90 research outputs found

    Novel Color-Coded Pulse-Burst Microscopy System for Ultra-High Spatially and Temporally Resolved Imaging of Primary Atomization in Engine-Relevant Diesel Sprays

    Get PDF
    Primary atomization, the process of forming droplets from a high-pressure jet, is not a well understood phenomena because it is difficult to study experimentally. Primary atomization occurs on the micron scale over the course of nanoseconds. While numerous experiments have attempted to image primary atomization, they all lack the spatial and temporal resolution to visualize droplet formation. To study droplet formation in primary atomization, a high-performance Color-Coded Pulse-Burst (CCPB) Microscopy system was designed and implemented. This is a novel experimental method for obtaining high-speed (20 Million fps), high-resolution (24MP, 1.2 μm resolving power) images. These images are used to study the evolution of fluid structures in an engine-relevant spray and evaluate assumptions in models of primary atomization.M.S

    Computational Imaging Approach to Recovery of Target Coordinates Using Orbital Sensor Data

    Get PDF
    This dissertation addresses the components necessary for simulation of an image-based recovery of the position of a target using orbital image sensors. Each component is considered in detail, focusing on the effect that design choices and system parameters have on the accuracy of the position estimate. Changes in sensor resolution, varying amounts of blur, differences in image noise level, selection of algorithms used for each component, and lag introduced by excessive processing time all contribute to the accuracy of the result regarding recovery of target coordinates using orbital sensor data. Using physical targets and sensors in this scenario would be cost-prohibitive in the exploratory setting posed, therefore a simulated target path is generated using Bezier curves which approximate representative paths followed by the targets of interest. Orbital trajectories for the sensors are designed on an elliptical model representative of the motion of physical orbital sensors. Images from each sensor are simulated based on the position and orientation of the sensor, the position of the target, and the imaging parameters selected for the experiment (resolution, noise level, blur level, etc.). Post-processing of the simulated imagery seeks to reduce noise and blur and increase resolution. The only information available for calculating the target position by a fully implemented system are the sensor position and orientation vectors and the images from each sensor. From these data we develop a reliable method of recovering the target position and analyze the impact on near-realtime processing. We also discuss the influence of adjustments to system components on overall capabilities and address the potential system size, weight, and power requirements from realistic implementation approaches

    Empirical and Analytical Perspectives on the Robustness of Blockchain-related Peer-to-Peer Networks

    Get PDF
    Die Erfindung von Bitcoin hat ein großes Interesse an dezentralen Systemen geweckt. Eine häufige Zuschreibung an dezentrale Systeme ist dabei, dass eine Dezentralisierung automatisch zu einer höheren Sicherheit und Widerstandsfähigkeit gegenüber Angriffen führt. Diese Dissertation widmet sich dieser Zuschreibung, indem untersucht wird, ob dezentralisierte Anwendungen tatsächlich so robust sind. Dafür werden exemplarisch drei Systeme untersucht, die häufig als Komponenten in komplexen Blockchain-Anwendungen benutzt werden: Ethereum als Infrastruktur, IPFS zur verteilten Datenspeicherung und schließlich "Stablecoins" als Tokens mit Wertstabilität. Die Sicherheit und Robustheit dieser einzelnen Komponenten bestimmt maßgeblich die Sicherheit des Gesamtsystems in dem sie verwendet werden; darüber hinaus erlaubt der Fokus auf Komponenten Schlussfolgerungen über individuelle Anwendungen hinaus. Für die entsprechende Analyse bedient sich diese Arbeit einer empirisch motivierten, meist Netzwerklayer-basierten Perspektive -- angereichert mit einer ökonomischen im Kontext von Wertstabilen Tokens. Dieses empirische Verständnis ermöglicht es Aussagen über die inhärenten Eigenschaften der studierten Systeme zu treffen. Ein zentrales Ergebnis dieser Arbeit ist die Entdeckung und Demonstration einer "Eclipse-Attack" auf das Ethereum Overlay. Mittels eines solchen Angriffs kann ein Angreifer die Verbreitung von Transaktionen und Blöcken behindern und Netzwerkteilnehmer aus dem Overlay ausschließen. Des weiteren wird das IPFS-Netzwerk umfassend analysiert und kartografiert mithilfe (1) systematischer Crawls der DHT sowie (2) des Mitschneidens von Anfragenachrichten für Daten. Erkenntlich wird hierbei, dass die hybride Overlay-Struktur von IPFS Segen und Fluch zugleich ist, da das Gesamtsystem zwar robust gegen Angriffe ist, gleichzeitig aber eine umfassende Überwachung der Netzwerkteilnehmer ermöglicht wird. Im Rahmen der wertstabilen Kryptowährungen wird ein Klassifikations-Framework vorgestellt und auf aktuelle Entwicklungen im Gebiet der "Stablecoins" angewandt. Mit diesem Framework wird somit (1) der aktuelle Zustand der Stablecoin-Landschaft sortiert und (2) ein Mittel zur Verfügung gestellt, um auch zukünftige Designs einzuordnen und zu verstehen.The inception of Bitcoin has sparked a large interest in decentralized systems. In particular, popular narratives imply that decentralization automatically leads to a high security and resilience against attacks, even against powerful adversaries. In this thesis, we investigate whether these ascriptions are appropriate and if decentralized applications are as robust as they are made out to be. To this end, we exemplarily analyze three widely-used systems that function as building blocks for blockchain applications: Ethereum as basic infrastructure, IPFS for distributed storage and lastly "stablecoins" as tokens with a stable value. As reoccurring building blocks for decentralized applications these examples significantly determine the security and resilience of the overall application. Furthermore, focusing on these building blocks allows us to look past individual applications and focus on inherent systemic properties. The analysis is driven by a strong empirical, mostly network-layer based perspective; enriched with an economic point of view in the context of monetary stabilization. The resulting practical understanding allows us to delve into the systems' inherent properties. The fundamental results of this thesis include the demonstration of a network-layer Eclipse attack on the Ethereum overlay which can be leveraged to impede the delivery of transaction and blocks with dire consequences for applications built on top of Ethereum. Furthermore, we extensively map the IPFS network through (1) systematic crawling of its DHT, as well as (2) monitoring content requests. We show that while IPFS' hybrid overlay structure renders it quite robust against attacks, this virtue of the overlay is simultaneously a curse, as it allows for extensive monitoring of participating peers and the data they request. Lastly, we exchange the network-layer perspective for a mostly economic one in the context of monetary stabilization. We present a classification framework to (1) map out the stablecoin landscape and (2) provide means to pigeon-hole future system designs. With our work we not only scrutinize ascriptions attributed to decentral technologies; we also reached out to IPFS and Ethereum developers to discuss results and remedy potential attack vectors

    Proceedings of Mathsport international 2017 conference

    Get PDF
    Proceedings of MathSport International 2017 Conference, held in the Botanical Garden of the University of Padua, June 26-28, 2017. MathSport International organizes biennial conferences dedicated to all topics where mathematics and sport meet. Topics include: performance measures, optimization of sports performance, statistics and probability models, mathematical and physical models in sports, competitive strategies, statistics and probability match outcome models, optimal tournament design and scheduling, decision support systems, analysis of rules and adjudication, econometrics in sport, analysis of sporting technologies, financial valuation in sport, e-sports (gaming), betting and sports

    Compressive Sensing and Its Applications in Automotive Radar Systems

    Get PDF
    Die Entwicklung in Richtung zu autonomem Fahren verspricht, künftig einen sicheren Verkehr ohne tödliche Unfälle zu ermöglichen, indem menschliche Fahrer vollständig ersetzt werden. Dadurch entfällt der Faktor des menschlichen Fehlers, der aus Müdigkeit, Unachtsamkeit oder Alkoholeinfluss resultiert. Um jedoch eine breite Akzeptanz für autonome Fahrzeuge zu erreichen und es somit eines Tages vollständig umzusetzen, sind noch eine Vielzahl von Herausforderungen zu lösen. Da in einem autonomen Fahrzeug kein menschlicher Fahrer mehr in Notfällen eingreifen kann, müssen sich autonome Fahrzeuge auf leistungsfähige und robuste Sensorsysteme verlassen können, um in kritischen Situationen auch unter widrigen Bedingungen angemessen reagieren zu können. Daher ist die Entwicklung von Sensorsystemen erforderlich, die für Funktionalitäten jenseits der aktuellen advanced driver assistance systems eingesetzt werden können. Dies resultiert in neuen Anforderungen, die erfüllt werden müssen, um sichere und zuverlässige autonome Fahrzeuge zu realisieren, die weder Fahrzeuginsassen noch Passanten gefährden. Radarsysteme gehören zu den Schlüsselkomponenten unter der Vielzahl der verfügbaren Sensorsysteme, da sie im Gegensatz zu visuellen Sensoren von widrigen Wetter- und Umgebungsbedingungen kaum beeinträchtigt werden. Darüber hinaus liefern Radarsysteme zusätzliche Umgebungsinformationen wie Abstand, Winkel und relative Geschwindigkeit zwischen Sensor und reflektierenden Zielen. Die vorliegende Dissertation deckt im Wesentlichen zwei Hauptaspekte der Forschung und Entwicklung auf dem Gebiet der Radarsysteme im Automobilbereich ab. Ein Aspekt ist die Steigerung der Effizienz und Robustheit der Signalerfassung und -verarbeitung für die Radarperzeption. Der andere Aspekt ist die Beschleunigung der Validierung und Verifizierung von automated cyber-physical systems, die parallel zum Automatisierungsgrad auch eine höhere Komplexität aufweisen. Nach der Analyse zahlreicher möglicher Compressive Sensing Methoden, die im Bereich Fahrzeugradarsysteme angewendet werden können, wird ein rauschmoduliertes gepulstes Radarsystem vorgestellt, das kommerzielle Fahrzeugradarsysteme in seiner Robustheit gegenüber Rauschen übertrifft. Die Nachteile anderer gepulster Radarsysteme hinsichtlich des Signalerfassungsaufwands und der Laufzeit werden durch die Verwendung eines Compressive Sensing-Signalerfassungs- und Rekonstruktionsverfahrens in Kombination mit einer Rauschmodulation deutlich verringert. Mit Compressive Sensing konnte der Aufwand für die Signalerfassung um 70% reduziert werden, während gleichzeitig die Robustheit der Radarwahrnehmung auch für signal-to-noise-ratio-Pegel nahe oder unter Null erreicht wird. Mit einem validierten Radarsensormodell wurde das Rauschradarsystem emuliert und mit einem kommerziellen Fahrzeugradarsystem verglichen. Datengetriebene Wettermodelle wurden entwickelt und während der Simulation angewendet, um die Radarleistung unter widrigen Bedingungen zu bewerten. Während eine Besprühung mit Wasser die Radomdämpfung um 10 dB erhöht und Spritzwasser sogar um 20 dB, ergibt sich die eigentliche Begrenzung aus der Rauschzahl und Empfindlichkeit des Empfängers. Es konnte bewiesen werden, dass das vorgeschlagene Compressive Sensing Rauschradarsystem mit einer zusätzlichen Signaldämpfung von bis zu 60 dB umgehen kann und damit eine hohe Robustheit in ungünstigen Umwelt- und Wetterbedingungen aufweist. Neben der Robustheit wird auch die Interferenz berücksichtigt. Zum einen wird die erhöhte Störfestigkeit des Störradarsystems nachgewiesen. Auf der anderen Seite werden die Auswirkungen auf bestehende Fahrzeugradarsysteme bewertet und Strategien zur Minderung der Auswirkungen vorgestellt. Die Struktur der Arbeit ist folgende. Nach der Einführung der Grundlagen und Methoden für Fahrzeugradarsysteme werden die Theorie und Metriken hinter Compressive Sensing gezeigt. Darüber hinaus werden weitere Aspekte wie Umgebungsbedingungen, unterschiedliche Radararchitekturen und Interferenz erläutert. Der Stand der Technik gibt einen Überblick über Compressive Sensing-Ansätze und Implementierungen mit einem Fokus auf Radar. Darüber hinaus werden Aspekte von Fahrzeug- und Rauschradarsystemen behandelt. Der Hauptteil beginnt mit der Vorstellung verschiedener Ansätze zur Nutzung von Compressive Sensing für Fahrzeugradarsysteme, die in der Lage sind, die Erfassung und Wahrnehmung von Radarsignalen zu verbessern oder zu erweitern. Anschließend wird der Fokus auf ein Rauschradarsystem gelegt, das mit Compressive Sensing eine effiziente Signalerfassung und -rekonstruktion ermöglicht. Es wurde mit verschiedenen Compressive Sensing-Metriken analysiert und in einer Proof-of-Concept-Simulation bewertet. Mit einer Emulation des Rauschradarsystems wurde das Potential der Compressive Sensing Signalerfassung und -verarbeitung in einem realistischeren Szenario demonstriert. Die Entwicklung und Validierung des zugrunde liegenden Sensormodells wird ebenso dokumentiert wie die Entwicklung der datengetriebenen Wettermodelle. Nach der Betrachtung von Interferenz und der Koexistenz des Rauschradars mit kommerziellen Radarsystemen schließt ein letztes Kapitel mit Schlussfolgerungen und einem Ausblick die Arbeit ab.Developments towards autonomous driving promise to lead to safer traffic, where fatal accidents can be avoided after making human drivers obsolete and hence removing the factor of human error. However, to ensure the acceptance of automated driving and make it a reality one day, still a huge amount of challenges need to be solved. With having no human supervisors, automated vehicles have to rely on capable and robust sensor systems to ensure adequate reactions in critical situations, even during adverse conditions. Therefore, the development of sensor systems is required that can be applied for functionalities beyond current advanced driver assistance systems. New requirements need to be met in order to realize safe and reliable automated vehicles that do not harm passersby. Radar systems belong to the key components among the variety of sensor systems. Other than visual sensors, radar is less vulnerable towards adverse weather and environment conditions. In addition, radar provides complementary environment information such as target distance, angular position or relative velocity, too. The thesis ad hand covers basically two main aspects of research and development in the field of automotive radar systems. One aspect is to increase efficiency and robustness in signal acquisition and processing for radar perception. The other aspect is to accelerate validation and verification of automated cyber-physical systems that feature more complexity along with the level of automation. After analyzing a variety of possible Compressive Sensing methods for automotive radar systems, a noise modulated pulsed radar system is suggested in the thesis at hand, which outperforms commercial automotive radar systems in its robustness towards noise. Compared to other pulsed radar systems, their drawbacks regarding signal acquisition effort and computation run time are resolved by using noise modulation for implementing a Compressive Sensing signal acquisition and reconstruction method. Using Compressive Sensing, the effort in signal acquisition was reduced by 70%, while obtaining a radar perception robustness even for signal-to-noise-ratio levels close to or below zero. With a validated radar sensor model the noise radar was emulated and compared to a commercial automotive radar system. Data-driven weather models were developed and applied during simulation to evaluate radar performance in adverse conditions. While water sprinkles increase radome attenuation by 10 dB and splash water even by 20 dB, the actual limitation comes from noise figure and sensitivity of the receiver. The additional signal attenuation that can be handled by the proposed compressive sensing noise radar system proved to be even up to 60 dB, which ensures a high robustness of the receiver during adverse weather and environment conditions. Besides robustness, interference is also considered. On the one hand the increased robustness towards interference of the noise radar system is demonstrated. On the other hand, the impact on existing automotive radar systems is evaluated and strategies to mitigate the impact are presented. The structure of the thesis is the following. After introducing basic principles and methods for automotive radar systems, the theory and metrics of Compressive Sensing is presented. Furthermore some particular aspects are highlighted such as environmental conditions, different radar architectures and interference. The state of the art provides an overview on Compressive Sensing approaches and implementations with focus on radar. In addition, it covers automotive radar and noise radar related aspects. The main part starts with presenting different approaches on making use of Compressive Sensing for automotive radar systems, that are capable of either improving or extending radar signal acquisition and perception. Afterwards the focus is put on a noise radar system that uses Compressive Sensing for an efficient signal acquisition and reconstruction. It was analyzed using different Compressive Sensing metrics and evaluated in a proof-of-concept simulation. With an emulation of the noise radar system the feasibility of the Compressive Sensing signal acquisition and processing was demonstrated in a more realistic scenario. The development and validation of the underlying sensor model is documented as well as the development of the data-driven weather models. After considering interference and co-existence with commercial radar systems, a final chapter with conclusions and an outlook completes the work

    Multiple Object Tracking in Light Microscopy Images Using Graph-based and Deep Learning Methods

    Get PDF
    Multi-Objekt-Tracking (MOT) ist ein Problem der Bildanalyse, welches die Lokalisierung und Verknüpfung von Objekten in einer Bildsequenz über die Zeit umfasst, mit zahlreichen Anwendungen in Bereichen wie autonomes Fahren, Robotik oder Überwachung. Neben technischen Anwendungsgebieten besteht auch ein großer Bedarf an MOT in biomedizinischen Anwendungen. So können beispielsweise Experimente, die mittels Lichtmikroskopie über mehrere Stunden oder Tage hinweg erfasst wurden, Hunderte oder sogar Tausende von ähnlich aussehenden Objekten enthalten, was eine manuelle Analyse unmöglich macht. Um jedoch zuverlässige Schlussfolgerungen aus den verfolgten Objekten abzuleiten, ist eine hohe Qualität der prädizierten Trajektorien erforderlich. Daher werden domänenspezifische MOT-Ansätze benötigt, die in der Lage sind, die Besonderheiten von lichtmikroskopischen Daten zu berücksichtigen. In dieser Arbeit werden daher zwei neuartige Methoden für das MOT-Problem in Lichtmikroskopie-Bildern erarbeitet sowie Ansätze zum Vergleich der Tracking-Methoden vorgestellt. Um die Performanz der Tracking-Methode von der Qualität der Segmentierung zu unterscheiden, wird ein Ansatz vorgeschlagen, der es ermöglicht die Tracking-Methode getrennt von der Segmentierung zu analysieren, was auch eine Untersuchung der Robustheit von Tracking-Methoden gegeben verschlechterter Segmentierungsdaten erlaubt. Des Weiteren wird eine graphbasierte Tracking-Methode vorgeschlagen, welche eine Brücke zwischen einfach anzuwendenden, aber weniger performanten Tracking-Methoden und performanten Tracking-Methoden mit vielen schwer einstellbaren Parametern schlägt. Die vorgeschlagene Tracking-Methode hat nur wenige manuell einstellbare Parameter und ist einfach auf 2D- und 3D-Datensätze anwendbar. Durch die Modellierung von Vorwissen über die Form des Tracking-Graphen ist die vorgeschlagene Tracking-Methode außerdem in der Lage, bestimmte Arten von Segmentierungsfehlern automatisch zu korrigieren. Darüber hinaus wird ein auf Deep Learning basierender Ansatz vorgeschlagen, der die Aufgabe der Instanzsegmentierung und Objektverfolgung gleichzeitig in einem einzigen neuronalen Netzwerk erlernt. Außerdem lernt der vorgeschlagene Ansatz Repräsentationen zu prädizieren, die für den Menschen verständlich sind. Um die Performanz der beiden vorgeschlagenen Tracking-Methoden im Vergleich zu anderen aktuellen, domänenspezifischen Tracking-Ansätzen zu zeigen, werden sie auf einen domänenspezifischen Benchmark angewendet. Darüber hinaus werden weitere Bewertungskriterien für Tracking-Methoden eingeführt, welche zum Vergleich der beiden vorgeschlagenen Tracking-Methoden herangezogen werden

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link
    corecore