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Resumo

O cancro de mama é uma das maiores causas de morte de cancro em mulheres de acordo

com a organização mundial de saúde. Logo, medidas preventivas são necessárias para

reduzir a percentagem de morte, medidas tais como o rastreio da mamografia. Este

exame permite a detecção do cancro nos seus estados iniciais. Entretanto, a análise de

mamografias tem um custo elevado, devido à necessidade de um radiologista ter que

detectar e classificar manualmente anomalias nas imagens. Como resultado, sistemas

informáticos de apoio ao diagnóstico do cancro de mama têm sido utilizados com o

intuito de reduzir o custo das análises das mamografias e para também aumentar o

sucesso na classificação das anomalias, porque até os profissionais cometem erros na

classificação de anomalias. Neste trabalho, analisamos o estado actual da literatura,

apresentando neste sentido quais: as bases de dados com imagens de mamografias

estão dispońıveis, os métodos mais comuns utilizados no processamento de imagem no

cancro de mama e seus respectivos métodos de classificação. Para o reconhecimento

de patologias, foi utilizado o Multiple Kernel Learning (MKL) que tem demonstrado

superioridade em relação ao Support Vector Machine (SVM) e no contexto do cancro

de mama, poderá resultar numa melhor qualidade nos diagnósticos. Para provar

que essa superioridade também existe com dados de imagens médicas no contexto

do cancro de mama, fizemos um estudo comparativo entre o SVM e o MKL usando

dados obtidos através dos métodos de processamento de imagem mais populares na

literatura. Conclúımos assim que o método MKL ultrapassa o estado da arte em

classificação de cancro de mama usando apenas casos de massas sem a utilização de

dados cĺınicos, obtendo uma Area Under the Receiver Operating Curve (AUC) de

0.871 e também em classificação de cancro de mama usando casos com todos os tipos

de anormalias e também utilizando dados cĺınicos obtendo uma AUC de 0.834.
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Abstract

Breast cancer is the most common cause of cancer death among women according to

the World Health Organization. Thus, preventive measures are required to reduce

death rate, which include for instance, a screening mammography of the patient. This

allows the detection of the cancer in early stages. However, such analysis is expensive,

as it requires a radiologist to detect and classify anomalies in the breast image. As a

result, computer aided diagnosis systems of breast cancer classification have been used

to reduce the cost of the mammogram analysis and to increase the success ratio of the

classification since even professionals make mistakes on anomaly classification. In this

work, we analyse the current extensive literature on this field, thus reporting currently

available breast image databases and most commonly used image processing methods

and the respective classification methods. For the pathologies detection, we used the

Multiple Kernel Learning (MKL) which has demonstrated superiority in relation wiht

the Support Vector machine (SVM) and in the context of breast cancer, it could also

result in a better quality of diagnosis. In order to prove if the MKL remains superior

to SVM using breast cancer image data, we perform a comparison study between

SVM and MKL using features from the most popular image processing methods on

the literature. Based on this study, we conclude that our method surpasses the state of

the art on breast cancer mass classification without clinical data with an Area Under

the Receiver Operating Curve (AUC) of 0.871 and on breast cancer classification for

all findings with clinical data with an AUC of 0.834.
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Chapter 1

Introduction

Breast cancer is the most common cause of cancer death among women according

to the World Health Organization [5]. One-third of breast cancer deaths could be

avoided if the breast cancer was detected and treated on early stages. The process of

detection and classification of breast cancer is based on images obtained by Magnetic

Resonance Imaging (MRI), mammography (x-ray images of the breast) and Ultra

sound images where a specialist analyses the breast imaging to detect any anomaly

and classify it as malign or benign [6]. The x-ray is the source for breast imaging

available where radiologists are trained to detect and classify breast cancer. However,

breast cancer detection and classification by a radiologist using mammograms is not a

flawless technique. Some support measures are taken when possible, such as a second

reading of the mammogram by another radiologist or the usage of Computer Aided

Diagnosis (CAD) systems. It has been proven that CAD systems can outperform a

second reading [7]. Most CAD systems are based on two types of information, the

mammogram image and background knowledge of the patient, i.e. clinical data which

will be described in Chapter 3. Despite their effectiveness, increasing CAD breast

cancer classification ratio is still an active research topic. Many methods have been

applied to breast cancer classification such as CAD systems using machine learning

methods like K-Nearest neighbours (kNN), Support vector machines (SVMs) explained

in Chapter 2. One promising approach is Multi Kernel Learning (MKL) [8], which

uses the SVM method to each feature being able to analyse them separately. To the

best of our knowledge, MKL has not yet been applied in the domain of breast cancer

classification. In this work, we investigate the behaviour of MKL applied to image

features and clinical annotated data in comparison with other learning methods for

breast cancer classification. To perform this study we test different learning methods

1



2 CHAPTER 1. INTRODUCTION

and image features. After the study we could be able to create a system using MKL

to classify breast cancer images between benign and malign. This system could be

divided in two main components: The first component is the image processing part in

which digital information from breast images are captured, such as intensity changes,

shapes and size with a breast lesion marked by a radiologist. The second uses the

processed information to create the MKL. Resulting in the introduction of MKL for

breast cancer classification with the purpose of increasing the overall performance.

In this chapter we discuss the main challenges of breast cancer detection by image

processing, how a breast cancer system can be created, how it works and why it

should be used.

Figure 1.1: Represents the system overview. The system receives as input a
mammogram image cropped by region of interest (region that contains the finding),
and the respective clinical data. Then, it retrieves from the image features calculated
by the image processing module. Image features and clinical data are merged to the
breast cancer classifier to predict if the finding is benign or malign.

1.1 Motivation

Encouraging results have been reported in the literature reinforcing the potential of

CAD systems [9, 10, 1]. Breast cancer classification is an important task that needs

to be improved in order to spare patients of unnecessary procedures and to be able

to properly treat patients with malignant cases. We had access to two breast cancer

repositories. The availability of these datasets and the proximity with breast cancer

experts added an extra motivation to the realization of this work. In this thesis we

are addressing two major challenges regarding CAD for Breast cancer detection:

• Discriminative image features is essential for breast cancer classification.

Every year new approaches are designed in order to extract breast cancer features

from a mammography. Since those approaches are not perfect, it is still an

ongoing challenge to find the best set of features that fully describe a cancer

finding in a mammogram.
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• Improve breast cancer classification performance is a hard challenge,

although image features play a big role in the classifier performance, studies

are necessary in order to create a model that can learn as much as possible from

the feature set. The average performance of breast cancer CAD systems in the

literature of 85% [1] leaving space for improvements.

One of the most used classifiers for malignancy breast cancer classification is the

SVM, due to its simplicity and overall good performance. Some other more elaborated

methods such as MKL are not usual due their non trivial usage. Given the fact that

the MKL has been proven to surpass the SVM in some cases[8], we are motivated

to explore in this thesis the advantages of MKL as an approach for breast cancer

classification aiming to report improved performance for breast cancer classification

in comparison with the SVM method. Even though the purpose of this thesis is

to explore the learning capability of the state-of-the-art machine learning methods

for breast cancer learning, the benefits of this experimental study, is also extensible

to the research community, where researchers can replicate the feature extraction or

classification methods used or us the obtained results for their comparison experiments.

1.2 Objectives

This thesis presents an experimental study to evaluate the performance of MKL using

images containing clinical data and image descriptors from ROIs containing lesion of

a mammogram as input to return the binary result malign or benign. The experiment

is illustrated in Section 1.1. In order to accomplish the objectives described in the

subsection below, we designed a model for the experiment that was divided in three

modules as we can see in Section 1.2. First, the database module which will contain

the datasets that the user want to study with the respective clinical data and pre-

generated features from other modules. Second the image processing module which

allows to generate image features depending on the image processing methods added.

At last there is the classification model, which allows to create several classifiers and

perform the same performance experiments to obtain the best parametrization and

compare their efficiency. Both the MKL and the experimental study with MKL are

described in more detail in Chapter 4 and Chapter 5.

The main goal of this thesis is to create a system classify breast cancer lesions with

high performance, therefore the following objectives were proposed:
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• Research of the current state of the art of computer aided diagnosis for breast

cancer;

• Test image descriptors that retrieves high quality features from breast cancer

images regarding the lesion class;

• Use an library containing a MKL classifier that will retrieve as much information

as possible for each type of features;

• Deploy a system to classify images of breast cancer leisures between benign and

malign.

Figure 1.2: Represent the experiment model overview, where each module commu-
nicate as follows: The Database module provides breast cancer images to the Image
processing modules, and the image processing module return the respective generated
features. The Database also keep the generated features. The classifier module request
the image generated features and clinical data to perform an experiment that will test
several classifiers

The main features of the proposed experiment are:

• Person Independent - Able to classify breast lesions of all 4 types of breast

density;

• Lesion Independent - Able to classify different breast lesions such as calcifi-

cations and masses;

• Multiple Image Descriptors Extracted - Able to analyse several image

descriptors extracted from the breast cancer mammogram datasets.
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1.3 Applications

In the course of our work we adapted the system to create two applications to study

and classify breast patches which is the objective of this thesis. They are:

1. Database Analyser: This tool can receive an set of breast cancer images and

an outline and return a text file containing the data generated by the system

image descriptors.

2. Breast Cancer Classifier: This application receives an image descriptor from

an ROI of a breast cancer image as input and shows the classification of the

lesion if its benign or malign.

1.4 Contributions

This section describes the contributions that were obtained during this research. These

include the studies and system developed in this thesis process.

• A review of the state of the art of breast cancer classification.

• We present new results using MKL as a robust alternative for breast cancer

recognition.

1.5 Outline

The remaining chapters of this thesis are organised as follows:

Chapter 2 Describes the background knowledge behind breast cancer systems;

Chapter 3 Presents an overview of the studies and the current methodologies for

breast cancer CAD systems;

Chapter 4 Includes a thoroughly description of the MKL;

Chapter 5 Describe the experiment study, discuss the results obtained with the CAD

system developed and analyse its strengths and flaws in comparison with recent

systems;
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Chapter 6 Discusses the presented work and the future directions.



Chapter 2

Concepts and Definitions

CAD for breast cancer systems are built using multi disciplinary knowledge. In this

chapter we expose some base concepts in diverse areas such as computer vision,

machine learning and radiology, for self-contained purposes of this thesis before we

start analysing current work in the literature.

2.1 Computer Vision

Computer vision is the area of research whose goal is to devise algorithms to process

and understand images/videos. Humans are proficient at understanding what they

see. For instance, if they look at a room and asked to search for a table they can

clearly identify its location and the colour of the material. Despite being an effortless

task for humans, for computers it may be a really hard task. Why is it so hard?

The computer must have all the information necessary to conclude what is a table.

That information should contain, what kind of shapes a table can have, which kind of

texture they can have, which sizes they can have and so on. (This process encompasses

on highly computational intensive processes since image capture until recognition) The

following paragraph will explain in more detail how those two parts are performed and

which methods are used.

There are several ways to process an image, in general the chosen processing method

depends on the objective of the application. A colour image is represented in a 3

dimensional matrix containing colour values between 0 to 255 (in the case of 8 bits)

for each pixel coordinate. The third coordinate corresponds to the colour information,

7
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two examples of colour representation are: Red, Green, Blue (RGB) or Intensity

(Greyscale). Depending on the size of the image and depending on the domain of

image (e.g RGB, Grayscale) there may be too much information to work with, i.e. an

image would result in a feature vector of size n, where n = width * height * 1 (in case

of the Grayscale) which gives only the spacial and intensity information of each pixel

since it contains only pixel values and their respective coordinates. In order to obtain

better feature vectors with more information and in some cases to reduce this feature

vector, descriptors are created.

There are several kinds of descriptors depending on the type of image that will be

processed. Some of them use only the intensity values such as statistical descriptors

containing histograms of intensity, others change from the intensity domain to the

frequency domain in order to efficiently perform filters to enhance the image for a

certain purpose and also to be able to split low frequencies (image texture and shape)

and high frequencies (image edges and detail), there are also bandpass filters (filter a

range of frequency) such as Gabor wavelets used as a descriptor and as base in several

computer vision methods. For pattern recognition and matching there are the local

invariant descriptors that allows the computer to find in interesting points and extract

a feature vector that describes those points or regions, these methods use the location

of the points in the matrix, their neighbourhood. In more detail those methods are

described below.

1. Statistical Intensity Patterns: There are two main types of statistical infor-

mation that may be extracted from an entire image or from a component of a

image (e.g. if we want to process an component inside the image, we may want to

first crop this region of interest (ROI) containing the component and analyse only

the information inside that ROI). A first type is the single pixel approaches based

on the histogram of intensity of an image i.e. a vector containing the frequency

of each intensity from 0 to 255, or based on the mean (average of intensity of

all pixels), the standard deviation, maximum and minimum intensity value and

the skewness. Gray level co-occurrence matrix (GLCM) [11] they are based on

the neighbourhood of each pixel, by calculating metrics such as homogeneity,

energy, average, entropy, smoothness and correlation. The latter can capture

information of higher order from the image. Works have demonstrated the

robustness of this method for texture recognition, one example may be breast

cancer recognition [12, 1]. However, the intensity domain enlighten only few part

of the information an image may contain.



2.1. COMPUTER VISION 9

2. Frequency Domain: In signal processing, it was developed the transformation

of Fourier and their inverse which can be used in image processing to swap

between frequency or intensity domain (in this case also known as spatial do-

main). The interesting part of the frequency domain is that high frequencies

contain information regarding edges and detail, for example, high pass Gaussian

and homomorphic filter. On other hand if the goal is to detect shapes and

texture, removing high frequencies might help, for this purpose there are low pass

filters like Gaussian blur. Detailed information regarding the Fourier transform,

frequency domain and filters can be found at [13]. We next explain in more

detail the Gabor Wavelet Descriptor.

The Gabor function was proposed at 1946, and its frequently used in image

feature description. According to [14], in a one dimensional case, a Gabor

function can be defined as a complex exponential localized around x = 0 by

the envelope of a Gaussian window shape represented by Eq. (2.1) for each

α ∈ R+ and each ξ,x ∈ R, where α = (2σ2)−1 , σ2 is a variance and ξ is a

frequency. In two dimensional cases, the function is separable into a series of

one dimensional functions. The elements of a family of mutually similar Gabor

functions are called wavelets when they are created by dilation and shift from

one elementary Gabor function, the mother wavelet that can be defined in Eq.

(2.2), for a ∈ R+ (scale) and b ∈ R (shift). In [14] its also demonstrated how

they can be used for blob detection (detection of regions formed by points that

are similar to each other), corner detection (regions that form a corner) that

are used in some Local Invariant Descriptors. For the interested reader, more

information regarding descriptors in the frequency domain can be referred to

[13].

gα,ξ(x) =
√
α/πe−αx

2

e−iξx (2.1)

gα,ξ,a,b(x) = |a|−1/2gα,ξ(
x− b
a

) (2.2)

3. Spacial Image Analysis: Spacial image analysis consists in two components:

Identification of interest points and description based on local information. In-

teresting points may be corners detected by the Harris Corner Detector or blobs

which can be found using a Hessian matrix. A detailed comparative overview

of the local features explaining each method can be found at [15]. An ideal

interest point should be invariant to scaling, orientation, affine distortions and

illumination changes (i.e. an interest point should match even if any of those

properties change e.g. in the case of the scaling property, if take two pictures

of a monument, one with zoom and other without, the same interest point in
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both images should match), although the necessity of each characteristic may

vary according to each application scenario, e.g. if in our application scenario

its ensured that all pictures are taken on the same place with the same distance,

the method does not require to be scale invariant. One of the most popular

local invariant descriptor is the Scale-Invariant Feature Transform (SIFT)[16].

This method is invariant to uniform scaling, orientation, rotation and partially

invariant to affine distortions and illumination changes. In more detail the SIFT

descriptor is illustrated at Figure 2.1 where we want to detect the scale-space

extrema to obtain scale invariance using Difference of Gaussian[16] to find the

local maxima across the scale and space which gives us a list of (x,y,σ) values

containing a potential keypoint at (x,y) at σ scale. To avoid capturing noise, an

heuristic approach to select only points of interest. Then, the orientation of each

keypoint is calculated, i.e. the gradient magnitude and direction is calculated.

Then, the keypoint final descriptor is obtained from a 4×4 block estimated from

8 orientations. Resulting in a total of 128 bin values.

Figure 2.1: The SIFT feature vector extraction. On top it is extracted the σ for each
keypoint. On the lower part for each interest keypoint the gradients are calculated to
obtain the orientation matrix and the angle histograms and the keypoint descriptors
are extracted for each quarter.
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2.2 Machine Learning

Machine learning is a field of research whose goal is the design of automatic learning

systems. But why is it useful in computer vision? As mentioned previously, we can

extract so much information from an image, but with that information alone it is

really hard for human interpretation. Therefore, there is a necessity for automatic

methods that can automatically uncover patterns in that data and interpret them in

order to create conclusions and even predict conclusions regarding unknown new data.

In general, data can be represented in qualitative and quantitative measures, such as

integer values and real numbers, or ordinal variables (e.g. quantities ”few”, ”several”

and ”lots”) and nominal variables (e.g. round, square, triangle). The storage of a set

of vectors of data (also known as feature vector) is called a ”dataset”.

There are two main types of learning. First the supervised learning type where we

have a dataset containing feature vectors where each vector is mapped to a label

that describes the vector (e.g. a vector with t-shirt measurements such as length

and width mapped with size labels such as small, medium and large.). This dataset

is called ”train set”, with it we create models that may predict new labels for new

feature vectors. The problem of prediction may vary according to the label type of

data, for instance if the label is nominal, it is called a ”classification” problem, if the

label is an ordinal its called a ”regression” problem and if the label is a ordinal type its

called ”ordinal regression”. Second the unsupervised type where given some data the

goal is to find interesting patterns, these types of problems are usually less accurate

and unknown regarding error metrics since there is no comparative label.

A classification problem can be formalized as a function f that receives a feature

vector v and returns the v respective class. If the number of the classes equals two,

its called a binary classification, otherwise it is a multiclass classification problem.

Several approaches were taken to create a classification model, like distance formulas

such as kNN [17], decision trees [18] and inductive logic programming, naive Bayes

method [19], and other different approaches like support vector machines [20]. Most

of these methods are popular and widely used, we explain them in some more detail

below.

• K-Nearest Neighbours [17]: This is the simplest decision method. It consid-

ers the whole dataset as the training model. The prediction of a row is obtained

by returning the most frequent class of the K nearest rows given a distance

metric. In most of the cases the distance metric used is the Euclidean Distance.

The Euclidean distance of two feature vectors R1 and R2 can be represented as
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in Eq. (2.3) where n is the number of features of each vector. The returned

output corresponds to the most frequent output provided by the k rows.

Distance(R1, R2) =
√

(R11 −R21)2 + (R12 −R22)2 + · · ·+ (R1n −R2n)2

(2.3)

• Classification and Regression Trees (CART): This supervised method

aims to grow a tree by creating branches with the purpose of splitting one class

from others until there is not enough information to separate the dataset or a

stopping criterion is reached. This tree is composed by three elements, first it

contains a root node which has no parent node. Second, a tree may have internal

nodes. These nodes have exactly one parent node and have two child nodes, and

at last the tree may have leaf nodes. These nodes have one parent node and zero

child nodes.

The tree works as it follows: Given a feature vector from a dataset and starting

from the root node, a logical test is performed. We move to the child node that

agrees with the logical test result and repeat the process until the child node is a

leaf node. The leaf node contains the predicted class for the given feature vector.

This logical test uses one feature from feature vector of the train set which can

be numerical (e.g. Size <40) or nominal (e.g. colour == red) depending on

the type of the feature. Logical tests are created, i.e. new branches on the tree

are formed, until the tree contains enough paths of logical tests that properly

classify as many rows as possible from the train set.

An example of a tree model is illustrated in Figure 2.2. A fictional cancer

classification tree based on the patient information, the model itself is visually

understandable, however the more complex the model is the harder will be for

humans to visually understand the whole model. A tree model can also be used

for a regression problem, instead of separating by classes it would separate by

regression values (numerical).

As we saw previously, a classification tree is formed by logical tests and a good

test would be a test that can create a pure node, i.e. a test that can split all

cases of a certain class from the cases of other classes. One way to evaluate how

many tests a tree should have and how to select the best tests to construct a

tree, would be to create logical tests and see if they increase or decrease the error

rate of the tree by keeping the tests that decrease the error rate and repeating

this empirical process until a desired error rate is achieved. The error rate is

calculated by 1 - accuracy (explained in Eq. (2.8)), there are also two other

measures used to evaluate the overall purity of the nodes such as the Gini Index
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and the Entropy. They can be respectively represented by the Eq. (2.4) and

Eq. (2.5) where p(i|t) is the fraction of recordings belonging to class i at a

given node t (for examples and full algorithms regarding growing decision trees

and evaluating node purity read [21]. However, finding the optimal decision tree

for data was also classified as a NP-Complete problem [22]. Therefore, greedy

methods were used to select the best parameters and tests to grow good trees

instead of searching for the optimal tree, one of the famous methods used in the

most popular data mining tools (such as R and Weka), is the CART algorithm

proposed by [18]. After growing a tree, there may be too many branches, causing

a problem known as ”overfitting” of the data, i.e. too many specific rules for the

training data that increase the overall training accuracy but tend to decrease

the accuracy of the classifier when using data outside the training set. In order

to solve this problem pruning methods are used after growing a tree in order to

reduce branches that do not increase the impurity of other nodes by a certain

threshold.

Gini(t) = 1−
c−1∑
i=0

[p(i|t)]2 (2.4)

Entropy(t) = −
c−1∑
i=0

p(i|t) log2 p(i|t) (2.5)

There are also several methods based in decision trees called ensemble methods,

they use the concept of bagging [23], by creating several weak decision tree classi-

fiers and use them to cover each other weaknesses resulting in a stronger classifier.

One famous ensemble method is the Random Forest [24], it is widely used for the

classification problem obtaining great overall performance comparable to one of

he most used classifiers, the SVM.

• Support Vector Machine (SVM): This method was introduced in 1995 by

Vapnik and Cortes [25]. Nowadays, it is widely used to solve most of the

classification and regression problems due to its good overall performance dealing

with any data. The basic concept of the SVM is to find an hyperplane that splits

one class from other classes within the data feature space, as we can see in Figure

2.3. There may be an infinity of hyperplanes for this purpose. In order to select

the best hyperplane, first we find the margins hyperplanes (m1 and m3 in 2.3)

for a certain class and for the rest of the data, then we calculate the maximum

margin hyperplane (m2). This method will be analysed in depth on Chapter 4.
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Figure 2.2: A classification tree created to classify between cancer or no cancer given
the patient information.

Figure 2.3: Four hyperplanes that divides a bi-dimensional feature space. Where m2
is the maximum margin hyperplane of this feature space because its in the middle of
m1 (formed by 3 support vectors) and m3 (formed by 2 support vectors), which are
the hyperplanes with minimum margin of each class. The m4 is an example of a non
optimal possible hyperplane that divides the data from each class.
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• Naive Bayes: Bayesian classifiers are statistical classifiers, they predict the

probability of a data row belonging to a class. A particular class of Bayesian

classifiers which often obtain good results [26] is the Naive Bayes classifier. Based

on the Bayes Theorem Eq. (2.6), where D is a dataset that contains feature

vectors x with size t, where: x is labeled with a class Ci; i vary according to the

number of classes from D ; Hi is the hypothesis that states that a certain test

case x belongs to a class from C ; P(H) is the prior probability of the hypothesis

H ; P(x|H) means the likelihood, i.e. the conditional probability of x happening

knowing P(H); P(H|x) is the posterior probability of H knowing x; P(x) is a

normalization constant that does not affect the decision.

The Naive Bayes predict the class of a new case by returning the class with

the highest P(x|Hi).P(Hi). Since the correct computation of P(X|Hi) would be

complex, the Naive Bayes simplify it by ”naively” assuming that all hypothesis

Hi for each class are independent. Allowing to calculate the P(x|Hi) in Eq. (2.7).

However, in some cases P(xk |Hi) of a certain k can be zero which would affect

all other cases x of this HI , in order to overcome this issue there is an additive

smoothing method which adapt the model in order to avoid null probabilities.

For additional information consult [19].

P (H|x) =
P (x|H)P (H)

P (x)
(2.6)

P (x|Hi) =
t∏

k=1

P (xk|Hi) (2.7)

2.3 Performance Assessment

These machine learning methods are very popular, but how can they be evaluated?

In this section we will present a set of common measures that will be used in this

thesis. Given a learning model to predict a set of instances, we record each predicted

class and we compare with the true class. Model performance assessments can be

decomposed in: True positives (TP), false positives (FP), true negatives (TN), and

false negatives (FN) as represented in Table 2.1, this matrix is called confusion matrix.

Several performance metrics are based in this matrix values.
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Table 2.1: Confusion matrix

Ground truth values
Positive Negative

Predicted values Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

• Accuracy: measures the percentage of the correct predicted values, represented

in Eq. (2.8). The opposite of accuracy (1 - accuracy) is known as error rate.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(2.8)

• Recall: also known as sensitivity, measures the number of positive cases that

were properly predicted as positive Eq. (2.9).

Recall =
TP

(TP + FN)
(2.9)

• Precision: measures the proportion of predicted positive cases that were correct

Eq. (2.10).

Precision =
TP

(TP + FP )
(2.10)

• Specificity: measures the number of false cases that were properly predicted

as false. Eq. (2.11).

Specificity =
TN

(TN + FP )
(2.11)

• F-Measure: is the harmonic mean between precision and recall useful for

ranking or comparing methods Eq. (2.12).

F −Measure = 2× (precision ∗ recall)
(precision+ recall)

(2.12)

• Receiver Operator Characteristic (ROC) Curve: is the visual represen-

tation of the sensitivity and specificity distributions obtained by changing the

decision threshold of a model [27], illustrated in Figure 2.4.

• Area Under Curve ROC (AUC or AUCROC): measures the area of a

ROC curve to evaluate the classification performance. The area value can be
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Figure 2.4: A ROC curve, where the x = 100 - specificity and the y = sensitivity

interpreted as the probability of a randomly selected positive sample will rank

higher than a randomly selected negative sample [28].

However these metrics alone cannot ensure their statistic rightness, in order to achieve

statistical validation the following methods were created.

• Holdout: This evaluation method consists in separating the dataset in two dif-

ferent subsets using random subsampling without repetition, i.e. selecting entries

from the dataset randomly without repeating selected entries. For instance, we

can use 70% of the original dataset to construct a learning model (train dataset)

and the remaining 30% are kept for testing the model (test dataset).

• K-fold cross validation: This method is most used for classifier parameter

optimizations. The k-fold cross validation goal is to divide the dataset em k

subsets, and use each k subset as test set and the remaining k-1 datasets as train

dataset. After running all k subsets, as final result its calculated the average of

the evaluation metrics calculated for each k subset. According to some studies

[29], the value k = 10 holds better sensitivity for cross validation.

In order to increase statistical significance, these methods are usually repeated several

times (e.g. 50 to 200 times, an arbitrary number where the results and the standard

deviation converge) and the average of the repetitions is calculated as final result in

other to avoid biased results, i.e. results that are induced by the overfitting of the

data. The results may vary on each repetition according to the partitioning of the

dataset by the selected validation method. To reduce this variance, some stratification

measures may be taken, i.e. ensure the trainset and testset have the same ratio of

entries for each class. For deeper understanding of how to calculate the evaluation
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metrics within these evaluation methods check the study created by [30], they analyse

the performance, the bias and variance of these metrics within cross validation and

explain how they should be implemented in order to properly compare the results

obtained in an experiment.

2.4 Application Domain

In medicine, early breast cancer diagnosis by radiologists using mammograms (visual

analysis of x-ray images obtained during mammography) is a hard task. Often re-

quiring more than 1 professional to increase the diagnosis accuracy. However, having

more than 1 professional doubles the cost of the analysis of the mammogram. And

even with second opinions there are still false positives diagnosis where unnecessary

diagnosis and treatments are performed, and there are also false negatives which results

in giving the patient a false feeling of security, where the patient goes home without

proper treatment. With the objective to reduce the cost of breast cancer diagnosis and

to reduce the misdiagnosis, overdiagnosis and overtreatment issues, many researchers

study the application of Computer vision systems to assist in the diagnosis of

a patient, where the system is used as a second opinion to confirm the diagnosis

rightness. In order to understand how computer vision can be applied in breast cancer

classification, we should learn which are the terms and procedures in mammography

screening. To know what kind of input the computer vision system will receive, what

kind of problems they are trying to find with the given input and which result is

comprehensible in the area of breast cancer mammogram diagnosis.

2.4.1 Screening mammography

Screening mammography is a medical exam to search for breast cancers in asymp-

tomatic patients, mainly recommended annually or biennially to women with 40 years

old or more, by the US National Cancer Institute (among other cancer institutes

worldwide). This exam typically requires to position each breast in two different

positions in order to take two views of each breast. One view from above which

is called cranial-caudal (CC) and the second view from an oblique or angled view

called mediolateral-oblique (MLO), these views provide visualization of the breast

tissue in 2 planes for cancer detection. There are also two types of mammographies,

the conventional screen-film mammograms and the full-field digital mammography
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(FFDM)[31]. According to [32] digital mammography is significantly better than

conventional mammography in detecting cancer in young women, premenopausal and

perimenopausal women, and women with dense breasts. However, and due to screening

costs, some hospitals may not have their system updated with the FFDM, despite

their improvement mammogram diagnosis. The breast positioning in both CC and

MLO views and their respective screen-film mammogram and digital mammogram are

illustrated in Figure 2.5. More information regarding positioning of the patient and the

mammography procedure can be found at [33]. After processing the mammograms,

a diagnosis mammography is applied when anomalies are found or when the patient

have symptoms regarding the breast [34]. In the following subsections we will explain

the anomalies that can be found at a mammogram and how they can be classified.

2.4.2 Breast anomalies

In a mammogram, several anomalies can be found, however not all of them are linked

to cancer or neither represent a threat. Between those anomalies there are masses,

calcifications, architectural distortion, asymmetries, intramammary lymph nodes, skin

lesions and dilated ducts, which are described bellow.

• Masses: are formed by breast tissue or they can also be cysts formed by benign

collections of fluid in the breast. They can be detected by mammography in

most cases years before they get large enough to be detected by touch. In this

finding its important to take note of its respective size, morphology (shape and

margin), density, associated calcification, associated features and the location of

the mass.

• Calcifications: are small deposits of calcium within the breast tissue. When

the calcium deposit is coarse, it is called a Macrocalcification. They usually

are related with signs of age, old injuries or inflammations. They may also be

an early sign of cancer when several macrocalcification are found together in one

area (form a cluster). When the calcium deposits are lesser than 0.5mm they

are called Microcalcifications, when many microcalcifications form a cluster

in one area, they may indicate a small cancer. Although being a common sign of

breast cancer, in many cases microcalcifications are benign. For calcifications it is

important to annotate their distribution, associated features and their location.

• Architectural Distortion: is a distortion in the breast structure, usually

containing calcifications. For architectural distortion it is important to annotate
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Figure 2.5: Shows on how each view is taken (top), how it is displayed in a
mammogram a typical screen-film mammogram (middle) and how its displayed in
a digital mammogram. With cranio-caudal view on the left and mediolateral-oblique
view on the right. These images were taken from the Inbreast Dataset and from [2].



2.4. APPLICATION DOMAIN 21

associated calcifications, associated features and their location.

• Asymmetries: Asymmetries in the breast can be classified as global asymmetry

when they are asymmetric breast tissue or are greater volumes of breast tissue in

comparison with the corresponding region of the opposite breast. Asymmetries

can be also classified and focal asymmetry when an area of tissue is visible in

two different views, having a similar shape on both views but it does not have

the borders of a mass. It is important to annotate the associated calcifications,

associated features and the location of this finding.

• Intramammary lymph nodes: Are usually nodes with less than 1cm of

diameter. They are seen as a circumscribed oval or non-calcified mass with

a central or peripheral lucency that represents fat.

• Skin lesion: Is a superficial lesion on the breast skin. It is important to annotate

the location of this finding to ensure that it is not mistaken for breast lesion.

• Solitary dilated duct: Is a dilated duct that may or may not contain calcifica-

tions, they have a tubular, slightly nodular shape. Despite being rare, it should

not be overlooked, it is the only finding related with malignancy. It is important

to annotate the location of this finding.

For sake of visual clarification on how these anomalies look like, each anomaly is

represented in Figure 2.6. For more information regarding these findings and how

they are related with malignancy consult the breast imaging book[35].

2.4.3 BI-RADS

With the objective of creating a standard classification procedure in mammography

the American College of Radiology (ACR) created the BI-RADS classifications and

management recommendations presented in the Table 2.2. The ACR also categorizes

the breast density in 4 classes illustrated in Figure 2.7, since the higher the density the

harder it is to detect breast cancer. A mammogram can be classified in 6 categories:

1. Assessment incomplete where more studies are required regarding the mammo-

gram; Negative where no new findings were detected;

2. Benign finding where the finding was detected and classified as benign;
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Figure 2.6: Contain several anomalies that can be found in mammogram views
such as MLO and CC. These findings are: a)Calcification; b)Intramammary lymph
node; c)Malignant mass; d)Focal asymmetry; e)Global asymmetry; f)Skin lesion;
g)Macrocalcifications; h)Solitary dilated duct; i)Cluster of microcalcifications. These
images were taken from the Atlas of Mammography [3]

3. Probably benign finding where the finding might be benign, a follow up scan-

ning is required to ensure no changes regarding the finding (instead of biennial

mammography, the patient should go in 6 months, then 12, then 24);
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Table 2.2: Clinical Management Recommendations for Mammograms by Breast
Imaging Reporting and Data System (BI-RADS) Category

4. Suspicious abnormality, usually a biopsy of the finding is required;

5. Highly suspicious of malignancy where biopsy and a treatment if appropriate is

required as soon as possible;

6. Biopsy proven malignancy, where only the treatment is pending.

The goal behind this classification and guidelines is to reduce the patient stress and

hospital costs by reducing overdiagnosis and overtreatment without reducing the

mammography results. For more information check the lexicon created by ACR

regarding BI-RADS [36]. In the next chapter we will study the current works to

automatize the classification step (between benign and malignant) of anomalies in the

mammography exam.
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Figure 2.7: The 4 categories of breast density defined by the American College of
Radiology from the lowest density type to the highest density type



Chapter 3

Computer Aided Diagnosis for

Breast Cancer Classification

3.1 Overview

In the previous chapter, we discussed the main theoretical background on computer

vision and our domain of interest: breast cancer. In this chapter we will describe

and analyse the state of the art of computer aided breast cancer classification. For

most of the studies, a breast cancer classification system is based on the following

architecture illustrated in Figure 3.1. First, the user selects a database. This database

may contain raw images of mammograms, marked areas of breast anomalies and their

respective classification, i.e., which anomaly it is and if it is benign or malignant,

clinical information regarding each image and may even contain already processed

features from other studies. After selecting a database the next step is to extract

image features that might discriminate the anomaly regarding its malignancy. And

at last the step where they train a classifier with the database generated features to

classify automatically breast cancer. Usually studies in this area focus on one of the

previously mentioned 4 active areas of research: First the image anomaly detection

which consists in using image processing in order to detect anomalies in the breast, a

review of works in this step can be found at [37]. However we will not cover this step

because its outside the scope of this work, since we will need ground truth anomalies,

i.e. marked anomalies by radiologists in order to study their malignancy. We also will

not address works based solely on micro calcification classification because they are

based on detection of each micro calcification and in the analysis of their distribution

25
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which is outside of the scope of our work. Then the second is the area of creating

a standard mammography database for the study. This step is still an ongoing

research topic since despite the vast amount of available databases of mammograms,

since there is no standard database for studies, they all have weaknesses, may that be

precise segmentation of the anomaly, or clinical data known related to the anomaly

that was not annotated or lack of follow up mammograms among other issues. We

will address these issues below at Subsection 3.2. Followed by the third area which

is the area of image pattern retrieval from the anomalies that may associate the

anomaly malignancy, there are a vast amount of experiments in this area, we will

analyse and describe them at Subsection 3.3. At last, the fourth area is breast cancer

malignancy classification where custom made classifiers are designed or common

known classifiers are tested with the breast cancer data available by the previous

two mentioned areas, breast cancer databases and breast cancer patterns in order

to discover which classifier will perform better. Despite each area being addressed

separately they rely on each of the remaining, i.e. new databases use image patterns

and classifiers to compare their improvement and potential among older databases,

image pattern relies on databases to obtain data and classifiers to evaluate their value

and classifiers rely on the previous two in order to test their performance. We describe

the current works on computer aided breast cancer classification on the three following

subsections.

Figure 3.1: The general architecture of a computer aided diagnosis for breast cancer
classification. Mammogram images and annotations are used in order to generate
image descriptors/patterns that are may be used along with clinical data from the
database to construct a classifier that will be able to classify between malignant or
benign.
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3.2 Breast cancer databases

Breast cancer databases are sets of mammograms images with annotations. There

are several databases for breast cancer, some are public such as [38, 39, 40, 41, 42,

43, 44, 45] and others are not [46]. Despite the fact that all those databases contain

mammograms as raw base data, their difference lies in the number of cases, availability

of biopsy-proven (ground truth classification values), quality of the mammogram

and on their annotations. Each database was designed to complete design flaws

from existing databases. A good design for a breast cancer database should be a

database containing many mammograms with the four standard views (MLO and CC

of each breast) and full annotations for each view. These annotations should have the

corresponding to the pixel level contour of each finding, the type of finding, density

of the breast, BI-RADS classification of the finding and its respective biopsy proven

regarding malignancy.

3.2.1 Analogic screening mammography databases

The following databases described are analogic mammograms database. They are

useful for overall mammogram breast cancer classification, since the full digital mam-

mography equipment is expensive and their integration at hospitals is still an ongoing

process. Many hospitals still use analogic screen film mammography mainly due to

lack of funds.

• Mammographic Image Analysis Society (MIAS) [38] The MIAS database

was one of the first databases available for the public, designed to help the

development of computer vision systems to replace human operators of breast

cancer detection and also to encourage the creation of more public datasets

for the same purpose. The mammograms were taken by the United King-

dom National Breast Screening Programme, containing MLO views with spatial

resolution of 50um (microns) and pixel edge taken by a Joyce-Loebl scanning

microdensitometer sited at the Royal Marsden Hospital, with 8 bits representing

each pixel. There are 4 image sizes small medium large and extra large from

1600 to 5200 pixels x 4320 pixels stored in PGM format. In total, this database

contain 322 films and for each film there is the information of the category of the

breast density between Fatty, Fatty-glandular and Dense-glandular, the class of

the abnormality between calcification, circumscribed masses, spiculated masses,
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ill defined masses, architectural distortion, asymmetry and normal, the severity

of the abnormality classified as benign or malignant, the coordinates of the centre

of abnormality and the approximate radius of the abnormality. This database

design fail to give the precise contour of each finding, clinical data regarding

each patient of each anomaly and does not contain the BI-RADS annotation

of each finding. Despite having this design problem, this database was widely

used by the computer vision research community, because it can be instantly

accessed via their website and also because it was one of the first datasets for

breast cancer detection studies.

• Digital Database for Screening Mammography (DDSM) [39, 40] This

dataset was created to ease the creation and evaluation of computer aided

systems containing 2620 screen mammograms with ground truth and other

info completed in 1999. Mammograms obtained from Massachusetts general

Hospital, Wake Forest University School of Medicine, Sacred Heart Hospital and

Washington University of St. Louis School of Medicine containing the standard

four view (left and right MLO and CC views). The spatial resolution and

contrast resolution vary according to the hospital equipment between 42um,

43.5um and 50 of special resolution and between 12 and 16 bits per pixel of

contrast. The cases were all from mammography exams conducted between a

period of 5 months. Each case was digitized and categorized according to 4

categories of BI-RADS (Negative, Benign finding, Probably benign finding and

known biopsy-proven malignancy). All cases were automatically cropped to

remove as much background (non tissue) as possible. And manually censored

any id information of the patients, storing each case in LossLessJPEG format.

Each view contain the data of the exam, the ACR breast density. With the

exception of two Negative cases, all cases have pixel level ground truth marking

of the abnormalies and a description created by a radiologist expert with BI-

RADS lexicon. This database for a long time was the closest to a perfect design

database i.e. containing patient age, standard ACR breast density classification,

pixel level mark of the findings and BI-RADS annotation of each finding. The

majority of CAD for breast cancer studies use this database in order to compare

performance with previous works in the area. After a wild variety of research

performed with this dataset, the only disadvantages found using this dataset

were, few studies unrelated to classification reporting lack of precision in their

pixel level marking [47, 48], the non existence of clinical data regarding the

patient history, the lack of update given the rise of new technologies such as Full

Digital Mammograms and the lack of access to the dataset since the current
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software used to access the data is deprecated and unavailable. Nevertheless

this database is still available with easy access thanks to the IRMA project that

will be described below.

• Image Retrieval in Medical Applications (IRMA) Project Database

[41, 42] The IRMA project is specialized in image retrieval. Taking into account

the difficulties of access on the DDSM dataset, they decided to transform the

images into a user friendly format (PNG) and to distribute via request at their

project site [41]. But they did not stop there, after the experiment of changing

they type of the DDSM they concluded that most available databases have

different data formats and styles (e.g. Mias PGM, DDSM LLJPEG, LLDL

DICOM format) which caused a great trouble for researchers to adapt their

works to use all databases. Therefore they decided to create a new database

with finding patches from all databases in a standard format. The IRMA

Patches database [42] contain patches extracted from DDSM, MIAS, LLNL, and

RWTH mammogram databases, resized to 128 x 128 pixel and grouped by their

metadata annotation. However, since pre processed patches stray away from the

common film digitalized mammogram with segmentation and description of the

findings, most researchers still opt for the DDSM dataset as standard database

to perform their studies.

• Bancoweb LAPIMO database [45] This is the most recent database regarding

conventional screening mammography, created on Brazil in 2010. Containing

1400 images from around 320 patients with the four standard views. Each screen

film was stored in TIFF format with a contrast resolution of 12 bits per pixel

and a spatial resolution varying between 75um to 150um. Including BI-RADS

classification, background patient information and breast density classification

(not ACR standard). Not all findings are marked, but all findings are described

in text. This dataset can be accessed for free via request at their website [45].

This dataset contain several design flaws, such as not all findings are marked in

the image, does not follow ACR breast density annotation and despite being a

recent database, does not have FFDM cases as the following recent database we

will describe.
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3.2.2 Digital mammography databases

The following databases described are recent databases that are using full-field digital

mammograms. They are useful for overall mammogram breast cancer classification

and also displayed an improvement in abnomaly detection and classification in com-

parison with analogic screen mammography [32]. Due their benefit in cancer detection

we believe in the future FFDM will be the standard in the hospitals.

• Inbreast [43] A database acquired at Centro Hospitalar de São João, Porto, Por-

tugal. This database was designed to help the current research studies on CAD

for cancer detection by covering the design flaws the previous databases had.

They used the MammoNovation Siemens FFDM, with a solid-state detector of

amorphous selenium pixel size of 70um, 14 bit contrast, 3328x4084 or 2560x3328

resolution according to the plate used in the mammogram aquisition (according

to breast size) stored in the DICOM format. Containing 115 cases, where 90

cases contain the standard 4 views and the remaining 25 containing 2 views

due the fact they are cases of mastectomy. A total of 410 images. Each image

contain annotations made by a specialist in the field also validated by a second

specialist, between April 2010 and December 2010, containing breast density

acording to ACR, clinical annotations and BI-RADS classification. When there

was a disagreement between the experts, the case was discussed until a consensus

was obtained. Each case also contain detailed contour and description of their

findings. Resulting in a high quality FFDM images with proper annotations and

segmentation of the findings.

• Breast Cancer Digital Repository (BCDR) [44] This database also was

developed at Centro Hospitalar de São João in 2013, since it is really recent

it does not have a publication describing it, instead it contains a publication

using this dataset to evaluate image descriptors [1]. This database contain

four datasets, The BCDR-D01 and BCDR-D02 containing FFDM images of 230

biopsy-proven lesions of l79 patients and 162 biopsy-proven lesions of 64 patients

respectively. The remaining two datasets BCDR-F01 and BCDR-F02 have

analogic screening mammography images containing 200 biopsy-proven lesions

of 190 patients and 188 biopsy-proven lesions of 98 patients. All datasets contain

clinical data regarding the patient, the image descriptors extracted at [1], the

segmentation of each and description lesion and the patient binary classification

between benign and malignant.
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• Others There are still other databases which are not available for the public

(Paid databases or Private Registration required), e.g. [46] and Lawrence Liver-

more National Laboratory and University of California San Francisco Database[49].

The Created by L. L. N. Laboratories and University of California at San

Francisco Radiology Department, the LLNL/UCSF database uses films digitized

to 35 microns where ach pixel was sampled to 12 bits of grayscale. Containing

a total of 198 films with 4 views from 50 patients (except those with mas-

tectomy containing only 2 views) separated according to 4 categories of BI-

RADS containing 5 Negative cases, 5 Negative but difficult cases (with either

dense or fibrous breasts, implants, or asymmetric tissue), 20 cases of Probably

Benign microcalcifications (with at least 3 years of follow-up without change or

developing cancer), 12 cases of suspicious abnormality benign microcalcifications,

(note: all these benign cases had either a biopsy or a diagnostic mammogram plus

at least 3 years of subsequent follow-up without change or developing cancer),

and 8 cases with a biopsy-proven malignancy of microcalcifications, according to

[50] available at the price of 100 US $ to cover their reproduction costs. It also

contains pixel masks indicating where are the findings. However it still contain

design flaws such as no clinical associated data. Usually these databases also

are not common in the research community, because most researchers do not

have access to them. Since most of their information are not publicly available

(such as other databases described with unknown information at [43] that we

do not mention), we will not add these databases on the following summary

of all the databases previously described (with the exception of LLNL UCSF

database because it can be currently accessed without payment at their original

website [49]). For the sake of summarizing we created the table 3.2.2, containing

all the information of all the previously discussed databases. The most used

databases in the literature are the MIAS and the DDSM database due their

easy access, although the MIAS usage has been decreasing along the years since

it does not have BI-RADS classification, BI-RADS annotation and the precise

leisure contour. It is also important to remark novel databases such as BDCR

and inBREAST because of the new different data they contain such as FFDM

mammograms and full description of the findings according to BI-RADS lexicon

and also surpass a good database design such as DDSM which may lead new

studies of FFDM mammograms.
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Databases MIAS[38] Bancoweb[45] DDSM(IRMA)[41] LLNL/UCSF[49] inBREAST[43] BCDR-D[44] BCDR-F[44]

Year 1994 2010 1999 Unknown 2010 2013 2013

Origin UK Brazil USA USA Portugal Portugal Portugal

Number of Cases 161 320 2620 50 115 243 288

Number of Images 322 1400 10480 198 410 392 388

Views MLO CC MLO CC MLO CC MLO CC MLO CC MLO CC MLO

Contain Mastectomy No Unknown No Yes Yes No No

Mammogram Type Screen Film Screen Film Screen Film Screen Film FFDM FFDM Screen Film

Contrast Resolution 8 12 12 and 16 12 8 8 Unknown

Image Format PGM TIFF PNG DICOM DICOM TIF TIF

Patient data No Yes Age Yes Yes Yes Yes

Abnormally Categorization Yes Yes Yes Calc. Only Yes Yes Yes

Clinical data No Yes Age Yes Yes Yes Yes

Abnormally Annotation No Yes BI-RADS Yes BI-RADS Yes Yes

Classification type Binary BI-RADS BI-RADS BI-RADS BI-RADS Binary Binary

Abnormally Contour Radius Few cases Yes Yes Yes Yes Yes

Image Descriptors No No No No No Yes Yes

3.3 Image Pattern Retrieval

In this section we address the current developed patterns for breast cancer images. But

before extracting features, according to Mohanty et al. [12], pre-processing is essential

in order to improve the quality of the mammogram, they explain which techniques

are used to remove noise, enhance structures and enhance contrast. Depending on

the anomaly, extra information may be contained for example, at Moreira et al.

[51], they describe intensity patterns and shape patterns extracted from masses using

the InBREAST database, and make an interesting study regarding their relationship

with malignancy. In some works they use clustering information regarding micro

calcifications [52, 53, 54] plus other image patterns to conclude the cluster relationship

with malignancy. Nevertheless, in general, intensity patterns and other types of image

patterns can be extracted from any anomaly and used for cancer classification, we will

address these works in more detail below.

3.3.1 Image Patterns

After analysing the current state of the art initially based on surveys regarding com-

puter aided diagnosis for breast cancer such as [9, 10, 1], we were able to separate on

the following image pattern types.

• Grey Level Co-occurrence Matrices (GLCM) and intensity statistics

are well known for their performance in texture analysis and simplicity, therefore

several features regarding GLCM and intensity histograms were studied in the

literature, such as gray-level correlation, entropy and roughness in [51], or in
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[55] that analyses 16 statistical features and 21 GLCM based texture features

(some of the studied features: mean, deviation, smoothness, skewness, energy,

dissimilarity, difference, length, among others). [56] also uses several of the

intensity descriptors previously mentioned and also introduce the local binary

patterns in this problem, where local binary patterns outperformed the other

statistics features being reported as a good descriptor for breast cancer classifi-

cation. There are also reports [57, 54, 58] that indicate the good performance of

Haralick features (obtained from GLCM).

• Multi scale methods are widely used for breast cancer classification. The

most popular multi scale method is the wavelet which can be adapted by using

different mother wavelet functions (as we saw in the background). Several

wavelet functions were studied for breast cancer anomaly classification, such as

Daubechies [9, 59, 60, 61, 53, 54], symlet [9], bi-orthogonal [9], Haar [9, 61, 53],

Gabor [57, 62] and others [52, 53, 63, 54]. There are other multi resolution meth-

ods based on the wavelets explored for this purpose such as Curvelets that explore

the curve instead of the wave function [9, 64], and also the Ridgelet method [63]

which was explored recently, howerver, the results did not outperform the wavelet

method. In order to compare these multi resolution methods, Ramos et al. [9]

did a comparison work studying several wavelet functions against Curvelets,

concluding that Curvelets outperform the tested wavelets methods for breast

cancer anomaly classification.

• Local invariant features were not popular for breast cancer classification,

however, Moura et al. [1] proposed to use local invariant features to classify

masses since they contain great information regarding shape. One of their

experiments was to use a Histogram of Oriented Gradients (HOG) [65] based on

the famous Scale Invariant Feature Transform [16], which divide the ROI in a

grid of blocks and for each block calculate a histogram of the orientation of the

gradient. After experimenting HOG they proposed a new image descriptor to

describe the regularity of the masses shapes in breast images, this method was

called the Histogram of Gradient Divergence (HGD) [1]. Based on the principle

that gradient of boundaries pointing to the centre of the object is a characteristic

of round-shaped objects with continuous regular border, they assume that the

object is in the center of each patch and measure the gradient divergence of a

pixel as the angle between the vector of the intensity gradient on the pixel and

a vector with origin on the pixel pointing to the center of the patch. Rotation

invariance is obtained naturally in this method since they store the divergence of
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the gradient instead of the orientation of the gradient. With this novel descriptor

they outperformed all previous image descriptors for mass classification.

3.3.2 Discussion

Given the previously mentioned methods for extracting features from a region of

interest, we can conclude that these features are heavily dependent of the type of

scanner. Meaning, features extracted from a type of scanner will perform worse on

other scanners [10], also they contain interesting information regarding malignancy

where these works mentioned review a high classification performance. Apparently the

wavelet, curvelet and HGD features seems to be the best methods for pattern retrieval,

given its good results in comparison with other methods stated in their respective

works. Since these methods are all using different databases or types of classifiers

or types of features to diagnose (e.g. microcalcifications clusters, calcifications, all

anomalies, etc) we cannot create a table summarizing their performance because we

cannot directly compare them. Fortunately, Moura et al. [1], compiled most of these

results and analysed them using two datasets (DDSM and BCDR), separating by

masses and microcalcifications using a linear SVM classifier to classify given each

feature between benign or malignant using the Median Area Under Curve (AUC) as

performance metric. This study contradict the Curvelet superior performance against

wavelets from [9] as we can see in the Table 3.1 where we can compare most of the

methods and their performance, with also the addition of clinical data available by

the BCDR and DDSM datasets. We can conclude that the most discriminant pattern

regarding all abnormalities or only masses is the HGD while the most discriminant

patterns for calcifications are the Gabor filter, the Wavelets and the Haralick features.

3.4 Machine learning

In this section we will address the machine learning methods used to classify and

evaluate the previously discussed breast cancer image features. During this research

we noticed that most works use the SVM method [1, 57, 62, 66, 67] or the kNN method

[9, 61, 64, 58] for this purpose. We believe that the preference for these two methods is

based on the following reasons. The kNN is quite common on image processing due to

the matching nature of the algorithm (explained on the previous chapter). The SVM
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Table 3.1: Classification performance (AUC) of the standalone clinical data and of
the image descriptors (standalone and combined with clinical data) from [1]

is the second favourite due to its good performance sparse and noisy data. Despite

the effectiveness of both methods, other classifier approaches such as decision trees

[68, 63], neural networks [69, 60], rule based [70, 58] were used in order to obtain study

their performance boost on this purpose. We will review the current methods used for

breast cancer classification, reporting their performances.

3.4.1 kNN based methods

As we saw in the previous chapter, this method uses a dataset as the whole clas-

sification model where new data is classified by the class of the nearest data entry

on the database given by a proximity function. This method was used by [9] to

evaluate features extracted from the Mias dataset, obtaining an accuracy of 100% to

classify benign cases and 83,3% accuracy to classify malignant cases. Another work

[61], also extract features from the Mias dataset obtaining an accuracy of 98,8% to

classify between malignant or benign. There also another approach used by [58], which

combines the kNN with a rule based method, i.e. first he used rule based methods to

transform the extracted features into rules and then used the kNN to match the rules,

obtaining 90% accuracy also using the features from the Mias dataset.
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3.4.2 SVM based methods

In a very brief description, the SVM method aims to find the best hyperplane to split

the classes from a dataset. We will address how this hyperplane is calculated in the

next chapter. Several works reported good performance using the SVM classifier, such

as [1] obtaining an AUC of 0.89 and [57] which obtained an accuracy of 91.4%, where

both used features extracted from the DDSM dataset. Another work [66] used SVM on

features extracted from the Mias dataset obtaining an AUC of 0.91. Besides the direct

usage of the SVM method, other works attempted to adapt the SVM in order to obtain

better results with breast image data. In [62], a method called ”proximal SVM” is

introduced, obtaining an AUC of 0.78 on the Mias data, where the author claim that

a proximal SVM approach perform better than the normal SVM for breast cancer

classification. Other work [67], which used the DDSM dataset to extract features,

realized that depending on the image feature extracted, the kernel used by a SVM

to fit the data might change. Therefore, they proposed to create several SVMs with

different kernels for each set of data and ensemble them in a voting system. Where the

system would select the result based on the majority of all SVMs results, achieving

an improvement of 0.02 AUC over the SVM method. Obtaining a final AUC of 0.92.

This majority vote SVM strategy resemble the idea of the MKL method that we will

explain on the next chapter, where we will also talk about kernels and how MKL use

them to turn the SVM into a more flexible method.

3.4.3 Other methods

There are also other approaches used in the literature. Decision Tree methods are

explored by [68], where in their work they compare the results between Simple CART,

Random Tree and Random Forest, obtaining accuracy of 96.5% in their best result

(Random Forest) using the Wisconsin dataset. Another work [63] also uses Random

Forest, but they first use a Genetic algorithm to filter the features obtained from the

DDSM dataset and then they use the filtered features to create a Random Forest

classifier, they obtained an AUC of 0.90. Besides decision tree based methods, there

are other approaches using Neural Networks. In [69] they analyse several types of

Neural Networks methods. Such as Back Propagation Neural Networks, Radial Basis

Function Network, Modular Neural Networks and Artificial Neural Network. They

obtained their best result from the Modular Neural Network (98.2% accuracy), using

the Wisconsin dataset. There are also two other works that explore Neural Networks.
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The [60] where they use a Neuro Fuzzy Logic classifier obtaining an accuracy of 93.7%

on the Mias dataset. And the work [70], where they explain the weaknesses of neural

networks and rule based methods and create a method to overcome them by combining

both methods, obtaining a sensitivity of 100% and a specificity of 69.2%.

3.5 Summary

After analysing all those areas and studies we can remark the following. There are

many works for masses and calcifications. However, there is still room for improve-

ments by experimenting novel techniques of classification or by uncovering new image

patterns. There is also little study regarding other findings such as architectural

distortion and asymmetry. There is a big variety of effective image descriptors for

breast cancer classification that can be selected. But, there are not many approaches

on taking full advantage of these image features on the machine learning side, i.e.

more works that attempt new strategies to increase learning from image features. Such

works as the majority vote SVM[67], the rule base methods combined with kNN[58]

or Neural Networks[70] are attempting to improve the performance by using more

adaptable approaches for the breast cancer data new instead of using old classifier

methods without adapting them to the problem. It is hard to summarize the perfor-

mance results obtained with the reported classification methods since each work vary

on the usage of the database, or in the patterns extracted from each database or even

in the metric used to display the results. Nevertheless, it is possible to conclude that

classifiers adapted for the breast cancer image data can obtain better results. Given

that fact we are motivated to use machine learning methods that were not explored

yet for the breast cancer classification problem, such as the Multiple Kernel Learning

(MKL) which will be addressed on the next section. We also noticed a high difficulty

and ambiguity on comparing results with different works. Therefore we propose a

comparison study to compare the usage of MKL against one of the most common

machine learning method used, the SVM.
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Chapter 4

Multiple Kernel Learning

After reviewing the literature on machine learning methods for breast cancer, we found

several methods with good performance using kernel methods such as SVM but we

did not find any work regarding multiple kernel learning for this purpose. Therefore

in this chapter we will describe in depth the single kernel method SVM at Section

4.1, then in Section 4.2 we will see how the multiple kernel learning extend the single

kernel method, increasing the model flexibility toward the training data in general,

then we describe the MKL algorithm we selected for our study, the Simple MKL [8].

In the end we summarize the MKL method focusing on the advantages that we expect

to achieve by applying it in breast cancer classification. The sections 4.2 and 4.3 were

based on the Simple MKL publication [8].

4.1 Introduction

Multiple kernel learning is based on single kernel methods such as Support Vector

Machines (SVM). In the Background chapter we did not explain in depth how SVM

works because it will be simpler for the reader to learn the MKL extension of the

SVM method after understanding how the maximum margin hyperplane problem is

formulated below. In depth, the linear SVM solves the maximum margin hyperplane

search problem, which can be formulated as it follows. Given a training data D with

a set of n points of the Eq. (4.1) where the yi is either 1 or -1 (other classes). In order

to split a set of x points in D its required to calculate a hyperplane that split these

points, which is represented by Eq. (4.2). When the Eq. (4.2) equals 1 or -1, it means

that the hyperplane can be used as margin. Because it separate the classes from the

39
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feature set. Points laying on the margins are called ”support vectors” since they are

the vectors that form the margins. The distance between two margins is given by
2
‖w‖ . In order to obtain the maximum margin hyperplane we minimize the norm of

w. However, this problem depends on the norm of w which involves a square root. In

order to optimize it, Lagrange multipliers were introduced, transforming the problem

into a dual maximization problem [20, Ch. 7, p. 325].

D = {(xi, yi)|xiεRp, yiε{−1, 1}}ni=1 (4.1)

w · x− b = 0 (4.2)

When the problem cannot be solved linearly, i.e. there is no linear hyperplane that

can separate the classes from the given dataset, the feature data space is mapped to

a higher dimension space where exists a hyperplane that can split the dataset classes,

an example is illustrated at Figure 4.1. This mapping is performed by using Kernel

functions, adapting from linear functions to non-linear functions such as Polynomial

4.3, Gaussian 4.4, Radial 4.5 and others. With their respective kernel parameters such

as degree (d), Gaussian and radial width (σ, γ). Thanks to the ”kernel trick” [71]

there is no need to compute the dot products in these high dimensional, since it allows

to compute the dot products within the original feature space by the means of a kernel

function.

Figure 4.1: The mapping between the data in its original space and the data
transformed into a higher dimension space by the usage of an appropriated kernel
function where the data can be easily separated according to their classes.

K(xi, xj) = xi · xdj (4.3)

K(xi, xj) = e(−
‖xi−xj‖

2

2σ2
) (4.4)

K(xi, xj) = e−γ‖xi−xj‖
2

(4.5)
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Sometimes, the data may have mislabelled classes or outliers that may shorten the

margin, in order to adapt to these cases, slack variables were introduced by [25]. These

slack variables are added to each training data point allowing to have points outside

crossing their class margin with a certain cost penalty which increases linearly. The

trade-off between the margin and the slack variables can be defined by a variable C

(C>0). In summary, the SVM learning problem can be formulated as Eq. (4.6), where

the dot product is replaced by the selected kernel and where α (constrained by C) and

b are coefficients to be learned from the train data. Additional information regarding

support vector machines can be found at [20].

SingleKernel =
n∑
i=1

αiK(x, xi) + b (4.6)

4.2 Multiple Kernel Learning model

Kernel methods such as SVMs were proven efficient for classification and regression.

However, the SVM uses a single kernel to fit the entire data. As we saw previously, the

SVM can be formulated in Eq. (4.6), where K(·,·) is a given positive definite kernel

associated with a reproducing kernel Hilbert space (RKHS) H[72]. MKL extends

this equation into a more adaptable equation by working with a set of kernels using

a combination of weights turning the problem into a convex optimization problem

represented by the Eq. (4.7). For example, given M kernels k1, ..., km that are

potentially suited for a given problem, the MKL consist in the problem of finding the

positive linear combination of these kernels resulting on an ”optimal” kernel. In order

to give a clear insight regarding the adaptability to data using multiple kernels we

created the Figure 4.2 where we suppose that we have 4 kernels (k1, k2, k3, k4) and

only the first kernel and the fourth kernel perform well with a certain data, we adapt

the optimal kernel by adding each kernel multiplied by a weight dmi according to their

performance, e.g. 0.5 weight for dm1 and dm4 and 0.0 weight for weight dm2 and dm3.

MKL(x) =
n∑
i=1

αi

M∑
m=1

dmkm(x, xi) + b (4.7)

Before we start explaining how the multiple kernel learning problem is optimized,

we will describe the framework that was used as base for simple MKL optimization

algorithm. Assume that Km, m = 1,...,M are M positive definite kernels on the same

input space, each of them being associated with an RKHS Hm endowed with an inner
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Figure 4.2: The distribution of 4 kernels with different parameters and the sum of all
these 4 kernels according to the following weights 0.5 weight for k1 and k4 and 0.0
weight for weight k2 and k3.

product 〈·,·〉m. For any m, let dm be a non-negative coefficient and H′m be the Hilbert

space derived from Hm in Eq. (4.8) endowed with the inner product in Eq. (4.9).

H′m = {f |f ∈ Hm :
‖f‖Hm

dm
<∞} (4.8)

〈f, g〉H′m =
1

dm
〈f, g〉m (4.9)

Using the convention that x
0
=0 if x=0 and ∞ otherwise. This means that, if dm=0

then a function f belongs to the Hilbert space H′m only if f =0 ∈ Hm. In such a

case, H′m is restricted to the null element of Hm. Within this framework, H′m is a

RKHS with kernel K(x,x’) = dmKm(x,x’) since ∀f ∈ H′m ⊆ Hm, the decision function

is represented by Eq. (4.10). If we define H as direct sum of the spaces H′m, then, a

classical result on RKHS [72] says that H is a RKHS of kernel represented in the Eq.

(4.11).

f(x) = 〈f(·), Km(x, ·)〉m =
1

dm
〈f(·), dmKm(x, ·)〉m = 〈f(·), dmKm(x, ·)〉H′m (4.10)

K(x, x′) =
M∑
m=1

dmKm(x, x′) (4.11)
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Thanks to this simple construction, the simple MKL creators were able to build a

RKHS H for which any function is a sum of functions belonging to Hm. In their

framework the MKL aims to determine the set of coefficients {dm} within the learning

process of the decision function. Therefore envisioning the MKL problem as learning

a predictor belonging to an adaptive hypothesis space endowed with an adaptive inner

product. Thus, the problem of learning the weights dm, learning the α and b at the

same time can be addressed by solving the convex problem referred as primal MKL

problem stated below:

min
{fm},b,ξ,d

1

2

∑
m

1

dm
‖fm‖2

Hm
+ C

∑
i

ξi (4.12)

s.t. yi
∑
m

fm(xi) + yib ≥ 1− ξi ∀i (4.13)

ξi ≥ 0 ∀i (4.14)∑
m

dm = 1, dm ≥ 0 ∀m (4.15)

Where each dm controls the squared norm of f m in the objective function. The smaller

the dm is, the smoother f m should be.

There are many solutions proposed described in [8], but we will only describe in the

following subsection, how the simple mkl algorithm solve the primal problem stated

in Eq. (4.12), for other solutions or proofs of the equations described above check [8].

4.3 Simple MKL

In order to solve the problem stated in Eq. (4.12), the Simple MKL formulate the

following constrained optimization problem:

min
d
J(d) such that

M∑
m=1

dm = 1, dm ≥ 0 (4.16)

where

J(d) =


min
{f},b,ξ

1
2

∑
m

1
dm
‖fm‖2

Hm
+ C

∑
i

ξi ∀i

s.t. yi
∑
m

fm(xi) + yib ≥ 1− ξi

ξi ≥ 0 ∀i

(4.17)
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They solve the problem 4.16 on the simplex by a simple gradient method which is

addressed below. Knowing that the objective function J (d) is actually an optimal

SVM objective value and that the gradient of J (·) can be computed, i.e. the J (d)

can be obtained by any single kernel machine, which ties the overall complexity of the

SimpleMKL to the complexing of the single kernel machine. For an in depth reading

of the intermediate steps on how they managed to differentiate J (d) and compute the

gradient J (·) please refer to [8].

Once the gradient of J (d) is computed, d is updated using a descent direction ensuring

that the equality constraint and the non-negativity constraints on d are satisfied. The

equality constraint is handled by computing the reduced gradient method [73]. The

positivity constraints have also to be taken into account in the descent direction. Since

they want to minimize J (·), the negative reduced gradient of J is a descent direction.

However, if there is an index m such that dm = 0 and the reduced gradient of J of m

> 0, using this direction would violate the positivity constraint for dm. Therefore, in

these cases the descend direction (Dm) for that component is set to zero. The descend

direction update is defined by the Eq. (4.18) where dµ is a non-zero entry of d.

Dm =


0 if dm = 0 and ∂J

∂dm
− ∂J

∂dµ
> 0

− ∂J
∂dm

+ ∂J
∂dµ

if dm > 0 and m 6= µ∑
g 6=µ,dv>0

( ∂J
∂dv

∂J
∂dµ

) for m = µ

(4.18)

Now that we know how the descent direction is updated, we can understand the

SimpleMKL Algorithm 1. Once the descend direction is computed, we first look for

the maximal admissible step size (γ) in that direction and check whether the objective

value decreases or not. The maximal admissible step size corresponds to a component

dv, set to zero. If the objective values decreases, d is updated, we set Dv = 0 and

normalize D to comply with the equality constraint. Repeating this procedure until

the objective stops decreasing. At this point, we look for the optimal step size γ,

which is determined by using a one-dimensional line search, with a proper stopping

criterion to ensure global convergence. In order to obtain the optimal conditions,

this entire procedure is repeated until stopping criterion such as the duality gap (the

difference between the primal and dual objective values, where zero is optimal) or

KKT conditions 4.19 or the variation of d between two consecutive steps, or even set

by a maximum number of iterations.



4.4. CONCLUSION 45

Algorithm 1 SimpleMKL Algorithm

1: set dm = 1
M

for m = 1,...,M
2: while stopping criterion not met do:
3: compute J(d) using a SVM solver with K =

∑
m dmKm

4: compute ∂J
∂dm

, for m = 1,...,M and descent direction D(4.18)

5: set µ = argmax
m

dm, J† = 0, d† = d,D† = D

6: while J† < J(d) do {descent direction update}
7: d = d†, D = D†

8: v= argmin
{m|Dm<0}

− dm/Dm, γmax = −dv/Dv

9: d† = d+ γmaxD,D
†
µ

= Dµ −Dv, D
†
µ

= 0

10: compute J† by using a SVM solver with K =
∑

m d
†
mKm

11: end while
12: line search along D for γ ∈ [0, γmax]{calls an SVM solver for each γ trial value}
13: d← d+ γD
14: end while

∂J

∂dm
+ λ− ηm = 0 ∀m (4.19)

ηm.dm = 0 ∀m (4.20)

where λ and {ηm} are respectively the Lagrange multipliers for the equality and

inequality constraints of the problem 4.16.

4.4 Conclusion

There are many methods regarding multiple kernel learning in the literature [8], but

we selected the simple MKL for two main reasons. First, because the Simple MKL

has an open source implementation in Matlab. Second, because its simple to use in

comparison with other MKL methods, which is great for our study since our goal

is to evaluate the performance of MKL and prove that it can reach higher results

than single kernel methods. For sake of summarizing we described the Simple MKL

method in Algorithm 2 where first they add equal weights for all kernels, and then the

algorithm optimizes these weights by calculating the objective values using a SVM

solver, the descent direction and also by calculating the optimal stepsize for that

direction, resulting in the update of the weights. The algorithm stop this optimization

when the criterion conditions met. After learning in depth how the multiple kernel
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learning extend the SVM method in order to adapt the kernel into an optimal kernel

for a set of data we can understand why it might surpass the SVM method in terms of

performance, i.e., the MKL is more flexible toward the data than the SVM. In order

to prove this performance improvement we perform in the next chapter an study using

breast cancer image patterns as data in order to classify their malignancy using SVM

and Simple MKL.

Algorithm 2 Simplification of the Simple MKL Algorithm

1: set dm = 1
M

for m = 1,...,M
2: while stopping criterion not met do:
3: compute J(d) using a SVM solver with K =

∑
m dmKm

4: compute ∂J
∂dm

, and projected gradient as descent direction D
5: γ ← compute optimal stepsize
6: d← d+ γD
7: end while



Chapter 5

Experimental Study and Results

Discussion

In this chapter we describe the conducted tests to evaluate the usage of MKL in

breast cancer and discuss the results obtained during this experimental study. The

main goals of this study is to prove the existence of a performance difference between

the MKL and SVM method and also to analyse the performance of MKL with breast

cancer image data. For this study we selected the BCDR-F01 dataset, and extracted

from it several image descriptors such as Clinical Data, Intensity Descriptor, Wavelet

Descriptor, Local Binary Pattern Descriptors and Histogram Divergence Gradients

to use as input data to train, evaluate and compare MKL and SVM classifiers. In

more detail, we describe the selection dataset used for evaluation in 5.1, the selection

features and how they were extracted 5.2, the MKL method and the kernels that were

used in 5.3, the evaluation method for the experimental study 5.4 and the discussion

of the results obtained in 5.5.

5.1 Database Description

In order to perform our study to make a comparison between the performance of

SVM and MKL toward breast image patterns, we require a breast image database

containing clinical data, pixel level contour of the findings on each breast image

with their respective biopsy proven malignancy classification. Since the BCDR01-F01

satisfies all those requirements and because it is a local dataset (from Porto) that we

had access since the beginning of this work, we selected it to perform our experiments.

47
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This dataset contains screening mammography images of 200 biopsy-proven lesions of

190 patients, described below in more detail.

• MLO: Containing 183 images with annotated findings where 116 of the images

contain masses, 95 of the findings are benign and 88 of the findings are malignant.

• CC: Containing 179 images with annotated findings where 115 of the images

contain masses, 92 of the findings are benign and 87 of the findings are malignant.

5.2 Feature Extraction

Since the dataset contains images of the whole breast that was taken during the

screening mammography, we required to perform some pre-processing steps in order

to obtain images with only the annotated findings. We created a Matlab script to

perform the following pre-processing steps illustrated in Figure 5.1:

1. Create a polygon surrounding the finding using the pixel level annotation of the

finding.

2. Get the biggest and smallest x and y values of the pixels in the polygon to create

a bounding box surrounding the finding.

3. Crop the image using the bounding box calculated.

4. Subtract the intensity value of all pixels outside the polygon created.

After obtaining the pre-processed images from the BCDR-F01. We extracted data

descriptors using the image pattern extraction methods (with the exception of the

Clinical Data and the Intensity values that were already available in the dataset)

described below.

5.2.1 Clinical Data

This data was obtained directly from the dataset. Containing information of the

patient and the findings on the image. This subset will be mentioned as S1 and

contains the following features:
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Figure 5.1: The images obtained during the pre-processing. From the left to right
there are the following images: First the image of the whole breast, then the image
with the polygon surrounding the finding, then the cropped image of the finding and
at last the finding without any background pixel.

• Age: of the patient during the exam.

• Breast density: of the patient according to the BI-RADS standard.

• Mammography Nodule: a boolean value if there is a mass.

• Mammography Calcification: a boolean value if calcifications were detected.

• Mammography Microcalcification: a boolean value if microcalcifications

were detected.

• Mammography Axillary Adenopathy: a boolean value if axillary adenopa-

thy was detected.

• Mammography Architectural Distortion: a boolean value if there are signs

of architectural distortion.

• Mammography Stroma Distortion a boolean value if there are signs of

stroma distortion.

5.2.2 Intensity

This data was obtained directly from the dataset, the BCDR-F01 had a text file with

intensity descriptors calculated of the findings of each image. This subset will be

mentioned as S2 and contains the following features, where n is the number of pixels

of the finding and xi intensity value of the ith pixel of the finding:
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• Mean: x̄ = 1
n

n∑
i=1

xi

• Standard Deviation:

√
1

n−1

n∑
i=1

(xi − x̄)2

• Skewness:

1
n

n∑
i=1

(xi−x̄)3(√
1
n

n∑
i=1

(xi−x̄)2

)3

• Kurtosis:

1
n

n∑
i=1

(xi−x̄)4(
1
n

n∑
i=1

(xi−x̄)2
)2 − 3

• Minimum: is the minimum xi value of the finding.

• Maximum: is the maximum xi value of the finding.

5.2.3 Wavelets

Wavelets are also common descriptors used in breast cancer classification, an example

of a wavelet descriptor (Gabor) was discussed at Subsection 2.1, we also extracted

wavelets from the BCDR dataset using the matlab toolbox of signal processing with

the default parameters, such as Haar wavelets with 4 scales of resolution, to analyse

them in our study. We did not explore other wavelet functions or wavelet parameters

because there are several functions and parameters, and focusing on which is the best

image descriptor with the best parametrization is not our goal, we aim to study the

overall performance of MKL for breast cancer data. And for that purpose, extracting

one wavelet suffices, we will refer this wavelet extracted as S3.

5.2.4 Local Binary Patterns (LBP)

While analysing the literature on breast cancer classification using medical images,

we noticed one work with great results using LBP for this purpose [56]. Therefore,

we decided to also test them in our experimental study. In order to extract the LBP

from the database used, we used the vlFeat Library [74], which calculates the LBP

descriptor as it follows: First the image is separated into cells (e.g. if cell size equals

2 then the image is separated into cells with half width and half height) then for each

cell it is calculated a string of bits for each pixel with a 3x3 neighbourhood where

each bit is turned on if the intensity value of the neighbour pixel is higher than the
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intensity value of the central pixel or turned off otherwise. Starting from the pixel in

the right of the central pixel and following with the next pixel according to a clockwise

direction. Since a string of 8 bits may result in a variation of 256 possible patterns,

this library uses an uniform quantization method to reduce the number of LBPS to

58 quantized patterns as illustrated in Figure 5.2. With the calculated quantized

patterns, a frequency histogram is created and normalized. Resulting in a normalized

histogram of quantized patterns for each cell. These histograms are aggregated into

one normalized histogram that will be used as the feature vector, containing 58 floats.

In order to study the LBP with breast cancer data, we generated 5 subsets of local

binary patterns with different cellsizes. Depending on the cell size m, each dataset

will be addressed as it follows: m = 2 as S4, m = 4 as S5, m = 6 as S6, m = 8 as

S7 and m = 16 as S8. There were some cases, specially for the higher cell size, where

the region of interest extracted would not contain enough pixels to divide in regions

according to the cell size, for these cases we did a 2 times upscale on the region of

interest before applying the LBP.

Figure 5.2: The 58 uniform quantized local binary patterns used to build the LBP
quantized histogram.

5.2.5 Histogram of Gradient Divergence (HGD)

During the literature review, this descriptor obtained one of the best results regarding

breast cancer classification. It was developed by [4], to extract information regarding

breast cancer images, specially for masses. The code (in Matlab) to extract the HGD

was kindly provided by the authors. A brief example of how this descriptor works

is illustrated in Figure 5.3, for in depth information consult [4]. In order to extract

the histogram of gradient divergence we used the following parameters, the histogram
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normalization tnorm = 2, the number of bins for direction nbins = 8 and selecting 3

as the number of regions on the HGD (nx) for each direction x. Thus, obtaining a

feature vector of the normalized sum of the histograms of size 24 floats (nbins × nx).

We will address this subset of patterns as S9.

Figure 5.3: The histogram of gradient divergence from a mass with well-defined
borders. On the first image we have raw image of the mass. On the second
image we have a sparse representation of the gradient (red arrows) and the reference
(convergence) vectors (blue arrows), that will be used to calculate the gradient
divergence vectors represented on the third image, which have magnitude equal to
the gradient and orientation equal to the angular difference between the gradient and
the reference vector (horizontal, left to right vectors means zero divergence). Then, for
each region (the center region and the border region) it is calculated a 8 direction bins
(where zero divergence points to the right, and the remaining following anti-clockwise)
resulting in a histogram for each zone as we can see on the last image. The decriptor
is represented in a vector of 16 (8+8) values of each bin. This image was taken from
[4]

5.3 Classification model

For this experiment, we will use two classification models. The MKL and the SVM.

As we explained on the previous chapter, both are kernel methods. In order to

compare them we perform the experiment selecting the same kernel for both methods,

a Polynomial Kernel of degree 1 which is the same as a Linear Kernel. We also

explored further the MKL trying the usage of a kernel with proven performance on

image classification [75], in order to study if it would perform well with the breast

cancer image data extracted.

• Polynomial Kernel (Linear): This kernel is represented by the formula 5.1,

receiving as parameter the degree. In this experiment we wanted to compare the

linear kernel, i.e. degree (d) equals 1.

• Heavy-Tailed Radial Basis Kernel (HTRBF): This kernel is represented by

the formula 5.2, receiving as parameters the boundaries a and b. Since the MKL
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allows to the user to add all the parameter values they want to test, selecting the

most appropriated parameters to generate the final model, we used as parameter

all the combinations with a = 0.1 or 0.5 or 1.0 and b = 0.2 or 1.0 or 2.0, i.e.

the following set of parameters [a , b]: [[0.1, 0.2];[0.1, 1.0];[0.1, 2.0];[0.5, 0.2];[0.5,

1.0];[0.5, 2.0];[1.0, 0.2];[1.0, 1.0];[1.0, 2.0]].

K(x, y) = (x.y)d where d = 1 (5.1)

K(x, y) = exp(−‖x
a − ya‖b

2σ2
) (5.2)

Resulting in three classification models for the experimental study that will be ad-

dressed as it follows: The Linear SVM as C1, the Linear MKL as C2 and the Heavy-

Tailed RBF MKL as C3.

5.4 Experimental Study

In order to evaluate the features extracted S1, S2, ..., S9 on each view (CC and

MLO) and the classification models that we selected to compare C1, C2 and C3, we

decided to perform independently for each classifier and feature set, 50 repetitions of

the Holdout method illustrated in Figure 5.4 for each view. Using resampling without

replacement on each repetition to split 80% of the data to be used as train set and

20% to be used as test set. In order to select the most appropriate parameter for each

classifier method (all three methods require the constant C parameter, explained on

the previous Chapter) on each repetition, we performed an unstratified three fold cross

validation using only the train set for each of the C parameters ranging from 10−2 to

103, selecting the smaller C with highest AUC to be used to train the whole train set.

For each repetition we saved the table containing the true values from the respective

test set and the respective predicted values. We also used this table to calculate the

AUC, and used as final metric to analyse each combination of classifier and feature

set, the average of the AUCs calculated, and the standard deviation of these AUCs.

Since these results are for each view, we also did the average of the results of each

view to obtain an overall result for both views. After performing the experiment for

each set, we selected the two feature sets with the highest performance (S9 and S4 )

to explore if they can perform better with the concatenation of clinical data, these

new sets will be referred as S1+S9 and S1+S4, and to also explore how they perform

with only masses, i.e. a subsets extracted from S9 and S4 by removing any row that

represented a finding that was not a mass, these subsets will be referred as S9m and
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S4m. The same experiment described above was performed for these new feature sets.

Figure 5.4: The Holdout method to evaluate a classifier. First the dataset is divided
in 2 subsets, one for training, other for tests. We use the train dataset to create an
classification model. After we send the test set features to the model which will return
the classification answers and compare those predicted answers with the real answers
from the test set. Allowing to calculate the metrics such as AUC.

5.5 Results and Discussion

In order to obtain an overview of all the results, we created a scatter plot 5.5,

containing the AUC and AUC Standard Deviation (SD) of each experiment. From

this scatter plot we can see clearly that the Simple MKL surpass the SVM in almost

all types of image patterns on breast cancer images. We can also notice that the Local

Binary Patterns and Histogram of Gradient Divergence, obtained the best results. In

order to see in more detail the results, we listed in 5 tables all the results in AUC

obtained separated by each view since the experiment was performed independently

on each view, using the average of the AUC of both views as the final result. Where
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on the first 3 tables, Table 5.1, Table 5.2 and Table 5.3 we list the results obtained for

each view for each of the three classifiers C1, C2 and C3, where the best results were

obtained by C2, reaching an AUC of 0.82. Then the results of the experiment using

only the image descriptors with better AUC, are displayed in Table 5.4 and Table 5.5

where on the first table we analyse them with the addition of clinical data and on the

second table we show the results using only masses as data. In summary, MKL clearly

outperforms the SVM with the same kernel. Although we would like to compare

with other studies from the literature, most of the works are not comparable due the

difference on the experiment procedure done or on the datasets used. Nevertheless, we

based our experiment procedure on Moura’s work [4] which allows us to compare our

results obtained. Despite the fact that he used SVM from SMO while we used SVM

from LIBSVM which might be the reason for our different results with the Linear

SVM, we obtained better results with the Simple MKL method using the HGD in two

experiments, on the HGD for masses only and on the HGD for all findings combined

with clinical data.

MKL HTRBF CC View MLO View CC MLO Average

Clinical 0.707 0.668 0.688
Intensity 0.587 0.622 0.605
Wavelet 0.614 0.627 0.621
LBP (m = 2) 0.787 0.735 0.787
LBP (m = 4) 0.764 0.764 0.764
LBP (m = 6) 0.789 0.759 0.774
LBP (m = 8) 0.784 0.751 0.768
LBP (m = 16) 0.809 0.744 0.776
HGD 0.783 0.827 0.805

Table 5.1: This table shows the AUC results of the experimental study using MKL
with the HTRBF kernel for all subsets of image features for each of the views for all
findings (CC and MLO)
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Figure 5.5: This scatter plot displays the results of the experiment, AUC (points)
and the AUC standard deviation (bars), using each classifier method and each image
pattern descriptor. Scatter plot legend: S1 Clinical Data, S2 Intensity, S3 Wavelets,
S4 Local Binary Pattern with m = 2, S5 Local Binary Pattern with m = 4, S6 Local
Binary Pattern with m = 6, S7 Local Binary Pattern with m = 8, S8 Local Binary
Pattern with m = 16, S9 Histogram of Gradient Divergence, S4m Local Binary Pattern
with mass only and m = 2, S9m Histogram of Gradient Divergence with mass only,
S1+S4 Clinical Data plus Local Binary Pattern with m = 2, S1+S9 Clinical Data
plus Histogram of Gradient Divergence, C1 Multiple Kernel Learning classifier with
Heavy-Tailed RBF Kernel, C2 Multiple Kernel Learning classifier with Linear Kernel,
C3 Support Vector Machine with Linear Kernel.

MKL Linear CC View MLO View CC MLO Average

Clinical 0.717 0.706 0.711
Intensity 0.589 0.668 0.628
Wavelet 0.617 0.602 0.609
LBP (m = 2) 0.793 0.762 0.778
LBP (m = 4) 0.784 0.755 0.770
LBP (m = 6) 0.800 0.730 0.765
LBP (m = 8) 0.788 0.740 0.764
LBP (m = 16) 0.798 0.712 0.755
HGD 0.820 0.813 0.816

Table 5.2: This table shows the AUC results of the experimental study using MKL
with the Linear kernel for all subsets of image features for each of the views for all
findings (CC and MLO)
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SVM Linear CC View MLO View CC MLO Average

Clinical 0.709 0.661 0.685
Intensity 0.544 0.622 0.583
Wavelet 0.646 0.586 0.616
LBP (m = 2) 0.716 0.702 0.709
LBP (m = 4) 0.716 0.699 0.708
LBP (m = 6) 0.708 0.694 0.701
LBP (m = 8) 0.694 0.679 0.687
LBP (m = 16) 0.702 0.660 0.681
HGD 0.721 0.700 0.710

Table 5.3: This table shows the AUC results of the experimental study using SVM
with the Linear kernel for all subsets of image features for each of the views for all
findings (CC and MLO)

Classification Method SVM MKL MKL

Kernel Selected Linear Linear HTRBF

LBP m2 + Clinical 0.715 0.792 0.778
HGD + Clinical 0.739 0.834 0.804

Table 5.4: Comparison between SVM linear, MKL Linear and MKL HTRBF using
feature sets such as LBP (m = 2) and HGD combined with clinical data

Classification Method SVM MKL MKL

Kernel Selected Linear Linear HTRBF

LBP m2 0.721 0.794 0.815
HGD 0.752 0.858 0.871

Table 5.5: This table compares the results between SVM linear, MKL Linear and
MKL HTRBF using feature sets such as LBP (m = 2) and HGD extracted only from
masses.
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Chapter 6

Conclusions and Future Work

Each year that pass we are getting closer to a better system for breast cancer detection

and classification. Each improvement may be little but might save many lives. We

know that the current systems are efficient on classification, although they are not

perfect. We believe that with our experimental study, we showed that MKL may

improve the results in comparison with the most used method on breast cancer

anomaly classification, the SVM. We hope to have convinced the reader with the

work we presented in this document.

6.1 Research summary

In this work, we have studied in depth the current systems used for breast cancer

classification that are mainly composed by three parts, the breast cancer databases,

the image processing methods for pattern extraction and the machine learning methods

used to classify the patterns extracted. In the database area, we described all datasets

are available (as far as we know), listing their characteristics and explaining which

characteristics are considered optimal, and we selected one database to perform our

experiment. Then on the area of processing breast cancer images, we studied each

of the methods used, and we integrated within our experiment the methods with

good performance in the literature that had currently available libraries. Then, on

the classification area, we searched for the most used method, and also searched for

several types of approaches. Since MKL was not introduced in this area, we did a brief

explanation of a simple version of MKL, the Simple MKL and performed an experi-

mental study to introduce it in this area and compare it with the most used classifier

59
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method, using patterns extracted from the selected dataset (patterns given by the

previously integrated image processing methods). In summary, with this dissertation

we explored the methods in the literature for breast cancer classification, introduced

and explained the Simple MKL method and performed a comparison study between

SVM and Simple MKL using several image patterns, obtaining statistical meaningful

results that may be used as base to motivate further studies in this area with more

complex and efficient MKL approaches. Therefore, we believe we accomplished the

goal of presenting a method that can improve the current performance of breast cancer

classification by introducing and analysing the usage of MKL in the breast cancer

classification field.

6.2 Main findings

We can show that from the analysed state of the art (Chapter 3) automatic breast

cancer classification is a hot topic due to the diversity of image pattern extraction

and machine learning methods used. We can also show that the works with higher

performance used one of the following image pattern extraction methods, Wavelets,

Histogram of Gradient Divergence and Local Binary Patterns. Where most of the

times they recurred to simple methods such as kNN or SVM to classify the patterns

extracted leaving space for improvement although there are some exceptions that we

also listed. However, MKL is an interesting classification method given its capacity on

fitting data with more flexibility than the SVM method as we explained in Chapter 4.

Therefore, we performed an experiment using MKL and found that the method was

indeed a way to improve the performance on this area. Obtaining better performance

in the classification of all lesions in comparison with the Linear SVM with most of

the tested breast cancer patterns extracted, where on the best result using Histogram

of Gradients, the MKL method obtained the AUC of 0.82 in comparison with the

AUC of 0.71 obtained from the SVM. We also found that the usage of clinical data

combined with image patterns descriptors enhance the overall performance, during our

experiment we obtained an increment of 0.02 the AUC of our best result. And our last

main finding was that the lesion type mass contain many cues regarding malignancy,

given the great results obtained on our experiment using only masses, achieving an

AUC of 0.87.
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6.3 Current limitations

In order to perform our comparison experiment, we used only the BCDR F01 dataset,

despite being a good dataset as we discussed in Chapter 3, the dataset does not

contain many rows for each lesion, we were only able to analyse the classification of

all lesions and the classification of masses. The dataset also contains a good number

of micro calcifications but our method of region of interest pattern extraction does

not explore details that are relevant in micro calcification classification, such as the

number of micro calcifications, their distance, their position and others, therefore we

did not attempt to use them separately on our experiment like we did with masses.

Another limitation of using only this dataset was the fact that we could only compare

our results with works that used it, which it is not a real issue since our goal was to

prove the that MKL is a good approach as a classifier for breast cancer data and not

to compare results with the methods in the state of the art.

6.4 Future work

Now that we performed the initial step to the usage of MKL in the breast cancer

classification, we hope to motivate new researchers to explore further in three direc-

tions. The first direction would be to study the top performance MKL methods in the

literature to build a mass classification model, because we believe that great results

that may surpass the state of the art results in breast cancer mass classification can be

achieved if the HGD descriptor (which has exceptional performance in masses) is used

to study which MKL classifier method has the best performance. We only used one

dataset in our study, the second direction would be to replicate the same experiment

for other datasets and see if there are variations on the comparison results. Since

the MKL has a bigger adaptability to data (because it’s based on the creation of a

optimal kernel to fit that data), merging two different datasets may not compromise

the results, which would lead to a classifier able to classify between images taken from

different scanners which is great for real case scenarios, because many hospitals have

different equipments. Last, we believe that a separated study of different types of

lesions may be relevant, although may be hard to perform because some lesions are

more rare than others, therefore its hard to find datasets with plenty cases of each

type of finding to perform a good study, but exploring these may lead to the best

results in classification of breast cancer images.
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6.5 Conclusion

The proposed method, MKL can get a noticeable performance in breast cancer image

data, and should be further explored since it is a more flexible approach to classify

data than the most common method used in the literature, the SVM. Even though our

experiment, which used only a simple method of MKL, the Simple MKL, part of our

results surpassed some of the results listed in the literature. And we also achieved our

goal, since our experiment proved the MKL superiority over the SVM for breast cancer

data. Also encouraging new works to pursue more complex MKL methods to obtain

results that may improve the current state of the art in breast cancer classification.
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