
Multiple Object Tracking in Light
Microscopy Images Using Graph-based and

Deep Learning Methods

Zur Erlangung des akademischen Grades einer

Doktorin der Ingenieurwissenschaften (Dr.-Ing.)

von der KIT-Fakultät für Maschinenbau

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. Katharina Löffler

aus Heiligenstadt

Hauptreferent: apl. Prof. Dr.-Ing. Ralf Mikut

Korreferenten: Prof. Dr. Britta Nestler

Prof. Dr. Uwe Strähle

Tag der mündlichen Prüfung: 19. Juni 2023

Zusammenfassung

Multi-Objekt-Tracking (MOT) ist ein Problem der Bildanalyse, welches die Lokalisierung

und Verknüpfung von Objekten in einer Bildsequenz über die Zeit umfasst, mit zahlreichen

Anwendungen in Bereichen wie autonomes Fahren, Robotik oder Überwachung. Neben

technischen Anwendungsgebieten besteht auch ein großer Bedarf an MOT in biomedizini-

schen Anwendungen. So können beispielsweise Experimente, die mittels Lichtmikroskopie

über mehrere Stunden oder Tage hinweg erfasst wurden, Hunderte oder sogar Tausende

von ähnlich aussehenden Objekten enthalten, was eine manuelle Analyse unmöglich

macht. Um jedoch zuverlässige Schlussfolgerungen aus den verfolgten Objekten abzu-

leiten, ist eine hohe Qualität der prädizierten Trajektorien erforderlich. Daher werden

domänenspezifische MOT-Ansätze benötigt, die in der Lage sind, die Besonderheiten

von lichtmikroskopischen Daten zu berücksichtigen. In dieser Arbeit werden daher zwei

neuartige Methoden für das MOT-Problem in Lichtmikroskopie-Bildern erarbeitet sowie

Ansätze zum Vergleich der Tracking-Methoden vorgestellt.

Um die Performanz der Tracking-Methode von der Qualität der Segmentierung zu

unterscheiden, wird ein Ansatz vorgeschlagen, der es ermöglicht die Tracking-Methode

getrennt von der Segmentierung zu analysieren, was auch eine Untersuchung der Robust-

heit von Tracking-Methoden gegeben verschlechterter Segmentierungsdaten erlaubt. Des

Weiteren wird eine graphbasierte Tracking-Methode vorgeschlagen, welche eine Brücke

zwischen einfach anzuwendenden, aber weniger performanten Tracking-Methoden und

performanten Tracking-Methoden mit vielen schwer einstellbaren Parametern schlägt. Die

vorgeschlagene Tracking-Methode hat nur wenige manuell einstellbare Parameter und ist

einfach auf 2D- und 3D-Datensätze anwendbar. Durch die Modellierung von Vorwissen

über die Form des Tracking-Graphen ist die vorgeschlagene Tracking-Methode außerdem

in der Lage, bestimmte Arten von Segmentierungsfehlern automatisch zu korrigieren.

Darüber hinaus wird ein auf Deep Learning basierender Ansatz vorgeschlagen, der die

Aufgabe der Instanzsegmentierung und Objektverfolgung gleichzeitig in einem einzigen

neuronalen Netzwerk erlernt. Außerdem lernt der vorgeschlagene Ansatz Repräsentatio-

nen zu prädizieren, die für den Menschen verständlich sind. Um die Performanz der beiden

vorgeschlagenen Tracking-Methoden im Vergleich zu anderen aktuellen, domänenspezifi-

schen Tracking-Ansätzen zu zeigen, werden sie auf einen domänenspezifischen Benchmark

angewendet. Darüber hinaus werden weitere Bewertungskriterien für Tracking-Methoden

eingeführt, welche zum Vergleich der beiden vorgeschlagenen Tracking-Methoden heran-

gezogen werden.

i

Abstract

Multiple Object Tracking (MOT) is a problem in image analysis that involves the localiza-

tion and linking of objects in an image sequence over time with numerous applications

in fields such as autonomous driving, robotics, or surveillance. Besides technical fields

of application, also there is a tremendous need for MOT in biomedical applications. For

instance, experiments captured with light microscopy imaging over several hours or days

can contain hundreds or even thousands of objects similar in appearance, which makes

manual analysis infeasible. However, to deduce reliable conclusions from the tracked

objects, a high tracking quality is needed. Therefore, domain-specific MOT approaches

are required which are able to manage the distinctiveness of light microscopy data. Hence,

this thesis proposes two novel tracking methods for the task of MOT in light microscopy

images as well as provides approaches to compare the performance of tracking methods.

To distinguish the performance of the tracking method from the segmentation quality,

an approach is proposed to analyze the tracking method separately from the segmentation

approach, which also allows the investigation of the robustness of a tracking method

when provided with degraded segmentation data. Next, a graph-based tracking method is

proposed that bridges the gap between simple to apply yet inferior-performing tracking

methods and parameter-heavy, well-performing tracking methods which are difficult to

tune. The proposed tracking method has few manually tunable parameters and is simple to

apply to 2D and 3D datasets. Moreover, by modeling prior knowledge on the shape of the

tracking graph the proposed tracking is capable to correct certain types of segmentation

errors automatically. In addition, a deep learning based approach is proposed which learns

the task of instance segmentation and tracking simultaneously in a single neural network.

Also, the proposed approach learns to predict representations that are comprehensible

to humans. Moreover, to show the performance of the two proposed tracking methods

compared to other domain-specific state-of-the-art methods, they are applied to a domain-

specific benchmark. In addition, further evaluation criteria are proposed which are applied

to compare the two proposed tracking methods.

iii

Acknowledgments

Wow. I am a bit astonished that this long journey is coming to an end. Looking back at

April 2017, when my journey with cells and my time at the institute started as a student

assistant, I wouldn’t have thought this topic would accompany me that long. Sometimes I

have the feeling that during this journey I have learned more about people and myself

than my actual research topic, so I would like to thank everyone for the many, sometimes

unexpected and astounding, but in the end very valuable lessons that I have been taught.

Thanks to Benni and Hannes who sparked my fascination for cells by giving me the

opportunity to start my journey at IAI as a student assistant. Thanks to Andy who patiently

supervised my Master’s thesis, which was of course cell related.

My tremendous gratitude goes out to my supervisor Ralf Mikut for giving me the

opportunity to do a dissertation under his supervision. Thanks for the numerous intense

but calm discussions, your fairness, reliability, and openness; and of course your thorough

reading with plentiful comments in papers and especially this document that sometimes

put me at the brink of despair but usually were worth addressing.

Thanks to the graduate school HIDSS4Health for the financial support and the numerous

possibilities for further education. I especially like to thank Ines Reinartz and Nicole Merkle

for their efforts in organizing events and supporting doctoral researchers in the scope of

HIDSS4Health. I would also like to thank my life science PI Uwe Strähle, and my thesis

advisory committee members Peter Sanders and Bogdan Savchynskyy for their efforts in

advising this thesis, as well as Uwe Strähle and Britta Nestler for reviewing this thesis.

Thanks to Izhar Bar-Gad for hosting me in Israel and providing me with the opportunity

to get a glimpse into neuroscience. I would also like to thank Orel, Kate, and Yuval for

making me feel very welcome in Izhar’s group during my short stay.

Thanks to my two students Michael and Thomas, who I had the pleasure to work with. A

special thank you to all my colleagues, especially Andy, Claudia, Ines, Kaleb, Lisa, Marian,

Moritz, Nicole, Oli, and Tim. Thanks for the exchange, discussions, occasional laughter,

and chocolate breaks.

Thanks to my parents for accepting my career choice of becoming an engineer and

allowing me to find my own path in life. My deep gratitude goes out to Chris and all of my

friends, who endured my fascination for bad puns and sometimes even shared a burst of

laughter about them with me. Thank you for all the walks, hikes, couch potato chocolate

times, and ridiculously long phone calls.

And finally, thanks to the numerous other people that are not mentioned here explicitly

who accompanied me on this journey!

Karlsruhe, February 2023 Katharina Löffler

v

Contents

List of Figures . ix

List of Tables . xi

1. Introduction . 1
1.1. Theoretical Background and Related Work 2

1.1.1. The Image Analysis Pipeline – From Data Acquisition to Gaining

Insights . 2

1.1.2. MOT in Light Microscopy Images 6

1.1.3. Causes of Segmentation and Tracking Errors in Light Microscopy

Images . 9

1.1.4. Correction of Segmentation and Tracking Errors 10

1.1.5. Evaluation of Tracking Performance 12

1.1.6. Benchmark Datasets . 15

1.2. Open Questions . 17

1.3. Objectives and Thesis Outline . 18

2. Tracking Benchmark . 21
2.1. Method . 22

2.2. Experiment . 25

2.2.1. Experimental Setup . 25

2.2.2. Evaluation . 27

2.3. Discussion . 31

3. Graph-based Tracking . 33
3.1. Mathematical Preliminaries . 34

3.2. Method . 35

3.2.1. Step 1: Tracklet Step . 35

3.2.2. Step 2: Matching Step . 37

3.2.3. Step 3: Post-Processing Step . 46

3.3. Experiment . 55

3.3.1. Experimental Setup . 55

3.3.2. Evaluation . 57

3.4. Discussion . 65

4. EmbedTrack . 67
4.1. Instance Segmentation of Neven et al. 68

vii

Contents

4.2. Method . 69

4.2.1. EmbedTrack Model . 71

4.2.2. Loss . 71

4.2.3. Pixel Clustering . 75

4.2.4. Tracking . 77

4.3. Experiment . 78

4.3.1. Experimental Setup . 78

4.3.2. Evaluation . 85

4.4. Discussion . 98

5. Method Comparison . 101
5.1. Criteria for Comparison . 101

5.2. Cell Tracking Challenge Benchmark . 102

5.2.1. The Benchmark . 102

5.2.2. Overview of Participating Methods 103

5.3. Comparison . 107

5.3.1. Setup of the Proposed Methods for Evaluation on the CTB 107

5.3.2. Tracking Quality . 110

5.3.3. Scalability . 114

5.3.4. Additional Criteria for Evaluation 115

5.4. Discussion . 117

6. Conclusions and Outlook . 119

A. Appendix . 123
A.1. Naming of Participating Teams on the CTC 123

A.2. Comparison of Tracking Results . 123

A.3. Segmentation Quality of EmbedTrack on DeepCell Benchmark Dataset . 126

B. Nomenclature and Symbols . 129

List of Own Publications . 137

Bibliography . 139

viii

List of Figures

1.1. Analysis pipeline for light microscopy images. 3

1.2. Segmentation and tracking errors in MOT. 11

1.3. Thesis outline. 18

2.1. Tracking-by-detection pipeline. 22

2.2. Replacing the segmentation method by degraded segmentation data. . . 23

2.3. Synthetically degraded segmentation errors. 23

2.4. DeepCell datasets with degraded segmentation data. 26

2.5. SEG and DET on datasets with degraded segmentation data. 28

2.6. TRA score of MU-Lux-CZ on datasets with degraded segmentation data. 29

2.7. SEG and TRA of several tracking methods on degraded segmentation data. 30

2.8. Performance of KTH-SE on different image sequences. 31

3.1. Overview of the proposed graph-based tracking baseline. 36

3.2. Graph constructed for an example sequence. 39

3.3. Graph parts modeling object behavior and segmentation errors. 40

3.4. Extracted features used in the graph-based baseline tracker. 45

3.5. Overview of segmentation masks and corresponding tracking graph after

matching step and post-processing step. 47

3.6. Untangling step in the post-processing. 48

3.7. Cases under which tracks can be merged in the post-processing step. . . 49

3.8. Resolving pixels of overlapping segmentation masks. 56

3.9. SEG and TRA of the graph-based baseline tracker with different parameter

Δ𝑡 . 58

3.10. SEG and TRA of the graph-based baseline tracker with different parameter

ROI size. 59

3.11. SEG and TRA of the graph-based baseline tracker with different post-

processing on degraded segmentation data. 61

3.12. SEG and TRA of the graph-based baseline tracker and other trackers on

degraded segmentation data. 63

4.1. Clustering with different clustering bandwidths. 69

4.2. Overview of the EmbedTrack method. 70

4.3. Influence of scaling the clustering bandwidth on the distance score 𝑑S(Δ𝑥). 73

4.4. Clustering pixels into instances. 76

4.5. Exemplary frames of training sequences of DeepCell dataset. 78

4.6. Train and inference sequence of BF-C2DL-HSC. 83

4.7. FOI correction in DeepCell dataset. 87

4.8. Segmentation quality of EmbedTrack on HEK 293 test dataset. 89

ix

List of Figures

4.9. Segmentation quality of EmbedTrack on HeLa S3 test dataset. 90

4.10. SEG and TRA on DeepCell Mixed test dataset with full temporal resolution,

Δ𝑡 = 1, with different augmentation strategies during training. 92

4.11. SEG and TRA on DeepCell test datasets with full temporal resolution,

Δ𝑡 = 1, after training models with mixed and specialized data. 93

4.12. SEG and TRA on DeepCell Mixed test dataset with full temporal resolution,

Δ𝑡 = 1, with and without test time augmentation. 94

4.13. SEG and TRA of EmbedTrack on subsampled DeepCell test datasets. . . 95

4.14. SEG and TRA of different tracking approaches on subsampled DeepCell

Mixed test datasets. 96

4.15. Qualitative Segmentation Results on BF-C2DL-HSC 02. 97

4.16. SEG and TRA scores of different tracking approaches on subsampled BF-

C2DL-HSC 02 test datasets. 98

5.1. Sample images from the CTC. 104

A.1. Segmentation quality of EmbedTrack on RAW 264.7 test dataset. 127

A.2. Segmentation quality of EmbedTrack on NIH 3T3 test dataset. 128

x

List of Tables

2.1. Statistics on the selected datasets from the DeepCell data. 25

3.1. TRA scores of different tracking approaches on erroneous segmentation

data. 64

4.1. Training and validation datasets constructed from the DeepCell dataset. . 80

4.2. Test datasets constructed from the DeepCell benchmark dataset. 82

4.3. BF-C2DL-HSC training and validation dataset. 84

4.4. Statistics of the subsampled BF-C2DL-HSC 02 dataset. 85

4.5. Number of parameters of neural networks used in biomedical segmentation

and tracking. 86

4.6. Frame-wise SEG score of EmbedTrack with and without FOI correction on

DeepCell test datasets. 88

4.7. Influence of FOI correction on the DeepCell test datasets with full temporal

resolution, Δ𝑡 = 1. 91

5.1. Dataset statistics of CTC datasets. 105

5.2. Overview of submitted cell segmentation and tracking approaches. . . . 107

5.3. Results of the Cell Tracking Benchmark (CTB) – status 22.10.2021. 112

5.4. Results of the Cell Tracking Benchmark (CTB) – status 14.03.2022. 113

5.5. Runtimes of different MOT approaches on the CTC. 115

A.1. Team names before and after the naming convention was changed. . . . 123

A.2. SEG scores of different tracking approaches on erroneous segmentation data. 124

A.3. DET scores of different tracking approaches on erroneous segmentation

data. 125

xi

1. Introduction

Image analysis provides the key to extract quantitative insights from observations. One

task in image analysis is Multiple Object Tracking (MOT) which aims at localizing objects

of interest in an image sequence and linking corresponding objects over time. The accurate

tracking of objects provides the basis for further tasks such as behavior analysis, path

planning, or forecasting of movements which have numerous applications in for instance

autonomous driving, surveillance, or human-machine interaction. Besides these traditional

fields of application for MOT, biomedical image processing is another application domain

with a tremendous need for automated tracking methods.

One approach to acquire images in the biomedical domain is light microscopy which

allows to observe objects from the size of a few dozen nanometers up to millimeters [1, 2].

However, the data captured with light microscopy are very different to the data captured

in traditional MOT applications. (i) First of all, large-scale experiments running for several

hours or even days acquire image data up to the terabyte range [3, 4, 5] that need to be

processed. (ii) Instead of tracking a few dozen objects, biomedical experiments capture

hundreds or even thousands of objects that need to be tracked simultaneously [6]. (iii)

Moreover, the captured objects are very similar in appearance [7]. (iv) Objects can divide,

hence, a correct linking of predecessor-successor objects is required [7]. (v) To aggravate

this task further, often the temporal resolution of the image sequence and contrast of the

images are low. Thus, due to the distinctiveness of biomedical data, domain-specific MOT

approaches are required.

While the task of MOT in light microscopy image sequences is challenging, solving

this task enables large-scale analysis of object behavior over time, and thus holds the

exceptional potential to derive new insights. In the following, cell migration [8, 9], a

process of particular interest in the life sciences is chosen to illustrate the potential of MOT

in the biomedical domain. Cell migration is essential for numerous biological processes

such as embryogenesis [10, 11], wound healing [12], or immune response [13]. Moreover,

disruptions in cell migration can cause malformation [14] and diseases such as autoimmune

disease [15] or metastasis [16]. The automated tracking of cells yields the potential to

better understand the forces driving cell migration [17], to reveal wrong assumptions

on cell lines [18], to investigate the effectiveness of cancer therapies [19], or to better

understand immune response [20]. Moreover, the increased understanding of the processes

influencing cell behavior paves the way to understanding illnesses better and finding cures

for diseases. However, to extract reliable conclusions from the captured data, a high

tracking quality is required.

The present thesis provides contributions towards the long-term aim of virtually error-

free instance segmentation and tracking by proposing novel tracking methods as well

as approaches to compare their performance. When comparing the performance of dif-

ferent tracking-by-detection approaches it is difficult to distinguish the influence of the

1

1. Introduction

segmentation approach from the tracking approach on the final performance. Hence, this

thesis proposes a method to analyze tracking approaches separately from the segmentation

method. In addition, tracking methods can be roughly grouped into simple to apply, yet

inferior performing methods and tracking approaches that perform well on benchmark

datasets, however, have many parameters and are therefore difficult to tune to a new

analysis task for end users. Therefore, the present thesis proposes a graph-based tracking

approach with few manually tunable parameters, which is simple to apply to 2D and 3D

datasets and yet capable to correct certain types of segmentation errors automatically.

With deep learning dominating the task of instance segmentation in recent years, this

work proposes to learn the task of instance segmentation and tracking jointly in a single

neural network. The representations learned by a neural network usually have no intuitive

interpretation, therefore, the presented neural network learns to predict representations

that are comprehensible to humans. To evaluate the performance of the two proposed

tracking methods, they are compared on a benchmark dataset with other state-of-the-art

MOT methods. Moreover, while the tracking quality is important, depending on the appli-

cation also other selection criteria are important. Hence, additional criteria for comparison,

such as the effort required to apply the MOT approach to a new dataset and the robustness

of the parametrization, are proposed which are used to compare the two proposed tracking

methods.

The remainder of this chapter is organized as follows. Section 1.1 provides an overview

of the theoretical background and related work for this thesis covering an overview of

the image analysis pipeline in light microscopy images and an overview of the challenges,

evaluation metrics, and methods for MOT. Next, Section 1.2 introduces open questions

in the field of MOT in light microscopy images. Finally, Section 1.3 summarizes the

contributions of this thesis to address the stated questions and provides an outline of the

thesis.

1.1. Theoretical Background and RelatedWork

In the following, the task of MOT is set in the context of the overall goal of automated

image analysis. Moreover, a brief overview of different MOT approaches in the domain

of light microscopy images is provided and the challenges of MOT in light microscopy

images are illustrated. Next, methods of how errors in MOT can be detected and corrected

are summarized, and finally, to compare MOT approaches evaluation metrics and available

benchmark datasets are introduced.

1.1.1. The Image Analysis Pipeline – FromData Acquisition to Gaining Insights

To extract insights from a microscopy experiment, a multi-step pipeline is used, shown

in Figure 1.1, which spans from image acquisition up to knowledge extraction. In recent

years, numerous tools have been proposed to aid in the different processing steps [21,

22] and best practice guidelines to set up microscopy image analysis pipelines have been

proposed [23]. In the following, the steps of the image analysis pipeline are introduced in

more detail.

2

1.1. Theoretical Background and Related Work

Image

Acquisition

Image

Preprocessing

Object

Localization
Analysis

Post-

Processing
Tracking

Figure 1.1.: Analysis pipeline for light microscopy images.

Image Acquisition The images captured during the experiment are the main source of

information, all subsequent steps of the image analysis pipeline are dependent on it [24].

To acquire images, a variety of light microscopy approaches exist spanning from bright

field microscopy over fluorescence microscopy [1, 25, 26] up to microscopy methods

allowing super-resolution [27]. Introductions on the working principles of different light

microscopes are given in [1, 24, 26].

In general, acquiring ’good’ images means having a reasonable spatial and temporal

resolution as well as having a good distinction between sample and background in each

image, also referred to as a high Signal-to-Noise Ratio (SNR). Noise is introduced to the

captured images through many sources. For instance in fluorescence microscopy noise

occurs due to autofluorescence, shot noise, light from the surrounding environment, and

noise induced by the camera sensor and during readout [24]. Two approaches to increase

the SNR are binning and increasing the exposure time [24]. While binning reduces the

spatial resolution [24], increasing the exposure time reduces the temporal resolution

when imaging multiple samples in parallel and can cause saturation, photobleaching

or even phototoxicity [28]. Phototoxicity is the effect of light-induced damage on the

sample [24], which can even alter the behavior of the observed sample [29, 30]. For

instance, decreasing the wavelength, which results in higher energy, and increasing the

temporal resolution between frames, which results in larger exposure times, can increase

phototoxicity. Especially in 3D, phototoxicity can be an even bigger challenge, as apart

from light sheet microscopy, the whole image region is illuminated repeatedly instead

of illuminating only the slice of interest [31, 32]. Hence, image acquisition is a tradeoff

between capturing images that contain as much information as possible while on the other

hand avoiding altering the sample due to phototoxicity which can potentially result in

deriving spurious conclusions. Another tradeoff can occur between the temporal resolution

of a single experiment and the number of experiments acquired in parallel [28].

Besides phototoxicity, further influences affect the captured images and can hence

impact the conclusions derived from the experiment. For instance, the sample can distort

the light by absorption, scattering, refraction, or autofluorescence [33]. An extensive

overview of additional sources affecting the captured images is given in [33].

Image Preprocessing Next, the captured images can be preprocessed to correct uneven

illumination, enhance contrast, and reduce noise. Uneven illumination can be caused by the

optical system appearing as a bright image center and dark image borders [28]. A simple

approach to correct this is by capturing a reference image and dividing the captured images

by the reference image [28]. The contrast can be improved by distributing the intensity

values of the image by applying a transformation such as Contrast Limited Adaptive

3

1. Introduction

Histogram Equalization (CLAHE) [34], homomorphic filtering [35], high pass filtering,

or phase shifting high-frequency components [36]. To reduce noise, often smoothing

using a Gaussian filter or Median filter is applied, which however can reduce the local

contrast [23].

Besides traditional approaches, deep learning-based methods have been proposed to

transform low-quality images, captured with experimental setups causing only little

phototoxicity, into high-quality images [37, 38, 39].

Depending on the experiment also image stitching [40, 41], blending several images

into an image spanning over a large field of view, or image registration [42, 43, 44],

transforming all images into a shared coordinate system, can be required. Image stitching

can be challenging when there is little overlap between images or even gaps [45].

Object Localization After preprocessing the images, the objects of interest are localized.

Object localization can be grouped into object detection, semantic segmentation, and

instance segmentation. In object detection, the objects of interest are localized by pre-

dicting bounding boxes, seed points, or centroids. In semantic segmentation, the aim

is to assign pixels which belong to the same object class, for instance pixels belonging

to the background or foreground, the same class ID. Instance segmentation, in contrast,

aims at localizing each object and assigning each pixel that belongs to the same object

the same ID, which allows to the extraction of information about the object’s appearance.

While distinguishing instances is simple for non-touching objects, it becomes challenging

in crowded scenarios with many touching objects that belong to the same object class.

Object detection and instance segmentation both allow for counting instances or linking

them over time, whereas semantic segmentation does not allow distinguishing different in-

stances, however, provides the possibility to quantify collective behavior such as collective

migration [46].

Approaches for object localization span from traditional image processing to machine

learning-based approaches including deep learning based methods [47]. For instance,

simple, traditional object localization approaches are thresholding based on intensity, blob

detection for instance by using a Laplacian-of-Gaussian filter, or morphological filtering [48,

49]. Moreover, deformable models, level sets, superpixels, and Markov random fields [50]

are further traditional segmentation approaches. Recently, deep learning based object

localization approaches have been dominating object localization in light microscopy

images [51, 52]. In the scope of deep learning based object localization approaches, the

methods based on the U-Net [53] such as StarDist [54], CellPose [55], or Omnipose [56]

have shown outstanding performance. Moreover, adaptions of the U-Net architecture

using multiple decoders [57], or modeling temporal information [58] have been proposed.

To a lesser extend also other neural network architectures, such as the Mask-RCNN [59]

and ErfNet [60], have been applied for object localization in microscopy images [61, 62].

An in-depth overview on recent object localization approaches is given in [51, 52, 63],

whereas Ma et al. provides an overview spanning from traditional object localization

approaches up to recent deep learning methods [47]. Moreover, an overview of available

open source tools for deep learning based object localization is available in [64, 65].

4

1.1. Theoretical Background and Related Work

Tracking Tracking objects of interest allows to extract information concerning the move-

ment behavior or the lineage in the subsequent analysis step. To link instances in time

and thereby create tracks, two main tracking paradigms exist: tracking-by-detection and

tracking-by-model-evolution [48, 66, 67]. In tracking-by-model-evolution, object local-

ization and linking are done simultaneously, whereas in tracking-by-detection object

localization and linking are split into two separate tasks which are solved subsequently.

In addition, approaches exist that cannot be assigned to one of the two paradigms, for

instance, methods that create sets of competing instance segmentation masks during object

localization, where the most suitable masks from these sets are picked during the tracking

step [68, 69, 70, 71, 72, 73].

Examples of tracking-by-model-evolution approaches are active contour models [74, 75],

mean shift tracking [76], dynamic shape models [77], and deformable graph models [78].

Since the object shape of the last frame is used as initialization for the object shape in the

next frame, contour evolution approaches are struggling with large changes in appear-

ance such as due to mitosis [67]. Moreover, parametrization of active contour evolution

approaches is difficult, for instance, the weighting of energy terms [79]. In tracking com-

petitions, tracking-by-detection approaches have been dominating [66, 80]. Therefore, an

in-depth overview of tracking methods used in tracking-by-detection approaches is given

in Section 1.1.2.

Post-Processing After linking the objects of interest in time, a post-processing step can

be applied to improve the detection or segmentation of localized objects, and tracks. For

virtually error-free tracking results, a manual inspection and correction can be necessary,

however, semi- and fully automated post-processing methods can assist to reduce the man-

ual effort required. A simple step to improve instance segmentation masks automatically is

by applying morphological operators to fill holes or split touching objects [23]. Moreover,

tracks can be improved by removing artifacts, adding missing instance segmentation

masks, splitting under-segmented objects, and merging over-segmented objects [23]. A

more in-depth overview of correcting tracks is given in Section 1.1.4.

Analysis Finally, the extracted information, such as the location and movement of objects,

is further processed to generate insights into the object’s behavior. To gain insights,

different features can be extracted and compared such as the object shape using shape

descriptors or analyzing the object movement by computing position or velocity-based

features [49]. To visualize the extracted information, numerous possibilities exist. For

instance, visualizing tracking data can be done via lineage diagrams, spatial embeddings,

plotting of trajectories over time, or aggregating the trajectory data further [81]. While

the visualization can impact the human interpretation of the extracted information, also

how the information is aggregated can impact results for instance aggregating over an

image sequence or single objects [49].

5

1. Introduction

1.1.2. MOT in Light Microscopy Images

Numerous tracking-by-detection methods have been proposed to link corresponding ob-

jects between successive frames. To compare and categorize the different MOT approaches,

multiple criteria are available such as (i) the operation mode of the MOT approach – online

or offline, (ii) the scope in which the assigned link is optimal given a cost function – global

or local, (iii) the similarity measure, also referred to as cost function, that quantifies of

similar two objects are, and (iv) the underlying concept based on which objects are linked.

(i) Online methods allow tracking objects during the experiment is running, whereas

offline methods process the captured image sequence after the experiment is finished. In

the scope of light microscopy image analysis, the majority of approaches are used offline

as there is usually no requirement for immediate decision-making during the experiment

compared to other scenarios such as in surveillance or human-machine interaction.

(ii) Local methods are faster to calculate, however, can perform inferior to globally

optimal approaches. Especially in image sequences covering hundreds or even thousands

of objects solving a large-scale optimization problem to assign objects globally optimal

can be intractable.

(iii) To find corresponding objects in successive frames a similaritymeasure is required. A

simple similarity measure is the Euclidean distance between object positions in successive

frames. Besides that, the measure of similarity can be constructed using handcrafted

features that combine object position and appearance [82, 83, 84, 85], modeling information

about the object’s neighborhood [86], by a graph structure [87], or by learning features [88,

89, 90, 91, 92]. To weigh the extracted features in the similarity measure, weights can

be learned for instance by using logistic regression [85], a structured support vector

machine [69], a random forest [93], or training convolutional neural networks [90, 91]. To

detect events, such as mitosis, additional detectors can be trained [91, 94, 95].

(iv) Multiple concepts for linking objects have been proposed spanning from simple,

nearest neighbor based approaches, over Bayesian filters, hybrid approaches, and graph-

based approaches to deep learning based methods. In the following, the different linking

concepts are introduced, with a focus on graph-based and deep learning based tracking

methods.

Nearest Neighbors Nearest neighbor based approaches link objects between successive

frames based on the assumption that the object movement with respect to the object size is

small between successive frames. The objects are linked greedy – each object in an image

frame is linked to its closest neighbor in the other image frame, for instance, based on their

overlap in the previous frame [94, 96] or based on the Euclidean distance between object

centers [95, 97, 98]. If the temporal resolution in the image sequence is high with respect

to the object movement, this linking approach can be sufficient [99]. Usually, however,

the temporal resolution is restricted. Hence, large object movements between successive

frames are possible resulting in linking errors.

Hybrid Hybrid MOT approaches [83, 100, 101, 102] combine simple linking concepts,

such as nearest neighbors, with more sophisticated tracking methods. The idea is to apply

the simple, fast to calculate linking concepts to objects that can be linked easily, whereas

6

1.1. Theoretical Background and Related Work

the more sophisticated method is applied to more challenging image regions, e.g. where

the density of objects is high.

Bayesian Filtering Bayesian filtering provides a way to estimate the state of objects,

for instance, their position and velocity, which is changing over time given a set of

measurements [103, 104]. To estimate the object state, two probability density functions

are modeled, which are updated alternatingly. The prior probability density function

models any prior knowledge of the objects, e.g. their movement behavior for instance

nearly constant velocity [103]. The posterior probability density function contains all

information about the object state given the measurements. Unfortunately, updating these

probability density functions is usually intractable. However, by making assumptions on

the family of probability distributions as well as the motion and measurement models,

special cases can be derived that are tractable such as the Kalman filter, the particle filter,

or the Bernoulli filter. An in-depth introduction to Bayesian filtering can be found in [104],

whereas a brief overview with a focus on multitarget tracking methods is given in [103].

In the scope of MOT in light microscopy images, several applications of Bayesian

filtering have been proposed using the Kalman filter [105, 106, 107], the particle filter [90,

91, 108] or the Bernoulli filter [109, 110].

Graph-Based Graph-based tracking approaches allow the modeling of the object’s be-

havior such as movement, appearance, and disappearance as well as events such as the

death of the object or mitosis. In most approaches, each segmented object is modeled

as a node in the graph, whereas potential links between them are modeled as edges [85,

111, 112, 113, 114]. Besides modeling each segmented object as a node in the graph, also

super-nodes have been proposed introducing a layer of abstraction to the graph [70, 114].

Akram et al., for instance, model the object behavior for each instance segmentation mask

proposal as a super-node [70], whereas Kausler et al. use conditional random fields as

super-nodes [114].

Linking the segmented objects over time can be formulated as the problem of finding

the subset of edges in the graph that link the segmented objects best subject to a set of

constraints [85, 111, 112, 113]. Some approaches assume perfect segmentation [112, 113],

other approaches model segmentation errors in the graph [85, 93, 111, 114]. For instance,

in [114] false positives can be handled by excluding subsets of nodes in the graph from

the final solution, whereas in [93] over- and under-segmentation are modeled explicitly.

Instead of modeling segmentation errors explicitly in the graph, another approach is to

select a set of instance segmentation masks from sets of competing instance segmentation

masks proposals jointly with linking them over time. This can be modeled as the problem

of selecting a subset of nodes and the subset of edges in the graph [68, 70, 115]. Combining

the problems of selecting instance segmentation masks and linking them, results in large

optimization problems, which can become intractable. Therefore often greedy algorithms

are applied to find a sub-optimal solution [70, 115].

To model domain knowledge probabilistic, a subset of graph-based tracking approaches

are graphical models [70, 93, 114, 115] that solve the problem of selecting a subset of

edges, and nodes, in the graph by calculating the maximum a-posteriori probability.

7

1. Introduction

The maximum a-posteriori probability can be calculated for instance by formulating the

problem as an energy minimization problem which can be solved using integer linear

programming [114], or by calculating an approximate solution using message passing [93].

The problem of selecting a subset of edges, and nodes, from the constructed graphs can be

modeled as a network flow problem [68, 111, 112, 113], which can be solved, depending on

the constraints, with linear programming [111, 112, 113] or integer linear programming [68].

Moreover, to make the optimization problem tractable, some approaches prune edges based

on their cost [112] before solving the optimization problem, whereas other approaches

solve the optimization problem greedy [70, 85, 115].

To solve the assignment problems modeled as a linear program or an integer linear

program general-purpose solvers are available such as the commercial solver Gurobi [116]

or non-commercial solvers such as SCIP [117] and GLPK [118]. In addition, approaches

that find approximate solutions close to the optimal solution have been proposed [119,

120] that show better scaling concerning computing resources and run time for large-scale

MOT.

Deep Learning Based While for instance segmentation in light microscopy images, deep

learning based approaches are widely used [51, 63], the amount of deep learning based

MOT approaches in light microscopy is still small. To link objects using deep learning,

neural networks are either trained to extract features based on which linking costs can be

calculated [88, 89, 90, 92, 121, 122, 123], or to predict similarity scores between pairs of

objects [90, 124, 125, 126, 127]. A disadvantage of features and similarity functions learned

by deep learning approaches is their lack of interpretability, compared to handcrafted

features based on object position and appearance. Some deep learning approaches combine

the tasks of object localization and tracking in a single neural network [88, 89, 121, 125],

whereas others use a pipeline of deep learning methods for object localization, feature

extraction, and linking [90, 122, 123, 124, 126, 127, 128, 129].

To combine object localization and tracking in a single neural network, Payer et al. [89]
and Zhao et al. [121] use a Convolutional Neural Network (CNN) shaped like a stacked

hourglass including convolutional gated recurrent units to predict embedding vectors for

each pixel. The embeddings are learned such that embedding vectors of pixels belonging

to the same instance are more similar than embeddings of pixels belonging to different in-

stances. The learned embeddings, however, have no human comprehensible interpretation.

The embeddings are then used to cluster the pixels into instances. Moreover, Hayashida et
al. propose combining detection and tracking in a single model by predicting offsets and

a magnitude that scores how likely an object is at a specific position [88]. In contrast,

Lugagne et al. train two separate models for instance segmentation and tracking [127].

Also, the tracking can consist of several deep learning models to solve parts of the linking

problem. For instance, Ben-Haim et al. proposed a cascade of approaches: After object

localization, deep metric learning is used for extracting features, followed by a graph

neural network which learns to predict linking costs based on the extracted features,

and finally, graph-based matching is used to link objects based on the predicted linking

costs [129].

8

1.1. Theoretical Background and Related Work

Also, deep learning can be combined with traditional methods. For instance, a combi-

nation of particle filter and multi-task learning is proposed in [90], where deep learning

is used to learn an observation model that selects in the next frame the most probable

candidate. In [122] detection and tracking are learned in two separate neural networks,

where the neural network trained for tracking predicts a motion flow of detected object

centroids between successive image frames.

To learn similarity scores between pairs of frames, a variety of features can be used as

input. For example, the object position and the Euclidean distances of the objects to their

neighbors are used as input for a multilayer perceptron [124] to predict similarity scores

between pairs of objects. In contrast, Xie et al. trains a neural network to predict similarity

scores between pairs of objects based on image crops [126]. Also, handcrafted features

and learned features can be combined as in [125], where a Mask R-CNN is extended with

an additional Siamese branch to do segmentation and tracking, using handcrafted and

learned features in the tracking branch to link corresponding objects.

As generating annotation manually is time intensive, Sugawara et al. use sparse an-
notations to train two models, one for object detection and one for tracking, where the

tracking model predicts flows between pairs of successive image frames [123]. In [92], a

neural network is trained to predict pseudo tracking labels from detection annotations.

Moreover, Liu et al. uses a CycleGAN [130] to generate synthetically annotated training

data [131]. The CycleGAN receives two sets of unpaired image data, raw images and

simulated segmentation masks, and learns to translate raw images into segmentation

masks and vice versa.

1.1.3. Causes of Segmentation and Tracking Errors in Light Microscopy
Images

Extracting meaningful insights from the captured image sequences requires a high tracking

quality. However, to avoid altering the behavior of the objects under observation [29, 30,

132] for instance through phototoxicity [28], the frequency and intensity of the illumination

need to be limited. Hence, the captured image sequences often have low SNR and low

temporal resolution which makes segmentation and tracking challenging. As a result,

errors in segmentation and tracking and tracking occur. Segmentation errors can be

categorized into False Positives (FP)s, False Negatives (FN)s, over-segmentation, under-

segmentation, and wrong partitioning of touching objects [133]. In addition, tracking

errors can be categorized into ID switches, fragmented tracks, spurious tracks, and missing

tracks [80, Supplementary Note 3]. Moreover, in experiments with dividing objects, also

the erroneous linking of predecessor and successor tracks occurs [134]. An overview of

the different types of segmentation and tracking errors is shown in Figure 1.2.

FNs, the missing localization of an object of interest, can be caused by low SNR, low

contrast, or noise [48, 66]. Moreover, objects being at the border of the field of view and

therefore only partially visible can be missed by object localization approaches. In contrast,

FPs, the localization of spurious objects, are caused by artifacts such as entrapped particles.

Under-segmentation is the detection of several objects as a single object, whereas the

wrong partitioning of objects occurs when parts of an object are attributed to another

9

1. Introduction

object. Both under-segmentation and wrong partitioning of objects can occur in dense

scenarios when objects are touching. Lastly, over-segmentation, the detection of a single

object as multiple objects, can occur when objects have irregular shapes or have a very

heterogeneous brightness.

Tracking errors can be caused by challenging scenarios such as crowded scenes, low

temporal resolution, and segmentation errors. ID switches, correctly detected objects that

are assigned to the wrong tracks, can occur due to low temporal resolution resulting in

large changes in the appearance of the object and position, crowded scenes, objects leaving

and entering the field of view, or being caused by the random, undirected movement of

objects [135] between successive time points. In addition, ID switches can be caused by

segmentation errors. Fragmentation, a single track split into several shorter tracks, is often

caused by FN errors. Moreover, an object leaving and re-entering the field of view can also

result in a fragmented track. Objects not detected over their whole span of existence are

referred to as missing tracks, whereas artifacts that are detected and linked over several

time points, FPs, are referred to as spurious tracks. Linking errors during mitosis can occur

during the orchestrated division of many objects at the same time [136], or in crowded

scenes.

Usually, a combination of segmentation and tracking errors are existent in a tracked

image sequence. As a result, deriving insights can be difficult. For instance, wrong

assignments between predecessor and successor tracks can make conclusions on the

lineage spurious, whereas due to fragmentation the resulting tracks are short which

hinders long time behavior analysis [137].

1.1.4. Correction of Segmentation and Tracking Errors

As described in Section 1.1.3, segmentation errors can often cause tracking errors. Hence, to

reduce tracking errors, one strategy is to reduce segmentation errors. To avoid linking erro-

neous instance segmentation masks, one approach is to predict competing sets of instance

segmentation mask proposals and select the set of instance segmentation masks during

tracking [68, 69, 70, 71, 72]. However, this approach can be computationally expensive as

instance segmentation masks and their linking have to be solved simultaneously.

Another approach is to link potentially erroneous instance segmentation masks, by

explicitly modeling segmentation errors or providing tools to detect and correct them in

the post-processing step [85, 86, 87, 93, 102, 111, 114, 138, 139, 140]. To detect and correct

segmentation and tracking errors, semi-automated methods [137, 138, 139, 141] and fully

automated methods [85, 86, 87, 93, 111, 114, 140] have been proposed. Semi-automated

approaches provide assistance to humans to correct errors, for instance by showing for a

fragmented track the most likely successor tracks and facilitate linking them to correct

fragmentation [137] or by predicting detection errors and showing frames that are likely

to have detection errors to humans so they can be corrected manually [141]. While manual

quality control provides the potential to acquire high-quality tracks, the time required to

correct tracks manually can be infeasible.

Automated correction approaches often model prior knowledge of the data, such as the

length of the mitosis cycle [114] or the expected track length [102]. Moreover, classifiers

that estimate the number of objects in an instance segmentation mask can be trained,

10

1.1. Theoretical Background and Related Work

Localization

Predicted Mask

GT Mask

Bad Object Localization

Good Object Localization

Raw Image GT

Segmen-
tation

FP
Under-

segmentation
Over-

segmentationFN

Segmentation Errors

Raw Image GT

𝑡

Fragmentation Missing Track

Tracking Errors

Segmentation

Tracking

Wrong
Partitioning

Linking Error
during Mitosis

Object of Interest

Artifact

Link

Instance
Segmentation Mask

Spurious Track ID Switch

Figure 1.2.: Segmentation and tracking errors in MOT. Ground Truth (GT) and predicted in-

stance segmentation masks are shown in color, whereas links between instance

segmentation masks are shown as dashed lines. Occurring segmentation and

tracking errors are highlighted with arrows.

11

1. Introduction

which can then distinguish between no object predicted – a FP error, one object, or

several objects – an under-segmentation error [85, 93]. For instance, to resolve instance

segmentation masks that are linked to several masks in the previous time step, in [85]

the instance segmentation mask is split using k-means clustering, whereas Schiegg et
al. use spatial Gaussian mixture models to predict the number of objects in a mask [93].

To link fragmented tracks automatically, Jaqaman et al. apply a search window in space

and time to find short tracks that potentially correspond to the same track [111]. Another

challenge is to distinguish over-segmentation errors from events, such as mitosis. One

approach to distinguish between the two by training a support vector machine [86]. In

contrast, other approaches that are able to resolve over- and under-segmentation errors

of several objects assume that no mitosis events occur [87, 140]. Moreover, to improve

tracking results also uncertainty information can be incorporated in the object localization

and tracking step [98].

1.1.5. Evaluation of Tracking Performance

To compare different MOT approaches, metrics are needed. Therefore, multiple metrics

have been proposed that quantify the detection and linking quality of the predicted tracks.

In the following, general MOT metrics as well as domain-specific tracking metrics are

introduced. All introduced metrics require a set of GT annotations to quantify the tracking

performance, which usually requires manual annotation effort. However, there are research

directions towards ranking different MOT approaches without requiring GT data [142,

143].

General MOT Metrics

First, evaluation metrics used in general MOT applications are introduced.

MOTA The Multiple Object Tracking Accuracy (MOTA) metric [144] penalizes the detec-

tion errors FPs and FNs and penalizes linking errors as Identity Switch (IDSW). IDSWs

are correctly detected objects which are assigned to different tracks in successive frames,

although belonging to the same GT track. The metric is calculated as follows

MOTA = 1 − |DFP | + |DFN | + |LIDSW |
|DGT |

, (1.1)

where |DFP | is the number of FP detections, |DFN | is the number of FN detections, |LIDSW |
is the number of IDSWs, and |DGT | is the overall number of detected objects in the GT.

Limitations of MOTA are the bias toward measuring detection quality, that tracking

approaches managing to correct IDSWs at later time points are penalized, that the metric

is not aligned between [0, 1] as usual for other metrics, and that MOTA metric can even

have a negative score [145]. More limitations of MOTA are described in detail in [145].

IDF1 The IDF1 metric [144] matches GT tracks to predicted tracks such that the overall

amount of misdetections, FPs and FNs, as well as misalignments, a track switches its ID,

12

1.1. Theoretical Background and Related Work

between GT and prediction is minimal. This is distinct to the MOTA metric that matches

GT and prediction based on their detections. To match GT tracks and predicted tracks, a

bipartite matching problem is formulated which matches each GT track to at most one

predicted track and vice versa. Based on the found matching between GT and predicted

tracks, each of the underlying detections of the predicted tracks can be assigned to one

of the three types: Identity False Positives (IDFP)s, Identity False Negatives (IDFN)s, and

Identity True Positives (IDTP)s. IDFPs refer to detections of predicted tracks that have

no matching counterpart in the GT, whereas IDFNs refer to detections of GT tracks that

have no matching counterpart in the predicted tracks. IDTPs are detections of predicted

tracks that have been successfully matched to GT tracks. The metric lies in the range [0, 1]
where higher scores refer to a better tracking result. The metric is calculated as

IDF1 =
2 |AIDTP |

2 |AIDTP | + |AIDFP | + |AIDFN |
, (1.2)

where |AIDTP | is the number of IDTPs, |AIDFP | is the number of IDFPs, and |AIDFN | is the
number of IDFNs. A limitation of the IDF1 metric is that the metric score can be worse

although the detection has been improved [145]. Moreover, as each predicted track can

only be matched to at most one GT track and vice versa there can be cases where the

matching is not intuitive [145]. More limitations of IDF1 are given in [145].

HOTA The Higher Order Tracking Accuracy (HOTA) metric [145] proposes an alternative

to the MOTA and IDF1 metrics claiming to alleviate limitations of the MOTA metric.

To find predicted detections that overlap well with GT detections, an IoU threshold 𝑜

is defined. Each predicted detection that has an IoU larger than 𝑜 with a GT detection is

referred to as a TP detection𝑑TP. Next for each TP detection𝑑TP, three types of associations

are defined: True Positive Associations (TPA)s, False Negative Associations (FNA)s, and

False Positive Associations (FPA)s. These associations have a resemblance to TP, FN,

and FP detections, with the difference that the associations capture to which track a TP

detection 𝑑∗
TP

is mapped that belongs to the same GT track or the same predicted track as

the TP detection 𝑑TP. A TPA is a TP detection 𝑑∗
TP

that is assigned to the same predicted

track as 𝑑TP and belongs also to the same GT track as 𝑑TP. A FPA is a TP detection 𝑑∗
TP

that is assigned to the same predicted track as 𝑑TP, however, the two TP detections belong

to different GT tracks. Finally, a FNA is a TP detection 𝑑∗
TP

that belongs to the same GT

track as 𝑑TP, however, the two TP detections are assigned to different predicted tracks.

The HOTA metric lies in the range [0, 1] where higher scores refer to a better tracking

result and is computed as follows

𝑎(𝑑TP) =
|ATPA(𝑑TP) |

|ATPA(𝑑TP) | + |AFNA(𝑑TP) | + |AFPA(𝑑TP) |
,

HOTA𝑜 =

√ ∑
𝑑TP∈DTP

𝑎(𝑑TP)
|DTP | + |DFN | + |DFP |

,

HOTA =

∫
1

0

HOTA𝑜𝑑𝑜 ,

(1.3)

13

1. Introduction

where |DTP | is the number of TP detections, |DFN | is the number of FN detections, |DFP | is
the number of FP detections, 𝑑TP is a single TP detection,DTP is the set of all TP detections,

|ATPA(𝑑TP) | is the number of all TPAs for TP detection 𝑑TP, |AFNA(𝑑TP) | is the number of

all FNAs for TP detection 𝑑TP, |AFPA(𝑑TP) | is the number of all FPAs of TP detection 𝑑TP,

and 𝑜 is the IoU threshold, which measures the overlap between the predicted detections

and GT detections.

The HOTA metric is decomposable into several sub-metrics measuring localization,

detection, and linking quality. Moreover, the metric is strictly monotonic, hence improving

the tracking results leads to an improvement in the HOTA score.

Domain-Specific MOT Metrics

Next, domain-specific evaluation metrics are introduced.

SEG As the tracking performance depends on the segmentation quality, analyzing seg-

mentation performance is important. The SEG metric [7] quantifies the segmentation

quality. It is the mean of the Jaccard similarity index that measures the intersection over

union between a GT instance segmentation mask and a predicted instance segmentation

mask

SEG =
1

|DGT |
∑

IGT∈DGT

|IGT ∩ Ipred |
|IGT ∪ Ipred |

, (1.4)

where |DGT | is the number of GT instance segmentation masks, DGT is the set containing

all GT instance segmentation masks, Ipred is the set of pixels belonging to a predicted

instance mask, and IGT is the set of pixels belonging to the GT instance mask. A GT

instance mask is only matched to a predicted instance mask if their union is larger than

half of the size of the GT instance mask. The metric lies in the range of [0, 1], where a score
of 1 is a perfect match between the shapes of GT and predicted instance segmentation

masks.

AOGM The Acyclic Oriented Graphs Matching (AOGM) [134] metric compares the graph

spanned by the GT detections and links with the graph spanned by the predicted detections

and links provided by tracking approach. Each detection corresponds to a node in the graph,

whereas links between objects correspond to edges in the graph. The metric penalizes

deviations from the GT graph by accumulating the number of transformations needed

to transform the predicted tracking graph into the GT graph. To transform the tracking

graph, nodes and edges can be altered. Operations applied to the nodes are: splitting

nodes (NS), e.g. to correct under-segmentation errors, adding nodes (FN), to correct FN

detections, and removing nodes (FP), to correct FP detections. Edges can be added (EA),

removed (ED), or corrected (EC) when they have the wrong semantic, which means a

mitosis event occurred and the previous object is the mother cell instead of belonging to

the same track. The AOGM metric is calculated as follows

AOGM = 𝑤NS |DNS | +𝑤FN |DFN | +𝑤FP |DFP | +𝑤ED |LED | +𝑤EA |LEA | +𝑤EC |LEC | , (1.5)

14

1.1. Theoretical Background and Related Work

where𝑤 · are weights, |D· | refer to the number of node transformations needed – detection

errors, whereas |L· | refer to the number of edge transformations required – linking errors.

Matula et al. set the weights to 𝑤NS = 5 for splitting nodes, 𝑤FN = 10 for adding nodes,

𝑤FP = 1 for removing nodes,𝑤EA = 1.5 for adding edges,𝑤ED = 1 for deleting an edge, and

𝑤EC = 1 for changing the semantic of an edge [134]. Due to the weighting of the different

tracking errors, the metric has a strong bias on detection, as a FN error is weighted ten

times more than removing an erroneous link. Limitations of the AOGM metric concerning

detection and linking errors around mitosis events where shown in [146, 147].

TRA The TRA metric [66] is a normalized version of the AOGM metric, which lies in the

range of [0, 1]. Hence, the TRA metric measures detection and linking quality. The TRA

metric is computed as follows

TRA = 1 − min(AOGM,AOGM0)
AOGM0

, (1.6)

where AOGM is the AOGM score and AOGM0 the costs to construct the GT graph from

scratch – i.e. starting with an order-zero graph, a graph without any nodes and edges, and

computing the costs of adding all GT nodes and all GT edges to this graph.

DET The DET metric [66] is a normalized version of a subpart of the AOGM metric,

which lies in the range of [0, 1]. The metric penalizes only detection errors, hence the

edge penalties of the AOGM metric are excluded, resulting in

AOGMD = 𝑤NS |DNS | +𝑤FN |DFN | +𝑤FP |DFP | ,

DET = 1 − min(AOGMD,AOGMD,0)
AOGMD,0

,
(1.7)

where AOGMD is the AOGM metric without edge penalties and AOGMD,0 the cost to

construct the GT graph from scratch – i.e. starting with an order-zero graph, a graph

without any nodes and edges, and computing only the costs of adding all GT nodes, no

GT edges are added to the graph.

OPCTB The OPCTB [66] is the average between SEG and TRA measure

OPCTB =
1

2

(SEG + TRA) . (1.8)

1.1.6. Benchmark Datasets

To compare the performance of different approaches aiding in the automated analysis

of microscopy image data, benchmark datasets are needed. Benchmarks based on light

microscopy image data focus on different tasks such as image classification, augmented

microscopy, image segmentation, event detection and classification, and MOT [51, 63].

Benchmark datasets for the task of image classification have been published, for in-

stance, for protein classification [148] or the segmentation and classification of cells in

15

1. Introduction

histology images [149, 150]. Benchmarks for augmented microscopy aim to accelerate

the development of approaches being able to predict labels without using fluorescent

dyes [151, 152]. Moreover, image segmentation benchmarks have been proposed to com-

pare approaches for cell segmentation [153, 154, 155], nucleus segmentation [156, 157],

or foreground-background segmentation to analyze collective cell migration [46]. Event

detection and classification benchmarks, for instance, allow to compare the performance

of different MOT approaches to correctly predict mitosis events, or the state of cells such

as cell death [158, 159, 160]. Finally, to benchmark MOT approaches, several benchmark

datasets have been proposed [7, 80, 113, 161, 162]. Maška et al. published a benchmark with

several 2D and 3D image sequences covering a variety of cell lines and microscopy imaging

techniques [7, 163]. Chenouard et al. published a similar benchmark dataset for particle

tracking consisting of simulated particles with different levels of SNR, object densities, and

movement patterns [80]. Moreover, a 2D MOT benchmark dataset fully annotated with

instance segmentation masks was published by Moen et al. [113]. Also, specialized 2D

MOT benchmark datasets have been made publicly available covering sperm cells [161],

yeast cells [82], and phase contrast images with fine-grained annotated cell states [164].

The quality and amount of GT annotations, however, varies between the different

datasets, as providing GT annotations needs human annotators [7, 154]. While there exist

approaches to at least partially automate the annotation process by iteratively training a

model on a few manually annotated examples and using a human expert for inspection of

the then predicted labels [149, 165, 166], large scale datasets, especially in 3D, are still only

sparsely labeled [7]. Hence, utilizing deep learning based approaches that require large

amounts of training data is challenging.

Therefore, instead of labeling real-world data, another direction of research is the

simulation of realistic datasets. For instance, Weigert et al. proposed simulating light

sheet microscopes to generate realistic light sheet images [167]. Kobitski et al. created 3D

semi-synthetic models of zebrafish embryos covering several hours of early development

by averaging data from several real-world experiments [3]. Malm et al. proposed simu-

lating bright-field microscopy images by creating shape primitives using Fourier shape

descriptors, which are placed on the image using a weighted distribution model [168].

Moreover, in [169] a conditional generative adversarial network is used to transform 3D

images consisting of instance masks into realistic 3D microscopy images.

Benchmarks are an important tool to compare different approaches since they provide

publicly available data. Moreover, by providing a hidden test dataset, they prevent the

tweaking of an approach to the test data as well as apply the same evaluation proce-

dure for each approach. However, benchmarks have several limitations as reported by

Maier-Hein et al. : many benchmarks lack information concerning the challenge design,

such as missing information on how the data was collected or how the final ranking is

computed [170]. Moreover, the final ranking of approaches on a benchmark should be

interpreted with caution since the selection of data annotation, test dataset, evaluation

metric, and aggregation of the evaluation metric can substantially influence the final

ranking [170].

16

1.2. Open Questions

1.2. Open Questions

Regardless of the tremendous amount of related works in MOT, there are several open

questions in the domain of MOT that need to be addressed:

1. Although several MOT benchmarks have been made available to enable better com-

parison of tracking approaches, they are prone to heavy parameter tuning by contes-

tants. Hence, transferring the observed performance of a tracking approach to new

data is very limited. Therefore, new approaches to compare tracking performance

are needed that make excessive fine-tuning more difficult.

2. As segmentation errors can cause tracking errors, it is impossible to distinguish if a

tracking-by-detection approach performs well due to a superior tracking algorithm

receiving a decent, yet erroneous segmentation quality as input or just due to a

well-performing segmentation approach. Hence, measures are needed that allow

distinguishing the performance of a tracking method from the quality of the segmen-

tation approach. Moreover, an analysis of the behavior of the tracking method toward

specific real-world segmentation errors is needed to better understand the strengths

and limitations of tracking algorithms. In addition, providing such a benchmark

provides the possibility to analyze tracking methods concerning their robustness

and their capabilities to correct segmentation errors.

3. To extract high-quality tracking results, well-performing object localization and

tracking approaches that can be combined easily are required. For object localization,

instance segmentation approaches that perform well over a wide set of imaging

conditions have been proposed. In contrast, tracking approaches are either simple

to use and at the cost of performing inferior or perform competitively at the cost

of being parameter heavy which requires careful parameter tuning. A competitive

baseline tracker, however, with few parameters that is simple to apply is missing.

4. To improve tracking quality, tracking algorithms should be capable to detect and

correct segmentation errors by utilizing temporal information. However, these error

correction capabilities often require additional knowledge of the data e.g. concerning

object sizes or object behavior. Modeling this knowledge needs either experts to

carefully tune the parameters of the tracking algorithm or might need additional

training, which however often requires labeled data. Hence, tracking approaches

that are able to correct segmentation errors without depending on the end user to

provide additional knowledge are needed.

5. With the success of deep learning for instance segmentation, joining instance seg-

mentation and tracking into a single deep learning approach is the obvious next step.

However, while deep learning outperforms traditional image processing methods

in many domains, it often lacks interpretability for the user. For instance, interpret-

ing the learned high-dimensional representations also referred to as embeddings,

is usually impossible which makes further post-processing of the predictions to

improve results more difficult. In addition, often recurrent parts are used which

can require careful reinitialization. Hence, a deep learning based approach that

17

1. Introduction

Image

Acquisition

Image

Preprocessing
Analysis

Post-

Processing

Chapter 3

Tracking

Chapter 4

Benchmark

Tracking

Algorithms

Chapter 2

Object

Localization

Application &

Comparison

Chapter 5

Image Analysis

Pipeline

Algorithm

Selection

Figure 1.3.: Thesis outline. The contributions of the individual chapters with respect to

the steps in the overall image processing pipeline are highlighted as boxes in

orange.

combines instance segmentation and tracking by predicting human comprehensible

embeddings is missing.

6. To compare different trackingmethods usually only the tracking quality is considered.

While tracking quality is crucial, it should not be the only criterion when selecting

the most suitable algorithm for an application. For instance, an end user might

prefer a simple, less performant tracking approach over a better-performing, yet

very difficult to tune, parameter-heavy tracking method. Hence, tracking approaches

should be compared on more criteria such as the effort to apply the selected approach

to new datasets or required prior knowledge need to be considered as well.

1.3. Objectives and Thesis Outline

Based on the previously outlined open questions, the central objectives of this thesis are:

1. The proposal of an approach that allows an analysis of the tracking performance

separately from the segmentation approach, thereby allowing the systematic compar-

ison of different tracking methods concerning their robustness against segmentation

errors and their capabilities to correct segmentation errors.

2. To develop a graph-based baseline tracking method with few tunable parameters

that can be easily combined with an instance segmentation approach to segment

and track objects in 2D and 3D.

3. The proposal of an approach to automatically detect and correct certain types of

segmentation errors without requiring explicit knowledge of the object shape or

additional knowledge from the end user.

18

1.3. Objectives and Thesis Outline

4. A new deep learning based method for simultaneous instance segmentation and

tracking which does not require recurrent neural network components and predicts

human comprehensible embeddings.

5. The suggestion of additional comparison criteria for tracking algorithms and evalu-

ation of the proposed graph-based tracking and the deep learning based approach

based on these criteria.

6. An extensive comparison of the proposed graph-based tracking and the deep learning

based approach with other MOT approaches on a diverse benchmark dataset.

The remainder of this thesis is organized as follows. To compare different tracking

methods independent from the segmentation approach, Chapter 2 introduces a benchmark

based on synthetically degraded segmentation data modeling different types and fractions

of segmentation errors. The benchmark is used to compare the robustness and error

correction capabilities of different tracking methods. Next, Chapter 3 introduces a graph-

based tracking approach with few manually tunable parameters that is capable to correct

certain types of segmentation errors automatically by modeling prior knowledge on the

tracking graph. Chapter 4 proposes a single neural network for instance segmentation and

tracking, without any recurrent neural network elements required, which predicts human

comprehensible embeddings. A rigorous comparison of the two proposed trackingmethods

is conducted in Chapter 5 by evaluating the performance of two methods on a publicly

available benchmark dataset. Moreover, additional comparison criteria are proposed on

which the two approaches are compared with. Figure 1.3 provides an overview how the

contributions of the different chapters integrate into the overall image analysis pipeline.

Finally, Chapter 6 summarizes the accomplished work and provides an outlook on potential

future work.

19

2. A Benchmark to Compare the
Robustness of Tracking Methods in
Tracking-by-Detection Algorithms

With the increasing number of available MOT approaches, comparison criteria are needed

to select a suitable MOT approach for an application. In the last years, several MOT

benchmark datasets and tracking metrics have been proposed to compare the performance

of MOT approaches [66, 171, 172]. The proposed benchmark datasets, however, usually

allow for heavy parameter tuning of the MOT approaches – for instance by making the

challenge dataset publicly available or by allowing multiple submissions of the same algo-

rithm with different parametrization. Hence, deriving conclusions on how a MOT tracking

approach is going to perform on new datasets is limited, as the superior performance of

an MOT approach on one specific benchmark could potentially be caused by extensive

parameter tuning. In addition, MOT approaches that require heavy tuning to new datasets

are difficult to tune for potential, non-expert users, which can lead to worse performance

of the MOT approach when applied to new datasets. Therefore, to get a more realistic and

not only a best-case performance, benchmarks are needed that make excessive fine-tuning

more difficult.

In tracking-by-detection methods, the performance of the tracking algorithm is depen-

dent on the segmentation quality, as the segmentation and tracking problem are solved

subsequently, which is shown in Figure 2.1. As most MOT benchmarks only score the over-

all performance of the whole MOT approach, it is hence not possible to distinguish if the

final evaluation score is a result of bad segmentation or bad tracking. To compare tracking

approaches only, there are few tracking benchmarks available that provide segmentation

masks to compare different tracking methods. However, since these segmentation data are

high quality, with few segmentation errors, it is impossible to examine how the tracking

approach handles erroneous segmentation data. Hence, benchmarks are needed that

provide insight into how tracking algorithms perform given imperfect segmentation data.

This chapter proposes the idea to compare the trackingmethods of tracking-by-detection

algorithms by creating synthetically degraded segmentation data. By simulating different

types of segmentation errors, tracking approaches can be analyzed concerning their

This chapter extends the initial idea to simulate segmentation errors for tracking al-

gorithm evaluation which was proposed in K. Löffler, T. Scherr, and R. Mikut. “A

graph-based cell tracking algorithm with few manually tunable parameters and au-

tomated segmentation error correction”. In: PLOS ONE 16.9 (2021), e0249257. doi:

10.1371/journal.pone.0249257.

21

https://doi.org/10.1371/journal.pone.0249257
https://doi.org/10.1371/journal.pone.0249257

2. Tracking Benchmark

Raw Images

Ground Truth

Evaluation

Metrics
Segmentation Tracking

Tracking-by-Detection Algorithm

Predicted

Segmentation Masks

Tracking

Result

Figure 2.1.: A tracking-by-detection pipeline. First, the segmentation method predicts

segmentation masks from the provided raw images. Next, the segmentation

masks and raw images are forwarded to the tracking method, which yields the

tracking result. Finally, the tracking quality is evaluated using metrics that

compare the tracking result with the ground truth data.

robustness against specific segmentation errors and – if applicable – the performance of

their segmentation error correction mechanisms.

The remainder of the present chapter is structured as follows: Section 2.1 introduces

the idea of simulating erroneous segmentation data to benchmark tracking algorithms.

Section 2.2 shows how the proposed method can be used to analyze evaluation metrics

and investigate the strengths and weaknesses of tracking approaches. Finally, Section 2.3

concludes this chapter by providing a summary and discussion of the proposed method.

2.1. Method

Due to the challenging image conditions, which were described in Section 1.1.3, seg-

mentation is rarely error-free. To evaluate the performance of tracking methods when

provided with imperfect segmentation data, the segmentation method is replaced by

modifying a fixed fraction of segmentation masks from the ground truth data, as shown

in Figure 2.2. The segmentation masks are modified to model the segmentation errors

under-segmentation, over-segmentation, False Negatives (FN), and a combination of the

aforementioned errors, which is referred to as mixed error. The modeled segmentation

errors are visualized in Figure 2.3.

The segmentation errors are generated as follows:

• FNs Segmentation masks are removed from the image sequence by selecting a

predefined fraction of segmentation masks uniformly from the set of ground truth

masks.

• Under-Segmentation Errors Under-segmentation errors usually occur if objects

are very close or even touch. Hence, pairs of neighboring segmentation masks are

calculated where each pair is assigned a sampling weight that is inverse proportional

22

2.1. Method

Raw Images

Ground Truth

Evaluation

Metrics

Simulate

Segmentation

Errors

Tracking
Degraded

Segmentation Masks

Tracking

Result

Figure 2.2.: Proposed method. The segmentation approach is replaced by a module that

alters the ground truth segmentation masks to simulate segmentation errors.

The synthetically degraded segmentation data is then forwarded together with

the raw images as input to the tracking method, which yields the tracking

result.

Under-

Segmentation

Over-

Segmentation False Negative MixedGround Truth

Degraded Segmentation Masks

Figure 2.3.: Synthetically degraded segmentation data. The left image shows a ground

truth image where each ellipsoid represents a segmentation mask. To model

segmentation errors, the ground truth segmentation masks are altered by

merging (under-segmentation), splitting (over-segmentation), removing (FN),

and combining all three alterations (mixed error). The altered segmentation

masks are marked with arrows.

23

2. Tracking Benchmark

to their distance, so close objects have a higher probability to be merged. Segmenta-

tion masks are merged iteratively by applying a morphological closing operation

until a predefined fraction of ground truth masks are merged, where also more than

two objects can be merged into a single instance mask.

• Over-Segmentation Errors Segmentation masks are drawn uniformly from the

set of segmentation masks. Each selected segmentation mask is randomly split into

two up to four segmentation mask fragments. To find a reasonable split and avoid

very small segmentation mask fragments, a seed pixel is selected for each fragment.

For this reason, a distance transformation is computed to find seed pixels that are far

away from the segmentation mask border. The seed pixels are chosen greedily such

that the next selected seed pixel is as far away as possible from the already selected

ones. Therefore, the Euclidean distances between already selected seed pixels and

the remaining, potential seed pixels are computed. The pixel with the largest sum of

Euclidean distances is then added as a seed pixel. Finally, the segmentation mask

fragments are created by assigning all pixels of the segmentation mask to their

nearest seed pixel.

• Mixed Errors Usually multiple types of segmentation errors exist in a segmentation.

Hence, the aforementioned segmentation errors are combined by modifying for each

segmentation error a third of the predefined fraction of ground truth masks, so in

total the predefined fraction of segmentation errors is reached.

FPs can be caused by segmenting spurious objects, which is not modeled in the bench-

mark since only the segmentation masks were altered and not the raw images to add

spurious objects. However, FPs also occur due to over-segmentation errors. Evaluation

metrics penalize predicted segmentation masks, which are not matched to a GT mask as

FPs. During the evaluation, the predicted segmentation masks are matched to GT masks

by selecting the best matching prediction mask. For the SEG and DET metrics, for example,

the best matching segmentation mask is selected by finding the segmentation mask that

has the largest IoU with the GT mask. Since for the modeled over-segmentation errors a

segmentation mask is split into two up to four fragments, only one fragment is matched

to the GT mask and all other fragments are penalized as FPs.

On real-world segmentation data, the fraction of segmentation errors vary – there are

images without any segmentation errors and images with many segmentation errors. To

simulate this variation, the fraction of segmentation errors is calculated over the whole

image sequence and not per image. This also allows to simulate a specific fraction of

segmentation errors on image sequences with few objects per frame, as altering only 1%

of segmentation masks in an image with less than 100 segmentation masks is not possible.

Hence, the fraction of simulated segmentation errors fluctuates over the images – there

are images without any segmentation errors and images surpassing the defined fraction of

segmentation errors.

24

2.2. Experiment

N Seq. N Frames N Tracks N Objects Overlap Fastest N% of Objects
Dataset 𝑇 start 𝑇 end 10 25 50

HEK 293 26 30 27.0 16.5 18.0 0.869 0.916 0.952

HeLa S3 18 40 8.5 6.5 7.5 0.895 0.930 0.955

NIH 3T3 24 30 13.5 9.0 9.5 0.894 0.941 0.969

RAW 264.7 13 30 18.0 8.0 12.0 0.673 0.789 0.876

Table 2.1.: Statistics on the selected datasets from the DeepCell data. The overlap per-

centiles of the fastest 𝑁% of objects are calculated based on the overlap of

segmentation masks referring to the same object between the successive time

points 𝑡 and 𝑡 − 1.

2.2. Experiment

In the following the potential of the approach is evaluated by creating erroneous segmen-

tation data and evaluating a selection of tracking algorithms on them.

2.2.1. Experimental Setup

For evaluation, four different datasets from the DeepCell data [113] were selected: HEK 293,

HeLa S3, NIH 3T3, and RAW 264.7. From each dataset, the benchmark image sequences

were selected which all consist of multiple image sequences and provide fully annotated

segmentation and tracking ground truth. Table 2.1 provides a summary of these datasets

concerning the number of image sequences, number of objects, and object motility. To

quantify the object motility, for each object at time point 𝑡 the overlap to its predecessor

at time point 𝑡 − 1 was computed and overlap percentiles were calculated. For instance,

10% of the objects in dataset RAW 267.4 have an overlap of less than 0.673 with their

predecessor.

For each image sequence, all four segmentation error types were simulated by modify-

ing a fraction of 1, 2, 5, 10, and 20% of the total number of objects in the image sequence.

Each error simulation was repeated 5 times per image sequence, resulting in 100 de-

graded segmentation mask sequences per image sequence and a total of 8.100 erroneous

segmentation mask sequences. Figure 2.4 shows an overview of the raw data, ground

truth, and the degraded segmentation data containing different segmentation errors for

the different datasets. To reuse the benchmark, the code written in Python has been

made publicly available together with the graph-based tracking method of Chapter 3

at https://git.scc.kit.edu/KIT-Sch-GE/2021-cell-tracking.

Selected Tracking Algorithms To investigate the applicability of the proposed method,

three tracking-by-tracking algorithms
1
that were submitted to the Cell Tracking Challenge

are selected, which performed well on a wide set of different datasets. As just the tracking

is considered in the following, only the tracking methods are described:

1
The naming convention for the submissions to the Cell Tracking Challenge changed. The mapping of old

and new submission names is provided in Table A.1

25

https://git.scc.kit.edu/KIT-Sch-GE/2021-cell-tracking

2. Tracking Benchmark

RAW 264.7NIH 3T3HeLa S3HEK 293

Raw Image

Ground Truth

Mixed

Over-

Segmentation

False Negative

Under-

Segmentation

Degraded Segmentation Masks

Figure 2.4.: DeepCell datasets with degraded segmentation data. Shown are raw images

and ground truth annotations of different datasets from the DeepCell data,

and the degraded segmentation results which were obtained by altering the

ground truth segmentation masks – marked with arrows.

26

2.2. Experiment

1. MU-Lux-CZ [96] A simplistic overlap-based tracking algorithm that links objects

by assigning the object with the largest overlap in 𝑡 − 1 as the predecessor to an

object at 𝑡 . The algorithm has no segmentation error correction capabilities and just

one tunable parameter, which is the minimum overlap required to link two objects.

The algorithm is implemented in Python.

2. KTH-SE [85, 173] A graph-based tracking algorithm that is based on the Viterbi

algorithm. The approach has segmentation error correction capabilities for FP, FN,

and over- and under-segmentation errors. The algorithm provides an extensive set

of tunable parameters that require pre-knowledge for adapting. The algorithm is

implemented in MATLAB.

3. KIT-Sch-GE (1) [57] A graph-based tracking algorithm based on the coupled mini-

mum cost-flow approach. The approach has segmentation error correction capabili-

ties for FNs and has two tunable parameters which define the maximum time span a

segmentation mask can be missing to link two track fragments as one track, and a

region of interest in which objects that could refer to the same track are searched.

The approach is implemented in Python.

For each tracking method, the same parametrization is kept as in the submission to the

Cell Tracking Challenge, however, since KTH-SE used a different parametrization for each

dataset on the Cell Tracking Challenge, the parametrization of the most similar appearing

dataset from the Cell Tracking Challenge was selected.

2.2.2. Evaluation

Influence of Segmentation Errors on SEG and DET Metric

First, the impact of erroneous segmentation data on the evaluation metrics SEG and DET

is investigated, which is shown in Figure 2.5. The SEG metric penalizes FNs strongest,

followed by over-segmentation and mixed errors which are roughly penalized similarly,

and under-segmentation penalized least. The DETmetric penalizes FNs strongest, followed

by over-segmentation, then mixed errors, and finally under-segmentation which is again

penalized least. Although both metrics rank the segmentation errors in the same order,

the assigned scores differ substantially. This effect is most distinct for under-segmentation

errors.

In the SEG metric, the shape of the segmentation masks is important since it is based

on the Jaccard index. While FNs always result in a Jaccard index of 0, under- and over-

segmentation errors show a spread of the SEG score, since the shape of the segmentation

masks is altered compared to the shape of the ground truth segmentation masks. For

under-segmentation, objects are connected with a morphological closing operation which

adds pixels to the original objects, whereas for over-segmentation, the segmentation

masks are split in segments of arbitrary size. Since the mixed errors include over- and

under-segmentation errors they also show a spread in the SEG score.

The large differences between different segmentation error types in the DET score are

due to the assigned penalty weights in the AOGM measure: an under-segmentation error

27

2. Tracking Benchmark

Figure 2.5.: SEG and DET score on DeepCell datasets with different types and fractions of

segmentation errors. The score of a single image sequence is shown as a circle,

whereas + indicates the median calculated over 𝑁 = 405 erroneous image

sequences.

is assigned a penalty weight of 5, whereas a FN error is assigned a penalty weight of

10. Over-segmentation errors are penalized as FPs with a penalty weight of 1 and, if the

largest segment of a split object is less than 0.5 of the original ground truth mask, an

additional FN penalty is added. This results in a comparably large spread in the DET scores

for over-segmentation and mixed errors.

Evaluating the Performance of a Single Tracker

Next, it is shown how a tracking approach can be analyzed in more detail using the

proposed method. Therefore, the TRA scores of the MU-Lux-CZ tracker are shown in

Figure 2.6 concerning the different segmentation errors and the performance of the tracker

on different datasets. As the DET and TRA metrics are closely related and the MU-Lux-CZ

tracking method does not alter the segmentation masks, the TRA scores on datasets with

different segmentation errors – Figure 2.6 left plot – are very similar to the DET scores –

Figure 2.5 right plot. Evaluating the tracking performance split by dataset – Figure 2.6 right

plot – shows only slight differences between the datasets, where the spread in results is

caused by averaging over the different segmentation errors which are penalized differently.

Comparing Different Trackers

In the following, three tracking methods are compared using the degraded segmentation

data. Figure 2.7 shows the results on the SEG and TRA metric for the three tracking

methods MU-Lux-CZ, KTH-SE, and KIT-Sch-GE (1). Concerning SEG performance, KIT-

Sch-GE (1) performs better than the other tracking algorithms on under-segmentation,

FNs, and mixed errors, and even shows an improvement in the SEG score compared to

no tracking. However, on over-segmentation errors, MU-Lux-CZ performs best, as the

FN correction mechanism of KIT-Sch-GE (1) adds segmentation masks since the split

28

2.2. Experiment

Figure 2.6.: TRA score of MU-Lux-CZ tracking split by the different error types – right

plot – and different datasets – left plot on DeepCell datasets. The score of a

single image sequence is shown as a circle, whereas + indicates the median

calculated over a set of erroneous image sequences. For the left plot, averages

were calculated over 𝑁 = 405 tracking results, whereas for the right plot

the number of erroneous datasets depends on the available image sequences:

𝑁 = 520 for HEK 293, 𝑁 = 360 for HeLa S3, 𝑁 = 480 for NIH 3T3, and 𝑁 = 260

for RAW 264.7.

segmentation masks are interpreted as individual objects with missing segmentation

masks. Although not developed to correct under-segmentation errors, KIT-Sch-GE (1) can

sometimes correct this error. For example, having two objects at time point 𝑡 , one at 𝑡 + 1

and two at 𝑡 + 2 the algorithm treats this as a FN error and adds a segmentation mask

which overlaps with the merged segmentation mask and hence results in two objects at

𝑡 + 1.

For over-segmentation errors, MU-Lux-CZ and KIT-Sch-GE (1) show a similar spread

in results, which is mostly due to the random splitting of objects into two up to four

segments, resulting in different penalties in the metrics. The large spread in metric scores

in KIT-Sch-GE (1) on the other three segmentation error types, especially on FN error

image sequences, results from the error correction capabilities for FNs. On some image

sequences, the algorithm seems to better correct the segmentation errors. For instance, if

the object moves little between frames and has little change in its shape, the algorithm

can interpolate the missing segmentation mask well.

Comparing MU-Lux-CZ and KIT-Sch-GE (1) on perfect data – the fraction of segmen-

tation errors is 0 – it appears that MU-Lux-CZ performs slightly better. This might be

due to the error correction capabilities of KIT-Sch-GE (1) that sometimes when an object

leaves the field of view and then enters it again segmentation masks are interpolated at

the frames in between.

KTH-SE, however, shows on both metrics very low performance, due to tending to

remove segmentation masks from the image sequence up to the case that all segmentation

masks are removed, which results in a metric score of 0 on all metrics. An example of

how KTH-SE removes segmentation masks is shown in Figure 2.8. While for some image

29

2. Tracking Benchmark
(
a
)
O
v
e
r
-
S
e
g
m
e
n
t
a
t
i
o
n
E
r
r
o
r

(
b
)
U
n
d
e
r
-
S
e
g
m
e
n
t
a
t
i
o
n
E
r
r
o
r

(
c
)
F
N
E
r
r
o
r

(
d
)
M
i
x
e
d
E
r
r
o
r

Figure 2.7.: SEG and TRA score of different tracking methods evaluated on DeepCell

datasets with different types and fractions of segmentation errors. The score of

a single image sequence is shown as a circle, whereas + indicates the median

calculated over 𝑁 = 405 erroneous image sequences.

30

2.3. Discussion

KTH-SE Tracking

𝑡

Raw Images

Segmentation

KTH-SE Tracking

𝑡

HEK 293

Raw Images

Segmentation

RAW 264.7

Figure 2.8.: Tracking results of KTH-SE on two different image sequences from the

DeepCell dataset when provided with error-free segmentation data. On the

RAW 264.7 dataset, the KTH-SE tracking just removes segmentation masks

close to the image border, whereas on the HEK 293 dataset the tracking algo-

rithm removes all segmentation masks resulting in empty frames.

sequences only objects at the image border are removed, for other image sequences all

segmentation masks are removed. A possible explanation for this behavior is a strong

tuning of the tracking method towards the originally used segmentation algorithm that

might have been prone to FPs.

2.3. Discussion

This chapter presented a method to compare different tracking algorithms concerning their

strengths and weaknesses in handling different types of segmentation errors. Therefore, it

was proposed to replace the segmentation algorithm of a tracking-by-detection algorithm

with degraded segmentation data covering different types and fractions of segmentation

errors. To evaluate the approach, four datasets with full ground truth annotations, each

consisting of multiple image sequences, were synthetically degraded. Next, the degraded

segmentation data were used to analyze the influence of different types of segmentation er-

rors on the metric score and how tracking approaches handle different types and quantities

of segmentation errors.

31

2. Tracking Benchmark

The approach can be applied to degrade 2D and 3D segmentation data as well as real-

world segmentation data and synthetic segmentation data. The analysis showed that the

SEG and DET metrics both penalize FNs strongest, while under-segmentation is penalized

the least. Concerning the tracking approaches, KTH-SE showed a tendency to remove

segmentation masks independent from the segmentation error type but dependent on the

dataset. Therefore, to use this approach careful tuning is needed, that however requires

time and prior knowledge that not each non-expert user has. KIT-Sch-GE (1) can improve

the SEG score on FNs, under-segmentation, and mixed errors, however, the segmentation

quality decreases compared to no tracking when over-segmentation errors are dominant.

Depending on the dataset, however, also simple overlap-based tracking approaches such

as MU-Lux-CZ can perform competitively.

While this chapter proposed a method to compare different tracking methods, the

simulated errors only partially emulate real-world errors. For instance, FNs usually occur

when the visibility of an object is degraded e.g. due to low contrast or occlusion, whereas

here segmentation masks were randomly removed. While several runs with different error

types and fractions can be created, which makes fine-tuning more difficult as there is no

single dataset, other interesting characteristics such as different movement patterns or a

varying number of objects are missing. Future works could extend this approach including

simulated datasets with different movement characteristics and numbers of objects in

2D and 3D which would make fine-tuning even more difficult as new datasets could be

created easily without requiring time-intensive manual annotation.

Besides using the proposed approach to compare different tracking algorithms, the

approach can also be used during tracking algorithm development. For instance, to find a

robust parametrization of a tracking algorithm, which performs well over different types

and fractions of segmentation errors. Providing such a robust parametrization of the

tracking approach helps non-expert users to apply a promising tracking approach to their

application easily.

32

3. A Graph-based Tracking Algorithmwith
few Tunable Parameters and
Segmentation Error Correction

Currently, MOT is dominated by tracking-by-detection approaches [66, 172]. As tracking

methods in tracking-by-detection approaches, numerous methods have been proposed:

simplistic overlap-based tracking [95, 97], hybrid approaches combining simplistic nearest

neighbor tracking approaches with more sophisticated tracking methods for challenging

image regions [83, 100, 102], Bayesian filters [105, 108, 109], graph-based tracking [71, 85,

111], and deep learning based approaches [88, 90, 129].

MOT benchmarks usually only consider the overall tracking performance – the needs

of non-expert users, which apply the MOT approaches for their tasks, are not taken into

consideration. Since MOT is just one step in the image analysis pipeline, ideally non-

expert users should be able to integrate the MOT approach with little overhead and prior

knowledge in their pipeline. Hence, from the perspective of non-expert users, tracking

approaches can be categorized as on the one hand, sophisticated tracking algorithms

with high accuracy on benchmark datasets, which however have an extensive set of

parameters that need careful manual tuning or annotated data is needed to fine-tune the

approaches to the new application. On the other hand, tracking algorithms that are easy to

apply, however, performed inferior on benchmark datasets. While there are segmentation

approaches with a strong performance on a diverse set of data, which can be easily applied

to new datasets [55, 56], a simple to apply, yet well-performing tracking algorithm is

currently missing.

To close the gap, this chapter proposes a graph-based tracking algorithm with only

two manually tunable parameters, which are easy to interpret for non-expert users. The

proposed tracking algorithm can process 2D and 3D image sequences and can be combined

with an arbitrary segmentation algorithm, which predicts instance segmentation masks to

create a tracking-by-detection approach. Moreover, a post-processing step is proposed

that can detect and correct certain types of segmentation errors without requiring training

data or tuning.

The proposed idea to model and correct segmentation errors automatically can be

applied to different domains. In this thesis, the domain-specific splitting of objects due to

mitosis is modeled in the tracking algorithm. Moreover, the algorithm can be extended to

The method section is an expansion of the method description from K. Löffler, T. Scherr,

and R. Mikut. “A graph-based cell tracking algorithm with few manually tunable pa-

rameters and automated segmentation error correction”. In: PLOS ONE 16.9 (2021),

e0249257. doi: 10.1371/journal.pone.0249257.

33

https://doi.org/10.1371/journal.pone.0249257

3. Graph-based Tracking

model other domain-specific properties as well, which is however not the focus of this

thesis.

The remainder of this section is organized as follows: Section 3.1 provides the mathemat-

ical preliminaries for this chapter. Then, Section 3.2 introduces the proposed graph-based

tracking method including its post-processing step. The tracking approach is compared

with other tracking methods in Section 3.3. Finally, Section 3.4 concludes this chapter by

providing a summary and discussion of the proposed method.

3.1. Mathematical Preliminaries

This section introduces the minimum cost flow problem based on [174, Chapter 3] and

[175, Chapter 9]. An in-depth introduction to graph theory and optimization problems

can be found in [174, 175].

MinimumCostFlowProblem LetG = (V, E) be a directed graph, whereV = {𝑢, 𝑣,𝑤, . . . }
is the set of nodes and E = {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ V} the set of edges connecting pairs of nodes.
Moreover, let 𝑞− be a source node and 𝑞+ be a sink node. Each node 𝑣 has a balance

𝑏 (𝑣), where nodes with 𝑏 (𝑣) > 0 are called sinks and nodes with 𝑏 (𝑣) < 0 sources,

otherwise 𝑣 is called balanced 𝑏 (𝑣) = 0. The flow of units 𝑓 (𝑢, 𝑣) that can be send over an

edge (𝑢, 𝑣) are bounded by a lower capacity 𝑘𝑙 (𝑢, 𝑣) and an upper capacity 𝑘𝑢 (𝑢, 𝑣) with
𝑘𝑢 (𝑢, 𝑣) ≥ 𝑘𝑙 (𝑢, 𝑣) ≥ 0. Sending a unit over an edge has a cost 𝑐 (𝑢, 𝑣). The problem of

finding a feasible flow of units through this graph at an overall minimal cost can then be

modeled as follows:

min

𝑓 (𝑢,𝑣)

∑
(𝑢,𝑣)∈E

𝑐 (𝑢, 𝑣) 𝑓 (𝑢, 𝑣) (3.1)

subject to:

Capacity constraint: 𝑘𝑙 (𝑢, 𝑣) ≤ 𝑓 (𝑢, 𝑣) ≤ 𝑘𝑢 (𝑢, 𝑣) ∀𝑣 ∈ V (3.2)

Flow conservation:

∑
𝑢∈𝑉

𝑓 (𝑢, 𝑣) −
∑
𝑤∈𝑉

𝑓 (𝑣,𝑤) = 𝑏 (𝑣) = 0 ∀𝑣 ∈ V \
{
𝑞+, 𝑞−

}
(3.3)

Flow requirement:

∑
𝑣∈𝑉

𝑓
(
𝑣, 𝑞+

)
= 𝑏

(
𝑞+

)
=
∑
𝑣∈𝑉

𝑓 (𝑞−, 𝑣) = −𝑏 (𝑞−) > 0 . (3.4)

The problem can be solved with linear programming [175, Chapter 3]. Moreover, the

integrality theorem [174, p. 133] states for the case that all capacities and vertex balances

are constrained to be integers, then there exists an optimal solution that is integer-valued.

Hence, although the problem is now an integer program it can be solved efficiently using

linear programming.

CoupledMinimumCost Flow Problem The term coupled minimum cost flow problem was

introduced by Padfield et al. who modeled different types of object behavior in a graph

formulation for MOT [112]. The approach models object movement, appearance, and

disappearance as well as splitting and merging pairs of objects. While object movement,

appearance, and disappearance can be modeled directly using minimum cost flow, the

34

3.2. Method

formulation needs to be extended to model the merging and splitting of objects. Therefore,

Padfield et al. proposed to add coupling constraints to the original minimum cost flow

problem to model an object splitting into two objects or two objects merge into one object.

The added coupling constraints enforce that if an edge, which is connected to a split or

merge vertex, is chosen, additional edges need to be selected as well. A detailed description

of the approach can be found in [112].

3.2. Method

The proposed method builds up on the coupled minimum cost flow approach proposed by

Padfield et al. [112]. In the following, the approach is extended by modeling FNs, merges

of arbitrary numbers of objects into a single object, and splitting a single object into an

arbitrary number of objects. Moreover, to reduce the number of edges and hence flow

variables in the graph, a tracklet step is introduced. In addition, simple, position-based

costs are proposed that allow linking also erroneously segmented objects. Finally, a post-

processing step is proposed that can use the additional information of many-to-one and

one-to-many links of the tracking graph to correct segmentation errors.

The proposed tracking algorithm is based on the following assumptions: (i) The object

movement is small compared to the overall image size and (ii) the majority of segmentation

masks are segmenting single objects correctly. (i) The object movement assumption is

motivated by the need for a reasonable temporal resolution of the image sequence for a

detailed analysis of the lineage or object behavior. (ii) The segmentation assumption is

motivated by the availability of reasonably well-performing segmentation approaches [53,

54, 55, 56, 57, 176].

It is vital to emphasize that not each segmented object refers to an entity. Due to

segmentation errors, the segmented objects can contain detected artifacts, only parts of

an entity, a single entity, or several entities.

The tracking is split into three steps: tracklet step, matching step, and post-processing

step. In the tracklet step, the segmented objects are coarsely followed over time to find

potential objects belonging to the same track. In the matching step, the segmented objects

are assigned to tracks by solving a graph-based optimization problem. The graph models

object behavior including appearance, disappearance, movement, and mitosis as well as

splitting and merging of objects, due to over- and under-segmentation errors, and FNs.

Lastly, a post-processing step is applied to correct segmentation errors. Figure 3.1 shows

an overview of the proposed tracking pipeline. In the following, all steps of the tracking

method are introduced based on the example dataset shown in Figure 3.1.

3.2.1. Step 1: Tracklet Step

Based on the object movement assumption, segmented objects belonging to the same

track should be spatially close between successive time points. Similar to in [57], for

each segmented object a rectangular-shaped Region Of Interest (ROI) is defined, which

size is derived from the median size of the segmentation masks, to find objects which

could belong to the same track at successive time points. The ROI is propagated over

35

3. Graph-based Tracking

𝑡

Raw Images

Segmentation

Tracking Result

Tracking Pipeline

Find matching candidates

between successive frames

using region of interest (ROI)

Correct segmentation errors

automatically by modifying the

tracking graph

Connect matching candidates

over time and solve assignment

problem to create tracking graph

1) Tracklet Step

𝑡0

𝑡1

a) define ROI

b) propagate

ROI

c) select matching candidates

2) Matching Step 3) Post-Processing Step

6

7

5

2

31

4

6

7

6

6

77

111
6

7

6

𝑡

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

𝑥8,5

𝑎4

𝑠3,3

𝑠8,5𝑠4,3

𝑠2,3

𝑥4,2 𝑥7,4

𝑥3,2

𝑥5,3

𝑎3

𝑞− 𝑞+

𝑜3,1

𝑜2,1

𝑜4,1

𝑜5,2

𝑚5,1 𝑚8,3

𝑚7,2

𝑎0 𝑎1

𝑚6,2 𝑚9,4

𝑠5,3

𝑠6,5

𝑜8,4𝑜6,3

𝑜7,3

𝑥6,4

𝑥1,1

𝑥2,2

𝑠1,1

𝑠7,5𝑚10,5

𝑎2

𝑜1,0

𝑜10,5

𝑜9,5

53

4

6

7

6

7

62

1
Tracking

Graph

Figure 3.1.: Proposed tracking method. A sequence of raw images and erroneous segmenta-

tion results is fed into the tracking pipeline. During tracking the segmentation

masks are linked over time and segmentation errors are corrected. Derivative

of Figure 1 by Löffler et al. [177] licensed under CC BY 4.0; rearranged plot and

changed colors.

36

https://creativecommons.org/licenses/by/4.0/

3.2. Method

time by estimating a displacement between successive frames using a phase correlation

[178]. Segmented objects which overlap with the propagated ROI are considered matching

candidates which are linked in the matching step.

3.2.2. Step 2: Matching Step

Segmented objects and their matching candidates are represented as nodes in a directed

graph. The graph models the object behavior: appearance, disappearance, movement,

and mitosis as well as the segmentation errors: FNs, under-, and over-segmentation. The

segmented objects are linked over time by solving a coupled minimum cost flow problem.

Let G = (V, E) be a directed graph with a set of nodesV = {𝑢, 𝑣,𝑤, . . . } and a set of

edges E = {(𝑢, 𝑣)} connecting pairs of nodes 𝑢 and 𝑣 . Edges (𝑢, 𝑣) are directed, starting
from node 𝑢 and ending in node 𝑣 .

Nodes The following node types are defined to model object behavior and segmentation

errors:

• 𝑞−: source node

• 𝑞+: sink node

• 𝑜 ·,·: object nodes modeling segmented objects

• 𝑠·,·: split nodes modeling splitting objects

• 𝑚·,·: merge nodes modeling merging objects

• 𝑥·,·: skip nodes modeling FNs

• 𝑑·: disappearance nodes modeling disappearing objects

• 𝑎·: appearance nodes modeling appearing objects

A specific node in the graph is referred to as 𝑣𝑖,𝑡 , where 𝑣 is the node type and 𝑖 is a

unique identifier referencing a segmented object, and 𝑡 is a time point.

For each segmented object 𝑖 at time point 𝑡 a corresponding object node 𝑜𝑖,𝑡 is added to

the graph.

To link tracks with missing segmentation masks, skip nodes are added for each seg-

mented object at time point 𝑡 at the successive Δ𝑡 − 1 time points. For example, if Δ𝑡 = 3,

tracks can be linked that have missing segmentation masks for a maximum of two sub-

sequent time points. The modeling of missing segmentation masks can be dropped by

setting Δ𝑡 = 1. For each time point 𝑡 an appearance node 𝑎𝑡 is added to model appearing

objects at time point 𝑡 + 1, whereas a disappearance node 𝑑𝑡 is added for each time point 𝑡

to model disappearing objects at time point 𝑡 − 1. Mitosis and splitting objects are modeled

by adding for each object node and skip node at time point 𝑡 a split node 𝑠𝑖,𝑡+1 at time point

𝑡 + 1. Merging objects are modeled by adding a merge node𝑚𝑖,𝑡−1 at time point 𝑡 − 1 for

each object node and each skip node at time point 𝑡 . The source node 𝑞− is added before

37

3. Graph-based Tracking

the first time point and a sink node 𝑞+ is added after the last time point of the considered

set of time points T .

It is emphasized that themerge and split nodes bothmodel under- and over-segmentation

errors depending on the context: Multiple objects at time point 𝑡 which are being under-

segmented as a single object at the next time point 𝑡 + 1 are modeled by a merge node as

well as an over-segmented object at time point 𝑡 which is being correctly segmented as a

single object at the next time point 𝑡 + 1. Similarly, an object at 𝑡 which is over-segmented

as multiple objects at the next time point 𝑡 +1 is modeled by a split node as well as multiple

under-segmented objects, which are correctly segmented as a single object at the next

time point 𝑡 + 1.

Edges The nodes are connected by directed edges to model events, such as linking

segmented objects between successive time points. Directed edges are allowed between

the following node types, where 𝑢 : {𝑣,𝑤} means edges starting from node type 𝑢 can end

in the node types 𝑣 and𝑤 :

• 𝑞− :

{
𝑎·, 𝑜 ·,·

}
• 𝑞+ : {}

• 𝑜 ·,· :
{
𝑑·,𝑚·,·, 𝑜 ·,·, 𝑠·,·, 𝑞+, 𝑥·,·

}
• 𝑠·,· :

{
𝑜 ·,·

}
• 𝑚·,· :

{
𝑑·, 𝑜 ·,·

}
• 𝑥·,· :

{
𝑚·,·, 𝑜 ·,·, 𝑠·,·, 𝑞+, 𝑥·,·

}
• 𝑑· : {𝑞+}

• 𝑎· :
{
𝑑·, 𝑜 ·,·, 𝑠·,·

}
Figure 3.2 shows the constructed graph based on the image sequence with erroneous

segmentation from Figure 3.1.

Connecting all object nodes and skip nodes at time point 𝑡 naïvely to all other object

nodes at time point 𝑡 + 1, would result in a quadratically growing number of edges. To

reduce the number of edges in the graph, the matching candidates from the tracklet step are

used to connect object nodes only to the object nodes in successive frames that correspond

with its matching candidates. This is applied to the split and merge nodes as well, by

connecting a split node 𝑠𝑖,𝑡+1 only to the object nodes at 𝑡 + 1, the object node 𝑜𝑖,𝑡 or skip

node 𝑥𝑖,𝑡 is connected to. A merge node𝑚𝑖,𝑡 is only connected to the object nodes and skip

nodes at 𝑡 , the object node 𝑜𝑖,𝑡+1 is connected to. A visualization how nodes are connected

is shown in Figure 3.3 and Figure 3.2. The used costs functions 𝑐 (·, ·) are introduced in

more detail subsequently.

In theory, the graph could be spanned over the full-time span of an image sequence,

however, for image sequences with many objects and time points, this would lead to large

optimization problems that need to be solved. Therefore, smaller optimization problems

38

3.2. Method

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

𝑥8,5

𝑎4

𝑠3,3

𝑠8,5𝑠4,3

1 3
2 4

5 86

7

9
10

Raw Images

Segmentation

Corresponding

Graph

𝑞− Source Node

𝑞+ Sink Node

𝑠𝑖,𝑡 Split Node𝑜𝑖,𝑡 Object Node𝑎𝑡 Appearance Node

𝑑𝑡 Disappearance Node 𝑥𝑖,𝑡 Skip Node 𝑚𝑖,𝑡 Merge Node

𝑖 Segmented Object ID

𝑡 Time Point

𝑠2,3

𝑥4,2 𝑥7,4

𝑥3,2

𝑥5,3

𝑎3

3

𝑞− 𝑞+

𝑜3,1

𝑜2,1

𝑜4,1

𝑜5,2
𝑚5,1 𝑚8,3

𝑚7,2

𝑎0 𝑎1

𝑚6,2 𝑚9,4

𝑠5,3

𝑠6,5
𝑜8,4𝑜6,3

𝑜7,3

𝑥6,4

𝑥1,1

𝑥2,2

𝑠1,1

𝑠7,5𝑚10,5

𝑎2

𝑜1,0

𝑜10,5

𝑜9,5

Figure 3.2.: Graph constructed for an image sequence with erroneous segmentation, where

each segmented object is assigned a unique ID 𝑖 . Nodes corresponding to a

segmented object share the same ID 𝑖 , however, depending on the node type

they are assigned to different time points 𝑡 in the graph. Segmented objects

are linked over a maximum time span of Δ𝑡 = 2 frames by adding for each

object node 𝑜𝑖,𝑡 a skip node 𝑥𝑖,𝑡+1, which models a missing segmentation mask.

The segmented objects are assigned to tracks by solving the coupled minimum

cost flow problem – the optimal solution is highlighted in black. The optimal

solution contains additional flows from the source node over appearance to

disappearance nodes to the sink node, which were omitted for better visibility.

Derivative of Figure 2 by Löffler et al. [177] licensed under CC BY 4.0; changed

colors.

39

https://creativecommons.org/licenses/by/4.0/

3. Graph-based Tracking

0

0

𝑐(𝑠1,1, 𝑜2,1)

𝑐(𝑠1,1, 𝑜3,1) 𝑜3,1

𝑜2,1

𝑜4,1

𝑠1,1𝑜1,0

𝑎0

𝑐(𝑠1,1, 𝑜4,1)

0

0

𝑐(𝑥1,1, 𝑚5,1)

𝑐(𝑜2,1, 𝑚5,1)

𝑐(𝑜4,1, 𝑚5,1)

𝑐(𝑜3,1, 𝑚5,1)𝑜3,1

𝑜2,1

𝑜4,1

𝑥1,1

𝑑2

𝑜5,2𝑚5,1

𝑐(𝑜6,3, 𝑥6,4) 𝑐(𝑥6,4, 𝑜10,5)

𝑜6,3 𝑥6,4 𝑜10,5

𝑐(𝑎1,, 𝑜5,2) 𝑜5,2𝑎1

𝑐(𝑜5,2, 𝑑3)
𝑜5,2 𝑑3

𝑐(𝑜5,2, 𝑜6,3)𝑜5,2 𝑜6,3

Object Behavior

Segmentation Errors

(a) Object Movement (b) Appearing Object

(c) Disappearing Object (d) Mitosis

(e) Object Movement with Missing

Segmentation Mask (FN) (g) Splitting Objects(f) Merging Objects

𝑜3,1

𝑜2,1

𝑜4,1

𝑠1,1𝑜1,0

𝑎0 0

0

𝑐2,4(𝑠1,1, 𝑜2,1)

𝑐2,4(𝑠1,1, 𝑜4,1)

Figure 3.3.: Modeling object behavior and segmentation errors in the graph example from

Figure 3.2. Annotations 𝑐 (·, ·) on the edges are assigned edge costs. To model

mitosis, edges that are connected to pairs of “daughter" nodes are pairwise

coupled – highlighted in orange. Derivative of Figure 2 by Löffler et al. [177]
licensed under CC BY 4.0; rearranged plot and changed colors.

are solved by dividing the image sequence into smaller time spans and constructing graphs

that overlap in time. The size of these graphs is defined by the parameter Δ𝑡 . Hence, every
𝑇 = 𝑛 · Δ𝑡 time points, with 𝑛 = {0, 1, 2, . . . , }, a graph is constructed, which spans over the

time points T = {𝑇 − (Δ𝑡 − 1), . . . ,𝑇 , . . . ,min(𝑇 + Δ𝑡,𝑇max)}, where 𝑇max is the last time

point of the image sequence. If no tracks with missing segmentation masks were detected

in the graph constructed for the previous time point, no skip nodes need to be added for

time points T = {𝑇 − (Δ𝑡 − 1), . . . ,𝑇 − 1}, which are linked to object nodes at time point

𝑇 . Hence, in these cases, the graph spans just over the time points T = {𝑇, . . . ,𝑇 + Δ𝑡}.

Formulation as Coupled Minimum Cost Flow Problem

To link the segmented objects over time, a coupledminimum cost flow problem as described

in Section 3.1 is constructed. The formulation builds up on the coupled minimum cost

flow problem [112], which is extended such that many-to-one and one-to-many links are

possible to model over- and under-segmentation errors of two or more objects as well as

introducing skip nodes to model FNs. The optimization problem is given as:

min

𝑓 (𝑢,𝑣)

∑
(𝑢,𝑣)∈E

𝑐 (𝑢, 𝑣) 𝑓 (𝑢, 𝑣)

subject to:

𝑔𝑖 ′ (𝑓 (𝑢, 𝑣)) = 0 , 𝑖′ = 0, . . . , 𝑁

ℎ 𝑗 ′ (𝑓 (𝑢, 𝑣)) ≤ 0 , 𝑗 ′ = 0, . . . , 𝑀

(3.5)

40

https://creativecommons.org/licenses/by/4.0/

3.2. Method

where 𝑐 (𝑢, 𝑣) is a cost, 𝑓 (𝑢, 𝑣) the flow variables which are constrained to be integer-

valued, 𝑔𝑖 ′ are equality constraints, and ℎ 𝑗 ′ inequality constraints, which are introduced

next.

A flow conservation constraint, as introduced in Equation 3.3, is added for all nodes

apart from the source node and sink node:∑
𝑢∈V

𝑓 (𝑢, 𝑣) =
∑
𝑤∈V

𝑓 (𝑣,𝑤) . (3.6)

Flow requirements, as introduced in Equation 3.4, enforce a flow of a fixed number of

units through the graph. To ensure that each segmented object is assigned to a track, a

flow of one is enforced through each object node 𝑜𝑖,𝑡 and the flow from the source node 𝑞−

is set to the total number of segmented object nodes∑
𝑢∈V

𝑓 (𝑞−, 𝑢) =
∑
𝑡 ′∈T

|O𝑡 ′ | ,∑
𝑢∈V

𝑓
(
𝑢, 𝑜𝑖,𝑡

)
= 1 ,

𝑓 (𝑞−, 𝑎𝑡) = |O𝑡+1 | ,

(3.7)

where T is the set of all time points in the graph and |O𝑡 | is the number of object nodes at

time point 𝑡 .

Due to the capacity constraint, Inequality 3.2, the flow over an edge (𝑢, 𝑣) is restricted
by a maximum capacity constraint 𝑘𝑢 (𝑢, 𝑣), whereas the lower capacity constraint is set

to 0

0 ≤ 𝑓 (𝑢, 𝑣) ≤ 𝑘𝑢 (𝑢, 𝑣) . (3.8)

Edges connected to at least one skip 𝑥𝑖,𝑡 or object node 𝑜𝑖,𝑡 have a capacity of one

𝑘𝑢
(
𝑢, 𝑜𝑖,𝑡

)
= 𝑘𝑢

(
𝑢, 𝑥𝑖,𝑡

)
= 𝑘𝑢

(
𝑜𝑖,𝑡 , 𝑣

)
= 𝑘𝑢

(
𝑥𝑖,𝑡 , 𝑣

)
= 1 . (3.9)

To model the splitting and merging of more than two objects, the capacity of edges

connecting merge nodes𝑚𝑖,𝑡−1 to disappearance nodes 𝑑𝑡 and appearance nodes 𝑎𝑡 to split

nodes 𝑠𝑖,𝑡+1 depends on the number of edges ending in the merge node and edges starting

from the split node, respectively:

𝑘𝑢
(
𝑚𝑖,𝑡−1, 𝑑𝑡

)
=
��{ (𝑣 ·,𝑡−1,𝑚𝑖,𝑡−1

) �� 𝑣 ·,𝑡−1 connected to𝑚𝑖,𝑡−1
}�� ,

𝑘𝑢
(
𝑎𝑡 , 𝑠𝑖,𝑡+1

)
=
��{ (𝑠𝑖,𝑡+1, 𝑣 ·,𝑡+1) �� 𝑣 ·,𝑡+1 connected to 𝑠𝑖,𝑡+1

}�� . (3.10)

The capacity of edges connecting the source node 𝑞− to appearance nodes 𝑎𝑡 depends

on the number of segmented objects at time point 𝑡 + 1, whereas the capacity of edges

connecting disappearance nodes𝑑𝑡 to the sink node𝑞
+
depend on the number of segmented

objects at time points {𝑡 − Δ𝑡, . . . , 𝑡}

𝑘𝑢 (𝑞−, 𝑎𝑡) = |O𝑡+1 | ,
𝑘𝑢 (𝑎𝑡−1, 𝑑𝑡) = |O𝑡 | ,

𝑘𝑢
(
𝑑𝑡 , 𝑞

+) = 𝑡∑
𝑡 ′=𝑡−Δ𝑡

|O𝑡 ′ | ,
(3.11)

41

3. Graph-based Tracking

where |O𝑡 | is the number of object nodes at time point 𝑡 . The sum of the capacity constraint

𝑘𝑢 (𝑑𝑡 , 𝑞+) results from the added skip nodes which enable linking segmented objects over

a maximum time span Δ𝑡 . For Δ𝑡 = 1, no skip nodes are added resulting in 𝑘𝑢 (𝑑𝑡 , 𝑞+) =
|O𝑡 | + |O𝑡−1 |, providing an upper bound. For Δ𝑡 = 2 for each object node a skip node is

added, allowing a flow from an object node at 𝑡 − 2 over its skip node to a merge node

at 𝑡 − 1, which is connected to the disappearance node 𝑑𝑡 . To provide a large enough

upper bound, the number of object nodes from time point 𝑡 − 2 is added to the maximum

capacity:

𝑘𝑢
(
𝑑𝑡 , 𝑞

+) = 𝑡∑
𝑡 ′=𝑡−2

|O𝑡 ′ | = |O𝑡 | + |O𝑡−1 | + |O𝑡−2 | . (3.12)

To model the merging of two or more objects into a single object, for each merge node

𝑚𝑖,𝑡−1 the following constraints are added:

𝑓
(
𝑚𝑖,𝑡−1, 𝑜𝑖,𝑡

)
− 𝑓

(
𝑚𝑖,𝑡−1, 𝑑𝑡

)
≤ 0 ,

𝑓
(
𝑣 ·,𝑡−1,𝑚𝑖,𝑡−1

)
− 𝑓

(
𝑚𝑖,𝑡−1, 𝑜𝑖,𝑡

)
≤ 0 ∀ 𝑣 ·,𝑡−1 connected to𝑚𝑖,𝑡 .

(3.13)

By combining Equation 3.8 and Equation 3.13

0 ≤ 𝑓
(
𝑣 ·,𝑡−1,𝑚𝑖,𝑡−1

)
≤ 𝑓

(
𝑚𝑖,𝑡−1, 𝑜𝑖,𝑡

)
≤ 𝑓

(
𝑚𝑖,𝑡−1, 𝑑𝑡

)
, (3.14)

can be derived.

For a flow 𝑓
(
𝑣 ·,𝑡−1,𝑚𝑖,𝑡−1

)
from a node 𝑣 ·,𝑡−1 to the merge node𝑚𝑖,𝑡−1 larger than zero,

the flow from the merge node to the object node 𝑓
(
𝑚𝑖,𝑡−1, 𝑜𝑖,𝑡

)
and the flow from the

merge node to the disappearance node 𝑓
(
𝑚𝑖,𝑡−1, 𝑑𝑡

)
need to be at least as large. The flow

conservation constraint Equation 3.6 enforces the same flow into a node and from a node,

resulting in a flow of at least two through the merge node𝑚𝑖,𝑡−1 or zero.
To model the splitting of an object into two or more objects, for each split node the

following constraints are added:

−𝑓
(
𝑎𝑡 , 𝑠𝑖,𝑡+1

)
+ 𝑓

(
𝑜𝑖,𝑡 , 𝑠𝑖,𝑡+1

)
≤ 0 ,

−𝑓
(
𝑜𝑖,𝑡 , 𝑠𝑖,𝑡+1

)
+ 𝑓

(
𝑠𝑖,𝑡+1, 𝑣 ·,𝑡+1

)
≤ 0 ∀ 𝑣 ·,𝑡+1 connected to 𝑠𝑖,𝑡+1 .

(3.15)

Similar to before, by combining Equation 3.8 and Equation 3.15

0 ≤ 𝑓
(
𝑠𝑖,𝑡+1, 𝑣 ·,𝑡+1

)
≤ 𝑓

(
𝑜𝑖,𝑡 , 𝑠𝑖,𝑡+1

)
≤ 𝑓

(
𝑎𝑡 , 𝑠𝑖,𝑡+1

)
, (3.16)

can be derived.

For a flow 𝑓
(
𝑠𝑖,𝑡+1, 𝑣 ·,𝑡+1

)
from the split node 𝑠𝑖,𝑡+1 to a node 𝑣 ·,𝑡+1 larger than zero, the

flow from the object node to the split node 𝑓
(
𝑜𝑖,𝑡 , 𝑠𝑖,𝑡+1

)
and the flow from the appearance

node to the split node 𝑓
(
𝑎𝑡 , 𝑠𝑖,𝑡+1

)
need to be at least as large. The flow conservation

constraint Equation 3.6 enforces the same flow into a node and from a node, resulting in a

flow of at least two through the split node 𝑠𝑖,𝑡+1 or zero.
Mitosis events differ from splitting objects, as one “mother" entity evolves into two

“daughter" entities. In contrast, the splitting of objects is caused by the over-segmentation

of an entity or the under-segmentation of entities being correctly segmented as different

objects in the next time point. To assign different edge costs to mitosis events, all pairs

42

3.2. Method

of “daughter" nodes 𝑜 𝑗,𝑡+1 & 𝑜𝑙,𝑡+1 are constructed to which the “mother" node 𝑠𝑖,𝑡+1 is
connected to and pairwise coupled flow variables are added. Those pairwise coupled flow

variables are referred to as 𝑓 𝑗𝑙 (·, ·), where 𝑗𝑙 refers to the indices of the pair of coupled

daughter nodes. Since these flow variables are coupled, they always are assigned the same

value

𝑓 𝑗𝑙
(
𝑠𝑖,𝑡+1, 𝑜 𝑗,𝑡+1

)
= 𝑓 𝑗𝑙

(
𝑠𝑖,𝑡+1, 𝑜𝑙,𝑡+1

)
. (3.17)

During mitosis, from each mother object at most one pair of daughter objects can

emerge, which is modeled by connecting the split node 𝑠𝑖,𝑡+1 to at most two daughter nodes∑
𝑗

∑
𝑙
𝑙≠ 𝑗

𝑓 𝑗𝑙
(
𝑠𝑖,𝑡+1, 𝑜 𝑗,𝑡+1

)
≤ 2 . (3.18)

In addition, a split node 𝑠𝑖,𝑡+1 can either model mitosis or the splitting of objects. This is

enforced by adding for all pairs of flow variables that correspond to edges starting from

𝑠𝑖,𝑡+1 an inequality constraint:

𝑓 𝑗𝑙
(
𝑠𝑖,𝑡+1, 𝑜 𝑗,𝑡+1

)
− 𝑓

(
𝑠𝑖,𝑡+1, 𝑜𝑙,𝑡+1

)
≤ 1 . (3.19)

The number of daughter pairs, and hence the number of pairwise coupled flow variables,

grows quadratically with the number of potential daughter objects. For instance, if an

object has ten potential daughter objects, the number of potential daughter pairs is

(
10

2

)
= 45.

As each mitosis is modeled by two coupled flow variables, 90 coupled flow variables need

to be added to the optimization problem. To reduce the number of pairwise coupled flow

variables, and hence the size of the optimization problem, for each segmented object 𝑜𝑖,𝑡+1
only ten potential mitosis pairs are considered. These potential mitosis pairs are chosen

by selecting the ten potential mitosis pairs with the smallest mitosis costs, which is given

in Equation 3.23. As the number of potential daughter objects is limited by the number of

objects overlapping with the ROI and the mitosis costs are based on the Euclidean distances

of three vectors, which are 2- or 3-dimensional, the mitosis costs can be calculated quickly.

Cost Functions

In the following, edge costs 𝑐 (𝑢, 𝑣) are defined based on positional features only, which

can be used over a variety of image sequences in 2D and 3D. This has the advantage that

no additional labeled data or fine-tuning is needed, which might otherwise be required

to learn features or tune the weighting between different types of features such as visual

appearance and position. The cost functions are derived using domain-specific knowledge:

(i) the object movement between successive frames is small and objects tend to perform

random movements, (ii) after mitosis the emerging daughter objects are close to the former

position of the mother object, and (iii) objects appear and disappear when they enter or

leave the field of view at the image border. In general, arbitrary costs can be chosen for the

tracking approach to model complex domain-specific behavior such as mitosis. However,

proposing cost functions to model domain-specific knowledge, in general, is outside of the

scope of this thesis.

For each segmented object based on its segmentation mask the following features are

extracted: the mask centroid c𝑖,𝑡 , a bounding box, and a set of mask points. The bounding

43

3. Graph-based Tracking

box B𝑖,𝑡 is spanned by the top left and bottom right coordinates of the segmentation mask

𝑖 at time point 𝑡 and contains all points within the spanned rectangle. The set of mask

points Q𝑖,𝑡 is derived by calculating a distance transformation on the segmentation mask,

where a single point is referred to as q𝑖,𝑡 . A visualization of the extracted features is shown

in Figure 3.4.

The features are propagated over time by using the estimated displacement d̂𝑖,·,·, from
the tracklet step:

ĉ𝑖,𝑡+1 = c𝑖,𝑡 + d̂𝑖,𝑡,𝑡+1 ,

B̂𝑖,𝑡+1 =
{
b𝑖,𝑡 + d̂𝑖,𝑡,𝑡+1

�� b𝑖,𝑡 ∈ B𝑖,𝑡
}
,

Q̂𝑖,𝑡+1 =
{
q𝑖,𝑡 + d̂𝑖,𝑡,𝑡+1

�� q𝑖,𝑡 ∈ Q𝑖,𝑡
}
.

(3.20)

Costs between object nodes model the movement of an object between successive time

points:

𝑐
(
𝑜𝑖,𝑡 , 𝑜 𝑗,𝑡+1

)
=

ĉ𝑖,𝑡+1 − c 𝑗,𝑡+1

2
, (3.21)

where ĉ𝑖,𝑡+1 is the estimated mask centroid of object 𝑖 at time point 𝑡 + 1 and c 𝑗,𝑡+1 the
mask centroid of object 𝑗 at time point 𝑡 + 1. The costs are small if the estimated position,

which is derived in the tracklet step, is close to the position of a segmented object at the

subsequent time point.

As skip nodes model FNs, no position of the segmented object is available since the

segmentation mask is missing. Hence, edge costs involving skip nodes are based on the

propagated position of the segmented object

𝑐
(
𝑜𝑖,𝑡 , 𝑥𝑖,𝑡+1

)
=

{

c𝑖,𝑡 − ĉ𝑖,𝑡+1

2
=

d̂𝑖,𝑡,𝑡+1

2

if ĉ𝑖,𝑡+1 ∉ B𝑗,𝑡+1 ∀𝑗
𝜃 else

,

𝑐
(
𝑥𝑖,𝑡+1, 𝑥𝑖,𝑡+2

)
=

{

ĉ𝑖,𝑡+1 − ĉ𝑖,𝑡+2

2
=

d̂𝑖,𝑡+1,𝑡+2

2

if ĉ𝑖,𝑡+2 ∉ B𝑗,𝑡+2 ∀𝑗
𝜃 else

,

𝑐
(
𝑥𝑖,𝑡+1, 𝑜 𝑗,𝑡+2

)
=

ĉ𝑖,𝑡+2 − c 𝑗,𝑡+2

2
,

(3.22)

where 𝜃 is a large constant.

The mitosis costs for the pairwise coupled flow variables are defined as

𝑐1 =

c𝑖,𝑡 − 1

2

(
c 𝑗,𝑡+1 + c𝑙,𝑡+1

)

2

,

𝑐2 =
��

c𝑖,𝑡 − c 𝑗,𝑡+1‖2 − ‖c𝑖,𝑡 − c𝑙,𝑡+1

2

�� ,
𝑐3 =

c 𝑗,𝑡+1 − c𝑙,𝑡+1

2
,

𝑐 𝑗𝑙
(
𝑠𝑖,𝑡+1, 𝑜 𝑗,𝑡+1

)
= 𝑐 𝑗𝑙

(
𝑠𝑖,𝑡+1, 𝑜𝑙,𝑡+1

)
=

{
𝑐1 + 𝑐2 if 𝑐3 ≤ 1.5𝑏𝑖,𝑡

𝜃 else

,

(3.23)

where 𝑏𝑖,𝑡 is the length of the diagonal spanned by the top left and bottom right coordinate

of the bounding box. The costs enforce that daughter objects have a similar distance to

the mother object, their average position is close to the previous position of the mother

44

3.2. Method

𝑡 𝑡 + 1

𝒄𝑖,𝑡

ℬ𝑖,𝑡

ℬ𝑗,𝑡+1

𝒬𝑖,𝑡
𝒄𝑗,𝑡+1

ො𝒄𝑖,𝑡+1

𝒬𝑗,𝑡+1

Figure 3.4.: Extracted features to link the two segmented objects at 𝑡 to the segmented

object at 𝑡 + 1. For each segmentation mask 𝑖 at time point 𝑡 the mask centroid

c𝑖,𝑡 – shown as a cross –, a set of mask points Q𝑖,𝑡 – shown in a lighter shade

– and a bounding box B𝑖,𝑡 – shown as a rectangle – are extracted. While the

Euclidean distance between the mask centroid c 𝑗,𝑡+1 and the propagated mask

centroid ĉ𝑖,𝑡+1 is large – red arrow, which can result in wrong links, the minimal

Euclidean distance between the propagated mask centroid ĉ𝑖,𝑡+1 and the set of

mask points Q 𝑗,𝑡+1 – yellow arrow – is small. Derivative of Figure 3 by Löffler et
al. [177] licensed under CC BY 4.0; rearranged plot and changed colors.

object and the distance between the daughter objects is small. An estimated position

of the mother object is not used, as the displacement estimation which is based on the

appearance of image crops is unreliable, when one image crop shows a single mother

object and the other shows two daughter objects.

In the case of splitting and merging of objects, costs based on mask centroids can lead

to large cost terms, as the Euclidean distance between the propagated mask centroid of a

correctly segmented object and the mask centroid of merged objects can be large, which is

shown in Figure 3.4. Therefore, the set of mask points and the centroid position are used

to derive cost terms. For splitting of objects, the following costs are defined

𝑐
(
𝑠𝑖,𝑡 , 𝑜 𝑗,𝑡

)
=

{
min

({

q𝑖,𝑡−1 − c 𝑗,𝑡

2

�� q𝑖,𝑡−1 ∈ Q𝑖,𝑡−1
})

if c 𝑗,𝑡 ∈ B𝑖,𝑡−1
𝜃 else

, (3.24)

where 𝑖 is a segmented object at time point 𝑡 and Q𝑖,𝑡−1 is the set of mask points and q𝑖,𝑡−1
a mask point of the segmented object 𝑖 propagated at the previous time point 𝑡 − 1.

For merging objects the following costs are defined

𝑐
(
𝑜 𝑗,𝑡 ,𝑚𝑖,𝑡

)
=

{
min

({

q𝑖,𝑡+1 − ĉ 𝑗,𝑡+1

2

�� q𝑖,𝑡+1 ∈ Q𝑖,𝑡+1
})

if ĉ 𝑗,𝑡+1 ∈ B𝑖,𝑡+1
𝜃 else

, (3.25)

where ĉ 𝑗,𝑡+1 is the predicted position of the segmented object 𝑗 at time point 𝑡 + 1 and

Q𝑖,𝑡+1 the set of mask points of the segmented object 𝑖 at the subsequent time point 𝑡 + 1.

The appearance and disappearance an object is mainly caused by the object entering or

leaving the field of view. In image sequences, the field of view is spanned by the image

45

https://creativecommons.org/licenses/by/4.0/

3. Graph-based Tracking

borders. To model objects entering and leaving the field of view, appearance costs depend

on a threshold 𝛼 and the minimum distance of the mask centroid c𝑖,𝑡 to the image border

𝑐
(
𝑎𝑡−1, 𝑜𝑖,𝑡

)
= min

(
𝛼,min

(
min

(
a − c𝑖,𝑡

)
,min

(
c𝑖,𝑡

)))
, (3.26)

disappearance costs are defined similarly

𝑐
(
𝑜𝑖,𝑡 , 𝑑𝑡+1

)
= min

(
𝛼,min

(
min

(
a − c𝑖,𝑡

)
,min

(
c𝑖,𝑡

)))
, (3.27)

where a is the image size written as a vector andmin

(
min

(
a − c𝑖,𝑡

)
,min

(
c𝑖,𝑡

))
the minimal

distance to the image border.

The parameter 𝜃 is set to 𝜃 = 1000𝛼 , where 𝛼 is derived from the longest border of the

rectangular-shaped ROI, which is set to a multiple of the size of the median segmentation

mask in an image sequence. All other edges are assigned 0 cost. However, there are no

paths a unit can take through the graph from source to sink node without causing a cost.

For instance, edges between source and appearance nodes have assigned a cost of 0. Next,

since the flow requirement needs to be full-filled and the unit has to end in the sink node,

the unit can either flow to an object node or a split node, as an appearance node can be

only connected to object or split nodes. The flow from an appearance node to an object

node adds an appearance cost, whereas the flow to a split node adds a splitting cost when

the unit flows from the split node to the object node. Figure 3.3 provides examples of the

assigned edge costs between different nodes.

To reduce the number of flow variables further, edges with costs that surpass the

appearance or disappearance costs of a node are pruned. An edge, and hence its flow

variable, is pruned by setting the upper capacity constraint of this edge to zero. Finally,

the formulated problem can be solved using mixed integer linear programming with a

standard optimization toolbox such as Gurobi [116].

After solving the mixed integer linear program, the tracking graph can be extracted by

following the found paths through the graph and assigning segmented objects to tracks if

their corresponding object nodes are connected by the same path. On nodes where several

paths start/end, new tracks are created and the predecessor/successor information is kept.

3.2.3. Step 3: Post-Processing Step

After thematching step, the segmented objects are linked over time, however, segmentation

errors are not corrected. In the post-processing step, over- and under-segmentation errors

are resolved andmissing segmentationmasks are added to resolve FNs. Figure 3.5 illustrates

the tracking graph and segmentation masks after the different processing steps.

An Intuitive Introduction to the Untangling Problem

After the matching step, tracks can be assigned to more than one predecessor and can

have more than two successors as shown on top in Figure 3.6. These many-to-one and

one-to-many assignments are now resolved, so each track has at most one predecessor and

at most two successors to model mitosis. As the tracks are “untangled", this step is referred

to as untangling step. The tracking graph is transformed by applying a set of modifications

46

3.2. Method

1 3
2 4

5 86

7

9
10

Raw Images

Segmentation
3

53

4

6

7

6

7

62

1

Matching Step

1 3
2 4

5 67

6

6
7

Corresponding

Tracking Graph

1 3
1 67

6

6
7

111
6

7

6

7

6
1

Corresponding

Tracking Graph

Post-Processing Step

3

7

𝑡

Figure 3.5.: Segmentation masks and tracking graphs after matching step and post-

processing step, respectively. During the matching step, the segmented objects

are linked over time, however, tracking errors still exist. In the post-processing

step, the many-to-one and one-to-many links of the tracking graph are resolved

and missing segmentation masks are added. Finally, after the post-processing

step, the segmented objects are linked and segmentation errors are corrected.

to it, which are referred to as untangling operations: remove an edge, split a track, and

merge tracks. The edge remove operation removes a single predecessor-successor link.

The split operation splits a track into several tracks – to correct under-segmentation errors,

whereas the merge tracks operation merges several tracks resulting in a single track – to

correct over-segmentation errors. A visualization of the untangling operations is shown

on the left of Figure 3.6.

Different combinations of untangling operations lead to valid tracking graphs, which

are shown on the right of Figure 3.6. Based on the assumption that the objects are the

majority of time points correctly segmented, the idea is to select the smallest number of

untangling operations to transform the tracking graph.

Based on the prior knowledge that the image sequence can contain mitosis events, each

track should have at maximum one predecessor and at maximum two successors. However,

applying an untangling operation also affects the predecessor and successor tracks of

track 𝜔𝑛 since the number of their respective successors and predecessors change. Let

in the following be P𝑛 the set of predecessor tracks 𝜔𝑛 is connected to and S𝑛 the set of
successor tracks the track 𝜔𝑛 is connected to. In addition, let 𝜔𝑝 be a predecessor track of

𝜔𝑛 and 𝜔𝑠 a successor track of 𝜔𝑛. If an edge is removed between the predecessor track

𝜔𝑝 and 𝜔𝑛 , the number of successors of track 𝜔𝑝 reduces by one as well as the number of

predecessors of track 𝜔𝑛 reduces by one. Splitting the track 𝜔𝑛 into 𝑁 tracks increases the

number of successor tracks by 𝑁 − 1 for each of its predecessor tracks in P𝑛 . Similarly,

the number of predecessor tracks increases by 𝑁 − 1 for each of its successor tracks in S𝑛 .

47

3. Graph-based Tracking

Goal: Modify tracking graph such that at most one predecessor/ two successors per track

Untangling Operations to modify the graph:

Remove Edge

Split Track

Merge Tracks

Solution:

Apply minimum

of untangling

operations

Problem:

Which set of untangling operations to apply?

5

2

31

4

6

7

6

7

6
53

4

6

7

6

7

6

111
6

7

6

7

6
5

2

31

4

6

7

6

7

6

3

2

31

4

6

7

6

7

65

2

31

4

6

7

6

7

6 2

4

5

2

31

4

6

7

6

7

6
3

6

7

6

7

6

111
6

7

6

7

6
51

6

7

6

7

6

3

2

31

4

6

7

6

7

65

2

3
6

7

6

7

6 2

4

5

2

31

4

3
6

7

6

7

6
8 88

2

3

4

2

1
5

2

1

4

1

4

5

2

1

4

53

4

6

7

6

7

62

1

Tracking graph from the matching step:

Figure 3.6.: Modifying the tracking graph to correct segmentation errors. The tracking

graph is modified by applying untangling operations such that each track has at

most one predecessor and at most two successors – to model mitosis. Different

combinations of untangling operations, however, all lead to valid tracking

graphs. Therefore, the solution that requires the smallest set of untangling

operations is selected – highlighted with a box. Derivative of Figure 4 by

Löffler et al. [177] licensed under CC BY 4.0; rearranged, extended plot and

changed colors.

48

https://creativecommons.org/licenses/by/4.0/

3.2. Method

53

4

2

1

a) Shared predecessor,

shared successor

b) Shared predecessor,

some tracks without

successor

c) Some tracks without

predecessor, shared

successor

53

4

2

1 53

4

2

1

Figure 3.7.: Cases under which tracks can be merged in the post-processing step. The three

tracks with the IDs 2, 3, and 4 can be merged into a single track, although track

2 has no successor (b) or predecessor (c).

The tracking graph models one-to-many and many-to-one links, hence, several tracks

can share the same successor – a many-to-one link – or several tracks can share the same

predecessor – a one-to-many link. However, no many-to-many links exist, hence, there are

no sets of tracks that share multiple predecessors or successors. However, there can be sets

of tracks that share the same successor but a subset of tracks has no predecessor or a set

of tracks that share the same predecessor but a subset of tracks has no successor. This can

be summarized as conditions under which tracks can be merged: a) tracks share the same

predecessor and successor, b) tracks share the same successors and some tracks have no

predecessor but begin after the track with a predecessor starts, or c) tracks share the same

predecessors and some tracks have no successors but end before the track with successors

end. Figure 3.7 provides a visualization of the different cases under which tracks can be

merged.

In addition, there are cases where only a subset of tracks that fulfill the merging con-

ditions should be merged. An example for such a case is a track with three successors,

where two successors refer to an over-segmented object which are the tracks {2, 3, 4}
in the tracking graph in Figure 3.6. By just merging two of the successors, the over-

segmentation error could be resolved. Therefore, all subsets of tracks are constructed that

could potentially be merged which are referred to as possible sets of mergeable tracks.

In the following, let 𝜔𝑎 and 𝜔𝑏 be tracks that share the same predecessor track 𝜔𝑝 and

successor track 𝜔𝑠 with 𝜔𝑛 . As the tracks 𝜔𝑛 , 𝜔𝑎 , and 𝜔𝑏 fulfill the merging conditions, the

potential set of tracks 𝜔𝑛 can be merged with isM𝑛 = {{𝜔𝑎, 𝜔𝑛} , {𝜔𝑏, 𝜔𝑛} , {𝜔𝑎, 𝜔𝑏, 𝜔𝑛}}.
However, from the perspective of the predecessor and successor track, further sets of

mergeable sets can exist, which do not include 𝜔𝑛. For the predecessor track 𝜔𝑝 the set

that consists of all possible sets of mergeable tracks that contain successor tracks of it

is given by M
(
S𝑝

)
= {{𝜔𝑎, 𝜔𝑏} , {𝜔𝑎, 𝜔𝑛} , {𝜔𝑏, 𝜔𝑛} , {𝜔𝑎, 𝜔𝑏, 𝜔𝑛}}. Since all three tracks

in this example, share the same predecessor and successor, the set that consists of all

possible sets of mergeable tracks that contain predecessor tracks of the track 𝜔𝑠 , M (P𝑠),
is identical toM

(
S𝑝

)
.

Merging a set of tracks reduces for a predecessor track its number of successors by the

number of its successors that were merged minus one. Similarly, for a successor track,

its number of predecessors is reduced by the number of predecessors that were merged

minus one. For instance, if the tracks 𝜔𝑎 and 𝜔𝑏 are merged, the number of successors

of the predecessor track reduces from three, S𝑝 = {𝜔𝑎, 𝜔𝑏, 𝜔𝑛}, to two, S𝑝 = {𝜔𝑎𝑏, 𝜔𝑛},

49

3. Graph-based Tracking

where 𝜔𝑎𝑏 refers to the track created by merging the tracks 𝜔𝑎 and 𝜔𝑏 . Similarly, the

number of predecessors of the successor track reduces from three, P𝑠 = {𝜔𝑎, 𝜔𝑏, 𝜔𝑛}, to
two, P𝑠 = {𝜔𝑎𝑏, 𝜔𝑛}.

Formulation of the Untangling Problem as an Optimization Problem

The task is to select a combination of untangling operations from the many possible

options such that the tracking graph is modified as little as possible, which is modeled as

a minimization problem

min

𝑧

∑
𝑘

𝑐 (𝑧𝑘)𝑧𝑘 ,
(3.28)

where 𝑐 (𝑧𝑘) are costs and 𝑧𝑘 variables refer to the applied untangling operations on the

graph. The untangling operations 𝑧𝑘 are denoted as follows: an edge remove operation is

denoted as 𝑧𝑒𝑝𝑛 , where the predecessor track is 𝜔𝑝 and the successor track is 𝜔𝑛 . Splitting a

track 𝜔𝑛 into several tracks is denoted as 𝑧𝑠𝑛 , whereas merging a set of tracks is denoted as

𝑧𝑚𝑟 , where 𝑟 is an index that references a set of tracks in the setM𝑛 .

Based on the prior knowledge about the maximum number of predecessors and succes-

sors and how the untangling operations affect the number of predecessors and successors,

for each track, two inequality constraints are added to the optimization problem – one

modeling the predecessor side and the other one modeling the successor side of the track.

The number of predecessors of a track 𝜔𝑛 is referred to as |P𝑛 |, whereas the number of

successors of a track is referred to as |S𝑛 |. For each set of tracks 𝑟 that can be merged,

modeled by 𝑧𝑚𝑟 , the number of tracks sharing the same predecessor as track 𝜔𝑛 is denoted

as 𝑃𝑛,𝑟 and the number of tracks sharing the same successor as track 𝜔𝑛 as 𝑆𝑛,𝑟 . Further-

more, for each predecessor track of track 𝜔𝑛 , all sets of tracks the predecessor track can be

merged with are computed, where the setM (P𝑛) consists of all possible sets of mergeable

tracks that contain predecessor tracks of track 𝜔𝑛 . Analogously, for each successor track

of track 𝜔𝑛 , all sets of tracks the successor track can be merged with are computed, where

the set M (S𝑛) consists of all possible sets of mergeable tracks that contain successor

tracks of track 𝜔𝑛 .

As a track is influenced by the untangling operations applied to its predecessor or

successor tracks, the predecessor inequality constraint has to include the untangling

operations on the predecessor tracks, whereas the successor inequality constraint has to

include the untangling operations on the successor tracks. Furthermore, as several tracks

can share the same predecessor or successor, these tracks need to be considered in the

inequality constraints as well. The predecessor inequality constraint for track 𝜔𝑛 is given

as

50

3.2. Method

merge tracks︷ ︸︸ ︷∑
𝑟∈M𝑟

(
𝑃𝑛,𝑟 − 1

)
𝑧𝑚𝑟 −

split tracks︷ ︸︸ ︷∑
𝑤∈W𝑛

𝑧𝑠𝑤 −

remove edges to predecessors︷ ︸︸ ︷∑
𝑤∈W𝑛

∑
𝑝∈P𝑤

𝑧𝑒𝑝𝑤

+
∑
𝑝∈P𝑛

𝑧𝑠𝑝︸ ︷︷ ︸
split predecessors

−
∑

𝑞∈M(P𝑛)
max

(
0, 𝑆𝑞,𝑛 − 1

)
𝑧𝑚𝑞︸ ︷︷ ︸

merge predecessors

≤ − |P𝑛 | +max

(
1,
��{S𝑝 �� 𝑝 ∈ P𝑛

}��) ,
(3.29)

where 𝑟 and 𝑞 are indices that each reference a set of tracks in the sets of mergeable tracks

M𝑟 and M (𝑃𝑛) respectively, and 𝑤 and 𝑝 are indices referring to a single track. The

variables to be optimized are the merge track variables 𝑧𝑚𝑟 and 𝑧𝑚𝑞 , the split track variables

𝑧𝑠𝑤 and 𝑧𝑠𝑝 , and the edge remove variables 𝑧𝑒𝑝𝑤 , where 𝑧
𝑚
𝑟 denotes merging the set of tracks 𝑟

into a single track, 𝑧𝑠𝑤 denotes splitting the track 𝜔𝑤 , creating 𝑧
𝑠
𝑤 additional tracks, and 𝑧𝑒𝑝𝑤

denotes removing the predecessor-successor link between the predecessor track 𝜔𝑝 and

the successor track 𝜔𝑤 . The setM𝑛 contains all sets of tracks that can be merged with the

track 𝜔𝑛 , 𝑃𝑛,𝑟 is the number of tracks of the set of mergeable tracks 𝑟 that share the same

predecessors as𝜔𝑛 ,W𝑛 is a set, which contains all tracks that can be merged with track𝜔𝑛
including the track 𝜔𝑛 . |P𝑛 | is the number of predecessors of track 𝜔𝑛 , whereas P𝑤 is the

set of predecessors of track 𝜔𝑤 . 𝑆𝑞,𝑛 is the number of tracks of the set of mergeable tracks

𝑞 that have track 𝜔𝑛 as a successor. The total number of successors of the predecessors of

track 𝜔𝑛 is given by

��{S𝑝 �� 𝑝 ∈ P𝑛
}��
.

The successor inequality constraint is given as:

merge tracks︷ ︸︸ ︷∑
𝑟∈M𝑛

(
𝑆𝑛,𝑟 − 1

)
𝑧𝑚𝑟 −

split tracks︷ ︸︸ ︷∑
𝑤∈W𝑛

𝑧𝑠𝑤 −

remove edges to successors︷ ︸︸ ︷∑
𝑤∈W𝑛

∑
𝑣∈S𝑤

𝑧𝑠𝑤𝑣

+
∑
𝑣∈S𝑛

𝑧𝑠𝑣︸ ︷︷ ︸
split successors

−
∑

𝑞∈M(S𝑛)
max

(
0, 𝑃𝑞,𝑛 − 1

)
𝑧𝑚𝑞︸ ︷︷ ︸

merge successors

≤ − |S𝑛 | + 2

��{P𝑣 �� 𝑣 ∈ S𝑣
}�� + 1 ,

(3.30)

where 𝑟 and 𝑞 are indices that each reference a set of tracks in the sets of mergeable tracks

M𝑛 and M (𝑆𝑛) respectively, and 𝑤 and 𝑣 are indices referring to a single track. The

variables to be optimized are the merge tracks variables 𝑧𝑚𝑟 and 𝑧𝑚𝑞 , the split track variables

𝑧𝑠𝑤 and 𝑧𝑠𝑣 , and the edge remove variables 𝑧𝑒𝑤𝑣 , where 𝑧
𝑚
𝑟 denotes merging the set of tracks

𝑟 into a single track, denotes splitting the track 𝜔𝑤 , creating 𝑧
𝑠
𝑤 additional tracks, and 𝑧𝑒𝑤𝑣

denotes removing the predecessor-successor link between the predecessor track 𝜔𝑤 and

the successor track 𝜔𝑣 . The set M𝑛 contains all sets of tracks that can be merged with

the track 𝜔𝑛, 𝑆𝑛,𝑟 is the number of tracks of the set of mergeable tracks 𝑟 that share the

same successors as track 𝜔𝑛 , 𝑃𝑞,𝑛 is the number of tracks of the set of mergeable tracks 𝑞

that have track 𝜔𝑛 as a predecessor, and W𝑛 is a set, which contains all tracks that can be

merged with track 𝜔𝑛 including the track 𝜔𝑛 . |S𝑛 | is the number of successors of track 𝜔𝑛 ,

whereas S𝑤 is the set of successors of track 𝜔𝑤 . 𝑃𝑞,𝑛 is the number of tracks of the set of

51

3. Graph-based Tracking

mergeable tracks 𝑞 that have track 𝜔𝑛 as a predecessor. The total number of predecessors

of the successors of track 𝜔𝑛 is given by

��{P𝑣 �� 𝑣 ∈ S𝑣
}��
.

In addition, a track can be merged with at most one set of tracks 𝑟 , which is modeled by

adding for each track a constraint ∑
𝑟∈M𝑟

𝑧𝑚𝑟 ≤ 1 .
(3.31)

Moreover, if a set of tracks is to be merged, their edge remove operations are coupled,

such that for merged tracks either all edges are removed on the predecessor or successor

side or none. To enforce this, for each set of mergeable tracks 𝑟 all pairs of tracks are

constructed that share a predecessor or successor, and two constraints are added

𝑧𝑒𝑝𝑣 − 𝑧𝑒𝑝𝑛 ≤ −𝑧𝑚𝑟 + 1 ,

−𝑧𝑒𝑝𝑣 + 𝑧𝑒𝑝𝑛 ≤ −𝑧𝑚𝑟 + 1 ,
(3.32)

where 𝑟 = {𝑛, 𝑣, . . . } and the tracks 𝜔𝑛 and 𝜔𝑣 share the predecessor track 𝜔𝑝 .

The merge tracks and edge remove variables are constrained to be binary variables,

whereas the split variables are of integer type to provide the number of additionally created

tracks.

Predecessor and Successor Inequality Constraints Example

In the following, the setup of the proposed inequality constraints from Equation 3.29

and Equation 3.30 is illustrated for the track with track ID 5 from the tracking graph

shown in Figure 3.6. The track is connected to three predecessor tracks with the track IDs

2, 3, 4 and two successor tracks with the track IDs 6 and 7. As the track does not share its

predecessors or successors with other tracks, there are no tracks the track can be merged

with, therefore, the set containing all sets of mergeable tracks isM5 = {} and the set of

tracks which can be merged with track 5 is W5 = {5}. The set of predecessor tracks is
P5 = {2, 3, 4} and |P5 | = 3, whereas the set of successor tracks is S5 = {5, 6} and |S5 | = 2.

The set containing all possible sets of mergeable tracks that contain predecessor tracks

is M (P5) = {{2, 3} , {2, 4} , {3, 4} , {2, 3, 4}}, whereas the set containing all possible sets

of mergeable tracks that contain successor tracks isM (S5) = {{6, 7}}. The predecessors
of track 5 have only one successor, which is track 5, resulting in |

{
S𝑝

�� 𝑝 ∈ P5

}
| = 1.

The successor tracks of track 5 have only one predecessor, which is track 5, resulting in

|
{
P𝑣

�� 𝑣 ∈ S5

}
| = 1.

By merging predecessor tracks or successor tracks into a single track, the number of

predecessors or successors of a track is connected to changes. The change in the number

of predecessors or successors if sets of them are merged is represented by the terms(
𝑃𝑛,𝑟 − 1

)
and max

(
0, 𝑆𝑞,𝑛 − 1

)
from Equation 3.29, and

(
𝑆𝑛,𝑟 − 1

)
and max

(
0, 𝑃𝑞,𝑛 − 1

)
in

Equation 3.30. For example, by merging the tracks {2, 3, 4} into a single track, which

is modeled by 𝑧𝑚{2,3,4}, two predecessor links of track 5 are removed, as now instead of

three predecessor tracks only one predecessor track is connected to it. Therefore, 𝑧𝑚{2,3,4} is

multiplied by a factor of 2.

52

3.2. Method

After inserting the terms in the inequality constraints, the predecessor inequality con-

straint of track 5 is given by

merge tracks︷︸︸︷
0 −

split tracks︷︸︸︷
𝑧𝑠
5

−

remove edges to predecessors︷ ︸︸ ︷(
𝑧𝑒
2,5 + 𝑧𝑒3,5 + 𝑧𝑒4,5

)
+ 𝑧𝑠

2
+ 𝑧𝑠

3
+ 𝑧𝑠

4︸ ︷︷ ︸
split predecessors

−2𝑧𝑚{2,3,4} − 𝑧
𝑚
{2,3} − 𝑧

𝑚
{2,4} − 𝑧

𝑚
{3,4}︸ ︷︷ ︸

merge predecessors

≤ −3 + 1 = −2 , (3.33)

whereas the successor inequality constraint is given by

merge tracks︷︸︸︷
0 −

split tracks︷︸︸︷
𝑧𝑠
5

−

remove edges to successors︷ ︸︸ ︷(
𝑧𝑒
5,6 + 𝑧𝑒5,7

)
+ 𝑧𝑠

6
+ 𝑧𝑠

7︸ ︷︷ ︸
split successors

−𝑧𝑚{6,7}︸ ︷︷ ︸
merge successors

≤ −2 + 2 + 1 = 1 .
(3.34)

The successor inequality constraint Equation 3.34 is fulfilled without applying untangling

operations, as the right-hand side of the inequality constraint is 1. However, untangling

operations need to be applied so the predecessor inequality constraint Equation 3.29 holds,

as the right-hand side of the inequality constraint is −2. This is valid, as track 5 has

three predecessors and two successors and the aim of the untangling step is to transform

the tracking graph such that each track has at most one predecessor and at most two

successors.

Untangling Costs

The untangling costs can be chosen arbitrarily. For instance, features based on the visual

appearance of the segmentation masks of the track, or spatial-temporal features could be

extracted. Here, simple cost terms based on the temporal length and number of merged

tracks are proposed:

𝑐 (𝑧𝑒𝑝𝑛) = 𝐸 ,
𝑐 (𝑧𝑚𝑟) = Δ𝜔𝑟 (𝑀𝑟 − 1) ,
𝑐 (𝑧𝑠𝑛) = Δ𝜔𝑛 ,

(3.35)

where 𝑐 (𝑧𝑒𝑝𝑛) is the cost of removing the edge between the tracks 𝜔𝑝 and 𝜔𝑛 , 𝑐 (𝑧𝑚𝑟) is the
cost of merging the set of tracks 𝑟 , 𝑐 (𝑧𝑠𝑛) is the cost of splitting track 𝜔𝑛 , 𝐸 is a constant,

𝑀𝑟 is the number of merged tracks, Δ𝜔𝑛 is the temporal length of the track 𝜔𝑛 and Δ𝜔𝑟 is
the temporal length of the track after merging, respectively.

Splitting a track creates 𝑧𝑠𝑛 additional tracks, whereas merging𝑀𝑟 tracks into a single

track results in a reduction by 𝑀𝑟 − 1 tracks. For the chosen cost functions, merging

𝐾 tracks or splitting a track into 𝐾 tracks over the same temporal length Δ𝜔 , results in
the same change of the value of the objective function, as 𝑧𝑚𝑟 is constrained to be binary,

whereas 𝑧𝑠𝑛 is integer-valued

53

3. Graph-based Tracking

merging 𝐾 tracks into 1 track: Δ𝜔 (𝐾 − 1) · 𝑧𝑚𝑟 = Δ𝜔 (𝐾 − 1) ,where 𝑧𝑚𝑟 = 1 ,

splitting 1 track into 𝐾 tracks: Δ𝜔 · 𝑧𝑠𝑛 = Δ𝜔 (𝐾 − 1) ,where 𝑧𝑠𝑛 = 𝐾 − 1 .
(3.36)

In theory, over- and under-segmentation errors can be resolved by only applying

merging and splitting of tracks. However, there can be constellations where removing

edges provides better tracking results, for instance, due to a wrong link assigned in

the matching step. Removing an edge should add more costs than correcting over- and

under-segmentation errors through merging or splitting tracks. However, removing an

edge should not be too costly to avoid splitting or merging tracks erroneously instead of

removing the erroneously assigned link. Hence, the costs to remove an edge need to be

chosen with respect to the costs of merging and splitting tracks, which depend on the

number of time steps over which this operation is applied – the length of the erroneous

tracks – and the number of tracks to merge or split, respectively. To find reasonable costs

to remove edges, the number of time points tracks need to be corrected and the number

of tracks that are merged or a track is split into are estimated from the tracking graph.

To estimate the length of erroneous tracks, it is assumed that segmentation errors occur

only for short time spans, leading to short erroneous tracks consisting of merged objects

or several tracks due to over-segmentation. Based on this assumption, the shortest n%

of tracks in a tracking graph are likely caused by segmentation errors. To estimate the

number of tracks that need to be merged or a track is split into, tracks that have excessively

many predecessors or successors are assumed to be caused by over- or under-segmentation

errors. Based on these assumptions the cost to remove edges, 𝐸 is set to 2 · dΔ𝑇0.3Δ𝑁0.99e,
where Δ𝑇0.3 is the 0.3 quantile of the track length and Δ𝑁0.99 the 0.99 quantile of the

number of predecessors/successor links per track.

The set of untangling operations is selected by solving a mixed integer linear program

using a standard optimization toolbox such as Gurobi [116]. After solving the optimization

problem, the selected set of untangling operations is applied to modify the tracking graph.

Each selected predecessor-successor link, indicated by 𝑧𝑒𝑝𝑛 , is removed by dropping the

track 𝜔𝑝 from the set of predecessor tracks of track 𝜔𝑛 , and the track 𝜔𝑛 is dropped from

the set of successor tracks of track 𝜔𝑝 . For each split variable 𝑧𝑠𝑛 > 0, the corresponding

track 𝜔𝑛 is split into 𝑧
𝑠
𝑛 + 1 tracks, by splitting each segmentation mask of the track into

𝑧𝑠𝑛 + 1 fragments. Therefore, seed points that are far away from the segmentation mask

border are calculated by thresholding a distance transform for each segmentation mask.

The seed points are then either matched with the centroids of the predecessor tracks or

the successor tracks: If the number of predecessors is equal to the number of tracks to

create via splitting, the last positions of the predecessor tracks are matched. Otherwise,

the first positions of the successor tracks are matched to the seed points. The matching

is conducted for each segmentation mask of the track 𝜔𝑛 such that each centroid of the

predecessor or successor tracks is matched to a seed point and the overall sum of Euclidean

distances between the seed points and their matched centroids is minimal. Next, each pixel

of the segmentation mask is matched to its closest seed point to create the segmentation

mask fragments. Then, the predecessor and successor tracks are matched with the newly

created tracks based on their centroid distances, such that each track has at most one

predecessor and two successors. Tracks are merged by creating a new track which consists

54

3.3. Experiment

at each time point of the concatenated segmentation masks of the tracks to merge at each

time point. The tracks to merge are then replaced by the newly created track and the

successor tracks of the predecessor track and the predecessor tracks of the successor track

are updated accordingly.

FN Correction

FN errors are corrected by adding segmentation masks to tracks with missing segmentation

masks. Therefore, the last available segmentation mask, before a FN error occurs, is placed

at positions computed from a linear interpolation between the available segmentation

masks. In image sequences with densely placed objects, adding masks can lead to conflicts,

where an interpolated mask overlaps with another segmentation mask. As conflicts can

appear not only between pairs of segmentation masks but several segmentation masks, the

overlaps are resolvedwhen all sets of conflicting segmentationmasks are known. Therefore,

the segmentation masks are placed sequentially in the image plane. If a segmentation mask

cannot be placed in the image plane without causing an overlap with another segmentation

mask, a new image plane is created and the segmentation mask is placed in the new image

plane. After all masks have been placed, conflicting pixels can be extracted by finding

pixels, which have several segmentation mask IDs over the image plane dimension. To

assign a pixel to one of the several segmentation masks, the segmentation mask centroids

of the conflicting segmentation masks are calculated and the pixel is assigned to the

segmentation mask with the closest centroid. This process is visualized in Figure 3.8.

3.3. Experiment

The proposed tracking algorithm is applied to the degraded segmentation data introduced

in Section 2.2. The influence of the parametrization and post-processing concerning

correcting segmentation errors is investigated, and the tracking algorithm is compared

against the three selected tracking algorithms of Section 2.2. To compare the segmentation

quality before and after applying a tracking approach, the SEG score of the erroneous

segmentation data without any tracking approach applied is reported and is referred to as

“No Tracking”. Experiments concerning the runtime of the proposed method compared to

other approaches on 2D and 3D datasets are conducted in Section 5.3.3.

3.3.1. Experimental Setup

The same synthetically degraded segmentation data are used for evaluation in Section 2.2.

All parameters of the three trackingmethods: MU-Lux-CZ, KTH-SE, and KIT-Sch-GE (1) are

chosen as in Section 2.2. For the proposed tracking algorithm two parameters need to be set

manually: Δ𝑡 , and the default ROI size. Δ𝑡 is set to 3 and the default ROI size is set to twice
the size of the median segmentation mask. All other parameters of the proposed tracking

method are estimated automatically from the data or are based on these two parameters.

The code of the proposed graph-based tracking approach is written in Python and made

publicly available at https://git.scc.kit.edu/KIT-Sch-GE/2021-cell-tracking.

55

https://git.scc.kit.edu/KIT-Sch-GE/2021-cell-tracking

3. Graph-based Tracking

A) Place mask as

no conflict is

caused

B) Place mask in

new plane since it

causes an overlap

otherwise

C) Mask can be

placed in 2nd plane

without causing an

overlap

D) Place mask in

new plane since it

causes an overlap

otherwise

A) Find pixels with

several segmentation

mask IDs in different

planes

1) Place masks and find overlaps

2) Re-assign pixels of overlapping masks

B) Assign each

overlapping pixel to

its closest centroid

Final Segmentation Result

Figure 3.8.: Resolving overlapping segmentation masks. Interpolating missing segmenta-

tion masks can lead to masks with overlapping pixels. Therefore, the segmen-

tation masks are placed sequentially and new image planes are added if a mask

cannot be placed without overlapping with another mask. After all masks have

been placed, overlapping pixels are extracted by finding pixels, which have

several segmentation mask IDs over the image dimension plane. Each of these

pixels is assigned to the segmentation mask with the closest centroid.

56

3.3. Experiment

3.3.2. Evaluation

In the following, the influence of the two manually tunable parameters, Δ𝑡 and the ROI

size, and the post-processing steps is analyzed. In addition, the approach is compared to

other tracking approaches.

Influence of the Manually Tunable Parameters Δ𝑡 and ROI Size

First, the influence of the parameter Δ𝑡 is examined. Therefore, the ROI size is kept fixed

at twice the size of the median segmentation mask, while the parameter Δ𝑡 is varied
between {1, . . . , 5}. The results are shown in Figure 3.9. The influence of the parameter Δ𝑡
is strongest on image sequences with FNs, where increasing Δ𝑡 improves the performance.

This makes sense, as Δ𝑡 models the length of the graph, and indirectly the maximum time

span segmentation masks can be missing in a track to still reconstruct them. For Δ𝑡 = 1

only two successive time points are linked in the graph and no skip nodes are added, hence,

no FNs can be corrected. Therefore, the SEG score on image sequences with FNs is the

same for tracking and no tracking. With an increasing fraction of FNs, it becomes more

likely that segmentation masks are missing in a track at several successive time points.

Hence, the performance difference between Δ𝑡 = 2 and Δ𝑡 = 5 becomes more distinct for

large fractions of FNs. Since the mixed errors also contain FNs, the effect of Δ𝑡 is also
visible there, however, less distinctive as FNs cover just a third of the overall fraction of

segmentation errors. For under- and over-segmentation errors, the performance remains

roughly similar over different Δ𝑡 , as these are modeled by the split and merge nodes, which

are not affected by the temporal length of the graph.

Next, the influence of the ROI size is investigated. Therefore, the parameter Δ𝑡 is
kept fixed at 3, while the ROI size is varied between one up to four times the size of the

median segmentation mask, which is computed for each image sequence individually. The

results are shown in Figure 3.10. The influence of the parameter is strongest for over-

segmentation errors and FNs, whereas for under-segmentation errors and mixed errors the

tracking performance is roughly similar over different ROI sizes. For over-segmentation,

setting the ROI size to the size of the median segmentation mask – ROI size 1 in the

Figure – decreases performance for large fractions of over-segmentation errors. Each

over-segmentation error yields two up to four segmentation mask fragments, each smaller

than the original segmentation mask. Since the ROI depends on the size of the median

segmentation mask, the increasing fraction of over-segmentation errors results in more

and more small segmentation mask fragments, which yields to a decreasing size of the

median segmentation mask and hence the ROI. If the ROI is too small, fewer potential

matching candidates are selected in the tracklet step, resulting occasionally in missing links

and no correction of the over-segmentation errors. In contrast, under-segmentation errors

lead to an increasing size of the median segmentation mask. Consequently, the effects on

the ROI size roughly cancel each other out, resulting in a similar tracking performance

over the different ROI sizes for image sequences with mixed segmentation errors. For

FNs, in contrast, a large ROI size can occasionally lead to linking an object to its closest

neighbor in the next frame, which is then erroneously detected as an under-segmentation

error.

57

3. Graph-based Tracking
(
a
)
O
v
e
r
-
S
e
g
m
e
n
t
a
t
i
o
n
E
r
r
o
r

(
b
)
U
n
d
e
r
-
S
e
g
m
e
n
t
a
t
i
o
n
E
r
r
o
r

(
c
)
F
N
E
r
r
o
r

(
d
)
M
i
x
e
d
E
r
r
o
r

Figure 3.9.: SEG and TRA score of the proposed method with different Δ𝑡 on degraded

segmentation data of the DeepCell dataset. The score of a single dataset is

shown as a circle, whereas + is the median calculated over 𝑁 = 405 erroneous

image sequences.

58

3.3. Experiment

(
a
)
O
v
e
r
-
S
e
g
m
e
n
t
a
t
i
o
n
E
r
r
o
r

(
b
)
U
n
d
e
r
-
S
e
g
m
e
n
t
a
t
i
o
n
E
r
r
o
r

(
c
)
F
N
E
r
r
o
r

(
d
)
M
i
x
e
d
E
r
r
o
r

Figure 3.10.: SEG and TRA score of the proposed method with different ROI size, which is

a multiple of the size of the median segmentation mask in an image sequence,

on degraded segmentation data of the DeepCell dataset. The score of a single

image sequence is shown as a circle, whereas + is the median calculated over

𝑁 = 405 erroneous image sequences.

59

3. Graph-based Tracking

Post-Processing Analysis

The influence of the post-processing is analyzed by modifying the post-processing step

while keeping all other steps the same. To investigate the influence of the FN correction

and the untangling step, they are replaced as follows: Although the matching step provides

the information that a track is fragmented, keeping this information by setting the previous

track segment as the predecessor of the subsequent track was shown to lead to a worse

score on the TRA metric [147] than setting no predecessor at all. Therefore, the FN

correction step is replaced by creating short tracks without a predecessor for each track

with missing masks, as the TRA measure yields for tracks with missing masks otherwise

an error during TRA score computation. The untangling step is replaced by removing

predecessor information of tracks with more than one predecessor and removing successor

information of tracks with more than two successors. The untangling step is referred to

as untangle and the FN correction step as masks, whereas a missing post-processing step

is indicated by an over-line (. . .).
Applying or removing the post-processing steps has on the SEG and TRAmetric a similar

influence, as shown in Figure 3.11. For under- and over-segmentation errors, tracking with

the untangling step performs better than without untangling step, untangle, as shown in

Figure 3.11 a and Figure 3.11 b. On image sequences with FN errors, tracking with the

FN correction step performs better than without the FN correction step, masks, which is

shown in Figure 3.11 c. On mixed segmentation errors, applying both post-processing

steps performs best, which is shown in Figure 3.11 d.

In general, the segmentation measure SEG, Figure 3.11 left column, improves on image

sequences including a specific segmentation error, when the corresponding error correction

step of the post-processing is applied. However, while the median result improves when

applying the corresponding post-processing step to correct a specific segmentation error

type, the spread in the final metric score is larger, especially with an increasing fraction

of segmentation errors. A potential explanation for this observation is that with an

increasing number of tracking errors it becomes more difficult to identify segmentation

errors correctly. For instance, a track that has more over-segmented masks than correctly

segmented masks is going to be split into several tracks. Therefore, the remaining, correct

masks are split, resulting in more segmentation errors.

Tracking Performance Comparison

Next, the performance of the proposed tracking approach including both post-processing

steps is compared with the tracking approaches of KTH-SE, KIT-Sch-GE (1), and MU-

Lux-CZ on erroneous segmentation data. The results are shown in Figure 3.12. On the

TRA metric, right column in Figure 3.12, the proposed method outperforms the other

tracking methods on image sequences with over-segmentation errors and mixed errors

– Figure 3.12 a and Figure 3.12 d. On image sequences with under-segmentation errors

and FNs – Figure 3.12 b and Figure 3.12 c – for small fractions of segmentation errors

the proposed method and KIT-Sch-GE (1) perform roughly similar, whereas, on image

sequences with high fractions of segmentation errors, the proposed method outperforms

all other methods. However, on image sequences with perfect segmentation, the fraction

60

3.3. Experiment

(
a
)
O
v
e
r
-
S
e
g
m
e
n
t
a
t
i
o
n
E
r
r
o
r

(
b
)
U
n
d
e
r
-
S
e
g
m
e
n
t
a
t
i
o
n
E
r
r
o
r

(
c
)
F
N
E
r
r
o
r

(
d
)
M
i
x
e
d
E
r
r
o
r

Figure 3.11.: SEG and TRA score of the proposed method with different post-processing

– with untangling (“untangle"), FN correction (“masks"), (. . .) indicates a
missing post-processing step – on degraded segmentation data of the DeepCell

dataset. The score of a single image sequence is shown as a circle, whereas +
is the median calculated over 𝑁 = 405 erroneous image sequences.

61

3. Graph-based Tracking

of segmentation errors is 0, and the simple overlap-based tracking of MU-Lux-CZ performs

slightly better than the proposed tracking and the KIT-Sch-GE (1) approach on the TRA

metric. An analysis of the TRA measure shows that the proposed method and KIT-Sch-

GE (1) have more “edge add” errors, which refer to missing links between segmentation

masks that belong to the same track. For both methods, this error type occurs at the

image border when only a small fraction of the object is in the field of view. In such cases,

a disappearing object at 𝑡 and an appearing object at 𝑡 + 1 results in smaller costs than

linking the two segmentation masks. A remedy for this behavior would be an adaption of

the appearance and disappearance costs in both approaches or adding a field of interest

for the image sequence to filter out segmentation masks that extend only a few pixels into

the image plane as done in other benchmark datasets [7].

On the SEG metric, left column in Figure 3.12, the proposed tracking approach out-

performs the other approaches on mixed errors while performing roughly similar as

KIT-Sch-GE (1) on image sequences with FNs errors. On over-segmentation errors, the

proposed method outperforms all other methods concerning the median, however, shows

a large spread in the SEG score between the synthetically degraded image sequences.

Interestingly, on image sequences with a fraction of 20% over-segmentation errors, the

simplistic, overlap-based tracker MU-Lux-CZ performs only slightly worse than the pro-

posed tracker. On image sequences with under-segmentation errors – Figure 3.12 c – the

proposed method and KIT-Sch-GE (1) perform roughly similar.

While the median of the proposed method is most of the time higher or at least equal to

other tracking algorithms, the approach shows a large spread in the final metric scores over

all types of segmentation errors. Since the proposed method has more error correction

capabilities than KIT-Sch-GE (1), which only corrects FNs, and MU-Lux-CZ, which has no

segmentation error correction at all, the proposed method has a wider range of potential

outcomes.

As the “No Tracking" segmentation data indicate a spread in the scores of the initial

segmentation data itself, further analysis is needed to distinguish the caseswhere the results

overlap in the metric score. Therefore, the results of the different tracking approaches

were ranked on each erroneous image sequence separately. Then, the average rank and

the fraction of times the tracking approach reached the 1
st
rank calculated over the subset

of image sequences containing a specific type and fraction of segmentation errors were

computed. As several approaches can reach the same score on an image sequence, the

fraction of 1
st
rank does not sum up to 100. The TRA results are shown in Tables 3.1,

whereas DET and SEG score are provided in Tables A.2, and A.3. For perfect segmentation

data, MU-Lux-CZ reaches on all image sequences rank 1, whereas the proposed method

performs on par with MU-Lux-CZ in roughly 70% of all cases. On the erroneous image

sequences, the simple overlap-based tracking of MU-Lux-CZ, however, is outrun by the

proposed tracking approach. The proposed tracking method scores best on all tracking

metrics, error fractions, and error types apart from the subset of FNs with fraction 1%,

where KIT-Sch-GE (1) performs best.

62

3.3. Experiment

(
a
)
O
v
e
r
-
S
e
g
m
e
n
t
a
t
i
o
n
E
r
r
o
r

(
b
)
U
n
d
e
r
-
S
e
g
m
e
n
t
a
t
i
o
n
E
r
r
o
r

(
c
)
F
N
E
r
r
o
r

(
d
)
M
i
x
e
d
E
r
r
o
r

Figure 3.12.: SEG and TRA score of the proposed method and other tracking approaches

evaluated on degraded segmentation data from the DeepCell dataset. The

score of a single image sequence is shown as a circle, whereas + is the median

calculated over 𝑁 = 405 erroneous image sequences.

63

3. Graph-based Tracking

Mean Rank 1st Rank/%

Tracking Algorithm P
r
o
p
o
s
e
d

M
U
-
L
u
x
-
C
Z

K
T
H
-
S
E

K
I
T
-
S
c
h
-
G
E
(
1
)

P
r
o
p
o
s
e
d

M
U
-
L
u
x
-
C
Z

K
T
H
-
S
E

K
I
T
-
S
c
h
-
G
E
(
1
)

Segmentation Error Error Fraction/%
Ground Truth 0 2.22 1.32 4.00 1.98 25.9 72.8 0.0 33.3

Under-Segmentation 1 1.58 2.35 3.98 2.02 58.0 13.6 0.0 33.6

2 1.41 2.60 3.98 1.97 66.9 6.2 0.0 30.6

5 1.22 2.82 3.98 1.96 81.2 1.0 0.0 19.3

10 1.15 2.93 3.97 1.95 86.2 0.0 0.2 14.3

20 1.15 2.96 3.94 1.94 85.7 0.0 1.0 13.3

Over-Segmentation 1 1.12 2.15 3.97 2.70 91.1 6.7 0.2 3.2

2 1.05 2.17 3.97 2.79 96.3 2.2 0.7 1.2

5 1.01 2.06 3.95 2.97 98.8 0.0 1.2 0.0

10 1.01 2.05 3.94 3.00 98.5 0.0 1.5 0.0

20 1.03 2.11 3.73 3.13 97.3 0.0 2.7 0.0

False Negative 1 1.51 2.91 3.99 1.46 52.8 1.2 0.0 59.3
2 1.41 3.00 3.98 1.47 59.0 0.0 0.2 53.6

5 1.35 3.02 3.98 1.55 64.9 0.0 0.0 44.9

10 1.29 3.02 3.97 1.65 71.1 0.0 0.5 34.8

20 1.15 3.12 3.84 1.86 84.9 0.0 1.2 15.1

Mixed 1 1.31 2.62 4.00 1.96 74.3 8.9 0.0 24.0

2 1.14 2.85 3.96 2.03 87.9 0.7 1.2 11.1

5 1.04 2.97 3.97 2.02 95.8 0.2 0.7 3.2

10 1.02 3.00 3.94 2.04 97.5 0.0 1.2 1.2

20 1.02 3.04 3.88 2.06 98.3 0.0 1.5 0.2

Table 3.1.: TRA scores of different tracking approaches on synthetically degraded data

from the DeepCell dataset. For each erroneous image sequence, all approaches

are ranked based on their TRA metric, where approaches reaching the same

score are assigned the same rank. The mean rank is calculated over the subset

of image sequences containing a specific type and fraction of segmentation

errors. In addition, the fraction of times the tracking approach reached rank 1

is reported, where the fractions accumulated over the tracking approaches can

be larger than 100% as several approaches can reach the same TRA score.

64

3.4. Discussion

3.4. Discussion

This chapter proposed a graph-based tracking approach with two manually tunable pa-

rameters and post-processing to correct segmentation errors automatically. The tracking

approach can process 2D and 3D image sequences and can be combined with an arbitrary

instance segmentation approach which yields instance segmentation masks to create a

tracking-by-detection approach. The two parameters, Δ𝑡 and the ROI size are easy to

interpret for non-expert users. The graph-based tracking models object behavior and

the segmentation errors over-segmentation, under-segmentation, and FNs. The informa-

tion of many-to-one and one-to-many links of the derived tracking graph is then used

in a post-processing step to detect and correct the segmentation errors: FNs, under-,

and over-segmentation. To explore the potential of the approach, the influence of the

parametrization and the post-processing steps was analyzed on degraded segmentation

data that model different segmentation errors, which were proposed in Chapter 2. More-

over, the full tracking method was compared against other tracking methods using the

same degraded segmentation data.

Choosing the twomanually tunable parameters, Δ𝑡 and the ROI size is a tradeoff between

tracking performance and computation time. Increasing the ROI size allows to better link

objects with larger movements, however, it also increases the number of potential matching

candidates since more objects overlap with a larger ROI. With an increasing number of

potential matching candidates, the number of edges in the matching graph increases

and hence the size of the optimization problem, which can require more computation

time to solve. Similarly, increasing Δ𝑡 allows to model and correct tracks with missing

segmentation masks over several successive time points, however, the size of the matching

graph increases, resulting again in a larger optimization problem to solve. Hence, as a

tradeoff, Δ𝑡 was set to three whereas the ROI size was set to twice the size of the median

segmentation mask in an image sequence.

The proposed post-processing steps can correct the segmentation errors FNs, over-,

and under-segmentation as well as mixed segmentation errors. However, with decreasing

segmentation quality the tracking quality decreases as well. While on the examined image

sequences the SEG score improves through the proposed post-processing steps, the results

can be only partly generalized to real-world erroneous segmentation data as the post-

processing – splitting, merging, and interpolating missing segmentation masks – does

not change the overall shape of the segmentation masks. Hence, penalties resulting from

not well-matching shapes between ground truth masks and segmentation masks, e.g. the

predicted segmentation masks are too large or too small, cannot be corrected through the

proposed post-processing. Compared to other tracking algorithms the proposed tracking

method performed well, especially on image sequences with mixed segmentation errors.

While the proposed method provides a step towards an easy-to-apply tracking approach

for non-expert users, there are several limitations of the method that need to be taken into

consideration. While applicable to 3D image sequences, the scalability of the approach

to large-scale image sequences with thousands or hundreds of thousands of objects were

not considered. Using the phase correlation for position estimation in 3D is slow. Hence

replacing the position estimation with methods that for instance estimate the displacement

of pixels on the whole image at once might be considered. Moreover, the coupling of the

65

3. Graph-based Tracking

mitosis edges requires solving via mixed integer linear programming which is hard to

solve. While there exist general purpose solvers with strong heuristics to speed up solving,

remodeling this part should be considered. Also, these general-purpose solvers are usually

not freely available and might require an extra license. Using specialized solvers which

lead to an approximate solution fast such as the one of Haller et al. [119] should also be

considered and investigated if the resulting approximate solutions differ strongly from the

optimal solution. The proposed position-based cost functions should be adapted for the

disappearance and appearance of objects which can not only happen due to leaving the

field of view but also due to marker bleach or occlusion. Moreover, some cases can not

be resolved by position-based features. For instance, if two objects at time point 𝑡 have

swapped their positions at 𝑡 + 1.

While the post-processing can correct certain types of segmentation errors, more com-

plex segmentation errors, such as an object being segmented as two at time point 𝑡 and at

𝑡+1 as three parts, are not resolvable. Therefore, extending the post-processing formulation

should be considered to be further extended.

A comparison of the proposed method concerning additional criteria such as runtime

and the performance on a diverse set of 2D and 3D datasets is conducted in Chapter 5.

66

4. EmbedTrack – Simultaneous Object
Segmentation and Tracking Through
Learning Offsets and Clustering
Bandwidths

The recent success of deep learning based instance segmentation in light microscopy

images [54, 55, 56, 57], as well as the successful application of deep learning for MOT [171,

179, 180], give reason to apply deep learning for MOT in light microscopy images.

While there have been proposed several deep learning approaches for MOT in light

microscopy images, they are accompanied by several shortcomings: (i) Some methods

propose a cascade of neural networks [90, 122, 123, 124, 126, 127, 128, 129] which can be

complicated to tune and need to be trained separately. In contrast, combining segmentation

or detection with tracking in a single neural network [88, 89, 121, 125] can be trained at

once. (ii) Approaches using recurrent neural network elements [89, 90, 121], can need

careful re-initialization or updates in contrast to neural network architectures without

recurrent elements [88, 122]. (iii) Some methods predict for all possible combinations of

pairs of detected objects in 𝑡 and 𝑡 + 1 a similarity score [90, 124, 125, 126, 127] which can

be computationally inefficient as each pair of objects is forwarded to the neural network.

In contrast, estimating low-dimensional embeddings simultaneously for all objects in an

image and calculating their pairwise distances afterwards [88, 89, 90, 92, 121, 122, 123]

can be computationally more efficient. (iv) Often, the learned embeddings are not human

comprehensible [89, 121, 125] making further post-processing or interpretation difficult.

In contrast, learning embeddings that represent offsets in position are easy to interpret for

humans [88, 92, 122, 123] allowing simple post-processing in successive steps.

To alleviate the aforementioned shortcomings, this chapter proposes a single neural net-

work for instance segmentation and tracking (i), without any recurrent network elements

(ii), which predicts human comprehensible embeddings (iii) jointly for all objects in a

successive pair of frames (iv). The proposed method is based on the instance segmentation

approach of Neven et al. [181], in which a branched ERFNet [60] is trained to learn the

offset of pixels to its object center as well as a clustering bandwidth to cluster pixels into

instance masks. This chapter proposes to extend the instance segmentation approach to

Section 4.1 and Section 4.2 are an adaption of the method description from K. Löffler

and R. Mikut. “EmbedTrack — Simultaneous cell segmentation and tracking through

learning offsets and clustering bandwidths”. In: IEEE Access 10 (2022), pp. 77147–77157.

doi: 10.1109/ACCESS.2022.3192880.

67

https://ieeexplore.ieee.org/document/9834915

4. EmbedTrack

simultaneous instance segmentation and tracking by including an estimation of offsets for

object pixels to their object center between successive frames.

The remainder of this chapter is organized as follows. Section 4.1 introduces the instance

segmentation approach by Neven et al.. Next, Section 4.2 describes how the instance

segmentation approach is extended to MOT. The proposed method is evaluated concerning

the influence of training dataset size, augmentation strategies, and temporal resolution

in Section 4.3. Finally, Section 4.4 concludes this chapter by providing a summary and

discussion of the proposed method.

4.1. Instance Segmentation of Neven et al.

Instance segmentation allows the distinction between different instances of the same

semantic class in an image. Therefore, foreground pixels need to be assigned to differ-

ent instances, for instance by finding clusters of foreground pixels and assigning pixels

belonging to the same cluster to the same instance mask. To cluster pixels, a clustering

bandwidth, which is often defined manually, is needed. The clustering bandwidth deter-

mines in combination with a distance measure how far pixels can be apart from a cluster

center to be still assigned to this cluster center. Neven et al. proposed the idea of training a
CNN to predict offsets to shift pixels along their 𝑥- and 𝑦-dimension to their object centers,

so they form compact clusters, as well as learning the clustering bandwidths 𝑠 required

for each object, instead of selecting them manually [181]. As distance measure, [181] use

the Gaussian kernel

𝑑 (c, p) = exp

(
− (𝑐𝑥 − 𝑝𝑥)2

𝑠𝑥
− (𝑐𝑦 − 𝑝𝑦)2

𝑠𝑦

)
, (4.1)

where c and p are 2D position vectors, 𝑐𝑥 and 𝑝𝑥 the 𝑥-dimension of the vectors, 𝑐𝑦 and

𝑝𝑦 the 𝑦-dimension of the vectors, and 𝑠𝑥 and 𝑠𝑦 are the bandwidth in 𝑥- and 𝑦-dimension.

Using such a distance measure provides the possibility to allow for more slack in estimating

the object center of large objects and avoid over-segmentation by increasing the bandwidth,

whereas a more precise estimation of the object center of small objects can be enforced

by reducing the bandwidth. Figure 4.1 shows distance measures based on the Gaussian

kernel with different bandwidths 𝑠 .

A too large bandwidth leads to merging pixels belonging to different objects into one

instance mask, which can result in merging of objects – under-segmentation error –

whereas a too small bandwidth leads to not all shifted pixels being clustered to the same

instance, which can result in splitting an object – over-segmentation error.

During inference the true object center is unknown. However, for each pixel that belongs

to an object a clustering bandwidth and an offset to the object’s center are estimated. Hence,

shifting the pixels by their predicted offset results in an estimate of the object’s center,

whereas the clustering bandwidth defines how far other shifted pixels can be apart to be

still assigned to the same instance. Therefore, any of the shifted pixels can be chosen to

cluster the other pixels belonging to the same object into an instance segmentation mask.

68

4.2. Method

0.0

0.5

1.0

Figure 4.1.: Visualization of the clustering using different clustering bandwidths. The plots

show the distance 𝑑 (c, p) using Gaussian kernels with different bandwidths

𝑠 = 𝑠𝑥 = 𝑠𝑦 in the range [0, 1] (heat maps from blue to yellow) of each pixel

position in the plot to the object center c (cyan) of the ellipsoid object. The

red circles are contours where the distance score between the center c and
any pixel p is 𝑑 (c, p) = 0.5. The points (black) visualize pixels shifted by their

predicted offset to the center of the ellipsoid object. To cluster the pixels into

instances, points (black) are assigned to the same instance if they lay within

the red circle. Figure 1 by Löffler et al. [182] licensed under CC BY 4.0.

4.2. Method

In the following, it is shown how the instance segmentation approach of Neven et al. can be
extended to object segmentation and tracking by adding an additional decoder path to the

CNN for tracking and introducing an additional tracking step. An overview of the proposed

method is shown in Figure 4.2. First, pairs of image crops of the successive time points

𝑡 and 𝑡 − 1 are forwarded to a CNN, which predicts for each pixel segmentation offsets

and clustering bandwidths for segmentation, and tracking offsets of pixels belonging to an

object at 𝑡 to their object center at 𝑡 − 1 for tracking. Next, the segmentation offsets and

clustering bandwidth predictions are processed with a foreground-background prediction

in a clustering step, to assign pixels predicted as an object (foreground) to instances. Finally,

based on the predicted tracking offsets between the two time points and the instance

masks retrieved from the clustering step, the instances are linked backwards in time.

In the following, the network architecture, the loss function, the clustering step, and

the tracking step are explained in more detail.

69

https://creativecommons.org/licenses/by/4.0/

4.
Em

bedTrack

(A) Shift pixels by

predicted tracking

offset

Decoder

Raw Image t

Raw Image t-1

Segmentation

Tracking

Segmentation Offset 𝐎S Clustering Bandwidth 𝐒

Tracking Offset 𝐎T

y
x

y

x

y

x

Concat

Encoder

Seediness 𝐃

y

x

y

x

(1) Predict

Segmentation Predictions

Tracking Predictions

(3) Link segmentation masks over time(2) Cluster pixels into instances

Raw Image Ground Truth

Seediness 𝐃

(A)Threshold
(B) Shift pixels by predicted

segmentation offset 𝐎S

Predicted Instances

(D) Convert clusters to instances

(C) Use clustering

bandwidths 𝐒
and calculate

distances

𝑑S between

shifted pixels to

cluster them

Instances t

Instances t-1 Tracked Instances t-1

Tracked Instances t

(B) Link objects

based on shifted

pixels

Colored: shifted pixels

of instances from t;

Gray: object pixels at t-1

Legend:

Instance

Segmentation

Tracking

y
x

y
x

y
x

Figure 4.2.: Overview of the EmbedTrack method. (1) Prediction of offsets, clustering bandwidths, and seediness maps for pairs of raw

images using a branched ERFNet. (2) Processing the predicted segmentation offsets and clustering bandwidths to retrieve

an instance segmentation, where gray and black show the prediction of the network for objects and background and the

yellow pixels show the object pixels after adding the predicted offset. The red circles indicate 𝑑S = 0.5 using the predicted

clustering bandwidths. (3) Linking the instance segmentation masks backwards in time using the predicted tracking offsets.

Raw image crops BF-C2DL-HSC from the CTC [7, 66]. Derivative of Figure 2 by Löffler et al. [182] licensed under CC BY

4.0; rearranged plot and changed colors.

7
0

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

4.2. Method

4.2.1. EmbedTrack Model

A branched ERFNet [60] with one shared encoder and three decoder paths is used – two

decoders for segmentation and one decoder for tracking. A visualization of the model

and the predicted outputs is shown in Figure 4.2. An image pair is fed into the shared

encoder, where the images are processed individually to omit entangling their feature

representations. For tracking, the resulting feature representations are concatenated and

forwarded to the tracking branch, whereas for segmentation the feature representations

are forwarded to the segmentation branches separately. For each time point, 𝑡 and 𝑡 − 1,

the network predicts a set of segmentation predictions, whereas for tracking one tracking

offset prediction from 𝑡 to 𝑡 − 1 is predicted to link the objects backward in time. Linking

objects backward in time results in shifting pixels belonging to distinct objects at 𝑡 to one

object center at 𝑡 − 1 to link predecessor-successor objects. In contrast, linking objects

forward in time would require to shift the pixels of a single object at 𝑡 to several objects at

𝑡 + 1, which would either require the prediction of several offset vectors for each pixel, one

offset prediction for each successor object, or to distribute the pixels of the single object at

𝑡 to several objects at 𝑡 + 1.

For raw images of shape [𝐻,𝑊], where 𝐻 is the height and𝑊 the width, the first

segmentation decoder predicts segmentation offsets OS
of shape [𝐻,𝑊 , 2] between pixels

belonging to an object and their corresponding object center, and clustering bandwidths S
of shape [𝐻,𝑊 , 2]. The second segmentation decoder predicts the seediness D of shape

[𝐻,𝑊], which is a score between 0 and 1 that serves as a foreground-background estimation

as well as indicates if an object pixel estimates its object center correctly. The tracking

decoder learns to predict tracking offsets OT
of shape [𝐻,𝑊 , 2] between pixels belonging

to an object at 𝑡 and their corresponding object center at 𝑡 − 1. A tanh activation is applied

on the segmentation offset and tracking offset prediction and a sigmoid activation on the

clustering bandwidth prediction and the seediness prediction. After applying the activation

functions, the segmentation and tracking offsets are in the range [−1, 1], whereas the
clustering bandwidth prediction and the seediness prediction are in the range [0, 1]. In
summary, the network predicts one set of segmentation predictions {S,OS,D} for each
image 𝑡 and 𝑡 − 1, and one tensor of tracking offsets OT

to link pixels belonging to an

object at 𝑡 to its corresponding object center at 𝑡 − 1.

4.2.2. Loss

The aim is to train the segmentation decoders of the CNN to predict a foreground-

background prediction, segmentation offsets, and clustering bandwidths that are required

for the subsequent clustering step, whereas the tracking decoder is trained to predict

tracking offsets to link instance masks from 𝑡 to 𝑡 − 1. In the loss, the centers of the

instances and the ground truth instance masks are used. It is emphasized that the offsets

and clustering bandwidths have no direct supervision during training.

Let I = {(1, 1), (1, 2), . . . , (𝐻,𝑊)} be the set of all index tuples to access each element

in a matrix and let accessing the element at index tuple 𝑖 in a matrixM be denoted as (M)𝑖 .
In the context of 2D images, each index tuple references a pixel in the image. Moreover,

let I𝑚 be the set of index tuples referencing the pixels of an instance segmentation mask

71

4. EmbedTrack

𝑚, where I𝑚 is a subset of the set of index tuples of the image I. Accessing elements in a

tensor of shape [𝐻,𝑊 ,𝑍] with such an index tuple, yields a vector of 𝑍 elements along

the last dimension. For instance, accessing the tracking offset tensor at index tuple 𝑖 yields

a 2D vector with offset predictions in 𝑥- and 𝑦-direction, whereas accessing the seediness

map at index tuple 𝑖 results in a single seediness score.

Pixels belonging to the same instance should predict similar clustering bandwidths

since in the clustering step any shifted pixel could be selected as the cluster center and

its clustering bandwidth defines the range in which other pixels are assigned to the same

cluster and therefore the same instance. To enforce similar clustering bandwidths, [181]

use a loss component based on the variance between the clustering bandwidth vectors

belonging to the same instance. It is emphasized that no traditional clustering algorithm is

required to assign the pixels to instances afterwards, instead pixels are clustered iteratively

which is described in Section 4.2.3 is used.

For each instance𝑚 the mean clustering bandwidth vector s𝑚 , in 𝑥- and 𝑦-dimension,

is calculated over the set of index tuples I𝑚 referring the pixels of the instance mask𝑚,

where s𝑘 is the clustering bandwidth vector at index tuple 𝑘 of the clustering bandwidth

prediction S

s𝑚 =
1

|I𝑚 |
∑
𝑘∈I𝑚

s𝑘 . (4.2)

The loss part enforcing similar clustering bandwidth predictions for pixels belonging to

the same masks is then given as

𝓁var =
1

𝑀inst

𝑀inst∑
𝑚=1

1

|I𝑚 |
∑
𝑘∈I𝑚

(s𝑚 − s𝑘)2 , (4.3)

where𝑀inst is the number of instance masks and |I𝑚 | is the number of pixels of instance

𝑚.

To get the predictions of the object centers for segmentation and tracking, the predicted

offsets oS𝑖 for segmentation and oT𝑖 for tracking are added to the position of each pixel

eS𝑖 = p𝑖 + oS𝑖 ,

eT𝑖 = p𝑖 + oT𝑖 ,
(4.4)

where 𝑖 refers to an index tuple of I, eS𝑖 is the predicted object center of pixel 𝑖 at the

same time point, eT𝑖 is the predicted object center of pixel 𝑖 from time point 𝑡 for its

object center at 𝑡 − 1, and p𝑖 is the normalized pixel position – pixel coordinates from

range ([0, 𝐻], [0,𝑊]) normalized to range ([0, 1], [0, 1]). By using the already introduced

distance measure from Equation 4.1, for each index tuple 𝑖 a prediction how close its

shifted position eS𝑖 is to the object center can be derived

s̃𝑚 = exp(𝑤s · s𝑚) ,

𝑑S
(
c𝑚, eS𝑖

)
= exp

©­­«−
(
𝑐𝑥𝑚 − 𝑒S,𝑥

𝑖

)
2

𝑠𝑥𝑚
−

(
𝑐
𝑦
𝑚 − 𝑒S,𝑦

𝑖

)
2

𝑠
𝑦
𝑚

ª®®¬ ,
(4.5)

72

4.2. Method

1 0 1
Position Error x

0.0

0.5

1.0
D

is
ta

nc
e

Sc
or

e
dS (

x) no scaling

Clustering Bandwidth sx

0 0.01 0.25 0.5 0.75 1

1 0 1
Position Error x

ws = 1

1 0 1
Position Error x

ws = 5

1 0 1
Position Error x

ws = 10

1 0 1
Position Error x

ws = 20

Figure 4.3.: Influence of scaling the clustering bandwidth on the distance score 𝑑S(Δ𝑥).
For visualization, the 1D scenario along the 𝑥-dimension is shown where

Δ𝑥 = 𝑐𝑥 − 𝑒S,𝑥 is the difference between 𝑐𝑥 , the position of the actual medoid

in 𝑥-dimension, and 𝑒S,𝑥 , the predicted position of the medoid in 𝑥-direction.

Without scaling the clustering bandwidth 𝑠𝑥 , the distance score is given as

𝑑s(Δ𝑥) = exp(−Δ𝑥2
𝑠𝑥

), shown in the left plot. For all other plots, a scaled clus-

tering bandwidth 𝑠𝑥 = exp(𝑤𝑠 · 𝑠𝑥) is used and the distance score is given as

𝑑s(Δ𝑥) = exp(−Δ𝑥2
𝑠𝑥

). Usually, objects are small with respect to the overall size

of the image crop. Hence, steeply decreasing distance scores are required so

pixels of distinct, close objects are not assigned to the same instance segmen-

tation mask. Without scaling the clustering bandwidth, however, very small

values, below 0.01, are required for the clustering bandwidth to yield steep

dropping distance scores 𝑑S(Δ𝑥). By scaling the clustering bandwidth, a wider

range of the initial clustering bandwidth can be used which yields steeply

dropping distance scores.

where 𝑑S(c𝑚, eS𝑖) is the distance between the object center c𝑚 of instance mask 𝑚 and

the predicted object center eS𝑖 , 𝑠
𝑥
𝑚 and 𝑠

𝑦
𝑚 are the 𝑥- and 𝑦-dimensions of a scaled mean

clustering bandwidth vector s̃𝑚, and 𝑤𝑠 a scaling weight. A scaling of the clustering

bandwidth s𝑚 , which is constrained to be in the range [0, 1] in each dimension, is required

as the object size is usually small compared to the overall size of the image crop. Hence,

without scaling the clustering bandwidth, very small clustering bandwidth values are

required to distinguish close small objects based on a quickly decreasing distance score 𝑑S.

A visualization of this issue is shown in Figure 4.3. The scaling weight𝑤𝑠 is set to −10 as
in [181]. As in [62], the medoid is chosen as object center c𝑚 . The medoid is the element

in a set with the overall smallest sum of distances to all other elements in the set. Hence,

by choosing the medoid as object center, the object center always lays inside of the object.

In [181] the segmentation offsets and clustering bandwidths are learned jointly using an

instance loss based on the Lovász hinge loss [183, 184]. The Lovász hinge loss is a convex

surrogate for sub-modular losses which allows an efficient minimization of sub-modular

loss functions such as the Jaccard loss [184]. The Jaccard loss is given by

𝓁Jaccard = 1 − 𝐽 (Ipred,IGT) , (4.6)

73

4. EmbedTrack

where 𝐽 (Ipred,IGT) is the Jaccard index between the set of pixels Ipred belonging to the

predicted instance mask and the set of pixels IGT belonging to the ground truth instance

mask. By minimizing the Lovász hinge loss, the predicted segmentation offsets and

clustering bandwidths can be jointly optimized such that the Jaccard index between

predicted instance mask and ground truth instance mask is maximized

(B𝑚)𝑖 =
{
1 if 𝑖 ∈ I𝑚
0 otherwise

∀𝑖 ∈ I ,(
DS

𝑚

)
𝑖
= 𝑑S(c𝑚, eS𝑖) ∀𝑖 ∈ I ,

𝓁instance =

𝑀inst∑
𝑚=1

𝓁Lovász

(
2 · DS

𝑚 − 1, 2 · B𝑚 − 1
)
,

(4.7)

where B𝑚 is a binary mask of shape [𝐻,𝑊] which is 1 at indices belonging to the instance

mask𝑚 and 0 otherwise, DS

𝑚 is a distance matrix of shape [𝐻,𝑊] containing the distance

of each shifted pixel to the object center c𝑚 of instance mask𝑚, 1 is a matrix of ones the

same size as DS

𝑚 , and 𝓁Lovász the Lovász hinge loss.

To cluster pixels into instances, first, the foreground pixels need to be selected, therefore,

a foreground-background prediction is needed. The seediness map D, which the second

segmentation decoder is learning, predicts for each pixel if it belongs to the background

or an object, and if the pixel belongs to an object how close the predictions of the object

center eS𝑖 is to the actual object center. It therefore serves as a foreground-background

estimation and as a prediction of how well pixels estimate their object center. To learn the

seediness map, an additional seed loss part is used in [181]. For the seediness map, the

CNN learns to predict for each pixel 𝑖 the distance measure 𝑑S(c𝑚, eS𝑖) for pixels belonging
to an object and regressing to 0 for background pixels

𝓁seed = 𝑤fg

𝑀inst∑
𝑚=1

1

|I𝑚 |
∑
𝑘∈I𝑚

(𝑑S(c𝑚, eS𝑘) − (D)𝑘)2

+ 1

|Ibg |
∑
𝑗∈Ibg

((D) 𝑗 − 0)2 ,
(4.8)

where 𝑑 (D)𝑘 is the predicted seediness score of a pixel belonging to the instance mask

𝑚 which is referenced to by the index tuple 𝑘 , (D) 𝑗 is the predicted seediness score of a

background pixel indexed by the index tuple 𝑗 in the seediness map, Ibg the set of index
tuples that refer to background pixels, and𝑤fg is a weight for foreground pixels.

The segmentation loss is then given as

𝓁seg = 𝑤instance𝓁instance +𝑤var𝓁var +𝑤seed𝓁seed , (4.9)

where the weights are set to𝑤instance = 𝑤seed = 𝑤fg = 1, and𝑤var = 10. Since the network

provides segmentation predictions for pairs of images, the segmentation loss is calculated

for both images of time points 𝑡 and 𝑡 − 1 separately and accumulated.

For tracking, the aim is to shift pixels belonging to an object at 𝑡 to their object center at

𝑡 − 1. Similar to the instance segmentation loss, it is proposed to use the Lovász hinge loss

74

4.2. Method

for tracking. Since the network predicts two sets of segmentation predictions, one for time

point 𝑡 and one for time point 𝑡 − 1, time indices are added in the following to highlight

to which time point the predicted segmentation components belong. 𝑑T(c𝑡−1𝑚 , eT𝑖) is the
distance between c𝑡−1𝑚 , the object center of instance𝑚 at time point 𝑡 − 1, and eT𝑖 , which is

the predicted object center of pixel 𝑖 belonging to time point 𝑡 shifted to its object center

at 𝑡 − 1

𝑑T
(
c𝑚,𝑡−1, eT𝑖

)
= exp

©­­«−
(
𝑐𝑥𝑚,𝑡−1 − 𝑒

T,𝑥
𝑖

)
2

𝑠𝑥𝑚,𝑡
−

(
𝑐
𝑦

𝑚,𝑡−1 − 𝑒
T,𝑦

𝑖

)
2

𝑠
𝑦

𝑚,𝑡

ª®®¬ ,(
DT

𝑚

)
𝑖
= 𝑑T

(
c𝑚,𝑡−1, eT𝑖

)
∀𝑖 ∈ I ,(

B𝑚,𝑡
)
𝑖
=

{
1 if 𝑖 ∈ I𝑚,𝑡
0 otherwise

∀𝑖 ∈ I ,

𝓁track =

𝑀inst,𝑡∑
𝑚=1

𝓁Lovász

(
2 · DT

𝑚 − 1, 2 · B𝑚,𝑡 − 1
)
,

(4.10)

where I𝑚,𝑡 is the set of index tuples referring to the pixels of instance segmentation mask

𝑚 at time point 𝑡 , DT

𝑚 is a distance matrix of shape [𝐻,𝑊] containing the distance of each

shifted pixel to the object center c𝑚,𝑡−1 of instance mask𝑚 at time point 𝑡 − 1, 1 is a matrix

of ones the same size as DT

𝑚 , and B𝑚,𝑡 is a binary mask of instance𝑚 at time point 𝑡 , and

𝑀inst,𝑡 is the number of instances at time point 𝑡 .

The loss is finally given as the sum of segmentation and tracking loss

𝓁 = 𝑤seg𝓁seg +𝑤track𝓁track , (4.11)

where𝑤seg and𝑤track are weights both set to 1.

4.2.3. Pixel Clustering

To convert the pixel-wise predictions from the segmentation decoders to an instance

segmentation, a clustering step is applied. The clustering proposed in [181] is modified as

follows: First, the clustering bandwidth tensor is smoothed with a 3x3 kernel along 𝑥- and

𝑦- dimension and is referred to as Ssmooth
. Since the seediness map D estimates how well

pixels predict their object center, pixels with scores larger than 0.5 in the seediness map

are selected and the shifted pixel positions eS𝑖 are computed to find potential object centers.

Each eS𝑖 , which is a normalized pixel position in range ([0, 1], [0, 1]), is converted to an

index tuple in range ([0, 𝐻], [0,𝑊]). The calculated index tuples are accumulated and

potential object centers are found by selecting index tuples with more than five clustered

pixels in their 3x3 neighborhood. Next, the index tuples 𝑗 that refer to potential object

centers are sorted by their seediness map score d 𝑗 . Then, starting with the pixel with the

highest seediness map score, the list of likely object centers is processed and pixels that

75

4. EmbedTrack

Raw Image Ground Truth Seediness 𝐃 (A) Thresholded Seediness Map (B) Shifted Pixels

(C) Select unclustered,

shifted pixel (cyan)

and calculate distance 𝑑S = (𝐞𝑗
𝑆, 𝐞𝑖

𝑆)

(D) Assign all pixels within

𝑑S ≥ 0.5 (red circle)

to the same cluster

Predicted Instances (E) Clustered Pixels after

repeating (C) and (D)

Repeat until all pixels are clustered (filter out too small clusters)Clustering Step

Figure 4.4.: Clustering step. (A) the seediness map D is thresholded resulting in a fore-

ground (gray) background (black) prediction. Next, the pixels predicted as

foreground are shifted by the predicted segmentation offsets OS
, where the

shifted pixels are shown in yellow (B). (C) The shifted pixels are assigned to

clusters by selecting a not yet clustered, shifted pixel – referenced by the index

tuple 𝑗 ; shown in cyan – and calculating its distance 𝑑S(eS𝑗 , eS𝑖) to all other pix-

els – distance map shown as a heat map. (D) The distance map is thresholded

and pixels with a distance score higher than 0.5 (red circle) are assigned to

the same cluster. Steps (C) and (D) are repeated until all pixels are clustered

(E). Finally, the clustered pixels are converted into instance masks, where each

cluster represents an instance. Raw image crop of the dataset BF-C2DL-HSC

from the CTC [7, 66]. Derivative of Figure 3 by Löffler et al. [182] licensed
under CC BY 4.0; rearranged plot and changed colors.

76

https://creativecommons.org/licenses/by/4.0/

4.2. Method

are referenced by their index tuple 𝑖 are assigned to the object centers eS𝑗 using a similar

distance measure as in the loss

s̃smooth

𝑗 = exp

(
𝑤s · Ssmooth [𝑗]

)
,

𝑑S
(
eS𝑗 , e

S

𝑖

)
= exp

©­­«−
(
𝑒
S,𝑥
𝑗

− 𝑒S,𝑥
𝑖

)
2

𝑠
smooth,𝑥
𝑗

−

(
𝑒
S,𝑦

𝑗
− 𝑒S,𝑦

𝑖

)
2

𝑠
smooth,𝑦

𝑗

ª®®¬ ,(
B̂ 𝑗
)
𝑖
=

{
1 if 𝑑S(eS𝑗 , eS𝑖) > 0.5 ∀𝑖 ∈ I ,
0 otherwise ,

,

(4.12)

where s̃smooth

𝑗 is as in the loss a scaled clustering bandwidth vector at pixel 𝑗 with the

same weight 𝑤s as used in the loss, 𝑠
smooth,𝑥
𝑗

and 𝑠
smooth,𝑦

𝑗
the 𝑥- and 𝑦-dimension of the

clustering bandwidth vector, and B̂ 𝑗 the resulting instance mask. Index tuples referring to

potential object centers that are assigned to an instance mask are removed from the list of

likely object centers. To filter out false positives, the minimum size of an instance mask is

set to half the size of the 1% percentile of all mask sizes in the training dataset. While for

the benchmarks used in Section 4.3 and Section 5.3.2 the chosen threshold to filter out FPs

proved to be sufficient, depending on the dataset a different threshold might be required,

for instance, when the training dataset has many small annotated artifacts. An elaborate

analysis of the influence of the annotation quality in the training data on the final model

performance is however outside of the scope of this thesis.

On object boundaries, pixels can have high distance scores for several object centers.

To assign the pixel to the best object center, for each pixel its highest distance score 𝑑S is

kept to allow to reassign a pixel to a subsequent object center. Therefore, three conditions

need to be fulfilled: the pixel receives a higher score 𝑑S if it is assigned to the new object

center, the number of pixels clustered into the new instance have at least the minimum

size, and the fraction of pixels that are already assigned to another mask is less than half

of the final instance mask. A visualization of the clustering step is shown in Figure 4.4.

4.2.4. Tracking

After the clustering step, the instance segmentation masks are linked over time. Therefore,

the shifted positions eT𝑖 are calculated for all pixels 𝑖 that belong to an instance mask at

time point 𝑡 to find their corresponding object centers at 𝑡 − 1. Each instance mask at 𝑡

is marked as a potential matching candidate for the instance mask at 𝑡 − 1 that contains

the most shifted pixels of it. If a mask at 𝑡 − 1 has exactly one matching candidate, the

two instance masks at 𝑡 and 𝑡 − 1 are assigned to the same track, whereas if an instance

mask at 𝑡 − 1 has two potential matching candidates at 𝑡 , the instance masks at 𝑡 are set as

successors of the instance mask at 𝑡 − 1. In all other cases, shifted pixels not overlapping

with any mask, more than two matching candidates - the mask at 𝑡 is marked as a new

track starting at 𝑡 .

77

4. EmbedTrack

HEK 293 HeLa S3 NIH 3T3 RAW 264.7

𝑇𝒔𝒕𝒂𝒓𝒕

𝑇𝒆𝒏𝒅

DeepCell Dataset

Figure 4.5.: Exemplary frames of training sequences of the DeepCell dataset. To show the

change in the appearance of the training data image sequences, for each cell

line the first and last frame of an image sequence from the training dataset is

shown.

4.3. Experiment

In the following, the proposed method is compared concerning its model size with other

neural network architectures, which are used for biomedical image processing tasks.

Moreover, the influence of different augmentation strategies during training and inference,

and the influence of the amount and kind of training data used are investigated. Finally, the

performance of the proposed simultaneous instance segmentation and tracking approach

is compared by combining the predicted instance segmentation masks with three other

tracking-by-detection approaches.

4.3.1. Experimental Setup

For evaluation, two different datasets are used: the DeepCell dataset, which was used in

Section 2.2 and the BF-C2DL-HSC dataset [7]. While the DeepCell dataset provides many

image sequences, it is limited concerning the number of frames per image sequence and

the number of objects per frame. In contrast, the BF-C2DL-HSC dataset has more frames

per image sequence and more object movement, however, only two image sequences are

available. In the following, the training and inference procedure for the two different

datasets are described.

All models were trained and evaluated on a system with Ubuntu 18.04, an Intel i9 99000k,

32 GB RAM, and two Titan RTX with 24GB VRAM each. The approach was implemented

in Python with PyTorch as deep learning framework. The code of EmbedTrack was made

publicly available at https://git.scc.kit.edu/kit-loe-ge/embedtrack.

78

https://git.scc.kit.edu/kit-loe-ge/embedtrack

4.3. Experiment

DeepCell Dataset

The original DeepCell dataset [113] consists of 803 image sequences for training and

validation and 81 image sequences for benchmarking. In Chapter 2 and Chapter 3 the 81

image sequences, which were held out for benchmarking, were modified with synthetic

segmentation errors to compare different tracking-by-detection approaches. Now, the

benchmarking image sequences are used to test the segmentation and tracking performance

of the proposed approach, while the training is conducted on sub-datasets created from

the image sequences hold out for training and validation. An overview of image sequences

from different cell lines used for training is given in Figure 4.5.

Training In the following, the setup of the training process for the DeepCell dataset is

described.

• Training Data Creation To investigate the influence of the amount and kind of

training data on the performance of the proposed method, several training datasets

– mixed and specialized – are constructed from the original DeepCell training and

validation dataset. Mixed training datasets are constructed by using image sequences

from all four cell lines: HEK 293, HeLa S3, NIH 3T3, and RAW 264.7 by selecting

𝑁 /4 image sequences from each cell line. For example, the training dataset Mixed 8

consists of two image sequences from each of the four cell lines, whereas the dataset

Mixed 80 consists of 20 image sequences from each of the four cell lines. Specialized

datasets consist of image sequences from a single cell line. Specialized 20, for instance,

refers to using 20 image sequences of a single cell line for training. An overview of

the constructed training datasets is given in Table 4.1.

• Augmentation To investigate the influence of different types of augmentations,

several augmentation strategies are implemented and combined. Therefore, as

traditional augmentation strategies during training flipping, rotation by multiple

of 90 degrees, contrast adaption, and blur are applied. The contrast adaption is

done using CLAHE with a probability of 0.3, whereas the image is blurred with

a probability of 0.3 and is applied to each image crop individually. Blurring and

contrast adaption are summarized as a single augmentation strategy and referred

to as image augmentation. Flipping and rotations are always applied to both image

crops where the probability for flipping is set to 0.5 and a rotation by 0, 90, 180, or

270 degrees is drawn uniformly. In addition, an offset augmentation is implemented

to simulate larger shifts in object position, by translating the image crop of time

point 𝑡 − 1 by a small shift in 𝑥𝑦-direction compared to the initial position. Therefore,

a small random shift is added to the initial position of the crop in image 𝑡 − 1,

and a new crop from image 𝑡 − 1 is created at this new crop position. The offset

augmentation is applied with probability 0.3 and the shift is sampled uniformly in

the range [−0.1 · crop_size, 0.1 · crop_size], where crop_size is the size of the created
image crops.

• Image Preprocessing Each image crop is normalized to range [0, 1] using the 1%
and 99% percentiles of the image crop.

79

4. EmbedTrack

N Seq. N Frames N Tracks Overlap Fastest N% of Objects
Dataset Data Split 10 25 50

M
i
x
e
d

Mixed 8 train 8 24.0 15.0 0.873 0.927 0.955

val 8 6.0 13.0 0.905 0.933 0.958

Mixed 20 train 20 24.0 16.0 0.867 0.924 0.954

val 20 6.0 13.0 0.877 0.923 0.953

Mixed 40 train 40 24.0 18.5 0.861 0.917 0.952

val 40 6.0 15.0 0.873 0.916 0.952

Mixed 80 train 80 24.0 17.0 0.859 0.914 0.950

val 80 6.0 14.0 0.867 0.915 0.951

S
p
e
c
i
a
l
i
z
e
d
2
0

HEK 293 20 train 20 24.0 27.0 0.856 0.907 0.951

val 20 6.0 19.5 0.868 0.912 0.952

HeLa S3 20 train 20 32.0 10.0 0.904 0.933 0.957

val 20 8.0 8.0 0.906 0.929 0.955

NIH 3T3 20 train 20 24.0 13.0 0.880 0.925 0.961

val 20 6.0 11.5 0.882 0.925 0.962

RAW 264.7 20 train 20 24.0 25.5 0.673 0.779 0.870

val 20 6.0 17.5 0.667 0.799 0.884

S
p
e
c
i
a
l
i
z
e
d
4
0

HEK 293 40 train 40 24.0 25.5 0.862 0.907 0.950

val 40 6.0 19.5 0.872 0.914 0.953

HeLa S3 40 train 40 32.0 9.5 0.904 0.933 0.957

val 40 8.0 8.0 0.906 0.928 0.955

NIH 3T3 40 train 40 24.0 14.0 0.888 0.932 0.966

val 40 6.0 12.0 0.889 0.932 0.963

RAW 264.7 40 train 40 24.0 22.0 0.679 0.791 0.882

val 40 6.0 15.5 0.696 0.807 0.889

Table 4.1.: Training and validation datasets constructed from subsets of the original Deep-

Cell training and validation dataset. The number of frames, the number of

tracks, and the object motility statistics – overlap fastest 𝑁% of objects – are

the median over the sequences selected for training and validation, respectively.

The number of tracks and the object motility are calculated based on the fully

annotated ground truth in the respective image sequences.

80

4.3. Experiment

• Training and Validation Split From the original DeepCell training data several

training and validation datasets are constructed, by splitting each image sequence

selected from the initial training dataset into a training and validation sequence.

Therefore, the first 80% of frames of each image sequence are used for training

whereas the last 20% of frames of each image sequence are used for validation. The

statistics of the constructed training and validation datasets are given in Table 4.1.

• Optimizer and Early Stopping As optimizer Adam [185] with learning rate 5 ·10−4
is trained for a maximum of 150 epochs. In addition, an early stopping criterion

is used based on which the training is stopped if the loss on the validation dataset

decreased by less than 0.03 in the last 10 epochs of training.

• Crop Size The original images are cropped into image crops of size 128x128 and pairs

of image crops referring to the same part of the image at 𝑡 and 𝑡 − 1 are forwarded

to the model during training and validation.

• Runs Each combination of training dataset and augmentation strategies, selecting a

single augmentation up to using all augmentation strategies, is trained 10 times.

Testing The models trained on different subsets of the DeepCell training data are tested

on the hold out benchmark dataset as follows.

• Test Datasets From the DeepCell benchmark dataset test datasets are generated

by selecting all frames, every second, or every fifth from each image sequence.

Decreasing the temporal resolution through subsampling leads to an increase in the

object motility between frames. An overview of the created test datasets is given in

Table 4.2. It is emphasized that this data is unseen during the whole training process

and only used for final comparison of the differently trained models.

• Model Selection From each training run, the last model checkpoint is used for

evaluating the performance on the test datasets.

• Image Preprocessing Overlapping image crops of shape 128x128 are generated

from each image and pairs of image crops referring to the same part of the image at

𝑡 and 𝑡 − 1 are forwarded to the model for inference. Each image crop is normalized

to range [0, 1] using the 1% and 99% percentiles of the image crop.

• Test Time Augmentation As test time augmentations flipping and rotation by

multiple of 90 degrees are applied to the image pair, resulting in eight pairs of

augmented image crops. Each pair of augmented image crops is forwarded to the

model. Next, the predictions are flipped and rotated again to undo the augmentation.

Then, the average over the respective eight predictions is calculated for time point 𝑡

and 𝑡 − 1 respectively, which yields the final predictions for the two image crops.

• Post-Processing The predicted crops are stitched to a prediction covering the full

image followed by the clustering step to retrieve the instance segmentation masks.

Then the instance segmentationmasks are linked using the tracking offset predictions.

81

4. EmbedTrack

N Seq. N Frames N Tracks Overlap Fastest N% of Objects
Dataset Δ𝑡 10 25 50

Mixed 1 81 30.0 15.0 0.875 0.922 0.951

2 81 15.0 14.0 0.804 0.874 0.923

5 81 6.0 13.0 0.644 0.756 0.868

HEK 293 1 26 30.0 23.5 0.868 0.911 0.945

2 26 15.0 21.0 0.774 0.849 0.911

5 26 6.0 19.5 0.578 0.724 0.829

HeLa S3 1 18 40.0 9.5 0.903 0.933 0.955

2 18 20.0 8.5 0.874 0.911 0.948

5 18 8.0 8.0 0.803 0.876 0.919

NIH 3T3 1 24 30.0 12.5 0.897 0.942 0.967

2 24 15.0 11.5 0.830 0.897 0.945

5 24 6.0 10.5 0.695 0.811 0.894

RAW 264.7 1 13 30.0 15.0 0.663 0.779 0.869

2 13 15.0 15.0 0.551 0.725 0.826

5 13 6.0 12.0 0.378 0.535 0.718

Table 4.2.: Test datasets constructed from the DeepCell benchmark dataset. Δ𝑡 refers
to subsampling the initial benchmark sequences by selecting each (Δ𝑡 = 1),

every second (Δ𝑡 = 2), or every fifth (Δ𝑡 = 5) frame of an image sequence to

create subsampled datasets with more object motility. The number of frames,

the number of tracks, and the object motility statistics – overlap fastest 𝑁%

of objects – are the median over the sequences selected for the different test

datasets. The number of tracks and the object motility are calculated based on

the fully annotated ground truth in the respective image sequences. The mixed

test dataset includes all image sequences of the initial DeepCell benchmark

dataset, whereas the other test datasets consist of the image sequences of a

single cell line.

82

4.3. Experiment

𝑇𝒔𝒕𝒂𝒓𝒕

𝑇𝒆𝒏𝒅

BF-C2DL-HSC Dataset

01 02

Figure 4.6.: BF-C2DL-HSC dataset. To show the change in appearance in the training

and test dataset, the first and last frames of the two image sequences of BF-

C2DL-HSC are shown, where image sequence 01 is used for training and image

sequence 02 for testing.

Finally, to remove tiny segmentation masks at the image border Field of Interest

(FOI) correction is applied. Therefore, a ten pixel thick frame is defined at the image

borders and instance segmentation masks are removed that only overlap with this

frame and not with the remaining image.

BF-C2DL-HSC Dataset

The BF-C2DL-HSC dataset consists of two image sequences with publicly available anno-

tations covering point-wise tracking GT annotations and few frames with fully annotated

instance segmentation masks. In addition, instance segmentation predictions averaged

over several instance segmentation approaches are available. While both image sequences

have the same number of frames, the amount of objects differs greatly with 12 objects in

the last frame of image sequence 01 and 159 objects in the last frame of image sequence 02

a visualization of the two image sequences is given in Figure 4.6.

Training In the following, the setup of the training process on the BF-C2DL-HSC dataset

is described.

83

4. EmbedTrack

N Seq. N Frames N Tracks Overlap Fastest N% of Objects
Dataset Data Split 10 25 50

BF-C2DL-HSC 01 train 1 1588.0 17.0 0.383 0.513 0.642

val 1 176.0 15.0 0.408 0.537 0.674

Table 4.3.: BF-C2DL-HSC training and validation datasets constructed from the BF-C2DL-

HSC 01 image sequence. The number of tracks is extracted from the point-wise

tracking GT annotations, whereas the object motility is calculated by combining

the point-wise tracking GT with the ST instance segmentation masks.

• TrainingDataCreationTo create a fully labeled dataset with reasonable annotation

quality, the point-wise tracking GT annotations are combined with the publicly

available instance segmentation mask predictions, referred to as Silver Truth (ST), by

assigning the instance segmentation masks which overlap with exactly one tracking

GTmarker the tracking ID of the GT trackingmarker. An overview of the constructed

training dataset is given in Table 4.3.

• Augmentation Similar as introduced for the training on the DeepCell dataset, the

augmentations flipping, rotation by multiple of 90 degrees, offsets, contrast adaption,

and blur are applied using the same parametrization as defined above.

• Image Preprocessing Each image crop is normalized to range [0, 1] using the 1%
and 99% percentiles per image crop.

• Training and Validation Split Since the number of objects is increasing over time

in the BF-C2DL-HSC 01 image sequence, the first 90% of frames of the image sequence

are used for training whereas the last 10% of frames of the image sequence are used

for validation, to include examples of touching objects in the training data split.

Statistics of the resulting training and validation datasets are given in Table 4.3.

• Optimizer and Early Stopping As optimizer Adam [185] with learning rate 5 ·10−4
is trained for a maximum of 50 epochs. In addition, an early stopping criterion is

used based on which the training is stopped if the loss on the validation dataset

decreased by less than 0.03 in the last 5 epochs of training.

• Crop Size The original images are cropped into image crops of size 256x256 and pairs

of image crops referring to the same part of the image at 𝑡 and 𝑡 − 1 are forwarded

to the model during training and validation.

• Runs The model is trained 10 times using a combination of all augmentation strate-

gies together.

Testing The models trained on the BF-C2DL-HSC 01 sequence are tested on the image

sequence 02 as follows.

• Test Datasets From the BF-C2DL-HSC 02 image sequence three test datasets are

generated by selecting all frames, every second, or every fifth the image sequence.

84

4.3. Experiment

N Seq. N Frames N Tracks Overlap Fastest N% of Objects
Dataset Δ𝑡 10 25 50

BF-C2DL-HSC 02 1 1 1764.0 317.0 0.553 0.676 0.787

2 1 882.0 317.0 0.376 0.547 0.709

5 1 353.0 317.0 0.046 0.257 0.530

Table 4.4.: Test datasets constructed from the BF-C2DL-HSC 02 image sequence. Δ𝑡 refers
to subsampling the image sequence by selecting each (Δ𝑡 = 1), every second

(Δ𝑡 = 2) or every fifth (Δ𝑡 = 5) frame to create subsampled datasets with more

object motility. The number of tracks is extracted from the point-wise tracking

GT annotations, whereas the object motility is calculated by combining the

point-wise tracking GT with the ST instance segmentation masks

Decreasing the temporal resolution through subsampling leads to an increase in the

object motility between frames. An overview of the created test datasets is given in

Table 4.4. It is emphasized that this data is unseen during the whole training process

and only used for final comparison of the differently trained models.

• Model Selection From each training run, the last model checkpoint is used for

evaluating the performance on the test datasets.

• Image Preprocessing Overlapping image crops of shape 256x256 are generated

from each image and pairs of image crops referring to the same part of the image at

𝑡 and 𝑡 − 1 are forwarded to the model for inference. Each image crop is normalized

to range [0, 1] using the 1% and 99% percentiles of the image crop.

• Test Time Augmentation As test time augmentation the same processing is used

as described for the DeepCell dataset.

• Post-Processing The predicted crops are stitched to a prediction covering the full

image followed by the clustering step to retrieve the instance segmentation masks.

Then the instance segmentationmasks are linked using the tracking offset predictions.

Finally, to remove tiny segmentation masks at the image border Field of Interest

(FOI) correction is applied. Therefore, a 25 pixel thick frame is defined at the image

borders and instance segmentation masks are removed that only overlap with this

frame and not with the remaining image.

4.3.2. Evaluation

In the following, the proposed method is compared to other neural network architectures

concerning its model size. Then, the performance of the EmbedTrack approach is evaluated

concerning the influence of training dataset size, augmentation strategies, and decreasing

temporal resolution using the DeepCell test datasets. Moreover, the performance of the

tracking part of EmbedTrack is compared with other tracking methods. Finally, the

approach is trained and evaluated on the BF-C2DL-HSC dataset. A comparison of the

proposed method concerning additional criteria such as runtime and the performance on

a diverse set of 2D datasets is conducted in Chapter 5.

85

4. EmbedTrack

Task Architecture Number of Parameters
Semantic Segmentation U-Net [186] 31.0 · 106
Instance Segmentation Mask R-CNN [59] 44.2 · 106

DeepLab v3 [187] 39.6 · 106
FCN [188] 33.0 · 106

Point-wise Detection and Tracking Hayashida et al. [88] 17.3 · 106
Instance Segmentation and Tracking Payer et al. [89] 2.1 · 106

Chen et al. [125]
Mask R-CNN based;

no implementation available

EmbedTrack 2.5 · 106

Table 4.5.: Number of parameters of different neural network architectures used in biomed-

ical segmentation or tracking tasks in comparison with the proposed Embed-

Track approach. The instance segmentation models, Mask R-CNN, DeepLab v3,

and FCN use a ResNet-50 as the backbone. For each architecture a standard

parametrization was used, hence, based on the chosen parametrization the

number of parameters varies.

Model Size of EmbedTrack in Comparison with other Neural Network Architectures

First, the proposed neural network architecture, based on a branched ERFNet [60], is

compared concerning its size with other neural network architectures used in biomedical

image processing tasks which is shown in Table 4.5.

For the point-wise detection and tracking approach as well as the instance segmentation

and tracking approaches implementations are used which were made available with the

according publications. For the semantic segmentation approach and instance segmenta-

tion approaches implementations from the torchvision package
1
are used, whereas for

U-Net the implementation of Aman Arora is used
2
. All instance segmentation approaches,

Mask R-CNN, DeepLab v3, and FCN, use a ResNet-50 [189] as the backbone.

The neural network architectures proposed for instance segmentation of natural images

– Mask R-CNN, DeepLab v3, and FCN – which have been applied to biomedical images as

well, are two up to 20-times as big as the neural network architectures of Hayashida et
al., Payer et al., and the proposed neural network architecture, which were specifically

proposed for biomedical image processing tasks. Interestingly, U-Net which was proposed

for biomedical image processing tasks is similar in size to Mask R-CNN, DeepLab v3, and

FCN. The stacked hourglass neural network of Payer et al. and the proposed EmbedTrack

approach are in comparison to the other neural network architectures the smallest con-

cerning the number of trainable parameters and are hence less prone to overfit on small

datasets.

Segmentation Quality and Field of Interest Correction

In Section 2.2 and Section 3.3 a fraction of the perfect GT instance segmentationmasks were

altered to simulate segmentation errors while all other perfect GT instance segmentation

masks were kept unchanged. Now, the perfect GT instance segmentation masks are

1 https://pytorch.org/vision/stable/index.html
2 https://github.com/amaarora/amaarora.github.io/blob/master/nbs/Training.ipynb

86

https://pytorch.org/vision/stable/index.html
https://github.com/amaarora/amaarora.github.io/blob/master/nbs/Training.ipynb

4.3. Experiment

GT

Prediction

FOI correctedWithout FOI Define FOI

Figure 4.7.: Defining a Field of Interest (FOI) for DeepCell datasets. Tiny segmentationmask

fragments at the image border can have a strong impact on the metric score.

Therefore, a FOI is defined which is used to adapt the GT and the prediction

such that segmentation masks not overlapping with the FOI – segmentation

masks only overlapping with the gray frame – are removed. The removed

instance segmentation masks in the GT and prediction are marked with white

arrows.

compared against the instance segmentation masks predicted by the proposed method.

In the current scenario, the tiny instance segmentation mask fragments of the GT at the

image borders strongly affect the final metric score, as not segmenting a fragment sized a

few pixels at the image border is penalized as a FN in the evaluation metrics.

An approach to reduce the effect of the segmentation mask fragments at the image

border is to define a Field of Interest (FOI) as done for other datasets [7]. The idea is

to define a frame at the image border which is a few pixels wide and remove instance

segmentation masks that only overlap with this frame but not the remaining image. A

visualization of the FOI is shown in Figure 4.7.

To investigate the influence of the FOI correction on the evaluation, ten models are

trained on the Mixed 40 dataset using a combination of flipping, rotation by multiple of 90

degrees, image augmentations, and offsets as training augmentation. All trained models

are evaluated on the test dataset with full temporal resolution, Δ𝑡 = 1, of the four cell

lines of the DeepCell dataset. Next, the SEG score is calculated for each predicted frame

of instance segmentation masks, once considering FOI correction for GT and prediction

and once without FOI correction for GT and prediction. The FOI correction removes

all instance segmentation masks from GT and prediction that only overlap with a ten

pixel wide frame at the image border. To quantify bad, median, and good segmentation

performance of the trained models the 1%, 50%, and 90% percentiles of the SEG score

per frame are calculated which are given in Table 4.6. For all datasets, the SEG score per

frame is higher, especially concerning the 1% percentile of the SEG performance, which

demonstrates the strong effect of small mask fragments at the image borders on the final

metric score.

87

4. EmbedTrack

Segmentation Quality by SEG Score Frame-wise
Worst Case Median Best Case

Dataset FOI 1% Percentile 50% Percentile 90% Percentile

HEK 293 FOI 0.712 0.888 0.920

No FOI 0.602 0.824 0.891

HeLa S3 FOI 0.606 0.862 0.911

No FOI 0.469 0.846 0.896

NIH 3T3 FOI 0.637 0.870 0.928

No FOI 0.631 0.847 0.906

RAW 264.7 FOI 0.787 0.901 0.919

No FOI 0.682 0.847 0.899

Table 4.6.: Segmentation quality based on the SEG score of EmbedTrack with and without

FOI correction on DeepCell test datasets with full temporal resolution, Δ𝑡 = 1.

The SEG score was calculated per frame and the 1%, 50%, and 90% percentiles

of the SEG score per frame per test dataset are shown.

To show examples of segmented frames belonging to the 1%, 50%, and 90% percentile

concerning segmentation quality measured based on the SEG metric, Figure 4.8 provides

example frames for the cell line HEK 293, whereas Figure 4.9 provides example frames for

the cell line HeLa S3. Further visualizations of RAW 264.7 and NIH 3T3 are provided in

the appendix in Figure A.1 and Figure A.2, respectively. The bad segmentation example of

HeLa S3, Figure 4.9 left column, demonstrates how a small GT instance segmentation mask

fragment strongly influences the SEG score of this frame. By applying FOI correction, the

SEG score of this frame improves from 0.47 to 0.94. Moreover, the GT of HEK 293 tends to

segment the objects too big, see Figure 4.8 right column, touching objects in GT compared

to non-touching objects in the raw image. Hence, for high SEG scores – above 0.8 – it

remains questionable whether a higher SEG score indicates a better segmentation quality

or just more similarity with the bias of the human annotator.

While the effect of tiny instance segmentation mask fragments affects the SEG score

on a frame-wise level also all metrics are affected when evaluated per image sequence

on the DeepCell test dataset. Table 4.7 displays the 1%, 50%, and 90% percentiles of all

metric scores after evaluating the ten trained models on the test datasets with full temporal

resolution, Δ𝑡 = 1, of the four cell lines of the DeepCell dataset. Again, the predictions

are evaluated with FOI correction applied to GT and prediction and without applying

FOI correction. Besides the improvement of the SEG score, also the DET and TRA score

improve fundamentally by applying FOI correction, as FNs are penalized ten times as

much as FPs in DET and TRA metric.

In the following experiments, FOI correction is applied to all test datasets.

Influence of Augmentations and Training Dataset Size

Next, the influence of augmentations during training and the size of the training dataset

on the model performance is analyzed. Therefore, two training datasets, Mixed 8 and

Mixed 80 are used for training combined with different combinations of augmentations.

Per combination of training dataset and augmentation ten models are trained which are

evaluated on all the DeepCell Mixed test dataset with full temporal resolution, Δ𝑡 = 1.

88

4.3. Experiment

Median
50% Percentile

Segmentation Examples by SEG Score

Worst Case
1% Percentile

Best Case
90% Percentile

0.60 0.82 0.92

SEG Score
(FOI corrected)

0.69 0.79 0.92

SEG Score

HEK 293

Raw Image

Ground
Truth

Prediction

Overlap

Legend:

Figure 4.8.: Segmentation quality based on SEG score of EmbedTrack on HEK 293 test

dataset. The SEG score is calculated for each frame and the frames closest

to the 1%, 50%, and 90% percentile without FOI correction are shown. In

addition, the SEG score after applying FOI correction to the frame is shown.

The segmentation errors FN, FP, over-, and under-segmentation are marked

with white arrows.

89

4. EmbedTrack

Median
50% Percentile

Segmentation Examples by SEG Score

Worst Case
1% Percentile

Best Case
90% Percentile

0.47 0.85 0.92

SEG Score
(FOI corrected)

0.94 0.89 0.94

SEG Score

HeLa S3

Raw Image

Ground
Truth

Prediction

Overlap

Legend:

Figure 4.9.: Segmentation quality based on SEG score of EmbedTrack on HeLa S3 test

dataset. The SEG score is calculated for each frame and the frames closest

to the 1%, 50%, and 90% percentile without FOI correction are shown. In

addition, the SEG score after applying FOI correction to the frame is shown.

The segmentation errors FN, FP, over-, and under-segmentation are marked

with white arrows.

90

4.3. Experiment

Tracking Results over Image Sequences
Worst Case Median Best Case

Dataset Metric FOI 1% Percentile 50% Percentile 90% Percentile

HEK 293 DET FOI 0.884 0.974 0.993

No FOI 0.774 0.924 0.974

SEG FOI 0.719 0.869 0.909

No FOI 0.643 0.807 0.870

TRA FOI 0.858 0.967 0.989

No FOI 0.761 0.917 0.971

HeLa S3 DET FOI 0.857 0.990 1.000

No FOI 0.784 0.986 0.997

SEG FOI 0.756 0.848 0.886

No FOI 0.704 0.832 0.876

TRA FOI 0.869 0.987 1.000

No FOI 0.781 0.986 0.996

NIH 3T3 DET FOI 0.876 0.985 0.998

No FOI 0.885 0.978 0.995

SEG FOI 0.706 0.854 0.918

No FOI 0.688 0.830 0.882

TRA FOI 0.876 0.983 0.996

No FOI 0.881 0.976 0.994

RAW 264.7 DET FOI 0.957 0.993 0.999

No FOI 0.902 0.963 0.985

SEG FOI 0.833 0.897 0.913

No FOI 0.758 0.840 0.865

TRA FOI 0.947 0.988 0.997

No FOI 0.897 0.958 0.984

Table 4.7.: Influence of FOI correction on the DeepCell test datasets with full temporal

resolution, Δ𝑡 = 1. Ten models trained on the Mixed 40 dataset are evaluated

on the DeepCell Δ𝑡 = 1 test datasets with and without using FOI correction on

prediction and GT.

91

4. EmbedTrack

Figure 4.10.: SEG and TRA on DeepCell Mixed test dataset with full temporal resolution,

Δ𝑡 = 1, with different augmentation strategies during training. ’+’ refers to

combining several augmentations during training, ’ImgAug’ refers to using

CLAHE and blur, whereas ’No Augmentation’ refers to not using any aug-

mentation. Per box plot, the median over 𝑁 = 810 image sequences – ten

models evaluated on 81 image sequences in the test dataset – is shown.

During inference, test time augmentation is used for all models. The results of using the

different training setups concerning SEG and TRA scores are shown in Figure 4.10.

Overall, models trained on the larger training dataset Mixed 80 reach higher median

scores on the SEG and TRA metric on the DeepCell Mixed test dataset with full temporal

resolution, Δ𝑡 = 1, independent of the used augmentation. The influence of augmentations

during training on the performance of the test dataset is more distinct for the models

trained on the smaller Mixed 8 training dataset than for models trained on the larger

Mixed 80 training dataset. Using flipping or offset augmentation in combination with the

Mixed 8 training dataset has the largest improvement on the SEG score, whereas adding

the image augmentations CLAHE and blur, referred to as ImgAug in the plot, performs

similarly on the test dataset to adding no augmentation during training. The effect of

augmentation during training on the performance on the test dataset is more distinct on

the SEG metric compared to the TRA metric. A potential explanation for this is the ability

of the SEG metric to quantify changes in the Jaccard index for each segmentation mask in

the range [0, 1], whereas penalties in the TRA metric are discrete – a link between two

instance segmentation masks can either be set or missing which causes a fixed penalty.

Training General versus Specialized Models

To investigate whether it is beneficial to include related data or train a model only on

data similar to the test data, models are trained on datasets consisting of all four cell lines

versus just image sequences showing a single cell line. All models are trained with the

augmentations flipping, rotation by multiple of 90 degrees, offsets, CLAHE, and blur. Per

training dataset, ten models are trained which are all evaluated on the test datasets with

92

4.3. Experiment

Figure 4.11.: SEG and TRA on DeepCell test datasets with full temporal resolution, Δ𝑡 = 1,

after training models with mixed and specialized data. For Specialized 20

and Specialized 40, the cell line of the training dataset and test dataset are

equal. Per box plot, ten models are evaluated on the respective test dataset

and the median is calculated over 𝑁 = 260 for HEK 293, 𝑁 = 180 for HeLa S3,

𝑁 = 240 for NIH 3T3, and 𝑁 = 130 for RAW 264.7 predicted image sequences.

full temporal resolution, Δ𝑡 = 1, of the four cell lines of the DeepCell dataset. The results

of the different training setups concerning SEG and TRA scores are shown in Figure 4.11.

For brevity, the training datasets consisting of image sequences of only one cell line are

referred to as Specialized 20 and Specialized 40 – referring to the respective single cell

line training datasets HEK 293 20, HeLa S3 20, NIH 3T3 20, RAW 264.7 20 and HEK 293 40,

HeLa S3 40, NIH 3T3 40, RAW 264.7 40, respectively. For Specialized 20 and Specialized 40,

the cell line of the training dataset is equal to the cell line used in the test dataset.

On all test datasets increasing the training dataset from Mixed 8 to Mixed 20 leads

to a distinct improvement in the SEG metric. On the TRA metric, only HEK 293 and

HeLa S3 show a distinct improvement by increasing the training dataset from Mixed 8 to

Mixed 20. Only for HEK 293, the performance of trained models concerning the SEG and

TRA score improves when more image sequences of HEK 293 are included in the training

data. For HeLa S3 and RAW 264.7, the SEG and TRA scores show no distinct improvement

by increasing the training dataset beyond Mixed 20. Interestingly, on the NIH 3T3 test

dataset, the median SEG and TRA score decrease slightly when during training only image

sequences from NIH 3T3 are used.

An explanation for the different variances of the four test datasets is given by the

different sizes of the test sets. RAW 264.7, which shows the smallest variance in SEG and

TRA scores, consists of only 13 image sequences for testing, whereas HEK 293 consists of

26 image sequences.

93

4. EmbedTrack

Figure 4.12.: SEG and TRA on DeepCell Mixed test dataset with full temporal resolution,

Δ𝑡 = 1, with and without test time augmentation. Per box plot, the median

over 𝑁 = 810 image sequences – ten models evaluated on 81 image sequences

in the test dataset – is shown.

Influence of Test Time Augmentation

Next, the influence of using test time augmentation is investigated. Therefore, models are

trained using the Mixed 8, Mixed 20, and Mixed 40 training datasets each combined with all

augmentations. On each training dataset, ten models are trained. During inference, each

trained model is once evaluated without test time augmentation and once with test time

augmentation on the DeepCell Mixed test dataset with full temporal resolution, Δ𝑡 = 1.

The SEG and TRA score on the test dataset are shown in Figure 4.12.

Applying test time augmentation improves the performance of the trained models on

the test datasets concerning SEG and TRA independent from the training dataset. However,

the improvement using test time augmentation is smaller for models trained on the larger

Mixed 40 dataset compared to applying test time augmentation on models trained on the

smaller Mixed 8 dataset.

Influence of Temporal Resolution

To investigate how the proposed approach handles larger changes in object appearance

and position between successive frames, the DeepCell test datasets with full temporal

resolution, Δ𝑡 = 1, are subsampled in time by selecting every second and fifth frame,

respectively. The subsampled DeepCell test datasets are referred to as Δ𝑡 = 2 and Δ𝑡 = 5

and are compared to the original, not subsampled test datasets which are referred to as

Δ𝑡 = 1. Ten models are trained on the Mixed 40 dataset with all augmentations during

training and test time augmentation. No subsampling in time is applied during training.

The SEG and TRA scores on the subsampled test datasets of the trained models are shown

in Figure 4.13.

The segmentation quality quantified by the SEGmetric does not decrease with decreased

temporal resolution. This is explained by the architecture of the proposed method – the

instance segmentation masks are predicted for the two forwarded frames individually

without any coupling between them. However, the spread in the SEG score increases with

94

4.3. Experiment

Figure 4.13.: SEG and TRA of EmbedTrack on subsampled DeepCell test datasets. Δ𝑡 refers
to selecting each (Δ𝑡 = 1), every second (Δ𝑡 = 2), or every fifth (Δ𝑡 = 5) frame

of an image sequence in the test dataset to create subsampled test datasets

with more object motility. Per box plot, ten models are evaluated on the

respective test dataset and the median is calculated over 𝑁 = 260 for HEK 293,

𝑁 = 180 for HeLa S3, 𝑁 = 240 for NIH 3T3, and 𝑁 = 130 for RAW 264.7

predicted image sequences.

the subsampling as the corresponding GT and predicted segmentation mask sequences are

now very short, for Δ𝑡 = 5 only six frames per sequence, see Table 4.2, hence, the influence

of one less well predicted instance segmentation mask has a stronger effect on the SEG

score. The TRA score also remains unchanged with decreased temporal resolution. A

potential explanation is the small object motility even for larger subsampling rates, which

is given in Table 4.2.

Comparison of Tracking Performance

Next, the tracking of EmbedTrack, linking through predicting offsets from pixels at 𝑡

to their object center at 𝑡 − 1, is compared with other tracking-by-detection methods.

For comparison, the proposed graph-based tracking of Chapter 3 and the in Section 2.2

introduced tracking methods MU-Lux-CZ and KIT-Sch-GE (1) are selected. KTH-SE is not

selected due to its low performance on the DeepCell benchmark dataset in Section 2.2. All

tracking approaches receive as segmentation the instance segmentation masks predicted

by the EmbedTrack approach. Therefore, EmbedTrack models are trained on the Mixed 40

training dataset with all augmentations during training. No subsampling in time is applied

during training. During inference, test time augmentation is applied. Ten EmbedTrack

models are trained and instance segmentation masks are predicted for all Mixed test

datasets. The resulting instance segmentation mask sequences and corresponding raw

image sequences are then forwarded to the three tracking approaches. The results con-

cerning SEG and TRA score on the subsampled DeepCell Mixed test datasets are given in

Figure 4.14.

95

4. EmbedTrack

Figure 4.14.: SEG and TRA of different tracking approaches on subsampled DeepCell Mixed

test datasets. Δ𝑡 refers to selecting each (Δ𝑡 = 1), every second (Δ𝑡 = 2), or

every fifth (Δ𝑡 = 5) frame of an image sequence in the test dataset to create

subsampled test datasets with more object motility. Per box plot, the median

over 𝑁 = 810 image sequences – ten models evaluated on 81 image sequences

in each test dataset – is shown.

On the SEG score all methods perform on par, apart from KIT-Sch-GE (1) which is

slightly decreasing in the SEG score on the subsampled test dataset Δ𝑡 = 5. EmbedTrack

and MU-Lux-CZ do not alter the instance segmentation masks, whereas the graph-based

tracking from Chapter 3 and KIT-Sch-GE (1) can alter the instance segmentation masks

leading to slight changes for Δ𝑡 = 5. An explanation for the slight drop in performance of

these two methods is their capability to interpolate missing segmentation masks, causing

for the subsampled dataset however FPs.

All methods show a high median TRA score on all test datasets. The graph-based

tracking from Chapter 3 performs slightly better concerning the median TRA score on

Δ𝑡 = 1 and Δ𝑡 = 2, whereas KIT-Sch-GE (1) decreases in performance for increased

subsampling. The worse performance of KIT-Sch-GE (1) is due to the increased number of

erroneous links which are penalized by the TRA metric.

Evaluation on BF-C2DL-HSC 02

Finally, the performance of EmbedTrack is evaluated on the BF-C2DL-HSC dataset, which

consists of only a single image sequence with few objects for training and a single image

sequence for testing with many touching objects. The setup for training and testing on

the BF-C2DL-HSC dataset is described in Section 4.3.1.

A qualitative demonstration of the segmentation performance of EmbedTrack is shown

in Figure 4.15. Although trained on a dataset with few touching objects, the approach is

able to segment touching objects well.

Next, the performance of the tracking part of EmbedTrack is compared with three

other tracking approaches: the graph-based tracking from Chapter 3, MU-Lux-CZ, and

96

4.3. Experiment

Raw Image Prediction Overlay

Figure 4.15.: Qualitative Segmentation Results on BF-C2DL-HSC 02. Shown are a crop

of the raw image, the predicted instance segmentation masks through the

proposed approach, and an overlay of raw image and predicted instance

segmentation masks.

KIT-Sch-GE (1). Therefore, ten EmbedTrack models are trained on the image sequence 01

using all augmentations during training. During inference, test time augmentation is used.

The predicted instance segmentation masks of the EmbedTrack approach are forwarded

together with the raw image sequence as input to the other tracking approaches. The SEG

and TRA scores of the different methods on the subsampled BF-C2DL-HSC 02 dataset are

given in Figure 4.16.

Concerning the SEG scores, it needs to be highlighted that the amount of fully labeled

GT is limited. For the Δ𝑡 = 1 test dataset only eight fully annotated frames of instance

segmentation masks are available, whereas for the Δ𝑡 = 5 test dataset only a single GT

frame is available based on which the SEG score is calculated. For the Δ𝑡 = 1 test dataset,

all approaches perform similarly, however for the Δ𝑡 = 2 and the Δ𝑡 = 5 test datasets

the graph-based tracking approach performs worse. The increased subsampling leads to

large changes in the position of some objects, which makes them difficult to link, even

for humans. For these objects, the graph-based tracking erroneously detects an under-

segmentation error and selects a nearby object which is split. The split segmentation masks

cause a drop in the SEG score as the Jaccard index between the instance segmentation

mask fragments and the GT instance segmentation mask is small.

On the TRA metric, all models decrease in performance with increased subsampling,

as the test dataset becomes more difficult due to increased object mobility and mitosis

events become more difficult to assign to the correct predecessor. KIT-Sch-GE (1) performs

worse than the other three approaches, due to many incorrect links which are likely

caused by the big ROI, which is used to estimate movements between frames that seems

to fail for crowded scenarios. The other three tracking approaches, EmbedTrack, graph-

based tracking, and MU-Lux-CZ, perform similarly. While the object movement increases

with increased subsampling, the objects in the center of the crowd, see Figure 4.15, are

constrained in their movement by the surrounding objects. Due to their constrained

movement, most objects still overlap by more than 0.5 with their predecessor at 𝑡 − 1 even

for Δ𝑡 = 5, see Table 4.4. Hence, while overlap-based tracking MU-Lux-CZ shows worse

performance for the more motile objects at the border of the crowd, the final TRA score is

97

4. EmbedTrack

Figure 4.16.: SEG and TRA scores of different tracking approaches on subsampled BF-

C2DL-HSC 02 test datasets. Δ𝑡 refers to selecting each (Δ𝑡 = 1), every second

(Δ𝑡 = 2) or every fifth (Δ𝑡 = 5) frame of the image sequence 02 to create

subsampled test datasets with more object motility. Per box plot, the median

over 𝑁 = 10 image sequences – ten models evaluated on one image sequence

in each test dataset – is shown.

still dominated by the majority of objects which are constrained in their movement that

can be easily linked using overlap-based tracking, resulting in a similar performance as

EmbedTrack and the graph-based tracking.

4.4. Discussion

This chapter proposed learning instance segmentation and tracking jointly in a single

neural network by learning offsets of pixels belonging to an object to their object centers

at 𝑡 and 𝑡 − 1 and a clustering bandwidth. The proposed network architecture does not

require any recurrent neural network parts and the predicted embeddings – offsets and

clustering bandwidth – are human comprehensible.

To investigate the performance of the proposed approach, several experiments were

conducted using the DeepCell dataset as well as the BF-C2DL-HSC dataset. Compared

to other neural network architectures the branched ERFNet, the EmbedTrack approach

is based on, is small, which makes it less susceptible to overfit on small datasets. The

advantage of the small model architecture was validated by the conducted experiments

concerning the required size of the training dataset: already a small training dataset

consisting of only eight image sequences performed competitively compared to using 20 or

40 image sequences for training. Concerning augmentation during training, flipping and

offset augmentations had the strongest effect on the performance during testing, however,

their effect was small. Also, using test time augmentation lead to a small improvement

in results. Moreover, on the BF-C2DL-HSC dataset, the approach showed its potential

to learn on a training dataset with few objects and performing well on a crowded image

sequence with many touching objects.

98

4.4. Discussion

When the temporal resolution was decreased by subsampling the test image sequences,

the segmentation quality of EmbedTrack did not decrease because the instance segmenta-

tion mask predictions at time points 𝑡 and 𝑡 − 1 are independent of each other. In addition,

when comparing the tracking performance of EmbedTrack with three other tracking

approaches, the graph-based tracking from Chapter 3, MU-Lux-CZ, and EmbedTrack

performed similarly on the subsampled DeepCell and BF-C2DL-HSC test datasets. How-

ever, while for the subsampled BF-C2DL-HSC test datasets the object motility between

successive frames increased, linking the objects becomes more difficult for all tracking

approaches as well as for humans, due to the crowded scenery and the visual similarity of

objects. Hence, the approach needs to be tested on other datasets that have more object

motility in combination with more distinguishable objects.

In its current formulation, EmbedTrack requires dense annotations of segmentation

masks and links over time. To reduce the burden of annotation, directions of future work

are training the approach on simulated data, for instance by using GANs as in [131], or

adapting the training to learn on sparsely labeled data. In addition, the approach is only

applicable to 2D datasets, thus, extending the approach to 3D should be investigated.

99

5. Application and Comparison of
Proposed MOTMethods

In Chapter 3 and Chapter 4 two MOT methods were proposed with an initial analysis

on small benchmark datasets from the DeepCell dataset. In this chapter, the proposed

MOT approaches are compared on a diverse benchmark dataset covering different image

modalities, varying numbers of objects as well as image sequences in 2D and 3D. Moreover,

the proposed MOT approaches are compared against other algorithms submitted to the

benchmark. While tracking accuracy is an important measure to compare different tracking

approaches, additional comparison criteria are defined to allow for a comprehensive

comparison between MOT approaches.

The remainder of this chapter is organized as follows: Section 5.1 proposes criteria to

compare different MOT approaches. In Section 5.2 the benchmark dataset is introduced

including an overview of approaches that were already submitted to the benchmark.

Next, in Section 5.3 the two in this thesis proposed MOT methods are compared based

on the in Section 5.1 defined criteria against other to the benchmark submitted methods.

Finally, Section 5.4 concludes this chapter by providing a summary and discussion of the

applicability of the two MOT approaches.

5.1. Criteria for Comparison

In the following, criteria to compare MOT approaches are introduced.

Tracking Quality As MOT provides the basis for subsequent analysis, a high tracking

quality is needed for subsequent tasks such as motion analysis [190, 191], behavior analy-

sis [192], scene understanding [193], or human-machine interaction [194]. Hence, most

MOT benchmarks use several evaluation measures to compare the tracking quality [66,

195, 196, 197, 198]. An overview of often used tracking measures is given in Section 1.1.5.

Scalability Usually there are minimum requirements on the MOT algorithm concerning

runtime and computing resources. Some application domains require real-time capa-

bilities [180] or require the MOT algorithm to run on devices with limited computing

power [199]. Besides these strict requirements, applying the MOT approach from several

Parts of this chapter are adapted from K. Löffler and R. Mikut. “EmbedTrack — Simultane-

ous cell segmentation and tracking through learning offsets and clustering bandwidths”.

In: IEEE Access 10 (2022), pp. 77147–77157. doi: 10.1109/ACCESS.2022.3192880.

101

https://ieeexplore.ieee.org/document/9834915

5. Method Comparison

dozen to several hundreds of objects per image or applying an approach in 2D or 3D scenes

should only require a reasonable increase in runtime and computing resources.

Additional Criteria for Evaluation Since MOT is just one building block in the image

processing or automation pipeline, also time, financial resources, and expert knowledge

required to apply the MOT approach to the task at hand need to be considered. Hence, the

following criteria are proposed:

• Manual tuning required?: Tuning a large set of manually tunable parameters requires

expert knowledge or is time intensive and hence expensive.

• Labeled data required?: Collecting labeled data to train or fine-tune supervised or

semi-supervised approaches can be time expensive and can require expert knowledge

to label objects for the task at hand.

• Robustness: Small changes in the input data and the parametrization of the algorithm

should not lead to large drops in performance. Also, robustness towards segmentation

errors should be considered.

• Applicability to 2D and 3D datasets: Some methods can be applied to 2D and 3D

datasets, whereas other approaches are only applicable to 2D datasets

• Additional Requirements: High hardware requirements or software licenses might

make an approach infeasible to use in practice due to high financial costs.

Hence, several criteria need to be considered when selecting a MOT approach for an

application. Depending on the application, these criteria can have different importance, for

instance, scalability might be more important than choosing the best approach concerning

tracking accuracy.

5.2. Cell Tracking Challenge Benchmark

In the following, the MOT approaches proposed in Chapter 3 and Chapter 4 are compared

against other MOT approaches on the Cell Tracking Challenge (CTC) [7].

5.2.1. The Benchmark

The CTC provides two benchmarks based on the same cell datasets: the Cell Segmentation

Benchmark (CSB) for segmentation and the Cell Tracking Benchmark (CTB) for tracking.

Both benchmarks are open for submission and the leaderboards are updated each month.

As the present thesis proposed MOT approaches, the CTB is used for evaluation.

102

5.2. Cell Tracking Challenge Benchmark

Datasets The CTC data consists of two labeled image sequences for training, which

are referred to as training sequences 01 and 02, and two unlabeled image sequences for

testing, which are referred to as challenge sequences 01 and 02. For the training sequences,

manually generated, Gold Truth (GT), annotations are provided for some segmentation

masks, whereas the tracking information is fully provided as point-wise annotations for the

selected datasets. Moreover, for some datasets also a Silver Truth (ST) is provided, which

are segmentation masks obtained from averaging predictions of previous submissions to

the CTC. The CTC provides a total of 20 different datasets – ten in 2D and ten in 3D. From

these 20 datasets, 16 require full tracking, whereas the remaining four datasets only provide

partly tracked data. Thus, for the present evaluation the only the datasets that require

full tracking are used. Each dataset name consists of the imaging modality, annotation

style, image dimensionality, image resolution, and cell line, where Figure 5.1 provides

an overview of the 16 selected datasets for evaluation. Moreover, Table 5.1 provides an

overview of the cell statistics which are computed from the training sequences.

As a measure for cell motility, the ST annotations are used to calculate the overlap of

cells between successive frames as their intersection of the two masks divided by the

smallest size of the two masks and the overlap percentiles of the 10%, 25%, and 50% most

motile cells are reported. For instance, the most motile 10% of the cells in the 01 training

sequence of BF-C2DL-HSC have an overlap smaller than 0.388. Based on the cell statistics,

challenging datasets are identified based on their cell motility and their cell count. In the

following, datasets with more than 10 cells in the last frame as well as an overlap of the

fastest 10% of cells of less than 0.5 are defined as datasets with high cell motility. Datasets

with more than 100 cells in the last frame are defined as datasets with high cell counts.

Based on these definitions datasets with high cell motility are the 2D datasets BF-C2DL-

HSC 01 and BF-C2DL-MuSC and the 3D dataset FLuo-C3DL-MDA231. Datasets with high

cell count are the 2D datasets BF-C2DL-HSC 02, Fluo-N2DH-HeLa, and PhC-C2DL-PSC

and the 3D dataset Fluo-N3DH-CE.

Evaluation Metrics To compare the submitted cell segmentation and tracking algorithms,

the CTC uses the metrics DET, SEG, and TRA, which all lay in the range [0, 1], where
a higher score corresponds with a better performance. All metrics were introduced in

Section 1.1.5. The segmentation benchmark CSB uses the metrics DET and SEG, whereas

the tracking benchmark CTB uses the metrics SEG, TRA, and the average between SEG

and TRA score, referred to as OPCTB.

5.2.2. Overview of Participating Methods

By 2022, 50 teams have participated on the CTC
1
. Each team can select the datasets on

which their submitted approach is evaluated. Moreover, each team can submit various

approaches, which allows for submitting segmentation-only methods to the segmentation

benchmark CSB as well as submitting MOT methods to the segmentation and tracking

benchmarks CSB and the CTB. Table 5.2 provides a summary of all MOT approaches

1 http://celltrackingchallenge.net/participants/

103

http://celltrackingchallenge.net/participants/

5. Method Comparison

BF-C2DL-HSC BF-C2DL-MuSC DIC-C2DH-HeLa Fluo-C2DL-Huh7 Fluo-C2DL-MSC Fluo-N2DH-GOWT1

Fluo-N2DH-SIM+ Fluo-N2DL-HeLa PhC-C2DH-U373 PhC-C2DL-PSC

(a) 2D datasets from the CTC.

Fluo-C3DH-A549 Fluo-C3DH-H157 Fluo-C3DL-MDA231 Fluo-N3DH-CE Fluo-N3DH-CHO

Fluo-N3DH-SIM+

(b) 3D datasets from the CTC.

Figure 5.1.: Sample images of the benchmark data from the CTC. The contrast of the raw

images has been adapted using min-max scaling to the percentiles 1 and 99

for visualization purposes. For 3D datasets their maximum projection of the

last frame in an image sequence is shown. All datasets can be retrieved from

http://celltrackingchallenge.net/.

104

http://celltrackingchallenge.net/

5.2. Cell Tracking Challenge Benchmark

N Frames N Tracks N Cells Overlap Fastest N% of Cells
Dataset Seq. 𝑇start 𝑇end 10 25 50

2
D
D
a
t
a
s
e
t
s

BF-C2DL-HSC 01 1764 23 1 12 0.388 0.519 0.647

02 1764 317 2 159 0.553 0.676 0.787

BF-C2DL-MuSC 01 1376 71 1 23 0.098 0.321 0.588

02 1376 48 1 22 0.275 0.511 0.694

DIC-C2DH-HeLa 01 84 38 10 18 0.774 0.861 0.920

02 84 32 10 17 0.848 0.899 0.933

Fluo-C2DL-Huh7† 01 30 34 31 32 - - -

02 30 69 52 58 - - -

Fluo-C2DL-MSC 01 48 15 9 8 0.709 0.814 0.870

02 48 10 5 3 0.031 0.293 0.594

Fluo-N2DH-GOWT1 01 92 28 23 20 0.927 0.947 0.966

02 92 58 25 28 0.909 0.939 0.961

Fluo-N2DH-SIM+ 01 65 95 30 45 0.863 0.892 0.922

02 150 107 8 54 0.841 0.874 0.909

Fluo-N2DL-HeLa 01 92 265 43 137 0.721 0.834 0.906

02 92 674 125 363 0.759 0.853 0.911

PhC-C2DH-U373 01 115 8 6 7 0.875 0.914 0.949

02 115 12 6 5 0.881 0.915 0.945

PhC-C2DL-PSC 01 300 1370 74 661 0.862 0.908 0.943

02 300 1025 66 498 0.875 0.916 0.946

3
D
D
a
t
a
s
e
t
s

Fluo-C3DH-A549 01 30 1 1 1 0.933 0.939 0.949

02 30 1 1 1 0.810 0.871 0.896

Fluo-C3DH-H157 01 60 4 4 4 0.855 0.890 0.938

02 60 17 3 4 0.331 0.660 0.918

Fluo-C3DL-MDA231 01 12 33 31 29 0.482 0.629 0.734

02 12 61 50 44 0.526 0.667 0.761

Fluo-N3DH-CE 01 195 720 4 362 0.624 0.718 0.799

02 190 724 2 360 0.571 0.675 0.763

Fluo-N3DH-CHO 01 92 27 10 14 0.837 0.880 0.919

02 92 24 4 11 0.851 0.892 0.924

Fluo-N3DH-SIM+ 01 150 81 6 43 0.826 0.853 0.877

02 80 117 30 55 0.828 0.853 0.880

Table 5.1.: Cell statistics of the selected CTC datasets. Datasets marked with † have no ST

provided, and hence no overlap percentiles between cells were calculated as

the annotations are sparse. Datasets in bold have high cell count – more than

100 cells in the last frame, whereas underlined datasets have high cell motility –

datasets with more than 10 cells in the last frame and an overlap of the fastest

10% of cells of less than 0.5.

105

5. Method Comparison

that perform on at least one of the 16 selected datasets, shown in Figure 5.1, in the top 3

participants on the CTB.

The majority of top 3 performing MOT methods use tracking-by-detection approaches

that combine a deep learning based segmentation approach with a subsequent, not deep

learning based tracking step. Besides the graph-based tracking proposed in Chapter 3

that is combined with a deep learning based segmentation – approach KIT-GE (3), also

DESU-US, KIT-GE (2) and UCSB-US use a graph-based tracking step. However, many

methods use a simple overlap-based or nearest neighbors based tracking step – BGU-UL,

CUNI-CZ, FR-GE(2), FR-GE(3), HIT-CN, and MU-CZ. The approaches CAS-CN, TUG-AT,

USYD-AU, and UVA-NL use deep learning in the tracking step. However, only TUG-AT

and USYD-AU predict segmentation and tracking in a single neural network, similar to

the deep learning based instance segmentation and tracking method which was proposed

in Chapter 4 – named KIT-GE (4) in the CTC.

Algorithm Segmentation Tracking
KIT-GE (3) [177, 200] U-Net with two decoders

predicting cell and neighbor

distances; watershed-based

post-processing

graph-based tracking from
Chapter 3

KIT-GE (4) [182, 201] deep learning based instance segmentation and tracking
method of Chapter 4

AC anonymous contribution; no description available

BGU-IL [202, 203] U-Net with convolutional long

short term memory (LSTM) blocks

overlap-based tracking

CAS-CN [204] U-Net to predict center regions and

masks; watershed-based

post-processing

Siamese network for cell tracking

CUNI-CZ [205] traditional image processing using

k-means threshold selection

algorithm

nearest neighbors

CVUT-CZ [206] J-Net predicting distance to cell

boundary and

foreground-background prediction;

partitioning algorithm to assign

foreground pixels to instances

Markov chain Monte Carlo

DESU-US [83, 207] segmenting cells in

spatio-temporal domain using a

sequence of traditional image

processing methods

model tracking as

graph-partitioning problem

DREX-US [208] unsupervised segmentation multi-temporal association

tracking

FR-GE (2) [209] U-Net overlap-based tracking

FR-GE (3) [210] U-Net overlap-based tracking

HIT-CN [211] two U-Nets one predicting cell

masks, one predicting cell centroids

overlap-based tracking

KIT-GE (2) [57, 212] dual U-Net predicting cell and

neighbor distances,

watershed-based post-processing

graph-based tracking

KTH-SE [85, 213] distinct traditional image

segmentation methods for each

dataset

tracking based on the Viterbi

algorithm

106

5.3. Comparison

Algorithm Segmentation Tracking
LEID-NL [214, 215] joint cell segmentation and tracking using level-sets

MU-CZ [96] modified U-Net predicting markers

and cell boundaries,

watershed-based post-processing

overlap-based tracking

MU-US (2) [216, 217] HRNet predicting centroids and

cell segmentation masks, split cells

in post-processing using

morphological operators

linear assignment based on IoU

score, additional gating and

Kalman filter modules to improve

robustness

MU-US (3) [217, 218] modified U-Net predicting markers

and binary cell masks

linear assignment based on IoU

score, additional gating and

Kalman filter modules to improve

robustness

ND-US [219] Fully Convolutional Network

(FCN) model

tracking based on earth mover’s

distance

PURD-US [220, 221] U-Net; apply connected component

analysis to generate instance

segmentation

volumetric particle tracking

velocimetry

RWTH-GE [222] U-Net for cell centroid detection;

watershed-based post-processing

nearest neighbors tracking based

on detected seeds; with additional

heuristics to handle redundant

detections

TUG-AT [89, 223]

stacked hourglass neural network with recurrent units;

predict unique pixel-wise embeddings for each instance

for joint segmentation and tracking

UCSB-US [224] centroid prediction with

watershed-based post-processing;

additional boundary correction

using Simple Linear Iterative

Clustering (SLIC)

graph-based tracking

USYD-AU [225]

joint cell segmentation and tracking by extending a Mask R-CNN

with tracking branch based on spatial and visual features

predicting pairwise similarity scores

UVA-NL [226] same segmentation as MU-CZ Siamese tracking using SiamFC

tracker, re-segmentation if a

collision of multiple cells detected

Table 5.2.: Overview of submitted cell segmentation and tracking approaches. Short

description of the submitted cell segmentation and tracking algorithms that

reached at least one top 3 performance on one of the 16 selected datasets.

5.3. Comparison

In the following, the proposedMOT approaches fromChapter 3 andChapter 4 are compared

based on the defined criteria of Section 5.1.

5.3.1. Setup of the Proposed Methods for Evaluation on the CTB

First, the setup of the proposed methods for submission to the CTB is introduced.

107

5. Method Comparison

Graph-based Tracking

The graph-based tracking approach from Chapter 3 is combined with the deep learning

based instance segmentation of Scherr et al. [57, 227]. The instance segmentation approach

uses a U-Net with two decoder paths and predicts distances to the cell border – cell

distance maps – and to the borders of neighboring cells –neighbor distance maps. A

detailed description of the setup of the instance segmentation is given in [200, 227].

Selected Datasets All 16 datasets from Figure 5.1 are selected for evaluation.

Training For each dataset, an instance segmentation model is trained. For training, image

crops of size 320x320 are generated from the GT and ST annotations, where 80% are used

for training and 20% for validation. As augmentations during training flipping, rotation,

scaling, contrast adaption, blurring, and noise are applied. The maximum number of

epochs ranges between 200 and 560 and depends on the number of training image crops

– more crops result in a higher maximum number of training epochs. In addition, early

stopping and a learning rate scheduler are used. Depending on the dataset the Ranger

optimizer [228, 229] or Adam optimizer [185] are used. Several models are trained, where

the model with the highest OPCSB, the average between SEG and DET of the GT annotated

data, is selected for submission to the CTB. Instance segmentation masks for 3D datasets

are not predicted by processing image volumes but instead by processing the 3D image

volume slice-wise, which results in a similar processing as for 2D datasets.

For the tracking approach, no training is required.

Inference To predict instance segmentation masks, first images are normalized to range

[−1, 1]. In addition, an optional downsampling and contrast adaption with CLAHE can

be applied. Then, the pre-processed images are forwarded to the CNN, where 3D images

are predicted slice-wise. To generate the instance segmentation masks, the predicted cell

distance map and neighbor distance map are processed using a watershed-based post-

processing step. For the post-processing step, the thresholds for the cell distance and

neighbor distance map can be defined manually.

Then, the instance segmentation masks and raw images are forwarded to the graph-

based tracking to link the segmentation masks over time and correct segmentation errors.

Finally, for datasets that have specified a field of interest, objects outside the specified

Field of Interest (FOI) are removed.

Parametrization The segmentation approach of Scherr et al. uses a dataset-specific selec-
tion of the number of training samples. Moreover, two thresholds for post-processing of

the segmentation are defined which are set to the same values for all datasets.

For tracking the same parametrization of the two manually tunable parameters is used

for all datasets: Δ𝑡 is set to 3 and the default ROI size is set to twice the size of the average

segmentation mask, which is computed from the predicted segmentation masks.

108

5.3. Comparison

EmbedTrack

In the following, the training and inference procedure of the joint object segmentation

and tracking approach from Chapter 4 for evaluation on the CTB is described.

Selected Datasets The proposed method requires fully annotated datasets concerning

segmentation masks and links over time. However, only Fluo-N2DH-SIM+ has a fully

annotated GT as it is a synthetic dataset. Thus, all 2D datasets that provide a ST or fully

annotated GT are selected, resulting in a total of nine datasets.

Training For the eight 2D datasets with ST annotations, the segmentation masks from the

ST are merged with the point-wise annotations of the tracking GT to create fully labeled

training data with reasonable annotation quality. To train EmbedTrack, the training

sequences 01 and 02 are split, where the first 90% of each image sequence are used for

training and the last 10% of each image sequence are used for evaluation. For submission

to the CTB, the model with the best Intersection over Union (IoU) score on the evaluation

dataset is selected. During training, overlapping crops of size 256x256 (512x512 for Fluo-

C2DL-MSC) are generated. The following augmentations are used during training: CLAHE,

blur, rotation by multiple of 90 degrees, flipping, and shifts between successive crops to

simulate larger cell movement. The augmentation is conducted similar as described in

Section 4.3.1 for the BF-C2DL-HSC dataset. Moreover, each image crop is normalized

to range [0, 1] using the 1% and 99% percentiles per image. Each model is trained for

15 epochs using the Adam optimizer [185] with a learning rate 5 · 10−4 and a one-cycle

learning rate scheduler.

Inference For inference, overlapping crops of size 256x256 (512x512 for Fluo-C2DL-MSC)

are generated from each image and pairs of image crops referring to the same part of

the image at 𝑡 and 𝑡 − 1 are forwarded to the model for inference. Each image crop is

normalized to range [0, 1] using the 1% and 99% percentiles of the image crop. As test time

augmentation, rotation by multiple of 90 degrees, flipping, and min-max normalization of

each crop to range [0, 1] using the 1% and 99% percentiles per image is applied, resulting in

eight pairs of augmented image crops. Each pair of augmented image crops is forwarded

to the model. Then, the predictions are flipped and rotated to undo the augmentation.

Next, the average over the respective eight predictions is calculated for time point 𝑡 and

𝑡 − 1 respectively, which yields the final predictions for the two image crops. The predicted

crops are stitched to a prediction covering the entire image. Next, the clustering step, which

was introduced in Section 4.2.3, generates the instance segmentation on the segmentation

predictions of the entire image. Finally, instances are linked to tracks by processing the

tracking offsets and the instance segmentation masks as explained in the tracking step of

EmbedTrack in Section 4.2.4. For the datasets that have a FOI specified, objects outside

the FOI are removed.

Parametrization Apart from the different crop size used for Fluo-C2DL-MSC, for all

datasets, the same parametrization is chosen concerning learning rates, the weighting of

109

5. Method Comparison

loss parts, etc. All other parameters are calculated automatically for each dataset based on

the training data properties – for instance the minimum mask size which is used in the

clustering step to filter out FPs.

5.3.2. Tracking Quality

First, the two proposed MOT approaches are evaluated concerning their tracking quality

compared to the other competing methods.

Graph-based Tracking

We participated as team KIT-GE (3) on the CTB in 2021, the results are shown in Table 5.3.

The approach ranks on 11 out of 16 datasets within the top 3 performing algorithms on

at least one evaluation metric. Moreover, on five 2D datasets – BF-C2DL-HSC, BF-C2DL-

MuSC, Fluo-C2DL-Huh7, Fluo-N2DL-HeLa, and PhC-C2DL-PSC – as well as on two 3D

datasets – Fluo-C3DH-A549 and Fluo-C3DL-MDA231 – the approach ranked first on at

least one evaluation metric. Concerning TRA performance the approach performs well

on datasets with high cell motility – BF-C2DL-HSC, BF-C2DL-MuSC, and Fluo-C3DL-

MDA231 as well as on datasets with high cell count Fluo-N2DL-HeLa, PhC-C2DL-PSC,

and Fluo-C3DH-CE.

However, on the datasets DIC-C2DH-HeLa, Fluo-N2DH-GOWT1, PhC-C2DH-U373,

Fluo-N2DH-SIM+, and Fluo-N3DH-CHO the approach performs worse. Potential reasons

are over-segmentation, for instance on DIC-C2DH-HeLa, and cells with very low contrast

resulting in FNs during instance segmentation, for instance on Fluo-N2DH-GOWT1.

Concerning overall top 3 performances on the examined datasets, KTH-SE, a traditional

image segmentation that is adapted for each dataset individually combined with tracking

based on the Viterbi Algorithm, performs best – 13 out of 16 datasets. The proposedmethod

ranks second best concerning the number of top 3 performances – 11 out of 16 datasets.

MU-CZ, a modified U-Net for segmentation combined with overlap-based tracking, ranks

third on the examined datasets – 5 out of 16 datasets with a top 3 performance. While the

approach of KTH-SE performs well on the CTB, applying the tracking method to other

datasets, as done in Section 2.2, performed poorly – even when provided with perfect

segmentation data. A potential explanation for the very distinctive performance is the

possibility to tune the parametrization heavily for the CTB using expert knowledge. In

contrast, using the same parametrization of the two manually tunable parameters of

the graph-based tracking performed well when combined with different segmentation

approaches as shown in Section 3.3 and Section 4.3, as well as when combined with a

deep learning based instance segmentation for the CTB. Thus, the proposed graph-based

tracking algorithm is a competitive baseline tracker, which can perform well on different

types of data. Moreover, the combination of deep learning based instance segmentation

and graph-based tracking performs well on a diverse set of data covering different imaging

modalities and cell lines and performs well in 2D and 3D.

110

5.3. Comparison

Dataset Rank OPCTB SEG TRA

BF-C2DL-HSC

1
st 0.901 (1st) 0.818 (1st) 0.984 (1st)

2
nd

0.868 0.757 0.978

3
rd

0.843 0.750 0.964

BF-C2DL-MuSC

1
st 0.870 (1st) 0.774 (1st) 0.971

2
nd

0.849 0.742 0.967

3
rd

0.835 0.703 0.966 (3rd)

DIC-C2DH-HeLa

1
st

0.909 0.863 0.955

2
nd

0.904 0.853 0.954

3
rd

0.898 0.852 0.954

0.848 (9th) 0.778 (10th) 0.918 (8th)

Fluo-C2DL-Huh7

1
st 0.875 (1st) 0.791 (1st) 0.960 (1st)

2
nd

0.843 0.751 0.934

3
rd

0.772 0.690 0.865

Fluo-C2DL-MSC

1
st

0.759 0.645 0.873

2
nd

0.740 0.641 0.839

3
rd 0.683 (3rd) 0.619 0.788

0.617 (4 th) 0.749 (4th)

Fluo-C3DH-A549

1
st 0.925 (1st) 0.849 (1st)

1.0002
nd

0.916 0.832

3
rd

0.913 0.829

Fluo-C3DH-H157

1
st

0.938 0.888 0.987

2
nd 0.929 (2nd) 0.884 0.980 (2nd)
3
rd

0.898 0.878 (3rd) 0.976

Fluo-C3DL-MDA231

1
st 0.797 (1st) 0.710 (1st) 0.884 (1st)

2
nd

0.761 0.642 0.882

3
rd

0.757 0.632 0.880

Fluo-N2DH-GOWT1

1
st

0.951 0.931 0.979

2
nd

0.939 0.927 0.976

3
rd

0.934 0.927 0.967

0.894 (14th) 0.850 (18th) 0.938 (10th)

Fluo-N2DL-HeLa

1
st

0.956 0.923 0.993 (1st)
2
nd

0.953 0.922 0.991

3
rd

0.953 0.919 0.991

0.938 (12
th
) 0.883 (12

th
)

Fluo-N3DH-CE

1
st

0.808 0.729 0.975

2
nd

0.803 0.705 0.945

3
rd

0.803 0.662 0.901 (3rd)
0.772 (6th) 0.642 (4th)

Fluo-N3DH-CHO

1
st

0.926 0.917 0.953

2
nd

0.912 0.902 0.948

3
rd

0.911 0.899 0.935

0.869 (7th) 0.833 (10th) 0.906 (10th)

111

5. Method Comparison

Dataset Rank OPCTB SEG TRA

PhC-C2DH-U373

1
st

0.954 0.924 0.985

2
nd

0.951 0.923 0.982

3
rd

0.948 0.923 0.981

0.925 (12th) 0.876 (13th) 0.975 (11th)

PhC-C2DL-PSC

1
st 0.855 (1st) 0.743 (1st) 0.967 (1st)

2
nd

0.843 0.720 0.966

3
rd

0.836 0.715 0.959

Fluo-N2DH-SIM+

1
st

0.896 0.825 0.978

2
nd

0.896 0.822 0.975

3
rd

0.894 0.821 0.973

0.881 (7th) 0.801 (9th) 0.962 (10th)

Fluo-N3DH-SIM+

1
st

0.897 0.820 0.974

2
nd 0.865 (2nd) 0.759 (2nd) 0.972 (2nd)
3
rd

0.848 0.746 0.967

Table 5.3.: Results of the Cell Tracking Benchmark (CTB) – status 22.10.2021. We partic-

ipated as team KIT-GE (3) on the CTB http://celltrackingchallenge.net/

latest-ctb-results/. Per dataset, we compare our performance including

achieved rank on the benchmark in brackets – marked in blue and bold, against

the top 3 performing CTB submissions – color-coded by participating team see

Table 5.2. Datasets in bold highlight a top 3 performance on at least one metric

of the proposed method.

EmbedTrack

We participate as team KIT-GE (4) on the CTB in 2022, the results are shown in Table 5.4.

The approach ranked on 7 out of 9 datasets within the top 3 performing algorithms on at

least one evaluation metric. Moreover, on four 2D datasets – BF-C2DL-HSC, BF-C2DL-

MuSC, Fluo-N2DH-SIM+, and PhC-C2DL-PSC – the approach ranked first on at least one

evaluation metric.

Dataset Rank OPCTB SEG TRA

BF-C2DL-HSC

1
st 0.906 (1st) 0.826 (1st) 0.985 (1st)

2
nd

0.901 0.818 0.984

3
rd

0.868 0.757 0.978

BF-C2DL-MuSC

1
st 0.878 (1st) 0.782 (1st) 0.974 (1st)

2
nd

0.870 0.774 0.971

3
rd

0.849 0.742 0.967

DIC-C2DH-HeLa

1
st

0.909 0.863 0.955

2
nd

0.904 0.853 0.954

3
rd

0.898 0.852 0.954

0.879 (6th) 0.824 (6th) 0.934 (6th)

Fluo-C2DL-MSC

1
st

0.759 0.645 0.873

2
nd

0.740 0.645 0.839

3
rd

0.701 0.641 0.788

0.636 (9th) 0.579 (9th) 0.693 (11th)

112

http://celltrackingchallenge.net/latest-ctb-results/
http://celltrackingchallenge.net/latest-ctb-results/

5.3. Comparison

Dataset Rank OPCTB SEG TRA

Fluo-N2DH-GOWT1

1
st

0.951 0.931 0.979

2
nd 0.940 (2nd) 0.929 (2nd) 0.976

3
rd

0.939 0.927 0.967

0.951 (4th)

Fluo-N2DL-HeLa

1
st

0.956 0.923 0.993

2
nd

0.953 0.922 0.992 (2nd)
3
rd

0.953 0.919 0.991

0.949 (4th) 0.906 (4th)

PhC-C2DH-U373

1
st

0.954 0.924 0.985

2
nd 0.951 (2nd) 0.923 0.982 (2nd)
3
rd

0.951 0.923 0.982

0.920 (8th)

PhC-C2DL-PSC

1
st

0.855 0.743 0.986 (1st)
2
nd 0.854 (2nd) 0.740 (2nd) 0.967

3
rd

0.843 0.720 0.966

Fluo-N2DH-SIM+

1
st 0.905 (1st) 0.830 (1st) 0.979 (1st)

2
nd

0.896 0.825 0.978

3
rd

0.896 0.822 0.975

Table 5.4.: Results of the Cell Tracking Benchmark (CTB) – status 14.03.2022. We partic-

ipated as team KIT-GE (4) on the CTB http://celltrackingchallenge.net/

latest-ctb-results/. Per dataset, we compare our performance including

achieved rank on the benchmark in brackets – marked in purple and bold,

against the top 3 performing CTB submissions – color-coded by participating

team see Table 5.2. Datasets in bold highlight a top 3 performance on at least

one metric of the proposed method.

The approach performs well on datasets with high cell count – BF-C2DL-HSC, Fluo-

N2DL-HeLa, and PhC-C2DL-PSC – as well as on datasets with high cell motility – BF-C2DL-

HSC and BF-C2DL-MuSC. However, on the datasets DIC-C2DH-HeLa and Fluo-C2DL-MSC

the approach performs worse. The dataset Fluo-C2DL-MSC contains very elongated cells

with long extensions, which the approach fails to correctly segment, resulting in missing

segmentation of the extensions and sometimes over-segmentation, whereas on the DIC-

C2DH-HeLa dataset also over-segmentation occurs.

On the examined datasets, the proposed method performs best concerning top 3 per-

formances – 7 out of 9 datasets. KIT-GE (3), KTH-SE, and MU-US rank second best, all

three ranking on 4 out of 9 datasets within the top 3 in at least one metric. Compared

to KIT-GE (3), the combination of deep learning based segmentation and the proposed

graph-based tracking, the proposed simultaneous instance segmentation and tracking

approach performs considerably better on Fluo-N2DH-GOWT1, PhC-C2DH-U373, and

Fluo-N2DH-SIM+. However, KIT-GE (4) performs worse on Fluo-C2DL-MSC. Interestingly

both approaches, KIT-GE (3) and KIT-GE (4) perform less well on DIC-C2DH-HeLa which

contains low contrast, touching cells with high heterogeneity within the cells.

Although the same manual parametrization for training and inference was used for all

datasets – apart from the crop size for Fluo-C2DL-MSC – the approach performed well on

113

http://celltrackingchallenge.net/latest-ctb-results/
http://celltrackingchallenge.net/latest-ctb-results/

5. Method Comparison

a diverse set of data outperforming other approaches, which use substantial fine-tuning

per dataset.

5.3.3. Scalability

Next, the two proposed methods are analyzed concerning their scalability. Therefore,

four datasets from 2D and 3D with few and many cells per image frame are selected.

As 2D datasets, Fluo-N2DH-SIM+ and PhC-C2DL-PSC are selected and as 3D datasets,

Fluo-N3DH-CE and Fluo-N3DH-SIM+ are chosen. PhC-C2DL-PSC and Fluo-N3DH-CE are

selected as datasets with high cell counts, whereas Fluo-N2DH-SIM+ and Fluo-N3DH-SIM+

are selected as datasets with few cell counts. Since the approaches are evaluated on a

challenge sequence, no ground truth is publicly available. Hence, the number of cells

was estimated manually. PhC-C2DL-PSC contains over 70 cells in the first frame up to a

few hundred cells in the last image frame, whereas Fluo-N3DH-CE has few cells in the

first frame and due to frequent mitosis events over 100 cells in the last image frame. In

contrast, Fluo-N2DH-SIM+ and Fluo-N3DH-SIM+ contain between 30 and 60 cells per

image frame. The respective challenge sequences 01 contain 110 frames for Fluo-N2DH-

SIM+, 150 frames for Fluo-N3DH-SIM+, 190 frames for Fluo-N3DH-CE, and 300 frames

for PhC-C2DL-PSC. Per dataset, each approach is evaluated five times on the respective

challenge sequence 01 and the average runtime is calculated over the runs. To compare the

graph-based tracker to other tracking-only approaches, tracking methods of other CTB

submissions
2
, which were introduced in Section 2.2, are chosen. The approach of KTH-SE

is excluded from runtime comparison as it only runs under Windows. All tracking-only

methods are combined with the instance segmentation approach of Scherr et al. [57, 212],
where the combination of the proposed graph-based tracking from Chapter 3 with the

instance segmentation approach of Scherr et al. is the KIT-GE (3) approach.

For evaluation, a system with Ubuntu 18.04, an Intel i9 99000k, 32GB RAM, and two

Titan RTX with 24GB VRAM each is used. All approaches are implemented in Python,

where the proposed method EmbedTrack, as well as the instance segmentation of Scherr et
al. [57, 212], use PyTorch as deep learning framework.

Table 5.5 shows the average runtimes of evaluating the different approaches on the

challenge sequence 01 of each dataset. The runtimes include all steps from loading the

images from disk to saving the predicted and tracked instance segmentation masks to disk.

An executable is used for the instance segmentation of Scherr et al., hence the segmentation

runtime also includes any overhead of running the executable. For the tracking-only

approaches, the runtime of segmentation and tracking is provided separately, whereas

for EmbedTrack the runtime includes segmentation and tracking as the model predicts

segmentation and tracking simultaneously.

For a few dozen cells in 2D datasets – Fluo-N2DH-SIM+ – the approach of KIT-Sch-

GE (1) is the fastest. However, the approach does not scale well to tracking a few hundred

cells in 2D – PhC-C2DL-PSC. While the overlap-based tracking of MU-Lux-CZ is fast in 2D

it has issues tracking cells in 3D requiring three to four times longer than KIT-Sch-GE (1)

2
The naming convention for the submissions to the Cell Tracking Challenge changed. The mapping of old

and new submission names is provided in Table A.1

114

5.3. Comparison

and the proposed graph-based tracking. The proposed EmbedTrack approach requires

more time to segment and track a few dozen cells in 2D, however, for a few hundred cells

the runtime of EmbedTrack is comparable to combining the segmentation approach of

Scherr et al. with overlap-based tracking. However, since EmbedTrack is a 2D method, no

runtimes on 3D datasets are reported.

2D Datasets 3D Datasets
Task Fluo-N2DH-

SIM+

PhC-C2DL-

PSC

Fluo-N3DH-

CE

Fluo-N3DH-

SIM+

Segment Scherr et
al. [57, 212]

51.4 s 78.9 s 1098.2 s 3039.1 s

Track

KIT-Sch-GE (1) 26.0 s

(77.4 s)

7642.4 s

(7721.3 s)

656.1 s

(1754.3 s)

597.4 s

(3633.5 s)

MU-Lux-CZ 33.6 s

(85.0 s)

353.9 s

(432.8 s)

1965.4 s

(3063.6 s)

2466.9 s

(5506.0 s)

Graph-based

Tracking

(Chapter 3)

37.9 s

(89.3 s)

462.5 s

(505.4 s)

482.4 s

(1580.6 s)

640.9 s

(3680.0 s)

Segment

& Track

EmbedTrack

(Chapter 4)

147.2 s 451.6 s – –

Table 5.5.: Runtimes of different MOT approaches on the CTC. Per dataset, each approach

was run five times on the challenge sequence 01 and the average runtime in

seconds was calculated. For the approaches graph-based tracking, KIT-Sch-

GE (1), and MU-Lux-CZ the total runtime, adding segmentation and tracking

times, is shown in brackets (·).

5.3.4. Additional Criteria for Evaluation

Finally, the two in this thesis proposed MOT methods are compared concerning additional

comparison criteria, which were introduced in Section 5.3.4, with the approaches MU-Lux-

CZ, KTH-SE, and KIT-Sch-GE (1). For the methods MU-Lux-CZ, KTH-SE, KIT-Sch-GE (1),

and the graph-based tracking only the tracking is considered, which can be combined

with a segmentation approach, whereas for EmbedTrack segmentation and tracking are

considered jointly.

Manual Tuning Required

• MU-Lux-CZ: One tunable parameter; good performance with the same parametriza-

tion when combinedwith high-quality segmentation data on new dataset (Section 2.2)

• KTH-SE: Many parameters that require careful tuning to the specific dataset and seg-

mentation method; poor performance with the same parametrization when combined

with high-quality segmentation data on new dataset (Section 2.2)

• KIT-Sch-GE (1): Two manually tunable parameters; good performance with same

parametrization when combined with high-quality segmentation data on new dataset

(Section 2.2)

115

5. Method Comparison

• Graph-basedTracking: Twomanually tunable parameters; using the same parametriza-

tion performs well on a wide set of 2D and 3D datasets (Table 5.3) as well as when

combined with synthetically degraded segmentation data (Figure 3.12)

• EmbedTrack: Same parametrization, apart from crop size for Fluo-C2DL-MSC, that

performs well on a wide set of 2D datasets (Table 5.4, Section 4.3)

Labeled Data Required

• MU-Lux-CZ, KTH-SE, KIT-Sch-GE (1), Graph-based Tracking: Tracking itself

requires no training step with labeled data, however, instance segmentation might

require labeled data; depending on the domain pre-trained instance segmentation

approaches [55, 56] available

• EmbedTrack: Full segmentation and tracking annotations are required for train-

ing; at present however very few datasets in the microscopy domain that contain

segmentation and tracking labels

Robustness

• MU-Lux-CZ: No segmentation error correction capabilities, hence decreasing per-

formance with degraded segmentation quality (Figure 3.12)

• KTH-SE: Although in theory segmentation error correction capabilities, poor perfor-

mance when applied to new dataset and degraded segmentation quality (Figure 3.12)

• KIT-Sch-GE (1): FN correction capabilities, better performance than MU-Lux-CZ

when combined with degraded segmentation quality (Figure 3.12)

• Graph-based Tracking: Automatic correction of segmentation errors FN, under-

and over-segmentation, outperforming other methods on degraded segmentation

data (Figure 3.12); negligible changes in performance when slightly increasing or

decreasing the two manually tunable parameters (Figure 3.10, Figure 3.9)

• EmbedTrack: No segmentation error correction capabilities; same training and

inference setup, apart from crop size selection performs well for a wide set of 2D

datasets (Table 5.4, Section 4.3); handling of lower temporal resolution possible

without retraining (Section 4.3); however issues when segmenting very elongated

cells with long extensions, such as Fluo-C2DL-MSC (Figure 4.3)

Applicability to 2D and 3D Datasets

• MU-Lux-CZ, KTH-SE, KIT-Sch-GE (1), Graph-based Tracking: Applicable to
2D and 3D datasets given a respective 2D or 3D instance segmentation of the dataset

• EmbedTrack: Applicable to 2D datasets, however, extension of the method to 3D

possible

116

5.4. Discussion

Additional Requirements

• MU-Lux-CZ: No additional requirements; while the tracking does not require a

GPU predicting instance segmentation masks with a deep learning based approach

requires a GPU

• KTH-SE: Matlab required; while the tracking does not require a GPU predicting

instance segmentation masks with a deep learning based approach requires a GPU

• KIT-Sch-GE (1): Solver formixed integer linear programs required such as GLPK [118];

while the tracking does not require a GPU predicting instance segmentation masks

with a deep learning based approach requires a GPU

• Graph-based Tracking: Solver for mixed integer linear programs required, here

Gurobi [116] used due to fast runtime which requires a software license; while the

tracking does not require a GPU predicting instance segmentation masks with a

deep learning based approach requires a GPU

• EmbedTrack: No additional licenses needed; however part of the code is licensed

as non-commercial use; GPU for training and prediction required

5.4. Discussion

In this chapter, the proposed graph-based tracking approach from Chapter 3 and the deep

learning based instance segmentation and tracking, EmbedTrack, from Chapter 4 were

compared with other MOT approaches. Therefore, comparison criteria were defined and

the two approaches were submitted to the CTB to evaluate their performance on a wide

variety of datasets.

The graph-based tracking was submitted with the same parametrization to all datasets,

whereas for EmbedTrack only the crop size was adapted for Fluo-C2DL-MSC. Although

both approaches were not fine-tuned to the datasets, both proposed methods performed

well on a wide set of datasets. The graph-based tracking approach was combined with a

deep learning based instance segmentation of Scherr et al. and evaluated on 16 2D and 3D

datasets, where the approach performed on 11 out of 16 datasets on at least one metric

within the top 3 performing submissions. The EmbedTrack was submitted on nine 2D

datasets and performed on 7 out of 9 datasets within the top 3 performing submissions.

However, when segmenting very elongated cells with long extensions EmbedTrack

tends to over-segment cells by segmenting extensions as additional cells. In contrast, the

instance segmentation approach of Scherr et al. handles this cell type better. Interestingly,
on datasets where the approach of Scherr et al. performed worse – Fluo-N2DH-GOWT1,

Fluo-N2DL-HeLa, PhC-C2DL-U373, and Fluo-N2DH-SIM+ – EmbedTrack showed better

segmentation quality.

In comparisonwith two other tracking approaches from the CTB, both proposedmethods

performed in a reasonable runtime. On 3D datasets, the graph-based tracking was faster

than naive overlap-based tracking, whereas on 2D data with many cells EmbedTrack was

faster than the graph-based tracking but slower than overlap-based tracking.

117

5. Method Comparison

Both approaches were compared on a variety of datasets with up to several hundreds of

cells per frame, however, an analysis of both approaches on large-scale datasets covering

several thousands of objects per frame was not conducted. Future work could evaluate how

both approaches scale on large datasets and propose adaptions to make both approaches

more computationally efficient.

While annotated data for the segmentation of microscopy images become more and

more available, currently datasets providing comprehensive segmentation and tracking

annotations are rare, which is the main limitation for applying EmbedTrack to other

image sequences. Future work could utilize the segmentation and tracking information of

other approaches, as done for the ST annotations of the CTC, to train EmbedTrack, using

simulated data for training, or adapting the training to sparse annotations. Moreover,

training on sparse annotations would also facilitate extending EmbedTrack, which is

currently limited to 2D datasets, to 3D datasets. For the graph-based tracking, in contrast,

the main limitation is the need for a general-purpose solver, which can require as in the

case of Gurobi, additional software licenses.

118

6. Conclusions and Outlook

MOT approaches allow the efficient extraction of information about the movement of

objects. The extracted information provides the basis for further evaluation such as

behavior analysis, path planning, or movement prediction. While MOT has numerous

applications such as in autonomous driving, surveillance, or robotics, also there is a high

demand for MOT approaches in biomedical applications. For instance, the processing of

light microscopy image data that captures experiments with hundreds or even thousands

of objects over hours or even days requires automated tracking to make analysis feasible.

While MOT in light microscopy data is challenging due to many similar objects, in addition,

a high tracking quality is required to discover meaningful insights. Hence, towards the

long-term vision of virtually error-free object segmentation and tracking, this thesis

proposed two new tracking methods as well as approaches to compare the performance of

tracking methods.

Chapter 2 proposed a concept to compare different tracking methods by replacing the

segmentation method in a tracking-by-detection approach with a method that yields

synthetically degraded segmentation data. By using synthetically degraded segmentation

data as input for the tracking it is possible to investigate how different tracking methods

handle varying segmentation quality and their abilities to correct segmentation errors.

In Chapter 3 a competitive baseline tracker was proposed which is applicable to 2D

and 3D data when combined with an arbitrary instance segmentation approach. The

tracking method models object behavior and segmentation errors in a graph, whereas

prior knowledge of the shape of the tracking graph is used to correct segmentation errors.

Chapter 4 proposed a neural network that learns instance segmentation and tracking

simultaneously and predicts representations that are comprehensible to humans. Finally,

in Chapter 5 the two proposed tracking methods were applied to a diverse benchmark

dataset called the Cell Tracking Challenge. Moreover, besides tracking quality additional

comparison criteria for MOT approaches were proposed which were used to compare the

two proposed tracking methods.

Thus, the major contributions presented in this thesis can be summarized as:

1. A new method to benchmark tracking methods of tracking-by-detection approaches

concerning their robustness towards different types of segmentation errors and their

capabilities to segmentation errors (Section 2.1).

2. Application of the proposed benchmark approach to analyze tracking methods and

evaluation metrics (Section 2.2).

3. A new graph-based tracking method modeling object behavior and the segmentation

errors FNs as well as over- and under-segmentation of two or more objects using

simple, position-based cost functions (Section 3.2.2).

119

6. Conclusions and Outlook

4. A new post-processing method harnessing prior knowledge on the shape of the

tracking graph to correct segmentation errors automatically (Section 3.2.3).

5. A new approach to resolve conflicting pixels of overlapping instance segmentation

masks (Section 3.2.3).

6. The thorough validation of the functionality of the proposed graph-based tracking

concerning the robustness of the parametrization, the influence of the post-processing

operations, and the performance compared to other tracking methods (Section 3.3).

7. A novel deep learning approach named EmbedTrack which learns instance segmen-

tation and tracking simultaneously in a single neural network without any recurrent

parts that predicts as embeddings offsets and clustering bandwidths, which are

comprehensible for humans (Section 4.2).

8. The thorough validation of EmbedTrack concerning the influence augmentations

during training and inference, and the influence of the size of the training dataset

and kind of training data used on the performance during inference and well as the

comparison with other tracking methods (Section 4.3).

9. Application of the graph-based tracking approach to the Cell Tracking Challenge

benchmark on 16 datasets in 2D and 3D using the same parametrization for all

datasets resulting in 11 out 16 top 3 performances including 7 first rank performances

(Section 5.3.2).

10. Application of the deep learning based tracking approach to the Cell Tracking

Challenge benchmark on 9 datasets in 2D using the same training setup for all

datasets resulting in 7 out of 9 top 3 performances including 4 first rank performances

(Section 5.3.2).

11. Definition of additional criteria based on which tracking algorithms should be evalu-

ated including applying the defined criteria to compare the two proposed tracking

approaches (Section 5.1, Section 5.3.3, Section 5.3.4).

12. To enable further development and usability of the proposed methods, the code of

all proposed methods has been made publicly available (Section 2.2.1, Section 3.3.1,

Section 4.3.1).

While the benchmark proposed in Chapter 2 models real-world segmentation errors,

approaches that make the appearance of these segmentation errors more realistic for

instance by simulating low-contrast objects in the corresponding raw image could be

explored. Also, the synthetic degradation of segmentation data could be combined with

synthetic or semi-synthetic benchmark datasets [3, 168] which model different object

behaviors to create more challenging benchmarks to compare tracking-only methods.

Moreover, the potential of the approach for finding a good parametrization of a tracking

method could be explored.

Concerning the graph-based tracking method proposed in Chapter 3, all three tracking

steps can be investigated further. For the tracklet step, a linear phase correlation is

120

used currently to estimate offsets coarsely based on image crops. This coarse movement

estimation could be replaced for instance by predicting offsets over the whole image

simultaneously using deep learning approaches [182]. Moreover, in the matching step

very simple, position-based cost functions are used, which could be replaced by more

sophisticated cost functions that for example also include the neighborhood of an object

in the cost. In addition, for the post-processing step an adaption of the costs to modify

the tracking graph should be investigated. Also worth exploring is the combination of

domain-specific solvers [119, 120] that yield approximate solutions with the proposed

method for application to large-scale tracking tasks.

The main limitation of the deep learning based instance segmentation and tracking

approach is the need for fully annotated data – fully annotated instance segmentation

masks and their linking over time. As the generation of fully labeled datasets is time

intensive, the burden of annotation can be alleviated by adapting the training process to

utilize sparsely labeled data or training on simulated data, for instance by using GANs [131,

169]. Moreover, to forward information between the encoder and decoder branches, skip

connections could be explored similarly to the U-Net architecture [186]. Also, the predicted

tracking offsets could be processed further to improve tracking quality for instance by

using the offset predictions as inputs for a graph-based tracking method. Currently, due

to the need for fully annotated data, EmbedTrack was only applied to 2D datasets as 3D

datasets are expensive to annotate. However, a direction of future work is the extension

to 3D data. During evaluation, the influence of the temporal resolution on the tracking

quality was investigated. Decreasing the temporal resolution on the selected datasets led

to an increased object movement, which however was accompanied by a large change

in the appearance of the examined objects. As a result, linking corresponding objects

became challenging, even for humans. Therefore, further experiments on datasets with

more object movement and less change in the object appearance between image frames

should be conducted.

Reliable instance segmentation and tracking pave the way to derive new insights in

numerous applications. For instance, in the scope of biomedical applications virtually error-

free tracks offer the possibility to investigate movements and discover movement patterns

or deviations from them. This information can be the key to deepening our understanding

of the processes causing illness and might provide new angles to developing cures in the

future.

121

A. Appendix

A.1. Naming of Participating Teams on the CTC

The hosts of the CTC changed the naming of the participating teams and their submitted

approaches to the CTC in June 2022.

Old Submission Name New Submission Name
KIT-Sch-GE (1) KIT-GE (2)

KTH-SE KTH-SE

MU-Lux-CZ MU-CZ

KIT-Sch-GE (2) KIT-GE (3)

KIT-Loe-GE KIT-GE (4)

Table A.1.: Team names before and after the naming convention was changed.

A.2. Comparison of Tracking Results

Table A.2 and Table A.3 provide the SEG and DET scores of the evaluation from Sec-

tion 3.3.2.

123

A
.
A
ppendix

Mean Rank 1st Rank/%

Tracking Algorithm P
r
o
p
o
s
e
d

M
U
-
L
u
x
-
C
Z

K
T
H
-
S
E

K
I
T
-
S
c
h
-
G
E
(
1
)

N
o
T
r
a
c
k
i
n
g

P
r
o
p
o
s
e
d

M
U
-
L
u
x
-
C
Z

K
T
H
-
S
E

K
I
T
-
S
c
h
-
G
E
(
1
)

N
o
T
r
a
c
k
i
n
g

Segmentation Error Error Fraction/%
Ground Truth 0 1.56 1.00 5.00 2.20 1.00 80.2 100.0 0.0 55.6 100.0
Under-Segmentation 1 1.59 2.36 5.00 2.25 2.36 67.2 8.1 0.0 30.1 8.1

2 1.60 2.58 5.00 2.00 2.58 65.7 5.9 0.0 31.4 5.9

5 1.49 2.79 5.00 1.87 2.79 69.6 1.5 0.0 29.4 1.5

10 1.34 2.92 5.00 1.80 2.92 71.6 0.0 0.0 28.4 0.0

20 1.46 2.92 5.00 1.69 2.92 65.2 0.0 0.0 34.8 0.0

Over-Segmentation 1 1.29 1.87 5.00 3.29 1.87 88.9 13.3 0.0 4.4 13.3

2 1.14 1.95 5.00 3.58 1.95 94.6 5.7 0.0 1.7 5.7

5 1.14 1.95 5.00 3.88 1.95 94.3 5.7 0.0 0.5 5.7

10 1.11 1.96 5.00 3.96 1.96 95.1 4.9 0.0 0.2 4.9

20 1.40 1.83 5.00 3.95 1.83 83.0 17.0 0.0 0.0 17.0

False Negative 1 1.45 2.89 5.00 1.54 2.89 62.7 0.5 0.0 58.5 0.5

2 1.46 2.97 5.00 1.49 2.97 58.3 0.2 0.0 53.8 0.2

5 1.43 3.00 5.00 1.54 3.00 57.0 0.0 0.0 46.4 0.0

10 1.35 3.00 5.00 1.63 3.00 64.7 0.0 0.0 36.5 0.0

20 1.17 3.00 5.00 1.83 3.00 83.2 0.0 0.0 17.3 0.0

Mixed 1 1.43 2.55 5.00 2.18 2.55 78.5 9.1 0.0 22.7 9.1

2 1.25 2.81 5.00 2.10 2.81 86.7 0.5 0.0 12.8 0.5

5 1.07 2.97 5.00 1.98 2.97 94.1 0.2 0.0 5.7 0.2

10 1.04 3.00 5.00 1.97 3.00 96.8 0.0 0.0 3.2 0.0

20 1.02 3.00 5.00 1.99 3.00 97.8 0.0 0.0 2.2 0.0

Table A.2.: SEG scores of different tracking approaches on erroneous segmentation data. For each erroneous dataset all approaches are

ranked based on their SEG metric, where approaches reaching the same score are assigned the same rank. The mean rank is

calculated over the subset of image sequences containing a specific type and fraction of segmentation errors. In addition

the fraction of times the tracking approach reached rank 1 is reported, where the fractions accumulated over the tracking

approaches can be larger than 100% as several approaches can reach the same SEG score.

1
2
4

A
.2.

C
om

parison
ofTracking

Results

Mean Rank 1st Rank/%

Tracking Algorithm P
r
o
p
o
s
e
d

M
U
-
L
u
x
-
C
Z

K
T
H
-
S
E

K
I
T
-
S
c
h
-
G
E
(
1
)

N
o
T
r
a
c
k
i
n
g

P
r
o
p
o
s
e
d

M
U
-
L
u
x
-
C
Z

K
T
H
-
S
E

K
I
T
-
S
c
h
-
G
E
(
1
)

N
o
T
r
a
c
k
i
n
g

Segmentation Error Error Fraction/%
Ground Truth 0 1.68 1.00 5.00 2.93 1.00 69.1 100.0 0.0 33.3 100.0
Under-Segmentation 1 1.34 2.30 4.96 2.79 2.30 83.0 10.4 0.0 22.2 10.4

2 1.32 2.48 4.97 2.53 2.48 82.0 6.9 0.0 22.5 6.9

5 1.22 2.74 4.97 2.24 2.74 86.4 1.7 0.0 15.6 1.7

10 1.13 2.90 4.96 2.07 2.90 89.4 0.0 0.2 12.1 0.0

20 1.20 2.93 4.93 1.96 2.93 83.2 0.0 1.0 16.3 0.0

Over-Segmentation 1 1.08 2.14 4.96 3.38 2.14 95.8 4.2 0.2 3.2 4.2

2 1.04 2.18 4.96 3.51 2.18 98.3 1.7 0.7 1.0 1.7

5 1.01 2.07 4.94 3.85 2.07 98.8 0.0 1.2 0.0 0.0

10 1.01 2.05 4.91 3.98 2.05 98.8 0.0 1.2 0.0 0.0

20 1.03 2.11 4.63 4.12 2.11 97.5 0.0 2.5 0.0 0.0

False Negative 1 1.21 2.93 4.98 1.63 2.93 82.2 0.5 0.0 45.2 0.5

2 1.21 3.00 4.97 1.54 3.00 78.5 0.0 0.2 47.7 0.0

5 1.27 3.01 4.95 1.54 3.01 73.1 0.0 0.0 45.9 0.0

10 1.25 3.02 4.94 1.65 3.02 75.1 0.0 0.5 34.8 0.0

20 1.15 3.12 4.72 1.85 3.12 85.2 0.0 1.2 15.3 0.0

Mixed 1 1.17 2.60 5.00 2.33 2.60 89.6 6.7 0.0 14.8 6.7

2 1.10 2.87 4.95 2.18 2.87 92.6 0.2 1.2 7.2 0.2

5 1.03 2.99 4.96 2.02 2.99 97.0 0.2 0.7 2.7 0.2

10 1.02 3.02 4.92 2.01 3.02 98.3 0.0 1.2 0.7 0.0

20 1.01 3.05 4.85 2.03 3.05 98.5 0.0 1.2 0.2 0.0

Table A.3.: DET scores of different tracking approaches on erroneous segmentation data. For each erroneous dataset all approaches are

ranked based on their DET metric, where approaches reaching the same score are assigned the same rank. The mean rank is

calculated over the subset of image sequences containing a specific type and fraction of segmentation errors. In addition

the fraction of times the tracking approach reached rank 1 is reported, where the fractions accumulated over the tracking

approaches can be larger than 100% as several approaches can reach the same DET score.

1
2
5

A. Appendix

A.3. Segmentation Quality of EmbedTrack on DeepCell
Benchmark Dataset

126

A.3. Segmentation Quality of EmbedTrack on DeepCell Benchmark Dataset

Segmentation Examples by SEG Score

SEG Score 0.68 0.85 0.92

SEG Score
(FOI corrected)

0.85 0.92 0.92

RAW 264.7

Median
50% Percentile

Worst Case
1% Percentile

Best Case
90% Percentile

Raw Image

Ground
Truth

Prediction

Overlap

Legend:

Figure A.1.: Segmentation quality based on SEG score of EmbedTrack on RAW 264.7 test

dataset. The SEG score is calculated for each frame and the frames closest

to the 1%, 50%, and 90% percentile without FOI correction are shown. In

addition, the SEG score after applying FOI correction to the frame is shown.

The segmentation errors FN, FP, over- and under-segmentation are marked

with white arrows.

127

A. Appendix

NIH 3T3

Median
50% Percentile

Segmentation Examples by SEG Score

Worst Case
1% Percentile

Best Case
90% Percentile

0.63 0.85 0.93

SEG Score
(FOI corrected)

0.70 0.87 0.93

SEG Score

Raw Image

Ground
Truth

Prediction

Overlap

Legend:

Figure A.2.: Segmentation quality based on SEG score of EmbedTrack on NIH 3T3 test

dataset. The SEG score is calculated for each frame and the frames closest

to the 1%, 50%, and 90% percentile without FOI correction are shown. In

addition, the SEG score after applying FOI correction to the frame is shown.

The segmentation errors FN, FP, over- and under-segmentation are marked

with white arrows.

128

B. Nomenclature and Symbols

This section summarizes the notation used throughout this thesis, which is partly derived

from [230]. First general rules of the nomenclature are listed, then the subsequent table

introduces all symbols used throughout this thesis

• Lower case letters denote indexing variables (for example 𝑖, 𝑗, 𝑙), scalars (for example

𝑤), variables (for example 𝑥,𝑦), and function names (for instance 𝑓 (·), 𝑔(·), 𝑐 (·))

• Bold, lower case letters denote vectors (for example p, c)

• Upper case letters denote constants (for example 𝐻,𝑊 ,𝑍)

• Bold, upper case letters denote matrices and tensors (for example B)

• Script, upper case letters denote sets (for example A), where the size of a set is

denoted as |·| (for example the size of A is |A|)

• | | · | |2 is the Euclidean norm of a vector

• The absolute value is denoted as | · | (for instance |𝑥 | is the absolute value of 𝑥)

• Estimates are denoted as ·̂ (for example B̂, p̂)

• Tuples are denoted as (·, ·) (for example (𝑢, 𝑣))

• Loss functions are denoted as a small script 𝓁 (for example 𝓁seed)

• Elements in a 2D vector are referred to by their 𝑥- and 𝑦-position which is denoted

as ·𝑥 and ·𝑦 (for example c> = [𝑐𝑥 , 𝑐𝑦])

• A bar over an entity denotes a mean value (for example s𝑚)

• A tilde denotes a modified entity (for example 𝑠𝑥𝑚)

• Accessing an element in a matrix or tensor at an index tuple 𝑖 is denoted as (·)𝑖 (for
example (B)𝑖)

Symbol Description
1 Matrix containing only ones

(𝑢, 𝑣) Directed edge from node 𝑢 to node 𝑣

2𝐷 Two dimensional

3𝐷 Three dimensional

𝑎𝑡 Appearance node at time point 𝑡 in the graph

129

B. Nomenclature and Symbols

Symbol Description
a Image size as a vector

AIDFN Set of Identity False Negative (IDFN) associations

|AIDFN | Number of Identity False Negative (IDFN) associations

AIDFP Set of Identity False Positive (IDFP) associations

|AIDFP | Number of Identity False Positive (IDFP) associations

AIDTP Set of Identity True Positive (IDTP) associations

|AIDTP | Number of Identity True Positive (IDTP) associations

AFNA Set of False Negative Associations (FNA)s

|AFNA | Number of False Negative Associations (FNA)s

AFPA Set of False Positive Associations (FPA)s

|AFPA | Number of False Positive Associations (FPA)s

ATPA Set of True Positive Associations (TPA)s

|ATPA | Number of True Positive Associations (TPA)s

AOGM Acyclic Oriented Graphs Matching

AOGM0 AOGM cost to create the ground truth tracking graph

AOGMD,0 AOGM cost to create the ground truth detection graph

AOGMD AOGM metric including only detection errors

𝑏 (·) Balance of a node

𝑏𝑖,𝑡 Length of the diagonal of the bounding box of the segmented

object𝑚 at time point 𝑡

b𝑖,𝑡 A bounding box point of the segmented object𝑚 at time point 𝑡

B𝑚 Binary mask which is one at indices belonging to an instance

segmentation mask𝑚 and 0 otherwise

B𝑚,𝑡 Binary mask which is one at indices belonging to an instance

segmentation mask𝑚 at time point 𝑡 and 0 otherwise

b̂𝑖,𝑡+1 Propagated bounding box point of segmented object 𝑖 at time

point 𝑡 + 1

B𝑖,𝑡 Bounding box of segmented object 𝑖 at time point 𝑡

B̂ 𝑗 Predicted instance segmentation mask given the pixel 𝑗
ˆB𝑖,𝑡+1 Propagated bounding box of segmented object 𝑖 at time point 𝑡 +1
𝑐 (·, ·) Edge cost function in a graph

𝑐 (·) Cost function in an optimization problem

c𝑖,𝑡 Center of instance segmentation mask 𝑖 at time point 𝑡

ĉ𝑖,𝑡+1 Estimated center of instance segmentation mask 𝑖 at time point

𝑡 + 1

𝑐𝑥 𝑥-dimension of the center position of an instance segmentation

mask

𝑐𝑦 𝑦-dimension of the center position of an instance segmentation

mask

𝑐𝑥𝑚 𝑥-dimension of the center position of the instance segmentation

mask𝑚

𝑐
𝑦
𝑚 𝑦-dimension of the center position of the instance segmentation

mask𝑚

130

Symbol Description
CLAHE Contrast Limited Adaptive Histogram Equalization

CNN Convolutional Neural Network

CTB Cell Tracking Benchmark

CSB Cell Segmentation Benchmark

CTC Cell Tracking Challenge

𝑑𝑡 Disappearance node at time point 𝑡 in the graph

𝑑TP A True Positive (TP) detection

𝑑∗
TP

A True Positive (TP) detection

d̂𝑖,𝑡,𝑡+1 Estimated displacement of the instance segmentation mask 𝑖 be-

tween time points 𝑡 and 𝑡 − 1

𝑑 (·, ·) Distance measure based on the Gaussian kernel

D Seediness matrix

𝑑S(·, ·) Distance measure based on the Gaussian kernel between to pixel

positions at the same time point

𝑑T(·, ·) Distance measure based on the Gaussian kernel between an object

center at the previous time point and a pixel position at the current

time point

DS
Distance matrix containing the distance of each shifted pixel to

an object center at the same time point

DT
Distance matrix containing the distance of each shifted pixel at

time point 𝑡 to an object center at time point 𝑡 − 1

DFN Set of False Negative (FN) detections

|DFN | Number of False Negative (FN) detections

DFP Set of False Positive (FP) detections

|DFP | Number of False Positive (FP) detections

DGT Set of detections in the Ground Truth (GT)

|DGT | Number of detections in the Ground Truth (GT)

DNS Set of under-segmented objects

|DNS | Number of under-segmented objects

DTP Set of True Positive (TP) detections

|DTP | Number of True Positive (TP) detections

DET Detection metric in the Cell Tracking Challenge

eS𝑖 Object center prediction of a pixel referenced by the index tuple 𝑖

at the same time point

𝑒
S,𝑥
𝑖

𝑥-dimension of object center prediction of a pixel referenced by

the index tuple 𝑖 at the same time point

𝑒
S,y

𝑖
𝑦-dimension of object center prediction of a pixel referenced by

the index tuple 𝑖 at the same time point

𝑒
S,x

𝑗
𝑥-dimension of object center prediction of a pixel referenced by

the index tuple 𝑗 at the same time point

𝑒
S,y

𝑗
𝑦-dimension of object center prediction of a pixel referenced by

the index tuple 𝑗 at the same time point

131

B. Nomenclature and Symbols

Symbol Description
eT𝑖 Object center prediction of a pixel referenced by the index tuple 𝑖

at time point 𝑡 − 1 for its object center at time point 𝑡

𝑒
T,𝑥
𝑖

𝑥-dimension of object center prediction of a pixel referenced by

the index tuple 𝑖 at time point 𝑡 − 1 for its object center at time

point 𝑡

𝑒
T,𝑦

𝑖
𝑦-dimension of object center prediction of a pixel referenced by

the index tuple 𝑖 at time point 𝑡 − 1 for its object center at time

point 𝑡

E Set of edges in a graph

𝐸 Edge split cost constant

𝑓 (·, ·) flow over a directed edge

𝑓 𝑗𝑙 (·, ·) Pairwise coupled flow variable where the objects with IDs 𝑗 and

𝑙 are coupled

FN False Negative

FNA False Negative Association

FOI Field Of Interest

FP False Positive

FPA False Positive Association

𝑔(·) A linear function

G A graph

GT Ground Truth

ℎ(·) A linear function

𝐻 Height of an image

HOTA Higher Order Tracking Accuracy

HOTA𝑜 HOTA metric at localization threshold 𝑜

𝑖
1. Run index

2. Index tuple

𝑖′ Run index

I Set of all index tuples that reference all elements in a matrix or in

a 2D image

I𝑚 Set of index tuples referencing all pixels that belong to an instance

segmentation mask𝑚

I𝑡𝑚 Set of index tuples referencing all pixels that belong to an instance

segmentation mask𝑚 at time point 𝑡

|I𝑚 | Number of pixels belonging to a instance segmentation mask𝑚

Ibg Set of index tuples referencing all pixels that to the background

of an image��Ibg�� Number of background pixels in an image

Ipred Set of index tuples referencing all pixels that belong to the pre-

dicted instance segmentation mask

IGT Set of index tuples referencing all pixels that belong to the ground

truth instance segmentation mask

IDF1 Identification F1 score

132

Symbol Description
IDSW Identity Switch

𝑗 ′ Run index

𝑗
1. Run index

2. Index tuple

𝐽 (·, ·) Jaccard index

𝑘 Run index

𝐾 A constant

𝑘𝑙 (·, ·) Lower capacity of an edge

𝑘𝑢 (·, ·) Upper capacity of an edge

𝑙 Run index

𝓁 Loss

𝓁instance Instance loss

𝓁Jaccard Jaccard loss

𝓁Lovász Lovász loss

𝓁seed Seed loss

𝓁seg Segmentation loss

𝓁track Tracking loss

𝓁var Variance loss

LEA Set of missing links

|LEA | Number of missing links

LEC Set of links with wrong semantic

|LEC | Number of links with wrong semantic

LED Set of erroneous links that need to be removed

|LED | Number of erroneous links that need to be removed

LIDSW Set of Identity Switch (IDSW) linking errors

|LIDSW | Number of Identity Switch (IDSW) linking errors

𝑚 Instance segmentation mask index

𝑚𝑖,𝑡−1 Merge node at time point 𝑡−1 in the graph referring to segmented

object 𝑖

𝑀𝑟 Number of merged tracks where 𝑟 is the set of tracks that will be

merged

𝑀𝑖𝑛𝑠𝑡 Number of instance segmentation masks in an image

𝑀𝑡
𝑖𝑛𝑠𝑡 Number of instance segmentation masks in the image at time

point 𝑡

M𝑛 All subsets of tracks that can be merged with the track 𝜔𝑛
M(S𝑛) Set containing all subsets of successor tracks of track 𝜔𝑛 that can

be merged

M(P𝑛) Set containing all subsets of predecessor tracks of track 𝜔𝑛 that

can be merged

MOT Multiple Object Tracking

MOTA Multiple Object Tracking Accuracy

𝑛 Run index

Δ𝑁0.99 0.99 quantile of the number of predecessors / successor links per

track in an image sequence

133

B. Nomenclature and Symbols

Symbol Description
𝑜 Intersection over Union (IoU) threshold

𝑜𝑖,𝑡 Object node at time point 𝑡 in the graph referencing segmented

object 𝑖

oS𝑖 Segmentation offset vector of a pixel referenced by the index tuple

𝑖

OS
Segmentation offset tensor

oT𝑖 Tracking offset vector of a pixel referenced by the index tuple 𝑖

OT
Tracking offset tensor

O𝑡 Set of object nodes at time point 𝑡

|O𝑡 | Number of object nodes at time point 𝑡

𝑝
1. Predecessor track index

2. Run index

𝑝𝑥 𝑥-dimension of a position vector

𝑝𝑦 𝑦-dimension of a position vector

p Position vector

p𝑖 Position vector of a pixel referenced by the index tuple 𝑖

𝑃𝑛,𝑟 Number of tracks of the set of mergeable tracks, index by 𝑟 , that

share the same predecessors as track 𝜔𝑛
P𝑛 Set of predecessor tracks of the track 𝜔𝑛
|P𝑛 | Number of predecessor tracks of the track 𝜔𝑛
𝑞 Index referencing a set of tracks in a set containing several sets

of mergeable tracks

𝑞− Source node

𝑞+ Sink node

q𝑖,𝑡 Mask point of segmented object 𝑖 at time point 𝑡

Q𝑖,𝑡 Set of mask points of segmented object 𝑖 at time point 𝑡

q̂𝑖,𝑡+1 Propagated mask point of segmented object 𝑖 at time point 𝑡 + 1

ˆQ𝑖,𝑡+1 Propagated set of mask points of segmented object 𝑖 at time point

𝑡 + 1

𝑟 Index referencing a set of tracks in a set containing several sets

of mergeable tracks

ROI Region Of Interest

𝑠
1. Successor track index

2. Run index

𝑠𝑖,𝑡+1 Split node at time point 𝑡 + 1 in the graph referring to segmented

object 𝑖

𝑆𝑞,𝑛 Number of tracks of the set of mergeable tracks, index by 𝑞, that

share the same successors as track 𝜔𝑛
S Clustering bandwidths tensor

s𝑖 Clustering bandwidth vector of the pixel referenced by the index

tuple 𝑖

S𝑛 Set of successor tracks of the track 𝜔𝑛
|S𝑛 | Number of successor tracks of the track 𝜔𝑛

134

Symbol Description
s𝑚 Mean clustering bandwidth vector of instance segmentation mask

𝑚

s̃𝑚 Scaled clustering bandwidth vector of instance segmentation

mask𝑚

s̃smooth

𝑗 Scaled, smoothed clustering bandwidth vector of a pixel refer-

enced by the index tuple 𝑗

𝑠𝑥 𝑥-dimension of bandwidth vector

𝑠𝑦 𝑦-dimension of bandwidth vector

𝑠𝑥𝑚 𝑥-dimension of scaled clustering bandwidth vector of instance

segmentation mask𝑚

𝑠
𝑦
𝑚 𝑦-dimension of scaled clustering bandwidth vector of instance

segmentation mask𝑚

𝑠𝑥𝑚,𝑡 𝑥-dimension of scaled clustering bandwidth vector of instance

segmentation mask𝑚 at time point 𝑡

𝑠
𝑦

𝑚,𝑡 𝑦-dimension of scaled clustering bandwidth vector of instance

segmentation mask𝑚 at time point 𝑡

𝑠
smooth,x

𝑗
𝑥-dimension of the scaled, smoothed clustering bandwidth vector

of a pixel referenced by the index tuple 𝑗

𝑠
smooth,y

𝑗
𝑦-dimension of the scaled, smoothed clustering bandwidth vector

of a pixel referenced by the index tuple 𝑗

SEG Segmentation metric in the Cell Tracking Challenge

Ssmooth
Smoothed clustering bandwidths tensor

ST Silver Truth

SNR Signal to Noise Ratio

𝑡
1. Time point

2. Run index for time points

𝑡 ′ Run index

T Set of time points

𝑇𝑚𝑎𝑥 Last time point in an image sequence

𝑇 Time point in an image sequence

TPA True Positive Association

Δ𝑡 Time span

Δ𝑇0.3 0.3 quantile of the track lengths in an image sequence

TRA Tracking metric in the Cell Tracking Challenge

𝑢 Node in a graph

𝑣
1. Node in a graph

2. Run index

𝑣𝑖,𝑡 Node of type 𝑣 at time point 𝑡 in the graph corresponding to the

segmented object 𝑖

V Set of nodes in a graph

𝑤
1.Node in a graph

2. Run index

𝑤EA Weight factor for adding an edge in the AOGM metric

135

B. Nomenclature and Symbols

Symbol Description
𝑤EC Weight factor to correct the semantic of an edge in the AOGM

metric

𝑤ED Weight factor for removing an edge in the AOGM metric

𝑤FN Weight factor for FN detections in the AOGM metric

𝑤FP Weight factor for FP detections in the AOGM metric

𝑤NS Weight factor for under-segmented detections in the AOGM met-

ric

𝑊 Width of an image

𝑤fg Foreground weighting factor

𝑤instance Instance loss weighting factor

𝑤var Variance loss weighting factor

𝑤seed Seed loss weighting factor

𝑤𝑠 Scaling weight

𝑤seg Segmentation loss weighting factor

𝑤track Tracking loss weighting factor

W𝑛 Set of tracks that can be merged with track 𝜔𝑛
𝑥 𝑥-dimension of a vector, matrix or tensor

𝑥𝑖,𝑡+1 Skip node at time point 𝑡 + 1 in the graph referring to segmented

object 𝑖

𝑦 𝑦-dimension of a vector, matrix or tensor

𝑧· Variable

𝑧𝑒𝑝,𝑛 Variable modeling an edge remove operation between predecessor

track 𝜔𝑝 and track 𝜔𝑛 in the untangling problem

𝑧𝑚𝑟 Variable modeling the merging of a set of tracks indexed by 𝑟 in

the untangling problem

𝑧𝑠𝑛 Variable modeling the splitting of the track 𝜔𝑛 in the untangling

problem

𝑍 Depth of a 3D image

𝛼 A constant

𝜔𝑛 Track with the ID 𝑛

Δ𝜔𝑛 Temporal length of track 𝜔𝑛

136

List of Own Publications

[57] T. Scherr et al. “Cell segmentation and tracking using CNN-based distance predic-

tions and a graph-based matching strategy”. In: PLOS ONE 15.12 (2020), e0243219.

doi: 10.1371/journal.pone.0243219.

[137] B. Schott et al. “EmbryoMiner: A new framework for interactive knowledge discov-

ery in large-scale cell tracking data of developing embryos”. In: PLOS Computational
Biology 14.4 (2018), pp. 1–18. doi: 10.1371/journal.pcbi.1006128.

[147] M. Hartmann, K. Löffler, and R. Mikut. “Simulation of synthetically degraded track-

ing data to benchmark MOTmetrics”. In: Proceedings 32ndWorkshop Computational
Intelligence, Berlin, Germany, December 1-2, 2022. Ed. by H. Schulte. Karlsruhe, Ger-

many: KIT Scientific Publishing, 2022, pp. 163–180.

[160] S. Graham et al. CoNIC Challenge: Pushing the frontiers of nuclear detection, segmen-
tation, classification and counting. arXiv Preprint. arXiv:2303.06274. Mar. 2023. url:

https://arxiv.org/abs/2303.06274 (visited on 05/22/2023).

[163] M. Maška et al. “The Cell Tracking Challenge: 10 years of objective benchmarking”.

In: Nature Methods (2023). doi: 10.1038/s41592-023-01879-y.

[177] K. Löffler, T. Scherr, and R. Mikut. “A graph-based cell tracking algorithm with few

manually tunable parameters and automated segmentation error correction”. In:

PLOS ONE 16.9 (2021), e0249257. doi: 10.1371/journal.pone.0249257.

[182] K. Löffler and R. Mikut. “EmbedTrack — Simultaneous cell segmentation and

tracking through learning offsets and clustering bandwidths”. In: IEEE Access 10
(2022), pp. 77147–77157. doi: 10.1109/ACCESS.2022.3192880.

[200] T. Scherr and K. Löffler. KIT-GE (3). Sept. 2021. url: http://celltrackingchallen
ge.net/participants/KIT-GE/ (visited on 09/07/2022).

[201] K. Löffler. KIT-GE (4). Feb. 2022. url: http://celltrackingchallenge.net/parti
cipants/KIT-GE/ (visited on 09/07/2022).

[212] T. Scherr and K. Löffler. KIT-GE (2). Mar. 2020. url: http://celltrackingchallen

ge.net/participants/KIT-GE/ (visited on 09/07/2022).

[227] T. Scherr et al. On improving an already competitive segmentation algorithm for the
Cell Tracking Challenge - Lessons learned. bioRxiv Preprint. bioRxiv 2021.06.26.450019.
June 2021. url: https://www.biorxiv.org/content/early/2021/06/28/2021.06.

26.450019 (visited on 10/01/2023).

137

https://doi.org/10.1371/journal.pone.0243219
https://doi.org/10.1371/journal.pcbi.1006128
https://arxiv.org/abs/2303.06274
https://doi.org/10.1038/s41592-023-01879-y
https://doi.org/10.1371/journal.pone.0249257
https://doi.org/10.1109/ACCESS.2022.3192880
http://celltrackingchallenge.net/participants/KIT-GE/
http://celltrackingchallenge.net/participants/KIT-GE/
http://celltrackingchallenge.net/participants/KIT-GE/
http://celltrackingchallenge.net/participants/KIT-GE/
http://celltrackingchallenge.net/participants/KIT-GE/
http://celltrackingchallenge.net/participants/KIT-GE/
https://www.biorxiv.org/content/early/2021/06/28/2021.06.26.450019
https://www.biorxiv.org/content/early/2021/06/28/2021.06.26.450019

Bibliography

[1] T. Aspelmeier, A. Egner, and A. Munk. “Modern statistical challenges in high-

resolution fluorescence microscopy”. In: Annual Review of Statistics and Its Applica-
tion 2.1 (2015), pp. 163–202. doi: 10.1146/annurev-statistics-010814-020343.

[2] S. Weisenburger and V. Sandoghdar. “Light microscopy: An ongoing contemporary

revolution”. In: Contemporary Physics 56.2 (2015), pp. 123–143. doi: 10.1080/

00107514.2015.1026557.

[3] A. Y. Kobitski et al. “An ensemble-averaged, cell density-based digital model of

zebrafish embryo development derived from light-sheet microscopy data with

single-cell resolution”. In: Scientific Reports 5.1 (2015), p. 8601. doi: 10 . 1038 /

srep08601.

[4] P. J. Keller et al. “Reconstruction of zebrafish early embryonic development by

scanned light sheet microscopy”. In: Science 322.5904 (2008), pp. 1065–1069. doi:
10.1126/science.1162493.

[5] R. Tomer et al. “Quantitative high-speed imaging of entire developing embryos

with simultaneous multiview light-sheet microscopy”. In:Nature Methods 9.7 (2012),
pp. 755–763. doi: 10.1038/nmeth.2062.

[6] J. Stegmaier et al. “Real-time three-dimensional cell segmentation in large-scale

microscopy data of developing embryos”. In:Developmental Cell 36.2 (2016), pp. 225–
240. doi: 10.1016/j.devcel.2015.12.028.

[7] M. Maška et al. “A benchmark for comparison of cell tracking algorithms”. In:

Bioinformatics 30.11 (2014), pp. 1609–1617. doi: 10.1093/bioinformatics/btu080.

[8] D. A. Lauffenburger and A. F. Horwitz. “Cell migration: A physically integrated

molecular process”. In: Cell 84.3 (1996), pp. 359–369. doi: 10.1016/S0092-8674(00)
81280-5.

[9] A. Ortega-Carrion, L. Feo-Lucas, and M. Vicente-Manzanares. “Cell migration”.

In: Encyclopedia of Cell Biology. Ed. by R. A. Bradshaw and P. D. Stahl. Waltham,

MA, USA: Academic Press, 2016, pp. 720–730. doi: 10.1016/B978-0-12-394447-

4.20070-9.

[10] R. Keller. “Cell migration during gastrulation”. In: Current Opinion in Cell Biology
17.5 (2005), pp. 533–541. doi: 10.1016/j.ceb.2005.08.006.

[11] C. J. Weijer. “Collective cell migration in development”. In: Journal of Cell Science
122.18 (2009), pp. 3215–3223. doi: 10.1242/jcs.036517.

[12] A. Tremel et al. “Cell migration and proliferation during monolayer formation and

wound healing”. In: Chemical Engineering Science 64.2 (2009), pp. 247–253. doi:

10.1016/j.ces.2008.10.008.

139

https://doi.org/10.1146/annurev-statistics-010814-020343
https://doi.org/10.1080/00107514.2015.1026557
https://doi.org/10.1080/00107514.2015.1026557
https://doi.org/10.1038/srep08601
https://doi.org/10.1038/srep08601
https://doi.org/10.1126/science.1162493
https://doi.org/10.1038/nmeth.2062
https://doi.org/10.1016/j.devcel.2015.12.028
https://doi.org/10.1093/bioinformatics/btu080
https://doi.org/10.1016/S0092-8674(00)81280-5
https://doi.org/10.1016/S0092-8674(00)81280-5
https://doi.org/10.1016/B978-0-12-394447-4.20070-9
https://doi.org/10.1016/B978-0-12-394447-4.20070-9
https://doi.org/10.1016/j.ceb.2005.08.006
https://doi.org/10.1242/jcs.036517
https://doi.org/10.1016/j.ces.2008.10.008

Bibliography

[13] A. Ratheesh, V. Belyaeva, and D. E. Siekhaus. “Drosophila immune cell migration

and adhesion during embryonic development and larval immune responses”. In:

Current Opinion in Cell Biology 36 (2015), pp. 71–79. doi: https://doi.org/10.

1016/j.ceb.2015.07.003.

[14] B. Laviña et al. “Defective endothelial cell migration in the absence of Cdc42 leads

to capillary-venous malformations”. In: Development 145.13 (2018), dev161182. doi:
10.1242/dev.161182.

[15] A. A. Mosabbir, A. Qudrat, and K. Truong. “Engineered cell migration to lesions

linked to autoimmune disease”. In: Biotechnology and Bioengineering 115.4 (2018),

pp. 1028–1036. doi: 10.1002/bit.26523.

[16] F. Entschladen et al. “Tumour-cell migration, invasion, and metastasis: navigation

by neurotransmitters”. In: The Lancet Oncology 5.4 (2004), pp. 254–258. doi: 10.

1016/S1470-2045(04)01431-7.

[17] C.-M. Svensson et al. “Untangling cell tracks: Quantifying cell migration by time

lapse image data analysis”. In: Cytometry Part A 93.3 (2018), pp. 357–370. doi:

10.1002/cyto.a.23249.

[18] S. Sato et al. “Single-cell lineage tracking analysis reveals that an established cell

line comprises putative cancer stem cells and their heterogeneous progeny”. In:

Scientific Reports 6.1 (2016), p. 23328. doi: 10.1038/srep23328.

[19] M.-L. Tremblay et al. “Using MRI cell tracking to monitor immune cell recruitment

in response to a peptide-based cancer vaccine”. In: Magnetic Resonance in Medicine
80.1 (2018), pp. 304–316. doi: 10.1002/mrm.27018.

[20] J. B. Beltman, A. F. M. Marée, and R. J. de Boer. “Analysing immune cell migration”.

In: Nature Reviews Immunology 9.11 (2009), pp. 789–798. doi: 10.1038/nri2638.

[21] K. W. Eliceiri et al. “Biological imaging software tools”. In: Nature Methods 9.7
(2012), pp. 697–710. doi: 10.1038/nmeth.2084.

[22] P. M. A. Antony et al. “Light microscopy applications in systems biology: Opportu-

nities and challenges”. In: Cell Communication and Signaling 11.1 (2013), p. 24. doi:

10.1186/1478-811X-11-24.

[23] I. Arganda-Carreras and P. Andrey. “Designing image analysis pipelines in light

microscopy: A rational approach”. In: Light Microscopy. Ed. by Y. Markaki and H.

Harz. Vol. 1563. New York, NY, USA: Springer, 2017, pp. 185–207. doi: 10.1007/978-

1-4939-6810-7_13.

[24] T. Ogama. “A beginner’s guide to improving image acquisition in fluorescence

microscopy”. In: The Biochemist 42.6 (2020), pp. 22–27. doi: 10.1042/BIO20200075.

[25] L. Fritzky and D. Lagunoff. “Advanced methods in fluorescence microscopy”. In:

Analytical Cellular Pathology 36.1-2 (2013), pp. 5–17. doi: 10.1155/2013/569326.

[26] D. J. Stephens and V. J. Allan. “Light microscopy techniques for live cell imaging”.

In: Science 300.5616 (2003), pp. 82–86. doi: 10.1126/science.1082160.

140

https://doi.org/https://doi.org/10.1016/j.ceb.2015.07.003
https://doi.org/https://doi.org/10.1016/j.ceb.2015.07.003
https://doi.org/10.1242/dev.161182
https://doi.org/10.1002/bit.26523
https://doi.org/10.1016/S1470-2045(04)01431-7
https://doi.org/10.1016/S1470-2045(04)01431-7
https://doi.org/10.1002/cyto.a.23249
https://doi.org/10.1038/srep23328
https://doi.org/10.1002/mrm.27018
https://doi.org/10.1038/nri2638
https://doi.org/10.1038/nmeth.2084
https://doi.org/10.1186/1478-811X-11-24
https://doi.org/10.1007/978-1-4939-6810-7_13
https://doi.org/10.1007/978-1-4939-6810-7_13
https://doi.org/10.1042/BIO20200075
https://doi.org/10.1155/2013/569326
https://doi.org/10.1126/science.1082160

[27] E. Ward and R. Pal. “Image scanning microscopy: An overview”. In: Journal of
Microscopy 266.2 (2017), pp. 221–228. doi: 10.1111/jmi.12534.

[28] A. P. Cuny et al. “Live cell microscopy: From image to insight”. In: Biophysics
Reviews 3.2 (2022), p. 021302. doi: 10.1063/5.0082799.

[29] A. Kiepas et al. “Optimizing live-cell fluorescence imaging conditions to minimize

phototoxicity”. In: Journal of Cell Science 133.4 (2020), jcs.242834. doi: 10.1242/
jcs.242834.

[30] F. Mubaid and C. M. Brown. “Less is more: Longer exposure times with low light

intensity is less photo-toxic”. In: Microscopy Today 25.6 (2017), pp. 26–35. doi:

10.1017/S1551929517000980.

[31] H. Schneckenburger and V. Richter. “Challenges in 3D live cell imaging”. In: Pho-
tonics 8.7 (2021), p. 275. doi: 10.3390/photonics8070275.

[32] J. Icha et al. “Phototoxicity in live fluorescence microscopy, and how to avoid it”.

In: BioEssays 39.8 (2017), p. 1700003. doi: 10.1002/bies.201700003.

[33] M. A. Reiche et al. “When light meets biology – how the specimen affects quantita-

tive microscopy”. In: Journal of Cell Science 135.6 (2022), jcs259656. doi: 10.1242/
jcs.259656.

[34] S. M. Pizer et al. “Adaptive histogram equalization and its variations”. In: Computer
Vision, Graphics, and Image Processing 39.3 (1987), pp. 355–368. doi: https://doi.

org/10.1016/S0734-189X(87)80186-X.

[35] T. K. Agarwal, M. Tiwari, and S. S. Lamba. “Modified histogram based contrast

enhancement using homomorphic filtering for medical images”. In: 2014 IEEE
International Advance Computing Conference, IACC 2014, Gurgaon, India, February
21-22, 2014. IEEE, 2014, pp. 964–968. doi: 10.1109/IAdCC.2014.6779453.

[36] S. Cakir et al. “Contrast enhancement of microscopy images using image phase

information”. In: IEEE Access 6 (2018), pp. 3839–3850. doi: 10.1109/ACCESS.2018.
2796646.

[37] F. Chen et al. “An accurate and universal approach for short-exposure-time mi-

croscopy image enhancement”. In: Computerized Medical Imaging and Graphics 83
(2020), p. 101743. doi: 10.1016/j.compmedimag.2020.101743.

[38] M. Weigert et al. “Content-aware image restoration: Pushing the limits of fluores-

cence microscopy”. In: Nature Methods 15.12 (2018), pp. 1090–1097. doi: 10.1038/
s41592-018-0216-7.

[39] K. de Haan et al. “Deep-learning-based image reconstruction and enhancement

in optical microscopy”. In: Proceedings of the IEEE 108.1 (2020), pp. 30–50. doi:

10.1109/JPROC.2019.2949575.

[40] P. Stȩpień, W. Krauze, and M. Kujawińska. “Preprocessing methods for quantitative

phase image stitching”. In: Biomedical Optics Express 13.1 (2022), pp. 1–13. doi:

10.1364/BOE.439045.

141

https://doi.org/10.1111/jmi.12534
https://doi.org/10.1063/5.0082799
https://doi.org/10.1242/jcs.242834
https://doi.org/10.1242/jcs.242834
https://doi.org/10.1017/S1551929517000980
https://doi.org/10.3390/photonics8070275
https://doi.org/10.1002/bies.201700003
https://doi.org/10.1242/jcs.259656
https://doi.org/10.1242/jcs.259656
https://doi.org/https://doi.org/10.1016/S0734-189X(87)80186-X
https://doi.org/https://doi.org/10.1016/S0734-189X(87)80186-X
https://doi.org/10.1109/IAdCC.2014.6779453
https://doi.org/10.1109/ACCESS.2018.2796646
https://doi.org/10.1109/ACCESS.2018.2796646
https://doi.org/10.1016/j.compmedimag.2020.101743
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1109/JPROC.2019.2949575
https://doi.org/10.1364/BOE.439045

Bibliography

[41] A. Bria et al. “Exploiting multi-level parallelism for stitching very large microscopy

images”. In: Frontiers in Neuroinformatics 13 (2019), p. 41. doi: 10.3389/fninf.

2019.00041.

[42] T. Du and M. Wasser. “3D image stack reconstruction in live cell microscopy of

Drosophila muscles and its validation”. In: Cytometry Part A 75A.4 (2009), pp. 329–

343. doi: https://doi.org/10.1002/cyto.a.20701.

[43] X. Shi et al. “Deformed alignment of super-resolution images for semi-flexible

structures”. In: PLOS ONE 14.3 (2019), e0212735. doi: 10.1371/journal.pone.

0212735.

[44] S. Yang et al. “Nonrigid registration of 3-D multichannel microscopy images of

cell nuclei”. In: IEEE Transactions on Image Processing 17.4 (2008), pp. 493–499. doi:

10.1109/TIP.2008.918017.

[45] M. Yigitsoy and N. Navab. “Structure propagation for image registration”. In: IEEE
Transactions on Medical Imaging 32.9 (2013), pp. 1657–1670. doi: 10.1109/TMI.

2013.2263151.

[46] A. Zaritsky et al. “Benchmark for multi-cellular segmentation of bright field mi-

croscopy images”. In: BMC Bioinformatics 14.1 (2013), p. 319. doi: 10.1186/1471-
2105-14-319.

[47] P. Ma et al. “A state-of-the-art survey of object detection techniques in microor-

ganism image analysis: From classical methods to deep learning approaches”. In:

Artificial Intelligence Review (2022). doi: 10.1007/s10462-022-10209-1.

[48] E. Meijering et al. “Tracking in cell and developmental biology”. In: Seminars in
Cell & Developmental Biology 20.8 (2009), pp. 894–902. doi: 10.1016/j.semcdb.

2009.07.004.

[49] E. Meijering. “Cell segmentation: 50 years down the road [life sciences]”. In: IEEE
Signal Processing Magazine 29.5 (2012), pp. 140–145. doi: 10.1109/MSP.2012.

2204190.

[50] T. A. Nketia et al. “Analysis of live cell images: Methods, tools and opportunities”.

In: Methods 115 (2017), pp. 65–79. doi: 10.1016/j.ymeth.2017.02.007.

[51] E. Moen et al. “Deep learning for cellular image analysis”. In: Nature Methods 16.12
(2019), pp. 1233–1246. doi: 10.1038/s41592-019-0403-1.

[52] Z. Liu et al. “A survey on applications of deep learning in microscopy image

analysis”. In: Computers in Biology and Medicine 134 (2021), p. 104523. doi: 10.

1016/j.compbiomed.2021.104523.

[53] T. Falk et al. “U-Net: Deep learning for cell counting, detection, and morphometry”.

In: Nature Methods 16.1 (2019), pp. 67–70. doi: 10.1038/s41592-018-0261-2.

[54] M. Weigert et al. “Star-convex polyhedra for 3D object detection and segmentation

in microscopy”. In: IEEE Winter Conference on Applications of Computer Vision,
WACV 2020, Snowmass Village, CO, USA, March 1-5, 2020. IEEE, 2020, pp. 3655–3662.
doi: 10.1109/WACV45572.2020.9093435.

142

https://doi.org/10.3389/fninf.2019.00041
https://doi.org/10.3389/fninf.2019.00041
https://doi.org/https://doi.org/10.1002/cyto.a.20701
https://doi.org/10.1371/journal.pone.0212735
https://doi.org/10.1371/journal.pone.0212735
https://doi.org/10.1109/TIP.2008.918017
https://doi.org/10.1109/TMI.2013.2263151
https://doi.org/10.1109/TMI.2013.2263151
https://doi.org/10.1186/1471-2105-14-319
https://doi.org/10.1186/1471-2105-14-319
https://doi.org/10.1007/s10462-022-10209-1
https://doi.org/10.1016/j.semcdb.2009.07.004
https://doi.org/10.1016/j.semcdb.2009.07.004
https://doi.org/10.1109/MSP.2012.2204190
https://doi.org/10.1109/MSP.2012.2204190
https://doi.org/10.1016/j.ymeth.2017.02.007
https://doi.org/10.1038/s41592-019-0403-1
https://doi.org/10.1016/j.compbiomed.2021.104523
https://doi.org/10.1016/j.compbiomed.2021.104523
https://doi.org/10.1038/s41592-018-0261-2
https://doi.org/10.1109/WACV45572.2020.9093435

[55] C. Stringer et al. “Cellpose: A generalist algorithm for cellular segmentation”. In:

Nature Methods 18.1 (2021), pp. 100–106. doi: 10.1038/s41592-020-01018-x.

[56] K. J. Cutler et al. “Omnipose: A high-precision morphology-independent solution

for bacterial cell segmentation”. In: Nature Methods 19.11 (2022), pp. 1438–1448.
doi: 10.1038/s41592-022-01639-4.

[57] T. Scherr et al. “Cell segmentation and tracking using CNN-based distance predic-

tions and a graph-based matching strategy”. In: PLOS ONE 15.12 (2020), e0243219.

doi: 10.1371/journal.pone.0243219.

[58] A. Arbelle, S. Cohen, and T. R. Raviv. “Dual-Task ConvLSTM-UNet for instance

segmentation of weakly annotated microscopy videos”. In: IEEE Transactions on
Medical Imaging 41.8 (2022), pp. 1948–1960. doi: 10.1109/TMI.2022.3152927.

[59] K. He et al. “Mask R-CNN”. In: IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017, pp. 2980–

2988. doi: 10.1109/ICCV.2017.322.

[60] E. Romera et al. “ERFNet: Efficient residual factorized ConvNet for real-time se-

mantic segmentation”. In: IEEE Transactions on Intelligent Transportation Systems
19.1 (2018), pp. 263–272. doi: 10.1109/TITS.2017.2750080.

[61] S. Fujita and X. Han. “Cell detection and segmentation in microscopy images

with improved Mask R-CNN”. In: Computer Vision - ACCV 2020 Workshops - 15th
Asian Conference on Computer Vision, Kyoto, Japan, November 30 - December 4,
2020, Revised Selected Papers. Ed. by I. Sato and B. Han. Vol. 12628. Lecture Notes in

Computer Science. Cham, Switzerland: Springer, 2020, pp. 58–70. doi: 10.1007/978-

3-030-69756-3_5.

[62] M. Lalit, P. Tomancak, and F. Jug. “Embedding-based instance segmentation in

microscopy”. In: Medical Imaging with Deep Learning, Lübeck, Germany, July 7-
9, 2021. Ed. by M. P. Heinrich et al. Vol. 143. Proceedings of Machine Learning

Research. PMLR, 2021, pp. 399–415.

[63] L. Maddalena et al. “Artificial intelligence for cell segmentation, event detection,

and tracking for label-free microscopy imaging”. In: Algorithms 15.9 (2022), p. 313.
doi: 10.3390/a15090313.

[64] A. M. Lucas et al. “Open-source deep-learning software for bioimage segmentation”.

In: Molecular Biology of the Cell 32.9 (2021), pp. 823–829. doi: 10.1091/mbc.E20-
10-0660.

[65] L. von Chamier et al. “Democratising deep learning for microscopy with Zero-

CostDL4Mic”. In:Nature Communications 12.1 (2021), p. 2276. doi: 10.1038/s41467-
021-22518-0.

[66] V. Ulman et al. “An objective comparison of cell-tracking algorithms”. In: Nature
Methods 14.12 (2017), pp. 1141–1152. doi: 10.1038/nmeth.4473.

[67] K. Rohr et al. “Tracking and quantitative analysis of dynamic movements of cells

and particles”. In: Cold Spring Harbor Protocols 2010.6 (2010), pdb.top80. doi: 10.
1101/pdb.top80.

143

https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1038/s41592-022-01639-4
https://doi.org/10.1371/journal.pone.0243219
https://doi.org/10.1109/TMI.2022.3152927
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/TITS.2017.2750080
https://doi.org/10.1007/978-3-030-69756-3_5
https://doi.org/10.1007/978-3-030-69756-3_5
https://doi.org/10.3390/a15090313
https://doi.org/10.1091/mbc.E20-10-0660
https://doi.org/10.1091/mbc.E20-10-0660
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.1038/nmeth.4473
https://doi.org/10.1101/pdb.top80
https://doi.org/10.1101/pdb.top80

Bibliography

[68] E. Türetken et al. “Network flow integer programming to track elliptical cells

in time-lapse sequences”. In: IEEE Transactions on Medical Imaging 36.4 (2017),

pp. 942–951. doi: 10.1109/TMI.2016.2640859.

[69] J. Wan, C. Xu, and Z. Xianhang. “Cell tracking via structured prediction and learn-

ing”. In: Machine Vision and Applications 28.8 (2017), pp. 859–874. doi: 10.1007/
s00138-017-0872-0.

[70] S. U. Akram et al. “Joint cell segmentation and tracking using cell proposals”. In:

13th IEEE International Symposium on Biomedical Imaging, ISBI 2016, Prague, Czech
Republic, April 13-16, 2016. IEEE, 2016, pp. 920–924. doi: 10.1109/ISBI.2016.
7493415.

[71] M. Schiegg et al. “Graphical model for joint segmentation and tracking of multiple

dividing cells”. In: Bioinformatics 31.6 (2015), pp. 948–956. doi: 10.1093/bioinfor
matics/btu764.

[72] M. Rempfler et al. “Efficient algorithms for moral lineage tracing”. In: IEEE Interna-
tional Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017.
IEEE Computer Society, 2017, pp. 4705–4714. doi: 10.1109/ICCV.2017.503.

[73] M. Rempfler et al. “Tracing cell lineages in videos of lens-free microscopy”. In:

Medical Image Analysis 48 (2018), pp. 147–161. doi: 10.1016/j.media.2018.05.009.

[74] A. Dufour et al. “Segmenting and tracking fluorescent cells in dynamic 3-D mi-

croscopy with coupled active surfaces”. In: IEEE Transactions on Image Processing
14.9 (2005), pp. 1396–1410. doi: 10.1109/TIP.2005.852790.

[75] S. K. Nath, K. Palaniappan, and F. Bunyak. “Cell segmentation using coupled

level sets and graph-vertex coloring”. In: Medical Image Computing and Computer-
Assisted Intervention - MICCAI 2006, 9th International Conference, Copenhagen,
Denmark, October 1-6, 2006, Proceedings, Part I. Ed. by R. Larsen, M. Nielsen, and

J. Sporring. Vol. 4190. Lecture Notes in Computer Science. Berlin, Heidelberg,

Germany: Springer, 2006, pp. 101–108. doi: 10.1007/11866565_13.

[76] O. Debeir et al. “Tracking of migrating cells under phase-contrast video microscopy

with combined mean-shift processes”. In: IEEE Transactions on Medical Imaging
24.6 (2005), pp. 697–711. doi: 10.1109/TMI.2005.846851.

[77] A. Arbelle et al. “A probabilistic approach to joint cell tracking and segmentation in

high-throughput microscopy videos”. In:Medical Image Analysis 47 (2018), pp. 140–
152. doi: 10.1016/j.media.2018.04.006.

[78] R. S. Zou and C. Tomasi. “Deformable graph model for tracking epithelial cell

sheets in fluorescence microscopy”. In: IEEE Transactions on Medical Imaging 35.7

(2016), pp. 1625–1635. doi: 10.1109/TMI.2016.2521653.

[79] C. Zimmer et al. “On the digital trail of mobile cells”. In: IEEE Signal Processing
Magazine 23.3 (2006), pp. 54–62. doi: 10.1109/MSP.2006.1628878.

[80] N. Chenouard et al. “Objective comparison of particle tracking methods”. In: Nature
Methods 11.3 (2014), pp. 281–289. doi: 10.1038/nmeth.2808.

144

https://doi.org/10.1109/TMI.2016.2640859
https://doi.org/10.1007/s00138-017-0872-0
https://doi.org/10.1007/s00138-017-0872-0
https://doi.org/10.1109/ISBI.2016.7493415
https://doi.org/10.1109/ISBI.2016.7493415
https://doi.org/10.1093/bioinformatics/btu764
https://doi.org/10.1093/bioinformatics/btu764
https://doi.org/10.1109/ICCV.2017.503
https://doi.org/10.1016/j.media.2018.05.009
https://doi.org/10.1109/TIP.2005.852790
https://doi.org/10.1007/11866565_13
https://doi.org/10.1109/TMI.2005.846851
https://doi.org/10.1016/j.media.2018.04.006
https://doi.org/10.1109/TMI.2016.2521653
https://doi.org/10.1109/MSP.2006.1628878
https://doi.org/10.1038/nmeth.2808

[81] A. J. Pretorius, I. A. Khan, and R. J. Errington. “A survey of visualization for live

cell imaging: Visualization for live cell imaging”. In: Computer Graphics Forum 36.1

(2017), pp. 46–63. doi: 10.1111/cgf.12784.

[82] C. Versari et al. “Long-term tracking of budding yeast cells in brightfieldmicroscopy:

CellStar and the evaluation platform”. In: Journal of The Royal Society Interface
14.127 (2017), p. 20160705. doi: 10.1098/rsif.2016.0705.

[83] F. Boukari and S. Makrogiannis. “Automated cell tracking using motion prediction-

based matching and event handling”. In: IEEE/ACM Transactions on Computational
Biology and Bioinformatics 17.3 (2020), pp. 959–971. doi: 10.1109/TCBB.2018.

2875684.

[84] M. A. A. Dewan, M. O. Ahmad, and M. N. S. Swamy. “Tracking biological cells in

time-lapse microscopy: An adaptive technique combining motion and topological

features”. In: IEEE Transactions on Biomedical Engineering 58.6 (2011), pp. 1637–

1647. doi: 10.1109/TBME.2011.2109001.

[85] K. E. G. Magnusson et al. “Global linking of cell tracks using the Viterbi algorithm”.

In: IEEE Transactions on Medical Imaging 34.4 (2015), pp. 911–929. doi: 10.1109/

TMI.2014.2370951.

[86] F. Li et al. “Multiple nuclei tracking using integer programming for quantitative

cancer cell cycle analysis”. In: IEEE Transactions on Medical Imaging 29.1 (2010),

pp. 96–105. doi: 10.1109/TMI.2009.2027813.

[87] A. Narayanaswamy et al. “Multi-temporal globally-optimal dense 3-D cell segmen-

tation and tracking from multi-photon time-lapse movies of live tissue microen-

vironments”. In: Spatio-temporal Image Analysis for Longitudinal and Time-Series
Image Data - Second International Workshop, STIA 2012, Held in Conjunction with
MICCAI 2012, Nice, France, October 1, 2012. Proceedings. Ed. by S. Durrleman et

al. Vol. 7570. Lecture Notes in Computer Science. Berlin, Heidelberg, Germany:

Springer, 2012, pp. 147–162. doi: 10.1007/978-3-642-33555-6_13.

[88] J. Hayashida, K. Nishimura, and R. Bise. “MPM: Joint representation of motion and

positionmap for cell tracking”. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision

Foundation / IEEE, 2020, pp. 3822–3831. doi: 10.1109/CVPR42600.2020.00388.

[89] C. Payer et al. “Segmenting and tracking cell instances with cosine embeddings and

recurrent hourglass networks”. In: Medical Image Analysis 57 (2019), pp. 106–119.
doi: 10.1016/j.media.2019.06.015.

[90] T. He et al. “Cell tracking using deep neural networks with multi-task learning”.

In: Image and Vision Computing 60 (2017), pp. 142–153. doi: 10.1016/j.imavis.

2016.11.010.

[91] Y. Wang, H. Mao, and Z. Yi. “Stem cell motion-tracking by using deep neural

networks with multi-output”. In: Neural Computing and Applications 31.8 (2019),
pp. 3455–3467. doi: 10.1007/s00521-017-3291-2.

145

https://doi.org/10.1111/cgf.12784
https://doi.org/10.1098/rsif.2016.0705
https://doi.org/10.1109/TCBB.2018.2875684
https://doi.org/10.1109/TCBB.2018.2875684
https://doi.org/10.1109/TBME.2011.2109001
https://doi.org/10.1109/TMI.2014.2370951
https://doi.org/10.1109/TMI.2014.2370951
https://doi.org/10.1109/TMI.2009.2027813
https://doi.org/10.1007/978-3-642-33555-6_13
https://doi.org/10.1109/CVPR42600.2020.00388
https://doi.org/10.1016/j.media.2019.06.015
https://doi.org/10.1016/j.imavis.2016.11.010
https://doi.org/10.1016/j.imavis.2016.11.010
https://doi.org/10.1007/s00521-017-3291-2

Bibliography

[92] K. Nishimura et al. “Weakly-supervised cell tracking via backward-and-forward

propagation”. In: Computer Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XII. Ed. by A. Vedaldi et al. Vol. 12357.

Lecture Notes in Computer Science. Cham, Switzerland: Springer, 2020, pp. 104–

121. doi: 10.1007/978-3-030-58610-2_7.

[93] M. Schiegg et al. “Conservation tracking”. In: IEEE International Conference on
Computer Vision, ICCV 2013, Sydney, Australia, December 1-8, 2013. IEEE Computer

Society, 2013, pp. 2928–2935. doi: 10.1109/ICCV.2013.364.

[94] Z. Zhou et al. “Joint multi-frame detection and segmentation for multi-cell tracking”.

In: Image and Graphics - 10th International Conference, ICIG 2019, Beijing, China,
August 23-25, 2019, Proceedings, Part II. Ed. by Y. Zhao et al. Vol. 11902. Lecture

Notes in Computer Science. Cham, Switzerland: Springer, 2019, pp. 435–446. doi:

10.1007/978-3-030-34110-7_36.

[95] A. Y. Kondratiev et al. “A method for automatic tracking of cell nuclei with weakly-

supervised mitosis detection in 2Dmicroscopy image sequences”. In: ICBIP 2020: 5th
International Conference on Biomedical Signal and Image Processing, Suzhou, China,
August 21-23, 2020. New York, NY, USA: Association for Computing Machinery

(ACM), 2020, pp. 67–73. doi: 10.1145/3417519.3417558.

[96] F. Lux and P. Matula.MU-Lux-CZ. Mar. 2020. url: http://celltrackingchallenge.

net/participants/MU-Lux-CZ/ (visited on 09/30/2020).

[97] Z. Wang, L. Yin, and Z. Wang. “A new approach for cell detection and tracking”.

In: IEEE Access 7 (2019), pp. 99889–99899. doi: 10.1109/ACCESS.2019.2930539.

[98] J. Stegmaier and R. Mikut. “Fuzzy-based propagation of prior knowledge to improve

large-scale image analysis pipelines”. In: PLOS ONE 12.11 (2017), e0187535. doi:

10.1371/journal.pone.0187535.

[99] F. W. Yang et al. “Investigating optimal time step intervals of imaging for data

quality through a novel fully-automated cell tracking approach”. In: Journal of
Imaging 6.7 (2020), p. 66. doi: 10.3390/jimaging6070066.

[100] A. Santella, Z. Du, and Z. Bao. “A semi-local neighborhood-based framework for

probabilistic cell lineage tracing”. In: BMC Bioinformatics 15 (2014), p. 217. doi:

10.1186/1471-2105-15-217.

[101] S. Meng and H. Shen. “A robust cell tracking framework by fusing global and

local optimization algorithms”. In: 2016 Chinese Control and Decision Conference,
CCDC 2016, Yinchuan, China, May 28-30, 2016. IEEE, 2016, pp. 2079–2084. doi:
10.1109/CCDC.2016.7531327.

[102] R. Bise, Z. Yin, and T. Kanade. “Reliable cell tracking by global data association”. In:

Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, ISBI 2011, Chicago, Illinois, USA, March 30 - April 2, 2011. IEEE, 2011,
pp. 1004–1010. doi: 10.1109/ISBI.2011.5872571.

146

https://doi.org/10.1007/978-3-030-58610-2_7
https://doi.org/10.1109/ICCV.2013.364
https://doi.org/10.1007/978-3-030-34110-7_36
https://doi.org/10.1145/3417519.3417558
http://celltrackingchallenge.net/participants/MU-Lux-CZ/
http://celltrackingchallenge.net/participants/MU-Lux-CZ/
https://doi.org/10.1109/ACCESS.2019.2930539
https://doi.org/10.1371/journal.pone.0187535
https://doi.org/10.3390/jimaging6070066
https://doi.org/10.1186/1471-2105-15-217
https://doi.org/10.1109/CCDC.2016.7531327
https://doi.org/10.1109/ISBI.2011.5872571

[103] B.-n. Vo et al. “Multitarget tracking”. In: Wiley Encyclopedia of Electrical and Elec-
tronics Engineering. Hoboken, NJ, USA: John Wiley & Sons, Ltd, 2015, pp. 1–15. doi:

10.1002/047134608X.W8275.

[104] S. Särkkä. Bayesian filtering and smoothing. 1st ed. Vol. 3. Institute of Mathe-

matical Statistics textbooks. Cambridge University Press, 2013. doi: 10.1017/

CBO9781139344203.

[105] Y.-H. Chang et al. “Automated detection and tracking of cell clusters in time-lapse

fluorescence microscopy images”. In: Journal of Medical and Biological Engineering
37.1 (2017), pp. 18–25. doi: 10.1007/s40846-016-0216-y.

[106] M. Kaakinen et al. “Automatic detection and analysis of cell motility in phase-

contrast time-lapse images using a combination of maximally stable extremal

regions and Kalman filter approaches”. In: Journal of Microscopy 253.1 (2014),

pp. 65–78. doi: 10.1111/jmi.12098.

[107] M. Liu et al. “Plant cell tracking using Kalman filter based local graph matching”. In:

Image and Vision Computing 60 (Apr. 2017), pp. 154–161. doi: 10.1016/j.imavis.

2016.08.005.

[108] O. Hirose et al. “SPF-CellTracker: Tracking multiple cells with strongly-correlated

moves using a spatial particle filter”. In: IEEE/ACM Transactions on Computational
Biology and Bioinformatics 15.6 (2018), pp. 1822–1831. doi: 10.1109/TCBB.2017.
2782255.

[109] B. Xu et al. “An automated cell tracking approach with multi-Bernoulli filtering

and ant colony labor division”. In: IEEE/ACM transactions on computational biology
and bioinformatics 18.5 (2021), pp. 1850–1863. doi: 10.1109/tcbb.2019.2954502.

[110] M. I. Hossain et al. “Visual mitosis detection and cell tracking using labeled Multi-

Bernoulli filter”. In: 21st International Conference on Information Fusion, FUSION
2018, Cambridge, UK, July 10-13, 2018. IEEE, 2018, pp. 1–5. doi: 10.23919/ICIF.
2018.8455486.

[111] K. Jaqaman et al. “Robust single-particle tracking in live-cell time-lapse sequences”.

In: Nature Methods 5.8 (2008), pp. 695–702. doi: 10.1038/nmeth.1237.

[112] D. Padfield, J. Rittscher, and B. Roysam. “Coupled minimum-cost flow cell tracking

for high-throughput quantitative analysis”. In: Medical Image Analysis 15.4 (2011),
pp. 650–668. doi: 10.1016/j.media.2010.07.006.

[113] E. Moen et al. Accurate cell tracking and lineage construction in live-cell imaging
experiments with deep learning. bioRxiv Preprint. bioRxiv 803205. Oct. 2019. url:
https://www.biorxiv.org/content/early/2019/10/14/803205 (visited on

07/27/2022).

147

https://doi.org/10.1002/047134608X.W8275
https://doi.org/10.1017/CBO9781139344203
https://doi.org/10.1017/CBO9781139344203
https://doi.org/10.1007/s40846-016-0216-y
https://doi.org/10.1111/jmi.12098
https://doi.org/10.1016/j.imavis.2016.08.005
https://doi.org/10.1016/j.imavis.2016.08.005
https://doi.org/10.1109/TCBB.2017.2782255
https://doi.org/10.1109/TCBB.2017.2782255
https://doi.org/10.1109/tcbb.2019.2954502
https://doi.org/10.23919/ICIF.2018.8455486
https://doi.org/10.23919/ICIF.2018.8455486
https://doi.org/10.1038/nmeth.1237
https://doi.org/10.1016/j.media.2010.07.006
https://www.biorxiv.org/content/early/2019/10/14/803205

Bibliography

[114] B. X. Kausler et al. “A discrete chain graph model for 3d+t cell tracking with

high misdetection robustness”. In: Computer Vision - ECCV 2012 - 12th European
Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part
III. Ed. by A. W. Fitzgibbon et al. Vol. 7574. Lecture Notes in Computer Science.

Berlin, Heidelberg, Germany: Springer, 2012, pp. 144–157. doi: 10.1007/978-3-

642-33712-3_11.

[115] S. U. Akram et al. Cell tracking via proposal generation and selection. arXiv Preprint.
arXiv:1705.03386. May 2017. url: https://arxiv.org/abs/1705.03386 (visited on

10/01/2023).

[116] Gurobi Optimization, LLC. Gurobi optimizer reference manual. 2021. url: http:
//www.gurobi.com (visited on 01/10/2023).

[117] K. Bestuzheva et al. The SCIP optimization suite 8.0. arXiv Preprint. arXiv:2112.08872.
Dec. 2021. url: https://arxiv.org/abs/2112.08872 (visited on 10/01/2023).

[118] A. Makhorin. GLPK (GNU Linear Programming Kit) package. 2000. url: https:
//www.gnu.org/software/glpk/ (visited on 12/08/2022).

[119] S. Haller et al. “A primal-dual solver for large-scale tracking-by-assignment”. In: The
23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020,
August 26-28, 2020, Online [Palermo, Sicily, Italy]. Ed. by S. Chiappa and R. Calandra.
Vol. 108. Proceedings of Machine Learning Research. PMLR, 2020, pp. 2539–2549.

[120] C. Haubold et al. “A generalized successive shortest paths solver for tracking

dividing targets”. In: Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VII. Ed. by B.

Leibe et al. Vol. 9911. Lecture Notes in Computer Science. Cham, Switzerland:

Springer, 2016, pp. 566–582. doi: 10.1007/978-3-319-46478-7_35.

[121] M. Zhao et al. “VoxelEmbed: 3D instance segmentation and tracking with voxel

embedding based deep learning”. In:Machine Learning in Medical Imaging - 12th In-
ternational Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg,
France, September 27, 2021, Proceedings. Ed. by C. Lian et al. Vol. 12966. Lecture

Notes in Computer Science. Cham, Switzerland: Springer, 2021, pp. 437–446. doi:

10.1007/978-3-030-87589-3_45.

[122] J. Hayashida and R. Bise. “Cell tracking with deep learning for cell detection and

motion estimation in low-frame-rate”. In: Medical Image Computing and Computer
Assisted Intervention - MICCAI 2019 - 22nd International Conference, Shenzhen, China,
October 13-17, 2019, Proceedings, Part I. Ed. by D. Shen et al. Vol. 11764. Lecture

Notes in Computer Science. Cham, Switzerland: Springer, 2019, pp. 397–405. doi:

10.1007/978-3-030-32239-7_44.

[123] K. Sugawara, Ç. Çevrim, andM. Averof. “Tracking cell lineages in 3D by incremental

deep learning”. In: eLife 11 (2022). Ed. by M. W. Mathis et al., e69380. doi: 10.7554/

eLife.69380.

[124] C. Wen et al. “3DeeCellTracker, a deep learning-based pipeline for segmenting and

tracking cells in 3D time lapse images”. In: eLife 10 (2021), e59187. doi: 10.7554/
eLife.59187.

148

https://doi.org/10.1007/978-3-642-33712-3_11
https://doi.org/10.1007/978-3-642-33712-3_11
https://arxiv.org/abs/1705.03386
http://www.gurobi.com
http://www.gurobi.com
https://arxiv.org/abs/2112.08872
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://doi.org/10.1007/978-3-319-46478-7_35
https://doi.org/10.1007/978-3-030-87589-3_45
https://doi.org/10.1007/978-3-030-32239-7_44
https://doi.org/10.7554/eLife.69380
https://doi.org/10.7554/eLife.69380
https://doi.org/10.7554/eLife.59187
https://doi.org/10.7554/eLife.59187

[125] Y. Chen et al. CellTrack R-CNN: A novel end-to-end deep neural network for cell
segmentation and tracking in microscopy images. arXiv Preprint. arXiv:2102.10377.
Feb. 2021. url: https://arxiv.org/abs/2102.10377 (visited on 10/01/2023).

[126] Y. Xie et al. “A deep local patch matching network for cell tracking in microscopy

image sequences without registration”. In: IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 19.6 (2022), pp. 3202–3212. doi: 10.1109/TCBB.
2021.3113129.

[127] J.-B. Lugagne, H. Lin, and M. J. Dunlop. “DeLTA: Automated cell segmentation,

tracking, and lineage reconstruction using deep learning”. In: PLOS Computational
Biology 16.4 (2020), e1007673. doi: 10.1371/journal.pcbi.1007673.

[128] J. Wang et al. “Deep reinforcement learning for data association in cell tracking”.

In: Frontiers in Bioengineering and Biotechnology 8.298 (2020). doi: 10.3389/fbioe.

2020.00298.

[129] T. Ben-Haim and T. R. Raviv. “Graph neural network for cell tracking in microscopy

videos”. In: Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel,
October 23-27, 2022, Proceedings, Part XXI. Ed. by S. Avidan et al. Vol. 13681. Lecture

Notes in Computer Science. Cham, Switzerland: Springer, 2022, pp. 610–626. doi:

10.1007/978-3-031-19803-8_36.

[130] J. Zhu et al. “Unpaired image-to-image translation using cycle-consistent adver-

sarial networks”. In: IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017, pp. 2242–2251. doi:

10.1109/ICCV.2017.244.

[131] Q. Liu et al. “ASIST: Annotation-free synthetic instance segmentation and tracking

by adversarial simulations”. In: Computers in Biology and Medicine 134 (2021),

p. 104501. doi: 10.1016/j.compbiomed.2021.104501.

[132] B. Berthet and A. Maizel. “Light sheet microscopy and live imaging of plants”. In:

Journal of Microscopy 263.2 (2016), pp. 158–164. doi: 10.1111/jmi.12393.

[133] A. Mosig et al. “Tracking cells in life cell imaging videos using topological align-

ments”. In: Algorithms for Molecular Biology 4 (2009), p. 10. doi: 10.1186/1748-

7188-4-10.

[134] P. Matula et al. “Cell tracking accuracy measurement based on comparison of

acyclic oriented graphs”. In: PLOS ONE 10.12 (2015), e0144959. doi: 10.1371/

journal.pone.0144959.

[135] J. M. Graham and B. P. Ayati. “A unified term for directed and undirected motility in

collective cell invasion”. In: Applied Mathematics Letters 25.12 (2012), pp. 2267–2271.
doi: 10.1016/j.aml.2012.06.015.

[136] V. Foe and B. Alberts. “Studies of nuclear and cytoplasmic behaviour during the five

mitotic cycles that precede gastrulation in Drosophila embryogenesis”. In: Journal
of Cell Science 61.1 (1983), pp. 31–70. doi: 10.1242/jcs.61.1.31.

149

https://arxiv.org/abs/2102.10377
https://doi.org/10.1109/TCBB.2021.3113129
https://doi.org/10.1109/TCBB.2021.3113129
https://doi.org/10.1371/journal.pcbi.1007673
https://doi.org/10.3389/fbioe.2020.00298
https://doi.org/10.3389/fbioe.2020.00298
https://doi.org/10.1007/978-3-031-19803-8_36
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1016/j.compbiomed.2021.104501
https://doi.org/10.1111/jmi.12393
https://doi.org/10.1186/1748-7188-4-10
https://doi.org/10.1186/1748-7188-4-10
https://doi.org/10.1371/journal.pone.0144959
https://doi.org/10.1371/journal.pone.0144959
https://doi.org/10.1016/j.aml.2012.06.015
https://doi.org/10.1242/jcs.61.1.31

Bibliography

[137] B. Schott et al. “EmbryoMiner: A new framework for interactive knowledge discov-

ery in large-scale cell tracking data of developing embryos”. In: PLOS Computational
Biology 14.4 (2018), pp. 1–18. doi: 10.1371/journal.pcbi.1006128.

[138] M. Winter et al. “Vertebrate neural stem cell segmentation, tracking and lineaging

with validation and editing”. In: Nature Protocols 6.12 (2011), pp. 1942–1952. doi:
10.1038/nprot.2011.422.

[139] R. N. U. Kok et al. “OrganoidTracker: Efficient cell tracking using machine learning

and manual error correction”. In: PLOS ONE 15.10 (2020), pp. 1–18. doi: 10.1371/

journal.pone.0240802.

[140] J. Jeong et al. “Accurately tracking single-cell movement trajectories in microfluidic

cell sorting devices”. In: PLOS ONE 13.2 (2018), pp. 1–16. doi: 10.1371/journal.

pone.0192463.

[141] A. Kan et al. “Automated and semi-automated cell tracking: Addressing portability

challenges”. In: Journal of Microscopy 244.2 (2011), pp. 194–213. doi: https://doi.

org/10.1111/j.1365-2818.2011.03529.x.

[142] A. Kan et al. “Measures for ranking cell trackers without manual validation”. In:

Pattern Recognition 46.11 (2013), pp. 2849–2859. doi: 10.1016/j.patcog.2013.04.

007.

[143] A. Kan et al. “Ranking cell tracking systems without manual validation”. In: Pattern
Recognition Letters 53 (2015), pp. 38–43. doi: 10.1016/j.patrec.2014.11.005.

[144] E. Ristani et al. “Performance measures and a data set for multi-target, multi-

camera tracking”. In: Computer Vision - ECCV 2016 Workshops - Amsterdam, The
Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II. Ed. by G. Hua and H.

Jégou. Vol. 9914. Lecture Notes in Computer Science. Cham, Switzerland: Springer,

2016, pp. 17–35. doi: 10.1007/978-3-319-48881-3_2.

[145] J. Luiten et al. “HOTA: A higher order metric for evaluating multi-object tracking”.

In: International Journal of Computer Vision 129.2 (2021), pp. 548–578. doi: 10.1007/
s11263-020-01375-2.

[146] Y. Chen and Y. Huo. Limitation of acyclic oriented graphs matching as cell tracking
accuracy measure when evaluating mitosis. arXiv Preprint. arXiv:2012.12084. Dec.
2020. url: http://arxiv.org/abs/2012.12084 (visited on 01/12/2021).

[147] M. Hartmann, K. Löffler, and R. Mikut. “Simulation of synthetically degraded track-

ing data to benchmark MOTmetrics”. In: Proceedings 32ndWorkshop Computational
Intelligence, Berlin, Germany, December 1-2, 2022. Ed. by H. Schulte. Karlsruhe, Ger-

many: KIT Scientific Publishing, 2022, pp. 163–180.

[148] P. J. Thul et al. “A subcellular map of the human proteome”. In: Science 356.6340
(2017), eaal3321. doi: 10.1126/science.aal3321.

[149] S. Graham et al. “Hover-Net: Simultaneous segmentation and classification of nuclei

in multi-tissue histology images”. In: Medical Image Analysis 58 (2019), p. 101563.
doi: 10.1016/j.media.2019.101563.

150

https://doi.org/10.1371/journal.pcbi.1006128
https://doi.org/10.1038/nprot.2011.422
https://doi.org/10.1371/journal.pone.0240802
https://doi.org/10.1371/journal.pone.0240802
https://doi.org/10.1371/journal.pone.0192463
https://doi.org/10.1371/journal.pone.0192463
https://doi.org/https://doi.org/10.1111/j.1365-2818.2011.03529.x
https://doi.org/https://doi.org/10.1111/j.1365-2818.2011.03529.x
https://doi.org/10.1016/j.patcog.2013.04.007
https://doi.org/10.1016/j.patcog.2013.04.007
https://doi.org/10.1016/j.patrec.2014.11.005
https://doi.org/10.1007/978-3-319-48881-3_2
https://doi.org/10.1007/s11263-020-01375-2
https://doi.org/10.1007/s11263-020-01375-2
http://arxiv.org/abs/2012.12084
https://doi.org/10.1126/science.aal3321
https://doi.org/10.1016/j.media.2019.101563

[150] V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter. “Annotated high-throughput mi-

croscopy image sets for validation”. In: Nature Methods 9.7 (2012), pp. 637–637. doi:
10.1038/nmeth.2083.

[151] E. M. Christiansen et al. “In silico labeling: Predicting fluorescent labels in unlabeled

images”. In: Cell 173.3 (2018), 792–803.e19. doi: 10.1016/j.cell.2018.03.040.

[152] C. Ounkomol et al. “Label-free prediction of three-dimensional fluorescence images

from transmitted-light microscopy”. In: Nature Methods 15.11 (2018), pp. 917–920.
doi: 10.1038/s41592-018-0111-2.

[153] H.-F. Tsai et al. “Usiigaci: Instance-aware cell tracking in stain-free phase contrast

microscopy enabled by machine learning”. In: SoftwareX 9 (2019), pp. 230–237. doi:

10.1016/j.softx.2019.02.007.

[154] C. Edlund et al. “LIVECell — A large-scale dataset for label-free live cell segmen-

tation”. In: Nature Methods 18.9 (2021), pp. 1038–1045. doi: 10.1038/s41592-021-
01249-6.

[155] T. Vicar et al. “Cell segmentation methods for label-free contrast microscopy:

Review and comprehensive comparison”. In: BMC Bioinformatics 20.1 (2019), p. 360.
doi: 10.1186/s12859-019-2880-8.

[156] J. C. Caicedo et al. “Evaluation of deep learning strategies for nucleus segmentation

in fluorescence images”. In: Cytometry Part A 95.9 (2019), pp. 952–965. doi: https:

//doi.org/10.1002/cyto.a.23863.

[157] N. Kumar et al. “A dataset and a technique for generalized nuclear segmentation

for computational pathology”. In: IEEE Transactions on Medical Imaging 36.7 (2017),

pp. 1550–1560. doi: 10.1109/TMI.2017.2677499.

[158] S. Anjum and D. Gurari. “CTMC: Cell tracking with mitosis detection dataset

challenge”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, CVPR Workshops 2020, Seattle, WA, USA, June 14-19, 2020. Computer Vision

Foundation / IEEE, 2020, pp. 4228–4237. doi: 10.1109/CVPRW50498.2020.00499.

[159] Y.-T. Su et al. “Spatio-temporal mitosis detection in time-lapse phase-contrast

microscopy image sequences: A benchmark”. In: IEEE Transactions on Medical
Imaging 40.5 (2021), pp. 1319–1328. doi: 10.1109/TMI.2021.3052854.

[160] S. Graham et al. CoNIC Challenge: Pushing the frontiers of nuclear detection, segmen-
tation, classification and counting. arXiv Preprint. arXiv:2303.06274. Mar. 2023. url:

https://arxiv.org/abs/2303.06274 (visited on 05/22/2023).

[161] S. Javadi and S. A. Mirroshandel. “A novel deep learning method for automatic

assessment of human sperm images”. In: Computers in Biology and Medicine 109
(2019), pp. 182–194. doi: 10.1016/j.compbiomed.2019.04.030.

[162] H. S. Demir, A. E. Cetin, and R. Cetin Atalay. “A visual object tracking benchmark

for cell motility in time-lapse imaging”. In: Signal, Image and Video Processing 13.6

(2019), pp. 1063–1070. doi: 10.1007/s11760-019-01443-2.

[163] M. Maška et al. “The Cell Tracking Challenge: 10 years of objective benchmarking”.

In: Nature Methods (2023). doi: 10.1038/s41592-023-01879-y.

151

https://doi.org/10.1038/nmeth.2083
https://doi.org/10.1016/j.cell.2018.03.040
https://doi.org/10.1038/s41592-018-0111-2
https://doi.org/10.1016/j.softx.2019.02.007
https://doi.org/10.1038/s41592-021-01249-6
https://doi.org/10.1038/s41592-021-01249-6
https://doi.org/10.1186/s12859-019-2880-8
https://doi.org/https://doi.org/10.1002/cyto.a.23863
https://doi.org/https://doi.org/10.1002/cyto.a.23863
https://doi.org/10.1109/TMI.2017.2677499
https://doi.org/10.1109/CVPRW50498.2020.00499
https://doi.org/10.1109/TMI.2021.3052854
https://arxiv.org/abs/2303.06274
https://doi.org/10.1016/j.compbiomed.2019.04.030
https://doi.org/10.1007/s11760-019-01443-2
https://doi.org/10.1038/s41592-023-01879-y

Bibliography

[164] D. F. E. Ker et al. “Phase contrast time-lapse microscopy datasets with automated

and manual cell tracking annotations”. In: Scientific Data 5.1 (2018), p. 180237. doi:
10.1038/sdata.2018.237.

[165] T. Scherr et al. “microbeSEG: A deep learning software tool with OMERO data

management for efficient and accurate cell segmentation”. In: PLOS ONE 17.11

(2022), e0277601. doi: 10.1371/journal.pone.0277601.

[166] T. Scherr et al. “BeadNet: Deep learning-based bead detection and counting in

low-resolution microscopy images”. In: Bioinformatics 36.17 (2020), pp. 4668–4670.
doi: 10.1093/bioinformatics/btaa594.

[167] M. Weigert et al. “Biobeam — Multiplexed wave-optical simulations of light-sheet

microscopy”. In: PLOS Computational Biology 14.4 (2018), e1006079. doi: 10.1371/

journal.pcbi.1006079.

[168] P. Malm, A. Brun, and E. Bengtsson. “Simulation of bright-field microscopy images

depicting pap-smear specimen”. In: Cytometry Part A 87.3 (2015), pp. 212–226. doi:

https://doi.org/10.1002/cyto.a.22624.

[169] D. Eschweiler et al. “3D fluorescence microscopy data synthesis for segmentation

and benchmarking”. In: PLOS ONE 16.12 (2021), e0260509. doi: 10.1371/journal.

pone.0260509.

[170] L. Maier-Hein et al. “Why rankings of biomedical image analysis competitions

should be interpreted with care”. In: Nature Communications 9.1 (2018), p. 5217.
doi: 10.1038/s41467-018-07619-7.

[171] G. Ciaparrone et al. “Deep learning in video multi-object tracking: A survey”. In:

Neurocomputing 381 (2020), pp. 61–88. doi: 10.1016/j.neucom.2019.11.023.

[172] W. Luo et al. “Multiple object tracking: A literature review”. In: Artificial Intelligence
293 (2021), p. 103448. doi: 10.1016/j.artint.2020.103448.

[173] K. E. G. Magnusson. Baxter Algorithms. Feb. 2019. url: https://github.com/
klasma/BaxterAlgorithms (visited on 09/30/2020).

[174] J. Bang-Jensen and G. Z. Gutin. Digraphs - theory, algorithms and applications.
2nd ed. Springer Monographs in Mathematics. London, UK: Springer, 2009. doi:

10.1007/978-1-84800-998-1.

[175] B. Korte and J. Vygen. Combinatorial optimization - theory and algorithms. 6th ed.

Algorithms and Combinatorics. Berlin, Heidelberg, Germany: Springer, 2018. doi:

10.1007/978-3-662-56039-6.

[176] F. A. Guerrero Peña et al. “J regularization improves imbalanced multiclass segmen-

tation”. In: 17th IEEE International Symposium on Biomedical Imaging, ISBI 2020,
Iowa City, IA, USA, April 3-7, 2020. IEEE, 2020, pp. 1–5. doi: 10.1109/ISBI45749.
2020.9098550.

[177] K. Löffler, T. Scherr, and R. Mikut. “A graph-based cell tracking algorithm with few

manually tunable parameters and automated segmentation error correction”. In:

PLOS ONE 16.9 (2021), e0249257. doi: 10.1371/journal.pone.0249257.

152

https://doi.org/10.1038/sdata.2018.237
https://doi.org/10.1371/journal.pone.0277601
https://doi.org/10.1093/bioinformatics/btaa594
https://doi.org/10.1371/journal.pcbi.1006079
https://doi.org/10.1371/journal.pcbi.1006079
https://doi.org/https://doi.org/10.1002/cyto.a.22624
https://doi.org/10.1371/journal.pone.0260509
https://doi.org/10.1371/journal.pone.0260509
https://doi.org/10.1038/s41467-018-07619-7
https://doi.org/10.1016/j.neucom.2019.11.023
https://doi.org/10.1016/j.artint.2020.103448
https://github.com/klasma/BaxterAlgorithms
https://github.com/klasma/BaxterAlgorithms
https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1109/ISBI45749.2020.9098550
https://doi.org/10.1109/ISBI45749.2020.9098550
https://doi.org/10.1371/journal.pone.0249257

[178] C. Kuglin and D. Hines. “The phase correlation image alignment method”. In:

Proceedings of the IEEE International Conference on Cybernetics and Society. 1975,
pp. 163–165.

[179] S. K. Pal et al. “Deep learning in multi-object detection and tracking: State of the

art”. In: Applied Intelligence 51.9 (2021), pp. 6400–6429. doi: 10.1007/s10489-021-
02293-7.

[180] L. Kalake, W. Wan, and L. Hou. “Analysis based on recent deep learning approaches

applied in real-time multi-object tracking: A review”. In: IEEE Access 9 (2021),

pp. 32650–32671. doi: 10.1109/ACCESS.2021.3060821.

[181] D. Neven et al. “Instance segmentation by jointly optimizing spatial embeddings

and clustering bandwidth”. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision

Foundation / IEEE, 2019, pp. 8837–8845. doi: 10.1109/CVPR.2019.00904.

[182] K. Löffler and R. Mikut. “EmbedTrack — Simultaneous cell segmentation and

tracking through learning offsets and clustering bandwidths”. In: IEEE Access 10
(2022), pp. 77147–77157. doi: 10.1109/ACCESS.2022.3192880.

[183] M. Berman, A. R. Triki, and M. B. Blaschko. “The Lovász-softmax loss: A tractable

surrogate for the optimization of the intersection-over-union measure in neural

networks”. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation

/ IEEE Computer Society, 2018, pp. 4413–4421.

[184] J. Yu and M. B. Blaschko. “Learning submodular losses with the Lovász hinge”.

In: Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, July 6-11, 2015. Ed. by F. R. Bach and D. M. Blei. Vol. 37. JMLR

Workshop and Conference Proceedings. JMLR.org, 2015, pp. 1623–1631.

[185] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv Preprint.

arXiv:1412.6980. Dec. 2014. url: https://arxiv.org/abs/1412.6980 (visited on

10/01/2023).

[186] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional networks for biomed-

ical image segmentation”. In: Medical Image Computing and Computer-Assisted
Intervention - MICCAI 2015 - 18th International Conference Munich, Germany, Oc-
tober 5 - 9, 2015, Proceedings, Part III. Ed. by N. Navab et al. Vol. 9351. Lecture

Notes in Computer Science. Cham, Switzerland: Springer, 2015, pp. 234–241. doi:

10.1007/978-3-319-24574-4_28.

[187] L.-C. Chen et al. Rethinking atrous convolution for semantic image segmentation.
arXiv Preprint. arXiv:1706.05587. Dec. 2017. url: https://arxiv.org/abs/1706.

05587 (visited on 10/28/2022).

[188] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic

segmentation”. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society, 2015, pp. 3431–

3440. doi: 10.1109/CVPR.2015.7298965.

153

https://doi.org/10.1007/s10489-021-02293-7
https://doi.org/10.1007/s10489-021-02293-7
https://doi.org/10.1109/ACCESS.2021.3060821
https://doi.org/10.1109/CVPR.2019.00904
https://doi.org/10.1109/ACCESS.2022.3192880
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-24574-4_28
https://arxiv.org/abs/1706.05587
https://arxiv.org/abs/1706.05587
https://doi.org/10.1109/CVPR.2015.7298965

Bibliography

[189] K. He et al. “Deep residual learning for image recognition”. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[190] J. Pineda et al. Geometric deep learning reveals the spatiotemporal fingerprint of
microscopic motion. arXiv Preprint. arXiv:2202.06355. Feb. 2022. url: http://arxiv.
org/abs/2202.06355 (visited on 05/31/2022).

[191] K. Sheppard et al. “Stride-level analysis of mouse open field behavior using deep-

learning-based pose estimation”. In: Cell Reports 38.2 (2022), p. 110231. doi: 10.

1016/j.celrep.2021.110231.

[192] M. Chang, N. Krahnstoever, and W. Ge. “Probabilistic group-level motion analysis

and scenario recognition”. In: IEEE International Conference on Computer Vision,
ICCV 2011, Barcelona, Spain, November 6-13, 2011. Ed. by D. N. Metaxas et al. IEEE

Computer Society, 2011, pp. 747–754. doi: 10.1109/ICCV.2011.6126312.

[193] M. Cordts et al. “The cityscapes dataset for semantic urban scene understanding”.

In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 3213–3223.

doi: 10.1109/CVPR.2016.350.

[194] H. Liu and L. Wang. “Gesture recognition for human-robot collaboration: A review”.

In: International Journal of Industrial Ergonomics 68 (2018), pp. 355–367. doi: 10.
1016/j.ergon.2017.02.004.

[195] A. Geiger et al. “Vision meets robotics: The KITTI dataset”. In: The International
Journal of Robotics Research 32.11 (2013), pp. 1231–1237. doi: 10.1177/0278364913491297.

[196] P. Dendorfer et al. CVPR19 tracking and detection challenge: How crowded can it get?
arXiv Preprint. arXiv:1906.04567. June 2019. url: http://arxiv.org/abs/1906.

04567 (visited on 04/01/2020).

[197] L. Leal-Taixé et al. MOTChallenge 2015: Towards a benchmark for multi-target
tracking. arXiv Preprint. arXiv:1504.01942. Apr. 2015. url: https://arxiv.org/

abs/1504.01942 (visited on 10/10/2022).

[198] P. Sun et al. “DanceTrack: Multi-object tracking in uniform appearance and diverse

motion”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022. IEEE, 2022, pp. 20961–20970. doi:
10.1109/CVPR52688.2022.02032.

[199] P. Emami, L. Elefteriadou, and S. Ranka. “Long-range multi-object tracking at

traffic intersections on low-power devices”. In: IEEE Transactions on Intelligent
Transportation Systems 23.3 (2022), pp. 2482–2493. doi: 10 . 1109 / TITS . 2021 .

3115513.

[200] T. Scherr and K. Löffler. KIT-GE (3). Sept. 2021. url: http://celltrackingchallen
ge.net/participants/KIT-GE/ (visited on 09/07/2022).

[201] K. Löffler. KIT-GE (4). Feb. 2022. url: http://celltrackingchallenge.net/parti
cipants/KIT-GE/ (visited on 09/07/2022).

154

https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/2202.06355
http://arxiv.org/abs/2202.06355
https://doi.org/10.1016/j.celrep.2021.110231
https://doi.org/10.1016/j.celrep.2021.110231
https://doi.org/10.1109/ICCV.2011.6126312
https://doi.org/10.1109/CVPR.2016.350
https://doi.org/10.1016/j.ergon.2017.02.004
https://doi.org/10.1016/j.ergon.2017.02.004
https://doi.org/10.1177/0278364913491297
http://arxiv.org/abs/1906.04567
http://arxiv.org/abs/1906.04567
https://arxiv.org/abs/1504.01942
https://arxiv.org/abs/1504.01942
https://doi.org/10.1109/CVPR52688.2022.02032
https://doi.org/10.1109/TITS.2021.3115513
https://doi.org/10.1109/TITS.2021.3115513
http://celltrackingchallenge.net/participants/KIT-GE/
http://celltrackingchallenge.net/participants/KIT-GE/
http://celltrackingchallenge.net/participants/KIT-GE/
http://celltrackingchallenge.net/participants/KIT-GE/

[202] A. Arbelle, S. Cohen, and T. Riklin Raviv. BGU-IL. June 2018. url: http://celltra
ckingchallenge.net/participants/BGU-IL/ (visited on 06/22/2022).

[203] A. Arbelle and T. R. Raviv. “Microscopy cell segmentation via convolutional LSTM

networks”. In: 16th IEEE International Symposium on Biomedical Imaging, ISBI 2019,
Venice, Italy, April 8-11, 2019. IEEE, 2019, pp. 1008–1012. doi: 10.1109/ISBI.2019.
8759447.

[204] X. Zhao et al. CAS-CN. Mar. 2021. url: http://celltrackingchallenge.net/

participants/CAS-CN/ (visited on 09/06/2022).

[205] P. Křížek and G. Hagen. CUNI-CZ. Mar. 2013. url: http://celltrackingchallenge.

net/participants/CUNI-CZ/ (visited on 09/06/2022).

[206] T. Sixta et al. CVUT-CZ. Aug. 2018. url: http://celltrackingchallenge.net/
participants/CVUT-CZ/ (visited on 09/06/2022).

[207] Y. Wang et al. DESU-US. Nov. 2021. url: http://celltrackingchallenge.net/
participants/DESU-US (visited on 06/22/2022).

[208] L. Aho, R. Yung, and A. Cohen. DREX-CN. July 2021. url: http://celltrackingch

allenge.net/participants/DREX-US/ (visited on 09/06/2022).

[209] O. Ronneberger et al. FR-GE-(2). Mar. 2015. url: http://celltrackingchallenge.

net/participants/FR-GE/ (visited on 09/07/2022).

[210] T. Falk et al. FR-GE-(3). Aug. 2018. url: http://celltrackingchallenge.net/
participants/FR-GE/ (visited on 09/07/2022).

[211] Z. Zhou and F. Wang. HIT-CN. Apr. 2019. url: http://celltrackingchallenge.
net/participants/HIT-CN/ (visited on 06/22/2022).

[212] T. Scherr and K. Löffler. KIT-GE (2). Mar. 2020. url: http://celltrackingchallen

ge.net/participants/KIT-GE/ (visited on 09/07/2022).

[213] K. Magnusson, J. Jaldén, and H. M. Blau. KTH-SE. Mar. 2021. url: http://celltra

ckingchallenge.net/participants/KTH-SE/ (visited on 06/22/2022).

[214] O. Dzyubachyk et al. “Advanced level-set-based cell tracking in time-lapse fluores-

cence microscopy”. In: IEEE Transactions on Medical Imaging 29.3 (2010), pp. 852–

867. doi: 10.1109/TMI.2009.2038693.

[215] O. Dzyubachyk and E. Meijering. LEID-NL. Mar. 2021. url: http://celltrackingc

hallenge.net/participants/LEID-NL/ (visited on 09/06/2022).

[216] N. M. Al-Shakarji et al.MU-US-(2). Mar. 2021. url: http://celltrackingchallenge.

net/participants/MU-US/ (visited on 06/22/2022).

[217] N. M. Al-Shakarji et al. “Multi-object tracking cascade with multi-step data associ-

ation and occlusion handling”. In: 15th IEEE International Conference on Advanced
Video and Signal Based Surveillance, AVSS 2018, Auckland, New Zealand, November
27-30, 2018. IEEE, 2018, pp. 1–6. doi: 10.1109/AVSS.2018.8639321.

[218] R. Bao et al. MU-US-(3). Mar. 2021. url: http://celltrackingchallenge.net/

participants/MU-US/ (visited on 06/22/2022).

155

http://celltrackingchallenge.net/participants/BGU-IL/
http://celltrackingchallenge.net/participants/BGU-IL/
https://doi.org/10.1109/ISBI.2019.8759447
https://doi.org/10.1109/ISBI.2019.8759447
http://celltrackingchallenge.net/participants/CAS-CN/
http://celltrackingchallenge.net/participants/CAS-CN/
http://celltrackingchallenge.net/participants/CUNI-CZ/
http://celltrackingchallenge.net/participants/CUNI-CZ/
http://celltrackingchallenge.net/participants/CVUT-CZ/
http://celltrackingchallenge.net/participants/CVUT-CZ/
http://celltrackingchallenge.net/participants/DESU-US
http://celltrackingchallenge.net/participants/DESU-US
http://celltrackingchallenge.net/participants/DREX-US/
http://celltrackingchallenge.net/participants/DREX-US/
http://celltrackingchallenge.net/participants/FR-GE/
http://celltrackingchallenge.net/participants/FR-GE/
http://celltrackingchallenge.net/participants/FR-GE/
http://celltrackingchallenge.net/participants/FR-GE/
http://celltrackingchallenge.net/participants/HIT-CN/
http://celltrackingchallenge.net/participants/HIT-CN/
http://celltrackingchallenge.net/participants/KIT-GE/
http://celltrackingchallenge.net/participants/KIT-GE/
http://celltrackingchallenge.net/participants/KTH-SE/
http://celltrackingchallenge.net/participants/KTH-SE/
https://doi.org/10.1109/TMI.2009.2038693
http://celltrackingchallenge.net/participants/LEID-NL/
http://celltrackingchallenge.net/participants/LEID-NL/
http://celltrackingchallenge.net/participants/MU-US/
http://celltrackingchallenge.net/participants/MU-US/
https://doi.org/10.1109/AVSS.2018.8639321
http://celltrackingchallenge.net/participants/MU-US/
http://celltrackingchallenge.net/participants/MU-US/

Bibliography

[219] P. Liang. ND-US. Mar. 2019. url: http://celltrackingchallenge.net/participa

nts/ND-US/ (visited on 06/22/2022).

[220] T. Guo and Y. Wang. PURD-US. Dec. 2020. url: http://celltrackingchallenge.
net/participants/PURD-US/ (visited on 06/22/2022).

[221] T. Guo, A. M. Ardekani, and P. P. Vlachos. “Microscale, scanning defocusing volu-

metric particle-tracking velocimetry”. In: Experiments in Fluids 60.6 (2019), p. 89.
doi: 10.1007/s00348-019-2731-4.

[222] D. Eschweiler and J. Stegmaier. RWTH-GE. Mar. 2019. url: http://celltrackingc

hallenge.net/participants/RWTH-GE/ (visited on 09/06/2022).

[223] C. Payer et al. TUG-AT. Feb. 2019. url: http://celltrackingchallenge.net/
participants/TUG-AT/ (visited on 06/22/2022).

[224] S. Shailja, J. Jiang, and B. S. Manjunath. UCSB-US. Oct. 2020. url: http://celltra
ckingchallenge.net/participants/UCSB-US/ (visited on 09/06/2022).

[225] Y. Chen and C. Zhang. USYD-AU. Oct. 2020. url: http://celltrackingchallenge.
net/participants/USYD-AU/ (visited on 09/06/2022).

[226] A. Panteli et al. UVA-NL. Feb. 2020. url: http://celltrackingchallenge.net/
participants/UVA-NL/ (visited on 06/22/2022).

[227] T. Scherr et al. On improving an already competitive segmentation algorithm for the
Cell Tracking Challenge - Lessons learned. bioRxiv Preprint. bioRxiv 2021.06.26.450019.
June 2021. url: https://www.biorxiv.org/content/early/2021/06/28/2021.06.

26.450019 (visited on 10/01/2023).

[228] L. Wright and N. Demeure. Ranger21: A synergistic deep learning optimizer. arXiv
Preprint. arXiv:2106.13731. June 2021. url: https://arxiv.org/abs/2106.13731

(visited on 09/27/2022).

[229] L. Wright. Ranger - A synergistic optimizer. Aug. 2019. url: https://github.com/
lessw2020/Ranger-Deep-Learning-Optimizer (visited on 09/27/2022).

[230] R. Mikut. Data Mining in der Medizin und Medizintechnik. Vol. 22. Schriftenreihe
des Instituts für Angewandte Informatik - Automatisierungstechnik, Universität

Karlsruhe (TH). Karlsruhe, Germany: Universitätsverlag Karlsruhe, 2008. doi: 10.

5445/KSP/1000008476.

156

http://celltrackingchallenge.net/participants/ND-US/
http://celltrackingchallenge.net/participants/ND-US/
http://celltrackingchallenge.net/participants/PURD-US/
http://celltrackingchallenge.net/participants/PURD-US/
https://doi.org/10.1007/s00348-019-2731-4
http://celltrackingchallenge.net/participants/RWTH-GE/
http://celltrackingchallenge.net/participants/RWTH-GE/
http://celltrackingchallenge.net/participants/TUG-AT/
http://celltrackingchallenge.net/participants/TUG-AT/
http://celltrackingchallenge.net/participants/UCSB-US/
http://celltrackingchallenge.net/participants/UCSB-US/
http://celltrackingchallenge.net/participants/USYD-AU/
http://celltrackingchallenge.net/participants/USYD-AU/
http://celltrackingchallenge.net/participants/UVA-NL/
http://celltrackingchallenge.net/participants/UVA-NL/
https://www.biorxiv.org/content/early/2021/06/28/2021.06.26.450019
https://www.biorxiv.org/content/early/2021/06/28/2021.06.26.450019
https://arxiv.org/abs/2106.13731
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://doi.org/10.5445/KSP/1000008476
https://doi.org/10.5445/KSP/1000008476

	Zusammenfassung
	Abstract
	List of Figures
	List of Tables
	Introduction
	Theoretical Background and Related Work
	The Image Analysis Pipeline – From Data Acquisition to Gaining Insights
	MOT in Light Microscopy Images
	Causes of Segmentation and Tracking Errors in Light Microscopy Images
	Correction of Segmentation and Tracking Errors
	Evaluation of Tracking Performance
	Benchmark Datasets

	Open Questions
	Objectives and Thesis Outline

	Tracking Benchmark
	Method
	Experiment
	Experimental Setup
	Evaluation

	Discussion

	Graph-based Tracking
	Mathematical Preliminaries
	Method
	Step 1: Tracklet Step
	Step 2: Matching Step
	Step 3: Post-Processing Step

	Experiment
	Experimental Setup
	Evaluation

	Discussion

	EmbedTrack
	Instance Segmentation of Neven et al.
	Method
	EmbedTrack Model
	Loss
	Pixel Clustering
	Tracking

	Experiment
	Experimental Setup
	Evaluation

	Discussion

	Method Comparison
	Criteria for Comparison
	Cell Tracking Challenge Benchmark
	The Benchmark
	Overview of Participating Methods

	Comparison
	Setup of the Proposed Methods for Evaluation on the CTB
	Tracking Quality
	Scalability
	Additional Criteria for Evaluation

	Discussion

	Conclusions and Outlook
	Appendix
	Naming of Participating Teams on the CTC
	Comparison of Tracking Results
	Segmentation Quality of EmbedTrack on DeepCell Benchmark Dataset

	Nomenclature and Symbols
	List of Own Publications
	Bibliography

