

Practical symbolic model checking of the full µ-calculus using
compositional abstractions
Citation for published version (APA):
Kelb, P., Dams, D. R., & Gerth, R. T. (1995). Practical symbolic model checking of the full µ-calculus using
compositional abstractions. (Computing science reports; Vol. 9531). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/64c38949-731e-4396-9d48-3bb79fa3f877

ISSN 0926-4515

All rights reserved

Eindhoven University of Technology
Department of Mathematics and Computing Science

Practical Symbolic Model Checking of the full j.l-calculus
using Compositional Abstractions

by

Peter Kelb, Dennis Dams and Rob Gerth
95/31

editors: prof.dr. I.C.M. Baeten
prof. dr. M. Rem

Computing Science Report 95/31
Eindhoven, October 1995

Practical Symbolic Model Checking of the full p,-calculus using
Compositional Abstractions

Peter Kelb
OFFIS*

Dennis Dams
Utrecht Universityt

Rob Gerth!
Eindhoven University of Technology§

Abstract

We apply abstract interpretation techniques to reduce the time and space requirements
for model checking the full J-l-calculus over parallel processes. The abstractions can be
computed compositionally. The techniques have been implemented in a StateCharts model
checker. Experiments show a 17-fold reduction on the average in the size of the BDDs on
non-trivial specifications.

1 Introduction

Abstraction techniques [CGL94, LGS+95, DGG94, CR94] offer one answer to the so-called
state explosion problem that is inherent to verification by model checking. Such techniques
allow aspects of a program that are irrelevant to the property being checked to be ignored,
thus reducing the model representing the program's (relevant) behaviors.

In symbolic model checking [BCM+92], both the state space of a program and its transition
relation are encoded as boolean functions which are compactly represented by Binary Decision
Diagrams (BDD's) [Bry92]. In this setting, abstractions should aim at the reduction of BDD's.
It turns out that the blow-up of a BDD representing the behavior of a concurrent program
usually results from the interdependency between individual processes rather than from the
large total number of global states.

In this paper, we present an abstraction method which abstracts from such interdependencies
in designated parts of processes as indicated by a user. We provide both universal and
existential abstractions, suitable for verifying universal and existential properties expressed
in the fulll'-calculus [Koz83]. Combination of both types allows for verification of arbitrary
I'-calculus properties.

The method is fully compositional: the abstraction of a concurrent program is computed
from user-specified abstractions of its individual components. Hence, only .the BDD's for the
transition relations of the (abstracted) components have to be pre-computed.

·Westerstrafie 10-12, 26121 Oldenburg, Germany. Peter. KelbQarbi. informatik. uni-oldenburg. de
t Dept. of Philosophy, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands. Dennis. Dams(!lphil. run. nl.
tCurrently working in ESPRIT project P6021: "Building Correct Reactive Systems (REACT)".
§Dept. of Mathematics and Computing Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

robg@win.tue.nl

1

The duality that exists in theory between the two types of abstraction is in practice often
disturbed. The reason is that existential abstractions tend to restrict the behavior of a
program to the extent that relatively few existential properties may be verified.

We investigate a solution to this problem by providing conditions under which the universal
abstraction may be used for verifying existential properties as well. This results in an opti
mized definition of the existential abstraction, obtained by combining the original existential
abstraction together with the restricted universal abstraction.

This method has been integrated in a symbolic model checker for the language of State
Charts [Har87]. Experimental results display a 17-fold reduction in space on the average for
the verification of many non-trivial properties, including universal and existential properties,
as well as properties that have both universal and existential aspects. As the time complexity
of BDD operations is related to the size of the BDDs they operate on, the time of a sym
bolic model check substantially decreases as well. Our optimized existential abstractions are
essential for obtaining these results. Indeed, without them no useful existential abstractions
could be defined.

2 Abstract Interpretation

Many of the results and constructions below are most easily expressed using the language
of Abstract Interpretation [CC77]; a general framework to define static analyses of programs.
The basic tenet is that the operations of a programming language which operate on concrete
values can be mimicked by corresponding abstract operations defined over abstract values
that describe sets of concrete values.

The starting point is choosing a set of abstract states, "V. An abstract state describes sets of
concrete states. The intention is that the interpretation of ,"-calculus formulae is adapted over
abstractions of transition systems; such an abstract interpretation of a formula 'P then yields
all abstract state "v. This result should be safe in the sense that in every set of concrete
states that is described by "v, 'P holds ~ i.e., every such described set should be a subset
of the concrete (standard) interpretation of 'P. Hence, if "v describes some set V <;; V (V is
the set of all concrete states), then it is also a safe description of any superset V' ;;:> V. The

concretization function T "V --+ 2 V maps every abstract state to the smallest set of concrete
states that it describes. Conversely, also every set of concrete states has a 'best', or most
precise description. This is formalized via an abstraction function a: 2 V --+ "V. For each
V <;; V, a(V) is the most precise description in the sense that V ;;:> ,,(a(V)) and V ;;:> ,,("v)
imply ,,(a(V)) ;;:> ,,("v) for any "v E "V. Thus, a(V) is the least description of V w.r.t. the
approximation ordering ~ 011 "V defined by ""v ~ "v' iff ,,("v) ;;:> ,,("v')". A given" uniquely
determines an appropriate a (if it exists) by setting a(V) to be the least (w.r.t. ~) "v such
that ,,("v) <;; V. We mention that, similarly, 0 determines a unique appropriate" as well.

These requirements are often captured by saying that (a,,,) is a Galois insertion from (2 V, ;;:»

to ("V, ~): (i) a and" are total and monotonic, (ii) for every V E 2V we have ("oa)(V) <;; V,
and (iii) for every "v E "V we have (a ° ,,)("v) = "v.

Given such an abstract interpretation of the data, functions f: V --+ V can be described by

2

safe abstract interpretations of: "V ---+ "V that satisfy a(f(,("v)) i;; "f("v)l In particular,
there is ~n optimal abstract interpretation of f defined by "f = a 0 f 0" and "f is safe just
in case of i;; of (pointwise). So, for functions, safeness means that given a description of the
parameter, " f yields a description of the result value.

A static analysis can then be viewed as an abstract evaluation of a property 'P in which
data and operations of the program are abstractly interpreted, yielding a description of any
concrete evaluation of 'P.

3 J.L-calculus and its interpretation

The (propositional) fL-calculus generalizes a number of possibly better-known logics such as
CTL, LTL and CTL*, as shown in [Dam94]. For us, its main advantage is its computational
nature. The basic modalities of the logic express properties of the successors of states and
every constraint on the computations of a system must be explicitly coded in terms of extremal
fixed points. Indeed, the basic symbolic model checking procedure can be almost immediately
read-off from the satisfaction definition.

Let A be some set of atomic propositions and X a set of variables. Moreover, let a E A and
x E X. The syntax of the formulae of fLL(A) is defined by

'P ::= 'Pl V 'P2 I 'Pl /\ 'P2 I D'P I O'P I fLX.'P I VX.'P I a I ,a I x .

A formula D'P expresses that 'P is true for every (immediate) successor while O'P expresses
that there is at least one successor for which 'P is true. The least and greatest fixed point
operators are fLX. and vx ..

Note that formulae are in negation normal form: negations may only appear in front of
propositions. Because of the dualities between the pairs V, /\, D, 0 and fLX., VX.2 there is no
loss of expressiveness.

As an example, the LTL formulae Fa (on every maximal execution path, eventually the
proposition a holds) and Ga (the proposition a holds always) would be translated as fLx.(a V
Dx)3 and vx.(a/\Dx). We use the D modality because LTL formulae express properties about
all paths.

fLL(A) is interpreted w.r.t. to a Kripke structure M = (V, R, I). V is a set of states, R <::: V x V
is a total transition relation and I: A ---+ 2 V is the interpretation of the atomic propositions.
The semantics of the fL-calculus maps a formula 'P to the set of states for which 'P is true,
depending on an environment, e, mapping variables to sets of states. The semantics is defined

1 ftC) = {ftc) IcE CJ.
2,(1' V,p) '" 'I' A ',p, '01' '" <hI' and '~X.I' '" VX.'I'['X/X].
3 Assuming that there are no deadlocked states

3

as a function, [.], of type:

with

<P --7 (X --7 2V) --7 2V such that

[ale T(a)
[,ale V \ T(a)
[x]e e(x)
[<PI V <P2]e [<pI]e U [<P2]e
[<PI fI <P2]e [<p,]e n [<P2]e
[O<p]e To([<p]e)
[D<p]e TO ([<p]e)
[I'x.<p]e mV <;; V I [<p]e[V/x] <;; V}
[vx ·<ple U{V <;; V I V <;; Me[V / x]}

TO:2V --7 2V

U f-+ preR(U) = {v E V l::Iu E U: R(v,u)}
To:2V --7 2V

U f-+ preR(U)=V\pre(V\U)={vEVIVuEV: R(v,u)=;,uEU}

As every 'P is monotonic the greatest (vx.<p) and least (I'x.<p) fixed points exists ([Tar 55]).

Write [. 1M to make the intended Kripke st;ucture explicit. For closed4 'P, we have M, v F <p
just in case v E [<p].L where .L is the environment that maps every x E X to 0.

4 Binary decision diagrams

Reduced Ordered Binary Decision Diagrams (BDD's) [Bry86, Bry92] are a way to econom
ically represent boolean functions in a canonical way. Although for most boolean functions
the size of their BDD representation is exponentially large, in many practical cases the BDDs
are sufficiently small. This, together with the fact that boolean operations, equivalence and
tautology checking can be done very efficiently on BDDs, is the reason why BDDs are so pop
ular. BDDs only supply a canonical representation relative to an arbitrary but fixed ordering
on the boolean (input) variables and this ordering greatly influences the size of the BDDs.

The use of BDDs in model checking is based on coding transition relations as boolean func
tions. Given a transition relation R <;; V xV, take vectors X, X' of boolean variables long
enough to code for all states in V (e.g., take Ixl,lx'l 2': 10g(IVI)). Then, define a boolean
function rR '(x, x')5 by

rR'(x,x')=l ~ ::Iv,v'EV R(v,v')fI;3(v)=xfl;3(v')=x',

where ;3 is the coding function that maps states to bit strings.

4 A formula is closed if every variable occurring in it is bound by a fixed point operator.

5We usually do not make a distinction between the boolean function rR, and its BDD representation.

4

4.1 Symbolic model checking

Symbolic model checking is based on such BDD representations [CBM90J. The basic, non~
logical operation that needs to be done is computing preconditions, preR(V), which translates
into computing relational products: 3x'(rR,(x,x') II rV'(x')). Obviously, to represent a set
as a BDD we use its characteristic predicate. This is used in representing the interpretation
function I as well.

To symbolicly model check a /l~calculus formula <p over a Kripke structure M, we compute
the characteristic predicate of [<p]L Hence

We follow the definition of [.]: Boolean connectives translate to the corresponding boolean
operations on the BDDs of the (immediate) subformulae. For formulae of the form O<p we

compute preR([<pf) using a relational product; likewise for D<p formulae. Fixed points are
computed iteratively as usual, by successively computing their approximations until they
stabilize. E.g., a least fixed point is computed as

r ,
[/lx.<p] e

r ,=
[/lx.<p] e

where
r ,0
[/lx.<p] e = if and

r. ,i+l r. ,i r., r. ,i
[/lx.<p] e = [/lx.<p] e V [<p] e [x f-> [!lx.<p] eJ

If the Kripke structure JVi is finite, this procedure will terminate after at most 1M I iterations.
In practice, techniques such as iterative squaring are used to (exponentially) speed~up the
fixed~point computations (see [BCM+92]).

5 Programs

Let S be the set of local states. A program P either has the form pi II P", for programs pi
and P" or is a labeled transition system (Its) (S, e, I) with S £;; S. The latter is also called
a process. Here, e: S X S ---> £(S), where £(S) denotes the propositional logic over the set of
'propositions'S. The intuition is that a 'transition' (s, S') with label e(s, S') in P is enabled if
the global starting state (in which P is 'at's) satisfies the constraint expressed by the label.
I £;; S is the set of initial states. Figure 1 gives an example. The Its P on the right~hand~side
is equivalent with [pO II P'] (as will be defined below). Observe that parallel processes execute
synchronously.

Although such programs may look unfamiliar, they correspond to simplified Statechart mod~
cis [Har87J in which no events are broadcast. Indeed, the test ,(t, Viz) in Figure 1 corresponds
to the Statechart condition [not (IN (t_l) or IN (L2))]. The verifier that we have imple~
men ted deals with full Statecharts.

For convenience we want to view (global) states of parallel processes as seis of local states"'
For this reason, we assume that

6Hence, we identify {{s} I s E S} with the local states of an Its (S,£,I).

5

po pI p

Figure 1: Example program

• If P = p' II p" then S' n S" = 0 for every S' E S(P') and S" E S(P"); S(Q) stands for
the set of states of Q.

Because of this constraint, program states can be taken from 2S ; one local state per compo
nent. For S E 2S and cP E £(S), S 1= cP is defined as usual and S 1= s iff s E S. If pO =
(SO, fa, 10) and pI = (Sl, f1, 1") are Its's, then pO II pI determines an Its, [pO II pI] = (S, f, I),
as follows:

• S = {SOuS"1 SO E SO,S" E Sl} and 1= {IOu 1" I 10 E 10,1" E I"},

• f = fa II f1 defined by (£0 II £l)(S, S') = £O(SO,SO')[tt/S"] t\£l(S"S"')[tt/S°]' where

[tt /T] substitutes tt for every state in T E 2S, S = Sa U S" S' = So' U S"', So, So' <;; Sa
and St, S"' <;; S" (remember that 'ISo <;; So, S" <;; S" : SO n S" = 0).

As an example, consider Figure 1 again. The label of the {82, t2} - {83, t3} transition is
obtained as £0(S2, s3)[tt/{t2}] t\£1(t2,t3)[tt/{sz}] =" t2[tt/{t2}]t\u[tt/{S2}] =" ttt\u =" u.

An Its P = (S,£, I) induces a 'standard' transition relation, Ri, on the global state space,
as follows. Let S, S' E S be local states of P and consider global states S U T and S' U T'
(T, T' E 2S), i.e., whose P-components are Sand S'resp. Then

Rl(S U T, S' u T') iff S u T 1= itS, S') .

For technical reasons, we also impose the constraint

• For any labeled transition system (S, £, J) the transition relation must be total:

1= V £(S, S') for every S E S .

S'ES

Its consequence is that programs can never deadlock. I.e., in every global state there is at
least one (globally) enabled transition in every process of the program.

6

Lemma 5.1 With notation as above

• II is commutative and associative; i.e., IPo II p1] = IP1 II pO] and IPo II (p1 II p2)] =
I(PO II p1) II p2].

• If P is a program then I PI has a total transition relation.

• For Its's pO and p1, Rl = Rio n Rl'

Proof. The first point is a direct consequence of commutativity and associativity of the
operators U and /\ in the definition of I .]. The second point is easily proven by induction
over the structure of programs.

For the third point let pO = (SO CO 10) and p1 = (S1 C' 1') Sa So' E Sa S' S" E S' , , , , , " " ,
and T, T' E 2S (such that for each S E Sa U S" Tn S = 0 and T' n S = 0). Assume
Rl(SO U S' U T, So' U S" U T'). By the definitions of Rl and £0 II £1, this is equivalent to
Sa U S' U T F £O(SO, SO')[ttj S'J /\ £'(S" S")[ttj SOJ. Because Si F si for every si E Si
(i = 0, 1), this implies SO U S' U T F CO(So, SO') and SO U S' U T F c' (S" S"). Furthermore,
the reverse implication is obvious. By the definitions of R'" and R l ', SoU S' uT F £O(SO, SO')
and Sa US' U T F C' (S" S") reduce to R'" (SO U S' U T, So' U S" U T') and Ri' (SO U S' U

T, So' U 5" U T'). 0

Hence, program semantics is well-defined.

Finally, we define when a program satisfies a I'L(S)-formula:

Definition 5.2 A program P with IP] = (S,C,I) induces a Kripke structure Mp = (2S ,Ri ,

I) where I(s) = {5 E 2S I S E 5} for every s E S. For any I'L(S) formula 'P define P F 'P
by I <;; I'PlMpL

So, e.g., the program in Figure 1 would satisfy P F I'X.((S2/\ t2) V Ox); i.e., the S2, t2-state
is reachable. Indeed, Il'x.((s2/\ t2) V Ox)l-L includes the initial state of P.

6 Program abstractions

Although all the ingredients are in place to build a symbolic model checker, experience shows
that in practice it would have limited applicability. The main problem is the amount of
memory needed to store the BDDs that describe the program's transition relation and that
describe the intermediate results during the computation of I'PIM' Also, since the time
complexity of BDD operations are low order polynomial in the size of the BDDs they operate
on, model checking time is affected as well.

The abstract interpretation framework suggests two ways to reduce the time and space re
quirements. One can replace the set (2S) of concrete states by a smaller set 2D of abstract
states so that fewer BDD variables are needed to represent subsets of D. Also, although

7

given an abstract domain the concrete functions are often replaced by their optimal abstract
interpretations, one can use safe approximations that are easier to compute instead.

Next, observe that a large set does not imply that the BDD representation of its characteristic
predicate has a large number of BDD nodes as well. The set of all states is a case in point:
it is represented by the 1 node BDD rtc. Thus our aim should not be to reduce the size of
the state sets but to reduce the number of nodes in the BDDs representing these sets.

Now, given a program P (or rather the Kripke structure induced by it), the representations
of the semantics of the propositions are very small, although the represented sets can be
quite large. Indeed, each proposition describes just a single local state of a process in P.
The computation of conjunction and disjunction are of polynomial time and space and the
computation of the fixpoints is just an iteration. The point were the BDD representations of
the intermediate sets become large is during the computation of the relational product with
the transition relation-computing TO respectively To' From these observations we conclude
that the set of abstract states D need not be different (smaller) than S in order to reduce
time and space during BDD-based model checking, but that the abstract operators "TO and
"TO should lead to sets with smaller BDD-representations than the original ones.

Thus our abstract interpretation, "['1, of JlL(S) takes "V = 2S as abstract domain and
replaces only the To and To functions by safe abstract interpretations °T 0 and "TO in the def
inition on page 4. Hence, the other operations 'are 'replaced' by their optimal interpretations.

Lemma 6.1 If "TO and "TO are safe interpretations, i.e., if "TO(S) ~ To(S) and "TO(S) ~

TO(S) for S E 2S then
"['P]e ~ ['PIe for any 'P and e .

Proof. Straightforward. The essential point is that all operations in the definition of [.] on
page 4 are monotonic (except for the negation-but it is only applied to propositions). 0

Hence, using such abstractions, we may erroneously conclude that P ~ 'P, but if I ~ 0['P]1-

then P 1= 'P holds.

In the concrete case To and TO are computed from the transition relation R as relational
products. This is possible for the abstract versions as well, except that two different transition

relations are needed:

Lemma 6.2 preR' ~ preR if R' ~ Rand preR" ~ preR if R ~ R"

Write C' :; £ in case R1' ~ Re.

We can, in fact, compute abstractions compositionally:

Lemma 6.3 If f: :; £i (i = 0,1) then f~ II £\ :; fa II f"

Proof. Follows from the third point of Lemma 5.1. o

8

0Il 1 r , ,.. 0' For, e.g., P P, preR,oll,l (C) would be computed as the relational product :lxf(Rl (x, Xf)/\
r ,
RI' (x, Xf) /I r C'(Xf)) and the global transition relation Rl Oll l1 is not explicitly represented by
aBDD.

6.1 Abstraction from interactions

A relational product grows large if there is much interaction between the various processes 7 •

Accordingly, the idea behind our abstractions is to reduce such interactions.

So, a universal abstraction replaces the (satisfiable) constraints on some transitions by tt,
while an existential abstraction removes some edges with non-trivial constraints. As a conse
quence, the abstracted part is no longer influenced by the other processes. Also, its influence
on the non-abstracted processes is 'simplified'.

Definition 6.4 Let P be an Its (S, C, I). An abstraction of P is determined by selecting a

subset SA c:: S. Define "Co(S, Sf) g tt if 5, Sf E SA and ~ ,C(S, Sf); define "Co(S, Sf) g ff
if 5, Sf E SA and ~ C(S, Sf). Elsewhere, "CD and "Co coincide with C. Then the universal

abstraction is" Po g (S, "CD' I); the existential abstraction is" Po g (S, "Co' I)

The condition ~ ,C(5, Sf) in the definition of a Co is included to ensure that no new transition
is added between two states 5 and Sf if there was no transition at all (i.e, F ,C(5, Sf) would
hold for these states) before. Similarly, the condition ~ C(S, Sf) in the definition of aco
prevents from disappearing those transitions which have tautological constraints.

We shall often write aR~ instead of R"lo , etc.

Lemma 6.5 With notation as above, "Co ::S C and C::s aco'

How good are these abstractions; i.e., can we often find abstractions that both offer substantial
reduction and allow many properties to be verified? This is difficult to assess in general but,
heuristically, the universal abstraction ("£0) is often more usable than the existential one.
This is because in the lattice of relations, program relations tend to be closer to the empty
relation than they are to the full one. Indeed, a program describes the allowed behavior rather
than those behaviors that are disallowed. E.g., a function for computing, say, the square root
of its input, is usually not implemented by a program that admits arbitrary behavior only
constrained by the requirement that it computes the square root. Quite the opposite: a square
root program should only preform those actions that are necessary for its correct functioning.
This means that there tends to be ample room to add transitions to a relation-as a universal
abstraction does-without hitting the full relation, but less so to remove them. The effect of
this is that it tends to be easier to find a universal abstraction that preserves the truth of a
universal property (i.e., a property that does not use O-modalities) than it is to find a usable
existential abstraction that preserves an existential property. Indeed, from the 13 properties
that use O-modalities on page 15 none could be verified using existential abstractions alone.

7This observation can be made more precise if we look at the particular way states are encoded.

9

81 , 52
, ,t , ,

53 34 X

Figure 2: Universal abstraction fnnctioning as an existential one

6.2 A better existential abstraction

Specifically, as we compute "Re anyway, is it possible to use "RI for existential abstractions
o 0

as well? First, observe that on the unabstracted part of a process's transition relation "R~ =
R = "R~; on the abstracted part we have "R~ <;; R <;; "R~. However, as long as preoR~(S) <;;

preR'(S) for sets S that arise as intermediate results, this will cause no problems. That this
is possible is illustrated in Figure 2. The label on the dashed transition will be removed by
a universal abstraction "R~ (for SA = {Si I i = l. . .4}). However, obviously preaR~ (X) <;;

preR'(X) = {81, 82}. Lemma 6.7 below characterizes these situations.

First we need a notion of independency. Intuitively, a set of global states X is independent
of a set of local states S of a process P, if the other processes being in a state in X does not
depend on P being in a specific local state in X n S.

For example, considering Figure 3 on page 12, let S be the local states of the left-hand-side
process, and let S = {so, SI, 52}. Then { {so, to}, {so, h}, {SI, tl}, {S2, td } is not independent
of S because the local state to only occurs with So (which is in S) but not with the other
local states in S. Both { {so,tJ}, {sJ,tJ}, {S2,tJ} } and { {80,tO},{8J,tO}, {82,tO}, {so,tJ},
{SI, tJ}, {S2, td } are independent however.

Definition 6.6 Let S <;; S be the set of local states of a single process and let S <;; S .

• For a set X <;; 2S of global states, X is independent of S if for each x E X with
x n S E S and x n (S \ S) = t, we have 'is E S: s UtE X .

• Suc(S) = {Sf E S I 3s E S IF ,£(s, Sf)}.

Now, the situations as in Figure 2 can be characterized:

Lemma 6.7 Let SA determine an abstraction of the Its (S,£,I). For any X <;; 2S which is
independent of SA U SUC(SA) we have preaR' (X) <;; preR'(X),

o

Proof. Let y E preoR~(X), So, we can choose x E X such that "R~(y,x), whence y 1=
"£o(ynS,xnS).

If x n S rt SA or Y n S rt SA then, by definition of "£0' "£o(y,x) = f(y,x) so that R1(y,x),
whence y E preR'(X),

10

Suppose x n S E SA and y n S E SA. If in addition R£(y,x), then we are ready. Suppose
,R£(y, x). So, y F "Co(yn s, x n S) but not y F C(yn s, x n S). We look for x' E X such that
y F C(y n s, x' n S). As X is independent of SA U SUC(SA) while x n S E SA U SUC(SA), we
can choose x' E X so that x' n (S \ S) = x n (S \ S) and x' n S E SA U SUC(SA). Furthermore,
by totality of C, we can choose x' in such a way that y F C(y n s, x' n S). So, R£(y, x') holds
and, hence, y E preR'(X), 0

For a given SA as above, define f: 22S
---+ 22S such that f(T) is the (unique) largest subset

of T that is independent of SA U Suc(SA). So, for the example in Figure 3, f({ {8i' tj} I (i <
3Aj = O)V (i < 4Aj = I)}) = {{Si,tj} I i < 4Aj = I}. We have

Corollary 6.8 For any X ~ 2S , preaR' (f(X)) ~ preR'(X),
o

Hence, preaR' U (preaR' 0 f) is a safe approximation of TO' o 0

Figure 3 shows an example in which both existential pre-abstractions are needed. Write "preo
and "preo for the approximations to pre induced by Definition 6.4; write "preo for "preo U
(apreoor). The states within the dashed boundary are abstracted. So, aR~ will remove the t,

label between s, and 82 and the labels on the self-loops at 8, and 82 while "R~ will remove the

corresponding transitions. In computing "[<I>] we use the iterative scheme of page 5. We start
with a[<I>]'1- = "[t3] = {S ~ S I t3 E S}. For the set on the right-hand-side we just write t3;
this being its characteristic predicate. As "preO(t3) = t2 V (t3 A (so V S3)), "preo (t3) = t2 V t3
and f(t3) = t3, we obtain a[<I>]21- = t3 V "preO(t3) = t3 V "preO(t3) V "preo (f(t3)) = t2 V t3'
Next, we compute a[<I>t 1- = t3 V "preO(t2 V t3). Because both "preo and f distribute over
disjunction, this equals h V "preO(t2) V "preO(t3) V "preO(f(t2) V f(t3))' As "preO(t2) = 0,
f(tz) = t2 and "preO(t2 V t3) = (t, A 81) V t2 V t3, we get (t, A s') V t2 V t3 as the result. Now,
f(tz V t3 V (S1 A t ,)) = tz V t3 so that for computing" preo at t2 V t3 V (S1 At,), "preo does not
contribute. However, we do have {so,to} E "preO({s"t,}) and by this {so,to} E "[<1>]41-,

7 Experimental results

We applied the abstraction techniques developed above to verify a production cell [DHKS95].
Figure 4 depicts the system to model.

The task of the production cell is to press metal blanks. The production cell consists of two
conveyor belts (the feed belt in the front and the deposit belt in the back of the picture), a
rotary table (right to the feed belt), a press (to the right of the picture), a robot with two
independent movable arms (between rotary table and press) and a crane (under the top of
the picture). In addition, we assume that there is a user who puts a metal blank on the feed
belt.

The controller of the production cell notifies the user when a new metal blank can be put on
the feed belt. This will transport it to the rotary table. The table will rotate and lift the
blank up, so it can be picked up by the first robot arm. The robot puts the blank into the
press. After pressing the blank, the second robot arm fetches the pressed blank and puts it

11

pO p'

Figure 3: ("PO II P') F <)i with <)i D /Lx.(t3 V Ox)

Figure 4: A production cell

12

on the deposit belt, which will transport the blank to the crane. The crane closes the cycle
and moves the blank from the deposit belt to the feed belt in order to press the blank again.

We have modeled the production cell with StateCharts [HarS7]. StateCharts is a graphical
specification language. It is based on automata that can be composed in parallel and that
form a hierarchy. The parallel composition leads to a (synchronous) lock-step semantics,
where parallel components have to make a step if they can, otherwise they stutter. Hence,
the induced transition relation is total, which is required by our framework. The parallel
components of the production cell communicate by identifying states of other components,
e.g., a transition from one state to another one is only possible if another process is in a certain
state. By this mechanism the parallel components will be synchronized. This fragment of
Statecharts corresponds to the programs we introduced in this paper. A detailed description
of the translation scheme for full StateCharts into BDDs can be found in [HK94].

Since the production cell contains several physical components which have to be controlled
independently, the general structure of the StateChart specification is a parallel decomposition
of the controller w.r.t. the physical components. The single sub-controllers for the components
are again decomposed for the single task the sub-controller has to satisfy, e.g., the sub
controller for the rotary table has again sub-controllers for the rotation and the vertical
movement.

The verification of the production cell distinguishes between safety and liveness properties.
Typical safety properties are that the table does not rotate too far in one of the two directions
thus avoiding damage. For all controller components these kind of safety properties can be
checked in isolation; i.e., the property that the table only rotates in its specified area is
independent of the behavior of the robot. An abstraction of all sub-controllers except the
controller for the table as described above preserves the necessary information to verify the
safety property.

Liveness properties are more complex to verify because they are in general not restricted
to the behavior of some few processes. For example the property that along all executions
eventually the crane puts a blank on the front belt needs all processes, because this property
simulates a complete run through the production cell. Using abstractions one has to split such
a specification into several parts which together imply the original property but each of which
only needs part of the model. However, we are able to verify the several parts individually.

The verification results are shown in the Tables 2-4 below. The first column gives the property
that is checked. It is expressed using the CT L operators G ("globally", i.e., for all states along
a path), F ("eventually", i.e., there exists a state along a path) as well as the Unless operator
(also called weak until) defined by 'PIUnless'P2 '" ('PIU'P2) V G'PI, where U is the until
operator. A and E denote the universal resp. existential path quantifiers. These formulae are
easily translated into the It-calculus. For example, A('PIUnless'P2) '" VX.('P2 V ('PI A Ox)).
The meanings of the propositions occurring in these formulae are explained in Table l.

The second column indicates which parts of the system have been abstracted. The entire
system consists of a parallel composition of processes modelling the feed belt, rotary table,
robot, press, deposit belt, crane and user; in the tables these are identified by their first
letters. 'Ve always abstract from entire processes. E.g., an entry rpd in the second column
means that robot, press and deposit belt have been abstracted from. Because of the tight

13

interaction of the processes this means that the existential abstractions of the processes remove
all transitions. Indeed, none of these properties could be verified without the optimization
from Section 6.2.

The third and fourth columns give the maximal number of BDD nodes that are needed
to verify the property without resp. with application of our abstraction technique; the last
column is the reduction factor between these numbers.

Table 3 shows that formulae with existential path quantifiers can also be verified while Table 4
gives results for formulae with mixed path quantifiers.

The most notable feature of these tables is that we are able to achieve a 17-fold reduction on
the average in the number of BDD nodes needed to verify the specifications.

proposition
init
fogo
f-in

t-empty
t-full
t-vpos-bot

t-vpos-err

meaning
the entire system is in its initial state
the feed belt is running
there is a metal blank on the right end of
the feed belt (near the rotary table)
the horizontal position of the rotary table
is such that it can accept a metal blank
from the feed belt
there is no metal blank on the rotary table
there is a metal blank on the rotary table
the vertical position of the rotary table
is at its lowest point
the vertical position of the rotary table

is such that it may cause damage

Table 1: Meanings of the propositions.

8 Conclusions

We have developed a compositional abstract interpretation scheme for model checking full
propositionall'-calculus over parallel processes. The technique shows quite good performance
in non-trivial examples, resulting in substantial reductions in the number of BDD nodes. The
programming model that we consider is general and underlies many programming languages,
hence we expect our results to be generally applicable. We have extended these abstraction
techniques to directly apply to a larger subset of the StateChart language; notably event
generation and event triggers (including triggering on the absence of events).

Future work includes the refinement of these techniques to cover a larger class of program
abstractions.

14

property abstract without with red.
from abstraction fact.

init => AG ,t-vpos-err jrpdcu 36300 2210 16
init => AF t-full rpd 48700 5720 9
init => AF (f-in /I f-go) trpd 43700 2840 15
init => AG (f-in => A (f-in Unless rpdc 36900 2840 13

(f-in /I t-vpos-bot /I t-hpos-f)))
init => AG ((t-vpos-bot /I t-hpos-f /I t-empty) => rpdcu 84100 3680 23

A ((t-vpos-bot /I t-hpos-f) Unless

(f-in /I f-go /I t-vpos-bot /I t-hpos-f)))
init => AF (t-vpos-bot /I t-hpos-f /I t-empty) jrpdcu 38400 2880 13
init => AG ((t-vpos-bot /I t-hpos-f /I f-go /I f-in) jrpdcu 48700 2590 19

=> AF t-full)

Table 2: Results for universal properties.

property abstract without with red.
from abstraction fact.

init => EG ,t-vpos-err jrpdcu 36500 2220 16
init => EF t-full rpd 52500 9540 6
init => EF (f-in /I f-go) trpd 101000 3190 32
init => EG (f-in => E (f-in Unless rpdc 39100 4060 10

(f-in /I t-vpos-bot /I t-hpos-f)))
init => EG ((t-vpos-bot /I t-hpos-f /I t-empty) => rpdcu 42500 3200 13

E ((t-vpos-bot /I t-hpos-f) Unless

(f-in /I fogo /I t-vpos-bot /I t-hpos-f)))
init => EF (t-vpos-bot /I t-hpos-f /I t-empty) jrpdcu 84500 2500 34
init => EG ((t- vpos-bot /I t-h pos-f /I fogo /I f- in) jrpdcu 53600 2310 23

=> EF t-full)

Table 3: Results for existential properties.

15

property abstract without with red.
from abstraction fact.

init =;. AG ((t-vpos-bot 1\ t-hpos-f 1\ t-empty) =;. rpdcu 42500 3160 13
E ((t-vpos-bot 1\ t-hpos-f) Unless
(f-in 1\ f-go 1\ t-vpos-bot 1\ t-hpos-f)))

init =;. EG ((t-vpos-bot 1\ t-hpos-f 1\ t-empty) =;. rpdcu 84100 3420 25
A ((t-vpos-bot 1\ t-hpos-f) Unless
(f-in 1\ f-go 1\ t-vpos-bot 1\ t-hpos-f)))

init =;. EG ((t-vpos-bot 1\ t-hpos-f 1\ f-go 1\ f-in) frpdcu 50000 2450 20
=;. AF t-full)

init =;. AG ((t-vpos-bot 1\ t-hpos-f 1\ f-go 1\ f-in) frpdcu 52500 2210 24
=;. EF t-full)

Table 4: Results for mixed properties.

References

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property pre
serving abstractions for the verification of concurrent systems. Formal Methods
in System Design, Vol. 6, Iss. i, Januari 1995.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym
bolic model checking: 1020 states and beyond. Information and Computation,
98(2):142-171, June 1992. Special Issue: Selections from 1990 IEEE Symposium
on Logic in Computer Science.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677-691, August 1986.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293-318, September 1992.

[CBM90] O. Coudert, C. Berthet, and J. C. Madre. Verifying temporal properties of se
quential machines without building their state diagrams. In R. P. Kurshan and
E. M. Clarke, editors, Proceedings of the 1990 Workshop on Computer-Aided Ver
ification, June 1990.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Pro
ceedings 4th ACM Symposium on Principles of Programming Languages (POPL),
pages 238-252, Los Angeles, California, 1977.

[CGL94] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM TOPLAS, 16(5):1512-1542, September 1994.

[CR94] R. Cleaveland and J. Riely. A testing-based abstractions for value-passing systems.
In B. Jonsson and J. Parrow, editors, CONCUR'94: Concurrency Theory, Lecture
Notes in Computer Science 836, pages 417-432. Springer-Verlag, August 1994.

16

[Dam94] M. Dam. CTL* and ECTL* as fragments of the modal JL-calculus. Theoretical
Computer Science, 126(1):77-97, 1994.

[DGG94] D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive sys
tems: Abstractions preserving VCTL *, 3CTL * and CTL *. In E.-R. Olderog,
editor, Proceedings of the IFIP WG2.1/WG2.2/WG2.3 Working Conference on
Programming Concepts, Methods and Calculi (PROCOMET), IFIP Transactions,
Amsterdam, June 1994. North-Holland/Elsevier. Full version available as Com
puting Science Note 95/16, Eindhoven University of Technology, Dept. of Math.
and Computing Science.

[DHKS95] W. Damm, H. Hungar, P. Kelb, and R. Schliir. Using graphical specification
languages and symbolic model checking in the verification of a production cell. In
C. Lewerenz and T. Lindner, editors, Formal Development of Reactive Systems:

[Har87]

[HK94]

[Koz83]

[Tar55]

Case Study "Production Cell", volume 891 of Lecture Notes in Computer Science.
Springer, 1995.

David Hare!' StateCharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8, 1987.

J. Helbig and P. Kelb. An OBDD-Representation of StateCharts. In Proceedings
European Design Automation Conference (EDAC), 1994.

D. Kozen. Results on the propositional JL-calculus. Theoretical Computer Science,
27:333-354, 1983.

A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applications. In
Pacific Journal of Mathematics 5, pages 285-309, 1955.

17

Computing Science Reports

In this series appeared:

93,uI

93102

93103

93104

93105

93/06

93/00

93108

93109

93/10

93/11

93/12

93/13

93/14

93/15

93/16

93/17

93/18

93/19

93{}.0

93{}.1

93{}.2

93{}.3

93{}.4

93{}.5

93{}.6

93{}.7

93{}'8

93{}'9

93/30

R. van Ge1drq>

T. Verhoeft'

T. Verhoeff

E.H.L Auts
I.H.M. Korst
P.I. Zwiet.ering

I.C.M. Baeten
C. Vcrlloef

I.P. Ve1tkamp

P.O. Moorland

J. Vetboosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

KM. van Hee

I.C.M. Baeten
1.A. Bergstra

J.C.M. Baeten
1.A. Bergstra
R.N.BoI

H. Schepers
J. Hooman

D. Alstein
P. van der Stok

C. Verhoef

G-l. Houben

F.S. de Boer

M. Codisb
D. Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Seven

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. Kloks and D. Kratsch

F. Kamareddine and
R. Nedetpelt

R. Post and P. De Bra

1. Deogun
T. Kloks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of program
ming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Detenninistic and randomized local search. p. 78.

A congruence theorem for structured operatiooaI
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming. p. rn
A Fonnal Detenninistic Scheduling Model for Hard Real-Time Executioos in
OEOOS, p. 32.

Systems Engineering~ a Formal Approach
Part I: System Concepts, p. 72-

Systems Engineering: a Fonnal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part m: Modeling Methods, p. 101.

Systems Engineering: a Fonnal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Fonnal Approach Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Progranuning, p. 15.

Freeness Analysis for Logic Programs - And Correcbless, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems.
p.31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine .\ -calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs.
p. 11.

93131 W. KOrver

93/32 H. len Eikelder and
H. van Geldrop

93/33 L Loyens and J. Moonen

93/34 I.C.M. Baeten and
J .A. Bcrgstra

93/35 W. Ferrer and
P. Severi

93/36 I.C.M. Baetttl and
I.A. Bergstra

93/37 J. Brunekreef
J-P_ Katoen
R. Keymans
S. Mauw

93/38 Co Verboef

93/39 W.P.M. Nuijten
E.H.L Ams
D.A.A. van Etp Taahnan Kip
K.M. van Hce

93/40 P.D.V. van der Stok
M.M.M.P J. Oaessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.l. Luit
I.M.M. Martin

93/46 T. Klaks
D. KralSch
J. Spiruad

93/47 W. v,d. Aalst
P. De Bra
GJ. Houben
Y. Komat2ky

93148 R. Gerth

94Jl)1 P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

94JU2 F. Kamareddine
R.P. Nederpelt

94Jl)3 LB. Hartman
K.M. van Hee

94JU4 I.C.M. Baeten
I.A. Bergstra

94JU5 P. Zhou
J. Hooman

94Jl)6 T. Basten
T. KlUlZ
J. Black
M. Coffin
D. Taylor

94JU7 K.R. Apt
R.BoI

94Jl)8 O.S. van Roosmalen

94Jl)9 I.C.M. Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using
directed conunands and production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

lliAS, a sequenliallanguage for parallel matrix computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra. p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems. p. 43.

Tempornl operators viewed as predicate transfonners, p. 11.

Autoolatic Verification of Regular Protocols in P(f Nets, p. 23.

A taxomomy of finite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronizatioo protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimensioo, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refmement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and Il-cooversioo, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Ponnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class Structure, p. 22.

Process Algebra with Partial Cloice, p. 16.

14

94/10 T. vemoeff

94/11 I. Peleska
C. Huizing
C. Petersohn

94/12 T. Klok.
D. Kratsch
H. MUller

94/13 R. Se\jCe

94/14 W. Peremans

94/15 RJ.M. Vaessens
E.H.L. Aart.
I.K. Lenstra

94/16 R.C. Backhouse
H. Doornbo.

94/17 S. Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 8.W. Watson

94/20 R. Bloo
F. Kamareddine
R. Nederpelt

94/21 B.W. Watsoo

94122 B.W. Watson

94123 S. Mauw and M.A. Reniers

94/24 D. Dams
O. Grumberg
R. Genh

94125 T. lOoks

94126 R.R. Hoogerwoord

94127 S. Mauw and H. Mulder

94128 C.W.A.M. van Overveld
M. Verhoeven

94129 J. Hooman

94/30 I.C.M. Baeten
lA. Bergstra
Gb. ~fanescu

94i31 8.W. Watson
R.E. Watson

94/32 JJ. Vereijken

94/33 T. Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpelt

94/35 I.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nederpelt

94/37 T. Basten
R. Bol
M. Voorhoeve

94/38 A. BijIsma
C.S. Scholten

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward &. Mellor's TTllIlsformation
Schema with State· &. Activitycharts. p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory, P. 9.

Job Shop Scheduling by Local Search, p. 21.

MlIlhematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, P 9.

Refming Reduaion in the Lambda Calculus, p. 15.

The perfonnance of single-keyword and multiple-keyword pattem matching
algorithms, p. 46.

Beyond p-Reduction in Church's A-+. p. 22.

An introduction to the Fire engine: A C++ toolkit for Fmite automata and Regular
Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Fmite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'VCfL·, 3CfL· and en.., p. 28.

K1,l-free and W.-free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view, p.
54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of fmite and
transfmite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Defmitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
EXSpecl. p. 30.

Point-free substitution. p. to.

94/39 A. Blokhuis
T. Kloks

94/40 D. Alstein

94/41 T. Kloks
D. Kratsch

94/42 1. EnJ.elfriet
IJ. ereijken

94/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma I. Davies
R. Gerth S. Goo
W. Janssen B. Jonsson
S. Katz G. Lowe
M. Poe! A. Pnueli
C. Rump 1. Zwiers

94/45 GJ. Hooh<n

94/46 R. B100
F. Kamareddine
R. Nederpelt

94/47 R. B100
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 I.C.M. Baelm
I.A. Bergstra

94150 H. Geuvers

94/51 T. Kloks
D. Kratsch
H. Muller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 11. Lukkien

95/02 M. Bezern
R.Bol
I.F. Groote

95/03 I.C.M. Baeten
C. Verhoef

95/04 I. Hidden

95/05 P. Severi

95/06 T.W.M. Vossen
M.G.A. Verhoeven
H.M.M. ten Eikelder
E.H.L. Aart,

95/07 G.A.M. deBruyn
0.5. van Roosmalen

95/08 R. B100

95/09 I.C.M. Baeten
I.A. Bergstra

95/10 R.e. Backhouse
R. Verhoeven
O.Weber

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems, p. 34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph. p. 6.

Concatenation of Graphs. p. 7.

Category Theory as Coherently Coostructive Lattice
Theory: An illustration, p. 35.

Verifying Sequentially Coosistenl Memory. p. 160

Tutorial voor de ExSpect-bibliotheek voor "Adminislralieve Logistiek", p. 43.

The ,\ -cube with classes of tenns modulo conversion.
p. 16.

On II-conversion in Type Theory, p. 12.

Fixed-Point Calculus. p. II.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. '1:T.

Listing simplicial vertices and recognizing
diamond·free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking. p. 20.

The Construction of a small CommunicationLibrary, p.16.

Formalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Cormected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Stratg Nonnalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

Matblpad: A System for On-Line Prepararation of Mathematical
Doruments, p. 15

C"?/

95/11 R. Seljee

95/12 S. Mauw and M. Reniers

95/13 B.W. Watson and G. Zwaan

95/14 A. Pense, C. Verhoef,
S.F.M VIijmen (eds.)

95/15 P. Nieben and W. Penczek

95/16 D. Dams, O. Grumberg, R. Gerth

95/17 S. Mauw and E.A. van der Meulen

95/18 F. Kamareddine and T. Loan

95/19 I.C.M Baeten and I.A. Bergstra

95{1JJ F. van Raamsdonk and P. Severi

95121 A. van Denrsen

95/22 B. Arnold. A. v. Deursen, M. Res

95/23 W.M.P. van der Adst

95124 F.P.M. Dignum. W.P.M. Nuijten,
LM.A. Janssen

95/25 L Feijs

95126 W.M.P. van der AaIst

95!27 P.D.V. van der Stok, J. van der Wal

95128 W. Fokkink. C. Verhoef

95129 H. Jurjus

95/30 I. Hidders, C. Hasken!, I. Paredaens

Deductive Database Systems and integrity constraint checking. p. 36-

Empty Interworkings and Refinement
Semantics of ~terworlc:ings Revised. p. 19.

A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

De proceedings: ACP'9S, p.

On the Connection of Partial Order Logics and Partial Order Reduction Melhods.
p. 12.

Abstract InteJpretatioo of Reactive Systems: PreselVation of cn.*. p. 27.

Specification of tools for Message Sequence Oarts, p. 36.

A Reflection m Russell's Ramified Types and Kripke's Hierarchy of Truths,
p.14.

Discrete Time Process Algebra with Abstraction, p. IS.

On Nonnalisation, p. 33.

Axiomatizing Early and Late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p.11.

Petri net based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfactioo, p. 14.

Synchronous Sequence Charts In Action, p. 36.

A aass of Petri nets for modeling and analyzing business processes, p. 24.

Proceedings of the Real-Time Database Workshop, p. 106.

A Conservative Look at tenn Deduction Systems with Variable Binding, p. 29.

On Nesting of a Norunonotonic Conditional, p. 14

The Fonnal Model of a Pattern Browsing Technique, p.24.

	Abstract
	1. Introduction
	2. Abstract Interpretation
	3. mu-calculus and its interpretation
	4. Binary decision diagrams
	4.1 Symbolic model checking
	5. Programs
	6. Program abstractions
	6.1 Abstraction from interactions
	6.2 A better existential abstraction
	7. Experimental results
	8. Conclusions
	References

