3) be FRAs ofn; registers, for

i = 1,2. Choosedy, @2 € A® such thaimg(a;) = img(oo:) \
img(oy;), and formA; = A; Wde and A5 = A W d. Now
close these and obtain closed FRAS. We haveA; ~ A!. More-
over, by the previous propositiond]] ~ A, <= A} ~ A}, and
henced; ~ A> «= A; <~ A,. As the symbolic bisimu-
lations betweend/ and .4} live in a space bounded relatively to
|Q1], |Q2], n1, n2, we can search it exhaustively for such relations.
Hence, FRA-bisimilarity is decidable. O

8. Automata for the w-calculus

We briefly recall the definition of the-calculus with early seman-
tics and strong bisimulation [14, 26]. We use the fixed &edf

The sefll of w-calculus processes is given as follows,
P,Q = 0|ab.P|a(b).P|[a=0b]P|va.P|P+Q|P|Q|p(@)

wherea,b € A andad € A*. Name binding is defined as usual
(b is bound ina(b).P andvb.P), and processes are equated up to
a-equivalence. We writén(P) for the set of names appearing free
in P. Process constants are accompanieddfinitionsof the form
p(@) = P, where@ € A® andfn(P) = img(a). Moreover, each
occurrence op must beguarded i.e. it must come in one of the
formsab.p(@) or a(b).p(a).

The semantics of the calculusdarly and is given via a labelled
transition relation with labels:

ax= abla)|ab|T
Labels have free and bound occurrences of names, but theyptare
equated up te-equivalence.
fn(ab) = fn(ab) = {a,b} fn(a(b)) ={a} fn(r)=0
bn(@b) = bn(ab) =0 bn(a(b)) = {b} bn(r)=10
We write n(«) for fn(a) U bn(«a). The transition relation is given
by the following rules (plus symmetric counterparts).

P2 p

ouT—M8M MATCH ~
ab.p 2% p [a=alP P
P{a/b} = P’
InP ac a/ }a—> (5)=P
a(b).P — P{c/b} p(@) — P’
ab ’ e} /
OPENi a#b RES P — I aén()
vb.p 2O pr va.P — va.P’
a , ab ’ ab ’
SUM# CoMM P—>PT Q—Q
P+Q — P’ P|Q — P'|Q
PAR Iid — Lid bn(a)Nfn(Q)=0
P|Q — P'|Q
a(b) / ab /
P P
CLOSE - Q—@ b fn(Q)

P|Q T vb.(PQ)
Note how the side-conditions impose global freshness oneram
created using the constructor. We say that proce@ds adescen-
dantof P if there is a series of transitions froRto Q.

Bisimulation is the standard notion of equivalence in the
calculus; here we shall consider strong bisimulation. Aatieh
R C II x II is called asimulation if, for all (P1, P,) € R and
all a with bn(a) N fn(P1,) = 0, if P1 -2, P/ thenP, -% P}
for some(Pj, P;) € R. R is called abisimulation if both R and
R~ are simulations. We say th& andQ arer-bisimilar, written
P L Q, ifthere is a bisimulatior containing(P, Q).

We now define a version of the-calculus with extended syntax
that is directly representable by FRA's. Since transitiaresmulti-
symbol, and our automata can recognise one symbol at a time,
they will be decomposed to atomic ones. We add setsmft and
output processes which cater for the intermediate stages in these
decompositions. For example,

ab.P -“% P decomposes toab.P —+ b.P -2 P

whereb. P is an output process. Output [resp. input] processes are
in the middle of sending [receiving] a name on a chosen cHanne

Definition 29. Thexr-calculussyntax is given by the seis$, ITou
andITinp, with elements:

P,Q:= 0]|ab.P|a(b).P|la=0bP|va.P|P+Q|P|Q|p(a)
Pout = b.P'IJa.Pout|P|Pout|Pout|P
Pinp = (b).P [va.Pup | P | Prp | Pnp | P

wherea,b € A and@ € A*. We write T for IT U oy U Iinp,
and letP, O, . ..
a-equivalence. Name binding is defined as expediésibound in
vb.P,a(b).P and(b).P

It is handy to introduce here some very basic notions from the

theory of nominal sets [8, 23]. We calbminal structureany struc-
ture which may contain names (i.e. elementsA9f and we de-
note byPerm(A) the set of finite permutations ah(i.e. bijections
m : A — A such thatr(a) # a for finitely manya € A). For
example,jd = {(a,a)|a € A} € Perm(A). We shall define for
each sefX of nominal structures of interest a function

- :Perm(A) x X — X

suchthatr- (n'-z) = (ron’)-zandid-z = z, forallz € X and
m, 7 € Perm(A). X will be called anominal setif all its elements
involve finitely many names, that is, for all € X there is a finite
setS C A such thatr - « = z wheneverva € S.w(a) = a.
For example A is a nominal set with actiom - « = m(a), and
S0 isPn(A) with action 7 - S = {n(a) | @ € S}. Also, any
set of non-nominal structures is a nominal set with trivieti@n
m - x = x. More interestingly, ifX is a nominal set then so is
X*withaction 7 - z1...2n = (m-21)...(7 - xzpn). Also, if X
is a nominal set then so is the ¢t . ([n] — X) with action
mf={Gm-2)|(,z) € f}.

Thus,IT, oy, inp, IT are all nominal sets. For example,
7 -a(b).bc.0 =a'(b').b'c.0

wherea'=m(a), b'=n(b), ¢'=n(c) (note that permutations equally
affect bound and free name occurrences). Similarl{ to we have
that X x Y is a nominal set wheneveY andY are. Note that if
X is a nominal set an&k’ C X is such thatr - x € X', for all

x € X' andw € Perm(A), thenX' is also a nominal set with the
inherited action. Hence, the following set is a nominal set.

K={(0,P)|c€ U Regn/\f)eﬂ/\fn(ﬁ) Cimg(o)} (1)

We write K for the restriction ofi to elementgo, P) with P € I1.
Finally, from a nominal seX we can derive its set afrbits:
O(X)={O(z) |z € X} where O(z) = {m-x |7 € Perm(A)}.

Note that eaclD(x) is a nominal subset oX .

The technology of the previous paragraph is used for defining

the transition system of the extended calculus. In contashe
ordinary w-calculus, the transition relation we define is finitely
branching, and this is achieved by considering processesitext
and specifying channels by their context indices insteatheif
names. More specifically, we & (K f) be the set of processes-in-
context. Each suct (o, P) is writteno - P.

Sinces + P = mo b m-P, for any permutationr, what
matters inc - P is not the specific names occurring dnor P,
but only their index inr. For example,

{(1,a),(2,0)} Fa(b).be.0 = {(1,a"),(2,)} F a'(b).bc’. O
and in essence both of these are specified by an expressidike.g
({(1,0),(2,0)},1(b). b2. 0). Borrowing notation from FRA's, we
build up on the indices idea and use transition labels of ¢ f
i*/i® for fresh inputs/outputs.

Definition 30. The semantics of ther-calculus is given via a
labelled transition system with set of stat@gK’) and labels:
lij [i5°

a n=i|i®i® | 7]]5%

Note thato - P - o' P’ implies|o| = |o’|. Some further

range over its elements, which we equate up to remarks on reduction:

e Transitions restricted tdI use only~ and double labels, i.e.
from { i, j®,4j,ij* | i,j € w}.

e Inputs are decomposed as known inputsPda) and locally
fresh ones (IP2B), and are therefore finitely branchlng The

side-conditions impose that, whenevet- P,, — o’ - P,
theno’ = ofi — a], a ¢ img(o) andi is the least index such
thato (i) ¢ fn(P).° Similar finiteness and minimisation apply
to bound outputs (€EN).

¢ Note that the CosErule involves bound outputs, hence glob-
ally fresh transitions on the output side. On the input site,
is then necessary to have a matching locally fresh transitio
global freshness implies local freshness.

Example 31. For eactu € A, leto, = {(1,a)} and
P, = vb.p(ab)

In the w-calculus,P, induces an infinitely-branching, infinite-path
a(b) b(c")

transition graph:
a(b) 5(c) @

P, P, P,

with definition p(ab) = ab. ve. p(be) .

In the extended calculug, induces the following transition graph,

@&
JGFPGLUaFub.b.Vc.p(bC) 1—>abFPb;>~~~

which is economic by branching once at each step. In fadinget
Pyt = vb.b.ve.p(be), and sinces, + P, = o, F P, and
0a b Pot = 0u b Poye forall a, b € A, the graph above contains
just two nodes: 1

A

F Pfl ~—
1®

and using double labels we get simpby, - P, Q 1® .

The way in which the two transition relations are relatedvsigy
by the following lemma, which verifies the intuitions of Tall.

0o = Pout

Lemma 32. Leto, o’ be registers, andy, & be labels ofr andxr
respectively. For allP, P’ € II with fn(P) C img(o):

eifo P -2 o'+ P thenP -2 P/,
eif P2 P'thenc+ P = o'+ P';
where eitheld = o = 7 ando = ¢’; or & = ij/ij, o = ab/ab,

(i) = a, O’(i) =bando’ = o; Ora—mo/zy a—a()/ ab,
o(i) = a, 0" = o[j > b andj — min{j | 5(j) ¢ fn(P")}.

There is a straightforward passage from the-calculus to
FRAS: states are taken fro(K), states fromO(K) are final,
and the transition relation is the one given in Table 1 (angttiou-
ble transitions). However, the usual (symbolic) notion of bisimu-
lation between FRA's is not appropriate because it is deffoed
single-step transitions and, moreover, does not take iotouat
the distinction between inputs and outputs. We therefofieeléhe
following notion.

Definition 33. An n-simulationis a relation
R C O(K) x ([n] = [n]) x O(K)

6 Although not essential, minimisation saves us from unresgranching.

7Note that this translation typically yields infinite FRA's but we shall
examine classes of processes where the resulting FRAsvieifi the end

wherei, j € w. The transition relation is given by the rules in Table 1. of this section.

oFP ok P

oF-P ok P

INPL MATCH

o(i)=a

ot a).P ot (b).P

obla=alP ok P

Sum = -
o P+Q = ok P

INP2A - o(i)=a INP2B ~ i=min{i| o (i)¢f(P)}
ok (b).P - o+ P{a/b} ok (b).Pt=sofi— b FP
ot P{a/b} ot P
OuTl - o(i)=a OuT2 - o(i)=b REC ~ — p(b)=P
ok ab.P o+ b.P cFbLP S oFP ok p(@ — ok P
(c+a)F P (o' +a)F P ofi v a] b Post — ofi — a] - P
RES P, - a#(|o|+1) OPEN = i=min{i| o (i)¢fm(P)}
ocrva.P— o' FvaP 0+ va.Poy ~— ofi—a]lF P
. . A% /i® ,
« / ckP —— oli—bFP
PAR1 Uf i 7 ok]?/ a=i/T PAR2 s [) j=min{j| o (j)&M(P’",Q)}
oFPIQ—okFP|Q ok P1Q7E olj — b P'|Q
ij ij 71® , i1® ,
coum cbPLorP oFQ-LotkQ Close (+0)F P2 (b+0)F P (4+0)FQ S (b+0)FQ
oFP|Q-0okP|Q oFP|Q - okvb(P Q)
obP ok P o P A e s
DBLOUT o DBLINP

7i/3i®
ob PP s pr

ok p Ay pr

Table 1. The transition relation for ther-calculus (Symmetric counterparts 0@, PAR, CoMM, CLOSE omitted).

such that if(o1 + P1,p,02 - P2) € Rthenoi,o2 € Reg,, and
o1 F P - o} + P implies thato, - P, = o4 - P; for
some(o] F Pi,p', 05 F P3) € R such that one of the following is
the case, withi € dom(p):

a=ad =r7andp = p;

a =ij, j € dom(p), o’ = p(i)p(j) andp’ = p;

a =ij, j ¢ dom(p), o’ = p(i)k* andp’ = p[j < kI;
a=1ij% o = p(i)k®, p’ = p[j < k] and,

forall k' € Sa(p) \ img(p), o2 F P2 "% o, - P} for some
(Ull = PLP[] = k,]702 - P2,) € Rv

e a=1ij,j € dom(p), o’ = p(i)p(j) andp’ = p;

e a=1ij% a = p(i)k® andp’ = p[j < k.

Ris called am-bisimulationif both R andR~*! aren-simulations.
Py, and P, are n-bisimilar, written P, ~ P, if there is ann-
bisimulation R containing(co1 F Pi,001 <« 002,002 F P2),
for SOMeoo1, 0o2 with img(am) = fn(P1)7 img(Uoz) = fn(Pg).

We say that a processiiscontainedif all its descendants have
less tham free names.

Proposition 34. For all n-containedP, @, P £~ Q iff P £ Q.
Proof. The proof proceeds by showing thatfifis a simulation for
ther-calculus then

R ={(o1F Pi,p,o2 - P2) | (P1,P2) ERAp=01 02}

with Py, P, n-contained andri,02 € Reg, is ann-simulation
and, conversely, iR is ann-simulation then

R ={(P1,P) | 301,02. (01 F P1,01 <> 02,02 - P2) € R}
with P, P> n-contained is a simulation for. O

8note:o+v = oU{([o|+1,v)}, v+o = {(1,v)}U{(i+1,v') | (i,7') € o}

10

The set of reducts of a given process-in-context is in géirera
finite, even if the process is-contained. The following result pro-
vides sufficient conditions for excluding such infinite beilbars.
We say that a process hfigite controlif no parallel compositions
appear in its recursive definitions. A processistrict if all its
subprocesses of the formu. P satisfya € fn(P).

Proposition 35. If P, € II has finite control and all its descen-
dants arev-strict, then there are som&/ € w, oo € Reg,, and a
finite.S C O(K) such thatP, is M-contained (oo - Py) € S and
forall (o P)c Sifo- P -2 o' P'then(o' - P') € S.

Proof. Suppose (WLOG) thaPy invokes definitiong;(d;) = P;

i € [N] for someN, and takeM = |Py| x max{ |P;| |i € [N]}
for the size function which counts a process’ occurrenc@sop’s
and names, free or bound (but not binding): &z§.P| = 2 + | P|,
la(b).P| =1+ |P|, |va.P| = |P|, |p(a)| = 1 + |@| and|0| = 1.

If Q is a descendant oP then |Q| < M as a process may
only increase its size by recursion and, Bshas finite control,
recursions cannot obtain size greater thaax{ |P;| | i € [N]}.
But then, because all descendantd¥fare v-strict, their number
of v-abstractions is bounded by, and hence they all have length
(number of symbols or constructors) bounded relativelyMo
They are still unboundedly many, due to different choicefreé
variables. But since each descendant can be matched wititexto
from Reg,,, the number of the resulting processes-in-context is
bounded relatively td/. We collect all these ir%. a

Corollary 36. Bisimilarity is decidable inll when restricted to
processes with finite control.

Proof. For any such processés, P> € II, by the previous propo-
sition and after equating processes up to non-strigbstractions,
we obtain)M -transition graphs with sizes bounded relativelyo

and P». Clearly, P, X p, iff there is anM-bisimulation between

those graphs. As those bisimulations live in a space bourelad
tively to the sizes of?; and P>, we can search it exhaustively for
such relations. |

Equating processes up $tructural congruencgl4], the above
results can be further strengthened to processesfimite degree
of parallelism in a similar manner to [4].

9. Further directions

We have introduced an abstract computational paradigmstat-e
lished its key properties, laying the ground for furtheegsh. The
next logical step is to examine concrete applications of BRA
the description of computation with names, either in theation
of mobile calculi or that of programming languages, relgtihis
approach to existing higher-level approaches. A first sutlaace
has been recently accomplished in [19] by constructing aehnod
of a low-order restriction of Reduced ML (a fragment of ML kit
ground-type integer references) representable in a vafdRA'S
where labels contain store information. This was achiewetep-
resenting the fully abstract game semantics of the langlid&tje
On the foundational side, the study of thecalculus in FRA's
revealed that there is a notion of polarity inherent in cotapan
with names. In particular, the examined FRA's do not mix lyca
with globally fresh transitions, and this is clearly depittin the
partition IT = ITinp W Il W IT. A similar observation applies to
FRA's describing Reduced ML [19]. There, the states arei-part
tioned in P-states (for Proponent/Program) and O-stabe£(bpo-
nent/Environment); only P-states are allowed to perforobally
fresh transitions, and only O-states can do locally fresksoin-
tuitively, the only notion of freshness that can be obsemedhe
program'’s side is local freshness, whereas the environsfentld

A. Proofs from section 6

Proof of Lemma 19Let A = (Q, qo, 00, J, F'). The construction
of B = (Q',q,00,0", F') follows closely [11]. In particular,
each transition of4 involving a name induces an assignment of
that name in the extra register Bf If the transition were a fresh
assignment then this would result in the name occurring jost
once after assignment, otherwise it would occur twice. Asittual
extra register of3 changes during this process we add an extra
component in states to remember it.

We setQ’ = Q x ([n + 1] = [n + 1]) and write elements of
Q' as(q,). Moreover,q, = (qo,id), 0p = oo[n+1 — §] and
F'={(q,m)|q € F}. Finally:

&' ={((q1,7m), 4, (g2,7m)) [£ € CA(q1,4,92) €6}
U { (g1, ({m(n+1)}, {7 (2), 7(n+1)}), (g2, 7)) | (q1,7,92) €6}
U { (g1, {m(n+1)}, {m(n+1)}), (g2, 7)) | (q1,i%,q2) €6}
U{ (g1, {m(n+ D)}, {x(n4+1)}, [0)), (g2, 7)) | (q1,i%,g2) €6}

whereq; = (q1,7) andn’ = (7(i) « w(n+1)) om (we write
(k < j7) for the permutation that swagsand;). We can show that
the following relation is a bisimulation and therefore that- B.

R={((g,0,H),((q;7),0", H)) | Vi € [n]. (i) = o' (n()) }
a

Proof of Lemma 20Let A = (Q, qo, 00, 0, F') and constructs =
(@', q0,00,8", F') as follows. The idea is to keep in the extra
memory registers aB a copy of the initial configuratioa, which

is never touched by assignments. Thus, whengvesants to make

a transition with label(.S, T, A), B will simulate it by a transition
(S,8,[n]) and transitions of the fornyS,T U Ti,) whereT, C
{n+1,...,2n}, a € oo([n] \ A) anda is not in the history. In

be assumed to have the memory needed in order to observe globaorder to accomplish this we need to enrich states with inéion

freshness. These observations suggest that a notipolafised

FRA where states are partitioned as above, is relevant anddshou Therefore, we sef)’ =

be further pursued. In the polarised setting, symbolicntiga-
tions are simplified as there is no longer need foharomponent
(cf. Definitions 25 and 33).

A potential criticism towards FRA's concerns the fact thayt
fail to satisfy closure under concatenation and Kleene(sfaBec-
tion 6). We find these non-closure results rather expecté&dRaés
are history-sensitive machines. On the other hand, FR&ms®
be closed under theominal version®f concatenation and Kleene
star, as recently introduced by Gabbay and Ciancia [9]. Tke p
cise connections between FRA's and regular languages aitten
restriction [9] are the subject of ongoing research.

Finally, some important questions have still not been anstie
For example, we have not considered deterministic versans
FRA's, nor examined whether FRA's can be determinised. ssu
ing that in a deterministic FRA to each input string correxjma
unique path, we can see that e.g. the FRA accepting the lgagua

7ak}/\Vi7éj'ai7éaj}

has no deterministic equivalent. Other directions forHertre-
search concern minimisation of FRAs (recently examined fo
FMA's [2]) and the evident connections to HD-automata. More
over, several possible extensions of FRA's are of inteeegt,vari-
ants with labels (data words), stores, or pushdown variants

L={a1- -ara|a€{a,...

10. Acknowledgements

Thanks to Andrzej Murawski, Samson Abramsky, Vassilis lkoas
and Ulrich Schopp for discussions and suggestions. Thalsksto
the anonymous reviewers for their comments. Section 7 itiqoar
lar is now much simpler due to a reviewer’s suggestion.

11

regarding whether the names img(oo) appear in the history.
Q x P(img(00)), g6 = (q0,0), 06 =

oo+ 00, F' ={(¢,I)|q € F} and:
&' ={((¢,1),¢,(d, 1)) | L€CNA(g,l,q") €}
U{((q, 1), (S, 7). (d", 1)) | (4, (S, T),¢') €}
{((.1),(S,TUTw),(¢", 1 U{a})) | (¢,(S,T),q') €6}
U{ (g, 1), (S, S,[n]),(d', 1)) | (g, (S, S, 4),q") €}

{ (@, D), (S, TUTu), (¢, TU{a'})) | (q,(S,T,A),q') €5}
where a € img(oo), Ta = {(n+14) € [2n] | 00(?) = a},
a' € oo([n] \ A)\ I, andT, asT,. We can check that
R={((q,0,H),((g,1),0',H)) | I = HNimg(oo)Ac’ = o+00 }
is a bisimulation and therefore thdt ~ B. |
Proof of Lemma 21Let A = (Q, qo, 00, 0, F') and constructs =

(Q', g6, 00,8, F') by settingQ’ = Q x ([n] — [n]) and selecting
fo, o such thaimg(oo) = img(op) andeo = o o fo. Moreover,

setgy = (qo, fo), F' = {(¢. f) | ¢ € F'} and:
& ={((a.f)0.(d.)]teCA(g¢tq)€d}
U{(a,)i, (d s N TFTN\S) ={i} A(a,(S.T),q") €6}
U{ ()i, (@)@ S S A (4. (S,5),4) €8}
U{((@:.)),i%(d) [F716) S SA(q,(5.9),4") €6}
U{ (g,)i (@, f) [7@ S S A (q, (S, [n]),q) €6}
with f' = f[S +— i]. Now, the following is a bisimulation
R={((¢,0,H),((q.f), 0", H))|o=0"0f}
and henced ~ B. |

B. Proofs from section 7

Proof of Proposition 261t will suffice to check only non-constant
transitions. So le{(q1, 01, H), (q2,02, H)) € R’ due to some
(q17 h7 P, Q2) S Rand suppose th@h 01, H) L’él (qlh 0-17 Hl)
with H' = H U {a}. We do case analysis an Below we writep’
for p[i < j].

e a € img(o1) Nimg(o2), saya = o1(i) = o2(j). Then, itis
necessary thatg:,i,q1) € 51 ando] = 1. Also, p = 01 < 02
implies (i. j) € p, S0(z, j, @) € 62 for some(gi., b, p, g4) € R.
Thus, (g2, 02, H) 5, (g3, 02, H') and, noting thafl’ = H so
h = [|H'[1", we can see thd(q}, o1, H'), (¢}, 02, H')) € R'.

e a € img(o1)\img(o2), saya = o1(i). Then, agaifq:, 4, q1) €
51 andoy = o1, buti € Si(p) \ dom(p). Thus,(g2,J°, q5) € 62
forsome(qy, h, o', ¢3) € R.Thus (g2, 02, H) —=35, (3,05, H'),
oy = 02[j — a]. Noting thatp’ = o1 <> o5 andH' = H, we have
that((q1,01, H'), (¢2,0%, H')) € R'. R

e a € img(o2)\img(o1), saya = 02(j). Sincea € H \img(o1),
we have somdqi,i®,q;) € &1, ando] = o1[i — a]. More-
over,j € S2(p) \ img(p) and thereford gz, j, g5 € J2 for some
(q{y h: plv qé) € R. ThUS,(sz g2, H) L&z (qé7027 Hl) and we
can see thaf(q1, 01, H'), (¢2,02,H')) € R'.

e a € H\ (img(os) Uimg(o1)), s0(q1,4°,q1) € 61, andoy =
o1]i — al]. If b < nthen||p|| = |img(o1) Uimg(o2)| < |H| = h.
Thus, (g2,5°%,q2) € &2 for some(qi,h,p’,q2) € R, and so
(g2, 00, H) 255, (g2,0%,H'), 05 = 02[j + a]. We havep’ =
o1 <oy andh = [|H'[]", thus((q1, 01, H'), (45,02, H')) € R'.

e a ¢ H and say transition is due tq1,:°* /i®, ¢}) € 61, s00} =
o1[i — a]. Then,(g2,5° /5%, ¢5) € 82 for some(qi, h**, o', ¢b) €
R, s0(qz2, 00, H) —%5, (¢h, 04, H'), o4 = 02]j — a]. We have
thath™ = [|H'|1™, so((q1, 01, H'), (¢5, 05, H')) € R'.

Thus, R’ is a simulation. IfR is a symbolic bisimulation then,
by symmetry,R’ is a bisimulation. Finally, if(qo1, |Ho|, 001 <
002, qo2) € Rthen((qo1, 001, 0), (qo2, 002,0)) € R'. O

Proof of Proposition 27\We check non-constant transitions. Let
(q1,h,p,q2) € R, due to som€(q1,01,H),(q2,02,H)) € R
and suppose thdt:, ¢, q1) € J1. We do case analysis dnBelow
we write H' for H U {a}, andp’ for p[i < j].

o If £ = i then, by closure(qi, 01, H) ~*5, (qi,01, H') with
a = o1(i), and henceqs, 02, H) 25, (q¢5,0%, H') for some
((¢1,01,H'), (2,02, H")) € R.If i € dom(p), say(i,j) € p,
thena € img(o2) and it must be(qe, j, q5) € &2, 05 = oo.
We can see thafg, h,p,q5) € R'. If i € Si(p) \ dom(p)
thena ¢ img(o2) and there is soméqe,j®,q3) € J2, and
oy = o2[j — a]. We have thatqy, h, p', qz) € R'.

e If £ = 4° then, for eachu ¢ img(o1), (q1,01, H) =5,
(q1,01, H"), 0f = o1[i — a], and therefordqe, o2, H) —2s,
(g2, 02, H') for some((q1, 01, H'), (2,02, H')) € R.

For anyj € Sa2(p) \ img(p), o2(j) ¢ img(o1), SO we can take
a = o2(j). Then, we must havéy., j, ¢5) € d2, 05 = o2, and we
can check thatq!, h, p’, ¢5) € R'.

If h = nor|p|| < hthen we can choose € H \ (img(o1) U
img(o2)). Thus, we have som@e, j°, ¢5) € 92,05 = o2[j — a.
Noting thatH’ = H andp’ = o/ <5, we get(q}, h,p',¢3) € R’.
Finally, if we choose: ¢ H then there is soméys, j* /5%, ¢3) €
d2, andoy = o2[j — a]. We have thaty’ = o] < o5 and
H' = Hw{a}, thush*™ = [|H'|]". Hence,(q}, h**, o', ¢4) € R'.
o If £ = ® then we work as in the last case above.

Thus, R’ is a symbolic simulation. If2 is a bisimulation then, by
symmetry,R’ is a symbolic bisimulation. Finally, if(qo1, 701, ?),
(qo2, 002,0)) € R then(qo1, |Ho|, 001 < 0oz, qoz2) € R'. O

12

References

[1] S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, dn®. B.
Stark. Nominal games and full abstraction for the nu-caisul In
Proc. of LICS '04 pages 150-159. IEEE Comp. Soc. Press, 2004.

[2] M. Benedikt, C. Ley, and G. Puppis. Minimal memory autdaa
Alberto Mendelzon Workshop on Foundations of Dataha2@%0.

[3] N. Benton and V. Koutavas. A mechanized bisimulation tfee nu-
calculus. Tech. Rep. MSR-TR-2008-129, Microsoft Resga2008.

[4] R. Bruni, F. Honsell, M. Lenisa, and M. Miculan. Modelirfgesh
names in the pi-calculus using abstractions.Phc. of CMCS '04
volume 106, pages 25-41. Elsevier, 2004.

[5] S. Delaune, S. Kremer, and M. Ryan. Symbolic bisimulatior the
Applied Pi Calculus. IrProc. of FSTTCS '0A0lume 4855 o£ NCS
pages 133-145, 2007.

[6] S. Demri and R. Lazic. LTL with the freeze quantifier andister
automata ACM Trans. Comput. Log10(3), 2009.

[7] G. L. Ferrari, U. Montanari, and E. Tuosto. Model checkifor
nominal calculi. InProc. of FOSSACS 'Q5/0lume 3441 ofLNCS
pages 1-24, 2005.

[8] M. Gabbay and A. M. Pitts. A new approach to abstract symidh
variable binding.Formal Asp. Comput13(3-5):341-363, 2002.

[9] M. J. Gabbay and V. Ciancia. Freshness and name-réstriot sets
of traces with names. Submitted for publication, 2010.

[10] A. Jeffrey and J. Rathke. Towards a theory of bisimolatior local
names. IrLICS pages 56-66, 1999.

[11] M. Kaminski and N. Francez. Finite-memory automat&heor.
Comput. Scj.134(2):329-363, 1994.

[12] J. Laird. A game semantics of local names and good Vasabin
Proc. of FOSSACS 'Q4/0lume 2987 o NCS pages 289-303, 2004.

[13] J. Laird. A fully abstract trace semantics for geneefkrences. In
Proc. of ICALP '07 volume 4596 o£ NCS pages 667-679, 2007.

[14] R. Milner, J. Parrow, and D. Walker. A calculus of mobjlecesses,
I and II. Inf. Comput, 100(1):1-77, 1992.

[15] R. Milner, M. Tofte, and D. MacqueenThe Definition of Standard
ML. MIT Press, 1997.

[16] U. Montanari and M. Pistore. An introduction to HistoBependent
Automata.Electr. Notes Theor. Comput. Sci0, 1997.

[17] U. Montanari and M. Pistore. Structured coalgebrasraimimal HD-
automata for the pi-calculusTheor. Comput. Sgi.340(3):539-576,
2005.

[18] A. S. Murawski and N. Tzevelekos. Full abstraction fadRced ML.
In Proc. of FOSSACS 'Q@olume 5504 o NCS pages 32—47, 2009.

[19] A. S. Murawski and N. Tzevelekos. Algorithmic nominarge se-
mantics. Submitted for publication, 2010.

[20] R. M. Needham. Names. In S. Mullender, edi@istributed systems
pages 315-327. ACM Press/Addison-Wesley, 1993. 2nd aditio

[21] F. Neven, T. Schwentick, and V. Vianu. Finite state maeb for
strings over infinite alphabet®A\CM Trans. Comput. Logi&(3):403—
435, 2004.

[22] M. Pistore. History Dependent AutomataPhD thesis, University of
Pisa, 1999.

[23] A. M. Pitts. Nominal logic, a first order theory of namewdebinding.
Inf. Comput, 186(2):165-193, 2003.

[24] A. M. Pitts and |. Stark. Observable properties of higheder func-
tions that dynamically create local names, or: Wha&s? In Proc. of
MFCS '93 number 711 in LNCS, pages 122-141, 1993.

[25] H. Sakamoto and D. Ikeda. Intractability of decisiorolglems for
finite-memory automatarheor. Comput. S¢i231(2):297-308, 2000.

[26] D. Sangiorgi and D. Walker.The pi-calculus: A Theory of Mobile
ProcessesCambridge University Press, 2001.

[27] L. Segoufin. Automata and logics for words and trees aveinfinite
alphabet. IrProc. of CSL '06vol. 4207 ofLNCS pages 41-57, 2006.

[28] I. Stark. Names and Higher-Order Function®hD thesis, University
of Cambridge, 1994.

