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Abstract 

We apply abstract interpretation techniques to reduce the time and space requirements 
for model checking the full J-l-calculus over parallel processes. The abstractions can be 
computed compositionally. The techniques have been implemented in a StateCharts model 
checker. Experiments show a 17-fold reduction on the average in the size of the BDDs on 
non-trivial specifications. 

1 Introduction 

Abstraction techniques [CGL94, LGS+95, DGG94, CR94] offer one answer to the so-called 
state explosion problem that is inherent to verification by model checking. Such techniques 
allow aspects of a program that are irrelevant to the property being checked to be ignored, 
thus reducing the model representing the program's (relevant) behaviors. 

In symbolic model checking [BCM+92], both the state space of a program and its transition 
relation are encoded as boolean functions which are compactly represented by Binary Decision 
Diagrams (BDD's) [Bry92]. In this setting, abstractions should aim at the reduction of BDD's. 
It turns out that the blow-up of a BDD representing the behavior of a concurrent program 
usually results from the interdependency between individual processes rather than from the 
large total number of global states. 

In this paper, we present an abstraction method which abstracts from such interdependencies 
in designated parts of processes as indicated by a user. We provide both universal and 
existential abstractions, suitable for verifying universal and existential properties expressed 
in the fulll'-calculus [Koz83]. Combination of both types allows for verification of arbitrary 
I'-calculus properties. 

The method is fully compositional: the abstraction of a concurrent program is computed 
from user-specified abstractions of its individual components. Hence, only .the BDD's for the 
transition relations of the (abstracted) components have to be pre-computed. 

·Westerstrafie 10-12, 26121 Oldenburg, Germany. Peter. KelbQarbi. informatik. uni-oldenburg. de 
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tCurrently working in ESPRIT project P6021: "Building Correct Reactive Systems (REACT)". 
§Dept. of Mathematics and Computing Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. 
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The duality that exists in theory between the two types of abstraction is in practice often 
disturbed. The reason is that existential abstractions tend to restrict the behavior of a 
program to the extent that relatively few existential properties may be verified. 

We investigate a solution to this problem by providing conditions under which the universal 
abstraction may be used for verifying existential properties as well. This results in an opti
mized definition of the existential abstraction, obtained by combining the original existential 
abstraction together with the restricted universal abstraction. 

This method has been integrated in a symbolic model checker for the language of State
Charts [Har87]. Experimental results display a 17-fold reduction in space on the average for 
the verification of many non-trivial properties, including universal and existential properties, 
as well as properties that have both universal and existential aspects. As the time complexity 
of BDD operations is related to the size of the BDDs they operate on, the time of a sym
bolic model check substantially decreases as well. Our optimized existential abstractions are 
essential for obtaining these results. Indeed, without them no useful existential abstractions 
could be defined. 

2 Abstract Interpretation 

Many of the results and constructions below are most easily expressed using the language 
of Abstract Interpretation [CC77]; a general framework to define static analyses of programs. 
The basic tenet is that the operations of a programming language which operate on concrete 
values can be mimicked by corresponding abstract operations defined over abstract values 
that describe sets of concrete values. 

The starting point is choosing a set of abstract states, "V. An abstract state describes sets of 
concrete states. The intention is that the interpretation of ,"-calculus formulae is adapted over 
abstractions of transition systems; such an abstract interpretation of a formula 'P then yields 
all abstract state "v. This result should be safe in the sense that in every set of concrete 
states that is described by "v, 'P holds ~ i.e., every such described set should be a subset 
of the concrete (standard) interpretation of 'P. Hence, if "v describes some set V <;; V (V is 
the set of all concrete states), then it is also a safe description of any superset V' ;;:> V. The 

concretization function T "V --+ 2 V maps every abstract state to the smallest set of concrete 
states that it describes. Conversely, also every set of concrete states has a 'best', or most 
precise description. This is formalized via an abstraction function a: 2 V --+ "V. For each 
V <;; V, a(V) is the most precise description in the sense that V ;;:> ,,( a(V)) and V ;;:> ,,("v) 
imply ,,(a(V)) ;;:> ,,("v) for any "v E "V. Thus, a(V) is the least description of V w.r.t. the 
approximation ordering ~ 011 "V defined by ""v ~ "v' iff ,,("v) ;;:> ,,("v')". A given" uniquely 
determines an appropriate a (if it exists) by setting a(V) to be the least (w.r.t. ~) "v such 
that ,,("v) <;; V. We mention that, similarly, 0 determines a unique appropriate" as well. 

These requirements are often captured by saying that (a,,,) is a Galois insertion from (2 V, ;;:» 

to ("V, ~): (i) a and" are total and monotonic, (ii) for every V E 2V we have ("oa)(V) <;; V, 
and (iii) for every "v E "V we have (a ° ,,)("v) = "v. 

Given such an abstract interpretation of the data, functions f: V --+ V can be described by 
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safe abstract interpretations of: "V ---+ "V that satisfy a(f(,("v)) i;; "f("v)l In particular, 
there is ~n optimal abstract interpretation of f defined by "f = a 0 f 0" and "f is safe just 
in case of i;; of (pointwise). So, for functions, safeness means that given a description of the 
parameter, " f yields a description of the result value. 

A static analysis can then be viewed as an abstract evaluation of a property 'P in which 
data and operations of the program are abstractly interpreted, yielding a description of any 
concrete evaluation of 'P. 

3 J.L-calculus and its interpretation 

The (propositional) fL-calculus generalizes a number of possibly better-known logics such as 
CTL, LTL and CTL*, as shown in [Dam94]. For us, its main advantage is its computational 
nature. The basic modalities of the logic express properties of the successors of states and 
every constraint on the computations of a system must be explicitly coded in terms of extremal 
fixed points. Indeed, the basic symbolic model checking procedure can be almost immediately 
read-off from the satisfaction definition. 

Let A be some set of atomic propositions and X a set of variables. Moreover, let a E A and 
x E X. The syntax of the formulae of fLL(A) is defined by 

'P ::= 'Pl V 'P2 I 'Pl /\ 'P2 I D'P I O'P I fLX.'P I VX.'P I a I ,a I x . 

A formula D'P expresses that 'P is true for every (immediate) successor while O'P expresses 
that there is at least one successor for which 'P is true. The least and greatest fixed point 
operators are fLX. and vx .. 

Note that formulae are in negation normal form: negations may only appear in front of 
propositions. Because of the dualities between the pairs V, /\, D, 0 and fLX., VX.2 there is no 
loss of expressiveness. 

As an example, the LTL formulae Fa (on every maximal execution path, eventually the 
proposition a holds) and Ga (the proposition a holds always) would be translated as fLx.(a V 
Dx)3 and vx.(a/\Dx). We use the D modality because LTL formulae express properties about 
all paths. 

fLL(A) is interpreted w.r.t. to a Kripke structure M = (V, R, I). V is a set of states, R <::: V x V 
is a total transition relation and I: A ---+ 2 V is the interpretation of the atomic propositions. 
The semantics of the fL-calculus maps a formula 'P to the set of states for which 'P is true, 
depending on an environment, e, mapping variables to sets of states. The semantics is defined 

1 ftC) = {ftc) IcE CJ. 
2,(1' V,p) '" 'I' A ',p, '01' '" <hI' and '~X.I' '" VX.'I'['X/X]. 
3 Assuming that there are no deadlocked states 
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as a function, [ . ], of type: 

with 

<P --7 (X --7 2V) --7 2V such that 

[ale T(a) 
[,ale V \ T(a) 
[x]e e(x) 
[<PI V <P2]e [<pI]e U [<P2]e 
[<PI fI <P2]e [<p,]e n [<P2]e 
[O<p]e To([<p]e) 
[D<p]e TO ([<p]e) 
[I'x.<p]e mV <;; V I [<p]e[V/x] <;; V} 
[vx ·<ple U{V <;; V I V <;; Me[V / x]} 

TO:2V --7 2V 

U f-+ preR(U) = {v E V l::Iu E U: R(v,u)} 
To:2V --7 2V 

U f-+ preR(U)=V\pre(V\U)={vEVIVuEV: R(v,u)=;,uEU} 

As every 'P is monotonic the greatest (vx.<p) and least (I'x.<p) fixed points exists ([Tar 55]). 

Write [. 1M to make the intended Kripke st;ucture explicit. For closed4 'P, we have M, v F <p 
just in case v E [<p].L where .L is the environment that maps every x E X to 0. 

4 Binary decision diagrams 

Reduced Ordered Binary Decision Diagrams (BDD's) [Bry86, Bry92] are a way to econom
ically represent boolean functions in a canonical way. Although for most boolean functions 
the size of their BDD representation is exponentially large, in many practical cases the BDDs 
are sufficiently small. This, together with the fact that boolean operations, equivalence and 
tautology checking can be done very efficiently on BDDs, is the reason why BDDs are so pop
ular. BDDs only supply a canonical representation relative to an arbitrary but fixed ordering 
on the boolean (input) variables and this ordering greatly influences the size of the BDDs. 

The use of BDDs in model checking is based on coding transition relations as boolean func
tions. Given a transition relation R <;; V xV, take vectors X, X' of boolean variables long 
enough to code for all states in V (e.g., take Ixl,lx'l 2': 10g(IVI)). Then, define a boolean 
function rR '(x, x')5 by 

rR'(x,x')=l ~ ::Iv,v'EV R(v,v')fI;3(v)=xfl;3(v')=x', 

where ;3 is the coding function that maps states to bit strings. 

4 A formula is closed if every variable occurring in it is bound by a fixed point operator. 

5We usually do not make a distinction between the boolean function rR, and its BDD representation. 
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4.1 Symbolic model checking 

Symbolic model checking is based on such BDD representations [CBM90J. The basic, non~ 
logical operation that needs to be done is computing preconditions, preR(V), which translates 
into computing relational products: 3x'( rR,(x,x' ) II rV'(x' )). Obviously, to represent a set 
as a BDD we use its characteristic predicate. This is used in representing the interpretation 
function I as well. 

To symbolicly model check a /l~calculus formula <p over a Kripke structure M, we compute 
the characteristic predicate of [<p]L Hence 

We follow the definition of [ . ]: Boolean connectives translate to the corresponding boolean 
operations on the BDDs of the (immediate) subformulae. For formulae of the form O<p we 

compute preR([<pf) using a relational product; likewise for D<p formulae. Fixed points are 
computed iteratively as usual, by successively computing their approximations until they 
stabilize. E.g., a least fixed point is computed as 

r , 
[/lx.<p] e 

r ,= 
[/lx.<p] e 

where 
r ,0 
[/lx.<p] e = if and 

r. ,i+l r. ,i r., r. ,i 
[/lx.<p] e = [/lx.<p] e V [<p] e [x f-> [!lx.<p] eJ 

If the Kripke structure JVi is finite, this procedure will terminate after at most 1M I iterations. 
In practice, techniques such as iterative squaring are used to (exponentially) speed~up the 
fixed~point computations (see [BCM+92]). 

5 Programs 

Let S be the set of local states. A program P either has the form pi II P", for programs pi 
and P" or is a labeled transition system (Its) (S, e, I) with S £;; S. The latter is also called 
a process. Here, e: S X S ---> £(S), where £(S) denotes the propositional logic over the set of 
'propositions'S. The intuition is that a 'transition' (s, S') with label e( s, S') in P is enabled if 
the global starting state (in which P is 'at's) satisfies the constraint expressed by the label. 
I £;; S is the set of initial states. Figure 1 gives an example. The Its P on the right~hand~side 
is equivalent with [pO II P'] (as will be defined below). Observe that parallel processes execute 
synchronously. 

Although such programs may look unfamiliar, they correspond to simplified Statechart mod~ 
cis [Har87J in which no events are broadcast. Indeed, the test ,(t, Viz) in Figure 1 corresponds 
to the Statechart condition [not (IN (t_l) or IN (L2))]. The verifier that we have imple~ 
men ted deals with full Statecharts. 

For convenience we want to view (global) states of parallel processes as seis of local states"' 
For this reason, we assume that 

6Hence, we identify {{s} I s E S} with the local states of an Its (S,£,I). 
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po pI p 

Figure 1: Example program 

• If P = p' II p" then S' n S" = 0 for every S' E S(P') and S" E S(P"); S(Q) stands for 
the set of states of Q. 

Because of this constraint, program states can be taken from 2S ; one local state per compo
nent. For S E 2S and cP E £(S), S 1= cP is defined as usual and S 1= s iff s E S. If pO = 
(SO, fa, 10) and pI = (Sl, f1, 1") are Its's, then pO II pI determines an Its, [pO II pI] = (S, f, I), 
as follows: 

• S = {SOuS"1 SO E SO,S" E Sl} and 1= {IOu 1" I 10 E 10,1" E I"}, 

• f = fa II f1 defined by (£0 II £l)(S, S') = £O(SO,SO')[tt/S"] t\£l(S"S"')[tt/S°]' where 

[tt /T] substitutes tt for every state in T E 2S, S = Sa U S" S' = So' U S"', So, So' <;; Sa 
and St, S"' <;; S" (remember that 'ISo <;; So, S" <;; S" : SO n S" = 0). 

As an example, consider Figure 1 again. The label of the {82, t2} - {83, t3} transition is 
obtained as £0(S2, s3)[tt/{t2}] t\£1(t2,t3)[tt/{sz}] =" t2[tt/{t2}]t\u[tt/{S2}] =" ttt\u =" u. 

An Its P = (S,£, I) induces a 'standard' transition relation, Ri, on the global state space, 
as follows. Let S, S' E S be local states of P and consider global states S U T and S' U T' 
(T, T' E 2S ), i.e., whose P-components are Sand S'resp. Then 

Rl(S U T, S' u T') iff S u T 1= itS, S') . 

For technical reasons, we also impose the constraint 

• For any labeled transition system (S, £, J) the transition relation must be total: 

1= V £(S, S') for every S E S . 

S'ES 

Its consequence is that programs can never deadlock. I.e., in every global state there is at 
least one (globally) enabled transition in every process of the program. 
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Lemma 5.1 With notation as above 

• II is commutative and associative; i.e., IPo II p1] = IP1 II pO] and IPo II (p1 II p2)] = 
I(PO II p1) II p2]. 

• If P is a program then I PI has a total transition relation. 

• For Its's pO and p1, Rl = Rio n Rl' 

Proof. The first point is a direct consequence of commutativity and associativity of the 
operators U and /\ in the definition of I .]. The second point is easily proven by induction 
over the structure of programs. 

For the third point let pO = (SO CO 10) and p1 = (S1 C' 1') Sa So' E Sa S' S" E S' , , , , , " " , 
and T, T' E 2S (such that for each S E Sa U S" Tn S = 0 and T' n S = 0). Assume 
Rl(SO U S' U T, So' U S" U T'). By the definitions of Rl and £0 II £1, this is equivalent to 
Sa U S' U T F £O(SO, SO')[ttj S'J /\ £'(S" S")[ttj SOJ. Because Si F si for every si E Si 
(i = 0, 1), this implies SO U S' U T F CO( So, SO') and SO U S' U T F c' (S" S"). Furthermore, 
the reverse implication is obvious. By the definitions of R'" and R l ', SoU S' uT F £O(SO, SO') 
and Sa US' U T F C' (S" S") reduce to R'" (SO U S' U T, So' U S" U T') and Ri' (SO U S' U 

T, So' U 5" U T'). 0 

Hence, program semantics is well-defined. 

Finally, we define when a program satisfies a I'L(S)-formula: 

Definition 5.2 A program P with IP] = (S,C,I) induces a Kripke structure Mp = (2S ,Ri , 

I) where I( s) = {5 E 2S I S E 5} for every s E S. For any I'L( S) formula 'P define P F 'P 
by I <;; I'PlMpL 

So, e.g., the program in Figure 1 would satisfy P F I'X.((S2/\ t2) V Ox); i.e., the S2, t2-state 
is reachable. Indeed, Il'x.((s2/\ t2) V Ox)l-L includes the initial state of P. 

6 Program abstractions 

Although all the ingredients are in place to build a symbolic model checker, experience shows 
that in practice it would have limited applicability. The main problem is the amount of 
memory needed to store the BDDs that describe the program's transition relation and that 
describe the intermediate results during the computation of I'PIM' Also, since the time 
complexity of BDD operations are low order polynomial in the size of the BDDs they operate 
on, model checking time is affected as well. 

The abstract interpretation framework suggests two ways to reduce the time and space re
quirements. One can replace the set (2S) of concrete states by a smaller set 2D of abstract 
states so that fewer BDD variables are needed to represent subsets of D. Also, although 
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given an abstract domain the concrete functions are often replaced by their optimal abstract 
interpretations, one can use safe approximations that are easier to compute instead. 

Next, observe that a large set does not imply that the BDD representation of its characteristic 
predicate has a large number of BDD nodes as well. The set of all states is a case in point: 
it is represented by the 1 node BDD rtc. Thus our aim should not be to reduce the size of 
the state sets but to reduce the number of nodes in the BDDs representing these sets. 

Now, given a program P (or rather the Kripke structure induced by it), the representations 
of the semantics of the propositions are very small, although the represented sets can be 
quite large. Indeed, each proposition describes just a single local state of a process in P. 
The computation of conjunction and disjunction are of polynomial time and space and the 
computation of the fixpoints is just an iteration. The point were the BDD representations of 
the intermediate sets become large is during the computation of the relational product with 
the transition relation-computing TO respectively To' From these observations we conclude 
that the set of abstract states D need not be different (smaller) than S in order to reduce 
time and space during BDD-based model checking, but that the abstract operators "TO and 
"TO should lead to sets with smaller BDD-representations than the original ones. 

Thus our abstract interpretation, "[ '1, of JlL(S) takes "V = 2S as abstract domain and 
replaces only the To and To functions by safe abstract interpretations °T 0 and "TO in the def
inition on page 4. Hence, the other operations 'are 'replaced' by their optimal interpretations. 

Lemma 6.1 If "TO and "TO are safe interpretations, i.e., if "TO(S) ~ To(S) and "TO(S) ~ 

TO(S) for S E 2S then 
"['P]e ~ ['PIe for any 'P and e . 

Proof. Straightforward. The essential point is that all operations in the definition of [ . ] on 
page 4 are monotonic (except for the negation-but it is only applied to propositions). 0 

Hence, using such abstractions, we may erroneously conclude that P ~ 'P, but if I ~ 0['P]1-

then P 1= 'P holds. 

In the concrete case To and TO are computed from the transition relation R as relational 
products. This is possible for the abstract versions as well, except that two different transition 

relations are needed: 

Lemma 6.2 preR' ~ preR if R' ~ Rand preR" ~ preR if R ~ R" 

Write C' :; £ in case R1' ~ Re. 

We can, in fact, compute abstractions compositionally: 

Lemma 6.3 If f: :; £i (i = 0,1) then f~ II £\ :; fa II f" 

Proof. Follows from the third point of Lemma 5.1. o 
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0Il 1 r , ,.. 0' For, e.g., P P, preR,oll,l (C) would be computed as the relational product :lxf( Rl (x, Xf)/\ 
r , 
RI' (x, Xf) /I r C'( Xf)) and the global transition relation Rl Oll l1 is not explicitly represented by 
aBDD. 

6.1 Abstraction from interactions 

A relational product grows large if there is much interaction between the various processes 7 • 

Accordingly, the idea behind our abstractions is to reduce such interactions. 

So, a universal abstraction replaces the (satisfiable) constraints on some transitions by tt, 
while an existential abstraction removes some edges with non-trivial constraints. As a conse
quence, the abstracted part is no longer influenced by the other processes. Also, its influence 
on the non-abstracted processes is 'simplified'. 

Definition 6.4 Let P be an Its (S, C, I). An abstraction of P is determined by selecting a 

subset SA c:: S. Define "Co(S, Sf) g tt if 5, Sf E SA and ~ ,C(S, Sf); define "Co(S, Sf) g ff 
if 5, Sf E SA and ~ C(S, Sf). Elsewhere, "CD and "Co coincide with C. Then the universal 

abstraction is" Po g (S, "CD' I); the existential abstraction is" Po g (S, "Co' I) 

The condition ~ ,C( 5, Sf) in the definition of a Co is included to ensure that no new transition 
is added between two states 5 and Sf if there was no transition at all (i.e, F ,C( 5, Sf) would 
hold for these states) before. Similarly, the condition ~ C(S, Sf) in the definition of aco 
prevents from disappearing those transitions which have tautological constraints. 

We shall often write aR~ instead of R"lo , etc. 

Lemma 6.5 With notation as above, "Co ::S C and C::s aco' 

How good are these abstractions; i.e., can we often find abstractions that both offer substantial 
reduction and allow many properties to be verified? This is difficult to assess in general but, 
heuristically, the universal abstraction ("£0) is often more usable than the existential one. 
This is because in the lattice of relations, program relations tend to be closer to the empty 
relation than they are to the full one. Indeed, a program describes the allowed behavior rather 
than those behaviors that are disallowed. E.g., a function for computing, say, the square root 
of its input, is usually not implemented by a program that admits arbitrary behavior only 
constrained by the requirement that it computes the square root. Quite the opposite: a square 
root program should only preform those actions that are necessary for its correct functioning. 
This means that there tends to be ample room to add transitions to a relation-as a universal 
abstraction does-without hitting the full relation, but less so to remove them. The effect of 
this is that it tends to be easier to find a universal abstraction that preserves the truth of a 
universal property (i.e., a property that does not use O-modalities) than it is to find a usable 
existential abstraction that preserves an existential property. Indeed, from the 13 properties 
that use O-modalities on page 15 none could be verified using existential abstractions alone. 

7This observation can be made more precise if we look at the particular way states are encoded. 
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53 34 X 

Figure 2: Universal abstraction fnnctioning as an existential one 

6.2 A better existential abstraction 

Specifically, as we compute "Re anyway, is it possible to use "RI for existential abstractions 
o 0 

as well? First, observe that on the unabstracted part of a process's transition relation "R~ = 
R = "R~; on the abstracted part we have "R~ <;; R <;; "R~. However, as long as preoR~(S) <;; 

preR'(S) for sets S that arise as intermediate results, this will cause no problems. That this 
is possible is illustrated in Figure 2. The label on the dashed transition will be removed by 
a universal abstraction "R~ (for SA = {Si I i = l. . .4}). However, obviously preaR~ (X) <;; 

preR'(X) = {81, 82}. Lemma 6.7 below characterizes these situations. 

First we need a notion of independency. Intuitively, a set of global states X is independent 
of a set of local states S of a process P, if the other processes being in a state in X does not 
depend on P being in a specific local state in X n S. 

For example, considering Figure 3 on page 12, let S be the local states of the left-hand-side 
process, and let S = {so, SI, 52}. Then { {so, to}, {so, h}, {SI, tl}, {S2, td } is not independent 
of S because the local state to only occurs with So (which is in S) but not with the other 
local states in S. Both { {so,tJ}, {sJ,tJ}, {S2,tJ} } and { {80,tO},{8J,tO}, {82,tO}, {so,tJ}, 
{SI, tJ}, {S2, td } are independent however. 

Definition 6.6 Let S <;; S be the set of local states of a single process and let S <;; S . 

• For a set X <;; 2S of global states, X is independent of S if for each x E X with 
x n S E S and x n (S \ S) = t, we have 'is E S: s UtE X . 

• Suc( S) = {Sf E S I 3s E S IF ,£( s, Sf)}. 

Now, the situations as in Figure 2 can be characterized: 

Lemma 6.7 Let SA determine an abstraction of the Its (S,£,I). For any X <;; 2S which is 
independent of SA U SUC(SA) we have preaR' (X) <;; preR'(X), 

o 

Proof. Let y E preoR~(X), So, we can choose x E X such that "R~(y,x), whence y 1= 
"£o(ynS,xnS). 

If x n S rt SA or Y n S rt SA then, by definition of "£0' "£o(y,x) = f(y,x) so that R1(y,x), 
whence y E preR'(X), 
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Suppose x n S E SA and y n S E SA. If in addition R£(y,x), then we are ready. Suppose 
,R£(y, x). So, y F "Co(yn s, x n S) but not y F C(yn s, x n S). We look for x' E X such that 
y F C(y n s, x' n S). As X is independent of SA U SUC(SA) while x n S E SA U SUC(SA), we 
can choose x' E X so that x' n (S \ S) = x n (S \ S) and x' n S E SA U SUC(SA). Furthermore, 
by totality of C, we can choose x' in such a way that y F C(y n s, x' n S). So, R£(y, x') holds 
and, hence, y E preR'(X), 0 

For a given SA as above, define f: 22S 
---+ 22S such that f(T) is the (unique) largest subset 

of T that is independent of SA U Suc( SA). So, for the example in Figure 3, f( { {8i' tj} I (i < 
3Aj = O)V (i < 4Aj = I)}) = {{Si,tj} I i < 4Aj = I}. We have 

Corollary 6.8 For any X ~ 2S , preaR' (f(X)) ~ preR'(X), 
o 

Hence, preaR' U (preaR' 0 f) is a safe approximation of TO' o 0 

Figure 3 shows an example in which both existential pre-abstractions are needed. Write "preo 
and "preo for the approximations to pre induced by Definition 6.4; write "preo for "preo U 
(apreoor). The states within the dashed boundary are abstracted. So, aR~ will remove the t, 

label between s, and 82 and the labels on the self-loops at 8, and 82 while "R~ will remove the 

corresponding transitions. In computing "[<I>] we use the iterative scheme of page 5. We start 
with a[<I>]'1- = "[t3] = {S ~ S I t3 E S}. For the set on the right-hand-side we just write t3; 
this being its characteristic predicate. As "preO(t3) = t2 V (t3 A (so V S3)), "preo (t3) = t2 V t3 
and f(t3) = t3, we obtain a[<I>]21- = t3 V "preO(t3) = t3 V "preO(t3) V "preo (f(t3)) = t2 V t3' 
Next, we compute a[<I>t 1- = t3 V "preO(t2 V t3). Because both "preo and f distribute over 
disjunction, this equals h V "preO(t2) V "preO(t3) V "preO(f(t2) V f(t3))' As "preO(t2) = 0, 
f(tz) = t2 and "preO(t2 V t3) = (t, A 81) V t2 V t3, we get (t, A s') V t2 V t3 as the result. Now, 
f( tz V t3 V (S1 A t , )) = tz V t3 so that for computing" preo at t2 V t3 V (S1 At,), "preo does not 
contribute. However, we do have {so,to} E "preO({s"t,}) and by this {so,to} E "[<1>]41-, 

7 Experimental results 

We applied the abstraction techniques developed above to verify a production cell [DHKS95]. 
Figure 4 depicts the system to model. 

The task of the production cell is to press metal blanks. The production cell consists of two 
conveyor belts (the feed belt in the front and the deposit belt in the back of the picture), a 
rotary table (right to the feed belt), a press (to the right of the picture), a robot with two 
independent movable arms (between rotary table and press) and a crane (under the top of 
the picture). In addition, we assume that there is a user who puts a metal blank on the feed 
belt. 

The controller of the production cell notifies the user when a new metal blank can be put on 
the feed belt. This will transport it to the rotary table. The table will rotate and lift the 
blank up, so it can be picked up by the first robot arm. The robot puts the blank into the 
press. After pressing the blank, the second robot arm fetches the pressed blank and puts it 
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pO p' 

Figure 3: ("PO II P') F <)i with <)i D /Lx.( t3 V Ox) 

Figure 4: A production cell 
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on the deposit belt, which will transport the blank to the crane. The crane closes the cycle 
and moves the blank from the deposit belt to the feed belt in order to press the blank again. 

We have modeled the production cell with StateCharts [HarS7]. StateCharts is a graphical 
specification language. It is based on automata that can be composed in parallel and that 
form a hierarchy. The parallel composition leads to a (synchronous) lock-step semantics, 
where parallel components have to make a step if they can, otherwise they stutter. Hence, 
the induced transition relation is total, which is required by our framework. The parallel 
components of the production cell communicate by identifying states of other components, 
e.g., a transition from one state to another one is only possible if another process is in a certain 
state. By this mechanism the parallel components will be synchronized. This fragment of 
Statecharts corresponds to the programs we introduced in this paper. A detailed description 
of the translation scheme for full StateCharts into BDDs can be found in [HK94]. 

Since the production cell contains several physical components which have to be controlled 
independently, the general structure of the StateChart specification is a parallel decomposition 
of the controller w.r.t. the physical components. The single sub-controllers for the components 
are again decomposed for the single task the sub-controller has to satisfy, e.g., the sub
controller for the rotary table has again sub-controllers for the rotation and the vertical 
movement. 

The verification of the production cell distinguishes between safety and liveness properties. 
Typical safety properties are that the table does not rotate too far in one of the two directions 
thus avoiding damage. For all controller components these kind of safety properties can be 
checked in isolation; i.e., the property that the table only rotates in its specified area is 
independent of the behavior of the robot. An abstraction of all sub-controllers except the 
controller for the table as described above preserves the necessary information to verify the 
safety property. 

Liveness properties are more complex to verify because they are in general not restricted 
to the behavior of some few processes. For example the property that along all executions 
eventually the crane puts a blank on the front belt needs all processes, because this property 
simulates a complete run through the production cell. Using abstractions one has to split such 
a specification into several parts which together imply the original property but each of which 
only needs part of the model. However, we are able to verify the several parts individually. 

The verification results are shown in the Tables 2-4 below. The first column gives the property 
that is checked. It is expressed using the CT L operators G ("globally", i.e., for all states along 
a path), F ("eventually", i.e., there exists a state along a path) as well as the Unless operator 
(also called weak until) defined by 'PIUnless'P2 '" ('PIU'P2) V G'PI, where U is the until 
operator. A and E denote the universal resp. existential path quantifiers. These formulae are 
easily translated into the It-calculus. For example, A('PIUnless'P2) '" VX.('P2 V ('PI A Ox)). 
The meanings of the propositions occurring in these formulae are explained in Table l. 

The second column indicates which parts of the system have been abstracted. The entire 
system consists of a parallel composition of processes modelling the feed belt, rotary table, 
robot, press, deposit belt, crane and user; in the tables these are identified by their first 
letters. 'Ve always abstract from entire processes. E.g., an entry rpd in the second column 
means that robot, press and deposit belt have been abstracted from. Because of the tight 
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interaction of the processes this means that the existential abstractions of the processes remove 
all transitions. Indeed, none of these properties could be verified without the optimization 
from Section 6.2. 

The third and fourth columns give the maximal number of BDD nodes that are needed 
to verify the property without resp. with application of our abstraction technique; the last 
column is the reduction factor between these numbers. 

Table 3 shows that formulae with existential path quantifiers can also be verified while Table 4 
gives results for formulae with mixed path quantifiers. 

The most notable feature of these tables is that we are able to achieve a 17-fold reduction on 
the average in the number of BDD nodes needed to verify the specifications. 

proposition 
init 
fogo 
f-in 

t-empty 
t-full 
t-vpos-bot 

t-vpos-err 

meaning 
the entire system is in its initial state 
the feed belt is running 
there is a metal blank on the right end of 
the feed belt (near the rotary table) 
the horizontal position of the rotary table 
is such that it can accept a metal blank 
from the feed belt 
there is no metal blank on the rotary table 
there is a metal blank on the rotary table 
the vertical position of the rotary table 
is at its lowest point 
the vertical position of the rotary table 

is such that it may cause damage 

Table 1: Meanings of the propositions. 

8 Conclusions 

We have developed a compositional abstract interpretation scheme for model checking full 
propositionall'-calculus over parallel processes. The technique shows quite good performance 
in non-trivial examples, resulting in substantial reductions in the number of BDD nodes. The 
programming model that we consider is general and underlies many programming languages, 
hence we expect our results to be generally applicable. We have extended these abstraction 
techniques to directly apply to a larger subset of the StateChart language; notably event 
generation and event triggers (including triggering on the absence of events). 

Future work includes the refinement of these techniques to cover a larger class of program 
abstractions. 

14 



property abstract without with red. 
from abstraction fact. 

init => AG ,t-vpos-err jrpdcu 36300 2210 16 
init => AF t-full rpd 48700 5720 9 
init => AF (f-in /I f-go) trpd 43700 2840 15 
init => AG (f-in => A (f-in Unless rpdc 36900 2840 13 

(f-in /I t-vpos-bot /I t-hpos-f))) 
init => AG ((t-vpos-bot /I t-hpos-f /I t-empty) => rpdcu 84100 3680 23 

A ((t-vpos-bot /I t-hpos-f) Unless 

(f-in /I f-go /I t-vpos-bot /I t-hpos-f))) 
init => AF (t-vpos-bot /I t-hpos-f /I t-empty) jrpdcu 38400 2880 13 
init => AG ((t-vpos-bot /I t-hpos-f /I f-go /I f-in) jrpdcu 48700 2590 19 

=> AF t-full) 

Table 2: Results for universal properties. 

property abstract without with red. 
from abstraction fact. 

init => EG ,t-vpos-err jrpdcu 36500 2220 16 
init => EF t-full rpd 52500 9540 6 
init => EF (f-in /I f-go) trpd 101000 3190 32 
init => EG (f-in => E (f-in Unless rpdc 39100 4060 10 

(f-in /I t-vpos-bot /I t-hpos-f))) 
init => EG ((t-vpos-bot /I t-hpos-f /I t-empty) => rpdcu 42500 3200 13 

E ((t-vpos-bot /I t-hpos-f) Unless 

(f-in /I fogo /I t-vpos-bot /I t-hpos-f))) 
init => EF (t-vpos-bot /I t-hpos-f /I t-empty) jrpdcu 84500 2500 34 
init => EG (( t- vpos-bot /I t-h pos-f /I fogo /I f- in) jrpdcu 53600 2310 23 

=> EF t-full) 

Table 3: Results for existential properties. 
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property abstract without with red. 
from abstraction fact. 

init =;. AG ((t-vpos-bot 1\ t-hpos-f 1\ t-empty) =;. rpdcu 42500 3160 13 
E ((t-vpos-bot 1\ t-hpos-f) Unless 
(f-in 1\ f-go 1\ t-vpos-bot 1\ t-hpos-f))) 

init =;. EG ((t-vpos-bot 1\ t-hpos-f 1\ t-empty) =;. rpdcu 84100 3420 25 
A ((t-vpos-bot 1\ t-hpos-f) Unless 
(f-in 1\ f-go 1\ t-vpos-bot 1\ t-hpos-f))) 

init =;. EG ((t-vpos-bot 1\ t-hpos-f 1\ f-go 1\ f-in) frpdcu 50000 2450 20 
=;. AF t-full) 

init =;. AG ((t-vpos-bot 1\ t-hpos-f 1\ f-go 1\ f-in) frpdcu 52500 2210 24 
=;. EF t-full) 

Table 4: Results for mixed properties. 
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