42 research outputs found

    Computer Aided Diagnosis - Medical Image Analysis Techniques

    Get PDF
    Breast cancer is the second leading cause of death among women worldwide. Mammography is the basic tool available for screening to find the abnormality at the earliest. It is shown to be effective in reducing mortality rates caused by breast cancer. Mammograms produced by low radiation X-ray are difficult to interpret, especially in screening context. The sensitivity of screening depends on image quality and unclear evidence available in the image. The radiologists find it difficult to interpret the digital mammography; hence, computer-aided diagnosis (CAD) technology helps to improve the performance of radiologists by increasing sensitivity rate in a cost-effective way. Current research is focused toward the designing and development of medical imaging and analysis system by using digital image processing tools and the techniques of artificial intelligence, which can detect the abnormality features, classify them, and provide visual proofs to the radiologists. The computer-based techniques are more suitable for detection of mass in mammography, feature extraction, and classification. The proposed CAD system addresses the several steps such as preprocessing, segmentation, feature extraction, and classification. Though commercial CAD systems are available, identification of subtle signs for breast cancer detection and classification remains difficult. The proposed system presents some advanced techniques in medical imaging to overcome these difficulties

    Texture Analysis Platform for Imaging Biomarker Research

    Get PDF
    abstract: The rate of progress in improving survival of patients with solid tumors is slow due to late stage diagnosis and poor tumor characterization processes that fail to effectively reflect the nature of tumor before treatment or the subsequent change in its dynamics because of treatment. Further advancement of targeted therapies relies on advancements in biomarker research. In the context of solid tumors, bio-specimen samples such as biopsies serve as the main source of biomarkers used in the treatment and monitoring of cancer, even though biopsy samples are susceptible to sampling error and more importantly, are local and offer a narrow temporal scope. Because of its established role in cancer care and its non-invasive nature imaging offers the potential to complement the findings of cancer biology. Over the past decade, a compelling body of literature has emerged suggesting a more pivotal role for imaging in the diagnosis, prognosis, and monitoring of diseases. These advances have facilitated the rise of an emerging practice known as Radiomics: the extraction and analysis of large numbers of quantitative features from medical images to improve disease characterization and prediction of outcome. It has been suggested that radiomics can contribute to biomarker discovery by detecting imaging traits that are complementary or interchangeable with other markers. This thesis seeks further advancement of imaging biomarker discovery. This research unfolds over two aims: I) developing a comprehensive methodological pipeline for converting diagnostic imaging data into mineable sources of information, and II) investigating the utility of imaging data in clinical diagnostic applications. Four validation studies were conducted using the radiomics pipeline developed in aim I. These studies had the following goals: (1 distinguishing between benign and malignant head and neck lesions (2) differentiating benign and malignant breast cancers, (3) predicting the status of Human Papillomavirus in head and neck cancers, and (4) predicting neuropsychological performances as they relate to Alzheimerā€™s disease progression. The long-term objective of this thesis is to improve patient outcome and survival by facilitating incorporation of routine care imaging data into decision making processes.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Comparative Analysis of Segment Anything Model and U-Net for Breast Tumor Detection in Ultrasound and Mammography Images

    Full text link
    In this study, the main objective is to develop an algorithm capable of identifying and delineating tumor regions in breast ultrasound (BUS) and mammographic images. The technique employs two advanced deep learning architectures, namely U-Net and pretrained SAM, for tumor segmentation. The U-Net model is specifically designed for medical image segmentation and leverages its deep convolutional neural network framework to extract meaningful features from input images. On the other hand, the pretrained SAM architecture incorporates a mechanism to capture spatial dependencies and generate segmentation results. Evaluation is conducted on a diverse dataset containing annotated tumor regions in BUS and mammographic images, covering both benign and malignant tumors. This dataset enables a comprehensive assessment of the algorithm's performance across different tumor types. Results demonstrate that the U-Net model outperforms the pretrained SAM architecture in accurately identifying and segmenting tumor regions in both BUS and mammographic images. The U-Net exhibits superior performance in challenging cases involving irregular shapes, indistinct boundaries, and high tumor heterogeneity. In contrast, the pretrained SAM architecture exhibits limitations in accurately identifying tumor areas, particularly for malignant tumors and objects with weak boundaries or complex shapes. These findings highlight the importance of selecting appropriate deep learning architectures tailored for medical image segmentation. The U-Net model showcases its potential as a robust and accurate tool for tumor detection, while the pretrained SAM architecture suggests the need for further improvements to enhance segmentation performance

    Quantification and segmentation of breast cancer diagnosis: efficient hardware accelerator approach

    Get PDF
    The mammography image eccentric area is the breast density percentage measurement. The technical challenge of quantification in radiology leads to misinterpretation in screening. Data feedback from society, institutional, and industry shows that quantification and segmentation frameworks have rapidly become the primary methodologies for structuring and interpreting mammogram digital images. Segmentation clustering algorithms have setbacks on overlapping clusters, proportion, and multidimensional scaling to map and leverage the data. In combination, mammogram quantification creates a long-standing focus area. The algorithm proposed must reduce complexity and target data points distributed in iterative, and boost cluster centroid merged into a single updating process to evade the large storage requirement. The mammogram database's initial test segment is critical for evaluating performance and determining the Area Under the Curve (AUC) to alias with medical policy. In addition, a new image clustering algorithm anticipates the need for largescale serial and parallel processing. There is no solution on the market, and it is necessary to implement communication protocols between devices. Exploiting and targeting utilization hardware tasks will further extend the prospect of improvement in the cluster. Benchmarking their resources and performance is required. Finally, the medical imperatives cluster was objectively validated using qualitative and quantitative inspection. The proposed method should overcome the technical challenges that radiologists face

    Pattern classification approaches for breast cancer identification via MRI: stateā€ofā€theā€art and vision for the future

    Get PDF
    Mining algorithms for Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCEMRI) of breast tissue are discussed. The algorithms are based on recent advances in multidimensional signal processing and aim to advance current stateā€ofā€theā€art computerā€aided detection and analysis of breast tumours when these are observed at various states of development. The topics discussed include image feature extraction, information fusion using radiomics, multiā€parametric computerā€aided classification and diagnosis using information fusion of tensorial datasets as well as Clifford algebra based classification approaches and convolutional neural network deep learning methodologies. The discussion also extends to semiā€supervised deep learning and selfā€supervised strategies as well as generative adversarial networks and algorithms using generated confrontational learning approaches. In order to address the problem of weakly labelled tumour images, generative adversarial deep learning strategies are considered for the classification of different tumour types. The proposed data fusion approaches provide a novel Artificial Intelligence (AI) based framework for more robust image registration that can potentially advance the early identification of heterogeneous tumour types, even when the associated imaged organs are registered as separate entities embedded in more complex geometric spaces. Finally, the general structure of a highā€dimensional medical imaging analysis platform that is based on multiā€task detection and learning is proposed as a way forward. The proposed algorithm makes use of novel loss functions that form the building blocks for a generated confrontation learning methodology that can be used for tensorial DCEā€MRI. Since some of the approaches discussed are also based on timeā€lapse imaging, conclusions on the rate of proliferation of the disease can be made possible. The proposed framework can potentially reduce the costs associated with the interpretation of medical images by providing automated, faster and more consistent diagnosis

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with cliniciansā€™ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operationsā€”such as segmentation, co-registration, classification, and dimensionality reductionā€”and multi-omics data integration.

    Computer aided diagnosis system for breast cancer using deep learning.

    Get PDF
    The recent rise of big data technology surrounding the electronic systems and developed toolkits gave birth to new promises for Artificial Intelligence (AI). With the continuous use of data-centric systems and machines in our lives, such as social media, surveys, emails, reports, etc., there is no doubt that data has gained the center of attention by scientists and motivated them to provide more decision-making and operational support systems across multiple domains. With the recent breakthroughs in artificial intelligence, the use of machine learning and deep learning models have achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists and doctors for medical imaging analysis, which has remained the essence of the visual representation that is used to construct the final observation and diagnosis. Medical research in cancerology and oncology has been recently blended with the knowledge gained from computer engineering and data science experts. In this context, an automatic assistance or commonly known as Computer-aided Diagnosis (CAD) system has become a popular area of research and development in the last decades. As a result, the CAD systems have been developed using multidisciplinary knowledge and expertise and they have been used to analyze the patient information to assist clinicians and practitioners in their decision-making process. Treating and preventing cancer remains a crucial task that radiologists and oncologists face every day to detect and investigate abnormal tumors. Therefore, a CAD system could be developed to provide decision support for many applications in the cancer patient care processes, such as lesion detection, characterization, cancer staging, tumors assessment, recurrence, and prognosis prediction. Breast cancer has been considered one of the common types of cancers in females across the world. It was also considered the leading cause of mortality among women, and it has been increased drastically every year. Early detection and diagnosis of abnormalities in screened breasts has been acknowledged as the optimal solution to examine the risk of developing breast cancer and thus reduce the increasing mortality rate. Accordingly, this dissertation proposes a new state-of-the-art CAD system for breast cancer diagnosis that is based on deep learning technology and cutting-edge computer vision techniques. Mammography screening has been recognized as the most effective tool to early detect breast lesions for reducing the mortality rate. It helps reveal abnormalities in the breast such as Mass lesion, Architectural Distortion, Microcalcification. With the number of daily patients that were screened is continuously increasing, having a second reading tool or assistance system could leverage the process of breast cancer diagnosis. Mammograms could be obtained using different modalities such as X-ray scanner and Full-Field Digital mammography (FFDM) system. The quality of the mammograms, the characteristics of the breast (i.e., density, size) or/and the tumors (i.e., location, size, shape) could affect the final diagnosis. Therefore, radiologists could miss the lesions and consequently they could generate false detection and diagnosis. Therefore, this work was motivated to improve the reading of mammograms in order to increase the accuracy of the challenging tasks. The efforts presented in this work consists of new design and implementation of neural network models for a fully integrated CAD system dedicated to breast cancer diagnosis. The approach is designed to automatically detect and identify breast lesions from the entire mammograms at a first step using fusion modelsā€™ methodology. Then, the second step only focuses on the Mass lesions and thus the proposed system should segment the detected bounding boxes of the Mass lesions to mask their background. A new neural network architecture for mass segmentation was suggested that was integrated with a new data enhancement and augmentation technique. Finally, a third stage was conducted using a stacked ensemble of neural networks for classifying and diagnosing the pathology (i.e., malignant, or benign), the Breast Imaging Reporting and Data System (BI-RADS) assessment score (i.e., from 2 to 6), or/and the shape (i.e., round, oval, lobulated, irregular) of the segmented breast lesions. Another contribution was achieved by applying the first stage of the CAD system for a retrospective analysis and comparison of the model on Prior mammograms of a private dataset. The work was conducted by joining the learning of the detection and classification model with the image-to-image mapping between Prior and Current screening views. Each step presented in the CAD system was evaluated and tested on public and private datasets and consequently the results have been fairly compared with benchmark mammography datasets. The integrated framework for the CAD system was also tested for deployment and showcase. The performance of the CAD system for the detection and identification of breast masses reached an overall accuracy of 97%. The segmentation of breast masses was evaluated together with the previous stage and the approach achieved an overall performance of 92%. Finally, the classification and diagnosis step that defines the outcome of the CAD system reached an overall pathology classification accuracy of 96%, a BIRADS categorization accuracy of 93%, and a shape classification accuracy of 90%. Results given in this dissertation indicate that our suggested integrated framework might surpass the current deep learning approaches by using all the proposed automated steps. Limitations of the proposed work could occur on the long training time of the different methods which is due to the high computation of the developed neural networks that have a huge number of the trainable parameters. Future works can include new orientations of the methodologies by combining different mammography datasets and improving the long training of deep learning models. Moreover, motivations could upgrade the CAD system by using annotated datasets to integrate more breast cancer lesions such as Calcification and Architectural distortion. The proposed framework was first developed to help detect and identify suspicious breast lesions in X-ray mammograms. Next, the work focused only on Mass lesions and segment the detected ROIs to remove the tumorā€™s background and highlight the contours, the texture, and the shape of the lesions. Finally, the diagnostic decision was predicted to classify the pathology of the lesions and investigate other characteristics such as the tumorsā€™ grading assessment and type of the shape. The dissertation presented a CAD system to assist doctors and experts to identify the risk of breast cancer presence. Overall, the proposed CAD method incorporates the advances of image processing, deep learning, and image-to-image translation for a biomedical application
    corecore