435 research outputs found

    Exploiting Hierarchy in the Abstraction-Based Verification of Statecharts Using SMT Solvers

    Get PDF
    Statecharts are frequently used as a modeling formalism in the design of state-based systems. Formal verification techniques are also often applied to prove certain properties about the behavior of the system. One of the most efficient techniques for formal verification is Counterexample-Guided Abstraction Refinement (CEGAR), which reduces the complexity of systems by automatically building and refining abstractions. In our paper we present a novel adaptation of the CEGAR approach to hierarchical statechart models. First we introduce an encoding of the statechart to logical formulas that preserves information about the state hierarchy. Based on this encoding we propose abstraction and refinement techniques that utilize the hierarchical structure of statecharts and also handle variables in the model. The encoding allows us to use SMT solvers for the systematic exploration and verification of the abstract model, including also bounded model checking. We demonstrate the applicability and efficiency of our abstraction techniques with measurements on an industry-motivated example.Comment: In Proceedings FESCA 2017, arXiv:1703.0659

    Practical symbolic model checking of the full µ-calculus using compositional abstractions

    Get PDF

    Practical symbolic model checking of the full µ-calculus using compositional abstractions

    Get PDF

    Reusable abstractions for modeling languages

    Full text link
    This is the author’s version of a work that was accepted for publication in Information Systems. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Systems, 38, 8, (2013) DOI: 10.1016/j.is.2013.06.001Model-driven engineering proposes the use of models to describe the relevant aspects of the system to be built and synthesize the final application from them. Models are normally described using Domain-Specific Modeling Languages (DSMLs), which provide primitives and constructs of the domain. Still, the increasing complexity of systems has raised the need for abstraction techniques able to produce simpler versions of the models while retaining some properties of interest. The problem is that developing such abstractions for each DSML from scratch is time and resource consuming. In this paper, our goal is reducing the effort to provide modeling languages with abstraction mechanisms. For this purpose, we have devised some techniques, based on generic programming and domain-specific meta-modeling, to define generic abstraction operations that can be reused over families of modeling languages sharing certain characteristics. Abstractions can make use of clustering algorithms as similarity criteria for model elements. These algorithms can be made generic as well, and customized for particular languages by means of annotation models. As a result, we have developed a catalog of reusable abstractions using the proposed techniques, together with a working implementation in the MetaDepth multi-level meta-modeling tool. Our techniques and prototypes demonstrate that it is feasible to build reusable and adaptable abstractions, so that similar abstractions need not be developed from scratch, and their integration in new or existing modeling languages is less costly.Work funded by the Spanish Ministry of Economy and Competitivity with project “Go Lite” (TIN2011-24139), and the R&D programme of Madrid Region with project “eMadrid” (S2009/TIC-1650)

    Abstracting modelling languages: A reutilization approach

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-31095-9_9Proceedings of 24th International Conference, CAiSE 2012, Gdansk, Poland, June 25-29, 2012Model-Driven Engineering automates the development of information systems. This approach is based on the use of Domain-Specific Modelling Languages (DSMLs) for the description of the relevant aspects of the systems to be built. The increasing complexity of the target systems has raised the need for abstraction techniques able to produce simpler versions of the models, but retaining certain properties of interest. However, developing such abstractions for each DSML from scratch is a time and resource consuming activity. Our solution to this situation is a number of techniques to build reusable abstractions that are defined once and can be reused over families of modelling languages sharing certain requirements. As a proof of concept, we present a catalogue of reusable abstractions, together with an implementation in the MetaDepth multi-level meta-modelling tool.Work funded by the Spanish Ministry of Economy and Competitivity (TIN2011-24139), and the R&D programme of Madrid Region (S2009/TIC-1650)

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    A Granular Hierarchical Multiview Metrics Suite for Statecharts Quality

    Get PDF
    corecore