18 research outputs found

    Brain structural predispositions for music and language processing

    Get PDF
    [eng] It has been shown that music and language training can elicit plastic changes on brain structure and function bringing along behavioural benefits. For instance, musicians have been reported to have better auditory discrimination including pitch and speech-in-noise perception, motor-synchronization, verbal memory and general IQ than individuals without formal musical background. Also, bilinguals have shown higher executive function and attention-related abilities than monolinguals. Furthermore, altered functional and structural connectivity can be tracked to brain areas related to the activities most frequently performed by both musicians (instrumentalists and singers) and linguistic experts (such as bilinguals or professional phoneticians). While research in the last decade has devoted important effort to the study of brain plasticity, only a few investigations have addressed the connection between the initial functional or structural properties of brain networks related to auditory-motor function and subsequent language or musical training. Indeed, brain structural markers such as grey matter volume/density or white-matter diffusivity measurements from diffusion tensor imaging (DTI) data, as well as functional measurements from task- related activity or resting-state data from magnetic resonance imaging (MRI) or electroenceplhalography (EEG) have been demonstrated to correlate with consecutive performance and learning in the auditory-motor domain. The main goal of the present dissertation was twofold: we aimed to further the existing knowledge regarding brain plasticity elicited during putative sensitive periods and after long-term music practice, and to explore the white-matter pathways that predict linguistic or musical skills at baseline . Our secondary goals were to confirm previous findings regarding the brain structures involved in music and language processing, as well as to provide evidence of the benefits of usingstructural measurements and correlational analyses between imaging and behavioural data to study inter-individual differences. Study I focused on the comparison between professional pianists and non- musicians observing a complex pattern of increases and decreases in grey matter volume. In comparison to non-musician individuals, pianists showed greater grey matter volume in areas related to motor skill and the automatization of learned movements, as well as reinforcement learning and emotional processing. On the other hand, regions associated to sensorimotor control, score reading and auditory and musical perception presented a reduction in grey matter volume. Study II explored the relationship between white-matter structural properties of the arcuate fasciculus (AF) and the performance of native German speakers in a foreign- language (Hindi) sentence and word imitation task. We found that a greater left lateralization of the AF volume predicted performance on the imitation task. This result was confirmed by using not only a manual deterministic approach but also an automatic atlas-based fibre-reconstruction method, which in addition pointed out to a specific region in the anterior half of the left AF as the most related to imitation ability. Study III aimed to investigate whether the white-matter structural connectivity of the pathways previously described as targets for plasticity mechanisms in professional musicians predicted musical abilities in non-musicians. We observed that the white- matter microstructural organization of the right hemisphere pathways involved in motor-control (corticospinal tract) and auditory-motor transformations (AF) correlated with the performance of non-musician individuals during the initial stages of rhythmic and melodic learning. The present work confirmed the involvement of several brain structures previously described to display plastic effects associated to music and language training in the first stages of audio-motor learning. Furthermore, they challenge previous views regarding music-induced plasticity by showing that expertise is not always or uniquely correlated with increases in brain tissue. This raises the question of the role of efficiency mechanisms derived from professional-like practice. Most importantly, the results from these three studies converge in showing that a prediction-feedback-feedforward loop for auditory-motor processing may be crucially involved in both musical and language learning and skills. We thus suggest that brain auditory-motor systems previously described as participating in native language processing (cortical areas of the dorsal route for language processing and the AF that connects them) may also be recruited during exposure to new linguistic or musical material, being refined after sustained music practice.[spa] Estudios previos muestran que la formación musical y lingüística provoca cambios plásticos en las estructuras y funciones cerebrales, acompañándose también de beneficios conductuales. Por ejemplo, se ha descrito que los músicos poseen mejores habilidades de discriminación auditiva (incluyendo la percepción tonal y la discriminación del habla en un ambiente ruidoso), una mayor capacidad de sincronización motora, así como mejor memoria verbal y coeficiente intelectual general en comparación con personas sin formación musical. Paralelamente, los bilingües muestran mejores funciones ejecutivas y habilidades relacionadas con la atención en comparación con individuos monolingües. Además, las alteraciones en la conectividad cerebral funcional y estructural pueden ser rastreadas estudiando las áreas cerebrales relacionadas con las actividades más utilizadas por músicos (instrumentistas y cantantes) y expertos lingüísticos (como bilingües o fonetistas profesionales). Pese a que en la última década se han dedicado esfuerzos importantes en el campo de la investigación sobre la plasticidad cerebral, sólo unos pocos estudios han tratado de investigar la conexión entre las propiedades iniciales del cerebro, en cuanto a las funciones y estructuras que se relacionan con las funciones auditivo-motoras, y el posterior aprendizaje musical o del lenguaje. Sin embargo, los marcadores estructurales cerebrales, tales como volumen/densidad de materia gris o medidas de difusividad en la sustancia blanca a partir de datos de imagen del tensor de difusión, así como medidas funcionales de la actividad relacionada con una tarea o datos de resting-state (estado de reposo) obtenidos por resonancia magnética o electroencefalografía, han demostrado que pueden correlacionar con el rendimiento y el aprendizaje en el dominio auditivo- motor. En la presente tesis pretendíamos ampliar nuestro conocimiento en cuanto a la plasticidad cerebral obtenida durante los supuestos “períodos sensibles” y después de la práctica musical mantenida en el tiempo, por un lado, y explorar las vías de sustancia blanca que pueden predecir habilidades lingüísticas o musicales al inicio del aprendizaje, por otro lado. Como objetivos secundarios, queríamos confirmar resultados previos con respecto a las estructuras cerebrales involucradas en el procesamiento de la música y el lenguaje, así como apoyar el uso de mediciones estructurales y enfoques correlacionales (entre datos de neuroimagen y conductuales) para estudiar las diferencias inter- individuales. El Estudio I se centró en la comparación entre pianistas profesionales y no músicos, observando un complejo patrón de aumentos y disminuciones en el volumen de materia gris. En comparación con los individuos no músicos, los pianistas mostraron mayor volumen de sustancia gris en áreas relacionadas con la habilidad motora y la automatización de movimientos aprendidos, así como el aprendizaje a través del refuerzo y el procesamiento emocional, mientras que las regiones asociadas al control sensoriomotor, lectura de partituras y percepción auditiva y musical presentaron una reducción del volumen de materia gris. El Estudio II exploró la relación entre las propiedades estructurales de la materia blanca del fascículo arqueado (AF por sus siglas en inglés) y el rendimiento de hablantes nativos de alemán en una tarea de imitación de frases y palabras en una lengua extranjera (hindi). Encontramos que una mayor lateralización del volumen de AF hacia la izquierda predecía el desempeño en la tarea de imitación. Este resultado se confirmó utilizando no sólo un enfoque determinístico-manual sino también una reconstrucción automática (basada en atlas anatómicos) de las fibras de sustancia blanca que, además, señalaba una región específica en la mitad anterior del AF izquierdo como la más relacionada con las capacidades de imitación. El Estudio III tenía como objetivo investigar si la conectividad estructural de vías de sustancia blanca anteriormente descritas como dianas para los mecanismos de plasticidad en músicos profesionales, podría predecir las habilidades musicales en los no músicos. Se observó que la organización micro-estructural de la materia blanca en el hemisferio derecho en vías involucradas en el control motor (tracto corticoespinal) y en transformaciones auditivo-motoras (AF) correlacionaba con el desempeño de individuos no músicos en las etapas iniciales del aprendizaje rítmico y melódico. El presente trabajo ha confirmado la implicación en las primeras etapas del aprendizaje audio-motor de varias estructuras cerebrales que previamente habían mostrado efectos plásticos asociados al aprendizaje musical y del lenguaje. Además, estos resultados desafían las opiniones anteriores sobre la plasticidad inducida por la experiencia musical al demostrar que la experiencia no se correlaciona siempre ni únicamente con un aumento del tejido cerebral, y planteando así preguntas sobre los mecanismos de eficiencia derivados de la práctica musical a nivel profesional. Más importante aún es que los resultados de estos tres estudios convergen mostrando que un bucle de predicción–retroalimentación (feedback)–alimentación directa (feedforward) para el procesamiento auditivo-motor puede estar implicado de manera crucial tanto en el aprendizaje musical como en el aprendizaje de idiomas. Por tanto, sugerimos que los sistemas auditivo-motrices del cerebro, que previamente se habían descrito como participantes en el procesamiento del lenguaje nativo (áreas corticales involucradas en la vía dorsal para el procesamiento del lenguaje, y el AF, que las conecta) también pueden ser reclutados durante la exposición a material lingüístico o musical nuevo, siendo refinado tras años de práctica musical activ

    ESCOM 2017 Book of Abstracts

    Get PDF

    The neurobiology of cortical music representations

    Get PDF
    Music is undeniable one of humanity’s defining traits, as it has been documented since the earliest days of mankind, is present in all knowcultures and perceivable by all humans nearly alike. Intrigued by its omnipresence, researchers of all disciplines started the investigation of music’s mystical relationship and tremendous significance to humankind already several hundred years ago. Since comparably recently, the immense advancement of neuroscientific methods also enabled the examination of cognitive processes related to the processing of music. Within this neuroscience ofmusic, the vast majority of research work focused on how music, as an auditory stimulus, reaches the brain and howit is initially processed, aswell as on the tremendous effects it has on and can evoke through the human brain. However, intermediate steps, that is how the human brain achieves a transformation of incoming signals to a seemingly specialized and abstract representation of music have received less attention. Aiming to address this gap, the here presented thesis targeted these transformations, their possibly underlying processes and how both could potentially be explained through computational models. To this end, four projects were conducted. The first two comprised the creation and implementation of two open source toolboxes to first, tackle problems inherent to auditory neuroscience, thus also affecting neuroscientific music research and second, provide the basis for further advancements through standardization and automation. More precisely, this entailed deteriorated hearing thresholds and abilities in MRI settings and the aggravated localization and parcellation of the human auditory cortex as the core structure involved in auditory processing. The third project focused on the human’s brain apparent tuning to music by investigating functional and organizational principles of the auditory cortex and network with regard to the processing of different auditory categories of comparable social importance, more precisely if the perception of music evokes a is distinct and specialized pattern. In order to provide an in depth characterization of the respective patterns, both the segregation and integration of auditory cortex regions was examined. In the fourth and final project, a highly multimodal approach that included fMRI, EEG, behavior and models of varying complexity was utilized to evaluate how the aforementioned music representations are generated along the cortical hierarchy of auditory processing and how they are influenced by bottom-up and top-down processes. The results of project 1 and 2 demonstrated the necessity for the further advancement of MRI settings and definition of working models of the auditory cortex, as hearing thresholds and abilities seem to vary as a function of the used data acquisition protocol and the localization and parcellation of the human auditory cortex diverges drastically based on the approach it is based one. Project 3 revealed that the human brain apparently is indeed tuned for music by means of a specialized representation, as it evoked a bilateral network with a right hemispheric weight that was not observed for the other included categories. The result of this specialized and hierarchical recruitment of anterior and posterior auditory cortex regions was an abstract music component ix x SUMMARY that is situated in anterior regions of the superior temporal gyrus and preferably encodes music, regardless of sung or instrumental. The outcomes of project 4 indicated that even though the entire auditory cortex, again with a right hemispheric weight, is involved in the complex processing of music in particular, anterior regions yielded an abstract representation that varied excessively over time and could not sufficiently explained by any of the tested models. The specialized and abstract properties of this representation was furthermore underlined by the predictive ability of the tested models, as models that were either based on high level features such as behavioral representations and concepts or complex acoustic features always outperformed models based on single or simpler acoustic features. Additionally, factors know to influence auditory and thus music processing, like musical training apparently did not alter the observed representations. Together, the results of the projects suggest that the specialized and stable cortical representation of music is the outcome of sophisticated transformations of incoming sound signals along the cortical hierarchy of auditory processing that generate a music component in anterior regions of the superior temporal gyrus by means of top-down processes that interact with acoustic features, guiding their processing.Musik ist unbestreitbarer Weise eine der definierenden Eigenschaften des Menschen. Dokumentiert seit den frühesten Tagen der Menschheit und in allen bekannten Kulturen vorhanden, ist sie von allenMenschen nahezu gleichwahrnehmbar. Fasziniert von ihrerOmnipräsenz haben Wissenschaftler aller Disziplinen vor einigen hundert Jahren begonnen die mystische Beziehung zwischen Musik und Mensch, sowie ihre enorme Bedeutung für selbigen zu untersuchen. Seit einem vergleichsweise kurzem Zeitraum ist es durch den immensen Fortschritt neurowissenschafticher Methoden auch möglich die kognitiven Prozesse, welche an der Verarbeitung von Musik beteiligt, sind zu untersuchen. Innerhalb dieser Neurowissenschaft der Musik hat sich ein Großteil der Forschungsarbeit darauf konzentriert wie Musik, als auditorischer Stimulus, das menschliche Gehirn erreicht und wie sie initial verarbeitet wird, als auch welche kolossallen Effekte sie auf selbiges hat und auch dadurch bewirken kann. Jedoch haben die Zwischenschritte, also wie das menschliche Gehirn eintreffende Signale in eine scheinbar spezialisierte und abstrakte Repräsentation vonMusik umwandelt, vergleichsweise wenig Aufmerksamkeit erhalten. Um die dadurch entstandene Lücke zu adressieren, hat die hier vorliegende Dissertation diese Prozesse und wie selbige durch Modelle erklärt werden können in vier Projekten untersucht. Die ersten beiden Projekte beinhalteten die Herstellung und Implementierung von zwei Toolboxen um erstens, inhärente Probleme der auditorischen Neurowissenschaft, daher auch neurowissenschaftlicher Untersuchungen von Musik, zu verbessern und zweitens, eine Basis für weitere Fortschritte durch Standardisierung und Automatisierung zu schaffen. Im genaueren umfasste dies die stark beeinträchtigten Hörschwellen und –fähigkeiten in MRT-Untersuchungen und die erschwerte Lokalisation und Parzellierung des menschlichen auditorischen Kortex als Kernstruktur auditiver Verarbeitung. Das dritte Projekt befasste sich mit der augenscheinlichen Spezialisierung von Musik im menschlichen Gehirn durch die Untersuchung funktionaler und organisatorischer Prinzipien des auditorischen Kortex und Netzwerks bezüglich der Verarbeitung verschiedener auditorischer Kategorien vergleichbarer sozialer Bedeutung, im genaueren ob die Wahrnehmung von Musik ein distinktes und spezialisiertes neuronalenMuster hervorruft. Umeine ausführliche Charakterisierung der entsprechenden neuronalen Muster zu ermöglichen wurde die Segregation und Integration der Regionen des auditorischen Kortex untersucht. Im vierten und letzten Projekt wurde ein hochmultimodaler Ansatz,welcher fMRT, EEG, Verhalten undModelle verschiedener Komplexität beinhaltete, genutzt, umzu evaluieren, wie die zuvor genannten Repräsentationen von Musik entlang der kortikalen Hierarchie der auditorischen Verarbeitung generiert und wie sie möglicherweise durch Bottom-up- und Top-down-Ansätze beeinflusst werden. Die Ergebnisse von Projekt 1 und 2 demonstrierten die Notwendigkeit für weitere Verbesserungen von MRTUntersuchungen und die Definition eines Funktionsmodells des auditorischen Kortex, daHörxi xii ZUSAMMENFASSUNG schwellen und –fähigkeiten stark in Abhängigkeit der verwendeten Datenerwerbsprotokolle variierten und die Lokalisation, sowie Parzellierung des menschlichen auditorischen Kortex basierend auf den zugrundeliegenden Ansätzen drastisch divergiert. Projekt 3 zeigte, dass das menschliche Gehirn tatsächlich eine spezialisierte Repräsentation vonMusik enthält, da selbige als einzige auditorische Kategorie ein bilaterales Netzwerk mit rechtshemisphärischer Gewichtung evozierte. Aus diesemNetzwerk, welches die Rekrutierung anteriorer und posteriorer Teile des auditorischen Kortex beinhaltete, resultierte eine scheinbar abstrakte Repräsentation von Musik in anterioren Regionen des Gyrus temporalis superior, welche präferiert Musik enkodiert, ungeachtet ob gesungen oder instrumental. Die Resultate von Projekt 4 deuten darauf hin, dass der gesamte auditorische Kortex, erneut mit rechtshemisphärischer Gewichtung, an der komplexen Verarbeitung vonMusik beteiligt ist, besonders aber anteriore Regionen, die bereits genannten abstrakte Repräsentation hervorrufen, welche sich exzessiv über die Zeitdauer derWahrnehmung verändert und nicht hinreichend durch eines der getestetenModelle erklärt werden kann. Die spezialisierten und abstrakten Eigenschaften dieser Repräsentationen wurden weiterhin durch die prädiktiven Fähigkeiten der getestetenModelle unterstrichen, daModelle, welche entweder auf höheren Eigenschaften wie Verhaltensrepräsentationen und mentalen Konzepten oder komplexen akustischen Eigenschaften basierten, stets Modelle, welche auf niederen Attributen wie simplen akustischen Eigenschaften basierten, übertrafen. Zusätzlich konnte kein Effekt von Faktoren, wie z.B. musikalisches Training, welche bekanntermaßen auditorische und daherMusikverarbeitung beeinflussen, nachgewiesen werden. Zusammengefasst deuten die Ergebnisse der Projekte darauf, hin dass die spezialisierte und stabile kortikale Repräsentation vonMusik ein Resultat komplexer Prozesse ist, welche eintreffende Signale entlang der kortikalen Hierarchie auditorischer Verarbeitung in eine abstrakte Repräsentation vonMusik innerhalb anteriorer Regionen des Gyrus temporalis superior durch Top-Down-Prozesse, welche mit akustischen Eigenschaften interagieren und deren Verarbeitung steuern, umwandeln

    An integrative computational modelling of music structure apprehension

    Get PDF

    Ontology of music performance variation

    Get PDF
    Performance variation in rhythm determines the extent that humans perceive and feel the effect of rhythmic pulsation and music in general. In many cases, these rhythmic variations can be linked to percussive performance. Such percussive performance variations are often absent in current percussive rhythmic models. The purpose of this thesis is to present an interactive computer model, called the PD-103, that simulates the micro-variations in human percussive performance. This thesis makes three main contributions to existing knowledge: firstly, by formalising a new method for modelling percussive performance; secondly, by developing a new compositional software tool called the PD-103 that models human percussive performance, and finally, by creating a portfolio of different musical styles to demonstrate the capabilities of the software. A large database of recorded samples are classified into zones based upon the vibrational characteristics of the instruments, to model timbral variation in human percussive performance. The degree of timbral variation is governed by principles of biomechanics and human percussive performance. A fuzzy logic algorithm is applied to analyse current and first-order sample selection in order to formulate an ontological description of music performance variation. Asynchrony values were extracted from recorded performances of three different performance skill levels to create \timing fingerprints" which characterise unique features to each percussionist. The PD-103 uses real performance timing data to determine asynchrony values for each synthesised note. The spectral content of the sample database forms a three-dimensional loudness/timbre space, intersecting instrumental behaviour with music composition. The reparameterisation of the sample database, following the analysis of loudness, spectral flatness, and spectral centroid, provides an opportunity to explore the timbral variations inherent in percussion instruments, to creatively explore dimensions of timbre. The PD-103 was used to create a music portfolio exploring different rhythmic possibilities with a focus on meso-periodic rhythms common to parts of West Africa, jazz drumming, and electroacoustic music. The portfolio also includes new timbral percussive works based on spectral features and demonstrates the central aim of this thesis, which is the creation of a new compositional software tool that integrates human percussive performance and subsequently extends this model to different genres of music

    Principled Explanations in Comparative Biomusicology – Toward a Comparative Cognitive Biology of the Human Capacities for Music and Language

    Get PDF
    The current thesis tackles the question “Why is music the way it is?” within a comparative biomusicology framework by focusing on musical syntax and its relation to syntax in language. Comparative biomusicology integrates different comparative approaches, biological frameworks as well as levels of analysis in cognitive science, and puts forward principled explanations, regarding cognitive systems as different instances of the same principles, as its central research strategy. The main goal is to provide a preliminary answer to this question in form of hypotheses about neurocognitive mechanisms, i.e., cognitive and neural processes, underlying a core function of syntactic computation in language and music, i.e., mapping hierarchical structure and temporal sequence. In particular, the relationship between language and music is discussed on the basis of a top-down approach taking syntax as combinatorial principles and a bottom-up approach taking neural structures and operations as implementational principles. On the basis of the top-down approach, the thesis identifies computational problems of musical syntax, cognitive processes and neural correlates of music syntactic processing, and the relationship to language syntax and syntactic processing. The neural correlates of music syntactic processing are investigated by ALE meta-analyses. The bottom-up approach then studies the relationship between language and music on the basis of neural processes implemented in the cortico-basal ganglia-thalamocortical circuits. The main result of the current thesis suggests that the relationship between language and music syntactic processing can be explained in terms of the same neurocognitive mechanisms with different expressions on the motor-to-cognitive gradient. The current thesis, especially its bottom-up approach, opens up a possible way going toward comparative cognitive biology, i.e., a comparative approach to cognitive systems with a greater emphasis on the biology
    corecore