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Abstract 

This dissertation addresses the components necessary for simulation of an image-based recovery of the position of a 
target using orbital image sensors. Each component is considered in detail, focusing on the effect that design choices 
and system parameters have on the accuracy of the position estimate. Changes in sensor resolution, varying amounts 
of blur, differences in image noise level, selection of algorithms used for each component, and lag introduced by 
excessive processing time all contribute to the accuracy of the result regarding recovery of target coordinates using 
orbital sensor data.  

Using physical targets and sensors in this scenario would be cost-prohibitive in the exploratory setting posed, therefore 
a simulated target path is generated using Bezier curves which approximate representative paths followed by the 
targets of interest. Orbital trajectories for the sensors are designed on an elliptical model representative of the motion 
of physical orbital sensors. Images from each sensor are simulated based on the position and orientation of the sensor, 
the position of the target, and the imaging parameters selected for the experiment (resolution, noise level, blur level, 
etc.). Post-processing of the simulated imagery seeks to reduce noise and blur and increase resolution. The only 
information available for calculating the target position by a fully implemented system are the sensor position and 
orientation vectors and the images from each sensor. From these data we develop a reliable method of recovering the 
target position and analyze the impact on near-realtime processing. We also discuss the influence of adjustments to 
system components on overall capabilities and address the potential system size, weight, and power requirements from 
realistic implementation approaches.   
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distributions and σ = 2 (left), σ = 5 (middle), and σ = 8 (right). The specific values of x and σ are unique to a 
particular device and will fluctuate with environmental conditions at time of capture. .............................................. 72 

Figure 5.4: Graphical depictions of the Poisson distribution function. The images show values of λ = 2 (left), λ = 8 
(middle), and λ = 15 (right). Note how as λ increases the distribution more closely resembles a Gaussian function.
 ..................................................................................................................................................................................... 73 
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Figure 5.9: Comparison of the impact of increasing the number of images combined on the quality of the result. 
Despite a very high noise level in the original images, a near-perfect recovery of the scene is possible due to the 
independent nature of the individual samples of the scene. The number of images averaged per result shown is: one 
(a), ten (b), 25 (c), 50 (d), 75 (e), and 100 (f). ............................................................................................................. 78 

Figure 5.10: Comparison of the image quality increase that results from increasing the number of images combined. 
For both the structural similarity image metric (SSIM) shown in (a) and the peak SNR (PSNR) shown in (b) there is a 
clear correlation in increasing the number of images and an increase in the quality of the image obtained. ............ 79 



   xvii 

Figure 5.11: Comparison of differences in noise removal approach for different noise types. The image in (a) is 
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map of the scene which is then used to determine the system pose and coordinates of the target. The top row shows 
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extracts stable features from each image and matches them to one another, then from this information a depth map 
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Figure 7.5: Image demo of projected lines triangulation approach. A line perpendicular to the image plane (along 
the optical axis) is projected towards the target and a minimum distance to intersection is computed. This approach 
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Figure 7.6: Triangulation based 3D pose estimate of target position - side view. Four raw samples from the beginning 
of an experiment are shown for clarity. The green points are the true location of the target while the red points are 
the center of our estimate with the purple box indicating our confidence interval of the estimate. Our estimated 
recovery of the Z position has a much wider confidence bound and difference from the true location of the target, 
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Figure 7.7: Triangulation based 3D pose estimate of target position - top view. The green points are the true location 
of the target while the red points are the center of our estimate with the purple box indicating our confidence interval 
of the estimate. The difference between the estimate of the true X and Y position relative to our estimate of the position 
is in the range of 3 m, a difference of three orders of magnitude in accuracy. This is a typical problem encountered in 
triangulation pose recovery due to parallax, resulting in a far less accurate estimate along the axis parallel to the 
optical axis. The X and Y axes are perpendicular to the optical axis and the accuracy of the Z estimate is effected by 
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Figure 7.8: The data shown here comprise an entire experimental run. The red samples are the error of the raw 
estimates of the target position relative to the green line, which indicates zero error in the estimate of the target’s Z 
position. The blue line is the result of our application of a windowed averaging fusion with a window size of 128 
samples. Note how quickly the error drops off and how much closer to the true position the estimate is from the range 
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Figure 7.9: A signal-flow graph which represents the interaction of the linear dynamic system in discrete time as 
described in (7.1) and (7.2). The state vector is defined as the minimum set of data which is sufficient to represent the 
unforced dynamic behavior of the system, meaning that the minimum amount of data of the past behavior of the system 
is needed to predict the future behavior of the system. This information is collected as time k progresses and a model 
of the system is updated using this accumulated information to improve the accuracy of future predicted system states. 
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Figure 7.10: A demonstration of the Kalman state estimation utilizing the velocity model. The green line represents 
the ground truth, the red dots are the individual raw state observations. The blue line indicates the filtered state 
estimate using the Kalman filter developed to track the system state vector represents position and velocity. Note the 
slow correction of the blue Kalman state estimate compared to the green ground truth line. .................................. 124 

Figure 7.11: A demonstration of the Kalman state estimation utilizing the acceleration model. The green line 
represents the ground truth, the red dots are the individual raw state observations. The blue line indicates the filtered 
state estimate using the Kalman filter developed to track the system state vector represents position, velocity, and 
acceleration. Note the quicker correction of the blue Kalman state estimate compared to the green ground truth line.
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Figure 7.12: A demonstration of state estimation utilizing the Unscented Kalman Filter (UKF) approach. The green 
line represents the ground truth, the red dots are the individual raw state observations. The blue line indicates the 
filtered state estimate using the UKF developed to track the system state vector. Note the offset of the filtered state 
estimate from the ground truth line, which still achieves greater accuracy than the raw samples which drift from an 
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Figure 7.13: A demonstration of the Kalman state estimation utilizing the Integrated Mixed Model (IMM) approach. 
The green line represents the ground truth, the red dots are the individual raw state observations. The blue line 
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Kalman filter implementations tuned to represent combinations of unique target motion modes. Note the balance of 
quicker correction of the blue Kalman state estimate compared to the green ground truth line while avoiding overshoot 
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Figure 8.1: The plots in this figure were previously shown in Figure 7.6 and Figure 7.7, repeated here for more 
convenient referencing. Triangulation based 3D pose estimate of target position - side view (a) and top view (b). Four 
raw samples from the beginning of an experiment are shown. The green points are the true location of the target while 
the red points are the center of our estimate with the purple box indicating our confidence interval of the estimate. 
Our estimated recovery of the target position has a much wider confidence bound in the Z-dimension and difference 
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Figure 8.2: The data shown comprises a single experimental scenario. Displayed are the target position at each time 
step in the Z-dimension (a) and the X-dimension (b). The results in the X and Y-dimension are similar. The red samples 
are the error of the raw estimates of the target position relative to the green line, which indicates zero error in the 
estimate of the target’s position. The blue line is the result of our application of a windowed averaging fusion. Note 
how quickly the error drops off and how much closer to the true position the estimate is from the range of the original 
red samples. The range of the unfiltered samples is ±3 km which is reduced to between ±½ km once filtered in (a) and 
from a range of ±15 m to ±3 m in (b), around three orders of magnitude less than the scale of error in the Z-dimension.
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Figure 8.3: Demonstration of the effect of fusion on reducing the error in target estimates for varying baselines.  The 
charts above are for experimental data using the Generalized Stereo approach, where raw position estimates are 
shown in red (left) and the fused position estimates are shown in blue (right). An overly-narrow baseline contributes 
to higher error while a wider baseline has reduced expected error, though application of fusion drastically reduces 
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Figure 8.4: Demonstration of the effect of fusion on reducing the error in target estimates for varying baselines. The 
charts above are for experimental data using the 3D Projection approach, where raw position estimates are shown 
in red (left) and the fused position estimates are shown in blue (right). Compared to the results shown in Figure 8.3, 
the 3D Projection approach is much more accurate. Similar to the Generalized Stereo approach, an overly-narrow 
baseline contributes to higher error while a wider baseline has reduced expected error. ........................................ 132 

Figure 8.5: Influence of baseline on sensor coverage area, indicating the minimum number of sensors required for 
global coverage. We consider a sphere with radius 7000km, based on an altitude of approximately 600km above the 
surface of Earth. The number of sensors required is based on the ratio of surface area of this sphere, compared with 
the area of a circle of radius determined by the indicated baseline as estimation of the number of sensors required.
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Figure 8.6: Relationship between the sensor resolution and the distance between the target and sensor. For the size 
of the targets considered, a majority of the experimental time the target will be contained within a single pixel. Given 
this relatively low accuracy, we need to understand the error bounds on the position of the target given knowledge of 
its location in pixel coordinates. This chart demonstrates the relationship in terms of the distance of target to sensor 
for a set of lens FOVs. As expected, when the target is further away the search volume is larger, but of important note 
is that the difference in changing the FOV of the lens is low and diminishes as the FOV increases. ....................... 134 

Figure 8.7: Demonstration of the effect of sensor noise on the success of SR. Both SSIM (top) and PSNR (bottom) are 
used to analyze the quality of the images with varying noise levels in the input. SR methods are very sensitive to 
increasing noise levels. The data shown in a single boxplot include varying levels of blur, different configurations of 
image registration, SR methods, and SR factors. Including all of these features, there is a clear diminishing trend with 
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Figure 8.8: Example of multi-aperture image acquisition devices. The recently developed Light camera (top) has 
sixteen individual 13MP sensor modules that give it improved light performance, multiple focal volumes, and an 
effective 52MP recording ability. Image credits Light.co. The 3x3 Lomography camera (bottom) uses traditional film 
and can be useful for e.g. action shots, if the timing between shots is staggered, passport photos, where multiple copies 
are needed, and multispectral imaging, if unique light filters are used at each aperture location. Image credits 
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Figure 8.9: Demonstration of the effect of blur on the success of SR. Both the SSIM (top) and PSNR (bottom) metrics 
are used to evaluate the image results. Curiously, it appears that if a trend exists, having no blur reduces the quality 
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Figure 8.10: Comparison of the processing time of four deconvolution algorithms. The size of the image being 
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Figure 8.11: Comparison of processing time of three SR algorithms. Bicubic interpolation (red), projection onto 
convex sets (POCS) (green), and normalized convolution (NC) (blue) were sampled at the indicated image sizes for 
2x, 3x, and 4x experiments. LR input images used were square, thus the total number of pixels increases by the square 
of the indicated value. Each of the SR factors tested for each method increased in processing time as expected, where 
a higher SR factor and larger input image size both contributed to increased processing time. Bicubic interpolation 
was the least sensitive to changes in these parameters and maintained a very consistent processing time. When 
comparing the results in this figure to the quality measures in Table 8.3, particularly for larger images the drastic 
increase in processing time seems to not justify the slight difference in image quality. ............................................ 145 
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as it travels between the two locations, and the lens aberration step factors in the effect a real lens has on image 
acquisition. We then apply our image segmentation methods to separate candidate signal information from the 
background noise. Next we separate the target from these candidate regions based on appropriate IR signatures. 
Finally, we estimate the 3D pose of the target in the frame and analyze the error with respect to the known position 
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Figure 8.14: Illustration of the approach of the method utilizing the recommended system configuration. We start with 
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1 Introduction 

The purpose of this research is to contribute to the development of an approach for recovery of the 3D world-centric 
coordinates of an aerial target in motion. The targets of interest exhibit predictable spectral signatures suitable for 
identifying them from low resolution images with a noisy background. The sensor images are processed to enable 
location of the targets in the image despite significant degradations in the images. Knowledge about the position and 
orientation of the sensors is also used to calculate a reliable estimate of the target’s position. The motivation of this 
work and associated research objectives are detailed in Section 1.1. Then in Section 1.2 we discuss the completed 
work and present our contributions. 

1.1 Motivation 

The application that motivates this dissertation is based on the needs of one of the sponsors who supported my 
research. The areas of contribution are my own research interests performed prior, during, and after the sponsor’s need 
was met and adapted for the structure of the application presented. Each contribution was initially developed in 
response to the needs of various sponsors and designed as generalized solutions and adapted or applied to the needs 
of the sponsor. The work presented as existing was developed either by other researchers with whom I collaborated 
or whose work was competitive in the state of the art for the functional block to complete the system as designed. 
Therefore, the individual components presented have much broader application than the specific case presented (some 
possible applications are shown in Figure 1.1), and results shown are tailored for this case. Conclusions drawn may 
not be directly applicable to a significantly different application, but effort has been made to detail the range of 
capability offered which should be instructive for decisions in other use cases.  

Many factors influence the accuracy of 3D positional recovery of a target from image-based sensors. Conditions of 
the atmosphere degrade the path by which light travels from the target to the sensors. The quality of the optics can 
impede the recovery process. The resolution and other sensor characteristics may cause errors to be introduced into 
the estimation process. An analysis of the contribution to and scope of the error from these sources enables proper 
planning and design of improvements to the system components responsible for the greatest contribution of error to 
maximize system capability and reliability while minimizing cost.  

There are limitations to the capabilities a given hardware implementation can provide. With respect to the optics, for 
instance, it is impossible to image beyond the resolution limit established by the Rayleigh criterion. Higher resolution 
imaging sensors are always in demand, but due to shot noise there is a limit in how small the physical dimensions a 
given pixel can be before the noise overtakes the signal, and often making larger sensors to accommodate higher 
resolution sensors with reasonably sized pixels is infeasible due to equipment size constraints. Where improvements 
to the hardware design and implementation cannot overcome the physical limits restricting them, more advanced 
image processing and computer vision algorithms may be applied in order to remove the deleterious artifacts in the 
images or utilize fusion methods developed to take advantage of the system setup. Noise from the sensor and blur and 
distortion from the lens may be diminished or removed with proper calibration. Turbulent effects of the atmosphere 
may be modeled and accounted for. Low resolution of the sensor and restrictions due to the diffraction limit may be 
overcome by proper application of super resolution.  
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(a) 

 
(b) 

  
(c) 

Figure 1.1: Motivating applications and improvement on the state of the art described in this dissertation. 
Accuracte knowledge of the location of (a) orbital debris, (b) airplanes, and other targets of interest is vital for 
making intelligent, timely decisions. Existing systems using radar (c) are expensive and inaccurate in many 
situations. The LANZA radar, for instance, costs ~$30 million and has an accuracy limit depicted above at 250 
nautical miles (NM). Utilizing orbital sensors to detect and calculate the position of moving targets can improve 
the accuracy and timeliness of measurements at a lower cost and can provide additional information not possible 
with current systems.  
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Figure 1.2: Pipeline of contributions. The ideal target image is generated from known information of the sensor’s 
position, resolution, and field-of-view (FOV) combined with the position of the target from the simulated path. We 
simulate the effects which cause a disturbance to the trajectory of the target, sensor, and infrared (IR) light as it 
travels between the two locations, and the lens aberration step factors in the effect a real lens has on image acquisition. 
We then apply our image segmentation methods to separate candidate signal information from the background noise. 
Next we separate the target from these candidate regions based on appropriate IR signatures. Finally, we estimate 
the 3D pose of the target in the frame and analyze the error with respect to the known position of the target.  
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1.2 Contributions 

The 3D position recovery process pipeline is presented in Figure 1.2 as the structure for the work performed. The 
process pipeline consists of seven key steps: point-spread function (PSF) measurement, image simulation, noise 
modeling/mitigation, super resolution, deblurring/deconvolution, tracking, and error analysis. The image simulation 
step depends on simulated target path positions. The sensor position is determined by the orbital parameters and the 
orientation is adjustable based on an update algorithm. The lens parameters are adjustable, and are represented using 
the PSF of either the measurement of an existing lens or one simulated using a lens prescription or using a generic 
blur kernel. The sensor parameters are also adjustable and include noise level/distribution and sensor resolution and 
size. The PSF measurement approach was developed in order to create an accurate spatially-variant representation of 
a physical lens.  

We want to handle multiple sensors designed to image in the visual and IR bands, we include a step to handle noise 
modeling, analysis, and mitigation. The targets of interest in the images are faint, often near the noise floor. As such 
we must exercise caution in our detection and removal of the noise. We also must handle the low resolution of the 
sensors with respect to the size of the target, often on the order of a single pixel. By employing multiple unique 
measurements of the scene we can enhance the spatial resolution of the images in order to enhance our ability to 
recover the position of the targets within the FOV. We employ deblurring/deconvolution of these images utilizing our 
known lens blur in order to further improve our 3D position recovery capabilities. Once we have acquired and restored 
the images of the scene, we employ our target tracking step to recover the coordinates of the target in 3D space.  

1.2.1 Major Contributions 

1.2.1.1 PSF Measurement 

Nearly all modern imaging systems make use of optical lenses in order to focus the image of the scene while the 
aperture is set to allow more light from the scene. However, physical optics introduce geometric distortion and 
spatially variant blur of the light from the scene recorded by the sensor. The blur introduced is modeled by the PSF. 
If we accurately measure the PSF of a lens, we are able to reduce or eliminate the negative influence of the lens optics 
on image quality. Our method makes use of a grid of pointlike sources which image to less than a pixel with respect 
to the sensor used in the imaging system. The blur effects then will be the components resulting from the lens blur. In 
this way we are able to directly measure the spatially variant PSF of the lens and use these measurements in later 
corrective steps.  

1.2.1.2 Super Resolution 

The light entering a digital optical system is recorded by a sensor with limited resolution. The resolution available is 
often insufficient for the intended use and obtaining a higher resolution sensor may be prohibitive due to cost or 
technology limitations. Classical super resolution (SR) involves integration of a series of unique images of the scene 
which can be thought of as compression of the time domain in order to enhance resolution in the spatial domain. We 
acquire images of the scene at a high framerate with respect to motion of the targets within the frame and apply a 
sliding window combination of the frames in order to create a higher resolution reconstruction of the scene at 
approximately the same framerate with minimal delay.  

A second approach we developed involves applying the same algorithms on a set of images acquired with a modified 
imaging setup. One of the most difficult parts of SR is obtaining good data of a scene with rapid movement. We 
created a multi-aperture system so that the requisite number of images required for applying SR could be obtained 
simultaneously.  
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1.2.2 Minor Contributions 

1.2.2.1 Noise Mitigation 

The targets in the scene comprise a small region of the image, and the contrast of the targets is such that the targets 
may easily be hidden near the noise floor. The noise distribution for a sensor can be measured and the noise in the 
image estimated. We take advantage of this a priori knowledge of the distribution type and utilize analysis of the 
images themselves. Care must be taken as overly aggressive mitigation techniques have the potential to obscure what 
little signal we have available in each individual image. The approach we have taken with respect to handling the 
noise in the images breaks into two areas: (1) modeling, where we analyze the image to obtain a model of the noise 
type and intensity; and (2) removal or mitigation, where we apply techniques to correct for the noise present in the 
images. We only model the noise when we are able to apply a simple thresholding to obtain candidate target regions 
(usually for low noise levels).  By applying a time-domain correlation of the result we can reduce the number of false 
positives. Where we attempt to remove the noise from the image before further processing, we carefully analyze the 
statistics of the image and apply current state-of-the-art removal techniques [Liu2012][Liu2013][Luisier2011] 
[Zanella2009] in order to improve our position estimate in preparation for subsequent processing steps.  

1.2.2.2 Tracking 

Our tracking step encompasses the image-based aspects of target localization with respect to target detection or 
separation from other image elements and 3D recovery of the target’s position in world coordinates from available 
sensor imagery. Imagery available at this stage has had all preprocessing and correction steps performed so the 
tracking step comprises all higher-level image understanding and decision making. First, we detect the presence of 
candidate locations of a target of interest within the image. Our application employs hyperspectral signatures of a 
target of interest and we conducted tests using a variety of spectral bands based on the signatures available. Next, we 
must localize the target with respect to a global coordinate system, eliminating false positives from the candidate 
locations. The target detection step is performed for each sensor for which the target is visible, and once we have 
isolated the target in image coordinates, we utilize the sensor position and orientation information to estimate the 
target position in global coordinates. This is possible with a minimum of two sensors and may be framed as a stereo 
recovery. However, we have also implemented an approach which allows information from additional sensors to be 
included in order to improve the estimation accuracy of the position recovery.  

1.2.2.3 Error Analysis 

The error analysis step is not explicitly in the feedback loop of the system. Data for an entire experimental run is 
collected and analyzed after completion though the incremental information is displayed live. This is due to the fact 
that we will not know the ground truth information live and cannot base any of our system calculations or updates on 
this information. We again make use of the ground truth target positions and compare the position estimate from our 
raw and fusion approaches to the true target position at each timestep. We represent the XYZ position data as a 
difference from the ground truth XYZ position of the target, so that the data representing the ground truth in our 
comparison is zero for each time step, and the data for the raw estimates and the fused results represents the Euclidean 
distance of the estimate from the true target location. Represented as a distance from a perfect recovery, an indicator 
of the quality of a processing method would be closer to zero while an increasing distance away would indicate a less 
accurate method. We use this final set of data in our evaluation of the quality of our method and as an indicator of the 
effect of varying parameters such as the resolution, blur level, baseline, etc. and are thus able to perform sensitivity 
analysis on these parameters.  
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1.2.3 Existing Work 

1.2.3.1 Image Simulation 

Image generation requires four sets of information at each time step: (1) the target position, (2) the sensor position and 
orientation, (3) the lens parameters, and (4) the sensor parameters. The position of the targets we wish to track includes 
additional objects surrounding the target which serve to obscure the true position of the target from detection. Some 
paths are derived from measurements of actual flight paths of representative targets and some tracks were generated 
using Bezier curves matching the profile type of the flight paths of true target trajectories. The sensor orbits are set 
prior to each experiment, but are adjustable in order to explore the impact of the number of sensors, baseline between 
sensors, and height of the sensor relative to the target path with respect to the accuracy of target position recovery. 
Thus the position of the sensor is adjustable prior to an experimental run, but not adjustable in real time. Likewise the 
lens and sensor parameters are adjustable prior to a given experiment in order to investigate the influence of differing 
types and combinations of each on the accuracy of position recovery. We encode the information about the influence 
of the lens in the non-parametric PSF and can explore both spatially variant and global PSFs. We measure several 
types of physical lenses and also include standard Gaussian models and other types of blur. The sensor model includes 
adjustable parameters of the sensor size and resolution, as well as an adjustable level and distribution of noise. Finally, 
we use Maxwell’s Demons method to model the atmospheric degradation given the significant distance from target to 
sensor in the experiments performed.  

1.2.3.2 Sensor Orientation Update 

Once we have recovered the position of the target with the imagery from the sensors, we must update the sensor’s 
orientation to keep the targets in view, ideally in the center of the FOV. In order to avoid ambiguity in the reorientation, 
specifically to avoid gimbal lock and to maintain calculation of a smooth path, we have adapted the use of quaternions 
for representing the current orientation and for calculation of the incremental orientation update vectors. We have 
developed two approaches for calculating the update vectors. The first of these assumes a simple calibrated projection 
calculation of the relationship between the 𝑥𝑥,𝑦𝑦 motion of the target in pixel coordinates and the necessary change in 
angle of the rotational degrees of freedom of the sensor. This amounts to a scaling of the motion seen as projected to 
the image plane and directs the update to happen relative to this plane with respect to the current orientation of the 
sensor. The second method is predictive and is based on the current estimate of the target position and the velocity of 
the target based on the positional estimates of the target between the current and previous time steps. The velocity of 
the target changes slowly between adjacent timesteps, so utilizing this estimate in order to predict the target position 
in order to reorient the sensor for the subsequent timestep gives a reasonably accurate result.  

1.2.3.3 Deconvolution 

The problem of restoring an image from a blurred observation is termed deconvolution. We know the spatially variant 
PSF of the lens system source of intrinsic blur in the acquired images from our prior PSF measurement of the lens, 
therefore the type of deconvolution algorithms we will employ are called non-blind (as opposed to blind approaches 
for which the blur kernel is not known). We apply existing methods to recover the original scene by utilizing the 
knowledge of an image of the scene and the PSF of the lens which corrupted the image. While deconvolution does 
not improve the spatial resolution in terms of pixels, it can significantly improve the effective resolution and enhance 
contrast between closely-spaced features.  
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1.3 Document Organization 

The remainder of this document is arranged as follows: 

• Chapter 2 presents the state of the art of the literature for the areas addressed in this dissertation.  
• Chapter 3 discusses the method developed to measure the PSF of a physical lens. A description of the 

approach taken to measure the geometric distortion field is also included. 
• Chapter 4 contains a description of our image simulation approach and our application of competitive 

approaches to each component in the process. We also present our approach to updating the sensor 
orientation. 

• Chapter 5 briefly introduces the problem of noise in images and our approach to modeling and mitigation 
of the noise.  

• Chapter 6 introduces a description of our contribution in analyzing the capabilities of super resolution 
approaches to the enhancement of our image sets. We also discuss our application of deconvolution using 
either the measured or synthetic PSF. 

• Chapter 7 addresses our tracking work, covering the areas of segmentation of the image, target detection in 
the presence of heavy noise, target separation from similar false positives, and our contribution in 3D position 
recovery of the world coordinates. 

• Chapter 8 covers our comparison of experimental results comprising an analysis of the sensitivity of our 
position estimate to the various input parameters which leads to an understanding of the scope of capabilities 
of the overall system.  

• Chapter 9 concludes with a summary of tasks completed for this dissertation.  
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2 State of the Art 

In this chapter we discuss the general problems of PSF measurement, synthetic image generation, noise modeling and 
reduction, super resolution, deconvolution, tracking, and error analysis. For synthetic image generation, a description 
of the approach and methods from the literature for the main components will be discussed. Our approach includes 
some elements less commonly found in conventional imaging but with the exception of one component, all areas 
should be considered compatible. Also for sensitivity analysis, the approach taken will be outlined and comparable 
approaches taken by contemporary papers in the literature will be compared. For PSF measurement, noise modeling 
and reduction, super resolution, deconvolution, and tracking, multiple current approaches will be described and the 
methods selected for comparison in order to determine the most appropriate method for application to our scenario. 
In addition, a new method for PSF measurement will be demonstrated.  

2.1 PSF Measurement 

Accurate knowledge of the PSF is essential in applying deconvolution which enhances the data by reducing blur, thus 
increasing the effective resolution. PSF estimation techniques generally utilize a calibration pattern and are known as 
non-blind, taking the form of targets relying on random noise [Levy1999], [Delbracio2012], [Brauers2010], sharp 
edges [Tang2013], [Claxton2007], or other means [Hu2012], [Schuler2012]. Blind methods use various single-image 
or multi-image approaches [Sroubek2008], [Hu2012], [Schuler2012] that generally use statistical analysis or blurred 
edge detection. Some of these methods require a parametric fitting of the PSF [Aguet2008], [Howell1996], 
[Zheng2006], [Claxton2007], while others do not impose this constraint [Liu2008], [Sroubek2008], [Levy1999], 
[Delbracio2012], [Brauers2010], [Hu2012].  

Delbracio et al [Delbracio2012] indicate several requirements for a calibration pattern-based PSF estimation 
technique: namely, that a PSF estimation method should be non-blind; that kernel estimation must be two-dimensional, 
local, and subpixel; and that optical distortion, nonuniform illumination, and nonlinear sensor response must be 
accounted for in the method. Furthermore, no regularization should be used to enforce radial symmetry constraints, 
parametric models of the PSF, or other kernel regularization constraints. They claim an adequately chosen noise 
pattern (they use Bernoulli distribution) eliminates the need for regularization, which dampens the high-frequency 
content of the PSF. Due to the relative generality of the method and careful consideration of relevant factors, their 
method will be used as a comparison despite the fact that it is an estimation method, rather than a direct measurement 
method. 

Direct measurement of the PSF [Liu2008], [SVI] refers to methods that utilize a point source or point-like source of 
light with specific properties. Delbracio et al [Delbracio2012] and Gunturk and Li [Gunturk2013] state that the ideal 
target for measuring the PSF is a perfect pinhole image simulating a 2D impulse. They then dismiss the approach as 
being unfeasible due to the low signal to noise ratio (SNR) as the ideal spot size is infinitesimal. Some methods 
[Tang2013], [Aguet2008] incorporate a fitting of the PSF. This direct measurement yields a sampled version of the 
continuous PSF, which contains all intrinsic distortions of the aperture, optics, and sensor array. Extrinsic factors that 
affect the degradation of the captured scene include motion blur (including motion of the system relative to the scene 
and the motion of subjects within the scene), atmospheric effects, lighting variations, and object distance. These factors 
will depend on conditions during acquisition and cannot be included in our measurement. 

There exists a standard for measurement of the modulation transfer function (MTF) of an imaging system [ISO12233], 
but as yet no agreed-upon standard exists for a digital optical system regarding measurement of its PSF. Direct 
measurement of the PSF necessitates construction of a point-like source, and in the case of our method and the method 
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of Shih et al [Shih2012] and Navas-Moya et al [NavasMoya2013], a grid of point-like sources are used for 
measurement of the spatially variant PSF. 

Liu and Chen [Liu2008] propose a PSF measurement method that uses an interferometer to directly measure the high 
resolution PSF of the lens. The lens is removed from its paired sensor and since the exact alignment of the optical axis 
relative to a given pixel is not known, an average is taken of a 10x10 grid across the area of a pixel from the original 
sensor and all 100 images of the PSF are averaged to account for the unknown alignment. This version of the PSF is 
then downsampled to match the pixel size of the sensor array that was originally paired with the lens. First, removal 
of the lens from the optical system and sensor that the lens was intended to be used with carries the potential for 
damage to the sensor, and reassembly of the system requires specialized skill. Further, measurement of the PSF using 
a device (the interferometer) that contains other lenses and sensors each with their own PSF and pixel response carries 
with it the introduction of spurious influences on the measured result. Finally, Liu and Chen compare their measured 
PSF applied to an image obtained with a different lens/sensor combination of the same model. Shih et al [Shih2012] 
note the problem with assuming all physical lenses are representative of the lens prescription used during their 
manufacture; manufacturing tolerances introduce a significant difference in the PSF of individual lenses. 

We propose a direct PSF measurement method that uses a pinhole grid pattern and employ a super resolution approach 
to reach a subpixel measurement as noted in [Liu2008], [Delbracio2012], which is then downsampled to the pixel size 
of the paired sensor. We are able to use the optical system to measure its own PSF and the device is still able to 
function. Our method is nondestructive to the equipment used, and re-measurement of the PSF may be performed at 
any time with limited interruption to the use of the system. This feature is of particular importance for systems in 
environments where pressure and temperature changes and vibration are prevalent which leads to small changes in 
the alignment of the sensor and lens elements. 

2.2 Synthetic Image Generation 

Knowledge of the performance of image processing and computer vision algorithms is critical in the selection process 
for a given application. Proper testing of an algorithm’s performance involves accurate knowledge of the expected 
outcome, often referred to as ground truth. Synthetic test images offer the ability to easily test an algorithm’s 
performance by generating features in the image for the algorithm to detect, classify, remove, or enhance. The images 
are generally created to have information which is complex enough to be representative of the type of imagery that 
will be encountered while still being simple enough to determine the success of the method.  

Synthetic test images have been used in the development of iris recognition [Zuo2006], biomedical microwave 
imaging [Kundu2010], vehicular safety [Cosel2009], distortion field estimation [Tian2001], stereo depth estimation 
[Chen2011], edge detection [Benjelloun2007], image-to-text classification [Wang2006], and satellite image 
segmentation [Marcal2010] algorithms, among others. As the formation of the image is specific to the construction of 
the imaging system and environment being imaged, the approach taken will vary by application.  

2.2.1 Blur Types 

Many authors [Lucas1996][Smith1997][Kuhl2006][Aguet2008][Kuthirummal2011][Tang2013] have attempted to 
represent the blur found in images using parametric models. However, Shih et al [Shih2012] state that the assumptions 
made which lead to these simplified forms are not valid for real lens systems and as such are not useful in general 
when complex degradations are present in the image, which is the case in varying degrees for all real data not 
synthetically generated. Shih et al further note that for fixed focal-length lenses, such as the ones we consider in our 
work, the PSF is a 6-dimensional function of the light wavelength, λ, image plane coordinates, x,y, lens aperture, 𝑎𝑎, 
lens to object distance, 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜, and back focal distance, 𝑑𝑑𝑜𝑜𝑏𝑏𝑏𝑏. They and others [Delbracio2012][Liu2008][Joshi2008] 
advocate the use of the nonparametric PSF as a representation of the effects of the optical system. The use of 
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parametric models for the PSF are necessary when using an ill-posed blind PSF estimation approach in order to 
simplify the solution space but the accuracy of the estimation is affected by this approach [Delbracio2012].  

When dealing with real imaging systems, we can measure the PSF or if we know the lens design we can simulate the 
PSF using raytracing to obtain a nonparametric blur kernel [Delbracio2012]. When using a nonparametric blur kernel, 
it is encoded in a matrix similar to how digital images are represented; the blur then is applied using a convolution 
operation. This section contains a description of the types of blur models which can generate a nonparametric 
representation of the blur.  

2.2.1.1 Pillbox Function 

The PSF of an ideal thin lens is represented by a uniform-intensity disk, called the pillbox function 
[Tang2013][Kuthirummal2011]. The model for this function is of a single parameter, r, the radius of the disk as seen 
in (2.1).  There are several authors who advocate the use of the pillbox model in fitting the measured PSF 
[Zheng2006][Smith1997][Tang2013], but the most useful application is in modeling defocus blur. The form of the 
pillbox model is given in [Kuthirummal2011] as 

 𝐻𝐻(𝑟𝑟, 𝑏𝑏) =
4
𝜋𝜋𝑏𝑏2

��
𝑟𝑟
𝑏𝑏
� (2.1) 

Where 𝑟𝑟 is the distance of the pixel from the centroid of the PSF,  

∏(x) is the rectangle function, and 

b is the diameter of the PSF, given by 

 𝑏𝑏 =
𝑎𝑎
𝑣𝑣

 (2.2) 
Where  𝑎𝑎 is the diameter of the system aperture and 

v is the distance from the lens to the sensor (back-focal distance). 

Smith [Smith1997] states that the pillbox is similar enough to the Gaussian and the exponential to be considered the 
same with respect to resolution preserved in the image. Smith also states that the source of a pillbox PSF for an imaging 
system when the lens is improperly focused. Tang and Kutulakos [Tang2013] use the pillbox model to represent the 
PSF of an ideal thin-lens system and compare the performance of reconstruction algorithms using a real-lens PSF 
(simulated with 3rd-order Seidel aberrations). Kuthirummal et al [Kuthirummal2011] also describe the pillbox as the 
form of an ideal model for the PSF. Their findings indicate that more information about the original image is contained 
in images observed with the real-lens PSF than with that of the simple model. Finally, the method introduced by Zheng 
and Hellwich [Zheng2006] allows the algorithm to select which model of blur fits the data best, which includes the 
pillbox function as an option.  

2.2.1.2 Gaussian 

The Gaussian function is 2-dimensional and assumed to be rotationally symmetric, for purposes of modeling the PSF 
of an imaging system. As such the representation of this model of the PSF is as described in (2.3).  

 𝐻𝐻(𝑟𝑟, 𝑏𝑏) =
2
𝜋𝜋𝑏𝑏2

𝑒𝑒𝑥𝑥𝑒𝑒 �−
2𝑟𝑟2

𝑏𝑏2
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Where 𝑟𝑟 and 𝑏𝑏 are given as described above.  

The Gaussian model is the most popular simple parametric model used to describe the PSF of a lens, partly due to its 
simple form and common use in other areas such as noise modeling when the exact distribution is unknown or difficult 
to calculate. This is likely influenced by the central limit theorem as indicated by [Zheng2006], who also include the 
Gaussian in their model-fitting selection structure. Many authors [Dore2004][Zheng2006][Capel2004][Smith1997] 
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[Kuhl2006][Kuthirummal2011] make use of the Gaussian model in their work. Smith [Smith1997] indicates that the 
Gaussian form results from the random combination of errors, such as from viewing stars through a turbulent 
atmosphere. He also notes that since the Gaussian decays rapidly it is a simple matter to truncate the function without 
introducing side effects. Kuhl et al [Kuhl2006] state that the assumption of a Gaussian model for the PSF is reasonable 
when a variety of aberrations are present due to the lens. Finally, Kuthirummal et al [Kuthirummal2011] make use of 
the Gaussian model in their proposal of an integrated PSF (IPSF) constructed by varying the distance of the lens to 
the sensor during the integration time of the sensor. Gunturk and Li address experimental verification of a Gaussian 
model of a sensor’s pixel-level PSF [Gunturk2012] 

2.2.1.3 Sinc 

Of the simple parametric models used, the sinc function is the most interesting as it more accurately represents the 
nature of the PSF to have components which continue in diminishing periodic groupings. One of the drawbacks is the 
fact that the PSF will inherently contain no negative components, while the sinc function does.  

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) =
𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥
𝑥𝑥

 (2.4) 

A simple solution to this is to take the absolute value of the function, or to only consider the positive components.  

2.2.1.4 Jinc 

The jinc function, also called the besinc or sombrero function, is more commonly used in image processing than the 
sinc function [Hendee1997], and is defined as: 

 𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) =
𝐽𝐽1(𝑥𝑥)
𝑥𝑥

 (2.5) 

where  𝐽𝐽1(𝑥𝑥) is a Bessel function of the first kind. However, since 

 𝑙𝑙𝑠𝑠𝑙𝑙
𝑥𝑥→0

𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) =
1
2

 (2.6) 

the function is often [Siegman1986] multiplied by a factor of 2 in order to achieve 𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠(0) = 1.  

Smith [Smith1997] claims that these functions are seldom used in image processing because images do not have their 
information encoded in the frequency domain. He notes that the long “tail” of the function can cause some problems 
and must be truncated to be of any practical use in computation or filter design. Aguet et al [Aguet2008] indicate that 
for their system, the use of the jinc function in modeling the PSF simplified the computational complexity while 
preserving the accuracy of their solution.  

Kuhl et al [Kuhl2006] state that the jinc function used exactly describes the diffraction pattern due to a circular 
aperture, using the modified form in (2.7), but state that the Gaussian is a reasonable approximation to the PSF when 
lens effects are considered.  

 𝐴𝐴(𝑟𝑟) = �
𝐽𝐽1(𝑟𝑟)
𝑟𝑟

�
2

 (2.7) 

Where  𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 and 𝑥𝑥 and 𝑦𝑦 are the Cartesian image plane coordinates. 

2.2.1.5 Exponential 

For modeling of the lens effects of a camera operating in the visual spectrum, we have not encountered systems which 
follow this form. However, Smith [Smith1997] states that the exponential is representative of PSFs commonly found 
in imaging systems. He further notes that this form is generated when electrons and x-rays strike a phosphor layer and 
are converted into light, and that the model is used in radiation detectors, night vision amplifiers, and CRT displays. 
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It seems for some of these systems that this may be an arguably valid model, as Lucas and Roche [Lucas1996] also 
make use of this form in astronomical imaging. We have not used systems of this type in our work but this parametric 
model is included for completeness. 

 
𝐻𝐻(𝑟𝑟,𝑔𝑔) = 𝑒𝑒

−�
−2𝑔𝑔� �𝑥𝑥2+𝑦𝑦22 −𝑟𝑟�

𝑙𝑙𝑙𝑙(2) �

 
(2.8) 

Where 𝑟𝑟 is the radius of the PSF at full-width half maximum (FWHM),  

g is the slope of the PSF at FWHM, and 

x and y are the pixel coordinates, centered at 0,0. 

2.2.1.6 Defocus Blur 

Defocus blur refers to the blur seen in an image not due to the intrinsic blur, but rather due to the camera’s focus 
setting relative to the distance of an object in a scene. As there can be a wide range of distances for various objects 
within the field of view, this function can be quite complex. A common compromise in designing lenses with no 
adjustable focus range is to set the focus equal to the hyperfocal distance [Piper1901]. 

 𝐻𝐻 =
𝑓𝑓2

𝑁𝑁𝑠𝑠
+ 𝑓𝑓 (2.9) 

Where  𝐻𝐻 is the hyperfocal distance,  

f is the focal length of the lens,  

N is the f-number, and 

c is the circle of confusion.  

By setting the focus of a fixed-focus lens to the hyperfocal distance, the maximum depth of field is achieved and all 
objects in the scene from half the hyperfocal distance to infinity are in acceptable focus.  

Although the pillbox model is generally accepted for representing defocus blur [Zheng2006][Smith1997] 
[Kuthirummal2011], Kuhl et al [Kuhl2006] use the Gaussian model, which is also noted as acceptable by Kuthirummal 
et al [Kuthirummal2011] when the intrinsic blur is significant enough to not be ignored. For scenes where the object 
depths vary significantly, a depth map should be constructed in order to handle each region appropriately 
[Gunturk2012].  

Many authors [Lucas1996][Kuhl2006][Kuthirummal2011][Delbracio2012] assume spatial invariance when applying 
blur when constructing synthetic images, although Kuthirummal et al [Kuthirummal2011] claim their approach to PSF 
measurement is invariant to both shift and depth. This approach is acceptable when demonstrating a deconvolution 
method’s effectiveness on a given type of blur. However, images from real lens systems will typically exhibit a strong 
spatial variance in the PSF. This means that when the nonparametric PSF of an imaging system is represented, a single 
PSF measurement will not be sufficient but rather an array of PSF measurements will be necessary to accurately 
represent the local anisotropic blur kernel [Delbracio2012]. When using real images it is important to keep this 
distinctive attribute in mind when handling deblurring. In demonstrating our ability to recover 3D coordinates from 
representative imagery applying a stationary blur kernel is sufficient.  

2.2.2 Noise Types 

Noise in digital images can be classified with respect to its source or its distribution. Sources of noise are typically 
classified as fixed-pattern noise (FPN), banding noise (horizontal or vertical), or random noise. FPN arises from the 
construction of the device but can be influenced by environmental conditions. Presence of banding noise comes from 
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the readout and amplification circuitry of the device. Random noise comes from a variety of physical sources on the 
device but is heavily influenced by environmental conditions.  

Noise can also be classified as white or colored noise. White noise varies with time while colored noise is more stable 
and can generally be removed through a calibration process. This arises from their different sources within the device. 
White noise comes from the light-collecting pixel region while colored noise comes from the readout and amplification 
circuitry.  

The noise types include shot noise, generation/recombination noise, popcorn noise, thermal noise, kT/C noise, and 
flicker noise. Shot noise has a Poisson distribution and describes the expected arrival event of a photon on a given 
pixel [Lundberg2002]. Generation/recombination noise occurs due to the trapping centers in the bulk of the silicon 
making up the device [Hooge1994]. Popcorn noise is caused by discrete modulation of the channel current 
[Lundberg2002]. Thermal noise is caused by the voltage fluctuation due to Brownian motion of electrons in a resistive 
medium [Lundberg2002]. kT/C noise describes thermal noise in the presence of a filter capacitor [Lundberg2002]. 
Flicker noise comes from oxide traps resulting from imperfections in the construction of the transistor material 
[Jayaraman1989]. 

2.2.3 Motion Model 

Fusion methods employ data from multiple sensors to gain a more comprehensive and stable representation of the 
observed scene. Image fusion methods accomplish this from processing multiple images of the scene to achieve a goal 
that would be less accurate or reliable using only a single image. The motion of objects in the scene or egomotion of 
the sensor or sensors gives rise to the image registration problem, meaning that data contained in two or more images 
must be correlated in order to combine or otherwise perform higher order analysis. The expected motion of the objects 
in the scene, relative rigidity or deformability of the objects, and path and change in orientation of the sensors drives 
the selection of a motion model to which points in the image are matched and parameters are calculated to describe 
the change of these points from one image frame to the next. This extracted information is then used in subsequent 
processing steps.  

Table 2.1: Comparison of global 2D planar transformations included in each motion model. For a (3x3) matrix, the 
number of DOF indicate the number of adjustable parameters available for computing the transformation. In the 
fourth column, the given entries indicate the image content preserved during the transformation. The plus (+) symbol 
indicates that each attribute below the given row is also included as each row is a subset of the row below, thus a 
translation operation preserves orientation, Euclidean distance, angles, etc. whereas the Euclidean motion model 
does not preserve orientation.  

Name Degrees of Freedom (DOF) #DOF Preserves 

Translation Translation 2 Orientation+ 

Euclidean Translation, Rotation 3 Euclidean distance+ 

Similarity Translation, Rotation, Scale 4 Angles, curvatures+ 

Affine Translation, Rotation, Scale, Aspect, Shear 6 Straight line parallelism+ 

Projective Translation, Rotation, Scale, Aspect, Shear, Keystone 8 Straight lines 
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Motion estimation models may be classified as global or local. Global methods use all extracted control points in the 
image for calculating the model parameters of a transformation. Local methods use a patch-based approach and may 
warrant application of an appropriate segmentation method. Images captured with significant lens distortion are 
particularly well-suited for application of local motion estimation correction as an object appearing in different areas 
of the image will be subjected to differing portions of the geometric distortion field.  

These motion models utilize all of the basic planar transformations. While more available DOF allows for more 
flexible calculation of the relationship between frames, this comes at increased computational cost. Further, if a higher-
order motion estimation is selected for an image sequence for which the additional DOF are not present then 
extraneous fitting of those parameters may occur, especially in images with high blur and noise components. The 
mathematical form of the DOF described in Table 2.1 is shown in Table 2.2. Note that all are modifications to the 
identity matrix with the on-diagonal elements representing scaling along one of the dimensions.  

These matrices may be composited into a single transformation matrix by successive multiplication of the component 
transformations. In order to apply these motion estimation models effectively, the images of a scene are assumed to 
have been taken either from the same camera or from a multi-camera system with very narrow baseline with respect 
to the distance to the scene. If there is significant angular distance between the cameras or position of a single camera 
between image acquisitions then a 3D model of the image acquisition is needed to accurately relate the inter-frame 
motion rather than the 2D planar methods described above. Figure 2.1 gives a graphical representation of the matrix 
transformations shown in Table 2.2, noting that the keystone and projective transformations are equivalent.  

 
Figure 2.1: Basic set of 2D planar transformations. For image sequences in which the egomotion of the camera or 
the disparity in a multi-camera system is small, this set of 2D planar transformations is sufficient to represent all 
motion assuming rigid objects in the scene or simultaneous acquisition. Reproduced from [Szeliski2006] 
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projective

Table 2.2: Matrix form of the 2D planar transformations. For the motion models shown in Table 2.1, the 
transformations may be applied serially or composited into a single transformation matrix. As keystone (projective) 
transformations are considered, the homogenous coordinates are used, if this transformation type was not considered 
then (2x2) matrices would be sufficient to represent the remaining transformations.  
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If the objects in a scene are static, then global motion models work well but will generally fail in the presence of 
occlusion or due to transparency or other uniform regions for which control points are difficult to match accurately 
[Babu2011]. Quite often, the objects in a scene move independently of one another and with respect to the egomotion 
of the sensor(s). Application of local motion estimation methods can be useful for many applications. Delbracio et al 
[Delbracio2012] use local perspective transformation on image patches to correct for complex lens distortion. 

Application of an image segmentation method to extract information relevant to the desired subject can be one way to 
not only reduce the size of the data but also to remove extraneous information in the scene and to calculate motion 
only on the relevant information. If the object of interest is rigid a valuable approach can be to segment the available 
frames to create a data subset with the relevant image data corresponding to the object of interest rather than the whole 
scene (e.g. enhancing license plate data for passing to an optical character recognition algorithm). 

Most estimation methods use a two-frame approach, where one frame from the image series is selected as a reference 
for all other frames. While still an open problem, simultaneous multiframe motion estimation should provide needed 
robustness [Babu2011]. Szeliski calls this bundle adjustment when referring to calculation of the camera positions 
simultaneously to achieve a globally consistent solution [Szeliski2006].  

2.3 Noise Modeling and Reduction 

Many potential sources contribute to the noise type and level present in digital images. Understanding these sources 
and the methods for reducing their impact pre- and post-acquisition can improve the SNR of the image and the 
accuracy of algorithms which use the images as input. It is better practice to minimize the potential for noise during 
the acquisition process, but often due to environmental conditions, cost, or other factors it is necessary to remove or 
mitigate the influence of noise post-acquisition.  

2.3.1 Pre-Acquisition Approach 

Environmental conditions can have a significant impact on noise levels in an image. Two common sources are the 
contribution of increased temperature on the noise level which influence many hardware sources of noise, and 
radiation which is more likely to occur in installations within a nuclear facility or in orbital applications where cosmic 
rays can impact the image acquisition process, often manifesting as a “salt and pepper” type of noise. Designing proper 
shielding into the acquisition system to handle radiation sources serves to minimize the influence from this source. 
Thermal effects can be reduced by active cooling of the system. Another environmental influence is the amount of 
light available in a scene during capture time. In some situations the light level can be increased but in situations where 
this is not possible the shot noise can be severe. Hoshino and Nishimura [Hoshino2007] discuss methods for reduction 
of noise from the sensor. 

Some noise types are persistent across image capture sequences, arising from the system itself and not the light 
entering the system or due to environmental effects. A “dark image” may be acquired which encodes this type of noise 
and may be stored on the device and removed from each acquisition so that the result obtained is only influenced by 
factors uniquely experienced at the time of image capture. 

2.3.2 Post-Acquisition Mitigation Approach 

Noise removal methods estimate statistical information of input images in order to reduce the noise level and increase 
the SNR. A side effect of an aggressive application of these methods results in over-smoothing of the image. This is 
due to the high-frequency content in an image containing both fine details and noise. Some methods [He2010] 
approach the problem with the goal of preserving edges in the image but often introduce noticeable smoothing. Luisier 
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et al [Luisier2011] propose a method for noise reduction in images corrupted by a mixture of Poisson and Gaussian 
noise.  

2.3.3 Hybrid Approach 

An alternative approach which we apply is to modify the image acquisition process in order to mitigate the effect of 
random noise even in unfavorably high noise situations. This process works by acquiring multiple, identical images 
of the scene and performing statistical analysis to determine the appropriate value for each pixel. The number of 
images needed to reach an acceptable SNR will vary based on the device characteristics, available light, and noise 
level encountered at acquisition time. Utilization of a noise level estimation [Liu2013] is helpful for determining an 
appropriate number of images to acquire.  

2.4 Super Resolution 

Images acquired from a digital image acquisition device are comprised of an array of numbers which correspond to 
the light incident at individual pixel locations on the sensor. In order to obtain a more accurate representation of the 
scene of interest, higher pixel resolution is desired. Though hardware solutions to this desire exist there are side effects 
which limit the ever-denser packing of ever-smaller pixels into an imaging sensor. The methods which seek to resolve 
the resolution enhancement task can be categorized into three different types, as shown in Figure 2.2.  

Interpolation methods aim to create a HR image by upsampling a LR image [Siu2012]. Often, polynomial-based 
approaches are employed, such as the bilinear or bicubic approaches. The benefit of this class of resolution 
enhancement methods is the computational simplicity, though there are more advanced methods which seek to 
preserve edges in images rather than treating all image content uniformly. Siu and Hung [Siu2012] detail the 
classification of this set of approaches rather well. Yang et al [Yang2014] describe upscaling (they use single-image 
super-resolution, or SISR) as generating high-quality HR images from LR input by exploiting certain image priors. 
They classify the methods into four groups: prediction models, which operate without training data; edge-based 
methods, which learn priors from edge features in calculating HR images; statistical methods, which employ analysis 
of the statistical distribution of HR/LR image pairs; and patch-based methods, which employ a set of LR/HR paired 
image patches to upscale a new LR image based on past observations. 

 

 
Figure 2.2: Classification of resolution enhancement methods. Interpolation methods use simple mathematical 
models to calculate the value of new data points from existing known sample values. Upscaling methods, also known 
as single-image SR (SISR), often use a database of LR/HR image patches which are used to upscale a single LR 
image into a HR representation. Multi-image SR, on the other hand, employs multiple LR observations of a 
continuous scene and combines these images into a HR representation from actual data of the scene of interest. Our 
work focuses on this class of methods, utilizing multiple observations to calculate a HR output. We detail the types 
of methods developed which fall into this area in a later chapter. 

Resolution Enhancement

Interpolation Upscaling Multi-Image
Super Resolution
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Instead of relying on simple polynomial models to interpolate image points or utilizing content from a priori image 
observations, multi-image SR methods combine multiple independent LR observations of a scene to calculate a HR 
representation. In choosing to employ methods from this class we can combine actual information from the scene to 
arrive at an improved understanding of the features of the scene. In order to utilize these independent samples, the 
relationship between them must be determined, termed image alignment or registration.  

In our comparison we utilize the work of Šroubek et al [Sroubek2008], Irani and Peleg [Irani1991], Zomet et al 
[Zomet2001], Pham et al [Pham2006], and Farsiu et al [Farsiu2004]. Iterated Back Projection (IBP) [Irani1991] and 
Robust SR (RSR) [Zomet2001] are classical SR methods while Blind SR (BSR) [Sroubek2008], Normalized 
Convolution (NC) [Pham2006], and Fast RSR (FRSR) [Farsiu2004] are more recent methods. IBP is based on a 
regularized error minimization based on back projection and includes a noise prior. RSR [Zomet2001] is similar to 
IBP [Irani1991] but uses the median of the noise prior as opposed to the average used in IBP.  

NC [Pham2006] uses a windowing function applied to local linear structures in the image to create subspaces sampled 
by the multiple low-resolution images available. NC is also a regularization-based method, using L1 minimization of 
the cost function. BSR [Sroubek2008] is regularization-based, but uses an alternating minimization scheme to 
iteratively estimate the stationary blur kernel and high-resolution image.  

We use SR in two places in our work: to enhance the accuracy of the PSF measurement step and in determining the 
influence this application has on improving target localization. In each case we desire to use a method that will work 
with our data and give an accurate result. Siu and Hung [Siu2012] give an overview of both interpolation algorithms 
and SR algorithms. For our application, we include the use of multi-frame static SR algorithms as described by their 
classification but apply the taxonomy of MISR methods proposed by Nasrollahi and Moeslund [Nasrollahi2014].  

2.5 Deconvolution 

In our evaluation of popular deconvolution methods to use in validating our method, we considered three methods: 
Wiener deconvolution [Gonzalez2008], Lucy-Richardson deconvolution [Richardson1972], [Lucy1974], and 
Regularized deconvolution [Steve2008], [Kotera2013]. Image deconvolution is an ill-posed inverse problem 
[Bertero2005] and as such no perfect solution exists; however, numerous methods exist by which the quality of the 
image can be improved. We test the methods noted above to determine which gives the best results using data obtained 
with our imaging systems.  

Wiener deconvolution is a frequency-domain method that seeks to minimize noise effects in frequencies with low 
SNR [Gonzalez2008]. The method is developed to find a solution that provides a minimum mean-square error 
(MMSE) estimate of the original image 𝑓𝑓. In the implementation we use, the image to be deblurred, the measured PSF 
of the system, and the estimated SNR of the image are supplied to the algorithm. An assumption of Wiener 
deconvolution that may not apply in all situations is that the image is modeled as a random process, and that 2nd-order 
statistics and noise variance are known or can be estimated [Steve2008]. 

Lucy-Richardson deconvolution makes use of the expectation-maximization algorithm in order to maximize the 
likelihood of the restored image [Biggs1997]. Shepp and Vardi [Shepp1982] have shown that if the algorithm 
converges, it will converge to the maximum likelihood solution. 

Regularization-based methods of deconvolution do not make the same assumptions as those made in Wiener 
deconvolution or attempt calculation of an EM-based solution. A side-effect of regularization-based methods is an 
over-smoothed solution, which while diminishing the influence of undesired noise in the result also limits image 
sharpness and crisp edges [Steve2008]. Regularizing terms are added to the minimization function in order to penalize 
selected aspects of unacceptable solutions. Methods exist that seek to enhance edges [Yang2009], diminish noise by 
penalizing high frequencies, etc. In the implementation of regularized deconvolution that we apply, a high-pass filter 
is employed in order to minimize the effects of the noise present in the captured images used for testing.  
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Kotera, Šroubek and Milanfar [Kotera2013] apply their alternating minimization approach in the nonblind 
deconvolution method presented and adapt their approach to better correct natural images by using sparse priors 
(𝐿𝐿𝑝𝑝,𝑒𝑒 < 1) that better fit the gradient distribution of natural images. 

2.6 Tracking 

A number of applications tackle a similar problem with different goals and approaches. Visual tracking (surveillance) 
[Hedayati2015][Bouchrika2014][Leal-Taixe2012], visual odometry [Kazik2012], structure from motion (SfM) 
[Vaca-Castano2012][Lim2012], and visual motion capture (animation) [Leal-Taixe2012] methods all utilize the 
imagery from the visual spectrum in order to capture and represent information from the real world in a useful way. 
As these methods tackle similar problems using similar classes of data capture devices there is much overlap in the 
types of problems encountered and therefore in the application of solutions to these problems in the other areas. The 
basic format of any of these methods is to select hardware (lens type, sensor resolution, number of capture devices 
and geometry, etc.) capture data from a target of interest and extract useful information about the target using 
descriptive features and utilizing other information about the capture scenario such as the camera calibration (including 
both intrinsic and extrinsic information such as position and orientation information about each of the capture devices). 
At this point, the information about the target at each timestep from each device can be integrated in order to determine 
path information and 3D position information. Leal-Taixé et al call the second two steps detection and data association 
[Leal-Taixe2012].  

Elhayek et al [Elhayek2012] utilize multiple cameras with unsynchronized frames in order to enhance the temporal 
resolution of their markerless motion capture method. Bouchrika et al [Bouchrika2014] use multiple views and a 
markerless capture method focused on the target’s walking pattern to construct a recognition system based on the 
unique gait of the target. Lim et al [Lim2012] use a single camera to recover 6D information about the ego-motion of 
their camera while Kazik et al [Kazik2012] use multiple cameras to recover the same information from a target of 
interest. Leal-Taixé et al [Leal-Taixe2012] combine both the detection and data association steps into a single 
optimization. Soto et al [Soto2009] develop a 10-camera network of independent nodes which reach a consensus about 
the state of the target from their individual estimates.  

Tracking, as we use the term, is an accurate knowledge of the historical, current, and expected location of a point of 
interest in real space. Tracking used in this sense is important in a variety of fields, from eye tracking [Fuhl2015] for 
human-machine interfaces designed for handicapped individuals to autonomous navigation [Chen2006] for mobile 
robot platforms and the expanding field of self-driving cars to exercise activity monitors [Vepakomma2015] used to 
recognize the wearer’s behavior and automatically infer the calories burned to cell network tracking of handsets to 
coordinate selection of a service tower [Yassin2015]. Our interest lies in camera-based tracking, specifically for multi-
camera systems since we desire to know with some degree of accuracy the precise location of the target. The theme 
of multi-sensor tracking centers on locating a subject of interest traveling in 3D space. The subject will have some 
unique attributes which distinguish it from its surroundings. The method used will also either include or omit some 
form of path planning or other prediction of the anticipated future location of the target. Matching images of a target 
from multiple cameras in an NP-hard problem and multiple methods have been developed to find a solution [Leal-
Taixe2012][Soto2009][Zou2009].  

2.6.1 Feature Descriptors  

A number of feature descriptors have been proposed for uniquely identifying a target from its surroundings, including 
the scale-invariant feature transform (SIFT) [Lowe1999], speeded-up robust features (SURF) [Knopp2010], corners 
[Harris1988][Tomasi2004], and histogram of oriented gradients (HOG) [Dalal2005] descriptors. Some have 
developed other approaches for extracting features about targets including geometric information such as the height 
of a person [Bouchrika2014] and modeling of the color distribution of a given target [Orwell1999].  
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While these descriptors are very useful when the target is close to the sensor and relatively high resolution, color, and 
texture information about the target can be gathered, in our application we are limited to relatively sparse information 
about the target in the terms just described. However, we are able to distinguish the desired target from the background 
as there is little expectation of a cluttered field of targets and we mostly contend with noise and other traditional 
imaging artifacts. Thus our initial approach is a spatio-temporal correlation of the brightest point or brightest blob in 
the image. At times the noise is high enough to bury the target beneath the noise floor but by applying path prediction 
we are able to recover from these instances. We also consider extension into spectral signature recognition of the 
target since there is a distinct spectrum for which we are able to more accurately determine the location of the target 
within the image from each sensor.  

2.6.2 3D Recovery Methods 

The first step in determining the location of a target using a multi-camera system is to locate the target in image space. 
This is done by determining some way of locating the target based on unique information recorded about it in each 
image, as described above. The next step is to combine the location information in image space of each sensor with 
some information about the relative position and orientation of the sensors with respect to one another. This is due to 
the issue of tracking with a single sensor and the resolution of this problem with the addition of a sensor with an 
alternate perspective of the target, as shown in Figure 2.3. The camera on the left is able to see the target but has no 
sense of depth. In general, even information about the size of the object can only marginally aid in determining its 
distance to the sensor with even an assumed perfect knowledge of the camera matrix. Adding a second camera enables 
us to dispense with estimates based on size as only the centroid of the target is necessary for extracting the necessary 
information.  

Moving from one camera to two allows calculation of target depth since unique projections of the 3D scene into 2D 
space are available to make the calculation. Introducing additional cameras to the system will allow fallback when 
communication with a sensor is lost, help to resolve occlusion in a crowded scene, and may increase the accuracy of 
the system. Analysis of the system developed for a given application will be necessary to determine the benefit of 
each additional camera due to the inherent cost of equipment and processing time versus the incremental benefit in 
features due to redundancy and potential for improved accuracy.  

Two methods in particular will be discussed in greater detail: generalized stereo as presented in Figure 2.3, and an 
adaptation of this approach developed to allow for an arbitrary number of sensors. Rather than allowing the target to 

 
Figure 2.3: Illustration of stereo matching ambiguity. The point in the left image has multiple possible physical 
locations in the scene along a line which information in the right image resolves by satisfying the epipolar constraint. 
Information from additional images can further reduce the error in determining scene geometry to a point, but also 
provides the ability to retain sufficient information about the scene in the case that an object occludes the view of a 
sensor or communication with a given sensor is momentarily lost. Reproduced from [Zou2009].  
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appear anywhere within the FOV, the sensors are oriented to keep the target of interest always at the center of the 
image. Then, the position and orientation of each sensor is used to construct a line segment in 3D space. A 
minimization of the intersection point of these lines is used to recover the target position. In this way, any number of 
sensors may be considered in the target position recovery. Analysis using synthetic path information allows 
development of improved models for target tracking and position recovery as well as sensor orientation update 
approaches in order to minimize the error in target position recovery.  

2.6.3 Path Prediction Methods 

Many methods for navigation and tracking exist and positional accuracy for the system varies based on the constraints 
of the environmental conditions, speed of travel, method employed, sensor accuracy and resolution, measurement 
noise, processing speed, etc. Application of path prediction methods can help to improve target position estimation 
accuracy, reduce accumulation of errors from the many potential sources, and improve response time. Potential also 
exists for reduction of equipment costs and processing time when the behavioral model of the target movement is 
well-defined and simply from the fact that multiple-camera tracking is more efficient [Pham2007].  

Many approaches and relevant applications have been proposed in this area. Van Verth and Bishop utilize path 
prediction to address the concern of lag in player positon updates in networked games [VanVerth2008]. Hedayati et 
al [Hedayati2015] utilize a system that factors in the egomotion of the cameras. Elhayek et al [Elhayek2012] utilize 
unsynchronized cameras in order to improve the temporal resolution of target position estimates. Pham et al 
[Pham2007] extend the Gaussian mixture probability hypothesis density (GMPHD) filter method to a multi-camera 
setup in order to handle multi-object tracking with occlusion without the computational overhead of a multi-object 
state space.  

 𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘+1 + 𝑤𝑤𝑘𝑘 (2.10) 
Pham et al [Pham2007] present the model in (2.11) for a dynamic moving equation for 3D tracking where the state of 
an object 𝑥𝑥𝑘𝑘 = {𝑥𝑥1,𝑘𝑘, 𝑥𝑥2, 𝑘𝑘, 𝑥𝑥3, 𝑘𝑘} is a 3D coordinate and 𝑤𝑤𝑘𝑘 is the process noise. The measurement equation of the 
𝑠𝑠th camera is 
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(2.11) 

where 𝑢𝑢𝑘𝑘 is the measurement noise and 𝑎𝑎𝑚𝑚𝑙𝑙𝑖𝑖  are the projection parameters from 3D coordinate space to the 𝑠𝑠th camera 
plane. Calibration of the cameras yields this matrix. For a small room (3m x 2m x 2m) simulation, they achieve a 5-
7cm error using fixed cameras. 

Approaches which employ a predictive model makes use of one of a set of possible assumptions about the motion of 
the target in order to extrapolate the target position. Formulations have been employed for constant or variable 
acceleration (kinematics) and some include the influence of momentum (kinetics) [VanVerth2008].  
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The simplest of the motion models considered is shown in Figure 2.4 and employs a piecewise constant velocity 
model, with zero acceleration. The path is generated by use of instantaneous measurements of position and velocity 
and then holding the velocity as constant until the next measurement. The next step towards a generalized solution 
involves a constant, but nonzero acceleration. Shown in Figure 2.5 is a depiction of a target whose motion is influenced 
by the constant acceleration of gravity.  

Other sources of constant acceleration exist as well, such as from a car engine, airplane engine, atmospheric drag, etc. 
and a complete model from the expected motion of a given target should be incorporated to most accurately predict 
the target path. In our application scenario, we can expect relatively predictable parabolic motion and as such will 
include explanations up to this point and handle any deviations from our prediction with the noise term as we update 
at each time step. Should longer prediction times be desired or more complex forces influencing the target motion 
necessitate further generalization of the motion model (such as variable acceleration from sources such as control 
systems) our work can be further extended. In particular our sensor coverage area is wide enough that the target will 
not be capable of exhibiting unexpected changes beyond the bounds for which we are able to maintain reliable 
tracking.  

 
Figure 2.4: Graph of a piecewise continuous path in one dimension of target movement as a function of time. 
Reproduced from [VanVerth2008].  

 
Figure 2.5: Graph of a parabolic path of target as a function of time. Shown with initial velocity vector, source of 
constant acceleration is gravity. Reproduced from [VanVerth2008].  
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2.7 Error Analysis 

The value most important to our system is the final position estimate. Therefore, the metric of greatest importance is 
the error of this estimate with respect to the true target position. In our sensitivity analysis, we will investigate the 
adjustable input parameters’ influence on the final accuracy of the target position estimate. The purpose of this 
influence will be to explore the flexibility of the system presented in order to better understand the limits and the 
factors which could make the system fail in its purpose, serving to drive the outer edge of our capabilities and influence 
direction for future efforts to improve the system to focus attention and advancement where it will have the greatest 
impact.  

Sensitivity analysis is a crucial step to perform for any complex system [Zhang2010] and has seen effective use in 
medical [Wong2010][Zhang2007][Zhang2010], mathematical [Hadigheh2006],  imaging [Desurmont2006] 
[Muhammed2010][Jalobeanu2000][Nanda1994][Vega2003][Yang2000][Molina2006][Yao2006] and other related 
fields [Vytyaz2008]. Unfortunately, as the system complexity increases, so often also does the interaction of the 
influence of the parameters [Pappenberger2006][Racu2006]. Further, the computational time will increase 
exponentially with each additional parameter and the range and granularity of sampling for each parameter 
[Kwisthout2012].  

A closely related problem is parameter estimation, as it is known in the image enhancement field. Most image 
processing algorithms require selection of a set of parameters a priori, and the quality of the output varies widely with 
this selection. Our system is also bound by not only this requirement, but also the simulation parameters (resolution, 
baseline, etc.) which we can adjust to investigate their influence on the accuracy of recovery of the target position.  

The factors we are most concerned with are accuracy of the method [Yao2006][Muhammed2010], computational 
complexity as it relates to processing time [Racu2005][Racu2006][Vytyaz2008][Kwisthout2012][Yu2015], and 
stability of the method [Yao2006][Hadigheh2006] to produce consistent results with varying parameter solutions 
[Yao2006]. Where possible, we will follow the Type I (Basis Invariancy) approach described by Hadigheh and Terlaky 
[Hadigheh2006] to find the range of parameters for which the accuracy of our reconstructed target position remains 
largely unperturbed. In some of our analysis, however we expect to find need for intelligent analysis of tradeoff while 
still defining theoretic limits and will seek to quantify or formulate these as appropriate [Vytyaz2008].  

Desurmont et al [Desurmont2006] introduced a new evaluation metric as part of their work and produced a set of 
recommended parameters for particle filtering algorithms tailored to people tracking in video. Vytyaz et al 
[Vytyaz2008] derived a formula relating the oscillation frequency of a PLL to the sensitivity of the device to a given 
parameter set. Both results could be found in our recommendations due to the construction of the system and the 
nature of the components in our pipeline. For instance, we expect a more solid set or range of appropriate parameters 
for the processing algorithms, but anticipate needed tradeoff analysis from the resolution findings. Computer vision 
researchers always want more resolution, and if an increase in bandwidth, storage, and processing time did not also 
attend our analysis may deliver this result.  

Our sensitivity analysis will include the simulation parameters to discover the influence of the sensor construction and 
the limits of available resolution and introduced blur, as well as to explore the effect of adjusting the baseline of the 
sensors and their height relative to the target. We will also analyze the effect of applying selected algorithms as part 
of our pipeline, more so for the effect that varying processing time will have on reconstruction accuracy due to system 
lag from overly-complex methods. In this way we can select an envelope of allowable processing time for a given 
acceptable frame lag and select suitable methods.  
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3 Point Spread Function Measurement 

The methods for obtaining the point-spread function (PSF) of a system fall under two broad areas: PSF estimation and 
PSF measurement. PSF estimation methods utilize a calibration target in order to solve a known deconvolution process 
to recover the PSF, often by way of the Modulation Transfer Function (MTF). Other methods utilize assumptions such 
as sharp edge response and are known as blind methods. Generally PSF measurement techniques will attempt to 
directly measure the PSF by imaging a point source constructed for this purpose. It is into this category our method 
falls.  

Many estimation methods do not account for the spatially variant and isoplanatic nature of the PSF as they perform 
measurements over too large of an area of the system’s field of view (FOV). The PSF is constant over a small region 
[Hornberg2006], and a larger area must be used to properly capture the calibration target, thus violating this principle. 
We seek to solve the problem of determining the PSF of a digital optical system by using a direct measurement method. 
We solve this problem in a nondestructive way and such that the cost to perform initial and subsequent measurements 
is negligible relative to the cost of the sensor. Doing so removes the barriers to regular re-measurement of the system 
so that the most accurate, current state of the system can always be known.  

Obtaining the best data from an optical system requires accurate knowledge of the PSF, whether that system is a high-
precision optical metrological system or a casual consumer photograph. Research in this area has yielded a number of 
methods that vary in complexity regarding equipment requirements and data processing. We describe a method that 
allows for low cost in both required hardware and software processing time. Furthermore, the process is quick enough 
to allow for regular repeated measurements so that systems subject to environmental conditions such as vibration and 
temperature fluctuation may be accurately represented in their current state. 

Digital optical systems have been adopted in modern society with near ubiquity. The quality of these systems has 
significantly improved over recent decades, but there still exists a need to correct the inherent aberrations introduced 
by both the lens optics and the sampling of the digital sensor. Figure 3.1 depicts the image acquisition process of a 
typical digital optical system. Many methods have been proposed for measurement of the PSF or related quality 
indicators [Liu2008], [Levy1999], [Park1984], [Delbracio2012], [Brauers2010], [Hu2012], [Tang2013], 
[Schuler2012], [Aguet2008], [Howell1996], [Zheng2006], [Claxton2007], [NavasMoya2013]. Each of these methods 
contain some feature which we seek to improve, such as destruction of the system [Liu2008], lack of measurement of 
the spatially-variant nature of the PSF [Liu2008], [Zheng2006] or optical transfer function [Levy1999], [Park1984], 
use of blind estimation [Levy1999], [Delbracio2012], [Brauers2010], [Hu2012], [Schuler2012], [Zheng2006], or 
restriction of the form of the PSF to mathematical models [Tang2013], [Aguet2008], [Howell1996], [Zheng2006], 
[Claxton2007]. 

Our method meets the requirements detailed by Delbracio et al [Delbracio2012] for a PSF measurement method while 
resolving the step of removing the lens for measurement in Liu and Chen’s method [Liu2008] which introduces the 
ability to make repeated measurements. Further, we enhance Liu and Chen’s approach [Liu2008] by utilizing the 
framework of Navas-Moya et al [NavasMoya2013] and applying Šroubek et al.'s method [Sroubek2008] to enable 
more accurate measurements by exploiting the benefits of super resolution (SR) in sampling the PSF directly. Any 
physically realizable system will have some error in its measurement capabilities, but by leveraging the computational 
power of modern systems we can recover the sampled data and better represent the real-world scene. 

Applications of our method include but are not limited to: consumer mobile phone cameras, optical metrology, 
computer vision/robot vision, aerial reconnaissance, automated air- and land-based navigation, amateur astronomy, 
remote sensing, and consumer and professional level photography. 
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Figure 3.1: Image acquisition models include the simple model used by Kotera et al [Kotera2013]: 𝒈𝒈 = 𝒐𝒐 ∗ 𝒉𝒉 + 𝒏𝒏, 
𝒈𝒈 is the observed image, 𝒐𝒐 is the original scene, 𝒉𝒉 is the system PSF, and 𝒏𝒏 represents additive noise. The model used 
in [Sroubek2008] is more generalized: 𝒈𝒈𝒌𝒌 = 𝑫𝑫[𝒉𝒉𝒌𝒌 ∗ 𝑾𝑾𝒌𝒌(𝒐𝒐)] + 𝒏𝒏𝒌𝒌, including the geometric distortion of the lens, 𝑾𝑾, 
and the decimation of the sensor, 𝑫𝑫. The deconvolution operation is an ill-posed inverse operation and to successfully 
remove the blur effects of the lens requires accurate knowledge of the PSF.  
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Figure 3.2: Process pipeline for PSF measurement method. Data capture includes generation of a point source grid 
suitable for measurement of the PSF. The sensor must be well-aligned with the grid, which is ‘moved’ by shifting the 
pattern to adjacent pixels. The images are analyzed to mitigate the effects of noise and other degradation in our data. 
We apply SR to our captured data in order to enhance our measurements before downsampling to the original pixel 
size for use as part of our deconvolution to validate the measurements made. 

As shown in Figure 3.2, we align the sensor with a point-like grid prior to capturing data. Multiframe SR requires 
subpixel motion between input frames. In light of the low SNR of an infinitesimal point-source grid, we synthetically 
enhance the SNR by combining a sequence of frames with a static target [NavasMoya2013]. We then apply SR on 
these combined frame sets in order to obtain an enhanced representation of the PSF while remaining within an 
appropriate isoplanatic region of the lens [Hornberg2006].  

3.1 Experimental Setup 

In this section we detail the components of the experimental setup, demonstrating the design choices, current practices, 
and validation of our assumptions to ensure the data captured will yield a valid measurement of the PSF of the systems 
tested.  

3.1.1 Generation of a Suitable Point Source 

Levy et al [Levy1999] use a CRT monitor in estimating the MTF of a lens in the visible spectrum. While use of a 
monitor is presented as acceptable in the literature [Levy1999], [Delbracio2012], [Brauers2010], [NavasMoya2013], 
we want to validate the use of an LCD monitor for PSF measurement. There are two necessary criteria for such use: 
the light used must be incoherent, and the size of a single pixel used must image to less than a single pixel in the 
sensor’s image plane. 

Navas-Moya et al [NavasMoya2013] note that use of an LCD display has two major advantages over a printed target: 
there is no need for an additional light source, and the pattern may be easily changed—a feature that we exploit in our 
development. They further note the lack of critical need for alignment with random noise patterns and the problem of 
a lack of information regarding the spatially variant nature of PSF measurement obtained using random noise patterns.  
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Figure 3.3 shows the result of our measurement of the light emitted by the LCD monitor used in our experiments. The 
light emitted has typical fluorescent spikes. Measurements were performed with all pixels off (but with the fluorescent 
backlights still on), labeled Black; with all pixels on, labeled White; and with each of the Red, Green, and Blue pixels 
only on, labeled respectively.  

Due to the nature of the fluorescent light source [LCDSpectra] used in the monitor, we know that the light used for 
measurement is broad-spectrum within our desired visual range of the spectrum. As we need the size of an object pixel 
on the display to image to less than a single pixel on the sensor, we need to ensure that our fixed-focus prime lens is 
situated sufficiently far away from the display in order to meet this criterion.  

3.1.2 Imaging Distance 

It is impossible to construct a truly infinitesimal point source. Selecting the imaging distance is important to create a 
point-like source. There will be blurring due to aberrations of the lens and diffraction effects, causing the resultant 
measurement to be larger than one pixel. In order to determine an appropriate imaging distance from which to make 
our measurements, we consider three metrics, outlined as follows: 

3.1.2.1 Mathematical Formulation 

The angular resolution of a diffraction-limited system is [Born1999]: 

 

 𝜃𝜃 ≪ 𝜆𝜆
𝐷𝐷 (3.1) 

where 𝜃𝜃 is the angular size of the target,  

𝜆𝜆 is the wavelength of light, and  

𝐷𝐷 is the diameter of the lens aperture.  

Substituting for θ in order to obtain a form in terms of the distance from the target to the sensor, (3.1) becomes: 

 
Figure 3.3: Spectral Response of the Dell U2311Hb Monitor. The light emitted from the monitor is broad-spectrum, 
incoherent and the comparison of the red, green, and blue lines shows the bandpass effect of the individual color 
filters in each pixel. Coherent light is useful for measuring the PSF when working with holography but for general-
purpose photography applications incoherent light is needed. Use of broad-spectrum light ensures that we obtain 
measurements that will be valid for imaging within the visual spectrum, for our chosen application. Using an IR light 
source would afford the capability of measuring the response of such a system within that spectral range. 
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 𝜃𝜃 = 2𝑎𝑎𝑟𝑟𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠 𝑠𝑠
2𝑑𝑑, (3.2) 

where  𝑠𝑠 is the physical size of the source and  

𝑑𝑑 is the distance from the source to the sensor.  

Substituting (3.2) into (3.1), we obtain: 

 2𝑎𝑎𝑟𝑟𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠 𝑠𝑠
2𝑏𝑏 ≪

𝜆𝜆
𝐷𝐷. (3.3) 

Solving for 𝑑𝑑, we obtain: 

 𝑑𝑑 ≫
𝑠𝑠

2𝑡𝑡𝑎𝑎𝑠𝑠 𝜆𝜆
2𝐷𝐷

 (3.4) 

For values of 𝑠𝑠 = 265µm,  

𝜆𝜆 = 0.380µm, and  

𝐷𝐷 = 755µm,  

we obtain a requirement of 𝑑𝑑 > 52.7cm for the Galaxy S4. 

3.1.2.2 Shih Formulation 

Shih et al. [Shih2012] propose a formulation related to the focal length of the lens: 

 𝑑𝑑 > 𝑏𝑏𝑚𝑚
𝑠𝑠  (3.5) 

where 𝑓𝑓 is the focal length of the lens,  

𝑙𝑙 is the pixel pitch of the monitor, and  

𝑠𝑠 is the pixel pitch of the sensor.  

Using the same values above:  

𝑓𝑓 = 1.85mm,  

𝑙𝑙 =265µm, and  

𝑠𝑠 =3.768µm,  

we obtain a minimum imaging distance of 𝑑𝑑 > 13cm for the Galaxy S4.  

3.1.2.3 Field-of-View Restrictions and Batch Size 

The maximum imaging distance is restricted by the angular FOV of the sensor relative to a given target size. However, 
the noise level does rise with increasing distance from image to sensor. In order to maintain an acceptable SNR in the 
presence of significant CMOS shot noise due to the necessarily low intensity of our imaging grid, we stack batches of 
images taken with no motion between frames. We perform this step in order to overcome the limitation of a non-user-
configurable integration time of the sensor. The work of [Liu2012] was used to determine an appropriate minimum 
number of images to use. We use our alignment target (seen in Figure 3.7) to calculate the angular FOV of the sensor. 
From this image it is determined that the horizontal angular FOV of the Galaxy S4 is 72.7o, which is the direction in 
which we first run into the extent. This gives a maximum distance of 34.5cm for the Galaxy S4. These values were 
calculated using 

 FOV=2𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 � 𝐷𝐷2𝑑𝑑� (3.6) 
where  FOV is the field-of-view of the lens,  
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𝐷𝐷 is the amount of the monitor visible within the frame, and  

𝑑𝑑 is the distance between the sensor and the monitor.  

For the setup where the measurements were taken, 𝐷𝐷=41cm and 𝑑𝑑=28cm. Using the results obtained (FOV=72.7o), 
we solve for the maximum distance. 

 𝑑𝑑 < 𝐷𝐷

2𝑎𝑎𝑎𝑎𝑙𝑙�𝐹𝐹𝐹𝐹𝐹𝐹2 �
 (3.7) 

Where the variable labels are as previously described in (3.6). 𝐷𝐷=50.8cm is the monitor’s horizontal extent, FOV is 
as calculated previously, 72.7o, which gives the result of 𝑑𝑑=34.5cm as our maximum imaging distance. 

3.1.2.4 Pixel mapping method 

Navas-Moya et al [NavasMoya2013] do not make any distance verification measurements, but they assume that the 
pixels in the object plane image to less than one pixel in their image space due to the fact that there are more pixels in 
the object plane than in the image plane. Because the pixel count in our monitor and sensor are the same, this would 
only be potentially possible at the maximum imaging distance. However, at this distance we began to encounter low 
SNR. Given that our other metrics agree with one another, the requirement noted by Navas-Moya et al 
[NavasMoya2013] is valid, but not required. 

3.1.2.5 Minimum Imaging Distance Validation 

We verify the minimum distance empirically. Imaging too closely results in a PSF diameter of 50 or more pixels at 
the optical center where the diameter of the PSF should be smallest. Noticing that the size of the PSF diminished as 
we moved further away, we plotted the change as seen in Figure 3.5. 

When the size of the PSF stops diminishing, we have reached the minimum imaging distance. Measurements obtained 
further than this distance result in diminishing SNR and increase the minimum batch size and acquisition time per 
batch. As seen in Figure 3.5 below, this value appears to occur between 24cm and 33cm. We selected a distance of 
29cm in order to allow a margin of error in our measurement distance. This range is less than the FOV limit and agrees 
with all but one of the distance metrics. 

  

 

(a) (b) (c) 

Figure 3.4: Imaging distance prediction approaches. We want to increase the SNR of the measurements without overly 
lengthening the data acquisition time. We therefore select a distance close enough to the monitor to gather more light 
and measure across the FOV while being sufficiently far away to meet the optical constraints for measurement of a 
point source. (a) Illustration of the approach of Shih et al. (b) Illustration of the FOV restriction. (c) Illustration of 
the mathematical formulation. 
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A crucial part of our PSF measurement method is determining that we are capturing our measurements from a valid 
distance. Several criteria have been considered and an experimental validation of the minimum imaging distance was 
conducted, with low correlation between the results of each. Definitive analysis of the relevant factors contributing to 
the distance we wish to calculate would increase the method’s validity, increase understanding of the principles of 
optics that apply, and save a significant amount of time when performing a measurement of each new device to be 
tested.  

3.1.3 Induced Motion 

Liu and Chen [Liu2008] propose a subpixel algorithm to average the effects of lens alignment with respect to a given 
pixel. The inherent subsampling of the high-resolution PSF of the lens by the paired sensor changes the representation 
of the PSF at the image plane depending on this alignment. In our method this alignment is not known, and over the 
life of the system a number of factors (temperature and pressure changes, system vibration) will likely cause slight 
changes in alignment. We match this part of their method by introducing a spatial averaging step accomplished using 
SR [Sroubek2008], [Milanfar2011].  

 
Figure 3.5: Imaging distance validation. The diameter of the central PSF is overly large if too close to the monitor to 
measure the PSF accurately (as a grid of pointlike sources of light). As we move further from the monitor, we see the 
diameter reach a stable size as viewed from our optical system. Although it is possible to measure the pointlike sources 
on our grid from further away, doing so would decrease the SNR of each frame, necessitating additional frames per 
measurement and needlessly lengthening the data acquisition time. We therefore select a distance close to the monitor 
which is still sufficiently far away. The red vertical line represents the result using Shih’s formulation. The orange 
vertical line represents the maximum imaging distance due to FOV restrictions. The blue vertical line represents the 
minimum imaging distance according to the mathematical formulation from the system optics. The blue shaded region 
represents the earliest region where the validation measurements settle and the black vertical bar within this region 
represents our selected imaging distance. 
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Figure 3.6: Display of the order in which samples were taken for subpixel-induced motion, beginning at the central 
pixel and progressing sequentially as indicated to form a 3x3 grid of measurements in the individual areas of the 
image. Liu and Chen [Liu2008] use an averaging step in order to account for alignment of the optical axis with a 
pixel on the sensor. We employ SR in order to account for these same effects without separating the lens from the 
sensor. 

For SR reconstruction-based algorithms, there must be subpixel motion between frames [Milanfar2011], and we want 
to avoid the introduction of in-frame motion blur while introducing between-frame motion [BenEzra2005]. 
Additionally, we do not want to violate the isoplanatic region assumption in measuring the PSF of the system 
[Hornberg2006]. There is a relationship between the SR factor and the minimum number of images required 
[Lin2004]. We induce subpixel motion at the image plane by creating synthetic motion at the object plane 
[NavasMoya2013]. To accomplish this, we shifted the point field ±1 pixel vertically and horizontally, creating a 3x3 
sampling area, as shown in Figure 3.6. In this small area we take 9 measurements, which allows us the option to 
perform integer SR-factor reconstructions of 2X and 3X [Lin2004]. Larger sampling areas are possible, but it is 
necessary to investigate the tradeoff of additional accuracy versus acquisition and computational time while 
maintaining the measurements within an isoplanatic region. 

3.1.4 Capture of Images 

The image-capture process is automated using a MATLAB script on the processing device and, on the device under 
test, a program called IP Webcam [IPCamera2015], which gives network access and control of the camera module of 
the host device. Communicating with the device in this manner enables simplified alignment of the device under test 
and enables the operator to be sufficiently far away from the test apparatus so as not to induce vibration during data 
acquisition. 

 

Figure 3.7: Alignment target using the Galaxy S4 front camera, used to eliminate extraneous rotation about all three 
axes. When the camera is rotated about any axis with respect to the monitor, it is apparent in the image by a distortion 
of the scene. We manually adjust the sensor in a mount designed for this flexibility until the distortion is removed as 
seen above. The translation offsets are less problematic except in maintaining a minimum distance away from the 
monitor. 
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The sensor and target are first aligned using the video preview, which gives a handful of frames per second, ample for 
alignment using the target shown in Figure 3.7. The lenses have radially symmetric distortion fields, therefore when 
the viewed distortion of the feed from the sensor is symmetric across the FOV, we have properly aligned the target 
and sensor. The mount on which the sensor rests has four degrees of freedom to facilitate alignment, while the monitor 
used to display the target patterns contains a further two degrees of freedom to enable 6DOF alignment for our 
experiments. 

After the manual alignment step is completed, the nine target images are displayed in succession, with the appropriate 
number of images taken per target, as discussed below. After the image acquisition portion is completed, we combine 
the corresponding images into a set with images stored for further processing. In order to determine an appropriate 
cutoff that would not overly extend the data acquisition time, we normalize and fit the data to a 6-dimensional 
polynomial to smooth the estimate of the incremental percentage improvement of each added image. 

The number of images to combine per target was determined by applying a single-image, noise-level measurement 
method [Liu2012]. A set of 100 images of the pointlike grid pattern was taken without any induced motion between 
frames. These images were assembled into batches of images of increasing number from the smallest batch size of 1 
image to a batch containing every image in the set of 100. It was assumed that an optimal batch size within this range 
existed and measurements for each batch size were taken. The results can be seen in Figure 3.9. 

 
Figure 3.8: Data acquisition setup. The alignment target or point grid is located at the back of the apparatus used to 
eliminate ambient light from disrupting the measurements of the target area. The device under test is mounted in the 
alignment tool and the video feed from the device is used to align the device with the target area. The measurement 
position is adjusted via the slide to which the alignment tool is attached.  
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Figure 3.9: Noise level attenuation to determine minimum batch size. The addition of multiple frames per 
measurement allows for a reduction in the noise which gives a more accurate result. We wish to find the minimum 
number which gives a satisfactory results so that our final result will be more accurate while not overly increasing 
the data acquisition time. 

 
Figure 3.10: Polynomial fit of the normalized noise measurement data. Since the original data in Figure 3.9 was not 
smooth, we need to fit the data to get an accurate estimate of the minimum number of input frames as this process 
requires the first derivative. A six-degree polynomial was used to fit the data as lower-order models were found to 
insufficiently match the data. 

 
Figure 3.11: Plot of the percentage reduction in noise level with annotation at the 1% level. We want to get as much 
data as we are able without overly extending the data acquisition time. An additional motivation for using 1% as the 
cutoff value is the error in our measurements which shows a diminishing contribution to the accuracy of the 
measurement followed by increased accuracy. By avoiding the effect introduced by too many measurements we avoid 
this problem. 
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After plotting the data seen in Figure 3.9, the MATLAB built-in Basic Fitting Tool was used to create a smooth, 
approximately monotonic function to fit our data. It was found that the best fit that met our criteria came from a 6-
dimensional polynomial of the form 

 𝑦𝑦 = 𝑎𝑎1𝑥𝑥6 + 𝑎𝑎2𝑥𝑥5 + 𝑎𝑎3𝑥𝑥4 + 𝑎𝑎4𝑥𝑥3 + 𝑎𝑎5𝑥𝑥2 + 𝑎𝑎6𝑥𝑥 + 𝑎𝑎7 (3.8) 
The parameters were calculated to be 𝑎𝑎1 = 1.0517 × 10−11,   

𝑎𝑎2 = −4.3842 × 10−9, 

𝑎𝑎3 = 7.2604 × 10−7, 

𝑎𝑎4 = −6.1413 × 10−5, 

𝑎𝑎5 = 2.8499 × 10−3, 

𝑎𝑎6 = −7.3475 × 10−2,  

𝑎𝑎7 = 1.069  

and the norm of the residuals was 𝑎𝑎1 = 0.16315.  

The difference in the average image from the lowest-sized batches quickly diminishes and then levels out. An analysis 
of the percentage benefit of an additional image being added to the batch was set at a threshold of 1%, shown in Figure 
3.11. The values for Figure 3.11 are calculated from the data points in Figure 3.10 using the following formula: 

where  𝑏𝑏𝑘𝑘 is the value at a given index in Figure 3.11,  

𝑎𝑎𝑘𝑘+1 is the value at the subsequent index in Figure 3.10, and  

𝑎𝑎𝑘𝑘 is the value at the same index as 𝑏𝑏𝑘𝑘.  

This results in a value of 23 images per batch. A lower value than 1% may be selected should an alternate application 
necessitate a lower noise level. This curve will vary based on the sensor used, and as such the appropriate value of 
images per batch for the sensor should be determined before acquiring data. 

3.2 Algorithms and Experimental Results 

A more complete description of our work with and analysis of SR and deconvolution algorithms is presented in 
Chapter 0. The specific case detailed here comprises our findings as they relate to the type of data used in measurement 
of the PSF of a lens. Application to different types of data may result in findings unique to the application.  

3.2.1 Choice of SR Method and Results 

We compare one multi-frame interpolation method and five SR methods to find a suitable method to apply in our 
pipeline. We evaluate these methods in two groups, as indicated in our earlier discussion of the methods. The input to 
these methods are the averaged batch images obtained of the point-grid area. The resulting nine sample images with 
subpixel motion allows for integer SR factors of 2 and 3 [Gunturk2013]. For the experiments shown in this section, 
we set an SR factor of 2.  

 𝑏𝑏𝑘𝑘 = 𝑎𝑎𝑘𝑘+1 − 𝑎𝑎𝑘𝑘 (3.9) 
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3.2.1.1 Classical SR Methods 

The classical SR methods are grouped together based on the timeline of SR methods in [Nasrollahi2014]. As the RSR 
method [Zomet2001] is a derivative of IBP [Irani1991], it is included in this grouping despite being released much 
later. 

3.2.1.1.1 Bicubic Interpolation [Zomet2001]  

Bicubic interpolation utilizes all of the low-resolution input images as opposed to taking the more common single-
frame approach. Our result is shown in Figure 3.12(b). The overshoot effect common to this method is apparent in the 
SR reconstruction. For natural images this may be acceptable, as it increases the acutance of the image. However, in 
our measurements of the PSF from the measured data, it is an undesirable artifact of the interpolation method. 

3.2.1.1.2 Iterated Back Projection (IBP) [Irani1991]  

This method requires a high-resolution initial estimate and projects how the high-resolution image would influence 
the low-resolution images based on the motion estimation of the input frames. Irani and Peleg [Irani1991] explain that 
the initial guess does not influence the speed or stability of the method’s output, suggesting a simple average of the 
input images be used as the initial estimate. The results with regard to our measured data also exhibit some artifacts 
in the SR reconstruction. It is likely that the IBP method is sensitive to residual noise contained in the input frames. 

3.2.1.1.3 Robust Super Resolution [Zomet2001] 

Zomet et al.’s RSR [Zomet2001] has principally the same structure as Irani and Peleg’s IBP (Peleg also being one of 
the authors). However, the average [Irani1991] was replaced with a median [Zomet2001] to estimate the reprojection 
error of the high-resolution image estimate, to avoid outliers and sidestep issues with noise sensitivity commonly seen 
in IBP. There is less sensitivity to noise using RSR as compared to IBP although the apparent ringing artifacts remain. 
Keren et al’s method [Keren1988] was used to register the images before applying SR in these two methods. Keren et 
al’s motion estimation method models the motion between frames as translation and a Euclidean rotation about the 
center of the image. An error function is constructed by expanding the Taylor series representation of the motion and 
minimizing relative to the 𝑥𝑥 and 𝑦𝑦 translations and 𝜃𝜃 rotation of the parameters estimated for each image in the 
sequence, using the first image in the sequence as a reference. 

    
(a) (b) (c) (d) 

Figure 3.12: Comparison of input and result of classical SR methods. One input frame (a), bicubic interpolation using 
all nine input frames (b), IBP (c), and RSR (d) results are shown. The input frame is displayed using nearest neighbor 
(NN) interpolation to better demonstrate the improved quality in the SR result.  
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3.2.1.2 Contemporary SR Methods 

3.2.1.2.1 Normalized Convolution [Pham2006]  

Normalized Convolution (NC) is a local signal modeling technique utilizing projection onto polynomial basis 
functions, equivalent to the Taylor series expansion for traditional NC. “First-order NC with three bases {1, x, y} can 
model edges, and second-order NC with six bases {1, x, y, x2, xy, y2} can further model ridges and blobs. Higher-
order NC can fit more complex structures at a higher computational cost. However, NC with order greater than two is 
rarely used since the high-order bases are often fit to noise rather than the signal itself.” First-order NC is used for SR 
fusion [Pham2006]. SR reconstruction using NC is both aesthetically pleasing, and in comparing the HR output with 
the LR input images it appears to be a reasonable result.  

The method uses a least-squares estimation to determine the best-fit basis function to model the LR data in estimation 
of the HR image. The method is “a good interpolator for uncertain data [but] requires the signal uncertainty to be 
known in advance.”  This feature is billed in the form of Noise Robustness, which will first calculate the certainty for 
each LR input image prior to execution. Because the robust NC approach does not have a closed-form solution like 
least-squares NC, a two-pass approach uses the result of least-squares NC as the initial estimate for robust NC using 
an iterative weighted least-squares approach. A comparison of the results of this method with and without the two-
pass step is shown in Figure 3.13.  

3.2.1.2.2 Robust Super Resolution [Farsiu2004]  

Farsiu et al.’s Robust SR method requires an estimate of the HR image (known as a seed image) and treats the supplied 
between-frame motion as an estimated prior. The authors note that if the data and noise do not conform to the assumed 
model, then the performance of the method degrades and the presence of outliers will disrupt the estimates made. The 
authors assume a white Gaussian noise model, this coupled with an admitted flaw in their assumed translational motion 
model that contributes to increased error. These issues could explain, in part, the results obtained.  

When this method was applied in other preliminary experiments performed on synthetic images, it produced mostly 
acceptable results; however, applied to our measured PSF data, it did not produce acceptable results. A selection of 
priors was used to determine whether the results obtained were simply due to a poor choice in seed image, but none 
of the options attempted resulted in a more acceptable outcome. 

  
(a) (b) 

Figure 3.13: Comparison of the least-squares one-pass NC reconstruction (left) with the two-pass robust NC result 
(right). No difference in output is seen despite the significant increase in processing time. Given the extended 
processing time required for the two-pass approach and the evidence that the one-pass approach is not sensitive to 
the residual level of noise in our measured LR samples of the PSF, we will use the one-pass result in our later 
comparison. 
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3.2.1.2.3 Blind Super Resolution (BSR) [Sroubek2008]  

Šroubek et al.'s method combines a regularization-based SR approach with simultaneous estimation of the spatially 
invariant blur kernel, which are used in estimating the motion of the LR images. The method can be controlled by 
selecting a potential function used in minimizing the cost function. An alternating minimization scheme is employed 
where the algorithm performs a minimization first in the image domain, then in the orthogonal blur domain, and 
repeats until either the maximum number of iterations have occurred or a stopping criterion is met. The selection of 
the parameters was performed empirically after applying the method to a wide range of datasets. A best result would 
be obtained by intelligent or exhaustive search of the parameter space, but the high dimensionality of the space and 
length of time required per experimental run renders this approach prohibitive. 

The BSR method generates visually pleasing results compared to the input images. Of note is the difference in the 
pixel dimensions of the output. Because a 25x25 kernel estimation size was used, the method returns a slightly 
undersized output, cropped about the edges proportional to the size of the kernel estimate matrix. A comparison of the 
results of the contemporary class of methods is shown in Figure 3.14.  

3.2.1.3 Comparison of Methods 

We omit the result obtained using [Farsiu2004] in our comparison. The images have been 2X NN upsized for easier 
viewing. The diameter and shape of the varying results is consistent, but the content varies significantly from method 
to method. IBP (Figure 3.15 (b),(f)) retains the most noise outside the extents of the PSF area. Bicubic interpolation 
and RSR (Figure 3.15 (a,f) and (c,h), respectively) have irregularities and noise in the PSF area compared to the NC 
and BSR results (Figure 3.15 (d,i) and (e,j), respectively). Aesthetically, the IBP reconstruction (second column from 
the left) retains the most noise outside the extents of the approximately 7x7 pixel PSF area. Meanwhile, the bicubic 
interpolation and ZRSR results on either side have irregularities and noise in the PSF area as compared to the NC and 
BSR results on the right side of Figure 3.15. A comparison to the nine input samples from which these results were 
calculated is needed. 

A visual inspection of the nine input samples in Figure 3.16 based on contrast, relative illumination across the PSF, 
and shape leads us to conclude the NC result is the appropriate results to use in our method. We also include BSR 
[Sroubek2008] to determine whether our preliminary conclusions are justified. 

    
(a) (b) (c) (d) 

Figure 3.14: Image summary of application of the modern SR methods. One input frame (a), the Normalized 
Convolution result (b), Farsiu et al.’s Robust SR (c), and Šroubek et al.'s BSR (d) results are shown. The input frame 
is displayed using nearest neighbor (NN) interpolation to better demonstrate the improved quality in the SR result. 
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 3.15: (a-e) Comparison of SR reconstructions at the 2XSR resolution level (left to right - Bicubic interpolation, 
IBP, RSR, NC, BSR). As we desire to use the PSF measurements to correct for the effects of the lens rather than to 
give an accurate, high-resolution model of the shape we cannot use the SR results directly. (f-j) Comparison of SR 
reconstructions after downsampling to the original pixel size (left to right - Bicubic interpolation, IBP, RSR, NC, 
BSR). After downsampling the data shown in (a-e) we obtain a representation of the PSF at a sampling that may be 
used directly to correct the effects of the lens. 

 

 

Figure 3.16: Nine input measurements of the central PSF of the Galaxy S4. We inspect all of the input images when 
selecting a method so that we can be sure to have a method which most accurately represents the true underlying 
data. As we do not know how the lens is aligned relative to the sensor, as seen in the difference between measurements 
above, we must combine the data in order to obtain a more accurate representation. 
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3.2.2 Choice of Deconvolution Method and Results 

As a mathematical operation used in image restoration, deconvolution is widely used in image de-blurring and contrast 
enhancement techniques. Image degradation comes from different sources such as aperture diffraction, sensor noise, 
and lens blur. Thus, the objective of image restoration is to reduce or eliminate some or all of these effects. It is 
important to note that these forms of image degradation are independent from one another. This independence allows 
us to use deconvolution techniques. 

The effects of diffraction are often less significant than the effects of blur and are most commonly handled in the 
deconvolution operation as part of the PSF estimation. To reduce or eliminate the effects of noise, there exist 
algorithms that can pre-filter the noise, thus making deconvolution results more robust, as the deconvolution process 
is inherently sensitive to noise because it is an inverse operation [Bertero2005]. Lens blur is a non-random spreading 
of the light that occurs before recording the scene at the sensor plane. Lens blur is intrinsic and thus can be modeled 
a priori. Wiener [Gonzalez2008], Lucy-Richardson [Richardson1972], [Lucy1974], Regularized Deconvolution 
[Steve2008], and Kotera at al’s [Kotera2013] methods are applied to sample image captures to demonstrate the 
improved quality. 

Though our method was initially developed in response to issues the authors saw with Liu and Chen’s approach 
[Liu2008], we lack the equipment to directly compare to their method. The approach of Delbracio et al 
[Delbracio2012], though a calibrated target-based approach, presents a viable comparison as they also consider 
subpixel measurement of the PSF. 

We calculated the centroid of each local measurement and generated a map of the matching area using kNN (with 
k=1) to generate the map. The value of each pixel corresponds to the index number in the data structure used to store 
the individual extracted PSF measurements. Our result is shown in Figure 3.19. Though not encountered in this 
measurement, some systems we tested had some “bad” pixel regions that reported a reading higher than the 
surrounding areas, which were filtered out during our extraction process.  

 
Figure 3.17: Input image from the Galaxy S4. This circuit board was selected as it provides many hard edges, text, 
and parallel lines in the barcodes shown in the highlighted region. The highlighted region is displayed in Figure 
3.18(a) to enhance visibility.  
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Our spatially variant deconvolution function iterates in the order indicated by the map, extracting the region from the 
image acquired, and applies the desired deconvolution method on the region, adding the masked result to the output 
image.  

All experiments shown were performed on a system with an Intel Xeon E5507 Processor (Quad-core 2.26GHz) and 
12GB DDR3 RAM. 

More detail on the background of deconvolution in general and algorithms used in particular is given in Section 6.3.  

3.2.2.1 Wiener Deconvolution [Gonzalez2008] 

Wiener deconvolution takes just under three minutes to complete, and is shown in Figure 3.18(b). The results do not 
produce significant improvement in the clarity of features compared to the input and results in an overall darkening 
of the image.  

3.2.2.2 Lucy-Richardson Deconvolution [Richardson1972], [Lucy1974]  

Lucy-Richardson deconvolution completed in just under 3.5 minutes. Shown in Figure 3.18(c), the result is much 
clearer compared to that of Wiener. In our experimentation, we found that restricting the number of iterations of the 
algorithm to four yielded results that did not significantly diminish in contrast.  

3.2.2.3 Regularized Deconvolution [Steve2008] 

Regularized deconvolution took 12.4 minutes to complete, and introduces blur rather than removing it in addition to 
reducing contrast. This effect increases in proportion to the distance from the center of the image. For this reason, the 
result is not included in our comparison.  

  
(a) (b) 

  
(c) (d) 

Figure 3.18: Comparison of the results of deconvolution applied to the image shown in Figure 3.17. (a) Highlighted 
section of the image shown in Figure 3.17. (b)  Result of the application of Wiener spatially variant deconvolution. 
The Weiner filter is sensitive to noise and parameters were carefully chosen to avoid this artifact. (c) Result of the 
application of Lucy-Richardson spatially variant deconvolution. At a comparable processing time to Weiner, the 
results are the best of the methods tested. Note in particular the improved clarity of the lines in the barcode. (d) Result 
of application of Kotera et al.'s spatially variant deconvolution. This method has comparable processing time to both 
Weiner and Lucy-Richardson, but results in an over-smoothing of the result. 
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3.2.2.4 Kotera et al Nonblind Deconvolution [Kotera2013]  

Shown in Figure 3.18(d), the method of Kotera et al [Kotera2013] took just over four minutes to complete. The method 
causes overly smooth regions in the result. Despite the reduction in noise in the image, the blur is not removed.  

3.2.3 Verification and Application to Other Optical Systems 

Though our method was initially developed in response to issues the authors saw with the work of Liu and Chen 
[Liu2008], we lack the equipment to directly compare our results with their method. Their use of specialty equipment 
was also a concern that we sought to address in the development of our method to enable simple direct PSF 
measurement using commodity hardware. The work of Delbracio et al [Delbracio2012], though a calibrated target-
based approach, presents a viable comparison in that the authors also consider subpixel measurement of the PSF and 
employ a repeatable, nondestructive approach for determining the PSF of an optical system. 

The overall shape and extents of the two representations shown in Figure 3.20 match well, though there are some 
differences in the edges and distribution of energy within the PSF area. The results of this measurement are available 
for more detailed inspection [IPOL1]. One explanation to account for the difference, other than the fundamental 
difference in the approach of the methods compared, is that Delbracio et al’s approach [Delbracio2012] recommends 
a measurement area of 100x100 pixels in order to make an accurate estimate. Within this same pixel area, we have 16 
measurements of the spatially varying PSF. 

 

 
Figure 3.19: The deconvolution mask mapping the PSFs of the Galaxy S4 system, colors correspond to indices of the 
PSF in data storage. PSFs are corrected for noise and bias and measurements too near the edge are discarded as 
incomplete.  
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(a) (b) 

Figure 3.20: Comparison of our result (a) at the optical center of the Galaxy S4 versus using Delbracio et al’s method 
[Delbracio2012] (b). Though the size of the PSF obtained using the two methods is quite similar in diameter, the 
content is quite different, owing to the drastically different approaches of obtaining the respective results. Further, 
we are able to only make a coarse comparison to [Delbracio2012] due to constraints of their method and have selected 
the area around the central PSF as it changes the slowest from one sample to the next. 

  
Figure 3.21: The deconvolution mask mapping the PSFs of the Asus system, colors correspond to indices of the PSF 
in data storage. PSFs are corrected for noise and bias and measurements too near the edge are discarded as 
incomplete.  
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3.2.3.1 Asus Transformer TF700T  

3.2.3.1.1 PSF 

The result of the automatic PSF extraction is applied to the data from the device under consideration and the result is 
shown in Figure 3.21. 

3.2.3.1.2 Deconvolution  

The Asus Transformer TF700T front-facing camera has similar lens and sensor characteristics as seen by the results 
compared to the Galaxy S4 measurement.  

3.2.3.1.3 Delbracio Comparison  

The results of the measurement using Delbracio et al’s approach shown in Figure 3.22 are available for more detailed 
inspection [IPOL2]. 

3.2.3.2 GoPro Hero 3+ Black Edition 

This system has a significant distortion field due to its wide-angle fisheye lens. We captured the requisite number of 
images using the companion application, which provided its own video preview, easing the alignment process. 

  
(a) (b) 

Figure 3.22: Comparison of our result (a) at the optical center of the Asus versus using Delbracio et al’s method 
[Delbracio2012] (b). Though the size of the PSF obtained using the two methods is quite similar in diameter, the 
content is quite different, owing to the drastically different approaches of obtaining the respective results. Further, 
we are able to only make a coarse comparison to [Delbracio2012] due to constraints of their method and have selected 
the area around the central PSF as it changes the slowest from one sample to the next.  
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3.2.3.2.1 PSF 

We performed experiments at a range of imaging distances and selected a distance of 30.5cm for comparison. If we 
used a greater distance, the noise in the measurements made the reconstructions unreliable. Meanwhile, measuring 
from a closer distance gave too high a sampling of the target, and individual samples of the PSF were not unique. As 
the sensor was placed at several distances closer to the target, the size of the PSF changed because the point-like 
source would now no longer image to less than one pixel.  

3.2.3.2.2 Deconvolution 

Because this system includes a lens with such a large FOV, imaging at the optimal distance did not allow 
measurements across the entire FOV. Given the method of assigning points in the deconvolution map to the nearest 
valid PSF measurement, we assigned each point in the images supplied for testing a valid PSF measurement, as seen 
in Figure 3.23; however, the accuracy of the deconvolution decreases toward the edges of the image.  

3.2.3.2.3 Delbracio Comparison 

The results from processing on this sensor correlated little to the result obtained by applying [Delbracio2012]. We 
noted during experimentation that the PSF for this lens changed quite rapidly based on the distance to target, and we 
surmise that the disparity seen in Figure 3.24 may be due to the requisite distance of several feet in order to abide by 
the 100x100 pixel requirement established by Delbracio et al [Delbracio2012] as compared to the 10cm to 35cm range 
measured using our method. Further information about our result after applying the work of [Delbracio2012] is 
available for more detailed inspection [IPOL3]. 

 
Figure 3.23: Deconvolution map of the PSFs for the GoPro (colors correspond to indices of the PSF in data storage). 
PSFs are corrected for noise and bias. Note that the regions of the image towards the edge, away from the 
measurements at the center of the FOV, are still assigned to use the closest measurement in applying deconvolution. 
This results in reduced accuracy toward the edges, but these regions are more likely to be cropped in a fully corrected 
image.  
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3.3 Conclusions 

We have proposed a repeatable, nondestructive PSF measurement technique and validated our results by applying 
deconvolution to natural images captured by the same device which we measured. We compared our proposed 
measurement method to a contemporary random noise PSF estimation method [Delbracio2012] and the results show 
improvement to both methods [Liu2008], [Delbracio2012]. Some unique aspects in each method’s approach account 
for the differences in the results. Delbracio et al’s approach [Delbracio2012] requires measurement of a 100x100-
pixel area while our method is only restricted by the size of the device’s PSF. Also, our method is a direct measurement 
rather than an indirect estimation using a calibrated target, so we can avoid the ambiguity discussed in the literature 
related to the assumptions and claims about the best type of target to use to get the most accurate representation of the 
PSF.  

Not only does our increased spatial sampling allow for smoother transitions in the boundaries between regions, but 
applying our method to a variety of systems could allow for better understanding of the PSF in general regarding 
differences in lens families or arrangements of real systems that may not have been discovered previously by 
mathematical analysis of models. 

3.3.1 Competitiveness of Method 

Our method was developed in response to potential side effects that the authors saw in Liu and Chen’s work [Liu2008], 
that measurement of the PSF using their method involved destruction of the optical system. We address this facet, 
both by eliminating the cost and time required for disassembly as well as by aligning with Shih et al’s observations 

  
(a) (b) 

Figure 3.24: Comparison of our result (a) at the optical center of the GoPro versus using Delbracio et al’s method 
[Delbracio2012] (b). Delbracio et al take measurements of a single PSF over a significantly larger area, which we 
take to partially account for the difference in result particularly since the distortion is so large for this system. 
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[Shih2012], which state that due to manufacturing tolerances, different lenses of the same prescription will have 
different PSFs. Also of note are the alignment effects of the lens with its paired sensor, both in the effects of the 
translational alignment with the pixel surface [Liu2008] as well as handling focal-plane alignment and any tilt 
alignment issues. By leaving the lens paired with the sensor it was intended to work with, we eliminate all of these 
undesirable side effects and ambiguities. The demonstration in Figure 3.25 shows the sensitivity of deconvolution to 
an accurate knowledge of the PSF of the lens. 

Further, our method does not utilize a calibrated target, used in popular methods present in the literature for 
measurement of the PSF. Joshi et al [Joshi2008] use a sharp edge pattern. Other methods that use a random noise 
target [Levy1999], [Park1984], [Delbracio2012], [Brauers2010] also do not directly measure the PSF, and many do 
not consider the spatially variant nature of the PSF across the FOV of the optical system. One benefit of using these 
types of methods is the enhanced SNR of each measurement image captured, which was a concern handled as part of 
our work. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3.25: Accurate knowledge of the PSF is vital to successful removal of the blur effects of a lens. Due to 
manufacturing tolerances the lens prescription does not give sufficient information for blur removal. Shown above 
are an ideal representation of the PSF (a), the PSF measured by the method of Delbracio et al. [Delbracio2012] (b), 
and the measurement obtained from our proposed PSF measurement method (c). For a captured image (d) we see 
how small differences in the accuracy of the PSF measurement can greatly influence the clarity of the restored image. 
Using Delbracio et al.’s measurement (e) is an improvement over the original but the result does not give as significant 
an increase in clarity as does using the measurement using the proposed method (f). 
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3.3.2 Future Work 

Additional work in applying our PSF measurement method includes analyzing the use of our measurements in other 
related applications: non-stationary image deconvolution, validation of lens quality compared to a prescription or in 
detection of counterfeit lenses, etc. As we obtain more information about the performance of our method in a variety 
of applications, updates and corrections in the process will further enhance the general applicability. 

Development of a fully automated system would allow users of smartphones to be able to calibrate the internal image 
correction for lens effects by enabling rapid calculation of the PSF of their imaging system. Since consumer use of 
mobile phone cameras for everyday capture of personal memories is ever increasing, applying our method would 
widely benefit modern image processing methods by enabling the best quality recording of images and video to 
enhance the inter-communication of millions. Further, extending this automation would allow researchers to analyze 
the effects of changes in imaging systems subject to extreme environmental conditions. Generally these are expensive, 
purpose-built systems for which accuracy and longevity are key. Analyzing the change in PSF over the course of the 
device’s lifetime would ensure accurate correction of the data obtained, and validate the device’s continued use, either 
to serve as a lesson learned in design change or to renew its term of service.  
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4 Image Simulation 

Although the intent of development of any image processing algorithm is to provide accurate results in practical 
application, often the first step is to evaluate a proposed methodology on image of known construction. For instance, 
a good image may be degraded using known parameters in order to obtain knowledge of where the algorithm’s areas 
of robustness and brittleness lie. In this section we describe the process used and the scope of parameters explored to 
test the limits of our synthetic image generation workflow. Results will be shown to demonstrate the utility of first 
operating on synthetic image sets.  

4.1 Target Path Information 

For our application, the source information from which we base our synthetic image generation does not derive from 
simplistic ‘cartoon’-style images to which noise and blur will be added, but rather from three-dimensional path 
information of the target’s position. The original information is composed of regular time-steps with XYZ position 
and XYZ velocity vectors at each time-step. Time-steps are irregular, ranging from between 5 seconds before the next 
measurement to 60 seconds. This information is then recomposed and interpolated into a regular series of XYZ 
positions at ¼ second time-steps between each position vector. There are several target paths which are processed in 
this way where we generate dense position information to be used in our experimentation.  

These positions and a model of the target are used in generation of our simulated images. We explore the situation in 
which the target is viewed from above by a sensor which is mounted on a gimbal and equipped to be capable of 
tracking the target when within its trackable area. The sensor has a given resolution and noise characteristics, and is 
instrumented with a lens which introduces its own degradations. 

4.2 Image Acquisition Model 

For the situation described in Section 1.1 we must derive an image acquisition model. We desire to have our simulated 
images as representative as possible of those images we would expect to acquire from a real system and therefore our 
acquisition model will be as comprehensive as possible. This is a departure from many synthetic image generation 
schemes which often simply assume additive Gaussian white noise and Gaussian blur [Sroubek2008]. What follows 
is a graphical depiction of the construction of our described situation for which we simulate the image acquisition, a 
mathematical formulation of the situation depicted, and finally a discussion of the scope of error level magnitude 
considered for each error source. 

4.2.1 Depiction of Image Acquisition 

For our considered image acquisition situation, we have a target we desire to track passing through the atmosphere of 
Earth. The target is always above the surface and the sensor platforms are downward-facing, always above the target 
as depicted in Figure 4.1. Given that the target is warmer than the atmosphere surrounding it or the surface of the Earth 
behind it, the infrared (IR) portion of the electromagnetic spectrum is selected for simulating the images. Table 4.1 
gives a summary of the variable names which will be used.  
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Table 4.1: Description of the variable names used in description of the tracking situation and in mathematical 
formulation of the image acquisition model. Variable names are in bold for the parameters which appear in the 
mathematical formulation in the ‘Name’ column, the data type is also listed as well as a description of the contents 
of the variable/parameter. 

Name Type Description 

Target position (TP) 3x1 vector x,y,z value of target 

Target size 2x1 vector Height and width of target in meters 

Sensor position (SP) 3x1 vector x,y,z value of sensor 

Sensor direction (SD) 3x1 vector Direction indicating the pan/tilt of the sensor 

Sensor FOV Scalar The field of view (in degrees) of the sensor 

Sensor resolution 2x1 vector Height (SH) and width (SW) of sensor in pixels 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4.1: Depiction of the geometric formulation of the imaging situation. (a) shows the coordinate axes, sensor 
position (SP), target position (TP), and sensor direction (SD). (b) shows the formulation of dist2IP, the distance of 
the target to the image plane, which is the difference of TP and SP. (c) shows the extents of the FOV of the sensor at 
dist2IP, which establishes the corners of the image plane. (d) shows the FOV superimposed on the coordinate space 
surrounding the target. (e) shows the physical meaning of d1 and d2 which are the coordinates of the target in image 
space represented in physical space. (f) shows the same FOV grid in (e) from an image-centric view, demonstrating 
the analog of image space at the plane define in physical space.  
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4.2.2 Mathematical Formulation of Geometric Model 

The coordinate space of our system model uses the origin at the center of the Earth. The z-axis goes up through the 
North Pole and the x- and y-axes lie along the equator. Figure 4.1(a) shows the sensor position (SP) and target position 
(TP) with the orientation of the sensor or sensor direction (SD) represented as the alignment of the sensor with the 
target. Whenever the target is within range of the sensor’s trackable area (defined as the limit or extents of the sensor’s 
pan-tilt capabilities) the sensor is oriented to face the target directly. TP is known at each time-step and SP is defined 
prior to the initiation of a given experiment. SP has an orbital path, but for purposes of formulation we will assume 
that SP does not change appreciably during the period of time for which TP is within the trackable area of the sensor.  

Figure 4.1(b) indicates our first calculated variable, distS2IP, which is the distance from the sensor to the image plane 
defined at the center of the target and is defined as 

 𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡2𝐼𝐼𝐼𝐼 = ‖𝑆𝑆𝐼𝐼 − 𝑇𝑇𝐼𝐼‖ (4.1) 
At this distance, we are able to define the imaging plane with respect to the center of the target and the FOV of the 
sensor. This gives values for the corners of the viewable area around the target and the image plane width and height. 

 𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑑𝑑𝑡𝑡ℎ = 2 ∗ 𝑑𝑑𝑠𝑠𝑠𝑠𝑡𝑡2𝐼𝐼𝐼𝐼 ∗ 𝑡𝑡𝑎𝑎𝑠𝑠 𝐹𝐹𝐹𝐹𝐹𝐹
2

 (4.2) 
If the horizontal FOV (HFOV) and the vertical FOV (VFOV) differ, HFOV and VFOV may be substituted into (4.2) 
in order to calculate IPWidth and IPHeight, respectively. Once we know the appropriate extents of the image plane 
using (4.2), we can now rotate the plane from its coordinate system centric orientation and instead orient it with respect 
to SP. We do this using the following equations, where each of points P{1-4} are represented in the equations by their 
XYZ coordinates. The transformation of each point is identical.  

 �
𝑥𝑥′
𝑦𝑦′
𝑧𝑧′
� = �

1 0 0
0 𝑠𝑠𝑐𝑐𝑠𝑠 𝜃𝜃𝑥𝑥 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑥𝑥
0 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑥𝑥 𝑠𝑠𝑐𝑐𝑠𝑠 𝜃𝜃𝑥𝑥
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𝑥𝑥
𝑦𝑦
𝑧𝑧
� (4.3) 
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𝑦𝑦′′
𝑧𝑧′′
� = �

𝑠𝑠𝑐𝑐𝑠𝑠 𝜃𝜃𝑦𝑦 0 −𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑦𝑦
0 1 0

𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑦𝑦 0 𝑠𝑠𝑐𝑐𝑠𝑠 𝜃𝜃𝑦𝑦
� �
𝑥𝑥′
𝑦𝑦′
𝑧𝑧′
� (4.4) 

(4.3) and (4.4) perform three-dimensional rotations of the image plane about the x- and y-axes. They each use the 
values 𝜃𝜃𝑥𝑥 and 𝜃𝜃𝑦𝑦, which are defined as 

 𝜃𝜃𝑥𝑥 = 𝑡𝑡𝑎𝑎𝑠𝑠−1
𝑇𝑇𝐼𝐼𝑦𝑦 − 𝑆𝑆𝐼𝐼𝑦𝑦
𝑇𝑇𝐼𝐼𝑧𝑧 − 𝑆𝑆𝐼𝐼𝑧𝑧

 (4.5) 

 𝜃𝜃𝑦𝑦 = 𝑡𝑡𝑎𝑎𝑠𝑠−1
𝑇𝑇𝐼𝐼𝑥𝑥 − 𝑆𝑆𝐼𝐼𝑥𝑥
𝑇𝑇𝐼𝐼𝑧𝑧 − 𝑆𝑆𝐼𝐼𝑧𝑧

 (4.6) 

The xyz subscripts indicate which of the values in the position vectors should be used in determining the appropriate 
value for rotation. The properly-oriented resulting image plane is indicated in Figure 4.1(d).  

As seen in Figure 4.1(e), the point 𝐼𝐼1 is designated as the image origin. We now wish to find the distance from the 
center of the target to the top of the image plane. The vector along the top of the image plane is given by 

 𝑣𝑣 = �
𝐼𝐼1𝑥𝑥 + (𝐼𝐼2𝑥𝑥 − 𝐼𝐼1𝑥𝑥)𝑡𝑡
𝐼𝐼1𝑦𝑦 + �𝐼𝐼2𝑦𝑦 − 𝐼𝐼1𝑦𝑦�𝑡𝑡
𝐼𝐼1𝑧𝑧 + (𝐼𝐼2𝑧𝑧 − 𝐼𝐼1𝑧𝑧)𝑡𝑡

� (4.7) 

The value for 𝑡𝑡 which minimizes the distance between TP and the top of the imaging plane is 

 𝑡𝑡 =
(𝐼𝐼1 − 𝑇𝑇𝐼𝐼)(𝐼𝐼2 − 𝐼𝐼1)

|𝐼𝐼2 − 𝐼𝐼1|2  (4.8) 

The same steps are used to find the distance from TP to the left edge of the image plane. These two vectors called 𝑣𝑣 
in (4.7) define 𝑑𝑑1 and 𝑑𝑑2 as shown in Figure 4.1(e) and (f).  
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With the location of the center of the target now defined in the physical image plane we must now represent the target 
in image coordinates. To do this, we must know what the correspondence of units is between the two spaces. The 
number of meters per pixel is given as  

 𝑀𝑀𝐼𝐼𝐼𝐼𝐻𝐻 = 𝐼𝐼𝐼𝐼𝐻𝐻𝐼𝐼𝑖𝑖𝑔𝑔ℎ𝑎𝑎
𝑆𝑆𝐻𝐻  (4.9) 

 𝑀𝑀𝐼𝐼𝐼𝐼𝑤𝑤 = 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑏𝑏𝑎𝑎ℎ
𝑆𝑆𝐼𝐼  (4.10) 

for the image width and height, respectively. 𝑆𝑆𝐻𝐻 and 𝑆𝑆𝐼𝐼 are the sensor height and width in pixels. Then in image 
coordinates, the center of the target is 

 𝑠𝑠 =
𝑑𝑑1

𝑀𝑀𝐼𝐼𝐼𝐼𝐻𝐻
 (4.11) 

 𝑗𝑗 =
𝑑𝑑2

𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼
 (4.12) 

 

About these coordinates in image space, we must construct a representation of the target. For now we will assume the 
simplistic case of a binary image for which the value is set high if the pixel contains some portion of the target and 
the value is set low otherwise. This gives us the number of pixels that the target will map to: 

 𝑁𝑁𝐼𝐼𝑠𝑠 =
𝑇𝑇𝑎𝑎𝑟𝑟𝑔𝑔𝑒𝑒𝑡𝑡 ℎ𝑒𝑒𝑠𝑠𝑔𝑔ℎ𝑡𝑡

𝑀𝑀𝐼𝐼𝐼𝐼𝐻𝐻
 (4.13) 

 𝑁𝑁𝐼𝐼𝑗𝑗 =
𝑇𝑇𝑎𝑎𝑟𝑟𝑔𝑔𝑒𝑒𝑡𝑡 𝑤𝑤𝑠𝑠𝑑𝑑𝑡𝑡ℎ

𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼
 (4.14) 

These values allow us to generate a binary image of the target as it would be seen from the perspective of the sensor, 
shown in Figure 4.2. 

4.2.3 Image Acquisition Model 

Any physically realizable imaging system will introduce errors in the acquired data. These errors largely come from 
three different sources. The two intrinsic sources of error that are particular to the imaging system and do not change 
significantly from one acquisition to the next stem from the lens and sensor. Use of a lens introduces blur, both from 
diffraction blur due to the finite aperture and the various components of optical blur from the lens elements. These 
blurs are generally described in the form of what is known as the point-spread function (PSF). The pixels of the sensor 
also contribute to what is called sensor blur. Rather than a true impulse sampling of the incoming light, sensors have 
limited resolution and finite pixel sizes. This leads to blurring effects, coupled with aliasing effects which limit the 
effective resolution of the system.  

The third source of error is extrinsic and varies significantly between image acquisitions and are related to the motion 
of the optical system and motion of subjects within the scene. This motion gives rise not only to the necessary between-
frame motion vital to the success of SR algorithms, but also to motion blur. Motion blur occurs when either the image 
acquisition system or subjects within the scene, often both are present, move during the finite acquisition time of the 
sensor. 



   51 

 
Figure 4.2: Depiction of the target as viewed from the sensor. The 𝒊𝒊 and 𝒋𝒋 coordinates of the center of the target are 
indicated and the extents of the target are shown in a binary representation where any pixel with information about 
the target is set to high. If the target were to be contained entirely within a single pixel, but blurring of the lens system 
spread this light energy to neighboring pixels, the centroid of the target location can be calculated from these relative 
values. We also consider the effects of noise contamination and detection of the target based on its spectral signature 
in a multispectral image acquisition scenario. 

 

    
(a) (b) (c) (d) 

Figure 4.3: The image acquisition model, also known as the observation model [Milanfar 2010]. The flowchart shown 
describes the relationship of the original scene to the observed images. The perfect observed image differs only from 
the continuous scene it represents by the discretizing of the scene into pixels (a). In a multi-acquisition framework, 
the individual images acquired differ from each other by small amounts and therefore we have images of the same 
scene with small amounts of motion between them (b). The motion model used depends on the acquisition system used 
and the motion of objects within the scene. An imaging system which utilizes a lens with a finite aperture and 
acquisition time will have some level of blur (c). Finally, the images are recorded by a sensor of limited resolution 
which further introduces some amount of noise in the measurements (d).  
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The intrinsic sources of error may be calculated prior to image acquisition, a calibration for each lens-sensor pair can 
be made and saved for recall in processing the images to remove the negative effects of these sources. The extrinsic 
source of error must be calculated for each image acquired. Techniques have been developed for both blind 
[Sroubek2008] and non-blind [Kotera2013] recovery of the intra-frame motion blur, while a class of registration or 
alignment methods have been developed to calculate the inter-frame motion [Milanfar2010].  

As shown in Figure 4.3, noisy, blurry, low resolution images (d) – versions of our desired representation (a) of the 
continuous scene – are the only data we are able to acquire. We must use our knowledge of how these sources of error 
were introduced, coupled with methods developed to correct the particular error, and use knowledge of our system 
and the conditions under which the images were acquired in order to arrive at our best estimate of (a). Two sources of 
error not yet discussed are typically handled as statistical modeling problems [Parenti1994]: sensor noise and 
atmospheric turbulence. 

4.2.4 Scope of Error Sources in Image Acquisition 

An appropriate range must be established for which the synthetic image generation applies the various sources of 
degradation. We will consider situations ranging from ideal to representative to worst-case for each of the sources of 
error mentioned in order to show typical and limiting results for our considered situation in order to get an accurate 
picture of our capabilities with respect to our major output – the position of the target we are tracking. In this document, 
we will explore the types and ranges of error for each source and show results where conditions are ideal and error is 
low, where conditions are typical and error is moderate, and we will explore the worst case scenarios, or rather we 
will discover the breaking point of our approach with respect to each error source and perform a sensitivity analysis 
of our recovered target position as the error increases. 

4.3 Source of Error: Lens 

The use of lenses with image acquisition systems is near-ubiquitous, and lenses are an implied component of digital 
optical systems. There are countless varieties of lenses that may be used and each lens comes with tradeoffs in cost, 
complexity, size, weight, and quality. In this section, we review the major lens families and discuss correcting for the 
degrading effects introduced by the lens on acquired images. 

4.3.1 Lens Families 

“The lens is generally the most expensive and least understood part of any camera”[Kingslake1989], and though a 
great number of advancements and improvements have been made in the history of photographic lens design only six 
main families of lenses exist today from which nearly all modern lenses may trace their lineage [Kingslake1989].  We 
will briefly review these six prototypical base lens designs from which our comparison will stem. 

4.3.1.1 Petzval Portrait 

This design was created sometime before 1850, and was in popular use for over 50 years. Shown in Figure 4.4, the 
design consists of two doublet lenses with an aperture stop between.  Spherical aberrations are corrected fairly well 
by the front group at the expense of introducing significant coma.  The second group corrects the coma while the 
buried aperture stop corrects the astigmatism at the expense of magnified field curvature at the image plane.  The main 
purpose of this lens was in taking portraits since a reduced exposure time was made possible compared to other 
contemporary lenses and its use in this way did not highlight the restricted field of view and vignetting typical of this 
design [Ray2002].  
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4.3.1.2 Rapid Rectilinear 

The Rapid Rectilinear lens was patented by John H. Dallmeyer in 1866 to fill the need of a lower distortion 
intermediate lens that was relatively free from distortions at about F/6 within about a 50 degree field of view.  This 
design, shown in Figure 4.5, is also known as a Steinheil Aplanat, developed by a German designer working with 
Seidel who developed a nearly identical design just a few weeks prior to Dallmeyer’s patent.   

Similar to the earlier Petzval Portrait design, the Rapid Rectilinear consists of two doublet groups with an aperture 
stop in between.  However, the important difference is the symmetric design and choice of glass type in the groups.  
The symmetrical design gives near complete elimination of distortion, coma, and lateral chromatic aberration.  The 
paired glass types needed to be as different as possible in refractive index while having relatively similar dispersion.  
Dallmeyer placed the lower-index positive elements inside near the aperture stop with the higher-index negative 
elements placed outside.  Though difficult to manufacture due to the strong curvature at the cemented internal 
interface, the design had minor aberrations over a range of object distances with minor distortion.  [Kingslake1989] 

4.3.1.3 Double Gauss 

The Double Gauss derives its name from the 1817 Gauss objective lens.  The design shown in Figure 4.6 also takes 
advantage of the benefits of symmetry in reduction of aberrations.  The first known pairing of these lenses and creation 
of the Double Gauss was done by Alvan Clark in 1888 while working for Bausch and Lomb.   

Most modern versions of the Double Gauss contain six elements, which design change was made in 1895 to correct 
for chromatic aberrations by cementing the inner two elements of each side into doublets.  This basic design is one of 
the most utilized in photography and is still commonly used today in low-cost but high quality fast lenses.  The only 
major aberration that is typical of this lens family is some remaining oblique spherical aberration [Cox1971].   

4.3.1.4 Cooke Triplet 

The Cooke Triplet has been called the most important lens design ever created [Cicala2011].  This is partly due to its 
near-ubiquitous use: more derivative designs have been based upon the Cooke Triplet than any other.  More so is the 
fact that the simple and elegant design is found in the vast majority of modern lenses.  The Cooke Triplet, shown in 
Figure 4.7, is simple and inexpensive to produce while giving reasonably good correction of all aberrations.   

The Cooke Triplet was designed in 1893 by Dennis Taylor while working at T. Cooke & Sons.  The central element 
is flint glass with the outer elements composed of a crown glass.  The design allows for zero Petzval field curvature 
(the sum of the refractive indices of the elements multiplied by their curvatures, giving a flat field of focus).  It was 
the first design to eliminate most of the optical distortion at the outer edge of the lens.  This is partly due to the fact 
that the negative central element can be as strong as the combination of the outer two elements but still have an overall 
convergence effect since the light strikes the central element near the optical axis.   

The Cooke Triplet is still in heavy use in inexpensive lens systems due to its simple three-element design coupled 
with its overall good quality image reproduction.  Another benefit is the ease with which the focal length of the lens 
may be adjusted, by moving the central element closer to the front or rear element the field of view of the system 
changes. [Kingslake1989] 
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Figure 4.4: Petzval Portrait lens, image adapted from [Cicala2011] 

 
Figure 4.5: Rapid Rectilinear lens, image adapted from [Cicala2011] 

 

 
Figure 4.6: Double Gauss lens, image adapted from [Cicala2011]  

 
Figure 4.7: Cooke Triplet lens, image adapted from [Cicala2011] 
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4.3.1.5 Telephoto 

The telephoto lens shown in Figure 4.8 is a long-focus lens where the physical length is shorter than the focal length.  
Several inventors developed what can be called telephoto lenses nearly simultaneously.  British optician Thomas R. 
Dallmeyer, son of John H. Dallmeyer mentioned previously for his work on the Rapid Rectilinear lens; New Zealand 
photographer Alexander McKay; and German scientist Adolph Miethe all created markedly similar designs within 
about five years of one another.  Their designs are fundamentally a positive front element followed by a strong negative 
rear element.   

Earlier on in the history of lens design, lensmakers found that a single strong element could be split into two or more 
elements with the advantage of lower expense to produce multiple weak elements as well as the advantage of using 
different glass types in order to reduce chromatic aberration in the system.  Even more important was the fact that 
different curvatures could be employed within the same shape (convex, concave, meniscus, etc.) in order to reduce 
certain aberrations due to the added degrees of freedom.  Modern telephoto lenses have heavily taken advantage of 
this principle, so much so that in order to notice the pattern one must look closely as modern designs can easily have 
more than a dozen individual elements.   

4.3.1.6 Reverse Telephoto 

The reverse telephoto is, as implied, the reverse of a telephoto lens, with a strong negative front element and a positive 
rear element.  This lens design family is the most recent, being invented in the 1920s to fill the needs of the burgeoning 
film industry while the other five families were created during the 1800s.  The distinctive feature of the design shown 
in Figure 4.9 is the increased back focal distance of the lens, sometimes more than the focal length.  Not to be confused 
with the focal length of the lens, the back focal distance is the distance between the back surface of the last lens 

 
Figure 4.8: Telephoto lens, image adapted from [Cicala2011] 

 
Figure 4.9: Reverse Telephoto lens, image adapted from [Cicala2011] 
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element and the imaging plane.  This feature was needed for movie cameras where the beam splitting prism behind 
the lens took up a significant amount of space, and the reverse telephoto design solved this problem.   

When the Single-Lens Reflex (SLR) camera was developed, this design feature also helped with the issue of the 
position of the lens relative to the reflex mirror.  Other advantages include a relatively high aperture compared to other 
designs as well as minimal vignetting and spherical aberration.  However, there are always tradeoffs in design and 
some of the ones for the reverse telephoto include increased field curvature and severe wide-angle aberrations 
(including distortion, coma, and lateral chromatic aberration).  The aberrations can be corrected with additional lens 
elements, but this adds to the cost and complexity of the system.  The distortion is particularly difficult to correct, so 
much so that the fisheye lens is considered by some to be an uncorrected wide-angle reverse telephoto. 
[Kingslake1989] 

4.3.2 Lens Degradations 

In our experimentations, we investigated some lenses which had only small departures from the basic design of their 
source family. These simple lenses are superior for our evaluation particularly in regard to the lower weight and cost 
of the lens system as well as the stability of the lens, meaning the simpler assembly due to the simplicity of the design 
and decreased likelihood of misalignment of the lens elements due to environmental effects. Further, the simpler lenses 
often exhibit the types of aberrations that computational systems are particularly suited towards correcting. We 
demonstrate the simple lenses selected for comparison and demonstrate their effect on the image data.  

The selection of a lens has a great deal of influence on the data recorded by the sensor behind it. Accurate knowledge 
of the point-spread function (PSF) which describes the way a point-like source of light would be seen by the system 
can improve the quality of data available for further processing. We investigated two methods of PSF estimation: the 
first being from simulation using the software package ZEMAX, a program developed for the design and simulation 
of lenses, and the second method was created in order to directly measure the PSF of a real digital optical system. In 
all of the experiments presented here, we demonstrate our processes on the visual spectrum though the extension to 
IR wavelengths is similar for the application of our developed method.  

First, in our simulated imaging calculation of the PSF we demonstrate on a cemented doublet. More complex lenses 
often have improved imaging characteristics, including smaller PSFs, and we wish to demonstrate that our work can 
be successful using smaller, lighter, cheaper, simpler lens systems which are less prone to damage and alignment 
errors despite their often complicated distortion fields and larger PSFs. This cemented achromatic doublet has seven 
degrees of freedom: three lens curvatures, two lens thicknesses, and two glass types. The layout is seen in Figure 4.10 
and includes a depiction of three field angles. The total area for which the focal plane at the right of the figure is 
covered is greater than the footprint of the lens elements, making this lens a wide-angle lens though just barely so.  

The PSF shown in Figure 4.11 is of the central field (the blue lines in Figure 4.10) which means that there is a 0o angle 
between the optical axis and the rays considered in calculating the PSF. Figure 4.12 shows the 2nd and 3rd fields (5.6o 
and 8o, respectively). It is important to consider the isoplanatic and spatially variant nature of the PSF because, as 
shown in Figure 4.13, the PSF can have a vastly different shape in different regions of the imaging plane. For purposes 
of our simulated experiments, we use the PSF grid and select samples such that the difference between adjacent 
samples is small while maintaining enough space between that adjacent samples do not overlap. The representation 
of the PSF for this lens is shown in Figure 4.13. 

In order to view what a certain target will look like through our lens, we can perform ray tracing to simulate the actual 
imaging process of photons passing through the lens and striking the sensor. This process, though accurate, is quite 
time-consuming. Another way to view simulated images of scenes is to sample the PSF space via the PSF grid as 
shown in Figure 4.13, then to perform a region-based convolution of the input scene with the PSF valid for the 
particular region. Each pixel of a digital optical system does have its own unique PSF which accounts for both the 
effects of the lens and sensor. However, the PSF usually changes slowly enough that we are able to define isoplanatic 
regions for which a given PSF sample is valid within a given region. The result of this sampling process for an example 
image using this lens is shown in Figure 4.13.  
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Figure 4.10: Lens used as example for aberration, cemented doublet. The colored rays indicate three field angles of 
equal area at the image plane. The lens chosen is just an example to get a first-order but realistic example of errors 
caused by the imaging system. Other lens arrangements may be considered in order to determine the influence on 
resulting accuracy of the position estimate.  

 
Figure 4.11: FFT PSF of the lens shown in Figure 4.10 - 0 degree field. The values are normalized and the greatest 
concentration of energy is in the center as expected. However, the effects of using a low-quality lens are apparent as 
a significant amount of energy is contained in the surrounding area away from the desired central spike. 

 
 

Figure 4.12: FFT PSF of the lens shown in Figure 4.10 - 5.6 (left) and 8 (right) degree field. The PSF of any real 
system will change across the FOV, complex systems often use many elements to minimize the effect of the PSF at the 
cost of added weight and cost and the greater complexity introduces risk for misalignment during the life of the lens. 
Shown here, we see two examples of the PSF at locations off the optical axis which depict wildly different distribution 
of the energy compared to the desired single spike in general and to the central PSF of this lens in particular. 
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Figure 4.13: PSF grid for the doublet lens shown in Figure 4.10. The sampling is chosen to provide adequate coverage 
of the scene relative to the change from one measurement to the adjacent ones while maintaining an appropriate band 
between measurements. The size of the sample at the center is 11x11 pixels while the size of the sample in the corners 
comprises an 18x18 pixel region.  

  

Figure 4.14: The PSF grid, displayed as point-like sources (left) and after passing through the lens and recorded by 
the sensor (right). The region shown is about the center of the sensor, resulting in fairly uniform degradation due to 
the effects of the lens. This comparison demonstrates the effect of a single point of light expanding, or spreading, into 
the regions shown to the right. The size of the sample at the center is 8x8 pixels while the size of the sample in the 
corners comprises a 10x9 pixel region. 
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Note how although the overall quality of the image is diminished, as it will be to some extent for any real system, the 
light energy is spread over a larger pixel area which increases the sensitivity of the system to a given target. If target 
localization is all that is desired, we need not correct for the lens aberrations. However, if we desire to have a more 
acute sense of the image of the target we may use the PSF measurements in order to de-convolve the acquired image 
to have a more accurate representation of the scene. 

The second method which was developed for measurement of the PSF of a physical lens utilizes a grid of point-like 
sources in order to measure the isoplanatic, spatially variant PSF of the lens and coupled sensor. This method differs 
from the previously demonstrated method in that it operates on a realized system. If the lens prescription values are 
known, a simulated calculation of the PSF may be performed and is recommended if a design under consideration for 
manufacture is under development. Then the following method may be employed to determine how well the 
manufactured lens met the design specifications with respect to the PSF. If a lens is being used blind, so to speak i.e. 
the prescription is unknown, then the following method will work just as well without any prior knowledge of the 
lens.  

As a lens will generally only be used when paired with a sensor, we measure the view of the PSF grid through the lens 
with the paired sensor. As a single measurement is unlikely to give an accurate measurement useful for all scenes, we 
shift the point-like grid in 9 subpixel increments. This is to account for the difference in alignment of the optical axis 
of the lens with the center of a pixel, which in general will not be known about the digital optical system. In order to 
combine our 9 independent measurements of the PSF grid we apply super-resolution (SR) algorithms in order to 
achieve a higher-resolution representation of the PSF grid from the view of the sensor. This measurement is then 
downsampled to the pixel resolution of the sensor in order to allow direct application of the extracted PSFs. A 
representative result is shown in Figure 4.14, where the paired lens and sensor under test came from a camera on the 
Asus Transformer Infinity TF700T. Note the similar size, but slightly varying change in shape of the individual PSFs 
shown. The effect of lens PSF on the final image quality is also demonstrated in Figure 4.15.  

  

Figure 4.15: Demonstration of the images of a scene as viewed through our simulated lens. The bright points in the 
input image (left) are all still visible as blurred regions in the output image (right). Points less apparent in the image, 
near the top, are more visible despite the introduction of blur and the relative contribution of the background in more 
apparent.  
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Once we have an accurate measurement of the isoplanatic, spatially variant PSF of the paired lens and sensor we may 
perform a correction of the data captured. As the measurement method does not require disconnection of the lens for 
measurement nor destruction of the system, we may reapply our measurement method regularly in the event that the 
digital optical system is subjected to extreme conditions such as vibration or changes in pressure or temperature which 
often effect the alignment of the lens with respect to the individual elements or the sensor or deformation of the lenses 
themselves depending on the material from which they are made. 

A discussion of the methods suitable for correcting the blur effects introduced by the lens is contained in Section 6.3. 

4.3.3 Geometric Distortion 

Another source of image degradation due to the lens is the geometric distortion. This effect arises from the nonlinear 
mapping of the 3D light ray incident on the lens surface, across each element of the lens, to the planar surface of the 
sensor. Wide-angle lenses in particular exhibit this effect, but all lens systems contain some level of distortion, down 
to the pinhole camera model for which there is a perfect mapping of light to recording medium. Lucchese and Mitra 
[Lucchese2003] describe the geometric distortion field as representing the internal geometry with regard to the 
parameters of a mathematical model where the aberration is produced by the lens.  

Geometric distortion correction describes the process of removing the effects optical distortion that results from the 
lens elements. Changes in the objects in images captured by the camera are perceived most easily in observing objects 
with straight lines being bent by the distortion. This effect is most noticeable in the edges and corners of the images. 
The geometric distortion field can change over time due to changes in environmental conditions (temperature, 
pressure) or from physical actions such as vibration or jarring of the lens system causing elements to go out of 
alignment with respect to one another or the alignment with respect to the sensor changing. Typically the field is 
considered constant as it does not change significantly from one acquired image to the next, but in practice if 
significant time has passed or environmental conditions or events have occurred a re-calibration is advised.  

In order to correct the geometric distortion field of a lens, the field must first be measured. There are two main 
approaches to distortion correction: 

• Calibration prior to data acquisition 
• Real-time calculation of distortion parameters as part of the motion estimation step 

Altunbasak et al [Altunbasak2003] indicate observing changes in the lens distortion from one sequence to another, in 
addition to observing a change in the relative distortion seen in images based on distance to targets in the scene. Their 
proposed approach to include distortion calculations as part of the motion estimation process adds computational 
complexity and the targets we observe are optically at infinity, so neither of the concerns they address are present in 
our scenario. We propose performing all possible calibration steps prior to data capture to minimize the processing 
time, but recognize the need for regular re-calibration operations to account for potential drift in the parameters at a 
rate not yet determined.  

We include geometric correction in order to fix distortion introduced by the lens [Delbracio2012], considering both 
radial and tangential distortion. The effect of radial distortion is seen in the displacement of image points radially in 
the image plane [Zhang1999]. Tangential distortion is also referred to as decentering distortion and can be seen in the 
imperfection of the radial curves seen in Figure 4.16. Tangential distortion occurs when the incident cone of light is 
projected on the image plane [Zhang1999]. In a perfectly aligned system, there would be no tangential distortion and 
the radial component alone would dominate the total distortion.  
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(a) 

 
(b) 

 
(c) 

Figure 4.16: Illustration of the geometric distortion field for three different image acquisition systems. The ‘x’ near 
at the center of the figure represents the center of the sensor while the nearby circle represents the optical axis of the 
lens. (a) Total geometric distortion field of the Galaxy S4. The optical axis of the lens is only slightly translationally 
misaligned with the center of the sensor, and the rotational misalignment is likewise low, as evidenced by the fairly 
good balance of the lines of equal distortion seen at the left and right edges of the image. (b) Total geometric distortion 
of the Asus Transformer Infinity. The translational alignment is particularly good in this lens-sensor combination, but 
there is significant upward pitch to the rotational alignment as seen by the uneven distortion lines in the upper section 
of the image. (c) Total geometric distortion of the GoPro Hero 3+ Black. There is slight translational misalignment 
of the lens and sensor but there appears to be quite excellent alignment of the optical axis perpendicular to the sensor 
plane. 
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Some existing methods such as simple warping can fix the distortion, but may change the scale of the image. The 
image-warping class of methods will use a model of the distortion with a small set of parameters that often cannot 
fully describe the complex distortion field of real imaging systems. A method developed for application in the popular 
Photoshop [PTLens] gives a clear demonstration of the results when using methods that make more or less restrictive 
assumptions about the complexity of the distortion field. 

Camera calibration is introduced in order to calculate the parameters that depend on the lens optics. A popular 
approach involves the use of a calibration pattern or calibration grid [Dorfmuller2002]. We apply a calibration method 
that utilizes the data from multiple images of a calibration target to model the distortion and thereby iteratively find 
the best estimate for parameters of the Brown-Conrady model of lens distortion [Brown1966][Conrady1919] which 
accounts for higher-dimensionality representations of both the radial and tangential distortions. 

This effect further illustrates our concern with the method developed by Liu and Chen [Liu2008] in removing the lens 
from the system, because the distortion effect will propagate in the PSF measurement and in the images captured after 
measurement for which we desire to remove the effects of the intrinsic camera blur quantified by the PSF. We 
considered three methods to correct the distortion: image warping [Gonzalez2008], the Caltech calibration toolbox 
[Caltech], and MATLAB’s built-in toolbox [MATLAB] and selected [Caltech] to calculate the intrinsic parameters 
based on prior experiments. In order to correct images, three groups of parameters need to be considered: focal length, 
the focal length of horizontal and vertical pixels; principal points, the points where the principal planes cross the 
optical axis; and distortion coefficients, the radial and tangential distortion parameters. For color images, we convert 
to HSI and apply correction to the intensity channel due to the single-channel limitation of the method as implemented. 

4.4 Source of Error: Sensor 

Digital optical systems suffer from intrinsic sources of error due to their two principal components. This section 
contains a discussion of the errors inherent from use of a digital sensor with respect to both the effects of sampling 
and the types of noise which are present in the resulting recorded data. 

4.4.1 Errors from Sensor: Sampling 

Digital image sensors divide up the light-sensitive area of a device into an array of individual regions called pixels. 
Although there exist devices, called line-scan cameras which have a single row of pixels, instead of a matrix of them, 
we focus on devices which have a two-dimensional array of pixels. Each pixel is assumed to have the same response 
to incident light [Reichenbach1991] and the light-sensitive region of the device is limited by the fill factor, or the 
percentage of light-sensitive regions versus the total coverage area. The fill factor is of necessity less than 100% due 
to manufacturing constraints. 

4.4.2 Errors from Sensor: Noise 

System noise in a CMOS digital image sensor is composed of several categories or sources of noise. Each type can be 
handled or attenuated using different methods. Herein we discuss these sources, their impact on image quality and 
certain processing algorithms, and the approaches we applied in order to handle the noise present in the data we 
collected. 

Further details about the modeling of noise sources present in a digital image sensor are covered in Chapter 5.  
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4.5 Source of Error: Trajectory Disturbance 

The trajectory of a sensor’s orbit is modeled as a conic section. The departure from the ideal orbital path is one 
component of what we describe herein as trajectory disturbance. The second potion of what we describe as trajectory 
disturbance refers to the influence of the atmosphere on the path of the light as it travels from the target to the sensor.  

The method employed to apply degradation to the image varies the spatial position of the image data across the scene 
according to a vector field model with 4 parameters (𝜃𝜃, 𝜑𝜑, 𝑅𝑅, and 𝑟𝑟 – see Figure 4.19) each with their own randomness 
settings, and an additional smoothness parameter. The purpose of applying this degradation is to represent the effects 
of the environment when imaging from such a great distance. Typically, the effects of the medium through which the 
light travels to the sensor may be disregarded in all but the most extreme conditions. In close-up photography the 
impact of the atmosphere can generally be neglected, but in our situation where a great amount of atmosphere exists 
between the target and sensor we must account for its contribution in the image acquisition process. 

For our purposes, we do not apply any methods to remove or mitigate the effects of trajectory disturbance. We do 
show that our other processing steps are not significantly burdened by representative degradation from this source, 
and that we are able to establish a reliable estimate of the target’s location despite the presence of the introduced error. 

4.5.1 Path Disturbance 

Ideal orbital motion can be modeled as a conic section, with defined size and eccentricity [Goncalves2013]. If there 
were no sources of disturbance of this ideal path, then a perfect knowledge of the sensor’s position would be known 
at any given time and no correction for the introduction of path disturbance forces would be necessary. However, 
forces exist which influence the sensor to depart from its ideal path and we summarize the major contributors. 

4.5.1.1 Celestial Gravitational Fields 

The gravitational field of the moon exerts a pull on objects in orbit around the Earth, causing a disturbance in their 
expected trajectory [Goncalves2013]. Other celestial bodies also influence the path of orbiting objects, such as the sun 
and, to a lesser extent, other planets in the solar system. Objects with a period greater than 225 minutes (higher than 
LEO) are more likely to be affected by the gravitation of the sun, moon and planets [Sat1998]. 

4.5.1.2 Mass Asymmetry 

Earth is not a perfect sphere, and the variation in the distribution of mass due to this fact causes variations in the local 
gravitational field experienced by orbiting sensors. This effect is amplified particularly for objects in low Earth orbit 
(LEO). The term for this effect on orbiting objects is nodal regression, and means that not only does the object go 
around the Earth on its orbit, but the orbit itself rotates around the Earth [Sat1998]. One of the effects of the mass 
asymmetry of the earth is seen in the east-west drift of the orbit, the rate of which depends on the object’s altitude and 
inclination [Weeden2010]. 

4.5.1.3 Atmospheric Drag 

For objects in LEO the effects of the atmosphere are more severe due to its increasing density [Sat1998]. The orbital 
period limit for defining LEO is generally accepted to be under 225 minutes. Not only does the introduction of drag 
due to the atmosphere cause for increased use of fuel in order to maintain orbit, but both varying densities of the 
atmosphere and the introduction of acceleration when thrusters are fired cause unexpected orbital position variation 
[Weeden2010]. 
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4.5.2 Atmospheric Turbulence 

We use the Non-rigid Registration work of [Thirion1996], also known as Demons’ Method, a reference to Maxwell’s 
demons [Maxwell1871]. The original demons’ algorithm used gradient information from a static reference image to 
determine the demons’ force required to deform the moving image. This may not be efficient, especially when the 
gradient on the reference image is low [Wang2005]. Conceptually, the diffusing model assumes that local demons at 
every voxel location are applying invisible forces that push the voxels of the moving image into matching up with the 
reference (static) image [Cox2007]. In some other studies, the optical flow formula was used to estimate the demons 
forces either at image feature points or at voxel positions on a grayscale image. In [Wang2005] the passive force is 

 𝑢𝑢�⃗ =
(𝑙𝑙 − 𝑠𝑠)∇��⃗ 𝑠𝑠

�∇��⃗ 𝑠𝑠�
2

+ (𝑙𝑙 − 𝑠𝑠)2
 (4.15) 

as in previous formulations, whereas the active force is proposed as 
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The combined force proposed is then calculated as 

 𝑓𝑓 = 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑠𝑠 = 𝑓𝑓𝑚𝑚 + 𝑢𝑢�⃗  (4.17) 
which is expressed as 
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𝑢𝑢�⃗  is the estimated displacement to match a point in the static scene with a point in the moving scene, 𝑙𝑙 and 𝑠𝑠 are 
moving and static scenes respectively. ∇��⃗ ∙ is the gradient operator, (𝑠𝑠 − 𝑙𝑙) or (𝑙𝑙 − 𝑠𝑠) is the differential force between 
scenes, 𝑓𝑓𝑚𝑚 is the active force, 𝑓𝑓𝑠𝑠, originally labeled 𝑢𝑢�⃗ , is the passive force, 𝑓𝑓is the total force. Because of this new 
demons force, the authors claim that the algorithm converges more quickly and requires fewer iterations [Wang2005]. 
An illustration of the deforming nature as modeled is shown in Figure 4.17. 

 
Figure 4.17: Illustration of the application of [Wang2005] to correct the effect of turbulence on image acquisition. 
The effects of a large volume of atmosphere between the target and the imaging system allows the opportunity for 
turbulence in the atmosphere to nonuniformly distort the location of information within the FOV. The illustration 
indicates calculation of the demon’s force to correct for the turbulence effects whereas we use the same method in 
order to representatively introduce turbulence effects in our simulated imagery in order to ensure we are able to 
accurately recover the position of our desired target despite the effects of atmospheric turbulence.  
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In order to accurately determine the severity of turbulence we’re likely to encounter, we must consider the changing 
imaging conditions with respect to the altitude range of the targets and sensors relative to the density of the atmosphere. 
This is depicted in Figure 4.18. The target altitude ranges from sea level to 1200 km, the sensors can have a height of 
250-2000 km, and the generally accepted range of the atmosphere gives a limit of 600 km. For the atmosphere, the 
density is not uniform within that range but the impact of the turbulence effects diminishes as the volume and density 
of the atmosphere drops as the target altitude increases. When the target crests the layer of atmosphere, there still 
exists a large distance between the target and sensor, but there will be no contribution of atmospheric turbulence. We 
therefore evaluate the influence of atmospheric turbulence on the range of no turbulence for the period of time when 
there is no influence to a high degree of turbulence when the greatest amount of atmosphere exists between the target 
and sensor. 

4.5.3 Implementation 

Our random geometric deformation software was developed based on demons’ method [Maxwell1871]. To achieve 
synthetic geometric deformation a translation vector is applied to each pixel of the reference image. This maps the 
original location of the data of the scene into a turbulent representation as though the light from the target had passed 
through the atmosphere with its random perturbations at each location of the image. The output image is then smoothed 
with a Gaussian Filter. The creation of the individual random vectors requires generation of a number of parameters. 
The organization of these parameters is demonstrated in Figure 4.19. The point 𝑒𝑒𝑖𝑖𝑜𝑜 is remapped to the location 𝑒𝑒𝑖𝑖𝑜𝑜′  as 
shown.  

 
Figure 4.18: Demonstration of altitude range in considering the effects in our simulated imagery. The target altitude 
can range from a complete obscuration by the atmosphere to an area where large distances without atmosphere to 
obscure the imaging process. Though the potential altitude of the sensor could place it below the target altitude, we 
only consider cases where the target is below the sensors.  
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Figure 4.19: Illustration of the random vector translation creation. The corresponding 𝑹𝑹 and 𝑹𝑹’, on the range [𝟎𝟎,𝟑𝟑𝟎𝟎] 
pixels, and 𝒓𝒓 and 𝒓𝒓’ vectors, on the range [𝟎𝟎,𝟏𝟏] pixel, are of the same random length, respectively. 𝜽𝜽 and 𝝋𝝋 are 
independently randomly distributed on the range [𝟎𝟎,𝟏𝟏𝟏𝟏𝟎𝟎] degrees. There is an additional randomness value, 
selectable for each of the 𝑹𝑹, 𝒓𝒓, 𝜽𝜽, 𝝋𝝋 parameters which controls the randomness of the parameter. In this way, we are 
able to simulate greater or less intensity in the atmospheric turbulence effects. As we are viewing a target from outside 
the atmosphere looking in, the effects will be diminished as compared to a terrestrial station looking upward, but the 
effect is still there. 

 
Figure 4.20: Settings for the target, sensor, and trajectory disturbance levels are adjusted here. Values may be 
individually manipulated for each sensor and the main parameter groups are resolution, noise, FOV, and trajectory 
disturbance. Noise models include Gaussian and Salt and Pepper (SnP) and the size of the target centered about the 
given position may be controlled. Trajectory disturbance (labeled Degradation Model Parameters) effects may be 
seen in the distorted checkerboard seen in the bottom right.  
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The GUI developed for application of synthetic turbulence illustrated in Figure 4.19 is shown in Figure 4.20. This 
GUI not only contains settings for controlling the severity of induced atmospheric turbulence effects, seen in the region 
marked ‘Degradation Model Parameters’, but also includes other settings relevant for our simulation. For instance, 
under ‘Sensor settings’ we are able to control the resolution of the sensor, the FOV of the lens, and the noise type and 
level of the sensor. Under ‘Target settings’, we are able to control the size of the target centered along the interpolated 
path. The distance between the target and sensor is controlled elsewhere in the description of the sensor’s orbital path.  

Development of this software to simulate the effects of atmospheric turbulence allows us to create imagery as 
representative as possible of the type of data we would see from the sensors used. Though we do have the demons’ 
method software implemented, we do not present the use of this method to remove the effects of turbulence as part of 
our work but rather show that for representative situations and representative data collected we are able to generate a 
relatively accurate estimate of the target position and an even more accurate fusion of these estimates to improve our 
estimate despite the sources of error in our image-based approach. In this way we need not burden the hardware to 
apply the necessary processing that these methods require as our desired output is the location of the target rather than 
pleasant images of it. We are able to accurately recover this information in spite of the error sources present. 
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5 Noise Mitigation 

As the image restoration methods we will use are ill-posed inverse operations, noise is a significant concern with 
regards to the successful application of the selected approaches. This comes also with an application where the image 
acquired of the scene is contaminated with high levels of noise. In this situation we must select methods which handle 
high amounts of noise well or apply pre- or post-acquisition processes to reduce the effective noise level in the images 
before further processing can take place.  

In this chapter we investigate three potential approaches for achieving this goal: altering the image acquisition 
hardware or process to achieve higher SNR, applying noise reduction methods which will increase the effective SNR 
of a given image without significantly degrading our ability to locate vital information about the target, and 
determining which methods (SR, deconvolution, tracking, etc.) are most robust to increasing levels of noise. A 
comparison of the results in these three areas will drive a recommended best approach for achieving a high level of 
success without excessive cost in equipment changes or in processing time. 

5.1 Noise Modeling 

Image noise is a random signal which manifests as an undesirable artifact due primarily to various parts of the sensor 
hardware, but can be intensified by various environmental conditions. In this chapter, we identify the major sources 
or noise and the factors which can increase their intensity, discuss the types of noise distributions, and demonstrate 
method for removing or diminishing their effects in the image, thereby increasing the effective signal-to-noise ratio 
(SNR).  

5.1.1 Sources of Noise 

Noise in an image is primarily introduced by the sensor, but from multiple effects and increases based on certain 
conditions. We explain each in more detail below.  

5.1.1.1 Fixed Pattern Noise 

Fixed pattern noise (FPN) is most often caused by manufacturing errors or physical damage to the pixel, but is also 
influenced by the temperature of the sensor. Though this type of noise can change over the life of the sensor, it will 
typically remain constant from one image acquisition to the next. Because of this property, we are able to perform a 
calibration measurement of the fixed noise pattern and remove this type of noise from our images. This noise removal 
process is called flat-field correction (FFC) which addresses the non-uniform response of the sensor to complete 
darkness (called dark signal non-uniformity, DSNU) and the response to even illumination across the field of the 
sensor (photo response non-uniformity, PSNU).  

5.1.1.2 Banding Noise 

The source of this type of noise is most commonly the readout circuitry of the sensor, but is influenced by the 
brightness of the scene. Therefore, it is highly sensor dependent and will manifest in different ways depending on the 
sensor used and the scene conditions during acquisition. Some common causes are when there is damage or a 
manufacturing error in the amplification circuitry. When the pixel values are read out from the sensor, each row (or 
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column, depending on design) is read one at a time, and the whole array is shifted so that the next row (or column) 
may be read. If the amplifier for a given row or column is damaged, the gain may be higher compared to the rest of 
the image, creating a horizontal or vertical band. This is why for higher ISO settings or higher gain settings, or in low-
light situations for auto exposure – auto gain (AEAG), will amplify the effect. This is depicted in Figure 5.1.  

Some sensors have built-in mechanisms to combat HVBN. One way is to eliminate the bias offset, which will halve 
the banding effect at the expense of detail in the image. Another way to reduce HVBN is to perform the ADC operation 
within the same sensor die, since digital signals are less sensitive to the introduction of this type of error compared to 
analog signals. 

5.1.1.3 Random Noise 

Many sources of noise corrupt the data obtained from a CMOS sensor. These include shot noise, generation (or 
recombination) noise, and popcorn noise but thermal and flicker noise are the most dominant. [Lundberg2002]. Noise 
in images from a CMOS sensor may be broadly classified as white noise and colored noise and comes from two 
physical locations on the device: the image pixel collecting light from the scene and the analog circuit transferring the 
information for readout [Hoshino2007]. Hoshino and Nishimura [Hoshino2007] suggest computing the time-
dependent pixel autocorrelation function (ACF) in order to detect and remove white noise from images captured from 
CMOS sensors.  

  
Photo credits:  NASA [Hille2015] Photo credits: Jon Rista [RistaDec2013] 

(a) (b) 

Figure 5.1: Examples of horizontal and vertical banding noise (HVBN). In (a) we see horizontal and vertical bands 
surrounding the brighter stars. In (b) we see an example of both horizontal and vertical banding effects as a part of 
FPN in an image taken with a very dark scene. The ISO sensitivity or gain of the sensor is increased, making the effect 
of the noise significantly amplified. The right half of the image has been pseudocolored for better visibility.  
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Table 5.1: Relationship of the physical location where noise types manifest and grouping according to whether the 
noise changes randomly over time for each image acquisition (white) or is stable to be measured during a calibration 
step and removed for subsequent captures. 

 Image Pixel Analog Circuit 

White 

Reset 

1/f 

Dark shot 

Photon shot 

Amplifier 

Amplifier 

1/f 

Colored 

Offset 

Dark 

Condensing Gm 

Offset 

Condensing Gm 

 

Figure 5.2: Interface, border and oxide bulk traps. Trap-assisted tunneling is represented by red arrows. Image 
credits [Starkov2013] 
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Table 5.2: Noise source comparison, each with their mathematical formulation and a description of the source and 
its effects. The sources with the greatest contribution are thermal and flicker noise. 

Shot Noise 𝐼𝐼𝑙𝑙𝑠𝑠2 = 2𝑞𝑞𝐼𝐼 

Caused by current not smoothly flowing across a junction, 
individual electrons arrive at random times. Broadband 
white noise that increases with average current. 1mA 
current has ~2pA/root(Hz) shot noise. 𝐼𝐼𝑙𝑙𝑠𝑠2  is spectral 
density of shot noise. I is junction current. 
[Lundberg2002] 

Generation/Recombination 
Noise 

𝑅𝑅𝑙𝑙2 =
𝜎𝜎2

𝑁𝑁2 ∙
4𝜏𝜏𝑅𝑅2

1 + 𝜔𝜔2𝜏𝜏2
 

Lorentzian spectrum 

Trapping centers (Figure 5.2) in the bulk of the device can 
cause G/R noise. This is in addition to flicker noise as G/R 
noise results from oxide traps within the bulk rather than 
across the gate, as shown [Lundberg2002]. The resulting 
fluctuation of carriers causes a fluctuation in the 
resistance of the device and the spectral density of the 
resistance fluctuation is modeled as 𝑅𝑅𝑙𝑙2. [Hooge1994] 

Popcorn Noise  

Also called burst or random telegraph signal (RTS) noise. 
Caused by capture and emission of a channel carrier 
resulting in discrete modulation of the channel current 
[Lundberg2002]. 

Thermal Noise 
𝑉𝑉𝑙𝑙𝑎𝑎2 = 4𝑘𝑘𝑇𝑇𝑅𝑅 

Gaussian 
[Hoshino2007] 

The voltage fluctuation due to Brownian motion of 
electrons in a resistive medium. Broadband white noise, 
increases with resistance and temperature. 𝑉𝑉𝑙𝑙𝑎𝑎2  is the 
thermal noise across a resistor. A 50ohm resistor has 
~1nV/root(Hz) [Lundberg2002] 

kT/C Noise 

𝑣𝑣𝑙𝑙𝑜𝑜 = �𝑉𝑉𝑙𝑙𝑎𝑎2 ∆𝑓𝑓

= �𝑘𝑘𝑇𝑇
𝐶𝐶

 

∆𝑓𝑓

=
1

2𝜋𝜋
�

𝑑𝑑𝜔𝜔
1 + (𝜔𝜔𝑅𝑅𝐶𝐶)2

∞

0

=
1

2𝜋𝜋
𝜋𝜋

2𝑅𝑅𝐶𝐶
=

1
4𝑅𝑅𝐶𝐶

 

𝑉𝑉𝑙𝑙𝑎𝑎2 = 4𝑘𝑘𝑇𝑇𝑅𝑅 

Not a fundamental noise source, describes thermal noise 
in the presence of a filter capacitor [Lundberg2002]. 
Discussion is included as the reduction of noise by 
applying a low pass filter of this design is common 
practice and knowing how it effects the presence of noise 
in the data is important. This effect is seen not only when 
a low pass filter is explicitly designed into the device but 
also due to the effect of the channel resistance and drain 
capacitance of a MOSFET. In consideration of the noise 
present in a system, either the thermal noise or the kT/C 
noise are considered since they stem from the same 
fundamental source [Lundberg2002].  

Flicker Noise (1/f Noise) 
1
𝑓𝑓𝛼𝛼

 

Dominates the noise spectrum at low frequency. 𝛼𝛼 = 1 ±
0.2 [Lundberg2002] 

Oxide traps (Figure 5.2) result from imperfections in the 
construction of the transistor material, flicker noise 
resulting from charge tunneling across the gate 
[Jayaraman1989]. Two main theories strive to explain the 
source, [McWhorter1957] and [Hooge1969] 
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Colored noise is FPN and thus can be measured and removed due to its time-invariant properties by subtracting the 
calibrated “dark” image from the data captured of the desired scene [Hoshino2007]. White noise, however, is time-
dependent and differs with each acquired image. The noise sources classified in Table 5.1 are detailed in Table 5.2. 

5.1.1 Noise Distributions 

Methods for mitigating or removing noise in images can depend on the distribution of the noise spectrum. In this 
section we review the types of noise distributions commonly seen during the image acquisition process.  

5.1.1.1 Gaussian (Normal) 

The Gaussian distribution shown in Figure 5.3 is the most commonly encountered type in digital imaging due in part 
to its presence due to thermal effects. The SNR will degrade as the amplitude of the noise increases. This can come 
about due to increased on-board resistance from the construction of the specific device and heat from ambient 
environmental conditions. The mathematical form of the Gaussian distribution is shown below [Scherzer2009].  

 

The Gaussian distribution is a continuous probability distribution that expresses the expected value of a random 
process with a known mean value �̅�𝑥 and standard deviation 𝜎𝜎. Knowledge of the standard deviation allows for worst-
case predictions of the influence of the noise as for a Gaussian distribution the values bounded within two standard 
deviations of the mean will contain 95% of the range of values while accounting for three standard deviations of the 
mean will contain 99.7% of the possible values. Thus a measurement of a device with respect to the noise from the 
circuitry at a variety of temperatures and lighting conditions will give bounds on the contribution of noise to the SNR 
of the image. Nasrollahi and Moeslund [Nasrollahi2014] note that the Laplacian distribution has been shown to be 
more accurate in representing image noise than using a Gaussian as is typical in the literature. However, as the majority 
of the literature focuses on the Gaussian both in modeling and mitigation, we will not address the Laplacian 
distribution in our experiments. 

𝑒𝑒(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋

𝑒𝑒𝑥𝑥𝑒𝑒 �− |𝑥𝑥−�̅�𝑥|2

2𝜎𝜎2
�, 𝜎𝜎 > 0 (5.1) 

   
Figure 5.3: Graphical depictions of the Gaussian distribution function. The images show values of 𝒙𝒙� = 𝟎𝟎 for all 
distributions and 𝝈𝝈 = 𝟐𝟐 (left), 𝝈𝝈 = 𝟓𝟓 (middle), and 𝝈𝝈 = 𝟏𝟏 (right). The specific values of 𝒙𝒙� and 𝝈𝝈 are unique to a 
particular device and will fluctuate with environmental conditions at time of capture.  
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5.1.1.2 Poisson 

The primary source of noise in an image that follows a Poisson distribution is photon shot noise. This type of noise, 
shown in Figure 5.4, dominates the darker portions of the image and is due to the nature of entering photons from a 
source. In higher intensity regions the Poisson distribution looks very much like a Gaussian distribution. The 
mathematical form of the Poisson distribution is shown below [Scherzer2009].  

𝐼𝐼(𝑘𝑘) = 𝜆𝜆𝑘𝑘

𝑘𝑘!
𝑒𝑒𝑥𝑥𝑒𝑒(−𝜆𝜆),          𝜆𝜆 ≥ 0, 𝑘𝑘 ∈ ℕ ∪ {0} (5.2) 

The Poisson distribution is a discrete probability distribution that expresses the probability of a given number of 
independent event occurring within a fixed interval of time, given knowledge of a known average. Thus as the 
collection of photons on a given pixel is inherently discrete, the Poisson distribution describes this part of the image 
formation process.  

5.1.1.3 Salt and Pepper 

The Salt and Pepper distribution demonstrated in Figure 5.5 has also been called a ‘heavy-tailed’ distribution, in that 
the range of values seen with this type of noise will occur at the extreme ends of the pixel range as suggested by its 
name. This type of noise generally is a result of data transmission and coding errors by the hardware or manufacturing 
defects in the imaging surface. Exposure to ambient radiation such as cosmic rays can increase the effect. Typically 
this type of noise is quantified by the percentage of corrupted pixels and therefore has no mathematical formula. An 
example image is shown below. 

5.1.1.4 Comparison of Noise 

In order to visually see the way that different types of noise can corrupt an image, a demonstration of each noise type 
is shown in Figure 5.6 below. 

  

   
Figure 5.4: Graphical depictions of the Poisson distribution function. The images show values of 𝝀𝝀 = 𝟐𝟐 (left), 𝝀𝝀 = 𝟏𝟏 
(middle), and 𝝀𝝀 = 𝟏𝟏𝟓𝟓 (right). Note how as 𝝀𝝀 increases the distribution more closely resembles a Gaussian function.  
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Figure 5.5: Example of salt-and-pepper noise. The noise manifests as pixel values being set to the minimum (black) 
or maximum (white) values. Can occur randomly due to environmental conditions or more predictably from 
manufacturing defects in the sensor. For this image, 5% of the pixels were selected to have noise.  

   
Figure 5.6: Comparison of images corrupted by differing noise types. Gaussian (left), Poisson (middle), and Salt and 
Pepper (right) are all forms of noise commonly encountered in digital imaging. The approaches for removing noise 
differ and depend on the type of noise corrupting the image.  
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5.2 Methods of Mitigation 

The challenge for any noise removal method is one of eliminating the undesirable noise signal while simultaneously 
preserving the fine details in an image. This is still an open problem in the field and while no perfect solution exists, 
there are a number of effective approaches for improving the SNR in images corrupted by noise. 

5.2.1 Gaussian and Poisson: Spatial Filtering 

Filtering noise from an image is an inherently low-pass operation, but many methods exist in order to improve the 
desired edges of the image which are also a high-frequency component. Each pixel in an image has what is known as 
a neighborhood, or the surrounding pixels in close proximity to the pixel of interest. In order to filter out noise a basic 
approach is to calculate the combination of pixel values in the neighborhood in order to determine the value of the 
output image. Shown below are the input image corrupted by noise and the filtered output from the application of two 
different methods.  

The linear average filter employed operates in the spatial domain and utilizes a Gaussian profile in the kernel. The 
structure of the kernel is shown in Figure 5.7. The disadvantage of this simpler filter type is the selection of filter 
coefficients is constant across the entire image. This often can result in the kind of oversmoothing as seen in Figure 
5.8(b). The adaptive filter developed by Luisier et al [Luisier2011] is an improvement to this approach which utilizes 
local pixel statistics that are used as part of the filtering process. More details of the scene can be preserved as seen in 
Figure 5.8(c). 

The equations for calculating the local mean and variance of the pixel’s neighborhood are:  

𝜇𝜇 =
1
𝑁𝑁𝑀𝑀

� 𝐼𝐼(𝑠𝑠1,𝑠𝑠2)
𝑙𝑙1,𝑙𝑙2∈𝜂𝜂

 (5.3) 

and 

𝜎𝜎2 =
1
𝑁𝑁𝑀𝑀

� 𝐼𝐼2(𝑠𝑠1,𝑠𝑠2) − 𝜇𝜇2
𝑙𝑙1,𝑙𝑙2∈𝜂𝜂

 (5.4) 

where 𝜂𝜂 is the N-by-M local neighborhood of each pixel in the image 𝐼𝐼. Using these estimates, the adaptive filter 
employed creates a local filter: 

𝑏𝑏(𝑠𝑠1,𝑠𝑠2) = 𝜇𝜇 +
𝜎𝜎2 − 𝑣𝑣2

𝜎𝜎2
(𝐼𝐼(𝑠𝑠1,𝑠𝑠2) − 𝜇𝜇) 

(5.5) 

where 𝑣𝑣2 is the noise variance. If not known, we can use the average of all the estimated local variances.  
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Figure 5.7: Form of a 5x5 Gaussian linear spatial average filter. All the elements sum to 1 and are distributed 
according to a Gaussian profile. The values operate as a mask over the neighboring pixels and the output value of the 
central input pixel is the weighted sum of the input pixels scaled according to the coefficients in the filter kernel.  
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(a) 

 

 

 

(b) 

 
(c) 

Figure 5.8: Comparison of images corrupted by differing noise types. Input image corrupted by Gaussian noise (a), 
output filtered using a Gaussian average filter with 15x15 neighborhood (b), and output filtered with a locally adaptive 
filter (c). The average filter uses the same parameters for the entire image while the adaptive approach [Luisier2011] 
utilizes statistics of the local pixel neighborhood in calculating the resulting pixel values. The uniform regions of the 
image retain similar amounts of noise, but notice the improved edge content around the face and tripod legs.  
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5.2.2 Gaussian and Poisson: Synthetic Extended Exposure 

An alternative approach to removing noise in images involves a modification of the capture process. Since the white 
noise in the images is different from one capture to the next, by capturing a sufficient number of images under 
otherwise identical capture conditions we are able to recover a result with diminished noise by in effect extending the 
exposure time to let the noise signal average out while retaining the desired signal of the scene.  

When the images obtained contain a large amount of noise, we can use multiple motionless acquisitions of the scene 
in order to enhance the SNR. In Figure 5.9 we show a comparison of the resultant image when an increasing number 
of images are used in the image stack. The noise statistics remain the same but each image is unique. Because it may 
be difficult to see the quality change from image to image as the number of samples increases, we include a chart 
comparing these images enhanced using the described method by evaluating them compared to the original source 
image. 

As demonstrated in Figure 5.10, the greatest increase in improvement of image quality is seen early on according to 
both metrics, it becomes a tradeoff based on the particular application. If accurate information is of paramount 
importance, then a capturing a large sequence of images may be done at the expense of a longer acquisition time. If a 
tradeoff in quality vs. acquisition time is needed, or if objects in the scene move relatively quickly, then a short burst 
of even as few as 10 images can significantly improve the quality of the result. Another possible approach that we 
have investigated is the use of multiple cameras arranged in a grid close together with all cameras operating 
simultaneously so that even if the scene contains objects of interest with a high relative speed there is a time correlation 
in the date from each camera and unique samples of the scene are still available for processing. There is a different 
class of methods called super-resolution which handle the offset from using multiple cameras. 

5.2.3 Salt and Pepper 

Not all types of noise are best served with the same mitigation approach. Figure 5.11 demonstrates this for salt and 
pepper noise. An understanding of the underlying sources of noise is important for designing appropriate mitigation 
strategies. The most common approach to addressing salt and pepper noise is an application of the median filter. The 
neighborhood size for constructing a candidate value for the output pixel is set, then the values are sorted and the 
median is assigned to the pixel in the output image. If the area is largely uniform, then little or no change will occur, 
if however the source pixel is corrupted by noise, then a more appropriate output pixel value will be assigned as 
selected from the neighborhood by the filter. This results in an effective removal of noise while preserving more edges 
and detail in the image as compared to a linear averaging operation. 

5.3 Conclusions 

Noise corruption of real images is an inevitable challenge that must be addressed in order to make accurate 
measurements from image data. Particularly in high-noise environments, the contribution of noise relative to the signal 
level can be such that the useful information in a single image can be lost beneath the noise floor. Methods exist to 
address the types of noise we tackle, but at a cost in processing time and in image quality. The best situation is less 
noise in recorded images, where reduction can take place by improving the hardware or shielding of the acquisition 
device. Modification of the image capture process rather than hardware alteration is also promising, but at a cost of 
increased acquisition time, or if a multi-aperture approach is employed, at a cost of marginal modification to the optics 
side of the setup, coupled with adapted processing to take advantage of the richer data. If no modification is made to 
the acquisition process or hardware, computational methods do offer marginal improvement to the SNR but this is the 
least desirable situation to be in with respect to resulting image quality vs. processing time. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5.9: Comparison of the impact of increasing the number of images combined on the quality of the result. 
Despite a very high noise level in the original images, a near-perfect recovery of the scene is possible due to the 
independent nature of the individual samples of the scene. The number of images averaged per result shown is: one 
(a), ten (b), 25 (c), 50 (d), 75 (e), and 100 (f).  
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(a) (b) (c) 

Figure 5.11: Comparison of differences in noise removal approach for different noise types. The image in (a) is 
corrupted by salt and pepper noise with 5% of the pixels affected. Application of a Gaussian linear averaging filter 
(b) smooths the effect of the noise but still preserves artifacts of the corrupted information. Utilizing a median filter 
with a 3x3 neighborhood removes nearly all of the detrimental effects.  

The recommendation of the authors with respect to design of an acquisition system involves utilizing a multi-aperture 
approach with sufficient shielding of the electronics and selection of reasonably low-noise components in order to 
balance the cost in procurement, acquisition time, and computation time with respect to the resulting image quality 
available to use in tracking the position of a target of interest. A complete discussion on the influence of varying noise 
levels on system performance is contained in Chapter 8. 

  

  
(a) (b) 

Figure 5.10: Comparison of the image quality increase that results from increasing the number of images combined. 
For both the structural similarity image metric (SSIM) shown in (a) and the peak SNR (PSNR) shown in (b) there is a 
clear correlation in increasing the number of images and an increase in the quality of the image obtained.  
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6 Super Resolution 

The aim of super resolution (SR) algorithms is to reconstruct a high-resolution (HR) representation of a scene from 
multiple low-resolution (LR) observations. This class of methods has a number of applications, and it is important to 
note that our conclusions are based on the results which most benefit our application. A basic overview of the concept 
of SR is shown in Figure 6.1. 

6.1 Introduction 

A perfect digital image acquisition system would capture all information of a continuous HR scene and allow perfect 
knowledge of the scene within the domain of the sensor. Realizable digital image acquisition systems have 
fundamental limitations in their ability to capture all information about the scene of interest. These limitations include 
a limited frequency spectrum, sampling accuracy determined by the number of sensor pixels, finite frame acquisition 
time, and other limitations arising from the physical implementation of the device. SR algorithms mitigate the effect 
of limited sampling accuracy by application of mathematical methods to incorporate multiple measurements of the 
scene to reconstruct an enhanced representation of the scene at higher resolution than otherwise would be possible. It 
is possible to image beyond the diffraction limit using SR when we cannot achieve this with conventional imaging 
systems. 

Applications for SR image enhancement include satellite and aerial imaging, medical image processing, facial image 
enhancement, automated road sign and license plate reading, iris recognition, fingerprint image enhancement, high-
dynamic range (HDR) imaging, and many other areas [Nasrollahi2014]. Each of these areas will have specialized 
needs based on the type of data available. Considerations include the available source resolution, desired SR factor, 
noise level and distribution, blur type and level, presence and degree of motion blur, scale change of the target of 
interest in the source images, type and level of inter-frame motion, and motion/occlusion of targets with respect to 
both camera motion and with respect to the scene background. Data acquisition conditions for which many of these 
considerations may be controlled will simplify the approach needed and improve the likelihood of a quality result, 
whereas general acquisition conditions in which no guarantees can be made will increase complexity, processing time, 
and decrease likelihood of a successful result. 

SR has a place in any application which operates on images used to gather data about a scene. These applications 
include microscopy, astronomic and terrestrial telescope, and photographic areas. Conventional light microscopy is 
limited in resolution by diffraction, as first noted by Abbe [Abbe1873] to reach a maximum of approximately 250nm. 
SR astronomy often encounters the barriers of noise due to low illumination and blur when long exposure is used to 
overcome low light levels [Bauer2011]. Both ground-based astronomical and terrestrial telescope domains encounter 
turbulence from the atmosphere. Typically the effect (known as astronomical seeing) is mitigated for the astronomical 
case by capturing data when the seeing effect is low. Terrestrial telescope applications must address this effect due to 
the large volume of atmosphere between the scene and imaging system. The ‘lucky imaging’ approach was developed 
to address turbulence in this application, which operates by taking many images of the scene of interest and selecting 
regions of the image in sharp contrast for which ‘atmospheric lensing’ enables a nearly diffraction limited fusion result 
[Mackay2013]. Due to the nature of the solution, only static scenes can be imaged successfully using this approach, 
even then only diffraction limited images are possible. The other applications of SR fall under the photographic 
designation. These include medical imaging, surveillance, face recognition, and a host of other applications.  

Consideration of each particular application is important, as the relative impact of the factors influencing the success 
of an SR algorithm vary and selection of an appropriate algorithm to match these conditions is vital. Our application 
most closely matches the telescopy variety and as such, the consideration of a low-light scene, high noise levels, and 
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atmospheric turbulence are of importance, as well as the necessity of relatively low processing time in order to increase 
total system stability. Also of importance is consideration of the effect of the point-spread function (PSF) in limiting 
effective resolution. Many authors have proposed SR methods which also address the effect of blur on image quality 
[Borman2004][Tanaka2005][Sroubek2008][Bai2010]. We also include consideration of the system PSF as part of our 
approach and further include consideration of atmospheric turbulence [Droege2012]. Although Lin and Shum 
[Lin2004] find that the limits on the performance of SR algorithms do not depend heavily on the system PSF, as our 
application seeks to accurately locate the coordinates of a target in the scene we must account for all factors which 
improve the metrological accuracy of the image data. 

We have also considered the impact of modified hardware and other novel image acquisition systems. Hardie et al 
[Hardie2015] determined that a reduced fill factor and selection of a circular, rather than rectangular active pixel area 
is one possible modification of the hardware that improves the success of SR algorithms. One concern with SR, 
particularly for images from quickly changing scenes, is that significant changes from one frame to the next can cause 
a reduction of accuracy in the motion estimation and SR steps of the process. Finite image integration time is closely 
tied to the available light from the scene and sensitivity of the sensor, and too long of an exposure can introduce 
motion blur into the captured images. Too much time between frames can limit the available number of frames, and 
significant perspective changes can limit the usable data available for processing. One approach we developed 
involves development of a multi-aperture system such that the inter-frame time is negligible and the geometric 
relationship between the frames is known and only scales with respect to object depth. In our application, objects in 
the scene are at optical infinity so the need for accurate registration drops as the process becomes a calibration rather 
than a necessity at each time step.  

 
Figure 6.1: Conceptual illustration of SR. LR images of a scene are registered (the motion between frames is 
calculated to represent the relationships of the samples of the HR scene) and aligned to the selected HR grid. SR 
algorithms then fuse these samples, some include deblurring, into a HR representation of the scene. Reproduced from 
[Tian2011].  
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6.1.1 Conceptual Overview 

Multiple LR observations of a scene may be combined to create a HR representation of the scene, even beyond the 
limitation established by the diffraction limit [Born1999]. SR is a subset of the image fusion class of methods, where 
algorithms are specifically applied to enhance the resolution of 2D images. Some methods use a dual approach where 
information about the PSF of the system used to acquire the images is incorporated as part of the enhancement process. 
The basic idea behind SR is to combine the non-redundant information contained in multiple LR frames to generate a 
HR image [Milanfar2010].  

SR should not be confused with the related methods of interpolation or upscaling. These methods are applied with 
only a single source image. Interpolation uses simpler mathematical models to interpolate unknown pixel values from 
known samples in a HR grid. Upscaling, also commonly called single image super resolution (SISR), apply more 
complex approaches to improving the resolution of a single input image, often employing information from a database 
of low/high resolution image patches. Nasrollahi and Moeslund [Nasrollahi2014] also note the potential for confusion 
with image restoration and image rendering techniques. SR algorithms can improve both the quality and resolution of 
an image with respect to its source data while image restoration techniques such as deconvolution or sharpening 
operations can improve the quality of an image while the result retains the resolution of the source data. Some SR 
algorithms also include a deconvolution component to further enhance the result. Image rendering is a computer 
graphics approach where a scene is modeled with a given set of known scene geometry and imaging parameters, 
essentially a generation rather than a recovery like we achieve with SR.  

The successful application of SR typically requires (1) subpixel inter-frame motion (2) the presence of aliasing in the 
LR frames and (3) lack of motion blur in the frames used [Milanfar2010][Hardeep2013][Gunturk2012]. Some authors 
have proposed motionless SR based on defocus or varying the blur present in the LR frames 
[Rajan2001][Rajagopalan2003]. Aliasing is a visually unappealing artifact in images which is why many, if not most 
image acquisition devices are designed with antialiasing filters; however, some level of aliasing in the LR images is 
required [Nasrollahi2014]. Ben-Ezra et al [BenEzra2005] note that the presence of motion blur causes significant 
degradation of SR, even when the motion blur is known.  

6.1.2 Image Formation Model 

An understanding of the model for image acquisition is an important first step when approaching any image processing 
or computer vision problem. Most conventional cameras will form the image similarly, i.e. light enters the lens which 
focuses the light on the film or sensor. Some specialty image acquisition systems (light field cameras, coded aperture 
systems, multi/hyper-spectral imaging systems, etc.) have an image acquisition model which departs significantly 
from the type of system we present here and which are in most common use. The basic important components of a 
classical digital optical imaging system are: aperture, lens system, and sensor.  

Using this physical model of the image acquisition system, we will now look at the mathematical models described in 
the literature. The most basic model of image formation is the pinhole camera model, comprising a perspective 
projection of a 3D scene onto a 2D sensor. The pinhole camera is similar to the system shown in Figure 6.2, but 
without lenses and using a very small aperture. Though this type of camera has no aberration, the problem with this 
construction is the excessive amount of time needed to capture an image. With the introduction of lenses to the system, 
a wider aperture can be used, introducing more light to the sensor at the expense of obtaining a blurred and distorted 
image. Delbracio et al [Delbracio 2012] describe the image formation process as 

 𝒗𝒗 = 𝑺𝑺1�𝑔𝑔(𝐹𝐹(𝐻𝐻(𝑢𝑢) ∗ ℎ𝐼𝐼𝑥𝑥) ∗ ℎ)� + 𝒏𝒏 (6.1) 
Where  𝒗𝒗 is the measured image, 

𝑺𝑺1 is the bi-dimensional ideal sampling operator,  
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𝑔𝑔 is a monotonically increasing function that describes the nonlinear sensor response or camera response 
function (CRF),  

𝐹𝐹 is the geometric distortion operator,  

𝐻𝐻 is the perspective projection, reduced to a planar homography,  

𝑢𝑢 is the ideal planar representation of the scene,  

∗ is the local convolution operator,  

ℎ𝐼𝐼𝑥𝑥 is the kernel comprising all extrinsic blur effects (e.g. motion blur, atmospheric turbulence),  

ℎ is the kernel comprising all intrinsic blur effects (e.g. diffraction, lens blur, antialiasing filters), also called 
the PSF, and 

𝒏𝒏 models the sensor noise.  

Šroubek et al [Sroubek2008] model the image formation process as 

 𝑔𝑔𝑘𝑘(𝑠𝑠, 𝑗𝑗) = 𝐷𝐷�[ℎ𝑘𝑘 ∗ 𝐼𝐼𝑘𝑘(𝑐𝑐)](𝑥𝑥,𝑦𝑦)� + 𝑠𝑠𝑘𝑘(𝑠𝑠, 𝑗𝑗) (6.2) 
Where gk is low-resolution, digitized, noisy image,  

(i, j) are the image coordinates of gk,  

D is the decimation operator which models the function of a CCD/CMOS sensor array,  

hk is the spatially variant PSF,  

Wk is the geometric deformation (warping),  

o is the intensity function of the original, continuous, high-resolution scene,  

nk is additive noise, and 

k is the acquisition index.  

 
Figure 6.2: Exploded view of a simplified representation of a digital optical image acquisition system. Light enters 
from the right, and is either passed, blocked, or diffracted by the aperture. The path of the light is then altered by the 
lenses. These components serve to focus the light from the scene, but also introduce undesirable aberration and 
distortion. Finally, the light is recorded by the sensor and binned into pixels with the relative intensity levels 
discretized into a value representing the amount of light incident on a given pixel. 
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Šroubek et al [Sroubek2008] combine modeling of both the intrinsic and extrinsic blurs into a single parameter. They 
mention turbulence, lens blur, and relative camera-scene motion. They further note the volatile nature of the blur 
sources, despite not separating the volatile extrinsic blur sources from the more stable intrinsic blur sources.  

Tian and Ma [Tian2011] describe the observation model as 

 𝒚𝒚(𝑘𝑘) = 𝑫𝑫(𝑘𝑘)𝑷𝑷(𝑘𝑘)𝑾𝑾(𝑘𝑘)𝑿𝑿 + 𝑽𝑽(𝑘𝑘) (6.3) 
Where 𝐲𝐲 is the low-resolution image,  

𝐃𝐃 is the decimation matrix,  

𝐏𝐏 is the blurring matrix,  

𝐖𝐖 is the warping matrix,  

𝐗𝐗 is the original high-resolution image,  

𝐕𝐕 represents white Gaussian noise encountered during the image acquisition process , and 

k is the acquisition index. 

Tian and Ma [TianMa2011] state that the operations 𝐃𝐃, 𝐏𝐏, and 𝐖𝐖 may be combined into a single transformation 
matrix. They also note that 𝐕𝐕 is assumed to be independent of 𝐗𝐗 and that 𝐏𝐏 and 𝐖𝐖 are commutable if the imaging blur 
is spatio-temporally invariant and there exists only global translational motion between the frames.  

The image acquisition models presented [Sroubek2008][Tian2011][Delbracio2012] differ most in their selection of 
notation and how they handle lens blur and sensor sampling. Delbracio et al [Delbracio2012] include the CRF and 
separate the intrinsic and extrinsic blurring effects. In our formulation, we consider a flat-field correction as sufficient 
to address the effects of the CRF and omit this contribution to the acquisition model. Also, for our imaging scenario 
the effects of motion blur are negligible so the extrinsic source of blur is due to atmospheric turbulence. Intrinsic 
sources of blur are due to diffraction from the aperture and blur from the lens. We adapt the notation of (6.2) and 
utilize the structure of (6.1) to develop our model.  

 𝑔𝑔𝑘𝑘(𝑠𝑠, 𝑗𝑗) = 𝐷𝐷�[𝐼𝐼𝑘𝑘(𝑐𝑐 ∗ ℎ𝐼𝐼𝑥𝑥) ∗ ℎ𝑖𝑖𝑙𝑙](𝑥𝑥,𝑦𝑦)� + 𝑠𝑠𝑘𝑘(𝑠𝑠, 𝑗𝑗) (6.4) 
Where gk is low-resolution, digitized, noisy image,  

(i, j) are the image coordinates of gk,  

D is the decimation operator which models the function of the sensor array,  

Wk is the geometric deformation (radial and tangential) due to the lens system,  

o is the intensity function of the original, continuous, high-resolution scene,  

hex represents the blur from extrinsic sources (simply atmospheric turbulence in our scenario),  

hin is the spatially variant PSF representing all intrinsic blur effects of the acquisition device,  

(x, y) are the image coordinates of the sampled version of the recovered high-resolution image,  

nk is additive noise, and 

k is the acquisition index.  

The model in (6.4) represents a formulation which implies a multiframe approach to enhancement of the observed 
images. A simplified formulation representing the model used to generate the synthetic images used as part of the 
pipeline is shown in (6.5).  

 𝑔𝑔 = 𝐷𝐷([𝐼𝐼(𝑐𝑐 ∗ ℎ𝐼𝐼𝑥𝑥) ∗ ℎ𝑖𝑖𝑙𝑙]) + 𝑠𝑠 (6.5) 
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Where the parameters are as described above.  

In Figure 1.2, the element of the pipeline labelled ‘Lens Parameters’ corresponds to the intrinsic blur ℎin and the 
geometric distortion 𝐼𝐼, while the element labelled ‘Sensor Parameters’ corresponds to the decimation 𝐷𝐷 and the noise 
𝑠𝑠. The original scene is formed based on the target position and the sensor position and orientation. The extrinsic blur 
(atmospheric distortion) parameter ℎ𝐼𝐼𝑥𝑥 is considered independent of these known or estimated parameters. Droege et 
al. [Droege2012] also include the effects of atmospheric distortion, but do so via the MTF rather than utilizing a time- 
and space-variant representation. 

Some researchers [Farsiu2004][Wang2004B][Wang2005] have discussed the order of applying the convolutional blur 
and the geometric warping operations. Wang and Qi [Wang2004B][Wang2005] indicate that the typical approach 
(performing the warping operation followed by the convolutional blur operation) is consistent with imaging physics 
where the blur degradation dominates. They do warn, however, that this order of operations is only useful if the inter-
frame motion is known a priori. The authors reach this conclusion based on an analysis of the results of methods for 
which the accuracy of the motion estimation is diminished due to the degradations present in the LR images. Farsiu 
et al. [Farsiu2004] indicate that the operations are commutative if one assumes that the PSF is space invariant, an 
incorrect assumption for real captured images as demonstrated in Chapter 3.  

6.1.3 Image Registration 

Szeliski [Szeliski2006] discusses image registration in great detail, including 2D and 3D parametric motion models. 
For our purposes, the target motion and the egomotion of the camera in a short duration can be reliably modeled as a 
2D planar transformation. Once a model is chosen, there are a selection of methods for solving for the parameters of 
the motion model. The exact method of solving for these parameters is not important for our application, but rather 
the accuracy of the estimates. In general the computational time for the geometric registration is nontrivial but as we 
formulate our image acquisition system in the multi-aperture case, we assume that this operation is a calibration step 
that can be performed a priori. We include a comparison of the results of several methods with respect to their accuracy 
compared to a known ground truth motion vector in order to recommend a method for use in calibration for images 
obtained using this kind of system. 

Aliasing must be present in the LR input images for success of the SR algorithms. Meaning that at least one parameter 
in the imaging model must be unique about each of the LR input images to contribute to enhancement of the resolution 
of the result. We focused on inter-frame motion as the source of uniqueness but also considered the application of 
multi-aperture imaging which would contribute unique views as well as slight differences in the blur kernel due to 
using distinct lens elements at each aperture location. The difference from one frame to the next can also be a zoom 
or scale change or utilizing the unique spectral bands from a multichannel image. The most common considered are 
the inter-frame motion and blur kernel estimation [Nasrollahi2014]. In this section we discuss the geometric image 
registration while covering blur kernel estimation in Section 6.3. 

Geometric registration compensates for the misalignment between a set of images. These misalignments, or inter-
frame motion, typically result from global or local motion. Global motion arising from the egomotion of the camera 
used to acquire the images, or from motion of the object of interest if the camera is stationary and the object comprises 
a large percentage of the FOV. Local motion estimation is necessary when there are many objects of interest within 
the FOV or when the object of interest is deformable, such as with a human face. Atmospheric distortion can also be 
modeled as local motion [Nasrollahi2014].  

In addition to pixel-based registration approaches like optical flow, there are also methods which utilize edges 
(typically via gradient operations or another edge detection operation), corners (typically via the Harris or another 
corner detector), edges and corners using the sampling theory of finite rate of innovation (FRI), normalized cross 
correlation (NXC), Fourier-based matching, mesh-based warping, depth information, and PCA for hyperspectral 
image sets [Nasrollahi2014]. Selecting a motion estimation approach depends greatly on the goals of the application 
and the type of motion in the LR input images. The type of motion seen in the images we encounter contain a single 



   86 

target of interest when the resolution is low enough that all potential targets are in a single cluster such that the 
individual items contained are indistinguishable. If the resolution is higher (whether in experiments considering higher 
resolution source data or from the target cluster approaching the altitude of the sensors) then the individual items in 
the cluster may be distinguished and the global motion assumption becomes less valid. Global motion estimation 
methods can be successful if the targets in a cluster are first isolated using segmentation, and in a sense the global 
motion is applied as a local motion estimation. Most of the scenarios deemed realistic for our application were 
determined to be sufficiently reasonable to apply global motion estimation, but a discussion of local methods is 
included for comparison, the knowledge of the reader, and to illustrate potential for future research directions.  

6.1.3.1 Local 

Modeling of local motion is accomplished using a non-rigid motion model, which uses a set of control points 
calculated for each image. These control points are weighted utilizing position information from the image pair 
(current image and reference image). Local motion estimation is desirable when there are multiple rigid objects in the 
scene with independent motion, a single (or multiple) deformable object such that different parts have their own 
motion, such as a human walking or a human face. 

Optical flow [Bouguet2000] is a popular local motion estimation method, which operates by dividing the image into 
blocks which are then processed at multiple resolutions in order to construct a flow map which represents the motion 
vector of the local motion of pixels in the image compared to a reference [Nasrollahi2014]. This approach works 
particularly well when the objects in the scene are non-rigid, non-planar, non-Lambertian, and subject to self-
occlusion. Such objects include human faces, human bodies, or other living beings. Typically candidate feature points 
are obtained using SIFT [Lowe1999] (or another process) which produces better results than dense flows which 
calculate a motion map for each pixel [Nasrollahi2014].  

6.1.3.2 Global 

Typical global motion models include global translational, affine, and projective [Nasrollahi2014]. We focus on global 
translation estimation since our imaging scenario is particularly well-suited to this model, but also include algorithms 
that perform rotation estimation about the optical axis to account for the egomotion of the imaging platforms used.  

The equation in (6.6) demonstrates the relationship between the LR and HR images, allowing for translation and 
rotation.  

 
𝑥𝑥 = 𝑥𝑥𝑘𝑘𝑎𝑎 + 𝑞𝑞𝑥𝑥𝑙𝑙 cos𝜃𝜃𝑘𝑘 − 𝑞𝑞𝑦𝑦𝑠𝑠 sin𝜃𝜃𝑘𝑘 
𝑦𝑦 = 𝑦𝑦𝑘𝑘𝑎𝑎 + 𝑞𝑞𝑥𝑥𝑙𝑙 sin𝜃𝜃𝑘𝑘 + 𝑞𝑞𝑦𝑦𝑠𝑠 cos𝜃𝜃𝑘𝑘 (6.6) 

Where  𝑥𝑥𝑘𝑘𝑎𝑎 ,𝑦𝑦𝑘𝑘𝑎𝑎  is the translation of the 𝑘𝑘th image,  

 𝜃𝜃𝑘𝑘 is the rotation, and  

 𝑞𝑞𝑥𝑥,𝑞𝑞𝑦𝑦 are the sampling rates along the 𝑥𝑥 and 𝑦𝑦 direction, respectively. 

Some authors employ a Taylor series expansion to solve for the parameters but this approach is only valid for small 
translations and rotations [Nasrollahi2014]. It is possible to apply multiple approaches, however. Meaning that a rough 
“pre-registration” can be performed prior to application of an approach which is only successful at calculating the 
registration parameters if they are small. This type of approach is embedded in the idea of resolution pyramids, where 
downsampled versions of the input are aligned at progressively finer scales. This is accomplished by first finding the 
parameters in the smallest resolutions of the pyramid and then using those values as the starting point of the next scale 
up. Block-based application of this resolution pyramid idea is known as optical flow, a popular type of local motion 
estimation.  

There are two approaches to global motion estimation: differential (progressive), and cumulative (anchored). 
Differential global motion estimation calculates the motion between each successive frame whereas cumulative 
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calculates the motion of an image set relative to a single reference (anchor) image [Nasrollahi2014]. The differential 
approach is particularly well-suited to processing a stream of frames coming from an input video, though the 
cumulative approach may be adapted for this situation by applying a windowed operation where a sliding window of 
input frames of a given width are selected for calculating an SR output at each time step, such that the result is only 
delayed by the number of frames that need to be accumulated before processing begins, assuming negligible 
processing time. An important consideration when applying the cumulative approach is appropriate selection of the 
reference. If the image selected is of particularly bad quality due to image degradation or too much important 
information in the scene is occluded then motion estimation will be unreliable. Nasrollahi and Moeslund 
[Nasrollahi2014] have suggested methods for selecting an appropriate reference frame utilizing image quality metrics.  

6.1.4 Taxonomy of SR Methods 

A variety of approaches have been developed since Tsai and Huang’s [Tsai1984] seminal method. The taxonomy of 
methods in Figure 6.4 is adapted from that proposed by Nasrollahi and Moeslund [Nasrollahi2014]. As we require 
results that are more rigorous by metrology standards rather than driven by aesthetic concerns we focus on only those 
methods which develop their results from input observations of the scene and exclude the hallucination or machine-
learning approaches which use data obtained from other images to build their dictionaries or databases. This effect is 
shown in Figure 6.3 where the results of a competitive single image SR approach, though a drastic improvement in 
the quality of the input supplied, in many cases lacks sufficient similarity to the original HR source to be considered 
appropriate for our application.  

Classification of SR algorithms may be conducted in a handful of ways, we will focus on methods which utilize 
multiple LR images. The approach shown in Figure 6.4 which we will use in this chapter classifies SR approaches 
based on the domain in which the method operates, whether in the spatial or frequency domain. Tsai and Huang 
[Tsai1984] utilized a frequency-domain approach, but as may be seen, spatial domain has received much more 
attention, primarily due to the ability to utilize more flexible image registration methods as discussed in Section 6.1.3. 

The imaging acquisition model presented in Equation (6.5) is almost identical to the approach presented by Nasrollahi 
and Moeslund [Nasrollahi2014] as being the structure used by a majority of reconstruction-based SR methods. We 
account for the intrinsic and extrinsic blur functions, as described previously due to our incorporation of both the 
atmospheric distortion effects and the potential for motion blur during image acquisition. If these factors are deemed 
negligible then our model agrees with the majority of SR researchers.  

6.2 Description of Methods 

This section contains a description of the SR methods described in the taxonomy of methods shown in Figure 6.4.  

6.2.1 Frequency Domain 

The first popular SR method, developed by Tsai and Huang [Tsai1984], was a frequency domain approach, where the 
authors developed an approach for enhancement of noiseless LR images. A frequency domain approach is intuitive as 
the fine details in an image are contained in the high-frequency components of the Fourier representation. Aliasing in 
the LR images is particularly vital for the success of frequency domain approaches as the relationship between the 
continuous and discrete Fourier transforms is exploited in this class of algorithms [Hardeep2013]. 
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Figure 6.3: The success of single image SR methods depends heavily on the training data used. This can drastically 
alter the result. In comparing the result in the center column with the ground truth in the right column, significant 
details are changed and in the case of the first result shown in the top row, a completely different person would be 
identified. For our application, it is of great important to have accurate results which represent the actual scene being 
inspected. For this reason we consider only multi image SR methods that utilize data from the scene in calculating the 
result. Reproduced from [Dahl2017].  

 
Figure 6.4: Taxonomy of SR methods. Interpolation and upscaling methods also increase the pixel resolution of an 
image but the approaches do not contribute additional information from the scene in calculating the final HR image 
and therefore are unreliable for metrology-type accuracy needed for our application. The multi-frame SR structure 
presented by Nasrollahi and Moeslund [Nasrollahi2014] is used in presenting an analysis of multi-frame SR methods. 
The two broad categories into which multi-frame SR algorithms fall are the frequency domain approaches and the 
spatial domain approaches. Significantly more attention has been shown in the spatial domain, in part due to the 
flexibility of choice in motion estimation compared to the limitation of frequency domain methods to only global shift 
estimation. 
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The shared approach for which SR methods are designated as frequency domain is that their algorithms primarily 
operate after transformation to the frequency domain and then perform an inverse transformation of the calculated HR 
image [Nasrollahi2014]. One drawback of this class of methods is that they can only operate on images for which the 
inter-frame motion is global translational. This is not of particular concern in our application however as the image 
acquisition conditions we investigate can be reasonably assumed to be global translational. In general for many 
applications it is vital to retain a remembrance of this limitation for this class of methods.  

6.2.1.1 Fourier 

The first SR methods [Gerchberg1974][Santis1975][Tsai1984] were iterative frequency domain approaches which 
could extend the spectrum of the image signal beyond its diffraction limit and therefore increase its resolution 
[Nasrollahi2014]. Tsai and Huang’s [Tsai1984] method was demonstrated on satellite images which were related by 
global translation due to the large distance between the continuous scene and acquisition device. Their method took 
advantage of the shifting property of the Fourier transform to correlate the unique information contained in the 
available images. Extensions of their method expanded on the assumption of noiseless, blur-free images and included 
least squares estimation of the inter-frame motion, along with assigning weight to the LR images based on their SNR.  

The effect of aliasing in the frequency domain is shown in Figure 6.5, in the spatial domain. When the bandwidth of 
the signal is limited during acquisition, the higher-frequency components will alias, or shift to a lower-frequency 
region and corrupt the signal. When we increase the bandwidth of the signal beyond this limit we remove this effect 
and the finer details in the signal are recovered.  

 
Figure 6.5: Demonstration of the aliasing effect with respect to improved resolution possible with application of SR. 
Reproduced from [Hardeep2013]. Frequency domain approaches to SR rely on the shifting property of the Fourier 
transform, the aliasing relationship between the continuous and discrete form of the Fourier transform, and an 
assumption that the desired HR image is band-limited. 

Aliasing

Aliased LR Signal (CFT)

Dealiased HR Signal (DFT)

Decompose Aliased Signal into Dealiased Signal
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6.2.1.2 Wavelet 

Wavelet-based SR algorithms are a frequency based adaptation of the Fourier transform approach which is used to 
decompose the input images into structurally correlated sub-images. These sub-images are a multiscale representation 
of the input image from which it was calculated, as shown in Figure 6.6. Tian and Ma [Tian2011] describe this class 
of SR algorithms as considering the LR input images as low-pass filtered subbands of the unknown wavelet-
transformed HR image. With this in mind, the approaches seek to estimate these finer scale subband coefficients 
followed by an inverse transform to arrive at the HR reconstruction.  

6.2.2 Spatial Domain 

A majority of SR approaches operate in the spatial domain due to the flexibility offered in selection of an inter-frame 
motion model and for the ability to model the various degradations present in the LR images [Nasrollahi2014]. A 
majority of multi-frame SR algorithms are reconstruction-based, meaning that they utilize the image formation model 
and consider aliasing artifacts in LR images as results from the decimation operation such that their SR approach can 
be considered as recovering from an under-sampling of the continuous scene. This section contains a description of 
the methods as depicted in Figure 6.4. 

6.2.2.1 Iterative Back Projection 

One of the first spatial domain approaches, the iterative back projection (IBP) class of SR methods operates by 
calculating a HR output and minimizing the error by iteratively refining the HR estimate. An initial estimate is usually 
composed of an average of the registered LR input images. This estimate is updated by utilizing the image formation 

 
Figure 6.6: A conceptual framework of wavelet domain SR approaches. Reproduced from [Tian2011]. The LR input 
images are converted to the wavelet domain by way of the discrete wavelet transform (DWT). Wavelet-based SR 
algorithms estimate the coefficients for the wavelet domain version of the HR image from each LR sample. Finally, 
these coefficient estimates are fused by the SR algorithm and the inverse discrete wavelet transform (IDWT) is applied, 
resulting in the spatial domain representation of the HR image.  
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model to re-project the HR estimate and compare the LR version to the input LR images to determine if the current 
HR output estimate is more likely to have generated the LR inputs. This cycle iterates until no improvement is seen 
or until a specified number of iterations has occurred [Nasrollahi2014]. In order to speed up the algorithm, if a given 
pixel value has not changed for a certain number of iterations the pixel will not be included in subsequent iterations 
[Irani1993]. The back-projected error is calculated as the mean of the error contributed by each LR input image as 
shown in Equation (6.7).  

𝑓𝑓(𝑎𝑎+1)(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑎𝑎)(𝑥𝑥,𝑦𝑦) +
1
𝐾𝐾
�𝑤𝑤𝑘𝑘−1 ���𝑔𝑔𝑘𝑘 − 𝑔𝑔𝑘𝑘

(𝑎𝑎)��̇�𝑑� ∗ ℎ̇�
𝐾𝐾

𝑘𝑘=1

 (6.7) 

Where 𝑤𝑤𝑘𝑘−1 is the warping kernel,  

 �̇�𝑑 is an upsampling operator,  

 ℎ̇ is a deblurring kernel,  

 𝐾𝐾 is the number of LR input images 𝑔𝑔, and 

 𝑓𝑓 is the value of the error at iteration 𝑡𝑡.  

Zomet et al [Zomet2001] proposed an improvement to this approach by using the median rather than the mean in order 
to improve robustness of the approach to noise in the LR input images and to improve the convergence time. Nasrollahi 
and Moeslund [Nasrollahi2014] observe the problem of the algorithm in there being multiple solutions which can be 
reached depending on the limit set on the number of iterations or the potential for the algorithm to oscillate between 
potential solutions if this parameter is set high enough. They also note that a priori constraints on the solution have 
been proposed by several authors and different regularization terms have been incorporated to aid in convergence. 
Further, they note the suggestion to replace the 𝑙𝑙2 norm with the 𝑙𝑙1 norm which improves robustness to outlier solutions 
due to noise or errors in motion estimation and also has the effect of improving the speed of convergence. 

6.2.2.2 Probabilistic 

Maximum Likelihood (ML) 

This approach to SR maximizes the log-likelihood of (6.10) for all LR input images. The imaging model used is  

g = 𝐴𝐴𝑓𝑓 + 𝜂𝜂. (6.8) 
Where g is the LR observation,  

𝐴𝐴 models the system degradation,  

 𝑓𝑓 is the original HR scene, and 

 𝜂𝜂 is Gaussian noise with zero mean and variance 𝜎𝜎. 

Given an estimate 𝑓𝑓 of the SR output, the total probability of an observed input image 𝑔𝑔𝑘𝑘 is 

p�𝑔𝑔𝑘𝑘�𝑓𝑓� = �
1

2√𝜋𝜋∀𝑚𝑚,𝑙𝑙

𝑒𝑒𝑥𝑥𝑒𝑒 �−
(𝑔𝑔�𝑘𝑘 − 𝑔𝑔𝑘𝑘)2

2𝜎𝜎2
�. (6.9) 

The log-likelihood function of this estimate is 

𝐿𝐿(𝑔𝑔𝑘𝑘) = − � (𝑔𝑔�𝑘𝑘 − 𝑔𝑔𝑘𝑘)2
∀𝑚𝑚,𝑙𝑙

. (6.10) 

Thus the ML solution seek a SR result 𝑓𝑓𝑀𝑀𝑀𝑀 which maximizes (6.10) for all LR input images. Thus 

𝑓𝑓𝑀𝑀𝑀𝑀 = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇𝑔𝑔. (6.11) 
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The ML solution is an ill-conditioned problem, which when applied to SR means that it is sensitive to increasing noise 
and errors in imaging parameter estimates. The problem becomes ill-posed if there are too few LR input images, 
following the same requirement as outlined by Šorel and Šroubek in [Gunturk2012] who specify a minimum number 
of LR input image as the square of the SR factor. In this situation, a priori information can constrain the solution space 
and select from a number of non-unique solutions. If a sufficient number of LR input images are available, the ML 
and MAP (introduced in the next section) solutions are identical and the ML solution is more computationally efficient. 
Depending on the information used, the ML problem may become a MAP problem and a MAP solution is preferred 
when there are not enough LR input images available.  

Maximum a Posteriori (MAP) 

MAP methods are related to ML methods via the application of Bayes’ rule to handle the LR input images as 
incorporating a priori knowledge of the SR result, as shown in (6.12).  

p�𝑓𝑓�𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑘𝑘� =
p(𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑘𝑘|𝑓𝑓)p(𝑓𝑓)

𝑒𝑒(𝑔𝑔1,𝑔𝑔2,⋯ ,𝑔𝑔𝑘𝑘)  (6.12) 

Where  𝑓𝑓 is the SR result, and  

 𝑔𝑔𝑘𝑘 are the 𝑘𝑘 LR input images.  

The LR input images are assumed to be independent samples of the original HR scene, so when the same assumption 
of white Gaussian noise with zero mean, and taking logarithms of each side of the equation and simplifying, then the 
SR result obtained using the MAP approach in (6.12) becomes (6.13) [Nasrollahi2014]. 

𝑓𝑓𝑀𝑀𝑀𝑀𝐼𝐼 = arg min
𝑏𝑏
��‖𝑔𝑔�𝑘𝑘 − 𝑔𝑔𝑘𝑘‖22 + 𝜆𝜆𝜆𝜆(𝑓𝑓)

𝐾𝐾

𝑘𝑘=1

� (6.13) 

Where 𝜆𝜆 is a regularization parameter, and 

 𝜆𝜆(𝑓𝑓) is the a priori energy function.  

Different approaches have been developed for determining the best value of 𝜆𝜆 to solve the SR problem with a MAP 
method [Nasrollahi2014]. Regularization in solving SR problems as there may be many possible solutions the 
algorithm could find and reducing the solution space to a more desirable result or guiding the algorithm to reach the 
result quicker may be accomplished by this tactic. Where regularization is employed to utilize a priori information to 
guide the algorithm to a subset of possible results, many different approaches have been developed and the reader is 
encouraged to consult the work of Nasrollahi and Moeslund for additional detail [Nasrollahi2014]. Regularization 
terms employed in SR methods such as smoothness and edge-preserving terms are commonly found in use, but others 
are also found such as a natural image prior, corner preservation, multichannel smoothness (particularly for video SR), 
among others [Nasrollahi2014].  

Markov Random Fields (MRF) 

SR approaches which impose similarity structure a priori terms typically employ MRF models to represent the values 
of the local neighborhood in a given image. These models are expressed in the form 

𝜆𝜆(𝑓𝑓) = �𝑉𝑉𝑟𝑟(𝑓𝑓)
𝑟𝑟∈𝑅𝑅

= ���𝜌𝜌𝑟𝑟(𝑓𝑓), (6.14) 

where 𝑉𝑉𝑟𝑟 is a function of a set of local points 𝑟𝑟 called cliques,  

 𝑅𝑅 is the set of all such cliques, and 

 𝜌𝜌𝑟𝑟 are the potential function defined over the pixels in each clique 𝑟𝑟. 

The potential functions 𝜌𝜌𝑟𝑟 are homogenous, isotropic, and quadratic in the pixel values for the most common case, 
which results in the Tikhonov regularization term 
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𝑒𝑒(𝑓𝑓) =
1
𝐶𝐶
𝑒𝑒𝑥𝑥𝑒𝑒(−𝑓𝑓𝑇𝑇𝑄𝑄𝑓𝑓), (6.15) 

where  𝑄𝑄 is a symmetric, positive definite matrix. 

One problem with using the Tikhonov regularization term is that it does not allow for discontinuities in the solution 
which impacts the preservation of edges in the result. Some authors have introduced modified approaches to preserve 
sharp edges. These include Huber MRFs which are a convex, non-quadratic prior resulting in nonlinear cost functions 
[Nasrollahi2014].  

When 𝑄𝑄 is non-diagonal, the off-diagonal elements model spatial correlation between neighboring pixels. This gives 
a multivariate Gaussian distribution over 𝑓𝑓 and is known as a Gaussian MRF. This approach helps with noise reduction 
at the expense of smoother edges. These effects can be balanced with appropriate choice of weight on the term. 

Total Variation (TV) 

When the weighting parameter of the Huber MRF tends to zero, the a priori term converts to a TV norm that penalizes 
both over smoothing and edge discontinuities. This results in edge preservation while minimizing ringing effects in 
the output. An approximation called bilateral TV forms the a priori term by generating multiple scales of derivatives, 
which can result in saturated data when applied to data collected from UAVs unless it is paired with the Hubert 
function shown in (6.16). 

𝜌𝜌(|𝑥𝑥|) = �

|∇𝑥𝑥|2

2
𝑠𝑠𝑓𝑓 𝐴𝐴 < 𝛼𝛼

𝜕𝜕𝐴𝐴
𝜕𝜕𝑥𝑥

𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑠𝑠𝑠𝑠𝑒𝑒
 (6.16) 

Where  𝐴𝐴 is the bilateral TV regularization term, and  

 𝛼𝛼 is calculated as 𝛼𝛼 = median[𝐴𝐴 −𝑙𝑙𝑒𝑒𝑑𝑑𝑠𝑠𝑎𝑎𝑠𝑠|𝐴𝐴|].  

This approach keeps the uniform areas smooth while preserves edges in the image [Nasrollahi2014].  

Biomodality Priori (BP) 

The BP approach has been shown to work particularly well for images such as text, where the data in the LR input 
images can typically be divided into two classes [Nasrollahi2014. BP is modeled as the exponentiated 4th-order 
polynomial seen in (6.17). 

ρ(𝑓𝑓) =
1
𝐶𝐶
𝑒𝑒𝑥𝑥𝑒𝑒�

�𝑓𝑓𝑖𝑖,𝑜𝑜 − 𝜇𝜇0�
2�𝑓𝑓𝑖𝑖,𝑜𝑜 − 𝜇𝜇1�

2

𝜔𝜔�4
� (6.17) 

Where  𝐶𝐶 is a normalization constant,  

 𝜇𝜇0, 𝜇𝜇1 are the centers of the peaks of the polynomial (estimated using EM), and 

 𝜔𝜔� is the width of the foreground and background distributions. 

Other appropriate problems include separating portions of the image into foreground and background regions. 

6.2.2.3 Iterative Adaptive Filtering 

This class of SR algorithm develops a solution as a state estimation problem and is typically employed for video SR, 
where a LR video is used as input to generate a HR output video. The Kalman filter [Elad1999] is typically employed, 
using the image formation model in (6.18) and the state equation of the Kalman filter in (6.19). 
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𝑔𝑔(𝑙𝑙,𝑠𝑠) =
1
𝑞𝑞2

� � 𝑓𝑓(𝑥𝑥,𝑦𝑦)
(𝑞𝑞+1)𝑙𝑙−1

𝑦𝑦=𝑞𝑞𝑙𝑙

(𝑞𝑞+1)𝑚𝑚−1

𝑥𝑥=𝑞𝑞𝑚𝑚

 (6.18) 

Where 𝑔𝑔 is the LR observation,  

 𝑓𝑓 is the original HR scene,  

 𝑞𝑞 is the decimation factor, assumed to be equal in the 𝑥𝑥,𝑦𝑦 directions.  

This models the image formation process as an averaging of the HR image over a 𝑞𝑞 × 𝑞𝑞 area to form the LR image. 
The state equation for the Kalman filter is 

𝑓𝑓𝑘𝑘 = 𝐵𝐵𝑘𝑘𝑓𝑓𝑘𝑘−1 + 𝜁𝜁𝑘𝑘, (6.19) 
where 𝐵𝐵𝑘𝑘 is the model of the relationship between the current estimate of the HR image and the previous estimate,  

 𝜁𝜁 is the error of estimating 𝐵𝐵𝑘𝑘, and 

 𝑓𝑓 is the HR image. 

Some methods have also employed additional regularization terms in order to incorporate a prior knowledge of the 
relationship between LR and HR images, modeling the motion estimation in order to speed convergence of the 
algorithm [Nasrollahi2014]. 

6.2.2.4 Direct 

Direct SR methods share similarity in the approach that they take to calculating the result, as follows: 

1 One of the LR input images is selected as a reference 
2 The remaining LR input images are registered against the reference image 
3 The LR input image selected as a reference is scaled by the chosen SR factor 
4 The registration information for the remaining LR input images is used to transform them to the scaled 

reference image 
5 The SR image is calculated by fusing information from all of the available input data, including an optional 

deblurring step 

Direct SR methods differ from one another in their approach to fusion of the scaled inputs; such approaches include 
mean and median filters, adaptive normalized averaging, Adaboost classifier, and SVD-based filters [Nasrollahi2014]. 
The direct SR methods are faster than IBP, and median fusion of the scaled inputs is equivalent to the ML approach. 
This approach is robust if the motion is purely translational (often referred to as a shift-and-add approach) and the 
blur kernel does not change significantly across the image. 

Nonparametric 

The distinguishing characteristic of this subset of direct SR approaches is in the combination of the motion estimation 
and fusion components of the process described above. They are particularly well-suited to video SR and utilize fuzzy 
motion estimation which is more robust to issues of occlusion and local motion such as found in human faces or other 
complex scenes [Nasrollahi2014]. This motion estimation approach involves patch-based segmentation of the LR 
input images, followed by a comparison of the similarity of patches, weighted by the calculated importance to 
producing a HR representation of that portion of the scene.  
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6.2.2.5 Set Theoretic 

There are quite a few SR methods which employ the set theoretic projection onto convex sets (POCS) approach. The 
POCS approach assumes the LR input images impose a priori knowledge of the HR result, and that this a priori 
knowledge is a closed convex set 𝑆𝑆𝑘𝑘 as shown in Equation (6.20). 

𝑆𝑆𝑘𝑘 = {𝑓𝑓|𝛿𝛿𝑙𝑙 ≤ |𝑑𝑑ℎ𝑘𝑘𝑤𝑤𝑘𝑘𝑓𝑓 − 𝑔𝑔𝑘𝑘| ≤ 𝛿𝛿𝑢𝑢} (6.20) 
Where 𝑔𝑔𝑘𝑘 is the 𝑘𝑘th LR image,  

 𝑓𝑓 is the SR result, and 

 𝛿𝛿𝑙𝑙 and 𝛿𝛿𝑢𝑢 are the lower and upper bounds of the model’s uncertainty. 

With this collection of K convex sets, the iteration function in (6.21) is used to estimate the HR result. Occlusion in 
particular increases the error of the solution, as well as inaccurate motion estimation for which errors increase with 
increasing blur and noise in the available LR images. Some approaches detect inaccurate information from LR inputs 
and remove them from the estimation [Nasrollahi2014]. 

𝑓𝑓(𝑀𝑀+1)(𝑥𝑥,𝑦𝑦) = ℘𝑚𝑚℘𝑚𝑚−1 ⋯ ℘2℘1𝑓𝑓(𝑀𝑀)(𝑥𝑥,𝑦𝑦) (6.21) 
Where 𝑓𝑓 is the HR estimate for the 𝐿𝐿th iteration, and 

 ℘ is the projection of the HR estimate onto the convex set of the 𝑠𝑠th LR image.  

Since ringing can be introduced from projections at the edges of sets, adding blur at the edges can reduce this effect.  

6.2.3 Implementation 

The majority of tools developed in gathering, generating, processing, and analyzing data for this dissertation were 
coded in MATLAB, primarily due to rapid production time in implementation. Also, many of the methods developed 
by other authors were available in MATLAB and incorporation of their implementations was chosen to ensure 
appropriate comparison of the results obtained using their methods. Some adaptation of existing methods were 
performed in order to increase interoperability with other tools developed as well as to parallelize the method to speed 
up processing given the large amount of data chosen to give a reasonable average time in comparing results. Shown 
in Figure 6.7 is our implementation of a GUI used in preliminary experimentation to determine the general 
performance of the methods as well as appropriate parameter ranges to use. 

6.2.3.1 Geometric Registration Methods 

Background information about geometric registration methods and an overview of the considerations involved in 
selecting methods for comparison are given in Section 2.2.3 and Section 6.1.3. Four methods each were chosen for 
comparison in the global translational (shift) and Euclidean (shift and rotate) motion models as shown above. The 
global translation methods chosen are Lucas-Kanade [Lucas1981], Keren [Keren1988], Marcel [Marcel1997], and 
Vandewalle [Vandewalle2006]. The Euclidean registration methods chosen for comparison are Keren [Keren1988], 
Marcel [Marcel1997], Lucchese [Lucchese2000], and Vandewalle [Vandewalle2006]. The authors who developed 
methods suitable for each model either developed two approaches or the rotation estimates are set to null prior to 
calculating the SR result. 
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6.2.3.2 SR Methods 

The multi-image SR methods chosen are IBP [Irani1991], Papoulis-Gerchberg [Gerchberg1974], Robust SR (ZRSR) 
[Zomet2001], POCS [Vandewalle2006], Normalized Convolution [Pham2006], Robust SR (RSR) [Farsiu2004], Fast 
Robust SR (FRSR) [Farsiu2004], as well as bicubic interpolation for a baseline comparison. The approach of our 
implementation of IBP is described in Section 6.2.2.1. The Papoulis-Gerchberg method implemented is an iterative 
frequency domain approach as described in Section 6.2.1.1. Zomet et al’s approach (ZRSR) is a modification of the 

 
Figure 6.7: The GUI used to perform preliminary SR experiments. The tool allows for selecting a set of LR input 
images, selection of a registration method, whether global translational (shift only) or Euclidean (shift and rotate) as 
shown in Figure 2.1. Selection of SR method is also performed along with setting the parameters to be used during 
processing. For longer image sequences and smaller SR factors, a sliding window operation was implemented which 
allows for a sequence of HR outputs rather than a single HR output as is the typical use. Further, analysis, comparison, 
and automation tools were implemented to ease the comparison of large sets of data. 
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typical IBP method described in Section 6.2.2.1 where the mean operation is replaced with a median in order to 
increase noise robustness. The implementation of POCS is a set theoretic method as described in Section 6.2.2.5. 
Normalized Convolution is direct spatial SR approach as described in Section 6.2.2.4. The implementation of Farsiu 
et al’s RSR and FRSR methods are a modified form of the IBP approach described in Section 6.2.2.1 where different 
regularization terms and norms were utilized compared to the original algorithm.  

6.2.3.3 Parameters 

Each of the SR methods uses the SR factor (labelled “Resolution Factor” in the figure) to establish the size of the HR 
grid with respect to the LR input image size. The other parameters listed (PSF Kernel Size, PSF Sigma, Alpha, Beta, 
Lambda, P, and Iterations) are used for the CSD, RSR, and FRSR methods which were developed by Farsiu et al 
[Farsiu2004] and did not result in competitive results, we therefore do not detail the purpose of these parameters but 
direct the interested reader to the author’s publication on the operation of their methods. 

6.2.3.4 Comparison and Analysis 

The comparison and analysis tools developed allow for quick inspection of the results to determine the improvement 
in the quality of an SR result compared to the results of other SR methods and to the LR input images. When computing 
the result of a single method operating on a set of LR input images, an immediate result is displayed for comparison, 
along with the option of viewing the most recent previous result, which is helpful for determining if changes in 
parameters or SR factor contribute to improvements in the result. Also, the user can cycle through each of the LR 
input images to compare the output in determining a subjective comparison in the improvement of the output. The 
“Comparison – One” button launches a separate window that provides the same information described, just in a larger 
view with zoom and pan tools in order to facilitate inspection of find details as seen in Figure 6.8(a). 

The “Comparison – All” button launches a separate window that allows inspection of the first 𝑆𝑆𝑅𝑅𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑟𝑟2  images in the 
LR input image sequence, along with a single larger version (using nearest neighbor interpolation) of the image 
selected as reference for calculating the motion estimation, the SR result most recently calculated, and a difference 
image of the SR result and the interpolated LR reference image for comparison of the areas of the image where fine 
details were enhanced, as shown in Figure 6.8(b). For color images, we handle processing using the approach of Irani 
and Peleg [Irani1991], where the color image is converted to HSI space and SR is applied to the intensity channel 
while simple interpolation is applied to the hue and saturation channels before converting the image back to RGB 
color space.  

6.2.3.5 Automation 

In order to facilitate comparison of the available geometric registration and SR methods, automation tools were 
developed in order to calculate motion estimation for the LR input image sequence using each of the methods. This 
allows for analysis of the accuracy and a comparison of the performance of the methods. Where the motion vectors 
are known a priori, a more accurate analysis of the accuracy of a given method may be performed. Similarly for the 
SR methods, automation of the calculation of each method utilizing each motion estimation allows for inspection of 
which methods are more sensitive to errors in the registration step as well as which SR methods produce the best 
results for a given SR factor, image set, etc. 
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(a) 

            
(b) 

Figure 6.8: The comparison windows generated for comparison, analysis, and inspection of the SR results. (a) Shown 
are the nearest-neighbor interpolated LR image used as reference for calculating the motion estimation (left) and the 
SR result most recently calculated (right). This view allows for a larger portion of the screen to be used in comparing 
the quality of the experiments being run compared to the parent GUI. (b) A more detailed comparison and analysis 
tool that also allows for detailed inspection of the results. 
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6.3 Deconvolution 

Though deconvolution/deblurring are generally separate operations which address independent image degradations, 
some multi image SR algorithms include deblurring as part of their process, whether by supplying a known PSF or by 
estimating the system PSF directly from the LR input images. Therefore, a discussion of deblurring in general as well 
as a description of those SR algorithms which perform both steps simultaneously is included here. Of important note 
is the observation by Lin and Shum that the effectiveness of SR algorithms is not heavily influenced by the system 
PSF [Lin2004]. Thus the operations are orthogonal, which is evidenced by the structure of the methods which perform 
both operations. As the operations can be strictly separated, they should be thought of separately even though they 
both contribute to an improvement in the clarity of degraded images.  

6.3.1 Overview of Deconvolution 

In order to successfully apply a deconvolution operation, two pieces of information are typically required: the image 
degraded by convolutional blur, and the kernel used to induce the blur into that image. While this is the usual 
arrangement, there are methods which estimate the kernel from the image itself. Therefore in some sense only the 
source image is needed although it is more helpful to think of these approaches as first estimating the kernel from the 
available image(s) and then applying a standard deconvolution step using this estimate and the observed image. We 
first discuss standard deconvolution as indicated and then consider the SR methods which incorporate deconvolution 
as part of their approach. 

6.3.1.1 Deconvolution as a Post-Processing Step 

Deconvolution approaches typically assume that the blur kernel is known, and that noise in the process is negligible 
or nearly so. Recovering the true image from a blurred observation is a straightforward process. The simplest model 
used to represent this operation is the inverse filter shown in Equation (6.22) in the frequency domain. 

F�(𝑢𝑢, 𝑣𝑣) =
𝐺𝐺(𝑢𝑢, 𝑣𝑣)
𝐻𝐻(𝑢𝑢, 𝑣𝑣) (6.22) 

Where F� is the estimate of the true image,  

 𝐺𝐺 is the degraded observation, and 

 𝐻𝐻 is the blur kernel. 

The main difficulty comes when considering the contribution of noise in an observed image. This artifact adds 
uncertainty in the ill-posed inverse process which makes restoration of the true image a nontrivial problem. Often the 
contribution of noise in an image can be significant. Several solutions have been proposed. The model used by Wiener 
et al [Gonzalez2008] is also known as MMSE filtering and was developed to address the problem of noise in real 
images. The model used is described in Equation (6.23) in the frequency domain. It is assumed that the noise term and 
observed image are uncorrelated, that one or the other have zero mean, and that the pixels are linearly related. 

F�(𝑢𝑢, 𝑣𝑣) =

⎣
⎢
⎢
⎢
⎡ 1
𝐻𝐻(𝑢𝑢, 𝑣𝑣)

|𝐻𝐻(𝑢𝑢, 𝑣𝑣)|2

|𝐻𝐻(𝑢𝑢, 𝑣𝑣)|2 +
𝑆𝑆𝜂𝜂(𝑢𝑢, 𝑣𝑣)
𝑆𝑆𝑏𝑏(𝑢𝑢, 𝑣𝑣)⎦

⎥
⎥
⎥
⎤
𝐺𝐺(𝑢𝑢, 𝑣𝑣) (6.23) 

Where 𝑆𝑆𝜂𝜂 is the power spectrum of the noise, and 

 𝑆𝑆𝑏𝑏 is the power spectrum of the undegraded image. 
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Since the power spectrum of the undegraded image is not likely to be available, it is common practice to replace the 
𝑆𝑆𝜂𝜂(𝑢𝑢,𝑣𝑣)

𝑆𝑆𝑓𝑓(𝑢𝑢,𝑣𝑣)
 term with a constant 𝐾𝐾 [Gonzalez2008]. 

Because even small levels of noise causes dramatic instability in the output of the method, we must utilize methods 
for which handling the noise is an integral component. There are three classes of deconvolution algorithms we consider 
which do this [Mercimek2009]: 

1. Statistical 
2. Iterative 
3. Blind 

Statistical Deconvolution 

Statistical deconvolution methods introduce a priori information about the statistics of the noise present in the image 
formation process. Linear deconvolution methods operate by minimizing the norm of an error term. For instance, for 
the Euclidean norm this is 

‖𝐺𝐺 − 𝐹𝐹 ∗ 𝐻𝐻‖2. (6.24) 
Various approaches have been proposed to find a solution to this formulation using e.g. Tikhonov, Total Variation 
(TV), and other regularization methods [Mercimek2009].  

The form of the solution utilizing Tikhonov regularization is 

𝑇𝑇𝛼𝛼 = ‖𝐺𝐺 − 𝐹𝐹 ∗ 𝐻𝐻‖2 + 𝛼𝛼‖𝑓𝑓‖2 (6.25) 
and the form utilizing Total Variation is  

𝑇𝑇𝑇𝑇𝑇𝑇 = ‖𝐺𝐺 − 𝐹𝐹 ∗ 𝐻𝐻‖2 + 𝛼𝛼 ∙ 𝑇𝑇𝑉𝑉(𝑓𝑓) (6.26) 
where 𝑇𝑇𝑉𝑉(𝑓𝑓) = ∑ �∆𝑖𝑖ℎ𝑓𝑓�

2 + (∆𝑖𝑖𝑣𝑣𝑓𝑓)2𝑖𝑖 ,  

 𝛼𝛼 is the regularization parameter,  

 ∆𝑖𝑖ℎ and ∆𝑖𝑖𝑣𝑣 are first order difference operators at pixel 𝑠𝑠 in the horizontal and vertical directions, respectively. 

Linear deconvolution approaches are appealing because of their straightforward construction and computational 
efficiency, however they suffer to greater or lesser extent to overshoots in the solution which is seen in the result as 
what is known as “ringing” artifacts. Careful selection of regularization parameters can mitigate the severity of the 
effect, but it will still be present to some degree. 

Iterative Deconvolution 

A priori information can be utilized to constrain the solution space of deconvolution, such as non-negativity of the 
elements of the blur kernel [Delbracio2012], finite kernel size or support constraints [Mercimek2009]. Lucy-
Richardson [Richardson1972][Lucy1974] is an iterative expectation maximization deconvolution approach based on 
a Bayesian framework [Temerinac2010]: 

𝑒𝑒(𝑋𝑋|𝑌𝑌) = 𝑒𝑒(𝑌𝑌|𝑋𝑋) ∙
𝑒𝑒(𝑋𝑋)
𝑒𝑒(𝑌𝑌) (6.27) 

where  𝑒𝑒(𝑌𝑌|𝑋𝑋) is the likelihood probability,  

 𝑒𝑒(𝑋𝑋|𝑌𝑌) is the posteriori probability, and 

 𝑒𝑒(𝑋𝑋) is the prior model of the image.  

The full derivation is detailed by Temerinac-Ott [Temerinac2010] but the result of the derivation is  
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∇𝐽𝐽�𝑋𝑋(𝑣𝑣)� = 𝐻𝐻(−𝑣𝑣) ∗ �1 −
𝑌𝑌(𝑣𝑣)

𝐻𝐻 ∗ 𝑋𝑋(𝑣𝑣)� (6.28) 

which, after setting the derivative ∇𝐽𝐽(𝑋𝑋) = 0 and accounting for the energy of the PSF being one,  

𝐻𝐻(−𝑣𝑣) ∗
𝑌𝑌(𝑣𝑣)
𝐻𝐻 ∗ 𝑋𝑋

(𝑣𝑣) = 1 (6.29) 

and assuming the convergence ratio 𝑥𝑥
𝑝𝑝+1

𝑥𝑥𝑝𝑝
 is 1, the iteration steps are defined as  

𝑋𝑋�𝑝𝑝+1(𝑣𝑣) = 𝑋𝑋�𝑝𝑝(𝑣𝑣) ∙ 𝐶𝐶𝑝𝑝(𝑣𝑣) (6.30) 
where  𝑋𝑋�𝑝𝑝 is the current state estimate of the original image 𝑋𝑋 at iteration 𝑒𝑒, and 

𝐶𝐶𝑝𝑝(𝑣𝑣) = 𝐻𝐻(−𝑣𝑣) ∗
𝑌𝑌(𝑣𝑣)
𝑆𝑆𝑝𝑝(𝑣𝑣) (6.31) 

where  𝑆𝑆 is the simulated image using PSF 𝐻𝐻.  

Dey et al [Dey2004] apply TV regularization to Lucy-Richardson deconvolution. Their derivation results in the 
following iteration: 

𝑋𝑋�𝑝𝑝+1(𝑣𝑣) =
𝑋𝑋�𝑝𝑝(𝑣𝑣)

1 − 𝜆𝜆𝑑𝑑𝑠𝑠𝑣𝑣 � ∇𝑋𝑋
�𝑝𝑝(𝑣𝑣)

�∇𝑋𝑋�𝑝𝑝(𝑣𝑣)�
�
∙ 𝐶𝐶𝑝𝑝(𝑣𝑣). 

(6.32) 

This formulation scales the image 𝑋𝑋�𝑝𝑝(𝑣𝑣) in (6.30) prior to applying the correction factor. 

Blind Deconvolution 

Blind deconvolution approaches are typically classified as either direct or indirect [Mercimek2009]. Direct methods 
perform the restoration process in a single operation while indirect methods converge to a solution iteratively. Direct 
methods employ a separate blur identification step prior to applying deconvolution. A priori blur identification 
involves making assumptions about the characteristics of the blur kernel, such as symmetry (a good assumption close 
to the optical axis, but increasingly less valid as the distance to the optical axis increases at the edges of the image), 
and parametric form (typically a bad assumption as described in Chapter 3).  

Indirect methods utilize an iterative process to simultaneously estimate the blur kernel and the recovered image as part 
of the same process. This is very similar to the approaches which perform deconvolution as part of their SR approach, 
which is covered in the next section. It is common for algorithms of this type to require an initial guess of the recovered 
image and blur kernel. However, in the absence of an available estimate being supplied an estimate can be generated 
from the input data [Mercimek2009]. Ayers et al [Ayers1988], for instance, alternately iterating in the spatial and 
Fourier domains, applying a priori constraints in each to converge to a solution.  

6.3.1.2 Deconvolution and Super Resolution 

Lin and Shum [Lin2004] indicate that the limits of SR algorithms do not depend heavily on the intrinsic PSF of the 
acquisition system. For multi-image SR approaches, this is especially convenient because there are multiple samples 
of the effect of the spatially variant PSF in the available image observations from which to estimate the PSF for 
subsequent or simultaneous deconvolution of the restored image as part of the SR process. There are several authors 
which include deconvolution and SR as part of their approach to recovery of an estimated HR image of the scene of 
interest from the available LR images.  

Baker and Kanade [Baker2002] consider the system PSF in two components, separating the blur due to the system 
optics and the blur introduced by the sensor. The optical blur component is further divided into a defocus element that 
they represent with the pillbox function, and model the remaining optical blur by the square of the first-order Bessel 
function of the first kind. Their separation of the different sources that contribute to the intrinsic blur is correct, but 
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their fitting of the PSF to a parametric function is not, as discussed in Chapter 3. They do show however that although 
the effect of intrinsic blur does not limit the SR reconstruction process, that using higher SR factors does result in a 
blurring effect in the result, suggesting an upper bound on the SR factor. Their results show the limit exists somewhere 
between 4 and 8. 

Tanaka and Okutomi [Tanaka2005] analyze the effect of assuming either a box or Gaussian PSF, developing an SR 
condition number evaluation of the limiting influence of these assumptions on the quality of the SR result. Lin and 
Shum [Lin2004] also use the pillbox model (they also consider the Gaussian function), but apply it to represent the 
system PSF. Their analysis shows that the theoretical limit of SR is due to the fine-resolving of the system, such that 
even though an image may be represented at a higher pixel count, with respect of the goal of SR to increase the 
effective resolution of the image by restoring detail at a higher resolution, that there exists a fundamental limit of 5.7 
for the SR factor under ideal conditions. The authors further indicate a relationship between the SR factor and the 
necessary number of LR images where if the SR factor is an integer 𝑀𝑀, then the minimum number of LR images 
is 𝑀𝑀2. If, however the SR factor is halfway between integers (1.5, 2.5, and so on), then the minimum number of LR 
input images is 4𝑀𝑀2. Since there is no particular need in our application for half-value SR factors, in light of the 
penalty we utilize integer SR factors only. 

Šorel and Šroubek [Gunturk2012] discuss the relationship between the number of LR input images, the size of the 
blur kernel support, and the SR factor. We give more detail in Section 6.4.3, but they consider the known intrinsic 
blur of the system as well as an unknown extrinsic blur of the scene due to camera motion during the integration period 
of the sensor. They solve this problem by developing a patch-based space-variant SR approach by dividing the image 
into patches, estimating the PSF in each patch, for each frame of available LR images, refine the estimated blur kernels 
by comparing the available data, and applying space-variant deconvolution and SR. Kotera et al [Kotera2013] utilize 
an alternating minimization approach based on the same structure where the error in the blur domain and error in the 
image domain are alternately minimized until the algorithm converges for a combined blind deconvolution/SR 
solution.  

Ben-Ezra et al [BenEzra2005] develop a novel image acquisition system called “jittercam” which is a combined 
hardware-software solution. The sensor used is translated so that the image acquisition system does not need to move 
with respect to the scene, but rather the sensor moves with respect to the light coming in from the lens. However, 
despite the findings of other authors that the system PSF has little influence on the success of SR, motion blur of any 
significant amount (anything over ~4 pixels) causes SR to completely fail. Their main difficulty then is to control the 
acquisition time so that the integration time of the sensor does not coincide with motion of the sensor. 

6.3.2 Blur Kernel Estimation 

Before application of an appropriate deconvolution method, the system PSF must be known. This is the case for non-
blind approaches, blind deconvolution approaches estimate the PSF as part of the deconvolution process. Several 
methods exist for determining the system PSF, an approach developed by the authors of this work is described in 
Chapter 3. Most authors who consider deblurring as part of the SR process either utilize a blind estimation method or 
utilize a fixed Gaussian blur kernel [Tanaka2005][Nasrollahi2014]. In this section, we will briefly describe the process 
and compare SR methods which include blur correction as a critical component of their approach. 

There are three approaches to determining the blur kernel of an acquisition system [Mercimek2009]: 

• Computation utilizing a mathematical model 
• Experimental measurement utilizing a pointlike source 
• Simultaneous estimation of the kernel and the recovered image utilizing the observed image 
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6.3.2.1 Parametric Blur Models 

We have previously discussed the issues with assuming a parametric form for the blur kernel, but it is a popular 
approach in the literature [Couzinie2013][Xue2015][Campisi2016]. A number of authors, however, also recognize 
the issue of parametric PSF models and develop their approaches with nonparametric kernels 
[Delbracio2012][Schelten2014][Sun2015][Campisi2016]. A parametric model for extrinsic motion blur is one 
situation or source of blur where parameterized motion estimation is appropriate though the representation of the 
kernel that is moved through space during the sensor integration period should be represented with a nonparametric 
approach [Michaeli2013][Sun2015]. Often parametric models will be utilized in direct PSF measurement or blind 
estimation approaches where the fitting of the measurement or estimation to an assumed model is included as one part 
of the approach.  

6.3.2.2 PSF Measurement 

A pointlike source is used to measure the PSF directly. In microscopy applications this is typically a luminescent bead 
of some small size, in photography a source must be constructed according to the conditions described in Chapter 3, 
for telescopic applications a star of sufficient brightness can be used under suitable astronomic seeing conditions. The 
authors present an approach for direct measurement of the PSF in Chapter 3 of this dissertation, along with more 
detailed description of other contemporary methods.  

6.3.2.3 Blind Kernel Estimation 

Intro words… 

Šorel and Šroubek [Gunturk2012] discuss their patch-based approach where a MAP based approach is used to estimate 
the HR patch and the blur kernel using two observation models. The first is  

𝑀𝑀1(𝑢𝑢,ℎ𝑘𝑘) = 𝜇𝜇1
2 �‖𝐷𝐷(𝑢𝑢 ∗ ℎ𝑘𝑘) − 𝑔𝑔𝑘𝑘‖2

𝐾𝐾

𝑘𝑘=1

 (6.33) 

and the second is 

𝑀𝑀2(ℎ1,⋯ ,ℎ𝑘𝑘) = 𝜇𝜇2
2
‖Ν𝒉𝒉‖2. (6.34) 

Both 𝜇𝜇1 in the first model and 𝜇𝜇2 in the second model are inversely proportional to the noise variance, meaning that 
the MAP approach is equivalent to the optimization  

min
𝑢𝑢,{ℎ𝑘𝑘}

𝑀𝑀1(𝑢𝑢, {ℎ𝑘𝑘}) + 𝑀𝑀2({ℎ𝑘𝑘}) + 𝑅𝑅𝑢𝑢(𝑢𝑢) + 𝑅𝑅ℎ({ℎ𝑘𝑘}) (6.35) 
Where 𝑅𝑅𝑢𝑢 and 𝑅𝑅ℎ are image and PSF regularization terms. 

Michaeli and Irani [Michaeli2013] note that the performance of combined deconvolution/SR methods degrades 
significantly the worse the estimate of the kernel is from the true kernel. They suggest that the camera PSF should not 
be used for deconvolution in SR applications and propose recovery of an “SR blur kernel” from the LR input image 
by using an image patch pair approach where a known set of LR/HR image patch pairs are available for substitution. 
They then use the recurrence of these natural image patch pairs to estimate the optimal blur kernel. 

Sun et al [Sun2015] utilize a convolutional neural network (CNN) and a Markov random field (MRF) model to recover 
the kernel of non-uniform motion blur from a single image. Campisi and Egiazarian [Campisi2016] classify blind 
deconvolution approaches as either a priori, where the PSF is identified separately from the image reconstruction, or 
joint, where the reconstructed image and the blur kernel are identified simultaneously. Joint approaches often 
incorporate a priori information about the image (such as use of natural statistical priors) or blur kernel (such as 
parametric models) in order to constrain the solution space.  
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6.3.3 Experimental Results 

While any physically-realizable imaging system will have the undesired degradations described, methods have been 
introduced for mitigating their influence so as to improve their usefulness in other tasks which require metrology-
quality images.  

6.3.3.1 Deconvolution Methods Considered 

In our evaluation of popular deconvolution methods to use in validating our method, we considered three methods: 
Wiener deconvolution [Gonzalez2008], Lucy-Richardson deconvolution [Richardson1972], [Lucy1974], and 
Regularized deconvolution [Steve2008],[Kotera2013]. Image deconvolution is an ill-posed inverse problem 
[Bertero2005] and as such no perfect solution exists; however, numerous methods exist by which the quality of the 
image can be improved. We test the methods noted to determine which gives the best results using data obtained with 
our imaging systems.  

Wiener deconvolution is a frequency-domain method that seeks to minimize noise effects in frequencies with low 
SNR [Gonzalez2008]. The method is developed to find a solution that provides a minimum mean-square error 
(MMSE) estimate of the original image 𝑓𝑓. In the implementation we use, the image to be deblurred, the measured PSF 
of the system, and the estimated SNR of the image are supplied to the algorithm. An assumption of Wiener 
deconvolution that may not apply in all situations is that the image is modeled as a random process, and that 2nd-order 
statistics and noise variance are known or can be estimated [Steve2008]. 

Lucy-Richardson deconvolution makes use of the expectation-maximization algorithm in order to maximize the 
likelihood of the restored image [Biggs1997]. Shepp and Vardi [Shepp1982] have shown that if the algorithm 
converges, it will converge to the maximum likelihood solution. 

Regularization-based methods of deconvolution do not make the same assumptions as those made in Wiener 
deconvolution [Gonzalez2008] or attempt calculation of an EM-based solution. A side-effect of regularization-based 
methods is an over-smoothed solution, which while diminishing the influence of undesired noise in the result also 
limits image sharpness and crisp edges [Steve2008]. Regularizing terms are added to the minimization function in 
order to penalize selected aspects of unacceptable solutions. Methods exist that seek to enhance edges [Yang2009], 
diminish noise by penalizing high frequencies, etc. In the implementation of regularized deconvolution that we apply, 
a high-pass filter is employed in order to minimize the effects of the noise present in the captured images used for 
testing. Kotera et al [Kotera2013] apply their alternating minimization approach in the nonblind deconvolution method 
presented and adapt their approach to better correct natural images by using sparse priors (𝐿𝐿𝑝𝑝,𝑒𝑒 < 1) that better fit the 
gradient distribution of natural images. 

6.3.3.2 Application of Deconvolution 

Image degradation comes from such sources as aperture diffraction, sensor noise, and lens blur. Proper application of 
deconvolution can reduce or eliminate some or all of these effects. Lens blur is a non-random spreading of the light 
that occurs before recording the scene at the sensor plane. Lens blur is intrinsic and thus can be modeled a priori. 
Wiener [Gonzalez2008], Lucy-Richardson [Richardson1972], [Lucy1974], Regularized Deconvolution [Steve2008], 
and Kotera et al [Kotera2013] methods are applied to sample image captures to demonstrate the improved quality. 

Though our method was initially developed in response to issues the authors saw with Liu and Chen’s approach 
[Liu2008], we lack the equipment to directly compare to their method. The approach of Delbracio et al 
[Delbracio2011], though a calibrated target-based approach, presents a viable comparison as they also consider 
subpixel measurement of the PSF. 
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We calculated the centroid of each local measurement and generated a map of the matching area using kNN (with 
k=1) to generate the map. The value of each pixel corresponds to the index number in the data structure used to store 
the individual extracted PSF measurements. Though not encountered in this measurement, some systems we tested 
had some “bad” pixel regions that reported a reading higher than the surrounding areas, which were filtered out during 
our extraction process. Our spatially variant deconvolution function iterates in the order indicated by the map, 
extracting the region from the image acquired, and applies the desired deconvolution method on the region, adding 
the masked result to the output image.  

6.3.3.1 Wiener Deconvolution [Gonzalez2008] 

Wiener deconvolution takes just under three minutes to complete, and is shown in Figure 6.10(b). The results do not 
significantly improve on the clarity of features compared to the input. All experiments shown were performed on a 
system with an Intel Xeon E5507 Processor (Quad-core 2.26GHz) and 12GB DDR3 RAM.  

6.3.3.2 Lucy-Richardson Deconvolution [Richardson1972], [Lucy1974] 

Lucy-Richardson deconvolution completed in just under three minutes as well. Shown in Figure 6.10(c), the result is 
much clearer compared to that of Wiener. In our experimentation, we found that restricting the number of iterations 
of the algorithm to four yielded results that did not significantly diminish in contrast.  

6.3.3.3 Regularized Deconvolution [Steve2008] 

Regularized deconvolution took just under eleven minutes to complete, and seems to introduce blur rather than remove 
it. This effect increases in proportion to the distance from the center of the image. For this reason, the result is not 
included in our comparison shown in Figure 6.10.  

 
Figure 6.9: Input image from the Galaxy S4. A text pattern was selected to demonstrate the increased clarity in the 
results after applying deconvolution. Highlighted regions are shown in Figure 6.10 to enhance visibility. The red cast 
to the scene is due to the ambient lighting.  



   106 

6.3.3.4 Kotera et al Nonblind Deconvolution [Kotera2013] 

Shown in Figure 6.10(d), the method of Kotera et al [Kotera2013] took just under four minutes to complete and though 
the results are an improvement on the original, the Lucy-Richardson result has slightly greater clarity.  

6.3.3.5 Evaluation of Deconvolution 

A tool developed by InLite Research [InLite] was used to analyze the output images from each of the methods 
described above. The results are shown in Figure 6.11 where only Lucy-Richardson’s result was readable. Based on 
both visual inspection of the results and the confirmation of the tool provided by [InLite], the authors believe that we 
have sufficiently demonstrated the effectiveness of our approach and justified our choice in supporting algorithms for 
the successful removal of blur effects. 

  
(a) (b) 

  
(c) (d) 

Figure 6.10: Comparison of the results of deconvolution applied to the image shown in Figure 6.9. (a) Highlighted 
section of the image shown in Figure 6.9. (b)  Result of the application of Wiener spatially variant deconvolution. The 
Weiner filter is sensitive to noise and parameters were carefully chosen to avoid this artifact. The result is improved 
though the parameter selection was time-consuming and the result is not superior to the other methods. (c) Result of 
the application of Lucy-Richardson spatially variant deconvolution. At a comparable processing time to Weiner, the 
results are the best of the methods tested. Note in particular the improved definition of the characters. (d) Result of 
application of Šroubek et al.'s spatially variant deconvolution. Comparable processing time to both Weiner and Lucy-
Richardson, and with clarity similar to Lucy-Richardson. 
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Figure 6.11: Comparison of the results of applying the barcode reader tool from [InLite] to the input and deblurred 
images shown in Figure 6.10. Only the result of Lucy-Richardson’s algorithm shown in Figure 6.10(c) was recognized 
as containing a barcode, and the information was successfully decoded.  

6.4 Evaluation of SR Methods 

A description of the methods used and considerations taken in comparing the capabilities of the selected SR 
approaches in contained in this section. Nasrollahi and Moeslund [Nasrollahi2014] note that there is no ideal SR 
algorithm that has been developed, that selection of an appropriate method is highly application-specific.  

6.4.1 Image Metrics 

Nasrollahi and Moeslund [Nasrollahi2014] discuss the methods used to evaluate the quality of SR algorithms. While 
there have been important contributions made by authors who employed subjective evaluation, we will focus on 
objective metrics for assessing the quality of the results of a given SR method. Further, we will utilize non-blind 
quality estimation methods which compare the result to a known ground truth image. The methods utilized in our 
evaluation are peak signal to noise ratio (PSNR) and structural similarity (SSIM) metric, but we also describe another 
popular method.  

6.4.1.1 Mean Square Error 

MSE is defined as 

𝑀𝑀𝑆𝑆𝑀𝑀 =
∑ ∑ �𝑓𝑓𝑘𝑘,𝑙𝑙𝑘𝑘,𝑙𝑙 − 𝑓𝑓𝑘𝑘,𝑙𝑙�

2𝑞𝑞𝑁𝑁2−1
𝑙𝑙=0

𝑞𝑞𝑁𝑁1−1
𝑘𝑘=0

∑ ∑ �𝑓𝑓𝑘𝑘,𝑙𝑙�
2𝑞𝑞𝑁𝑁2−1

𝑙𝑙=0
𝑞𝑞𝑁𝑁1−1
𝑘𝑘=0

 (6.36) 

Where  𝑓𝑓 is the SR image being evaluated, and 

 𝑓𝑓 is the ground truth image. 

With this metric, the smaller values indicate the image under test is closer to the ground truth. Wang and Bovik 
[Wang2009] give some insight into the issues with MSE which led the authors not to consider its use in evaluating 
the SR results. 
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6.4.1.2 Peak Signal to Noise Ratio 

PSNR is defined as 

𝐼𝐼𝑆𝑆𝑁𝑁𝑅𝑅 = 20log10
255
√𝑀𝑀𝑆𝑆𝑀𝑀

 (6.37) 

Criticisms of the MSE and PSNR include a lack of correlation with representing the way the human visual system 
perceives information. Wang and Bovik [Wang2004A] sought to address this issue with SSIM and earlier approaches.  

6.4.1.3 Structural Similarity 

SSIM [Wang2004A] is defined as 

𝑆𝑆𝑆𝑆𝐼𝐼𝑀𝑀 =
�2𝜇𝜇𝑏𝑏𝜇𝜇�̂�𝑏 + 𝐶𝐶1��2𝜎𝜎𝑏𝑏�̂�𝑏 + 𝐶𝐶2�

�𝜇𝜇𝑏𝑏2 + 𝜇𝜇�̂�𝑏
2 + 𝐶𝐶1� �𝜎𝜎𝑏𝑏2 + 𝜎𝜎�̂�𝑏

2 + 𝐶𝐶2�
 (6.38) 

Where  𝐶𝐶1 and 𝐶𝐶2 are constants,  

 𝜎𝜎𝑏𝑏 and 𝜎𝜎�̂�𝑏 are the standard deviation of the ground truth and image under test, respectively, and  

 𝜎𝜎𝑏𝑏�̂�𝑏 is defined as 

𝜎𝜎𝑏𝑏�̂�𝑏 =
1

𝑞𝑞𝑁𝑁1 × 𝑞𝑞𝑁𝑁2 − 1
� � �𝑓𝑓𝑘𝑘,𝑙𝑙 − 𝜇𝜇𝑏𝑏��𝑓𝑓𝑘𝑘,𝑙𝑙 − 𝜇𝜇�̂�𝑏�

𝑞𝑞𝑁𝑁2−1

𝑙𝑙=0

𝑞𝑞𝑁𝑁1−1

𝑘𝑘=0

 (6.39) 

Where  𝜇𝜇𝑏𝑏 and 𝜇𝜇�̂�𝑏 are the mean of 𝑓𝑓 and 𝑓𝑓, respectively. 

The SSIM score is between 0 and 1, with a value closer to 1 indicating a better match of the image under test to the 
ground truth reference. Many other objective image metrics have been used to evaluate the quality of SR output 
[Nasrollahi2014], but the authors of this dissertation have selected PSNR and SSIM as their metrics of choice. These 
metrics will be seen in the evaluation of the selected SR algorithms.  

6.4.2 Robustness 

An important consideration in evaluating the effectiveness of an algorithm is not just the quality of the results under 
ideal conditions, but also how capable the algorithm is in the presence of noise or errors in the estimation of the blur 
kernel or motion parameters. This is known as a measure of system robustness. Ideal conditions only exist for 
synthetically-generated data, and accurate estimations of real-world performance must include reliable estimates of 
the kind of degradations present in images captured using actual acquisition systems.  

Errors in geometric registration can occur when there are areas of the image that do not agree with the assumptions of 
the motion estimation algorithm selected. Increasing noise and blur, particularly motion blur, also contributes to errors 
in motion estimation. The way that an algorithm’s robustness is evaluated is by determining its breakdown point 
[Nasrollahi2014]. The breakdown point represents the smallest percentage of contamination in the input that puts the 
result of the algorithm beyond an acceptable level of error. Since the final output for which we are interested in 
evaluating the accuracy against sources of error in our system is the position estimate of the target location, such 
sources of error can include contamination of the image data from noise and blur and inaccurate information about 
the position and orientation of the sensor platform.  

A full analysis of the impact of these sources of error on the accuracy of our recovery of the target position is contained 
in Chapter 8. 
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6.4.3 SR Factor 

The SR factor refers to the increase in pixel resolution in each of the spatial dimensions of a single-layer image. This 
means that for an SR factor of 2 for a 640 × 480 × 𝑘𝑘 image (𝑘𝑘 being the number of channels in the image), the SR 
result would have 1280 × 960 × 𝑘𝑘 pixels. Nasrollahi and Moeslund [Nasrollahi2014] note that some estimates of the 
theoretical capability of SR are low when using a deterministic linear model derived from the condition number of the 
system matrices and number of LR input images. Typically these estimates give a limit of 1.6X improvement in the 
SR factor.  

A stochastic estimate of the limits of SR factor for reconstruction-based SR methods are more complex but more 
accurate. Lin and Shum [Lin2004] for instance, indicate a theoretical limit of 5.7 and a practical limit of 1.6 for the 
SR factor. They further relate the SR factor to the minimum number of LR input images. The equation in (6.40) holds 
for integer SR factors.  

𝐿𝐿𝑅𝑅𝑚𝑚𝑖𝑖𝑙𝑙 = 𝑆𝑆𝑅𝑅𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑟𝑟2  (6.40) 
These estimates assume that each of the LR input images contains unique information that contributes to the method 
producing the result. Further, the LR input images much contain subpixel differences when the global translational 
model is used. Given the limits of SR factor and from results of preliminary experiments performed, integer SR factors 
of 2, 3, and 4 will be performed. This will allow for analysis for situations in which there are a minimum of 4, 9, or 
16 LR input images, which is a small but reasonable number for the application scenario presented. 

Šorel and Šroubek [Gunturk2012] give an equation relating the minimum patch size of an image to the number of 
input images, SR factor, and PSF size since their method simultaneously calculates the SR result and PSF. The 
equation they present is 

𝐺𝐺 ≥ �
√𝐾𝐾(𝐻𝐻 − 2) + 𝐻𝐻 + 𝜀𝜀 − 1

√𝐾𝐾 − 𝜀𝜀
� (6.41) 

Where  𝐺𝐺 is the patch size of an image,  

 𝐾𝐾 is the number of available LR input images,  

 𝐻𝐻 is the PSF size, and 

 𝜀𝜀 is the SR factor. 

Rearranging to solve for 𝐾𝐾, we have 

𝐾𝐾 ≥ �
𝐻𝐻 + (𝐺𝐺 + 1)𝜀𝜀 − 1

𝐺𝐺 − 𝐻𝐻 + 2
�
2

 (6.42) 

Some similarities to the construction of [Lin2004] are that the minimum number of LR input images required increases 
by the square of the SR factor. Additional information we learn from the construction provided by Šorel and Šroubek 
[Gunturk2012] is that an increasing blur kernel has no effect on the limit of the SR factor with respect to the number 
of LR input images, which is the conclusion reached by [Lin2004] that the blur does not play an important limiting 
role. 

6.4.4 Computational Time 

One unifying factor that SR algorithms share compared to interpolation is a relatively high computational processing 
time. The computational time can be high for several reasons, including complexity of the algorithm, poor scaling to 
higher resolution input images or number of input images, slow convergence, etc. [Nasrollahi2014]. The 
computational processing time can also increase if there is particularly complex motion in the scene or if the data does 
not conform to the assumptions made by the registration algorithm chosen. In general, the simpler the motion (global 
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translational being ideal), the smaller the input images, and number of images will contribute to a lower processing 
time. While these parameters can be controlled to some extent by adequate design of the image capture system, there 
will still exist differences between SR algorithms that will need to be established for proper selection of an appropriate 
method. 

The reason these considerations are important for our application is due to its live, active, real-time nature. Thus in 
our evaluation of the selected SR algorithms we also include a comparison of the processing time required to achieve 
a given result. This is done in order to consider the tradeoffs in selecting a more accurate method with the increased 
time causing instability in the tracking step. Where possible, the SR methods have been optimized and parallelized to 
represent the fastest they can run on an identical system in order to represent an accurate comparison between methods. 
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7 Tracking 

Tracking as we use the term refers to the localization of a target of interest in an image. Establishing a reliable track 
across a sequence of frames requires domain knowledge of the target’s unique features that can be recorded by the 
sensor used and must be of sufficiently high framerate to allow for stable reorientation of sensors in an active hardware 
system such as we investigate. The tracking stage is separated into three stages: segmentation, where the raw image 
data is segmented into regions based on pixel similarity; target separation, where these candidate regions are analyzed 
to determine the likelihood of containing a target of interest; and 3D pose recovery, where the real-world position of 
the target is recovered from the image coordinates of the available sensors.  

7.1 Segmentation 

The data which will come from the sensors representing the target(s) has been indicated to lie on a noisy background 
with brighter regions representing the target(s). We utilize image segmentation in order to separate the target from the 
background. In our current implementation, we seek to find a binary image where black pixels indicate background, 
or the absence of a target within that pixel, and white pixels to indicate foreground, or that a target was found to be 
contained at least partially within the pixel. Our segmentation methods have parameters which may be selected to 
indicate candidate pixel regions of the image which may contain a target while the target separation operation 
described in the next section takes the indicated candidate regions and compares to templates representing the 
characteristics of the target and makes a final decision. Essentially, the segmentation step is an intelligent 
preprocessing step while the target separation will employ more accurate methods to reach a final determination about 
the target’s position within the image. 

In Figure 7.1 the input image selected for inspection is on the left side of the screen and contains some level of spectral 
information. Currently we have support for 3-channel images but support for an arbitrary number is planned in a future 
version. To the right of the input image, near the center of the GUI, is the output after segmentation has been performed 
on the input image. Note the bright pixel regions and compare to the input image. Application of segmentation allows 
for identification of regions of interest which are not readily apparent to the naked eye. On the right side of the GUI 
there is an area which indicates the spectral information of a pixel. The user may place the cursor over a pixel in the 
input image and the information contained at that location is represented in the indicated region as shown. 

Below the area where the input and output images are shown is an information area. First is the image magnification. 
The user may use their mouse wheel to zoom in and out of either the input or output images and the magnification 
relative to native resolution is shown. Both images are currently shown at native resolution and thus the magnification 
for each is 1X. Below the input images magnification indicator are further information regions indicating the cursor’s 
position relative to the bottom-left corner of the GUI, just above the area marked ‘Image’, and the cursor’s position 
relative to the top-left corner of the image in pixels, marked ‘Image’. Below this information region, labeled ‘Visible 
rect’, indicates the portion of the input image visible within the display region previously mentioned.  

The area in the right-middle of the GUI marked ‘Regions’ indicates the number of regions present in the image as 
determined by the segmentation algorithm. Finally, the region of the GUI marked ‘Input’ contains the controls used 
for applying varying segmentation algorithms and parameters for extracting the regions of interest in the input image 
containing a target. The methods available are first, thresholding, whose output is shown in the appropriate region of 
Figure 7.1, using a parameter of 56 for the threshold value. We also have the k-means clustering algorithm available 
as well as the statistical region merging (SRM) algorithm. The user has the option of creating a video to save the 
visualization and choosing whether the output is represented in greyscale or a pseudocolored version for easier 
viewing.  
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We have also developed three segmentation methods which is included as part of our main image generation GUI and 
includes a simple thresholding algorithm (shown in Figure 7.2), SRM, and mean shift. Thresholding refers to a 
binarization process in which a pixel level, or threshold, is selected as the decision point. All values above this level 
are set to a logical 1 while all values below this level are set to a logical 0. The image demonstrated in Figure 7.2 is a 
color image, and the threshold is applied to each of the three channels which results in the multi-colored effect seen.  

A hard threshold level may not always be known a priori, and SRM may be applied to determine similar pixels without 
this prior information. SRM uses a selected set of statistical parameters to determine which neighboring pixels are 
likely candidates for grouping based on their pixel values. All pixels initially begin as part of their own individual 
region. If a neighboring pixel falls within the statistical range, then it is merged into the current pixel. Thus, an added 
definition of neighboring pixel expands from spatial proximity and is enhanced to include information about the 
content of the pixel as well.  

Mean shift is an application independent mathematical method which has found application in image segmentation. 
A kernel which establishes weights of the neighboring pixels is first selected, for instance a flat disk with equal weight 
over the coverage of the kernel or a Gaussian for which the weight assigned to neighboring pixels decays as the 
distance increases. Mean shift is known as a hill climbing algorithm, meaning that the kernel used is shifted to a 

  
Figure 7.1: Target segmentation GUI. Image region on the left indicates input image to be processed. Image region 
to the right indicates result of application of selected segmentation method. The bottom right area contains controls 
for selecting the method and parameters. The upper right region contains spectral information about the selected 
pixel.  
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higher-density region until the algorithm converges. The shift between iterations is defined by a mean shift vector, 
which always points in the direction of the maximum increase in density. Thus in areas for which the pixel values are 
indicative of the features which we wish to detect, we are able to generate an output image which has segmented the 
image to indicate the parts of the image most likely to contain information of interest. 

7.2 Target Separation 

Once we have an image segmented by one of the above methods, we must determine which of the indicated candidate 
regions truly contains a target or targets which we are searching for. This portion of the process is very application 

 
Figure 7.2: Segmentation settings window. Segmentation occurs on a per-sensor basis, with parameters set based on 
the user’s preference. Results may be saved for documentation and later reference. Segmentation in our workflow is 
a rapid preprocessing step to indicate candidate regions which may contain a target.  In this sense, the step can also 
be viewed as a background separation step with the greatest importance placed on having a reliable true negative 
rate with focus placed on certainty that a pixel does not contain a target.   
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specific and further depends on the characteristics of the target in the image space for which we have obtained data. 
In essence, we must determine a template which is able to separate the target data from the candidate points given by 
the naïve segmentation. This can take the form of a multi-spectral signature, possibly combined with information 
about the expected size of the target, or in a more complex implementation may use multiple frames to factor in the 
speed of the target over time.  

7.2.1 Feature Descriptors 

Extracting information about the location of a target of interest in the available images is highly application-dependent, 
based on the size and shape of the target, distance to the acquisition device, characteristics of the acquisition device 
(lens and sensor in our formulation), motion model of the target and acquisition device, framerate, illumination or 
spectral radiation of the target and the system response of the acquisition device. Understanding the target of interest 
and designing the acquisition system characteristics and placement will allow for design the best approach for 
gathering data that allows for discrimination of the target of interest from its background and potential false positive 
imposter targets which may exist nearby that can confuse the developed tracking system into following a decoy rather 
than the actual target of interest. Traditional feature detectors such as SIFT [Lowe1999], SURF [Knopp2010], etc. 
rely on there being enough texture in the image in order to apply these methods [Zitova2003]. In our scenario there is 
high noise and blur and the target of interest often dips below the noise floor, which would lead to repeated loss of the 
target while tracking. There are three major salient features which we focus on in describing the characteristics of the 
target in image space: 

• Spectral Signature 
o Objects each have their own unique reflectance or emittance at given wavelengths which allows for 

discrimination of objects from one another depending on where the differences in the target of 
interest are unique compared to its surroundings. This feature can be exploited for elements, 
compounds, minerals [Smith2012], metals, ceramics, vegetation [Plaza2006], etc. Figure 7.3 shows 
an example of this phenomenon for geologic and vegetative applications.  

• Target Shape 
o Over the course of the period of time during which the target is being tracked, the apparent shape as 

viewed by a single sensor may change due to the geometry of the target. However, the maximum 
extent of the target will not change unless multiple targets are closer than can be resolved due to the 
sensor resolution. In this case, if the change in the outer boundary is not overly extreme, the centroid 
may instead be tracked until reliable separation of the cluster is achieved.  

• Target Motion Model 
o Knowledge of the expected motion and maneuvering capabilities of the target of interest allow for 

establishing a prediction of its possible motion and, therefore, an expected volume in which to search 
for it in subsequent time steps. False positives which pass discrimination by the other two features 
of interest can be disregarded if they do not exhibit the kind of motion expected of our target of 
interest. 

In focusing on these unique features we are able to establish a reliable approach to extraction of the target of interest 
in spite of the imaging concerns described previously. By utilizing these three orthogonal characteristics of the target 
of interest we develop a stable approach to establishing the target location in image space at each time step which 
allows for correlation of information to maintain a reliable measure of the target’s present and prediction of the target’s 
future position. 
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7.2.2 Target Separation 

Computer-based understanding of image contents remains an open problem.  As addressed in this section, we explore 
a subset of the problem: identifying which pixels of the image contain information about our chosen target and which 
pixels contain no information, or belong to the background.  While other methods exist which handle the case of 
multiple targets within the FOV, herein we discuss the case of a single target. 

The actual problem of target separation may be separated into two steps.  Segmentation of the image into candidate 
regions (foreground) and regions unlikely to contain the target (background) is a quick process for which the 
component most needed to be accurate is identification of background pixels.  Therefore the segmentation process 
must have high specificity, or rather, when a pixel in the image is marked as background not containing information 
likely to be part of a target we seek to find we want to apply a method and settings for which we may be certain that 
no target will be falsely ignored.   

The second part of target separation involves inspecting the regions identified as potentially containing information 
which would identify a feature as a target.  This step is highly application specific and requires processing which 
requires high sensitivity.  In the spectrum in which we are operating, identifying features could involve a given spectral 
signature unique to the target which would discriminate it against other candidate regions.  Another way of separating 
the true location of the target in the image could involve analysis of the motion of regions between frames over time 
to determine if the path of the target through space follows a trajectory it would likely exhibit.   

7.2.2.1 Thresholding 

Thresholding refers to a binarization process in which a pixel level, or threshold, is selected as the decision point. All 
values above this level are set to a logical 1 while all values below this level are set to a logical 0. Algorithms for 

  
(a) (b) 

Figure 7.3: Demonstration of utilization of spectral signature of materials in order to isolate targets of interest from 
potentially similar backgrounds. (a) Illustration of an orbital imaging spectrometer. The acquisition system can gather 
images in dozens to hundreds of segments of the electromagnetic spectrum such that at each pixel location the spectral 
distribution of the materials can be measured within each pixel region. Image courtesy Harris Geospatial Systems. 
(b) Reflectance spectra of representative minerals, naturally occurring chemical compounds that are major 
components of rocks and soils. Image courtesy MicroImages, Inc. [Smith2012]. 
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determining the cutoff value may be simple, as in the case where the pixel intensity values are used, or more complex 
such as using image texture, hue, or other more complex features.  

7.2.2.2 Mean Shift 

Mean shift is an application independent mathematical method which has found application in image segmentation. 
A kernel which establishes weights of the neighboring pixels is first selected, for instance a flat disk with equal weight 
over the coverage of the kernel or a Gaussian for which the weight assigned to neighboring pixels decays as the 
distance increases. Mean shift is known as a hill climbing algorithm, meaning that the kernel used is shifted to a 
higher-density region until the algorithm converges. The shift between iterations is defined by a mean shift vector, 
which always points in the direction of the maximum increase in density. Thus in areas for which the pixel values are 
indicative of the features which we wish to detect, we are able to generate an output image which has segmented the 
image to indicate the parts of the image most likely to contain information of interest.  

7.2.2.3 Statistical Region Merging (SRM) 

A hard threshold level may not always be known a priori, and SRM may be applied to determine similar pixels without 
this prior information. SRM uses a selected set of statistical parameters to determine which neighboring pixels are 
likely candidates for grouping based on their pixel values. All pixels initially begin as part of their own individual 
region. If a neighboring pixel falls within the statistical range, then it is merged into the current pixel. Thus, an added 
definition of neighboring pixel expands from spatial proximity and is enhanced to include information about the 
content of the pixel as well.   

7.2.3 Analysis of Candidate Regions 

The data which will come from the sensors representing the target(s) has been indicated to lie on a noisy background 
with brighter regions representing the target(s). We utilize image segmentation in order to separate the target from the 
background. In our current implementation, we seek to find a binary image where black pixels indicate background, 
or the absence of a target within that pixel, and white pixels to indicate foreground, or that a target was found to be 
contained at least partially within the pixel. Our segmentation methods have parameters which may be selected to 
indicate candidate pixel regions of the image which may contain a target while the target separation operation 
described in the next section takes the indicated candidate regions and compares to templates representing the 
characteristics of the target and makes a final decision.   Essentially, the segmentation step is an intelligent 
preprocessing step while the target separation will employ more accurate methods to reach a final determination about 
the target’s position within the image. 

Once we have an image segmented by one of the above methods, we must determine which of the indicated candidate 
regions truly contains a target or targets which we are searching for. This portion of the process is very application 
specific and further depends on the characteristics of the target in the image space for which we have obtained data. 
In essence, we must determine a template which is able to separate the target data from the candidate points given by 
the naïve segmentation. This can take the form of a multi-spectral signature, possibly combined with information 
about the expected size of the target, or in a more complex implementation may use multiple frames to factor in the 
speed of the target over time.  



   117 

7.3 Three-Dimensional Pose Recovery 

When the target is only within the FOV of a single sensor, the accuracy of the estimated location of the target and path 
in the X and Y coordinates is diminished and an estimate of the Z coordinate is impossible without additional prior 
information (such as target size) and inaccurate even in such a case. If the target is within the FOV of two sensors, we 
may perform a 3D pose recovery of the estimated location of the target, using the combined information from the two 
sensors in order to calculate an estimate of the Z coordinate of the target while improving the accuracy of the estimated 
X and Y coordinates. This process is known as fusion and our work is to develop a number of methods which will 
process this fusion data from the available sensors.  

We have developed two approaches of calculating the target position from the simulated images, focusing on the 
second case mentioned above where the target is visible to more than one sensor. The first approach is shown in Figure 
7.6 where we see the results of the method, where an update of the visualization of the calculations may be seen via 
an estimate of the target’s location along with an error boundary. 

The second method is based on geometric triangulation of the calculated data. The method is based on the known 
parameters for sensor, lens, baseline (distance between the two sensors), and pixel location of the target. Further 
discussion on the analysis of error in our estimate continues in the following section.  

Each sensor is able to gather independent information about the scene, and a combination of data from more than one 
sensor can result in a more accurate position estimate than from a single sensor alone. We have already implemented 
one fusion method which has shown to greatly improve the accuracy of the 3D pose recovery of the target and is 
discussed in further detail below. Further development is needed to determine which of a number of possible features 
and processing steps we may employ will result in the greatest accuracy without overly lengthening the computation 
time.  

7.3.1 Three-Dimensional Pose Recovery 

Once we have isolated the target within the image, we further desire to georeference the target.  In other words, we 
desire to change a knowledge of the target’s position from image coordinates to world coordinates.  Where isolation 
of the target within the image did not necessarily require a priori knowledge, 3D pose recovery is heavily dependent 
on a priori knowledge of several aspects of the sensor, its orientation in space, and the conditions under which the 
image was captured. 

When the target is only within view of a single sensor, the accuracy of the position estimates of the components which 
are orthogonal to the optical axis may retain a high degree of accuracy while the component which lies along that axis 
is inaccurate even with a priori information about the target, such as its size, and even more inaccurate without this 
knowledge.  Some reduction of accuracy is possible over a period of time of observing the target as the orientation of 
the sensor changes.  This single-sensor method we do not discuss further in our work but we focus on the multi-sensor 
case.  

If the target is within the FOV of two sensors, we may perform a 3D pose recovery of the estimated location of the 
target, using the combined information from the two sensors in order to calculate an estimate of the Z coordinate of 
the target while improving the accuracy of the estimated X and Y coordinates. This process is known as fusion and 
our work is to develop a number of methods which will process this fusion data from the available sensors. We have 
developed two approaches of calculating the target position from the simulated images, focusing on the second case 
mentioned above where the target is visible to two sensors.  
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Figure 7.4: Image demo of 3DP approach. Our approach is based on traditional 3D stereo which calculates a depth 
map of the scene which is then used to determine the system pose and coordinates of the target. The top row shows 
the left and right stereo input images of the scene. The middle row demonstrates the use of feature extraction which 
extracts stable features from each image and matches them to one another, then from this information a depth map 
can be constructed, shown in the bottom image. The drawback of this approach in our scenario is the high 
computational time and low scene texture from which to extract features. 



   119 

7.3.2 Triangulation 

The second method is based on geometric triangulation of the calculated data. The method is based on the known 
parameters for sensor, lens, baseline (distance between the two sensors), and pixel location of the target. Each sensor 
is able to gather independent information about the scene, and a combination of data from more than one sensor can 
result in a more accurate position estimate than from a single sensor alone. We have already implemented one fusion 
method which has shown to greatly improve the accuracy of the 3D pose recovery of the target and is discussed in 
further detail below. Further development is needed to determine which of a number of possible features and 
processing steps we may employ will result in the greatest accuracy without overly lengthening the computation time. 

Since we employ simulated imagery based on high-accuracy measurement of target trajectories in our experiments, 
we have access to the true location of the target and are thus able to determine the effect of varying the parameters of 
the experiment on the accuracy of the position estimate. Thus far in our experiments we have used representative 
parameters for what have able to determine are typical for sensor resolution, baseline distance, FOV, etc. and some 
results are shown below. It is also possible to use the same format we have developed for simulation to analyze worst-
case scenarios as well as the enhancement in accuracy that proposed improvements to the sensor hardware, number 
of sensors, etc. would provide.  

In Figure 7.6 we see four samples at the start of the experiment. The green points indicate the target’s true position 
while the red points indicate our raw estimate at each time step. The purple box indicates the confidence bounds in 
each direction. As may be seen, the confidence in our calculated estimate in the Z position is much larger than our 
confidence in either the X or Y positions. In order to reduce the error in our estimate, we apply a fusion of the estimated 
positions, beginning with a simple windowed averaging method. 

 
Figure 7.5: Image demo of projected lines triangulation approach. A line perpendicular to the image plane (along 
the optical axis) is projected towards the target and a minimum distance to intersection is computed. This approach 
is computationally much simpler and allows for easy scaling to multiple sensors. Potential sources of error arise if 
there is significant error in the knowledge of the position and orientation of the sensor.  
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Figure 7.6: Triangulation based 3D pose estimate of target position - side view. Four raw samples from the beginning 
of an experiment are shown for clarity. The green points are the true location of the target while the red points are 
the center of our estimate with the purple box indicating our confidence interval of the estimate. Our estimated 
recovery of the Z position has a much wider confidence bound and difference from the true location of the target, 
shown above as approximately 2.5 km away. 

 
Figure 7.7: Triangulation based 3D pose estimate of target position - top view. The green points are the true location 
of the target while the red points are the center of our estimate with the purple box indicating our confidence interval 
of the estimate. The difference between the estimate of the true X and Y position relative to our estimate of the position 
is in the range of 3 m, a difference of three orders of magnitude in accuracy. This is a typical problem encountered in 
triangulation pose recovery due to parallax, resulting in a far less accurate estimate along the axis parallel to the 
optical axis. The X and Y axes are perpendicular to the optical axis and the accuracy of the Z estimate is effected by 
the size of the baseline. 
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Shown in Figure 7.8 we see the raw measurement data from the triangulation-based 3D pose recovery in red, indicating 
the individual estimated Z value of the target across the time of the simulation. The raw estimates are noisy and span 
a range of approximately ±3 km, still a rather decent range for a system with low resolution, noisy sensors located in 
the range of hundreds to thousands of kilometers from the target.  The green line indicates zero error, which we are 
hoping to achieve and would indicate a completely successful recovery of the target’s path from the IR imagery. The 
blue line indicates the error of our fusion estimate with respect to our known target path. The error starts higher than 
the remainder of the line at about 1.5 km away from the true position and then quickly drops to a range within 
approximately ±½ km of the true target position.  

Figure 7.7 shows the same data as Figure 7.6 from the top to highlight the accuracy of the X and Y coordinates relative 
to the Z estimate, which is to be expected due to the parallax problem inherent in 3D pose recovery. As seen in Figure 
7.7, the X and Y estimates are much more accurate, coming within the range of 3 m. The higher accuracy is effected 
more heavily by the parameters of the sensor, with increased resolution corresponding to increased positional accuracy 
in the X and Y components of the position.  The accuracy of the Z position component is effected more heavily by the 
size of the baseline relative to the X and Y positions.  

Figure 7.8 shows results similar in layout to Figure 7.6 but for the X position of the target.  As before, the accuracy of 
our fusion estimate is not only significantly higher, but also quickly settles from the initial improved position estimate 
to a small range of ±3 m.  

7.3.3 Fusion of Position Estimates 

We have discussed how to recover an estimate of a target’s 3D location in space, demonstrated using multiple 
processing methods.  Once we have these estimates at each time step, we can apply various fusion methods to minimize 

 
Figure 7.8: The data shown here comprise an entire experimental run. The red samples are the error of the raw 
estimates of the target position relative to the green line, which indicates zero error in the estimate of the target’s Z 
position. The blue line is the result of our application of a windowed averaging fusion with a window size of 128 
samples. Note how quickly the error drops off and how much closer to the true position the estimate is from the range 
of the original red samples. The range of the red samples is ±3 km while the blue line ranges between ±½ km. 

Time (s)
120 320 520 720 920 1120 1320

Z
 E

rr
or

 (m
)

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000
Avg window size = 128

Ground Truth
Raw Position Estimate
Fused Position Estimate



   122 

the error in our estimate of the target’s location with respect to the true location of the target.  In this section we 
demonstrate the effectiveness of several methods on this type of data.   

7.3.3.1 Windowed Average Fusion 

The simplest approach to fusion of the position estimates is to utilize an average of the individual samples in order to 
smooth out the effects of noise in the estimates due to errors accumulated during calculation. This approach is very 
effective in smoothing out the over- and under-shoot errors due to the parallax problem of estimating the target depth 
which was commonly observed in experimental results. In order to maintain a stable estimate of the position, a window 
of size 𝑠𝑠 is specified for which the fusion result is comprised of the current raw position estimate and the 𝑠𝑠 − 1 
previous position estimates, up to the maximum number available (a limit is encountered during the early acquisition 
phase). 

The results of this approach are represented in Figure 7.8. This approach is particularly effective when samples of the 
target position are available with relative temporal frequency. If there is too much delay in the spacing between 
samples, meaning that the available information being included in calculation of the fusion result is too old, the 
usefulness of the result degrades.  

7.3.3.2 Kalman Filter-based Fusion 

The Kalman filter [Kalman1960] is a recursive estimator that was introduced as a method of filtering noisy, error-
prone data to produce an estimate of an unknown variable that is more precise than a single given measurement. The 
filtering process, also known as linear quadratic estimation (LQE) operates by using Bayesian inference and estimates 
a joint probability distribution of the sample data at each time step [Roweis1999]. The model assumes the true state 
of the variable at time 𝑘𝑘 evolved from the state of at time 𝑘𝑘 − 1 using  

𝑥𝑥𝑘𝑘+1 = 𝐹𝐹𝑘𝑘+1𝑥𝑥𝑘𝑘 + 𝑤𝑤𝑘𝑘 (7.1) 
where  𝑥𝑥𝑘𝑘 is the state vector at time 𝑘𝑘,  

 𝐹𝐹 is the state transition model,  

 𝑤𝑤𝑘𝑘 is the process noise, typically assumed to be zero mean, multivariate normal with covariance 𝑄𝑄𝑘𝑘. 

Equation (7.1) is known as the process equation [Cuevas2005]. At time 𝑘𝑘 an observation 𝑧𝑧𝑘𝑘 of the true state 𝑥𝑥𝑘𝑘 is 
modeled as  

𝑧𝑧𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 (7.2) 
where  𝐻𝐻𝑘𝑘 is the observation model that maps the true state space to the observed space, and 

 𝑣𝑣𝑘𝑘 is the observation noise, typically assumed to be zero mean, Gaussian white noise with covariance 𝑅𝑅𝑘𝑘. 

Equation (7.2) is known as either the observation or measurement equation [Cuevas2005]. The flow graph in Figure 
7.9 demonstrates the relationship between these two equations. The Kalman filtering problem is the process of jointly 
solving the process and observation equations where for the case of 𝑘𝑘 available samples, at time step 𝑠𝑠 the problem is 
called filtering when 𝑠𝑠 = 𝑘𝑘, prediction if 𝑠𝑠 > 𝑘𝑘, and smoothing if  1 ≤ 𝑠𝑠 < 𝑘𝑘.  
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Use of the Kalman filter in visual tracking requires calculating the object position and speed for each time step. The 
input images are processed to locate the target in each frame, and information about the image acquisition conditions 
is processed into a representation of the state of the target. Thus the system state 𝑥𝑥𝑘𝑘 represents the target coordinates 
𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 at time 𝑘𝑘. This approach likewise lends itself well to establishing a search window given the predicted 
coordinates of the target [Cuevas2005]. This allows for handing situations where the target can become occluded by 
an increasing noise floor or lost from the sides or base of the imaging volume.  

Kalman Model 1: Velocity 

For short durations, a linear estimate is sufficient to model the target trajectory. If the target is lost from the FOV of 
the system, the predictive capabilities of the system allow for recovery, but the accuracy will diminish if the target 
cannot be reacquired within a reasonable amount of time. The Kalman filter may be extended to model complex target 
trajectories, and models exist which account for a forcing control function which represents the ability of the target to 
alter the path it takes. As seen in Figure 7.10, the application of a Kalman filter utilizing a velocity model is sufficient 
to reduce the envelope of error compared to the raw observation samples. Where this approach has trouble may be 
seen in the slow correction to changes in the data, which results in persistent offset from the ground truth.  

Kalman Model 2: Acceleration 

The same Kalman-based approach is used, but with an adaptation to the state vector to include not only the position 
and velocity of the target, but also the acceleration as well. The effect of this change is readily seen in Figure 7.11 
below. The approach is much more effective at responding to changes in the data, but at a cost of a noisier output. 
Given our application of locating the target in world coordinates in order to reduce the search volume, this effect is 
acceptable so long as the average error in the position estimate is reduced compared to the observations and other state 
estimation methods. The effect of including the estimated acceleration of the target can be seen clearly when 
comparing Figure 7.10 and Figure 7.11, noting how rapidly the method moves in response to new observations.  

 

 
Figure 7.9: A signal-flow graph which represents the interaction of the linear dynamic system in discrete time as 
described in (7.1) and (7.2). The state vector is defined as the minimum set of data which is sufficient to represent the 
unforced dynamic behavior of the system, meaning that the minimum amount of data of the past behavior of the system 
is needed to predict the future behavior of the system. This information is collected as time 𝒌𝒌 progresses and a model 
of the system is updated using this accumulated information to improve the accuracy of future predicted system states. 
Reproduced from [Cuevas2005]. 
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Figure 7.10: A demonstration of the Kalman state estimation utilizing the velocity model. The green line represents 
the ground truth, the red dots are the individual raw state observations. The blue line indicates the filtered state 
estimate using the Kalman filter developed to track the system state vector represents position and velocity. Note the 
slow correction of the blue Kalman state estimate compared to the green ground truth line.  

 
Figure 7.11: A demonstration of the Kalman state estimation utilizing the acceleration model. The green line 
represents the ground truth, the red dots are the individual raw state observations. The blue line indicates the filtered 
state estimate using the Kalman filter developed to track the system state vector represents position, velocity, and 
acceleration. Note the quicker correction of the blue Kalman state estimate compared to the green ground truth line. 
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7.3.3.3 Extended Kalman Filter (EKF) 

The EKF is the nonlinear adaptation of the original Kalman state estimation filter. The EKF is the most widely used 
estimation algorithm for nonlinear systems [Julier2004] and operates under the assumption that all systems are quasi-
linear. This assumption drives the approach to linearize nonlinear transformation, opting instead to utilize Jacobian 
matrices to represent the operation of the system. There are some issues with this assumption, however.  

• The linearized transformation form results in a reliable model of the system only when the propagation of 
error can be represented by a linear function. There are situations where this condition does not hold: 

o Estimation of the parameters of ballistic target paths 
o Computer vision 

• The process of linearization is only successful if the Jacobian matrix exists. Situations where this is the case 
include: 

o Systems with discontinuities  
o System parameters can change abruptly 
o A high level of quantization in sensor measurements 
o The system state is inherently discrete 

• Calculation of Jacobian matrices is a difficult and error-prone process.  

Julier and Uhlmann [Julier2004] propose an update to the EKF aimed at addressing these issues. Their approach is 
based on the idea of approximating a probability distribution rather than an arbitrary nonlinear function. Given the 
difficulties encountered in applying the EKF to our scenario and Julier and Uhlmann’s [Julier2004] indication that the 
EKF is particularly ill-suited to solving the type of problem we investigate, we have selected to omit this result from 
comparison.  

7.3.3.4 Unscented Kalman Filter (UKF) 

The Unscented Kalman Filter (UKF) was developed in order to address problems seen with the EKF. The UKF utilizes 
the unscented transform, which is used to estimate application of a nonlinear transformation when only a finite set of 
samples are available for calculating the probability distribution [Julier2002]. A set of weighted sigma points are 
selected such that the selected points match the probability distribution from previous steps. This approach avoids the 
problems seen in the EKF, where implementation difficulties in calculating the Jacobian and violation of local linearity 
when approximating a linear representation of a nonlinear process.  

The UKF was designed to address the problems with the popular EKF, and as can be seen in Figure 7.12 the method 
responds well to significant error in the observations while still recovering well to give a much more reasonable 
estimate of the ground truth position. While the method performs quite well, it comes at a significant penalty in 
computational time. Potential exists for accelerating the method using suitable hardware or adjusting the 
implementation to improve the processing time. As a baseline comparison, however, this approach takes on the order 
of 20X longer to calculate the state estimate compared to the windowed averaging baseline approach.  

7.3.3.5 Interacting Multiple Model (IMM)  

The IMM [Mazor1998][Bar2001] state estimator is a suboptimal hybrid filter that estimates the state of a dynamic 
system with several behavior modes and operates by switching between them. The IMM estimator can be implemented 
as a self-adjusting variable-bandwidth filter, making it ideal for tracking targets capable of self-directed motion. The 
filter balances complexity and performance. Computational requirements are linear and performance has quadratic 
complexity [Mazor1998]. Other configurations include cascading or parallel Kalman filter state estimators which use 
independent models of target motion to reduce the overall error in tracking where the target motion is complex. IMM 
will calculate weights for each of the independent contributing models and as such is able to make quick adjustments 
to track target motion. 
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Figure 7.12: A demonstration of state estimation utilizing the Unscented Kalman Filter (UKF) approach. The green 
line represents the ground truth, the red dots are the individual raw state observations. The blue line indicates the 
filtered state estimate using the UKF developed to track the system state vector. Note the offset of the filtered state 
estimate from the ground truth line, which still achieves greater accuracy than the raw samples which drift from an 
over to an underestimate of the true target position. 

  
Figure 7.13: A demonstration of the Kalman state estimation utilizing the Integrated Mixed Model (IMM) approach. 
The green line represents the ground truth, the red dots are the individual raw state observations. The blue line 
indicates the filtered state estimate using the IMM filter developed to track the system state vector using two parallel 
Kalman filter implementations tuned to represent combinations of unique target motion modes. Note the balance of 
quicker correction of the blue Kalman state estimate compared to the green ground truth line while avoiding overshoot 
as significant as is present in the acceleration model. 
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The results of the IMM filter are an improvement compared to either of the base Kalman approaches or the UKF 
approach. The IMM results more resemble those of the Kalman approach using the acceleration model, but without 
the significant noise/jumpiness of the state estimate as seen in Figure 7.11. In comparing the difference from Figure 
7.11 to Figure 7.13 above, the improvement in keeping the filtered state estimate closer to the ground truth without 
responding overly quickly to new observations is handled very well with the two-model IMM implementation utilized 
here.  

7.3.3.6 Results 

In evaluating the merits of the several approaches considered, we consider the performance of each in minimizing the 
error of the target position estimate. The data from several test runs were utilized to get a reasonable average 
performance of each tracking method. The summary over all experimental runs is contained in Table 7.1, where the 
results of each method are evaluated via the root-mean-square error (RMSE) metric. As is typical of most enhancement 
approaches, the simpler approach exhibited worse performance compared to the more computationally expensive 
methods.  

In considering a recommended tracking method for smoothing out the predicted location of the target of interest based 
on historical observations, we note the results shown in Table 7.1 with respect to the level of accuracy only lead to a 
suggested application of the IMM approach. However, when considering the small reduction in accuracy with much 
faster processing time the use of the Kalman filter using the acceleration model provides a decent balance. At less 
than half the processing time of the IMM approach, there is only a marginal increase in error allowed. In considering 
our approach versus the radar-based tracking system, even the highly inaccurate windowed averaging fusion approach 
still delivers an improved result compared to existing solutions, at half the time of the Kalman – Model 2 approach. 
Specific choice of tracking method will depend on factors of a given real-world implementation. However, we have 
evaluated several options with quite impressing potential application and indicated metrics useful for weighing the 
tradeoffs in making this selection.  

  

Table 7.1: Comparison of tracking methods applied to representative simulation data. Each method is described 
earlier in the chapter, including figures to represent the raw position observations versus the state estimates utilizing 
each approach. RMSE is the root-mean-square error of the state estimates compared to the true target position. For 
windows averaging, three window sizes (128, 64, and 32) were selected for comparison in timing the method. The 
RMSE score was calculated using a window size of 128. 

Method RMSE Computational Time 

Windowed Averaging [128, 64, 32] 8.762×103 m [0.0463, 0.0439, 0.0431] ms 

Kalman Filter – Model 1 (Velocity) 2.079×103 m 0.0904 ms 

Kalman Filter – Model 2 (Acceleration) 0.390×103 m 0.0799 ms 

Unscented Kalman Filter (UKF) 0.350×103 m 0.9252 ms 

Integrated Mixed Model (IMM) 0.297×103 m 0.1915 ms 
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8 Error Analysis 

Since we are simulating our experiment, we have access to the true location of the target and are thus able to determine 
the effect of varying the parameters of the experiment on the accuracy of the position estimate. Thus far in our 
experiments we have used representative parameters for what we have been able to determine are typical for sensor 
resolution, baseline distance, FOV, etc. and some results are shown below. It is also possible to use the same format 
we have developed for simulation to analyze worst-case scenarios as well as the enhancement in accuracy that 
proposed improvements to the sensor hardware, number of sensors, etc. would provide.  

In Figure 8.1 we see four samples at the start of the experiment from both the side (a) and top (b) views. The green 
points indicate the target’s true position while the red points indicate our estimate of the target’s position at each time 
step. The bounding box indicates the confidence bounds in each dimension. The confidence in our calculated estimate 
in the Z dimension is much larger than our confidence in either the X or Y dimensions. This is expected due to the 
parallax problem inherent in the 3D pose recovery. In order to reduce the error in our estimate, we apply a fusion of 
the estimated positions, initially utilizing a simple windowed averaging approach but expanding to use of the Kalman 
state estimator to improve on our result. 

In Figure 8.2 we represent the experimental data in a different way, inspecting the results for an entire scenario 
showing both the Z dimension (a) and the X dimension (b). As before, the raw measurement data is shown in red, 
indicating the individual estimated Z value of the target across the time of the simulation. The raw estimates are noisy 
and span a range of approximately ±3 km, a rather decent range for a system with low resolution, noisy sensors located 
thousands of kilometers from the target. The green line indicates zero error, which we hope to achieve and would 
indicate a completely successful recovery of the target’s path from the IR imagery. The blue line indicates the error 
of our fusion estimate with respect to our known target path. The error in (a) starts higher at about 1.5 km away from 
the true position and then quickly drops to a range within approximately ±½ km of the true target position. In (b) the 
accuracy of our fusion estimate is not only significantly higher, but also quickly settles from the initial improved 
position estimate to a small range of ±3 m.  

In this chapter, we conduct a performance analysis of a set of system parameters to understand the envelope of 
performance of an image-based target position recovery system. We do this to understand the tradeoffs of these 
components and to develop a recommended system design in order to best utilize the type of target position recovery 
approach we have presented. 

8.1 Effect of Baseline 

For a given experiment, we assume a fixed sensor baseline. However, we investigate the influence of the chosen 
baseline on the accuracy of the estimated target position in order to determine a recommended best placement of 
sensors. This placement will also be influenced by the importance of various areas of interest such that recommended 
coverage in terms of sensor baseline need not be applied to all regions, but for regions where knowledge of target 
position is most important, we seek to analyze the influence of the sensor baseline on recommending an arrangement 
of sensors. Further, our analysis will provide an understanding of how changes in the baseline impact the error so that 
for areas of less importance that still require coverage, tradeoff for an acceptable level of error can be made in order 
to establish acceptable coverage without too much cost in each deployed sensor and management overhead in utilizing 
more sensors than necessary for a given level of coverage and accuracy. 
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(a) 

 
(b) 

Figure 8.1: The plots in this figure were previously shown in Figure 7.6 and Figure 7.7, repeated here for more 
convenient referencing. Triangulation based 3D pose estimate of target position - side view (a) and top view (b). Four 
raw samples from the beginning of an experiment are shown. The green points are the true location of the target while 
the red points are the center of our estimate with the purple box indicating our confidence interval of the estimate. 
Our estimated recovery of the target position has a much wider confidence bound in the Z-dimension and difference 
from the true location of the target, approximately 2.5 km away.  
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(a) 

     
(b) 

Figure 8.2: The data shown comprises a single experimental scenario. Displayed are the target position at each time 
step in the Z-dimension (a) and the X-dimension (b). The results in the X and Y-dimension are similar. The red samples 
are the error of the raw estimates of the target position relative to the green line, which indicates zero error in the 
estimate of the target’s position. The blue line is the result of our application of a windowed averaging fusion. Note 
how quickly the error drops off and how much closer to the true position the estimate is from the range of the original 
red samples. The range of the unfiltered samples is ±3 km which is reduced to between ±½ km once filtered in (a) and 
from a range of ±15 m to ±3 m in (b), around three orders of magnitude less than the scale of error in the Z-dimension.  
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We inspect the influence of a changing baseline on the accuracy of the recovered target position for each of the two 
3D pose recovery approaches, generalized stereo and 3D projection. In Figure 8.3 we see the comparison of the error 
represented as a boxplot of error for the entire experiment as opposed to the time-based representation of experimental 
data shown previously. Each boxplot shows data from a single experiment where the only parameter changed is the 
baseline of the sensors for a sensor pair. As before, the red samples are the raw position estimates while the blue 
samples are the fused position estimates. Noting the change in baseline, the error increases drastically as the baseline 
reduces to where for a seemingly wide margin between sensor vantage points of 50km the median raw error is just 
under 200km and an expanding baseline to 1000km results in a comparatively more acceptable error level. This 
arrangement highlights the need for fusion in reducing the error since the accuracy of a single measurement can vary 
significantly. 

For the 3D projection approach, in Figure 8.4 we first note the drastic scale difference in the methods. In the 
generalized stereo approach the maximum error is 1200km while for 3D projection it is only 50km. Likewise for the 
3D projection approach, a narrow baseline has higher error than a wider baseline. Of interesting note, however, is the 
increased number of outliers for the 3D projection approach as compared to the generalized stereo approach. The 
maximum outliers are still more accurate than the expected error value of generalized stereo though it does indicate 
the potential helpfulness of applying one of the predictive models to smooth out these extremes. The results shown 
are for the simple fusion approach and not the more advanced tracking methods discussed in Chapter 7.  

In determining an appropriate recommended spacing of the sensors, we note the diminished reduction of error with 
each step increasing the baseline. In order to determine the number of sensors required for a given sensor baseline, we 
approach from the perspective of Tammes problem by determining the number of circles of a given radius according 
to the baseline can be packed on a sphere [Clare1991]. However, due to the difficulty of finding a solution and the 
fact that an estimated number of sensors rather than a particular arrangement of sensors is our goal, we approximate 
the value by comparing the surface area of a sphere at a given altitude above the surface of Earth and the area of a 
circle of radius determined by the baseline. Our estimate is shown in Figure 8.5, where we consider an altitude of 
600km, and inspect a number of baselines. 

 
Figure 8.3: Demonstration of the effect of fusion on reducing the error in target estimates for varying baselines.  The 
charts above are for experimental data using the Generalized Stereo approach, where raw position estimates are 
shown in red (left) and the fused position estimates are shown in blue (right). An overly-narrow baseline contributes 
to higher error while a wider baseline has reduced expected error, though application of fusion drastically reduces 
the error. 
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Figure 8.4: Demonstration of the effect of fusion on reducing the error in target estimates for varying baselines. The 
charts above are for experimental data using the 3D Projection approach, where raw position estimates are shown 
in red (left) and the fused position estimates are shown in blue (right). Compared to the results shown in Figure 8.3, 
the 3D Projection approach is much more accurate. Similar to the Generalized Stereo approach, an overly-narrow 
baseline contributes to higher error while a wider baseline has reduced expected error. 

 

 
Figure 8.5: Influence of baseline on sensor coverage area, indicating the minimum number of sensors required for 
global coverage. We consider a sphere with radius 7000km, based on an altitude of approximately 600km above the 
surface of Earth. The number of sensors required is based on the ratio of surface area of this sphere, compared with 
the area of a circle of radius determined by the indicated baseline as estimation of the number of sensors required.  
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The minimum number of sensors required for a given altitude and baseline drops rapidly as the baseline increases. 
Given the configuration of the sensor with respect to resolution, lens equipped, post-processing employed, and 
individual cost per deployed sensor, a range of configurations can be proposed within acceptable bounds. For instance, 
consideration of a sensor going offline, handling cases where there are more than two sensors with line-of-sight to 
increase accuracy, considering configurations with sensors at varying altitudes, and handling the orbital paths of the 
distributed sensor constellation all weigh in on recommending a final system configuration. Of further note, for how 
our minimum number of sensors vs. baseline estimation was performed, the information shown in Figure 8.5 provides 
an upper bound on the number of sensors given that Tammes problem (circle packing on a sphere) indicates the 
maximum number of circles of a given radius which may be placed on a sphere.  

8.2 Effect of Sensor Parameters 

Although we typically refer to the entire sensor platform assembly as the sensor, in this section we specifically refer 
to the digital sensor chip which records the incident light as the sensor and address the considerations which contribute 
to the performance of the overall work which changes in the parameters of this device cause. Sensor arrays may be 
constructed using CMOS, CCD, or another technology such as a microbolometer array for thermal imaging. We do 
not consider the differences in terms of these various technologies but rather analyze the influence of the sensor in 
terms of two factors, pixel resolution and sensor noise, as being representative of the quality of the sensors for 
determining the requirements to meet a given level of error. 

8.2.1 Resolution 

Two uses of the term “resolution” are common when referring to image sensors. The way referred to in this section is 
the pixel resolution of the image sensor array. The other is the bit depth resolution of a given pixel. This could have 
an influence on the quality of the work, but we do not consider differing values. The data used to perform all 
experiments uses 8-bit images with pixel values in the range 0-255.  

The resolution of the sensor is important as a higher resolution sensor means that the region each pixel covers within 
the FOV is smaller, and therefore localization of the target in world coordinates is more accurate. However, higher 
resolution also means higher computational time at each stage of the post-acquisition processing pipeline. Therefore, 
striking an appropriate balance is of great importance as overly long processing times allow for too much movement 
of the target between image acquisitions that will contribute to unstable tracking even if the error at each step is lower.  

In target tracking implementations with existing technology, the minimum requirement for knowledge of a target’s 
position is determined by the angle, where 0.1o is sufficient for tracking [Tracking1998]. Given the configuration 
constraints previously discussed, in determining an appropriate analog to evaluate our resolution requirements, we 
consider a maximum target to sensor distance and analyze the uncertainty of a target’s position when it is known to 
be contained within a single pixel. At a baseline of 2000km, and a sensor altitude of 2000km, the maximum distance 
from a target to a sensor is 2828km. For purposes of analysis we will round to 3000km to account for sensor drift and 
other potential issues regarding instantaneous position of sensors.  

In Figure 8.6, we see an analysis of the error associated with the uncertainty of the imaging sensor pixel at a given 
target-sensor distance. This is related to the fact that for a given configuration a single pixel will cover a substantial 
portion of the FOV. If the target is known to be within a single pixel, the distance from the target to sensor changes 
the search volume in which we must look for the target given the level of knowledge offered by the image-based 
system we have proposed. Also of importance is consideration of the FOV of the lens used, where for a given 
configuration the area covered changes. Shown are the curves for lenses from 15o to 60o. The difference diminishes 
in higher FOV coverages as shown by the clustering of the curves. Since this coverage is sampled by the sensor, the 
total FOV is partitioned by the sensor into regions where the coverage of a single region is as shown below. 
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From these results we can see the significant change in search volume that changes in the geometric relationship of 
the target and sensor has. Further, this suggests important consideration in deployment of a sensor constellation. Since 
the sensor will be oriented to inspect only a portion of its area in order to retain sufficiently accurate knowledge of the 
position of the target, two approaches are possible. The first involves the use of an adjustable-zoom lens. This would 
allow for tuned selection of the sensor’s FOV to adjust from a wide-angle ‘spotting’ mode to a narrower ‘tracking’ 
mode. The tradeoff is mechanical complexity and additional weight, cost, and complexity from added control 
parameters. The second approach involves utilization of multiple layers of sensors in the configured constellation such 
that higher-altitude sensors could be deployed with wider-angle lenses and once a potential target has been spotted, 
the lower elevation sensors with narrower FOV could orient to track much more accurately.  

Lastly, the relationship between the accuracy of the current technology previously mentioned compared to our 
proposed approach leads to a restriction on the resolution of the sensor related to the lens FOV. If 0.1o is a sufficient 
limit for establishing a reliable track, then it stands to reason that the minimum sensor resolution would be related by 

𝑅𝑅𝑚𝑚𝑖𝑖𝑙𝑙 ≥ 10 × FOV. (8.1) 
Meaning that for a given FOV, the sensor resolution must be at least ten times higher in pixel count. Or for a given 
sensor resolution, the maximum FOV of the lens is 1/10th of the sensor size in pixels in order to meet the given tracking 
criterion. The chart in Figure 8.6 was constructed on the assumption of square pixels and a resolution of 480 × 480. 
Different sensor geometries will adjust the limits discussed and must be addressed accordingly. 

 
Figure 8.6: Relationship between the sensor resolution and the distance between the target and sensor. For the size 
of the targets considered, a majority of the experimental time the target will be contained within a single pixel. Given 
this relatively low accuracy, we need to understand the error bounds on the position of the target given knowledge of 
its location in pixel coordinates. This chart demonstrates the relationship in terms of the distance of target to sensor 
for a set of lens FOVs. As expected, when the target is further away the search volume is larger, but of important note 
is that the difference in changing the FOV of the lens is low and diminishes as the FOV increases. 
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8.2.2 Noise 

The problem with any real system is reality, and for image sensors (other sensors too, for that matter) that means noise. 
Even with shielding, the potential for a high noise floor can inhibit accurate target localization in the image data. We 
want to understand to what extent the noise in the image acquired influences the accuracy of the system and to 
determine what approach works best for reducing the degradation in accuracy due to image noise. The images obtained 
of the target of interest using the existing sensor systems gives a bright point that is just above the noise floor and 
occasionally gets buried in the image noise. Therefore, there are several important questions we need to address: 

• How much noise can we handle? 
• How can we reduce the noise to an acceptable level? 

An important limiting factor for determining an acceptable noise level is the influence that increased noise in the 
image acquisition stage has on the performance of subsequent steps. In Figure 8.7 we analyze the effect that an 
increasing noise level has on the quality of SR results, comparing the quality using both the SSIM and PSNR metrics. 
In each labeled experiment group, the only consistent parameter is the level of noise in the input images. The groups 
include data from experiments with different amounts of blur, source images, registration and SR methods, and SR 
factors. Even with this wide variety of differences, there is a clear trend: more noise correlates to worse performance. 
Determining a threshold for an acceptable amount of noise depends greatly on the application.  

In such applications as face detection for instance, the quality of the image prior to applying this kind of algorithm 
would necessitate a much higher standard. For our application, the SNR simply needs to be high enough to reliably 
detect the target within the image. Since the target is expected to be contained within a single pixel, this means only 
that the target must be visible above the noise floor. Here again we are constrained by the distance of the target to the 
sensor, as for a uniform amount of light energy emanating from the target, as the target-sensor distance drops, the 
amount of light that reaches the sensor will increase. As this factor is so application dependent in determining an exact 
threshold in terms of these factors, we do not explore an analysis of the exact level of noise that can be handled in 
these terms. However, we do analyze the effect that a given noise level has on the success of subsequent steps as 
previously shown and also discuss the potential for configuration of the acquisition device in order to reduce the noise 
such that for a given acceptable noise level as determined by application-specific experimentation, steps may be taken 
to meet this standard. 

There are three methods of noise reduction that we explore: 

• Computational approaches to noise reduction 
• Multi-exposure (image stacking, or synthetic extended exposure) 
• Multi-aperture 

The computational noise reduction methods and the multi-exposure approach have been previously described in 
Section 1.2.2.1, Section 2.3, and Section 3.1. An interesting novel image acquisition arrangement is the multi-aperture 
imaging device. Traditional image acquisition devices consist of a lens as the focusing element with finite aperture 
and a recording element of either film or a digital sensor as in our case. A multi-aperture system can either be composed 
of multiple lens-sensor pairs in some useful configuration, or utilize a single sensor with the imaging area partitioned 
into subsets with an individual lens and aperture projecting light onto that region. Examples of these kind of systems 
are shown in Figure 8.8. The advantage of a multi-aperture system is that multiple independent measurements of the 
scene may be acquired simultaneously from the same vantage point. This is in contrast to the capability previously 
described where multiple views of the target from unique vantage points allows for recovery of the 3D position of the 
target.  

By obtaining multiple unique samples of the scene simultaneously from the same vantage point, there are several 
capabilities that can be developed. First, rough depth information can be obtained by utilizing lenses of different focal 
lengths. Also, by recording multiple samples the image noise can be reduced without encountering issues with fast-
moving objects in the scene. Finally, the application of SR will be more accurate since the inter-frame motion doesn’t 
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Figure 8.7: Demonstration of the effect of sensor noise on the success of SR. Both SSIM (top) and PSNR (bottom) are 
used to analyze the quality of the images with varying noise levels in the input. SR methods are very sensitive to 
increasing noise levels. The data shown in a single boxplot include varying levels of blur, different configurations of 
image registration, SR methods, and SR factors. Including all of these features, there is a clear diminishing trend with 
increasing image noise.  
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change, meaning it can be pre-calibrated, and the objects within the FOV are in the same position in each observation. 
This allows for faster processing of the SR step since the registration is known a priori. Lastly, in situations where 
unique spectral information of the target is helpful for identification, tuned filters may be introduced into the lens 
assembly so that each observation also provides a unique sampling of the light spectrum.   

8.3 Effect of Blur 

The use of lenses allows for a larger aperture and focused image acquisition. However, lenses also introduce blur 
distortions that can reduce the quality of the image. We want to identify what the influence of blur is on the accuracy 
of the system. Lens assemblies on existing systems add excessive weight and impact the maneuverability of the 
system. If simpler, lighter, cheaper optics systems be employed and comparable imaging performance achieved with 
corrective deconvolution, what is the limit of our capabilities? Or, how does the blur degradation impact accurate 

 

 

Figure 8.8: Example of multi-aperture image acquisition devices. The recently developed Light camera (top) has 
sixteen individual 13MP sensor modules that give it improved light performance, multiple focal volumes, and an 
effective 52MP recording ability. Image credits Light.co. The 3x3 Lomography camera (bottom) uses traditional film 
and can be useful for e.g. action shots, if the timing between shots is staggered, passport photos, where multiple copies 
are needed, and multispectral imaging, if unique light filters are used at each aperture location. Image credits 
Light.co, Lomography. 
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location of the target and how much computational time will application of this type of arrangement introduce? 
Further, can multi-aperture imaging systems allow for reduction in weight and allow for improved accuracy? 

Given that the light from the target incident at the sensor is already dim enough to warrant concern about the noise 
floor, it is especially beneficial that all available light that gives information about the target position is correctly 
mapped to the appropriate location on the sensor. Well-corrected lenses, particularly of the type presently employed 
use large apertures and special glass to correct distortion and achieve low blur – at the expense of added weight which 
increases cost and decreases system maneuverability. Use of cheaper optics will introduce blur, but perhaps careful 
selection of a lens will enable an overall improved or competitive performance at reduced size, weight, and cost. In 
particular, our investigation into multi-aperture systems allows the collection of light using multiple independent 
simple lens systems and sensors. The images from these kind of systems can be combined to reduce the noise and any 
blur present will have less degrading effect since multiple simultaneous images of the scene taken from the same 
perspective can be combined to increase the overall SNR, while employing deconvolution of these simple lens systems 
to reduce the blur in the images through each of the lenses. 

In order to address the concern of errors introduced by the lens system, we consider the following questions: 

• How does blur impact the quality of the recovered position? 
• Does deconvolution help? At what cost? 

8.3.1 PSF Size 

To address the impact that blur has on the quality of the recovered target position, we consider the bulk of the influence 
of the blur to be due to the extent of the kernel. For a Gaussian blur model this is controlled via the variance parameter. 
As discussed in Section 4.3.1, the exact form of the PSF is different based on the lens configuration and also the 
location in the image. As a complete discussion of every form of PSF would be very nearly prohibitive, we utilize the 
Gaussian model and adjust the extents via the variance. In this way, our aim is to capture the effect of blur in our 
application by controlling how much of the local region influences a given pixel. One type of blur that will differ from 
the results shown is motion blur. Motion blur, rather than being a static local degradation, is a complex measurement-
dependent degradation that cannot be known a priori. For all the sources of potential error in our application, we 
luckily expect the probability of encountering motion blur to be relatively low. 

Similar to the approach taken in considering the impact of noise on the system, we likewise use image quality metrics 
on the output images of SR in order to determine the impact that increasing amounts of blur will have on successful 
recovery of the target coordinates. Shown in Figure 8.9, we see an analysis of the experiments performed. The 
individual boxplots include varying noise levels, input images, registration and SR methods, and SR factors. The only 
constant in each is the level of blur present in the input images. Contrary to the clear impact of noise on the quality of 
the reconstruction quality seen previously, there appears to be little impact of blur. Most surprising is how much lower 
the bar is for images with no blur. There is somewhat of a trend in the upper bound seen particularly in the chart 
utilizing SSIM, where but for a slight increase at 1.5 and 1.6 there is a decline. The median value follows something 
of a pattern in the 0.1-0.7 and 0.8-1.4 ranges and then levels off at higher values. 

This effect is actually quite welcome. Given the expense and difficulty of maintaining large lens systems allowing for 
some level of blur and being able to maintain a consistent level of quality is very helpful. Or rather it suggests that we 
can employ some of the multi-aperture systems which could introduce more blur in the images at the benefit of 
additional light and a lower noise floor, coupled with the capability to perform SR utilizing the multiple observations 
of the scene. Another feature that can be incorporated is the use of lenses with multiple focal lengths. Not only will 
we continue to be able to combine the images to increase the SNR (after appropriate scaling), but we will also be able 
to derive rough depth information that can enhance cueing of the tracking step as well as provide spotting information 
in the event that only a single sensor platform has the target within its FOV. Also, with application of multiple focal 
length lenses from the same vantage point, we gain the capability that having a variable focal length lens offers without 
the mechanical issues or delays that adjustment require as we have access to all information simultaneously. 
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Figure 8.9: Demonstration of the effect of blur on the success of SR. Both the SSIM (top) and PSNR (bottom) metrics 
are used to evaluate the image results. Curiously, it appears that if a trend exists, having no blur reduces the quality 
of the result. There does appear to be some pattern, notice for instance the descending trend on the range 0.1-0.7 and 
0.8-1.4. Also of note, the maximum quality indicated does decline overall except for a jump at 1.5 and 1.6. There is 
not nearly as consistent a trend in the quality of the result as was apparent in the comparison of noise. 
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These results are in keeping with the observations of Lin and Shum [Lin2004] who found that the limits of SR do not 
heavily depend on the lens PSF. It is important to note that although we have shown that the system blur does not 
heavily influence the successful recovery of the target position, there still exists the potential for the blur effect 
spreading useful signal information about the target below the noise floor. Therefore, it is important to note that if the 
tradeoff of some blur is allowed, it is even more important to ensure the noise is reduced as much as possible. This 
gives further incentive to employ the multi-aperture approach as it strikes a very nice balance on these two sources of 
degradation while keeping the weight much lower. 

8.3.2 Application of Deconvolution 

Despite the seemingly low impact of blur on the quality of our imaging scenario, it is still of importance to quantify 
the effect of deconvolution as the potential for utilizing lenses with larger and more complex PSF kernels could be 
explored and understanding the computational impact of deconvolution so that those images may be compared to our 
prior results is still of benefit in understanding the contribution that employing this class of methods will have. Further, 
should we encounter the situation where the signal of the target dips below the noise floor, application of 
deconvolution for a method well-adapted for noisy observations could be employed to enable successful recovery of 
the target despite excessive degradation that would otherwise have prevented calculation of an accurate position 
estimate.  

In Figure 8.10 we show a comparison of the processing time required for deconvolution. Four deconvolution 
approaches were tested, along with a range of image sizes, PSF kernel sizes, and PSF variances. The processing time 
was most highly correlated to the image size, though there was some influence based on the support size of the kernel.  

Given the active nature of the system in tracking the target, both accuracy in the location’s coordinates and timely 
knowledge of when the target was at that location are essential to the success of our application. Therefore, we are 
sensitive to not only the improved accuracy contributed by deconvolution in our post image acquisition processing, 
but also the computational load in achieving a given reduction of error. In minimizing the overall error is appears that 
for all but the highest levels of blur with respect to the noise floor, that the system blur is not the most significant 
contributor to increased error in recovering the target coordinates.  

8.4 Application of SR 

SR algorithms provide the capability of increased resolution when LR images are the only observations available. We 
can utilize this feature in creating a multiaperture acquisition system utilizing existing sensor technology to obtain HR 
images of the scene without the expense that a similar resolution monolithic sensor would require. This in addition to 
the ability to use multiple smaller, lighter, cheaper lenses instead of a single large, heavy, expensive lens. An additional 
advantage to this approach is that an image of a given size in pixels obtained using a multiaperture system can have a 
significantly lower noise level even without utilizing the denoising steps we have discussed previously. There is some 
denoising that occurs naturally with application of SR, though image noise can disrupt the registration step. The benefit 
of a multiaperture system is that the registration parameters can be calculated a priori, but decreasing the processing 
time and eliminating the problems that arise with increased noise in non-ideal conditions.  

Enhancing the image resolution prior to application of the tracking step reduces the search volume for locating the 
target. This effect is related to the SR factor in each dimension, or the cube of the SR factor. Though there will be 
some deviation from this direct relationship, as the error at a given timestep will change and there is some added 
denoising effect as a tradeoff with some processing lag, we consider the general trend of the reduced search volume 
to coincide with the cube of the SR factor. E.g. for an SR factor of two, the search volume will decrease by a factor of 
eight, and for an SR factor of three there will be a reduction in the search volume by a factor of twenty-seven.  
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To get a sense of the drop in accuracy compared to the ideal, we inspect the difference in quality of an image rendered 
at a given resolution compared to the quality of the image at that same resolution that was constructed from LR images. 
As there are different registration methods that supply information about the relationship of the input images with 
respect to one another, we also inspect the difference that selection of one of these algorithms has on the quality of 
the output. Shown in Table 8.1 we compare the average quality using the SSIM and PSNR metrics. The information 
in this table is grouped according to registration method. The averages include differences in SR method, SR factor, 
noise and blur level, and source image. The data in Table 8.2 represents this same data, but grouped by SR method.  

The data shown in these tables is calculated as follows: 

1. The chosen source image is convolved with a specified blur kernel 
2. The blurred image is downsampled with unique subpixel offset for each image at a sampling rate determined 

by the desired SR factor 
3. The blurred, downsampled images have noise of a specific level added to corrupt the images 
4. The blurred, downsampled, noisy images are registered using one of the selected methods 
5. The degraded LR images and registration values are supplied to a given SR method 
6. The output of the SR method is compared to the source image using the SSIM and PSNR metrics 

Then, for each categorical grouping, the results are averaged to obtain the values shown. This gives a rough idea of 
the capabilities of each method across varying conditions. In Table 8.1 we note the somewhat surprising observation 
that the shift and rotate registration methods have comparable results to the shift only (global translation) methods. 
Further inspection reveals that the rotation vector is small relative to the shift estimates.  

 

Figure 8.10: Comparison of the processing time of four deconvolution algorithms. The size of the image being 
deconvolved is indicated on the chart. Within each stack are the results using varying blur kernel sizes to indicate the 
range and sensitivity of the algorithm to changes in these parameters.  
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Table 8.1: Comparison of image quality with respect to the image registration method used. Data includes variations 
in SR method, SR factor, source image, and blur and noise levels. The methods fall into one of two classes: global 
translation (shift only) and shift and rotate (global translation and global rotation considered simultaneously). 
Despite the LR input images differing by only translation, the methods which considered both global shift and 
rotation (notably Keren and Vandewalle’s approaches) had the best results.  

 Registration Method Mean SSIM Mean PSNR 

G
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T
ra

ns
la
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n Lucas-Kanade 0.299 14.92 

Keren 0.258 14.36 

Marcel 0.324 15.44 

Vandewalle 0.366 16.36 

Sh
ift

 a
nd

 R
ot
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Keren 0.370 16.42 

Marcel 0.283 14.60 

Lucchese 0.283 14.60 

Vandewalle 0.364 16.30 

Table 8.2: Comparison of image quality with respect to the SR method employed. The data includes variations in 
registration method, SR factor, source image, and blur and noise levels. The values across all these variables confirm 
the observations of the authors in selecting SR methods in previous work. One surprising result, however, is the high 
value of cubic spline and deblur. This approach is an interpolation and deconvolution approach which does not take 
the inter-frame motion into account. One explanation for this result is the application of deconvolution in boosting 
the quality of the images compared to other methods.  

SR Method Mean SSIM Mean PSNR 

Bicubic Interpolation (Bi3) 0.452 19.11 

Iterated Back Projection (IBP) 0.208 10.37 

Papoulis-Gerchberg (PG) 0.098 10.02 

Zomet Robust SR (ZRSR) 0.266 13.07 

Projection onto Convex Sets (POCS) 0.462 20.24 

Normalized Convolution (NC) 0.493 21.32 

Cubic Spline and Deblur (CSD) 0.538 21.62 

Fast Robust SR (FRSR) 0.031 7.24 



   143 

Of the registration methods, it appears from this data that we would expect the approaches developed by Vandewalle 
et al and Keren et all to give the best performance. In Table 8.2 we see the same results grouped according to the SR 
method employed. There are some methods which simply give poor results, notably Farsiu’s Fast Robust SR approach. 
One surprising result is the Cubic Spline and Deblur method having such a high value relative to the methods 
considered. The surprise of the authors is due to the fact that this method does not consider the registration information 
in evaluating its result. It is possible that the deblurring performed accounts for some of the boost in average 
performance.  

In order to better understand the interaction of these methods, we inspect the methods paired with one another. This 
comparison is shown in Table 8.3 using the SSIM score and Table 8.4 using the PSNR score. In these tables we 
highlight the sixty-four individual pairings of registration and SR method and compare the average results across 
differing source image, SR factor, and noise and blur levels using the indicated quality metrics. We highlight the 
pairings with the highest rankings, specifically those in the upper quartile. Our previous observations are correct with 
respect to the methods which tend to do better across varying conditions. Of interesting note is that while bicubic 
interpolation ranks in the upper quartile when utilizing the SSIM score, it does not when using PSNR. It is interesting 
that a simpler interpolation method ranks so well with more sophisticated SR methods. 

Even though the pairing of methods suggests an expected quality level, we need to understand the computational time 
required for these methods. We consider the registration process as a calibration step and evaluate only the SR methods 
indicated as most likely to improve the quality of the images: bicubic interpolation, projection onto convex sets, and 
normalized convolution. The results of this timing analysis are shown in Figure 8.11, and the experiments were 
performed on a machine with a quad-core Intel Xeon E5507 2.27Ghz processor with 12Gb of RAM. The Windows 7 
OS was used with MATLAB implementations of the algorithms.  

Table 8.3: Comparison of the average SSIM image quality score with the indicated pairing of registration and SR 
method. This table gives more detail in understanding the best methods to use when combining LR images into a HR 
representation for purposes of target localization. Values in the upper quartile are in bold.  

  Registration Method 

  Global Translation Shift and Rotate 

  Lucas-
Kanade Keren Marcel Vandewalle Keren Marcel Lucchese Vandewalle 

SR
 M

et
ho

d 

Bi3 0.431 0.339 0.409 0.571 0.577 0.360 0.360 0.545 
IBP 0.169 0.152 0.286 0.219 0.217 0.204 0.204 0.216 

PG 0.109 0.091 0.045 0.141 0.157 0.050 0.051 0.141 

ZRSR 0.221 0.191 0.367 0.264 0.266 0.276 0.276 0.267 

POCS 0.428 0.345 0.466 0.559 0.570 0.385 0.385 0.559 

NC 0.472 0.381 0.457 0.611 0.610 0.405 0.405 0.603 
CSD 0.538 0.538 0.538 0.538 0.538 0.538 0.538 0.538 

FRSR 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 

SSIM 
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Similar to our approach shown in Figure 8.10, we analyze the processing time of the selected SR algorithms for a set 
of image sizes from 100 to 500 pixels in 10-pixel increments. Shown in Figure 8.11 are a comparison of the three 
selected SR algorithms (bicubic interpolation, POCS, and NC) using SR factors of 2, 3, and 4. As expected, the 
processing time of each SR method increased with increasing SR factor, seen via the stacked effect for each of the 
method groupings. Also, increasing input image dimensions increased the processing time, and this effect is enhanced 
with increasing SR factor. While the processing time for both POCS and NC increase significantly, the bicubic 
interpolation approach has a fairly low and stable processing time. When comparing these findings with respect to the 
processing time and the previous results shown in Table 8.3, we reach the conclusion that the drastically increased 
processing time of NC does not justify the marginal improvement in quality compared to the results obtained using 
bicubic interpolation.  

Of additional interest is the influence that the SR factor plays in the output image quality. In Figure 8.12 we see a 
comparison of the SR experiments performed with the data grouped by SR factor and using the SSIM and PSNR 
metrics. The data used to generate each individual boxplot includes samplings of noise and blur level, differences in 
registration and SR methods, and different source images. The results illustrate a clear trend: better available 
information gives better results. The experiments performed were designed to give an output of the same size in pixels 
for all experiments in order to more easily compare results. It is likely that holding the input image size fixed and 
arriving at different output image sizes would give a different result than that shown. One interesting item seen in the 
SSIM results is that although the median image quality goes down with increasing SR factor (for a fixed output image 
size) the maximum quality does still range quite high. It is important to remember that there are many factors which 
influence the quality of the results obtained. Though we have included many figure to compare the results and have 
sought to thoroughly analyze the experimental data, a specific application will drive the precise parameters and 
algorithm selection.  

Table 8.4: Comparison of the average PSNR image quality score with the indicated pairing of registration and SR 
method. This table gives more detail in understanding the best methods to use when combining LR images into a HR 
representation for purposes of target localization. Values in the upper quartile are in bold. 

  Registration Method 

  Global Translation Shift and Rotate 

  Lucas-
Kanade Keren Marcel Vandewalle Keren Marcel Lucchese Vandewalle 

SR
 M

et
ho

d 

Bi3 18.73 17.53 18.28 21.33 21.35 17.25 17.25 21.16 

IBP 9.42 9.35 12.45 10.25 10.14 10.59 10.59 10.16 

PG 10.93 10.85 7.80 11.11 11.54 8.38 8.38 11.14 

ZRSR 11.57 11.14 16.36 12.48 12.53 13.98 13.98 12.58 

POCS 19.32 18.08 19.88 22.55 22.71 18.42 18.42 22.53 

NC 20.63 19.19 19.96 24.40 24.32 18.98 18.98 24.10 
CSD 21.62 21.62 21.62 21.62 21.62 21.62 21.62 21.62 

FRSR 7.14 7.14 7.16 7.14 7.14 7.56 7.56 7.14 

PSNR 
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Figure 8.11: Comparison of processing time of three SR algorithms. Bicubic interpolation (red), projection onto 
convex sets (POCS) (green), and normalized convolution (NC) (blue) were sampled at the indicated image sizes for 
2x, 3x, and 4x experiments. LR input images used were square, thus the total number of pixels increases by the square 
of the indicated value. Each of the SR factors tested for each method increased in processing time as expected, where 
a higher SR factor and larger input image size both contributed to increased processing time. Bicubic interpolation 
was the least sensitive to changes in these parameters and maintained a very consistent processing time. When 
comparing the results in this figure to the quality measures in Table 8.3, particularly for larger images the drastic 
increase in processing time seems to not justify the slight difference in image quality. 

  

Figure 8.12: Comparison of the difference in SR factor using the SSIM and PSNR metrics. The summary data shown 
here includes experiments with varying levels of noise and blur, varying registration and SR methods, and varying 
source images. Of important note for understanding these results is that the final output image size is fixed, such that 
for each set of experiments the size of the LR input images is different between boxplots. From these results we learn 
that the better quality information that is available the better the result will be.  
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The image of the target at our sensors is near to being buried by the noise floor and often images to less than one pixel. 
This gives a wide cone of possible locations for the target given the distance from target to sensor. In a multi-sensor 
system we can utilize the independent views of the target to significantly narrow down the potential volume in which 
the target lies. Utilizing SR-enhanced measurements at each sensor platform, we will be able to narrow down the 
volume of possible solutions and increase our detection accuracy by increasing the SNR of the images obtained from 
a given observation point. If we make use of behavioral models of the target to predict the next position or set of 
positions, we can calculate an improved reorientation of the sensors to keep the target in view while reducing the error 
by correcting our prediction using the measurements of subsequent timesteps. 

8.4.1 Comparison of SR Formulation 

Given the wide variety of SR methods that have been developed, and the results of our analysis of a selection of 
methods, we wish to delve into the mathematical backing to explore the underlying reasons for the difference in quality 
of the results of application of SR. This is done for two reasons: to inform future research directions for those who 
develop SR algorithms and to develop greater understanding of our own results to further refine selection of an SR 
algorithm which can produce superior results. Of the methods tested, normalized convolution (NC), projection onto 
convex sets (POCS), and bicubic interpolation (Bi3) gave the best results.  

8.4.1.1 Normalized Convolution 

Normalized convolution is a spatial direct SR approach described in detail in Section 6.2.2.4. As mentioned, the 
implementation uses first-order modeling of local image structures rather than the higher-order approaches which can 
increase both the processing time and risk of overfitting to the noise component of the image.  

8.4.1.2 Projection onto Convex Sets 

Projection onto convex sets is a set theoretic method as detailed previously in Section 6.2.2.5. In the comparison of 
quality metrics by pairing registration and SR methods shown in Table 8.3, Although normalized convolution was 
strictly significantly higher in quality for the highlighted method pairs compared to bicubic interpolation, the POCS 
results were not, being lower than bicubic interpolation for two of the three highest pairings. This is in keeping with 
the observation made in the formulation that the method is particularly sensitive to inaccuracies in the motion 
estimation and increasing noise and blur.  

8.4.1.3 Bicubic Interpolation 

Bicubic interpolation is typically used in resampling images for display. The traditional formulation utilizes the values 
of 16 pixels in a 4x4 neighborhood as compared to bilinear interpolation which only utilizes 4 pixels in a 2x2 
neighborhood. The tradeoff for increased data requirements and computational complexity compared to other 
interpolation approached is the increased image smoothness with reduced presence of undesirable artifacts. For an 
image 𝑓𝑓 and the derivatives 𝑓𝑓𝑥𝑥, 𝑓𝑓𝑦𝑦, and 𝑓𝑓𝑥𝑥𝑦𝑦, where 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 are the single derivatives in the 𝑥𝑥 and 𝑦𝑦 plane, respectively, 
and 𝑓𝑓𝑥𝑥𝑦𝑦 is the cross derivative, the interpolated surface representation of 𝑓𝑓 to be resampled is 

𝑒𝑒(𝑥𝑥,𝑦𝑦) = ��𝑎𝑎𝑖𝑖𝑜𝑜𝑥𝑥𝑖𝑖𝑦𝑦𝑜𝑜
3

𝑜𝑜=0

3

𝑖𝑖=0

 (8.2) 

The problem, then, is how to determine the 16 coefficients 𝑎𝑎𝑖𝑖𝑜𝑜. We need 16 equations for determining these 16 
unknown coefficients. Four each from matching 𝑒𝑒(𝑥𝑥,𝑦𝑦) with the function values of 𝑓𝑓 and from the cross derivative, 
and eight from the derivatives in the 𝑥𝑥 and 𝑦𝑦 direction. The matrix formulation of this system of equations is 
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𝑒𝑒(𝑥𝑥,𝑦𝑦) = [1 𝑥𝑥 𝑥𝑥2 𝑥𝑥3] �
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 (8.3) 

Though bicubic interpolation is not an SR approach but an interpolation approach, our use of a multiframe 
implementation and the impressive results of this approach warrant inclusion in our analysis. The closest 
categorization of bicubic interpolation in the SR taxonomy would be the shift-and-add class of direct SR.  

8.4.1.4 Analysis of SR Formulation 

In considering the classification of the methods used with respect to the taxonomy shown in Figure 6.4, only two types 
of methods had reasonable success and the two with the best results were both shift-and-add methods. It is reasonable 
that the Fourier domain methods did not give the best results as these methods are notorious for their sensitivity to 
noise. Of the spatial domain methods, iterated back projection is also known to have difficulty with high noise content, 
though Zomet et al [Zomet2001] modified the approach to introduce more noise robustness. This is reflected in the 
improvement of ZRSR compared to IBP of between 20-35% seen in Table 8.3.  

8.5 Summary of Findings 

In this section we review the findings of this chapter with respect to the system components considered and develop 
a recommended system implementation using our image-based approach. We then compare the expected performance 
of our approach to the existing approach to solving the target localization problem for the presented scenario. 

8.5.1 Review of System Components 

We review the recommended blocks discussed in detail previously with regard to the range of influence within each 
block in consideration of highest accuracy and lowest computational cost. As the exact implementation is not discussed 
as part of our work, we do not include considerations of component size, weight, financial cost, or power requirements, 
but caution those who may use our work as a guide to consider these features for any realized system. As we only 
review the analysis that contributes to the accuracy of the system, we will not review the PSF measurement method, 
our orientation update approach, or our error analysis block. Of the blocks in the pipeline shown in Figure 8.13 we 
only review the image simulation, noise modeling, super resolution, deblurring, and tracking steps, as follows. 

8.5.1.1 Image Simulation 

The image of the target at our sensors is near to being buried by the noise floor and often images to less than one pixel. 
This gives a wide cone of possible locations for the target given the distance from target to sensor. In a multi-sensor 
system we can utilize the independent views of the target to significantly narrow down the potential volume in which 
the target lies. We adapted models popular in the literature to represent the scenario under consideration and in testing 
subsequent steps in the pipeline we investigated representative ranges of noise and blur to examine the effects these 
changes would have on the position estimation accuracy.  
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Figure 8.13: Review of pipeline of contributions. The ideal target image is generated from known information of the 
sensor’s position, resolution, and field-of-view (FOV) combined with the position of the target from the simulated 
path. We simulate the effects which cause a disturbance to the trajectory of the target, sensor, and infrared (IR) light 
as it travels between the two locations, and the lens aberration step factors in the effect a real lens has on image 
acquisition. We then apply our image segmentation methods to separate candidate signal information from the 
background noise. Next we separate the target from these candidate regions based on appropriate IR signatures. 
Finally, we estimate the 3D pose of the target in the frame and analyze the error with respect to the known position 
of the target.  
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8.5.1.2 Noise Modeling 

We have applied current noise level detection methods to analyze images prior to subsequent processing steps. 
Knowledge of the noise level is useful in selecting an appropriate SR, deblurring, or tracking approach suited to the 
level of noise present in the images acquired. We have also demonstrated three noise mitigation approaches that reduce 
the level of noise present in the images. Further, per our recommendation of a multi-aperture image acquisition 
approach, not only can the mitigation approaches demonstrated reduce the error in the images presented to the tracking 
step be better suited, but the SR methods considered also have a noise reduction effect in addition to their resolution 
enhancement. The reduction of noise in the source images acquired, coupled with further noise reduction by the SR 
step, contributes to significantly enhanced images from relatively low-quality, noisy, blurred images obtained using 
low-cost sensors.  

8.5.1.3 Super Resolution 

The cost of sensors suitable for imaging in the spectral range of interest means that we expect to have little information 
available due to the use of low-resolution sensors. Economies of scale bring down the unit price, but a multi-aperture 
acquisition system utilizing SR-enhanced measurements at each sensor platform means we are able to further narrow 
down the volume of possible solutions and increase our detection accuracy. By increasing the SNR of the images 
obtained from a given observation point and reducing the effective coverage area of a single pixel we can enhance the 
amount of data obtained at a given sensor platform and potentially reduce the system size and weight. We have 
considered eight methods and identified three with promising results including one with a low enough computational 
load to be included in the system pipeline. The other methods with consistently high quality output but longer 
computational time could still be utilized, however. Utilization of an FPGA implementation of one of these other 
methods could allow for more rapid processing while offering higher quality results.  

8.5.1.4 Deblurring 

We have demonstrated the effects of applying deblurring on a variety of source data and blur levels. Though the 
deblurring process does improve the quality of the image, there is significant computational cost. One benefit seen is 
the relatively decoupled nature of the deblurring and SR operations. As the majority of the time we expect our target 
of interest to occupy a single pixel, and given the high computational load, utilization of this operation will not enhance 
the result to a degree that warrants inclusion as part of the pipeline. However, should the application of deblurring be 
determined to be necessary, an FPGA implementation will likewise be useful for speeding up the processing by an 
expected factor of 20x [Clukey2016].  

8.5.1.5 Tracking 

Using behavioral models of target motion to predict the next position or set of positions, we can calculate an improved 
reorientation of the sensors to keep the target in view while reducing the error by correcting our prediction using the 
measurements of subsequent timesteps. We are also able to minimize the error of a given position estimate by utilizing 
predictive modeling of the target position. Given the active nature of the system in tracking the target, both accuracy 
in the location’s coordinates and timely knowledge of when the target was at that location are essential to the success 
of our application. Therefore, the computational time contributed by the image acquisition and post processing steps 
is of important consideration in addition to the reduction of error. We have demonstrated own simple tracking 
formulation and four formulations based on the Kalman filter. Our analysis suggests utilization of one of these 
approaches in balancing the computational time and accuracy. 
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8.5.2 Recommended System Configuration 

The contribution of each system component should be carefully considered with regard to the cost: in dollars for a 
hardware solution and for added computational hardware, in time to not introduce delay for a more accurate solution 
if an approximate solution would be of greater value sooner, and the contribution of the hardware to system size, 
weight and power requirements that each proposed solution would induce. An understanding of the relative merit of 
each component with regard to these considerations can drive a timeline of real-world implementation in stages, 
starting with the component that will give the greatest benefit for the least cost, and so on. Further, if financial cost is 
considered to be of least concern relative to the potential system capabilities that are available, the consideration then 
becomes the outer envelope of possibility offered by the proposed system component or overall suggested design. 

Given the analysis shown, we have developed a recommended system configuration.  

• Image Acquisition 
o Monolithic Image Sensor and Single Lens 

 Many existing sensor platforms are equipped with monolithic sensors paired with large, 
heavy, single-aperture lenses. While we recommend utilizing an alternative construction 
and have detailed the benefits, the fact that these units are already deployed does provide 
some incentive to make the best use of them during their operational lifespan. To this end, 
we recognize the capabilities of an implementation of our system pipeline using these 
platforms does outperform the existing radar-based approach. We are, however, able to 
improve on this result and can simultaneously offer added capabilities not possible with 
existing hardware.  

o Multi-Aperture Lens and Sensor System 
 Adapting the image acquisition system to incorporate a multi-aperture device with several 

lens and sensor pairs is the most promising approach we have explored. Since the blur 
component of the possible image degradation sources was shown to have the least 
influence, we are not rigidly tied to use of large, heavy, well-corrected optics and can 
instead use multiple smaller apertures to capture more light from the scene in a way that 
offers enhanced resolution, increased SNR, improves multispectral capabilities, and lower 
system size, weight, and cost. Based on our analysis of post-processing steps, we 
recommend use of a 2x2 array, but do recognize that for some targets of interest 

• Noise Modeling and Mitigation 
o The proposed noise modeling and mitigation approaches are valuable for selection of appropriate 

methods in subsequent processing steps. We have shown the considerable difference that changes 
in noise level can have on output quality and computational time. Therefore, it is important to keep 
the noise contamination as low as possible to ensure the best expectation of success. This comes in 
proper design of all system components, including shielding of the electronics from external and 
self-interference, and utilization of the recommended best acquisition procedures and post-
processing to minimize the effects of contamination that do remain.  

• SR 
o Given the drastic improvement in accuracy that increasing the resolution of the images available to 

the tracking step offers, this may be the most vital step. In balancing the improved quality of the 
images with processing time, and considering the hardware setup or modified acquisition process 
implications, we recommend utilizing a 2x SR with the bicubic interpolation method. For a fixed 
arrangement of the acquisition system at each platform, and with the target to sensor distance being 
at optical infinity, the registration can be calibrated a priori to speed up the processing.  

o Should a more advanced multispectral analysis of an application’s target of interest indicate that 
more than four spectral bands are necessary for discrimination of the target from its surroundings, 
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the bicubic interpolation approach is less sensitive to timing issues associated with moves to 3x or 
4x SR processing so the adaptation in this situation will be the most straightforward. 

o Should increased enhancement of the images be desired, an implementation of the normalized 
convolution algorithm on FPGA hardware bears promise in keeping the processing time low while 
offering up to 10% improvement in the image quality over bicubic interpolation. 

• Tracking 
o There are several steps to this functional block, and the first two, segmentation and target separation, 

were not explored in detail due to the fact that the exact optimal approach is highly application-
specific, and that the primary work performed in these areas was conducted by others with whom 
the authors collaborated. The final two steps are within the scope of the work performed by the 
authors and was considered in much greater detail. 

o The first of these is the 3D Pose Recovery process. After analyzing the results of the two approaches 
considered, we recommend the triangulation approach due to its computational simplicity, improved 
accuracy, and capabilities to gracefully scale to multiple sensors. The final step in the tracking 
process involves target path modeling.  We explored five different approaches, one simple 
windowed average-based fusion approach and four Kalman filtering approaches. Based on the 
results shown in Table 2.1, we recommend the Kalman Filter - Model 2 (Acceleration) model due 
to the balance of low average error and low processing time. 

As previously mentioned, we omit the deblurring step as it does not significantly influence the results in our scenario. 
In Figure 8.14 we show a demonstration of the entire acquisition and processing pipeline utilizing our recommended 
system configuration.  

8.5.3 Comparison to Existing Approach 

The existing approach to solving the problem of locating a target’s coordinates in the scenario under consideration 
involves use of distributed ground-based radar systems. In Figure 8.15 we see a depiction of a modern radar system 
along with a representation of the smallest resolvable volume this radar system is capable of discerning. The radar’s 
antenna rotates at 6 rpm, which translates to an effective framerate analog of 0.1 fps. The system can cover an area of 
250 NM (463 km), and its minimum resolvable area is defined by 150m accuracy range, 11.3 km azimuth (1.4o at 250 
NM), 16.2 km elevation (2o at 250 NM) resulting in a 28.7 billion m3 search volume and a maximum error vector of 
19.8 km. 

Based on the design of our recommended image-based positional recovery system we are able to achieve RMSE of 
390 m utilizing the recommended system configuration. This gives a maximum error vector of 780 m and a search 
volume of 0.24 billion m3. The comparison is summarized in Table 8.5 below.  

 

Table 8.5: Summary of comparison of our approach and the conventional approach presented to the recovery of 
target coordinates. We use the maximum error vector and the total search volume as representative metrics of the 
capabilities of each approach. As extensive experimentation has shown the RMSE error of our position estimate, we 
superimpose a sphere with the indicated radius at the location of the estimate.  

 Conventional Approach Our Approach Improvement 

Maximum Error Vector (km) 19.8 0.78 25.4x 

Search Volume (m3) 28.7 billion 0.24 billion 119.6x 
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(a) (b) 

  

(c) (d) 

Figure 8.14: Illustration of the approach of the method utilizing the recommended system configuration. We start with 
a target of a single pixel with representative blur and noise (a) after which we apply our synthetic extended exposure 
for only five frames, shown in (b). Afterward we apply 2XSR using the bicubic interpolation approach (c) and apply 
the steps pertaining to our tracking approach with regard to locating the target in image coordinates (d). 

[149.8793, 150.3362]
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Figure 8.15: Lanza radar (top) and resolution limit (bottom, blue). The Lanza system is a recently developed 3D radar 
system which costs $30 million plus ongoing maintenance and operation expenses. The antenna rotates at 6 rpm, 
giving an effective framerate analog of 0.1 fps. The system can cover an area of 250 NM (463 km), and has a resolution 
of 150m range, 11.3 km azimuth (1.4o at 250 NM), 16.2 km elevation (2o at 250 NM) resulting in a 28.7 billion m3 
search volume. This is shown in comparison to the expected error performance of our system, shown in orange. 
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9 Conclusion and Future Work 

This dissertation work was motivated by the need to investigate use of orbital sensor platforms to recover the world 
coordinates of a target of interest while maintaining reasonable update rate, improved precision and coverage, 
considering the effects of system size, weight, and power (SWaP) requirements, and overall financial and 
computational cost. We studied the application of state-of-the-art methods in image simulation, denoising, SR, 
deconvolution, segmentation, 3D pose recovery, and 3D tracking and documented the results of these methods to our 
application and have recommended a system implementation that will best solve the presented problem. We have also 
developed a new method for measuring the PSF of a lens and contributed to the field in our thorough analysis and 
comparison of the impact of the methods considered. We addressed challenges arising from noisy, blurry, missing 
data and developed approaches to counter these sources of error. This chapter summarizes the contributions made 
through our research efforts and addresses potential directions for future research. 

9.1 Dissertation Key Points 

The main contributions of this dissertation are summarized in this section. 

• Super Resolution 

We explored eight resolution enhancement methods by analyzing their processing time, quality of their results, 
and sensitivity to noise and blur degradation. Enhancing the resolution of the data obtained from a sensor platform 
enables significant reduction in the uncertainty of our target position estimate, and by utilizing SR instead of large 
sensor monoliths we can obtain a given accuracy at lower financial cost, system weight, reduced noise, and 
enhanced spectral range.  

• Point Spread Function Measurement 

We have developed a new method for measurement of the PSF of a prime lens, though our approach will also 
work for variable-focus lens systems. We have demonstrated the effectiveness of our approach on several lens 
systems and validated our approach for each, including comparing to the results of competitive methods. Our 
approach is reliable, repeatable, and cost-effective.  

• Noise Modeling and Mitigation 

We have explored methods for modeling the noise present in an image for selection of appropriate methods later 
in the processing pipeline and investigated three approaches for mitigating the noise level in acquired images. By 
reducing the level of noise contaminating the data available to later stages we enhance the accuracy of our 
approach and can reduce the processing time as well. 

• Tracking 

In order to reduce the contribution of error that a single position estimate could contribute, we applied a simple 
averaging fusion and also investigated several applications of Kalman-based filtering of our raw position 
estimates. Our analysis of the expected error and processing time of each approach led to a conclusion for 
application of enhanced predictive tracking to reduce our overall error, improve recovery from temporary 
occlusion, and to provide a mechanism by which prediction of the future position of the target may be 
accomplished. 
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• Error Analysis 

We have analyzed the performance of each component of our contribution and the contribution each component 
has on the success of the overall work. In developing such a complex solution to the scenario under consideration 
there exists a danger in “not seeing the forest for the trees”. We have seen the trees and the forest and considered 
the best solution for each part and the best structure for accomplishing our overall goal. Further, we have given 
cautions and suggestions for adapting our work where changes in the goal may result in different conclusions 
from those to which we have arrived.  

Our contributions, along with the contributions made by collaborators and other contemporary researchers in the field 
were combined to develop a structured approach to solving the problem of locating a target of interest using orbital 
sensors. Our work was developed in line with the interests of the authors and adapted to suit the needs of the scenario 
presented. While the effectiveness of our work was demonstrated in this context, there is greater general applicability 
to many other problems and researchers interested in related fields will benefit by the work performed and the analysis 
shown. 

9.2 Future Directions for Research 

Ideas developed by the authors for potential areas of continued investigation are summarized in this section. Some of 
these items have received some attention but the degree of completion and structure of the document did not warrant 
inclusion within the scope of the dissertation, while some items are at this stage ideas only. 

• Multi-Aperture Image Acquisition 

We have presented some minor commentary on the usefulness and benefits that application of a multi-aperture 
image acquisition system would provide based on our experiments performed as part of this work. However, we 
have not provided a full description of the matters concerning design and development of such an approach, 
including selection of appropriate design for the lens systems, optimal arrangement of the aperture array, choice 
of lens focal length and filter system characteristics, size, orientation, pixel and bit depth resolution of the sensors, 
and so forth. Rather in order to keep the scope of this dissertation to a manageable size we have instead made 
note of the benefit that this type of system would offer in the context of mapping our proposed system onto such 
a platform rather than exploring in detail the full capabilities of such a platform with the analysis that would 
require. We do recommend any researchers endeavoring to adapt the system structure we have described to give 
proper consideration to utilizing a multi-aperture approach with all the benefits such a system offers.  

• Super Resolution 

Though we investigated a variety of SR methods, ours was a small subset of the many methods developed. A 
broader selection of existing methods would provide an improved picture of the capabilities of the methods in the 
field with respect to the kind of data each operates best on. Future work could include adapting the different parts 
of our implementation. The LR image generator could be adapted to allow for more complex motion and a wider 
variety of noise and blur types, depending on the target application. The registration step could also be enhanced 
to allow for more generic motion models, and the SR evaluation step updated to include comparison of methods. 
Finally, the evaluation step could be updated to include other metrics should a given field use others as a standard. 

• Multi/Hyperspectral Imaging 

We briefly mentioned the consideration of multispectral imaging in the context of identifying the target of interest 
by its spectral signature, but did not go into any significant detail concerning this topic. Investigating selection of 
optimal spectral range, optimal number of bands, and optimal band selection for reliable target identification 
would be another dissertation in itself. It is a fascinating topic, however and further investigation is warranted. 
Particularly in light of the natural adaptation of this approach to the multi-aperture implementation suggested, 
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and the existence of SR algorithms which operate on multispectral data, there is great promise in enhancing the 
capabilities of the system presented.  

• Upward-Looking Aerial Sensors 

The evaluation presented in this dissertation only considered the use of downward-looking orbital sensor 
platforms. Given the increasing prevalence of platforms that can be placed much closer to the ground and observe 
both the area below and above the platform, investigation into the use of these platforms as part of the overall 
system could prove useful for expanding the capabilities shown.  

• Hardware Acceleration 

In evaluating the computational time for a given method, we are able to obtain a rough comparison of the 
difference between competing approaches to a given problem and their sensitivity to a range of potential 
parameters. Switching to a machine with different processing capabilities can significantly alter the exact 
processing time required and some types of processing technology are better suited to certain operations. In light 
of the scenario under consideration, we have suggested the use of FPGA implementation as an effective way to 
reduce the size, weight, and power requirements for a given computational operation while accelerating the time 
required for a given operation. Further exploration into the exact requirements and a full implementation of the 
pipeline presented should enhance the capabilities possible with the system structure presented in this dissertation. 

These are just some ideas for areas of expansion and continuation of this work. There is also much that can be done 
just in adapting the existing work to alternative targets of interest.   
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