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Abstract

Performance variation in rhythm determines the extent that humans per-

ceive and feel the effect of rhythmic pulsation and music in general. In many

cases, these rhythmic variations can be linked to percussive performance.

Such percussive performance variations are often absent in current percus-

sive rhythmic models. The purpose of this thesis is to present an interactive

computer model, called the PD-103, that simulates the micro-variations in

human percussive performance. This thesis makes three main contributions

to existing knowledge: firstly, by formalising a new method for modelling

percussive performance; secondly, by developing a new compositional soft-

ware tool called the PD-103 that models human percussive performance,

and finally, by creating a portfolio of different musical styles to demonstrate

the capabilities of the software. A large database of recorded samples are

classified into zones based upon the vibrational characteristics of the in-

struments, to model timbral variation in human percussive performance.

The degree of timbral variation is governed by principles of biomechanics

and human percussive performance. A fuzzy logic algorithm is applied to

analyse current and first-order sample selection in order to formulate an

ontological description of music performance variation. Asynchrony values

were extracted from recorded performances of three different performance

skill levels to create “timing fingerprints” which characterise unique fea-

tures to each percussionist. The PD-103 uses real performance timing data

to determine asynchrony values for each synthesised note. The spectral

content of the sample database forms a three-dimensional loudness/timbre

space, intersecting instrumental behaviour with music composition. The re-

parameterisation of the sample database, following the analysis of loudness,

spectral flatness, and spectral centroid, provides an opportunity to explore

iii



the timbral variations inherent in percussion instruments, to creatively ex-

plore dimensions of timbre. The PD-103 was used to create a music portfo-

lio exploring different rhythmic possibilities with a focus on meso-periodic

rhythms common to parts of West Africa, jazz drumming, and electroacous-

tic music. The portfolio also includes new timbral percussive works based

on spectral features and demonstrates the central aim of this thesis, which

is the creation of a new compositional software tool that integrates human

percussive performance and subsequently extends this model to different

genres of music.

KEYWORDS: music, computer, electronic, composition, micro-timbre, micro-

timing, performance model, electroacoustic, spectral, percussion, jazz drums,

software.
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Chapter 1

Introduction

“Quite early in life I had the urge to make use of pure rhythm...”

– Alexander Tcherepnin, 1962



1.1 Introduction

1.1 Introduction

Since the use of digital technology in creating rhythms, life as a composer of works

for percussion has become much easier. No longer do drums need to be disassembled,

loaded into a van for transportation to a studio, carried through doorways, and then re-

assembled. Instead, different drum sets can simply be stored in a laptop. Paradoxically,

digital technology has also made life for composers more difficult as there are now vast

libraries of percussive sounds which can entail hours spent trying to find a single drum

sound with the “perfect” timbre. The ability to microscopically deconstruct whether

the positioning of a single percussive note in a rhythmic sequence is a millisecond too

late or too early in order for the drumming to sound “real” also entails hours of tedium

for a composer. This time is always spent for the same reason: we want the rhythms

and the timbres to sound as though it were performed by a real drummer.

Since so much time is spent making digital drums sound as if they have been played

by a real human, electronic composers and designers of electronic percussive programs

have moved away from exploring timbral and musical possibilities of drums, in favour

of creating software that plays drums out of the box with pre-existing loops. Although

many of these software programs contain humanizing functions, the functions do not

dynamically adjust themselves to modifications in the rhythmic sequence. With all of

the computational power, and digital audio tools available in the digital environment,

there is much scope to harness existing knowledge in order to create new percussive

music. Unfortunately, this research has so far been limited. The result is a range of

commercial models that create recognisable drum patterns and sounds, with limited

compositional complexity and a “pop music” sound.

To reverse this trend, this thesis critically investigates human percussive performance,

drawing on existing knowledge in the digital environment in order to: create a com-

positional software tool that can be applied creatively; inspire new musical creation;

challenge a listener’s understanding of percussive timbre; and push the boundaries of

existing percussive models and extend the limits of their creative application. This

compositional tool has applications for composers, studios, and sound composers alike.

The methodology used to create the compositional tool, can also assist drummers that

wish to learn more about drumming technique.

Several models have been developed that aim to create human performance variation
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1.1 Introduction

(Bilmes, 1993a; Friberg et al., 2006; Juslin et al., 2002; Waadeland, 2001 and Kirke and

Miranda, 2009). However, very few of these models focus on percussion, and none have

been used solely for creative purposes for composing new music. Moreover, and more

specifically for this thesis, none of these models simulate human performance variation.

So why is there seemingly little focus on modelling human percussive performance

variation and then applying this creatively compared to other instruments? Possi-

ble reasons could include the popularity of other instruments for example, the piano;

compositional difficulty in percussion compared to pitched instruments; difficulties in

synthesizing a jazz drum set effectively; or the difficulty in modelling a performance

with four limbs. Perhaps it is easier to get a drummer and carry the drum set around,

than it is to investigate human percussive performance variation?

An investigation into human percussive performance variation and computer music

composition yields a tremendous array of scholarly writings from disciplines as varied

as physics, computer sound synthesis, music performance analysis, computer science,

and music composition. Within these disciplines, scholars have explored themes such as

the instrumental mechanics of pitched and un-pitched percussion instruments and their

vibrational characteristics (Fletcher and Rossing, 1998). This comprises the difficulty

in accurately representing the micro-timbral variation present in un-pitched membra-

nophones and idiophones in computer sound synthesis (Beauchamp, 2010; Bilbao, 2012;

Macon et al., 1998; Masri, 1996); movement, timing and accents and their effects on

percussive performance variation (Dahl and Altenmüller, 2008, 2013; Dahl et al., 2010);

implementations of humanizing electronic percussive software (Hellmer, 2006); and the

lack of creative application of percussive humanizing systems (Kirke and Miranda,

2009).

On the theme of instrumental mechanics of percussion instruments, existing scientific

literature comprehensively describe the behaviours of a range of percussion instru-

ments.1 This research demonstrates the diversity of vibrational characteristics between

membranophones and idiophones resulting in micro-timbral variation. Moreover, be-

1 See Fletcher (1975, 1978, 1999); Fletcher and Rossing (1998); Hall (1991); Hiller et al. (1986);

Hoffmann (2000); Kirke and Miranda (2009); Peaden and Worland (2011); Richardson (2010); Rossing

(1992, 2000); Rossing et al. (1992); Rossing and Fletcher (1983, 2004); Schwarz (2004); Toulson (2009)

and Wilbur (1996). Owing to the comprehensive studies undertaken by Thomas D Rossing and Neville

Fletcher, recent literature on this subject is scarce. Examples of recent literature includes Peaden and

Worland (2011); Richardson (2010) and Toulson (2009).
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1.1 Introduction

tween similar instruments there are significant differences in vibrational characteristics,

particularly under different playing conditions.

On the theme of computer sound synthesis of percussion instrument, existing research

focussing on the sound synthesis of percussion looks at the ways in which the complex

and varied behaviours of these instruments can be simulated computationally.2 Many

different sound synthesis methods exist, each with their own distinct qualities. How-

ever, the diversity in vibrational behaviour across percussion instruments, especially

considering the behaviours under different playing conditions and subsequent micro-

timbral variations, is difficult to synthesize.

On the theme of human percussive performance variation, existing research empiri-

cally identifies variations between inter-onset-intervals (IOIs), known as “flutter” (Dahl,

2000). The concept of flutter is presented in many of the commercially available hard-

ware and software products, such as Akai’s MPC range, Steinberg’s Cubase, Apple’s

Logic Pro as “humanization” and “quantization” functions. These functions are defined

as “random tempo deviations to beats” (Kirke and Miranda, 2009, p. 36). However,

these functions are limited in producing both temporal and timbral variations directly

related to the physical performance of the instrument. Similarly, of the very few at-

tempts to humanize percussive performance (Bilmes, 1993a; Hellmer, 2006; Waadeland,

2001), none of these systems address micro-timbral variations of a nine-piece jazz drum

set from a physical perspective. As a result, many of these models lack the required

timbral variety.

On the theme of existing implementations of humanizing percussive software, many

existing humanization functions apply temporal deviations and timbral variations with-

out considering the context of a given drum within a broader sequence of drum strikes.

That is to say, different combinations of drum strikes require different combinations

of human movement. In many examples of humanizing percussive software the biome-

chanical link between timing and timbre is not made, resulting in timbre and timing

variations that are not representative of real human percussive performance. Exam-

ples of this include “groove templates” (Kirke and Miranda, 2009; Wright and Berdahl,

2 See Adrien (1991); Aramaki et al. (2006); Avanzini and Marogna (2010); Bilbao (2009, 2010,

2012); Bilmes (1993a); Cook (1997); Fontana and Rocchesso (1996, 1998); Fourcade and Cadoz (2001);

Gouyon et al. (2003); Laird et al. (1998); Lakatos (2000); Legge and Fletcher (1989); Macon et al.

(1998); Murphy et al. (2007); Smith (1991); Touze et al. (1998); Trautmann et al. (2001); van den Doel

and Pai (2003); Waadeland (2000) and Wright et al. (2008).
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2006) and quantization functions. Other performance modelling systems, such as the

KTH rule system (Friberg et al., 2006) take some aspects of physical performance under

consideration, but these systems focus largely on keyboard-based instruments.

On the theme of creative applications of percussive humanizing systems, attempts for

creative application are either very compositionally limited because they model existing

compositional styles or genres (Bilmes, 1993a; Gouyon et al., 2003; Waadeland, 2000;

Wright et al., 2008), are not musically useful owing to the implementation (Hellmer,

2006), or that the main focus of the application is not music composition (Blaine and

Perkis, 2000).

The research presented in this thesis will fill the gap in existing literature by creat-

ing a physical and performance context-dependant dynamic data-driven model, using

a nine-piece jazz drum set, and applying this to music composition.

One contribution of this research lies in the creation of a large database of samples

from a drum set, and the classification of this database based upon the vibrational

behaviour and spectral features of the constituent instruments. The samples were

recorded at various strike strengths and locations, and were then manually classified

into zones based upon location of the strike. Each sample was then analysed to obtain

their average loudness, spectral flatness and spectral centroid values.

Another contribution of this research is manifested in the approach to governing timbral

variations in the performance model. This research hypothesises that timbral variations

in human percussive performance are a result of two key aspects of human movement

and biomechanics: firstly the difficulty of moving an arm from one height to another

in successive strikes; and secondly, simultaneous bimanual striking at different strike

heights. In order to model timbral variations based upon these two aspects of human

performance, each drum sample is classified into one of five zones representing different

target areas of the drum. The five zones, subdivide the playable surface area of the

drum, and are based upon the vibrational behaviour of the instruments. Every combi-

nation of drum heights is allocated a difficulty level that results in a greater probability

of a given zone being selected. When a zone is selected, a sample is played back from

that zone.

A further contribution of this research is linked to the implementation of timing in

5



1.2 Methodological Overview

the performance model. In order to create a data-driven timing model, three drum-

mers of varying skill levels were recorded playing along to a jazz song. The timing

information of strike during the performance was then manually verified and extracted.

The onset values of the three drummers exist as an array of data which, due to the dis-

tribution of values and likelihood of onsets occurring at specific times, determine both

positive and negative onset times for the playback of each synthesised note, selected

based upon the zone selected.

The final contribution of this research relates to the design of the PD-103 with its

MIDI compatibility for live improvisation, and the Rewire capability to integrate the

software tool within other commercial compositional tools. Although the software tool

can be used with MIDI, it is not designed around the MIDI specification allowing for

future revisions of the software outside of the MIDI protocol. The model presented in

this research is intended as an example to demonstrate and validate the thesis, which

is the creation of new compositions, based upon temporal and timbral performance

variations that model human performance variation. Moreover, this system extends

the current state of the art with regards to models of percussive performance variation

and their use in music composition.

1.2 Methodological Overview

Research areas include, firstly, the vibrational characteristics of drums with specific

reference to membranophones and idiophones in a typical jazz drum set. Secondly,

digital sound synthesis techniques and their suitability for electronically simulating the

instruments in a jazz drum set. Thirdly, the biological and physical aspects of human

percussive performance and the effect on instrumental interaction and timbre. Finally,

the evolution of acoustic and electronic percussive performance and composition that

has led to the development of a compositional framework based upon micro-timbral

and micro-temporal performance variations. This multifaceted approach is largely un-

avoidable owing to the interdisciplinary nature of computer music. This is highlighted

by Moore (1990), who states that:

“Computer music, however, is strongly interdisciplinary. In computer mu-

sic, therefore, a correct view is one that does justice to several points of

view simultaneously” (Moore, 1990, p. 23)

This thesis presents a new methodology for the creation of a compositional tool that

simulates variation in human percussive performance using a nine-piece jazz drum
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1.2 Methodological Overview

set. It combines primary and secondary research as well as employing experimental

techniques to extract data relating to musical instruments and musical performance.

Empirical data is obtained using a variety of analytical tools and methods, which were

interpreted in the context of secondary research presented in the review of literature.

This methodology is summarised in Figure 1.1.

Figure 1.1: Methodological overview of the thesis.

The first part of the research involved capturing, and recording, nine thousand individ-

ual drum hits from a nine-instrument jazz drum set, containing both membranophones

and idiophones. The result was a database of samples that extensively capture a wide

variety of timbral variations for each instrument. This was followed by an analysis of

the spectral content of the samples, using Matlab functions contained in MIRToolbox

(Lartillot and Toiviainen, 2007; Lartillot et al., 2008). This allowed a parametric re-

mapping of the samples in the database for performance modelling and compositional

purposes.
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The second part of the research involved capturing, and analysing human percussive

performances in order to develop performance rules for the model. To determine the

temporal variation inherent in a performance, and to model performer biomechanics,

audio, video and accelerometer data based on the performance of three drummers of

different skill levels (unskilled, semi-skilled, and skilled) was captured. This data was

analysed using Max/MSP and Sonic Visualiser. These results were then used to de-

velop performance rules for the model. The extraction of real timing values was used

to represent the timing component of the model.

The third part of the research involved the creation of a software model, the PD-

103,3 which simulates human percussive performance variation. As discussed above,

the PD-103 was developed using rules obtained from the analysis of the human per-

formances, and combines the micro-timbral variation in the sample database with real

timing values extracted from the performances. These fuzzy logic based performance

rules were designed to interactively evaluate the current and first-order context of the

instruments selected by the user, with a view to determine, based upon the biome-

chanical considerations in the performance, an appropriate timbral variation required

to simulate both bio- and instrumental mechanics.

The final part of the research involved producing a creative music portfolio that ef-

fectively demonstrates the central aim of this thesis: the creation of a new composi-

tional software tool, using a nine-piece jazz drum set, which simulates human percussive

performance variation in different genres of music.

1.3 Research Aims

As discussed above, the main aim of this research is to create a compositional software

tool that simulates human performance variation in percussion, using a nine-piece jazz

drum set, in order to generate new and varied musical works.

Accordingly, this research aims to:

3 The software is entitled “PD-103” in homage to the theory of “Participatory Discrepancies” or

“PDs” (Keil, 1987, p. 275), and because it is version one using three parameters. The theory of

PDs and the relationship to African music was an inspiration for interest into the area of percussive

performance variation, and composition. This inspiration is reflected in the creation of meso-periodic

rhythms in the composition portfolio.
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1.4 Outline of this Document

• present an original real-time interactive compositional software model, which gen-

erates percussive performance variation by combining data-driven and stochastic

approaches;

• demonstrate the creative application of the software model to different and varied

genres of music, with specific reference to music with complex rhythms;

• extend existing percussive performance software models by using a nine-piece jazz

drum set;

• demonstrate the creation and use of timing profiles extracted from the timing

values of real human performances;

• present a new methodology for percussive performance modelling, and propose an

original set of performance rules, based upon physiological constraints of human

motion and the motor requirements of percussive performance;

• present a new method for classifying multi-sampled percussion based upon in-

strumental mechanics and the application of fuzzy logic representations of per-

formance for interactive timbre production; and

• propose new timbral and data-driven compositional parameters based upon the

instruments in a nine-piece jazz drum set.

1.4 Outline of this Document

As discussed, owing to the interdisciplinary nature of computer music, this research

takes a multifaceted approach, taking into consideration: the effect of instrumental

mechanics on timbre; synthesis techniques for modelling timbre; human performance;

computational representation of human performance; and the subsequent implementa-

tion and compositional application of the instrumental and performance model. Sub-

sequently, the thesis begins with a chapter that reviews the limitations of existing

percussive performance modelling software.

Chapter Two reviews the literature concerning limitations of existing percussive soft-

ware systems. Such systems consist of humanizing systems, data-driven systems, inter-

active systems, and other performance modelling systems. Humanizing systems apply

generic timing values to events, while data-driven systems use values of real perfor-

mances. In each type, the simulation of human percussive performance variation is

9



1.4 Outline of this Document

limited. Limitations in compositional control are discussed in relation to interactive

systems, followed by a review of other performance modelling systems applied to other

instruments.

Chapter Three presents the theoretical framework of the performance software model,

and is divided into three parts. The first part of this this chapter presents a nine-piece

jazz drum set, consisting of membranophones (drums with skins) and idiophones (metal

plates). Owing to differences in construction, each display unique vibrational character-

istics after excitation, caused by differences between the instruments, particularly open

and closed bottom drums, and edge clamped and non-edge clamped cymbals. Since

a convincing performance model requires a convincing representation of the musical

sound, it is necessary to provide a review of literature on the theme of physics of musi-

cal instruments (drawn from the work of Fletcher and Rossing (1998)) directly relating

to each constituent part of the jazz drum set used within this study. Additionally, this

chapter discusses global variables of the jazz drum set, such as their configuration and

drum tuning. By investigating the instrumental variables from a physical perspective,

major issues concerning the modelling of a musical instrument with such diversity, as

well as number of configuration options are highlighted. This is followed by a brief

review of the suitability of different sound synthesis techniques with specific emphasis

on their ability to simulate the instrumental mechanics of the instruments. An assess-

ment of each technique emphasises some of the advantages and disadvantages of their

implementation in the current context, and concludes this section.

The second part of Chapter Three reviews the literature on the theme of human perfor-

mance. Specifically, it presents a review of the literature concerning the physical factors

that can affect human percussive performance, as well as the effect of biomechanics and

motor control on timing and timbre. This chapter focuses on the underlying human

variables within performance that lead to variations in excitation, altered mechani-

cal and vibrational characteristics of the drums, and subsequent micro-variations in

timbre. This discussion is formulated through a re-contextualisation of David Marr’s

(1982) tri-level analysis of human representative computer systems in the context of

drumming development goals. This allows for a biomechanical and kinematic approach

to analysing performance, which refines the discussion on the intrinsic human computa-

tion and planning of physical control and coordination, including the secondary effects

of control and coordination resulting from percussive performance.
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The third part of Chapter Three reviews literature on relevant compositional ap-

proaches, and presents some compositional applications of the software, which is de-

signed to augment and extend the performance model into new compositional realms.

This section begins with a review of relevant literature on the themes of computer-

assisted composition, complex rhythms, composing using spectral features, and elec-

troacoustic composition. The emphasis on complex rhythms includes discussion con-

cerning African meso-periodic rhythms, and spectral features employing a data-driven

approach to timbral parameterisation as an inherent feature of the performance model.

Chapter Four describes the methodologies used to collect empirical data from both

the instruments and the human percussive performance. The first section further de-

fines the conceptual methodology of the performance model by integrating conceptual

discussion from the theoretical framework with empirical outcomes. Parts two to five

of this chapter describe the research design methods, and reviews literature relevant to

the research designs. In addition, these sections describe the protocols and procedures,

and discuss how empirical data were analysed in order to develop a series of rules that

could be used in the construction of a software performance model. Part six of this

chapter presents an analysis and discussion of the performance data, and describes the

performance rules created from a discussion on the finding of the empirical data. The

implementation of these rules follows in part seven of this chapter, with particular focus

on the amalgamation of the representations of timbre and timing. The computational

implementation of parts of the graphical user interface of the PD-103 that assist in

achieving the compositional objective is also discussed. The PD-103 software is in-

cluded on the DVD for Appendix A.

Chapter Five introduces the composition portfolio and presents analytical notes for

each work. This chapter comprises of a reflection of the artistic works presented, with

a view to evaluating the compositional outcome with reference to the initial motivation

and compositional vision. The analytical notes serve to discuss the implementation of

the pieces with regard to the described compositional applications, and evaluate the

compositional application of the model within the music style. Owing to the subjective

nature of artistic evaluation, these analytical notes are for informational purposes, de-

signed to offer an insight into the creative practice with the PD-103. The composition

portfolio comprises of the following pieces:

Study No 1: African Meso-Periodic (I) (4:27)
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Study No 2: African Meso-Periodic (II) (4:50)

Study No 3: Exploration of Pitch Variation in the Tom-Toms (3:37)

Study No 4: Exploration of Spectral Centroid and Isomorphic Rhythm (5:03)

Study No 5: Quark (1:00)

Study No 6: Demonstration of Improvisational Application (9:18)

Study No 7: Electroacoustic Piece (10:00)

Study No 8: Demonstration of Skill Levels x 6 (2:40)

Study No 9: Demonstration of Parametric Variation (skilled drummer) - 3 x (1:00)

Total Running Time: (43:55)

These compositional studies are included as “.wav” files in Appendix B, and on the

Audio CD in Appendix C.

Chapter Six provides an evaluation of the performance model including a reflection

on its compositional application. Areas of the performance model under evaluation

comprise the data collection methods, the analysis and interpretation of the results,

and the subsequent computational implementation of the model. The critical reflection

of the composition portfolio combined with the evaluation of the performance model

reveals areas for further artistic investigation.
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Chapter 2

Limitations of Existing

Percussive Software

“I started to be an engineer but I banged me thumb on the first day. I became a

drummer because it was the only thing I could do...”

– Ringo Starr



2.1 Humanizing Systems

As early as 1972, there were fears by those who did not understand computers that per-

forming musicians would be rendered obsolete (Howe, 1972). In contrast, those who un-

derstood computers were describing computer music as being uniform and monotonous.

This view is a natural progression of the human psychology towards computers, where

“human uniqueness is defined not in terms of strengths but a certain frailty” (Turkle,

1992, p. 69). Humans consider computers to think in a similar way, but to lack “feeling”

(Turkle, 1992, p. 72). In computer music, this frailty is apparent in a lack of human

performance variation, coupled with lack of musical “feel”. Washburne describes feel

as the rhythmic positioning of a sound events relating to attacks and releases, and the

execution of those sound events relating to “timbre, intonation, inflection, embellish-

ment, and dynamics” (Washburne, 1998, p. 161). In the early days of computer music,

creating variations in rhythmic positioning and execution was difficult owing to limited

synthesis parameters and computational constraints (Howe, 1972). As technology has

progressed, computational constraints have reduced, delimiting the depth and number

of simultaneous synthesis parameters.

There have been several recent attempts to humanize computer performance in or-

der to make music using percussion instruments. As well as commercially available

humanizing systems, other attempts include data-driven systems that extract, analyse,

and use data from human performances with a view to re-creating them. Attempts also

include interactive systems whose algorithms modify musical parameters based upon

user input. At the same time, other performance modelling systems have been used to

simulate human expressive performance or to humanize performance on instruments

other than percussion. Each of these systems demonstrates a variety of methodologi-

cal perspectives relevant to modelling percussive performance variation. These will be

discussed in the following sections of this chapter.

2.1 Humanizing Systems

Sequencers are the most common programmable devices for composing music elec-

tronically. Integrated into many digital audio workstations (DAWs), the sequential

nature of the device, and its capability for recording, editing, playback and storage

of performances as MIDI information, makes this device particularly popular.4 The

powerful control of MIDI information also allows the integration of external hardware

and software, such as drum machines and grooveboxes and particularly percussive step

4 For an interesting discussion on the workings of a sequencer, see Roads (1996, pp. 675-677).
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sequencers.

Commercially available software sequencers allow the recording of live performances

from MIDI controllers. In the case of drums, a drum set can be played and recorded

as MIDI or as audio. In the absence of a drummer, another option is to manually

enter the desired sequence of MIDI information, and to apply a humanization function

that renders timing and velocity values to a user-defined selection of events according

to a given preset. Software sequencers possessing this functionality include Steinberg’s

Cubase, Apple’s Logic Pro, Avid’s ProTools, among others. These presets often contain

functions that edit the MIDI note information, for example reducing the velocity of

every other note by 50% or adding 20ms of positive asynchrony to every third note.

In some cases these humanization functions add “random errors within certain limits”

(Kippen and Bel, 1994, p. 82).

Another function that is found in computer-based DAW sequencers is a form of quan-

tization called the groove template. A user selects an existing recording or MIDI

sequence, the sequencer analyses material for attack points, and automatically puts

the selected pieces into a similar rhythmic pattern as the attack points in the refer-

ence material. From a real performance perspective, this reconfigures the syntax of the

rhythm, without taking consideration of timbral variations created as a result of that

syntax. Thus, the timbral and dynamic level deviations of the events in the selected

material do not match the new temporal locations. While this can produce interesting

musical results, this function removes context. There are instances when the timbre

and dynamic levels of events require separation from the temporal locations, as seen in

an experiment by Dahl (2000). Dahl’s listening test used a “timing template” to deter-

mine whether listeners could identify interleaved accents in drumming based upon the

cyclical durational positioning of the accented events devoid of timbre and dynamic

level changes. Dahl’s findings indicate that the durational differences alone marked

accent locations to listeners. This research has important implications for music ar-

ranging in sequenced systems with limited timbral variation.

There are many instances of popular music that use single samples as opposed to

multi-sampling. One example can be seen in early hip-hop made using hardware sam-

plers of limited memory and sample time. Because of the limited memory, the same

sample was often used in whole rhythmic sequences, resulting in no micro-timbral vari-

ations between notes. Consequently, the performances of these sequences are perceived
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to be artificial. Rath and Waltermann (2008) investigated this and found that inherent

differences in drums of equally perceived volume, is relevant to the perceived character

of a musical phrase. Rath and Waltermann also suggested that using a single sample

in a musical phrase can be attributed to the “MIDI studio sound” (Bilbao, 2012; Rath

and Waltermann, 2008).

The first programmable digital drum machine, the LM-1, was produced by Roger Linn

in 1979 (Manning, 2004, p. 306). Since then, drum machines and grooveboxes have

used a variety of sequencing formats, including step sequencers. The user is typically

able to control the individual musical events and in some cases, like the early Roger

Linn drum machines and the Akai MPC series, a “swing value” can be applied to a

sequence of notes. One of the major drawbacks when using a step sequencer, however,

is the ability to create complex polyrhythms in compound time signatures, which are

often found in African music. In addition, the modification of individual events to cre-

ate minor performance imperfections is time consuming. As the system loops through

the sequence, these imperfections are also repeated. These swing functions tend to

be applied across a sequence of events, for example, 15ms of positive asynchrony to a

single instrument, and are generally not performance-context dependant. These asyn-

chronies are described as “swing ratios”, the ratio of the duration between long and

short patterned eighth notes, (Friberg and Sundstrom, 2002) or “Beat-Upbeat-Ratio”

(BUR) which is defined as the duration between downbeat and up-beat eighth notes

(Benadon, 2006; Butterfield, 2011).

Despite differences between the swing function and real swing ratios, the swing function

introduces a sense of either lateness or earliness to the sequence, sometimes referred to

as “feel”,5 by changing the IOIs between other percussive events. Despite the popularity

of swing functions in drum machines and groove-boxes, they are far from contextually

accurate in realising true human performances. Ideally, a step sequencer should auto-

matically apply a humanizing function (either a timbral or temporal variation, or both)

to an event, depending on its current and previous context. Compositionally, a step

sequencer should have greater flexibility in creating multiple compound polyrhythmic

sequences.

In 2005, Kahl Hellmer developed a VST plugin that simulated timbral variation for

5 See Stewart’s “feel spectrum” as cited in Prögler (1995) for additional asynchrony values and

“feels”.
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MIDI controlled percussive performance (Hellmer, 2005). The aim of his research was

to overcome the dullness of typical drum machines, by creating a single plugin using

the VST SDK (Steinberg Development Kit). Hellmer’s approach used statistical meth-

ods to trigger multiple samples of a drum set that would simulate timbral variation.

In order to simulate the time deviations, each sample was preloaded with 500ms of

silence at the beginning of the file, with the time deviation represented by changing

the sample-start position to offset any lateness. By setting the default sample start

position to halfway through the silence, Hellmer was able to create an inherent latency

of 250ms. Therefore, a sample-start position later than the default 250ms produced

an early onset, and a sample-start position earlier than the default 250ms produced a

late onset. In order to generate sample-point values, Hellmer used a normal frequency

distribution curve, from which individual sample values were drawn. Hellmer noted

that as the intention of the research was not to create a unique performance template,

using a normal frequency distribution curve was the best approach given that previous

research into the playing of a drums found differences in playing across drummers.

However, one problem with using a normal frequency distribution curve to generate

timing deviations is the standard deviation. With 95% of the generated values between

+0.6 and −0.6 (with a maximum of +1.0 and −1.0), the lower probability of selecting

a higher deviation from the mean value, makes the resultant higher timing deviations

more prominent. A large timing deviation could be construed as a playing error rather

than an embellishment, particularly if the IOI is relatively low. This can cause timing

deviations greater than the IOI resulting in a note that is perceived to be “out of se-

quence”.

Although the insertion of 500ms silence into the header of each sample caters for the

simulation of early and late onsets, this approach is not computationally efficient. For

every 100 samples, an additional 50 seconds of audio are loaded into the computer’s

memory buffer. By dedicating computer memory to silence, fewer samples can be

loaded into the computer memory, thereby reducing any timbral variability afforded by

a multisampling approach. However, because Hellmer only used 81 samples to repre-

sent a bass drum, a snare drum, a hi-hat, two tom-toms, a ride cymbal and a crash

cymbal, the sonic representation of the instruments and their timbral variation was

already relatively low. In his implementation, only six samples sonically represent the

complete range of timbres produced by a tom-tom.
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Another limitation of Hellmer’s implementation was that each instrument was rep-

resented by its own plugin and isolated algorithm, rather than being combined, and

subject to a single algorithm that accounted for all instruments simultaneously. This

resulted in each instrument operating independently of each other, thereby removing

the performance context from the timbre and timing deviations. Unfortunately, the

plugin was also prone to glitches in the attack phase of the sounds, which, as Hellmer

describes, renders the software “useless in any context of music making or audio pro-

duction” (Hellmer, 2005, p. 19).

In 2006, Hellmer revised the timing deviation algorithm by using timing values ex-

tracted from human performance (Hellmer, 2006). The performances were by jazz

drummers, although the values used were extrapolated from the analysis of only eight

bars of performance. In the revised software, he notes three phenomena related to

performance: drift or a drummer’s deviation from tempo (Dahl et al., 2000), flutter or

the deviations of individual notes from the drift (Dahl, 2000), and swing or temporal

shifting of hi-hat strikes (Waadeland, 2001). Drift was implemented as a continuously

changing sample-point value that was generated independently from other timing errors

and added to the silence offset value at the beginning of each sample. Each new drift

value was then calculated from the last value, to a maximum of deviation of −4410 to

+4410 samples. These sample point values were generated using a normal frequency

distribution curve and scaled so that the maximum deviation values were relative to the

current drift value. To simulate flutter, an additional value was added to the current

offset position and drift value. The flutter value was user-selectable and multiplied by

the standard deviation of the current note. In order to simulate swing, any MIDI notes

corresponding to a manually added MIDI note were not emphasised, while other notes

were. However, Hellmer identified two combined limitations of his implementation: the

four programming pointers (a variable that stores the reference to another variable);

and the introductory silence at the beginning of each sample. Where a pointer is reas-

signed before the end of the introductory silence of the previous value (up to 200ms),

the minimum tempo and note value that can be played before mis-timing occurs is

eight notes at 150 beats per minute (BPM) (Hellmer, 2006, p. 35).

Another recent attempt to humanize drum patterns involved applying different amounts

of velocity to a MIDI drum pattern using fuzzy logic rules.6 In this system, six fuzzy

6 For further reading on fuzzy logic, the reader is referred to Bělohlávek and Klir (2011); Chen and

Pham (2000); Passino and Yurkovich (1998) and Bergmann (2008).
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logic rules were created, that modified the velocity of a bass drum depending on its

temporal positioning relative to a downbeat in a rhythmic sequence. O’Sullivan and

Boland (2010) note that the velocity patterns of the humanized rhythm were similar to

the original, although less pronounced. This was attributed to the limited number of

fuzzy logic rules, and fine-tuning of the fuzzy logic implementation. As a humanizing

function, this system is limited because the humanization only relates to the veloc-

ity of a bass drum. Despite this, O’Sullivan and Boland describe how fuzzy logic has

promising applications in the field of percussion humanization, particularly when used

in conjunction with other computer techniques.

Computer models of percussive humanization also feature in research related to expres-

sive music performance (Aldridge, 1994; Fletcher and Rossing, 1998; Hiller and Baker,

1964; Kirke and Miranda, 2009; Pinksterboer, 1992; Sullivan, 1990; von Hornbostel

and Sachs, 1914; Warren, 1982). Literature on the creation of Computer Systems for

Expressive Musical Performance (CSEMPs) has seen a range of approaches and tech-

niques for different purposes (Katayose et al., 2012; Xenakis, 1991). These range from

the expressive playback of musical scores and data files, such as Finale and MIDI, to

expressive computer-music (Kirke and Miranda, 2009). However, current literature on

CSEMPs indicates that there are very few systems that relate specifically to percussive

performance.

Notably, one of the more successful percussive CSEMP models was used in Brazilian

drumming (Wright and Berdahl, 2006). This system analyses the timbre and temporal

location of each note within an audio file and creates a performance template, similar

to a groove template, in order to simulate creative performances. Kirke and Miranda

(2009, p. 27) note, however, that this system was not designed to generate creative

performances. This is important because the creative manipulation of CSEMPs is a

significant component of their evaluation (Katayose et al., 2012; Kirke and Miranda,

2009). Despite this, generating creative performances is seldom the primary function

of a CSEMP.

2.2 Data-Driven Compositional Systems

As complex computational models of music become more prevalent, researchers in the

field of Music Information Retrieval (MIR) have focused on ways of obtaining empirical

data from music and musical performance in order to develop a greater understanding
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of human musical performance and cognition. One example of this is Inverse Perfor-

mance Theory (Mazzola, 1995, 2011) which, in contrast to modelling a performance

process from a score, involves “the reconstruction of the performance process from a

given performance” (Mazzola, 2011, p. 227). MIR systems were not initially developed

for creative purposes but, given the diverse technical field of computer music, they

have been adopted for creative use (Dean, 2009, p. 38). Mosaicking, the automatic

generation of sound sequences based upon their acoustical properties (Zils and Pachet,

2001), is one example of this. In most cases, the MIR process can be inverted to create

models of extracted data. Many of these inverted MIR models are highly specialised

and, therefore, compositionally limited.7

Another example of a data-driven compositional system is the drum loop system pro-

posed by Riskedal (2002). This system sought to extract each onset within a drum loop,

separate the drum sounds, extract the drum sounds frequency boundary (for classifi-

cation), find a replacement drum sound (based on that classification) from within a

database of sounds, and then either rebuild the existing drum loop with the new sam-

ples, or create a new drum loop (Riskedal, 2002). However, a reduction in scope during

the course of his investigation led him to focus on the extraction of percussive onsets,

analysis, and signal separation, resulting in a very limited compositional tool. Nev-

ertheless, Riskedal’s work does highlight the potential for compositional tools to be

developed through convergent research sub-disciplines in computer music.

The automatic extraction of temporal information from polyphonic audio signals, an

automated but non real-time version of Riskedal’s example, was later attempted by

Uhle and Dittmar (2004) who generated musical scores for un-pitched percussion in-

struments from an audio signal. The experimental procedure of the investigation, oper-

ating temporally, allowed an estimation of metrical structure and tempo (as tatums).8

The pattern-matching procedure made use of “rules derived from musical knowledge”

(Uhle and Dittmar, 2004, p. 6). This included; stylistic determination based upon the

IOI of same-instrument events, which can be extended to use “backbeat” to determine

bar lines, and metrical bar line start points based upon bass drum position. However,

Uhle and Dittmar observe that the methods fail when the source audio material fea-

tures highly expressive performance (p. 8) and pieces with lots of “fills”. Moreover,

7 For further information regarding the field of MIR, the reader is invited to read Britto Jr, A. D.

S., Gouyon, F., and Dixon, S. (Eds.). (2013).
8 Tatums are defined as a perceived high frequency pulse, and “is the lowest level of the metrical

musical hierarchy” (Bilmes, 1993b, p. 21).
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a high range of dynamic levels between events for the detection methods negatively

affected the overall performance. Another limitation was the use of inferred musical

knowledge in the meter estimation process, where the identification of metric position

based upon same-instrument IOIs and assumptions of the notion of “backbeat” (p.

6) failed to account for stylistic deviations of these rules. A noted example was the

backbeat of the bass drum in Reggae music (p. 8). Moreover, this research, did not

stylistically identify the one hundred and sixty-one musical excerpts under analysis.

This is particularly important given their acknowledgement of stylistic deviations from

inferred knowledge. As a result, the research did not allow sufficient appraisal of the

robustness of the methods across different stylistic types and their inherent complexity.

Focussing on re-creating percussive rhythm, Bilmes (1993b) developed a software pro-

gram called “xited”, which contained three perception-based algorithms that “charac-

terise percussive rhythm”. The three algorithms were based on metric content, tempo

variation, and deviations (Bilmes, 1993b, p. 1), from a Cuban drumming performance

and subsequently resynthesized. During the resynthesis process, six different quanti-

zation methods were applied to the samples extracted from the original performance

and then triggered. Bilmes reported some success in the ability of the algorithms and

the effectiveness of the quantization methods. One limitation of this research, however,

lies in the re-synthesis of the drum pattern using samples from the original performance.

One contrasting application of MIR can be seen in the development of a method to de-

tect and classify different percussive events in real-time for the purposes of implementing

the technique into an interactive musical system (Şimşekli et al., 2011). However, the

interactive and real-time nature of the implementation revealed some considerations

that served as constraints to the implementation of various techniques. One such tech-

nique required the development of a model-based approach, whereby a scaling variable

was used as a template to determine the spectral shape of each instrument. In addition,

a Hidden Markov Model (HMM) was used to classify the sounds from the audio source.

This implementation was then tested using different hand-clapping and Turkish per-

cussive instruments. Şimşekli et al. found that the real-time performance was good,

thus lending itself to different interactive applications, although most of the latency

was caused by the HMM. They also found that using the technique in relation to other

percussive instruments and polyphonic music significantly reduces the real-time per-

formance of the model. This example demonstrates the challenges faced in extending

MIR models to composition particularly in real-time percussive humanization.
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2.3 Interactive Systems

An interactive music system is broadly defined as a system “whose behaviour changes

in response to a musical input” (Rowe, 1993, p. 1). From this starting point, Rowe

goes on to describe how interactive music systems draw upon perspectives from sev-

eral different fields of study, including artificial intelligence. Artificial intelligence is of

particular importance because behavioural changes in the system require some form of

decision-making, thus inferring a degree of (artificial) intelligence. The levels of inter-

activity and intelligence or “dimensionality of control” (Pressing, 1990, p. 12) amongst

current systems vary significantly and are driven by the intended application of the

system: be it composition or live performance.

In his 2009 article entitled “Understanding Interactive Systems”, Drummond (2009)

writes that the term “interactive composing” was first used by Joel Chadabe in 1981.

Chadabe described “interactive composing” as a method of “using performable, real-

time computer music systems in composing and live performance” (Drummond, 2009,

p. 22). In this article, Drummond discusses the definitions, models, and classification

of different interactive systems, and describes a complex interplay between encoded

algorithms, mappings and sound generation routines, which evolve with performer in-

teraction.9

One of the earliest interactive rhythmic systems, the Rhythmicon, was developed by

Henry Cowell and Leon Theremin in the early 1930s (Schedel, 2002). Despite being

relatively unsuccessful, Rhythmicon is considered to be an important part of interactive

music, despite the lack of definition for interactive music at the time.10

Drummond also writes that Chadabe distinguishes non-interactive from interactive

musical systems by describing their use as a “design-then-do” procedure (Drummond,

2009, p. 22). Two of Chadabe’s compositions, Solo (1978) and Rhythms (1980), were

written using interactive systems. Interestingly, in Rhythms, Chadabe said that ini-

tially the computer generated the melodies and rhythmic patterns automatically, while

he entered commands to modify chords, pitch, melodic and rhythmic variations, and

random notes. According to Chadabe, the sounds contained in the piece were “rem-

9 For excellent discussions on all facets of interactive systems, the reader is directed to Drummond

(2009); Paine (2002); Rowe (1993); Winkler (1998).
10 For further information on Henry Cowell and the Rhythmicon, please refer to Smith (1973) and

Schedel (2002).
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iniscent of Indonesian, Caribbean and African percussion instruments” (Drummond,

2009, p. 22).

In 1996, Leonard, a composer and designer of interactive computer music systems,

wrote an article entitled “Legacy: San Lazaro. The integration of composition, per-

formance, and computer programming”. In it, he makes specific reference to a piece

entitled “Legacy: San Lazaro”, in which a computer interacts in real-time with an im-

provised saxophone performance (Leonard, 1996). The composition makes use of both

rhythmic and input variation generators. The rhythmic variation generator maps sam-

pled percussion timbres to a polyrhythm’s constituent parts, with rhythms imported

via standard MIDI files. Markedly, this implementation extended the rhythm in ways

that a live percussionist could not. For the input variation generator, the computer

listens to the pitch played by the performer, then using a Markov chain, creates a

melody and assigns that melody to a polyrhythm. The Markov chain buffer uses a

“first in, first out” approach (Leonard, 1996, p. 90) in order to ensure that the latest

performance information is represented.

Variations to the rhythm and input generations were designed to coincide with one

of three different sections in the piece. Notably, the second section uses the performer

input volume to control the panning amount of a simulated organ sound. Additionally,

the computer plays a triad of the top pitch of the input note, and two stochastically

generated pitches below the performers note. The third section sees changes in pitch

input of two or more successive notes alter the rhythmic density of the polyrhythms.

Leonard describes how in the final part, he programmed “a call and response between

human and machine” (Leonard, 1996, p. 91) in the form of performer MIDI input.

Leonard then describes how “this section challenges the performer to adapt to frequent

changes in musical directions” (p. 91). Hsu used a similar interactive call and response

method applied to the timbre of a saxophone player (Hsu, 2006, 2008). It contained

real-time algorithms, which analysed the timbral characteristics of the saxophone in-

put, and then generated the response output from the computer.

Another interactive music system relevant to this research owing to its focus on percus-

sion, is the “Jam-O-Drum” developed by Blaine and Perkis (2000). The Jam-O-Drum

is a tactile multi-user device that integrates drum pads and sensors or drum triggers in

a tabletop surface. The drum pads are connected to a computer where an algorithm

rhythmically quantizes and emphasises the strikes (to account for performer skill level),
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sends audio feedback to the user based upon these algorithms, and then renders visual

projections onto the surface. However, the Jam-O-Drum gradually moved away from

musical applications towards more game oriented visual projections, primarily because

its focus was interaction design. Like Leonard, Blaine and Perkis consider their call and

response interaction system to be the most effective way of encouraging users to inter-

act (Blaine and Perkis, 2000, p. 173). The disadvantages of this system, however, are

two-fold. Firstly, the computer often misinterpreted expressive performance. Secondly,

the high dynamic range of user input negatively affected the system’s performance.

Nevertheless, despite these drawbacks, the performer was playing “with” the machine.

By their very nature, interactive systems require the user to defer some form of decision

making to a software agent. Moreover, the level of interactivity and decision-making

is governed by the type of software agent (Whalley, 2009). In his review of interactive

music systems, Whalley describes how such deployments can include multi-agent sys-

tems (MAS), distributed artificial intelligence (DAI) (multiple agents with user input)

and multi-agent based simulations (MABS). Irrespective of agent type, however, the

level of interactivity is largely dependant on the application of the system. Whalley

summarises this, within the disciplinary context of interactive music, in Figure 2.1 be-

low (Whalley, 2009, p. 157).

Figure 2.1: The interdisciplinary context of interactive music (Whalley, 2009).
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For Whalley, the disciplinary context of interactive music links the disciplines of Music,

Computer Science, Music Psychology, and encompasses the sub-disciplines of Artificial

Intelligence, Composing and Performing, and Expression. To a certain extent, this

paradigm provides a useful foundation for the central thesis of this study. However,

in performance, it is difficult to separate expression from performance variation. This

is because there is no clear threshold for separating between systematic (expressive

action) and random variation (Juslin et al., 2002). It is not the intention to answer this

specific question here as it is outside of the scope of this investigation. Rather, this

thesis posits that musical events are variations and the listener perceives expression

from these variations.

Research that follows a similar contextual paradigm is “Kinetic Engine” (Eigenfeldt,

2006), an interactive performance system aimed at modelling a percussion ensemble.

The Kinetic Engine uses four multi-agents, each performing a particular predetermined

percussive role, for example bass drum, snare etc., based upon layers of rhythmic organ-

isation. Kinetic Engine also uses constrained random procedures for modelling intelli-

gent behaviour. Eigenfeldt notes that by constraining random procedures, the system

produces greater levels of consistency while allowing small variations to occur, because

“limiting potential choices does not limit the intelligence of a system” (Eigenfeldt,

2006, p. 2). There are two implications of adding constraints to random procedures

in an interactive system. Firstly, because there is greater consistency and stability to-

ward the desired result, the system is perceived to be more skilled in decision-making.

This should not be confused with learning systems however, whose function is to in-

dependently learn behavioural state changes either with each iteration of a process or

each nth order process in a chain. Secondly, the system’s freedom in decision-making

equates to the degree of control by the composer in the composition process. With

fewer constraints the system exerts more influence on the resultant composition. With

more constraints, the composer has more influence. This is particularly important in

decisions that produce vastly different musical artefacts. Ultimately, this is a choice

for the composer. Since the purpose of this thesis is to apply the compositional music

software to different rhythms and various musical styles, it is necessary to ensure that

the composer, rather than the computer, has more influence on the creative process.
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2.4 Other Performance Modelling Systems

Traditionally, music performance theory has been approached either qualitatively (philo-

sophically) or quantitatively (empirically) (Mazzola, 2011; Sethares, 2005, p.31). Uni-

fying these approaches, Mazzola advanced a concept called the “oniontology” of musical

performance (p. 21-22). This is a philosophical multi-layered approach that extends

the existing dimensions of musical ontology, such as performer reality, communication,

and semiotics (Figure 2.2), to include embodiment (Figure 2.3).

Figure 2.2: The traditional dimensions of musical ontology (Mazzola, 2011).

Although semiotics, communication and realities are all important philosophical aspects

of musical performance, it is outside the scope of this investigation to quantify these

transformations. For example, the semiotic dimension presents problems in percussion,

where the signification, that is the transformation from the score to the content, is

subject to many more variables that make interpreting the transformation ambiguous,

such as the physics of the drums and the individual expressivity of a performer. In

addition, the dimension of communication comprises a discussion on the modelled ref-

erence material, or the performance of such material with regards to the performance

model. Since this thesis deals with predominantly un-pitched instruments with lim-

ited envelope control, there may be difficulties in correctly interpreting communication
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from any given performance. Similarly, the mental and psychological realities of the

performance may be difficult to extract from a percussive performance. In both cases,

there is little or no empirical data available from a percussive performance that could

lead to the generation of performance rules. The only dimension that facilitates the

extraction of human percussive performance variation is physical reality. Placing this

musical ontology in context, Mazzola presents two new dimensional layers to musical

ontology (facts), gesture and processes. These are shown in Figure 2.3.

Figure 2.3: The musical “Oniontology” (Mazzola, 2011).

These two new dimensional layers are defined as the gestural schematization of the

logic by the composer (gestures) and the logic of the musical construction (processes)

(Mazzola and Thalmann, 2011; Roads, 1996). In relating this “oniontology” to this

investigation, parallels can be drawn between gestures and performance context, be-

tween processes and the control parameterisation, and between facts and the sample
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database that represents the acoustical output of instrumental physics and performer

interaction. Therefore, the most appropriate ontological solution to performance mod-

elling is one that, through logical processes, links the physical aspects of the instrument

and the instrumental interaction (facts) to simulate performance; in other words, an

inverse model of performance, or a data-driven system.

In summary, Mazzola’s work aims to mathematically analyse and reproduce the trans-

formations between these complex oniontological spaces. However, for the purpose of

this research, it is impractical to use mathematical modelling to control the sample

database. This is because assumptions must be made to address the complexity of

physical human jazz drum set performance, as well as the number and relative position

of the instruments used. In addition, it is important that the control methods do not

affect the computational overhead of the model.

In contrast to Mazzola’s work is another quantitative performance modelling approach

is called analysis-by-synthesis. Analysis-by-synthesis, which is part of the KTH rule

system, was first presented by Anders Friberg at the KTH Royal Institute of Technology

in Stockholm, Sweden. This approach has been described in the following way:

“If expressive actions act upon musical structure in a systematic way, then

it should be possible to define these actions in the form of a rule system,

much like a “grammar” of performance. Moreover, it should be possible to

implement this rule system using computer-based tools to generate “auto-

matic” performances.” (Risset and Wessel, 1999, p. 125).

The creation and generation of “grammar”, or rules, of performance from the systematic

application of expressive acts on musical structure, does not lend itself to drumming.

This is because certain rules relevant to the piano may not be musically relevant to

un- and quasi-pitched drums, for example, harmonic and melodic rules. In addition,

the transformation of a musical score into performance rules is much more difficult in

drums due to the nature of the instrumental behaviour and performer interaction. This

is demonstrated by several of the rules in the original rule set that cannot easily be

applied to percussion (Friberg, 1991; Legge and Fletcher, 1989). Although this will

not be discussed in great detail here, suffice it to say that the nomenclature of the

rules demonstrates the difficulty in applying such a musical approach to performance

containing un-pitched percussion: Double duration; Off-time repetition of tone; Leap

distance; Leap tone duration. This is also the case in multiple-parameter rules such

as: Melodic Charge; Harmonic Charge (of a chord); Chromatic Charge; High Sharp
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(intonation rule); Melodic Intonation (intonation rule). Moreover, since it was first

described in 1991, the KTH rule system has been continuously augmented with new

rules, to include Phrase Arches (Friberg, 1995; Risset and Wessel, 1999, p. 125) and

punctuation (Friberg et al., 1998; Pierce, 1992, p. 39) amongst others (Beauchamp,

2010; Friberg, 2006, p. 66).

Looking specifically at the creation of rhythmic performance, Waadeland has proposed

an interesting and alternative view to creating expressive performance by linking rhyth-

mic performance with bodily movement:

“kinesthetic movements of the body [during a performance] are intimately

related to “timbral” aspects of rhythmic performance. Furthermore, from

this point of view, different kinaesthetic movements of the body are expres-

sions of different “rhythmic timbres”” (Waadeland, 2000, p. 112)

According to Waadeland, rhythmic performance is based upon the frequency modu-

lation of movement. In his research, performed rhythmic movement was considered

a series of oscillations, and expressive timing was considered a series of continuous

transformations of rhythmic structure. These transformations, generated by rhythmic

movement, create the expressive timing. Notably, Waadeland asserts that the rhythmic

frequency modulator (RFM) was flexible enough to create rhythmic performances as

a standalone compositional software tool and interestingly simulates the compositional

effect of phasing used by Steve Reich in his 1971 piece, entitled Drumming (Waadeland,

2001). Although Waadeland investigates bodily movement and expressive timing, the

relationship is defined strictly in terms of the effects of rhythm on movement, partic-

ularly eurhythmics and kinaesthesia. However, in order to simulate a nine-piece jazz

drum set using RFM, nine independent modulations are required, with each modula-

tion linked to each other in some way. A problem with such an approach is the large

number of links required (9 × 9 = 81), the potential difficulty in defining links between

modulations, and the complexity of these links in the context of human movement.

Another model that considers human movement is the GERM model (Beauchamp,

2010, pp. 66-67; Juslin et al., 2002). Using many of the rules from the KTH Rule

System, the GERM model is a four-part approach. It consists of: Generative rules

or methods, many of which are derived from empirically supported rules of the KTH

system; Emotional expression or the application of the results of studies concerning

the emotional expression in music; Random variations in performance; and Motion

or physiological constraints and instrumental requirements in performance. Although
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both the GERM and KTH systems were designed to generate automatic piano perfor-

mances from musical scores,11 the GERM model has made significant improvements

on the KTH model, such as the specification of random variations in performance and

human motion. Neither of these systems, however, were designed for composition.

Juslin et al. note that there are two types of performance variation: systematic or

intended; and those that are random or “error variances”, which are the result of the

human motor system (Beauchamp, 2010, p. 69; Juslin et al., 2002). Juslin et al.’s

research provides a rationale for including random variations, asserting that it is diffi-

cult to distinguish between systematic and random variations. Aesthetically, random

variations are an inherent component of human musical performance, which is one of

the key tenets of this thesis. For listeners unacculturated to a musical style, it may

be difficult to perceive the difference between the two types of variation. This percep-

tual differentiation is further confounded when deviations occur at temporal perceptual

boundaries and, in the case of timbre, create auditory masking. Similarly, phenomena

such as temporal drift, indicates that the degree of random variation, may not be en-

tirely random.

The use of empirical data is an important area of discussion in music performance

analysis. Analytical models use real performance data such as timing (Beauchamp,

2010, p. 69; Repp, 1992, 1994). One benefit of this is that the extracted data can be

quantitatively analysed. This is particularly useful when comparing performance data

from different subjects, for example, pedal timing in expressive piano performance

(Repp, 1996; Roads, 1996, p. 141), timing deviations (Repp, 1999; Serra et al., 1990, p.

12), and musical synchronization (Repp, 2006; Serra, 1989, p. 86). Some studies using

this approach have identified the “swing ratio” in jazz drumming (durational ratio be-

tween notes in a eighth-note pattern) (Friberg and Sundstrom, 2002; Serra et al., 1990,

p. 12), and temporal coordination in duets (Schögler, 2000; Serra et al., 1990, p. 12).

In addition, rules can be generated from identified trends in the data analysis. Despite

this, Juslin et al. argue that because of the difficulty in identifying the difference be-

tween systematic and random variations in empirical performance data, the result is

11 There are a number of physiological factors that can affect the generation of percussive perfor-

mance variation, particularly when compared with musical instruments whose interfaces require less

compound physical movements (e.g. a piano). However, as one of the objectives of this investigation is

to present a compositional tool that can be used to generate new music, the generation of automatic

performances from existing notated input, although an interesting avenue of further investigation, is a

compositional goal outside the scope of this thesis.
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the creation of an algorithm that produces uncorrelated fluctuations, or white noise, in

timing variability, which increased with IOI duration. This algorithm was based upon

previous studies on finger tapping synchronicity, rather than using actual performance

data.

Another important area of research is that of kinematic specification of dynamics

(KSD). According to this principle, “movements specify the causal factors of events”,

(Roads, 1996, pp. 550-552; Runeson and Frykholm, 1983) Interestingly, Juslin et al.

make a connection between the KSD principle and music performance in the following

way:

“when we hear a music performance by a human being, there should be

kinematic information in the performance pattern that specifies that the

performer is human. This information should be missing if the performer is

a computer program” (Juslin et al., 2002, p. 84)

This statement has implications philosophically, aesthetically, and practically. From a

philosophical perspective, using empirical performance data is one method of apply-

ing the KSD principle to a performance model. By extension, the generation of new

works using the empirical data re-applies the KSD principle to new contexts. From

an aesthetic perspective, the kinematic information in the performance should produce

interesting variations, which may be perceived by the listener as either systematic or

random. The result of which will yield a perception of real human performance, the

extent of which will be based upon the relevance of the kinematic information in the

new context.

From a practical point of view, capturing real performance data has the potential

to generate significant amounts of information or data sets, which must be used in

conjunction with other methods. One such method that works well with large data

sets is probability (Ames, 1990) for data selection purposes, where the probabilistic

algorithm is representative of rules derived from analysis of the data and the context

in which the data was extracted (a synthesis-by-analysis approach). In the case of

the fourth component in the GERM model, specifically Motion, real performance data

would inherently reflect the motor requirements of a drum set, physiological constitu-

tion of the body (Juslin et al., 2002, p. 85), and movement complexity. In the case of

timbre, empirical data can inform the timbral selection process and be used creatively

for musical purposes.
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Chapter 3

Towards a Percussive

Performance Model

“The development of motor skill can be traced as the progress from reactive move-

ment to movement fluency, coupled with a flexibility in tailoring action to the details

of an infinite variety of contingencies...”

– L. Henry Shaffer, 1982



A review in the previous chapter of existing research on percussive performance mod-

els highlights significant gaps in the types of methods employed in order to simu-

late variations in human percussive performance. In many of the percussion-related

methods, timbral variation is limited to rudimentary representations of the instrument

which, given the importance of timbral variation to the perception of humanization,

is surprising. Also important to the perception of humanization is timing. Percus-

sive performance methods that simulate timing fluctuations, ranging from modulation

and stochastic methods to the extraction of real performance timings for re-creation,

were also reviewed in the previous chapter. Many of these models do not adequately

link timing with timbre and the relationship between their production during a per-

formance. Central to this relationship are the physical constraints of the performer

during a performance. While this has been considered in some models (Juslin et al.,

2002; Waadeland, 2000), it has not yet been adequately defined in terms of instrumen-

tal technique and the biomechanical constraints of playing a jazz drum set.

In order to understand why representations of percussive timbral variation have been

limited, this chapter will examine the acoustical and mechanical behaviour of key in-

struments of a nine-piece jazz drum set and their effect on the production of timbre,

particularly small variations in timbre, or “micro-timbre”. In order to define the rela-

tionship between timing and timbre in a performance context, this chapter will examine

the biomechanics of human percussive performance on a nine-piece jazz drum set. These

investigations form the foundation of a theoretical framework that considers the im-

portance of instrumental mechanics in the creation of timbral fluctuations in human

performance in order to construct a convincing percussive performance model.

A survey of computer systems for expressive music performance was undertaken by

Kirke and Miranda (2009). In this review, Kirke and Miranda proposed four terms

of reference for their evaluating the expressive performance systems, including “per-

formance creativity”. Kirke and Miranda define performance creativity as “the ability

of the system to generate novel and original performances, as opposed to simulating

previous human strategies” (Kirke and Miranda, 2009, p. 10). In their evaluation,

Kirke and Miranda rated the performance creativity of many of these expressive music

performance systems to be low, with the only percussive system reviewed, Drumming,

being rated with the lowest performance creativity, and among the lowest in expressive

representation (Kirke and Miranda, 2009, pp. 34-35).
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The computer as a compositional tool represents, in many ways, choice. The cre-

ation of a compositional software tool is a very personal experience, dependant upon

the level of function and compositional control required by the user. This supports

the argument that there is no wrong computer-driven compositional approach. This is

particularly apparent in the types of compositional systems available, the wide range of

levels of interactivity, and the different ways in which to interpret and implement com-

positional concepts. Human variation in percussive composition has gone full circle.

From the inherent variation in the human performance of a score, to the mechanical

performance of computers, composers now find themselves looking back at percussive

performance in order to create more human-like percussive performances on a computer.

This research will fill the gap in the literature by continuing the explorative work of

composers, in order to create a model that is representative of human micro-temporal

variations with micro-timbral diversity, is compositionally useable, computationally effi-

cient, and makes a convincing performance model. Moreover, such a model must be able

to explore the timbral possibilities of the instruments, and be applied to diverse types

of rhythm and music. These factors form the foundation of a compositional framework

that allows for the intra- and inter-instrumental exploration of micro-timbral varia-

tion in the instruments. This theoretical approach also allows a re-contextualisation

of the instrument, in combination with micro-variations in timbre and timing. Such

a re-contextualisation further enables an exploration of algorithmic interactions as a

compositional element of the performance model.

3.1 Why is Modelling Percussive Timbres so Difficult?

Percussion can be classified in many ways, ranging from their sound production charac-

teristics, their role in musical contexts, “whether or not they convey a definite sense of

pitch” (Rossing, 2000, p. 1), or by cultural derivation (Blades, 1992). A typical drum

set configuration consists of a bass drum, a snare drum, hi-hat, tom-toms (including

floor tom), ride cymbal and crash cymbal (Sweeney, 2004b), although configuration

of the individual components (e.g. drum size) and the positional configuration of the

set, can be extended by personal preference (Strong, 2006). The standard drum set

can be divided into two groups by virtue of their sound generation methods, with

the bass drum, snare and tom-toms belonging to the family of membranophones, and

the cymbals belonging to the family of idiophones (Rossing, 2000). Regarding mem-

branophones, these three elements of a drum set are similar, insofar as they all have
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clamped circular edges, whereas the idiophones are unclamped circular plates supported

in the middle. The hi-hat differs from the ride and the crash cymbals as it comprises of

two opposing circular plates, supported in the middle with the clamping force between

the two plate edges and controlled by the performer, in either an “open” position (no

contact), “closed” position (forced contact), or a position somewhere in between. This

clamping changes the vibrational characteristics of the plates and the resultant sound,

and will be looked at together with the vibrational characteristics of membranophones

and idiophones described above.

3.1.1 The Vibrational Characteristics of Membranophones

One of the main starting points for the theoretical consideration of membranophones is

the membrane. Fixed at the edges, the membrane serves as a primary vibrator which

can be described as two-dimensional, where vibrations travel in both radial (concen-

tric) and azimuthal (diametric) directions (Moravcsik, 2001, p. 188) and “the resonant

vibrator is the air column inside the drum” (Moravcsik, 2001, p. 191). It is these com-

plex vibrations that produce “inharmonic overtones” that “give percussion instruments

their distinctive timbre” (Rossing, 2000, p. 2). In order to analyse these vibrational

characteristics, many existing studies describe not only the membrane, but the envi-

ronmental conditions in which the membrane operates (e.g. an ideal membrane). For

example, where the membrane is wholly flexible and vibrating in a vacuum (Rossing,

1992), where the membrane has “zero thickness” and is “perfectly elastic” (Moravcsik,

2001, p. 189; Raichel, 2006, p. 111), has “no stiffness” (Rossing and Fletcher, 2004, p.

70) and is not subject to damping (Raichel, 2006).

In order to find the fundamental frequency (f0) of an ideal circular membrane, Hall

(1991) uses the equation:

(f0) =
0.766

D

√
T
σ

“where D is the diameter [metres], T is the tension (Nm), and σ the mass per unit area”

(Hall, 1991, p. 163). Frequencies for the normal modes of vibration can be calculated

using Bessel function-based wave equation theory for an ideal circular membrane:

(fmn) =
jmn
2πα

√
T
σ
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“where jmn is the nth root of the mth Bessel function, T the membrane tension, α

the membrane radius, and σ the mass per unit area” (Dahl, 1997b, p. 59). Fletcher

and Rossing (1998) identified fourteen different concentric and diametric modes (m,

n), each corresponding to a different relative frequency, where mode (0, 1) represents

f0. The inharmonic overtones produced by these vibrations are represented by the

frequencies given in Figure 3.1, which display non-integer relationships with the fun-

damental in contrast to harmonic tones whose frequencies are integer multiples of the

fundamental (Roads, 1996).

Figure 3.1: The vibrational modes of an ideal membrane, and their relative frequencies

(Fletcher and Rossing, 1998, p. 75).

In practice, the frequency modes in a real membrane are different to an ideal mem-

brane (Moravcsik, 2001), because real membranes are subject to air loading, bending

stiffness and shear stiffness, in which the latter two raise the modal frequencies while

the former lowers them (Fletcher and Rossing, 1998). Furthermore, it is the excitation

of a real membrane in different locations that causes different combinations of these

effects (Moravcsik, 2001), with the creation and subsequent decays of various modes

being unequal. In addition to the inequality of modal decay, different strike locations

are more efficient in exciting modes that display a similar vibrational distribution to

the strike (Hall, 1991). A strike on a nodal line or point will not excite that mode.

Where an impact occurs comfortably within a region of a natural mode, that mode

is excited efficiently in the same (positive) direction, see Figure 3.2 (a), (b), whereas

an impact that overlaps several modes excites all the modes within that region, and

vibrations at different phases can cause cancellation, Figure 3.2 (c).

In the interaction between two membranes (heads) on a single drum (e.g. a snare
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Figure 3.2: Strike locations and regional excitation efficiency (Hall, 1991, p. 75).

drum has a batter head [top membrane] and a resonant head [the bottom or snare

head]), a coupling effect arises through either the enclosed air between the membranes,

or through the shell (Rossing et al., 1992). The effect of air loading in an enclosed

two-head system differs from a single head, in that while the air loading of single head

will lower the modal frequencies, enclosed air loading raises the axisymmetric modal

frequencies (Fletcher and Rossing, 1998, p. 75). Furthermore, coupled heads can either

move in the same direction (in phase) or in opposing directions (out of phase) (Rossing,

1992; Tindale, 2004).

A comprehensive investigation into the properties of the bass drum sound was un-

dertaken by Fletcher (1978), in which strikes of a bass drum were measured in an

anechoic chamber, and compared with theoretical (ideal) values. These values were

used to digitally synthesise bass drum tones with a subsequent listening test conducted

with thirty-one adults to determine the real from synthetic tones. The main finding of

this investigation was a general agreement between theoretical and observed frequen-

cies, although some anomalies were reported. Other findings included how, for a hard

blow, the frequency decreases over time, that the timbre is affected by strike strength

and location, and that the decay rate is dependent on the characteristics of the drum

rather than the location or type of strike. The listening test revealed that bass drum

sounds played on tape through loudspeakers are different from that of an actual drum,

although it is worth noting that this was a technical limitation.

Another aspect of the bass drum sound can be attributed to the moving parts of

the bass drum pedal, which occurs in the pre-attack phase of the sound. The release

of the mechanism during the decay of the bass drum sound could also contribute to a

perceived difference in timbre should the sound be captured by microphones (Huber

37



3.1 Why is Modelling Percussive Timbres so Difficult?

and Runstein, 2005)

One of the first studies to empirically measure the acoustic properties of a snare drum

was Henzie (1960), whose focus was on the relationship between the amplitude and

duration of snare drum tones, by using varying drum stick gauges with strokes at vary-

ing heights. The main findings of this study, showed that by equating the durations of

snare drum tones produced at different heights in inches (e.g. 1, 2, 3, 4. . . 8) to note

values at 120BPM, there is a ratio of 4:1 between strike height, and amplitude and

duration. Interestingly, this experiment omits strike location as an important variable

in either amplitude or durational characteristics. During this investigation, Henzie de-

scribed how different variables could affect tone production in drums. The first variable

described, was that of the drumheads themselves (e.g. size, thickness, tension, and age

and condition). This is supported in an investigation on the tonal characteristics of

snare drum heads by Lewis and Beckford (2000).

Lewis and Beckford’s objective was to assist the practicing drummer in identifying

the differences between fourteen different mainstream snare drum batter heads, from

manufacturers such as Remo, Evans, etc. The experiment was done using a “grav-

ity actuated “stick machine”” (Lewis and Beckford, 2000, p. 69), and a Fast Fourier

Transform (FFT) that analysed the tones of the attack points in a two-dimensional

(frequency × intensity) snapshot. Lewis and Beckford also drew attention to the im-

portance of decay in selecting a drumhead and cite computational limitations as the

reason for the omission of time-varying spectral analysis from the results. Neverthe-

less, the results show differences in frequency characteristics between drumheads, both

within, and between manufacturers. It is worth noting that in both experiments the

excitation location was static, and there was no investigation concerning the effect of

using different drumsticks.

Henzie also describes how the construction of the drum (e.g. shell depth, materials

and air ventilation) can affect tone production. Where coupling effects are propagated

through shell vibrations, Rossing et al. (1992) note that the energy transfer from a

snare drum shell to the stand increased the decay rate of the lowest (0, 1) mode, com-

pared to a freely supported snare drum, where the decay rate of this mode was similar

to other modes. It was also noted that drum shell mass had an “appreciable effect” on

the decay rate, and subsequently the timbre (Rossing et al., 1992, p. 93).
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Another variable described by Henzie to affect a snare drum tone was the construction

of the snare. The snare is a series of metal wires that are strung across the resonant

(snare) head, can be set to different tunings, and are engaged with the resonant head

by using a “strainer” mechanism (Tindale, 2004, p. 20). When the batter head is

struck, the resonant head moves due to the coupling effect, causing the snare wires to

bounce and interact with the resonant head membrane, which produces the “snare”

sound. Tindale describes how there is an “activation time” between the initial strike

and the snare movement, although he asserts that a lack of investigation relating to

elasticity and mass on the snares has failed to provide a mathematical representation

of this phenomenon (Tindale, 2004, p. 21).

Citing a study by Bork (1983), where three blow strengths were applied to two snare

tensions, (Fletcher and Rossing, 1998, p. 607) describe how a certain amplitude must

be reached by the resonant head in order for sound production by the snares. This

“critical amplitude” (Fletcher and Rossing, 1998, p. 604) is observed as increasing

with snare tension. At a low snare tension, the medium strike strength exceeded criti-

cal amplitude, compared to the high-tension snare that required higher strike strength

to reach critical amplitude. In addition, a damping effect was observed in low-tension

snares.

One method used by percussionists to dampen the sound of a snare drum is the use of

tape applied to the batter head, either across the diameter (Koblick, 2007, p. 26), or

as a small piece of tape near the rim (Rogers, 2011, p. 7). This was computed by Yu

and Wang (2001), with a later investigation into the placing of small strips of tape in

arbitrary positions on a circular membrane undertaken by Yu (2004). This later study

found that the fundamental frequency decreases as the small strip moves towards the

boundary of the membrane.

Tom-toms are available in many different sizes, and have a variety of configurations

for incorporation into a standard drum set. Some of the smaller tom-toms (eight to

sixteen inches) are usually mounted on the bass drum via metal shafts, while the larger

floor tom (typically fourteen to eighteen inches) is supported by legs mounted on the

side of the shell (Sweeney, 2004b). Like other membranophones described in this sec-

tion, the tom-toms are classified as un-pitched, although they do impart a perception

of pitch. This sense of pitch is more prominent in tom-toms with only a single head

(Fletcher and Rossing, 1998), compared to double headed tom-toms whose tendency
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is to produce “indefinite pitch” (Berg and Stork, 1982, p. 343). Describing how drum

depth is a determining factor in tone quality, Berg and Stork state that double headed

tom-toms with greater cylindrical shell lengths have “longer” standing waves, and as

a result produces a lower tone than double headed toms with smaller drum depths. It

is these differences in tone and pitch conveyance, that distinguish tom-toms from the

bass and snare drums, allowing a drum set to have a wider range of timbres.

There are also variations in the tom-tom membrane, with some membranes being man-

ufactured with large round dots in the centre, thus thickening the membrane in the

centre. The acoustical effect of these dots is described by Fletcher and Rossing, as

“shifting the lowest partials into a more nearly harmonically relationship” (Fletcher

and Rossing, 1998, p. 606), resulting in greater perception of pitch. In addition to

the change in harmonicity of the membrane, the greater thickness of the dot also in-

creases all modal decay times. The effect of strike force on the spectral characteristics

of different sized two-headed tom-toms was measured by Dahl (1997b), who found

that an increase in strike strength resulted in an increase in modal excitations, includ-

ing a change in spectral slope in frequencies above 1kHz, with a typical decrease of

9dB/octave as strike strength increases from soft to hard. Dahl, also notes a frequency

shift with stronger strikes, and describes this frequency shift as a characteristic of loud

playing, rather than a pitch glide as observed in bass drum tones (Fletcher, 1975).

The decay times of snare drums are affected by their support mechanisms, where decay

rates decreased due to vibration transmission through the stand (Rossing et al., 1992,

p. 89). The implications of this in relation to the tom-tom are significant, where dif-

ferent drum set configurations allow tom-toms to be mounted either on the floor, the

bass drum via an arm mechanism, or via clamp to a cymbal stand, with each of these

mounting configurations having different effects on the decay rates of the drums.

In the case of a tom-tom supported by an arm attached to the bass drum, a strong

strike will transmit vibrations through the supporting arm mechanism, thus exciting

either the shell or the membrane. In some instances, vibrations can cause rattles from

lugs (Schroedl, 2003) and squeaks from moving parts, while other moving parts that

can cause squeaks are necessary for drum striking (e.g. the bass drum pedal mecha-

nism) (Huber and Runstein, 2005, p. 164), can also overlap the sound during the recoil

of the mechanism for the next strike, affecting tone perception. Strong vibrations can

also result in the sympathetic production of resonance (Jaffe and Smith, 1983, p. 66)
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of other supported tom-toms, in the case of a double tom stand on the bass drum,

and bass drum, and depending on the construction and consequent sensitivity of the

bass drum, both energy transmission and loss through the mechanism can affect the

perception of the tone of the primary instrument (in this case the tom-tom). Tom-tom

supporting mechanisms also exist for cymbals (e.g. crash cymbal stand), although it

is worth noting that cymbals are more sensitive to vibrational transmission, and due

to their nonlinear behaviour and higher frequency distribution, the resonant vibrations

are more pronounced than the bass drum.

The production of rattles and sympathetic resonance is equivalent to leakage or “bleed”

(Koblick, 2007, p. 26) during recording of the drum set, where a microphone on one in-

strument picks up the signal of another drum in close proximity (Huber and Runstein,

2005, p. 139).

3.1.2 The Vibrational Characteristics of Idiophones

One of the defining features of an idiophone is that the “vibrating material is the same

object that is played (free from any applied tension)” (Schloss, 1985, p. 48), which

includes xylophones, bells and cymbals etc. (Berg and Stork, 1982), and can be ei-

ther tuned or un-tuned (Fletcher and Rossing, 1998). This definition is based upon

the classification system proposed by von Hornbostel and Sachs (1914, 1961), which

presents top-level classifiers based on excitation method, from struck, plucked, friction

and blown (Benson, 2007, p. 91; Kartomi, 1990). Idiophones (cymbals) in the drum set

relate directly to struck-upon percussion vessels (or sub-class 111.24) (von Hornbostel

and Sachs, 1914, in Kartomi, 1990, p. 170). Physically, this subclass of idiophones

can be described as circular plates (or mechanically as “a membrane with stiffness”

(Fletcher and Rossing, 1998, p. 76)), where the plate is a two-dimensional primary and

resonant vibrator, which can also become three-dimensional with the planar deviations

of the plate resulting from any striking action (Moravcsik, 2001, p. 188). The shifting

of the plate to three-dimensions is only relevant to plates with a free edge (e.g. a ride or

crash cymbal), although there are different boundary conditions, such as clamped edges

and simply supported edges (e.g. a hi-hat). The vibrational modes of a circular plate

with the different boundary conditions are shown in Figure 3.3. Note the fundamental

mode (2,0) in the free edge (a) compared to the (0,1) mode of a clamped or simply

supported edge (b), and the similarities of the first four modes of (b), in comparison to

the vibrational modes of an ideal membrane in Figure 3.1.
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Figure 3.3: The vibrational modes of circular plates (a) free edge (b) clamped/simply

supported edge (Fletcher and Rossing, 1998, p. 79).

Although cymbals display vibrational characteristics similar to circular plates, Fletcher

and Rossing (1998) describe how there are differences in behaviour between low and

high frequency modes, where lower modes are similar to a flat circular plate, and at

higher frequencies, the modes merge together and become difficult to identify. Such

behaviour can be seen in Figure 3.4, which shows the Chladni patterns of twenty-three

vibrational modes of a crash cymbal and the corresponding vibrational modes in a flat

circular plate using electronic TV Holography.
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Figure 3.4: The first twenty-three vibrational modes of a cymbal and the corresponding

modes on a flat circular plate (Wilbur and Rossing, 1997, as cited in Rossing, 2000, p. 90).

Although ride and crash cymbals possess similar mechanical characteristics, there are

some immediate dimensional differences that affect the overall characteristics of the

sound, resulting in different uses of these two cymbal types. This can be seen in Table

3.1.
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INFLUENCE OF DIMENSIONS ON THE SOUND OF CYMBALS

Dimens. Size Weight Profile Cup Taper

Infl. on small large thin heavy low high small large even gradual

Pitch high low low high low high - - high low

Volume soft loud soft loud - - soft loud - -

Response fast slow fast slow fast slow slow fast slow fast

Decay short long short long - - short long long short

Overtones - - more less more less less more less more

Ring - - - - ringy dry - - tight

clean

full ex-

plosive

Table 3.1: A chart showing the influence of dimensions on the sound of cymbals (based

on single parametric changes only). Adapted from Pinksterboer (1992, p. 73)

Typically, the ride cymbal is thicker than other cymbals (Black, 2003), with a smaller

“taper” (Pinksterboer, 1992, p. 72) (the thickness change from centre to edge), which

produces more sustain, and is used mainly to play ostinato patterns (Black, 2003). In

contrast, the crash cymbal is typically smaller and thinner (Black, 2003) with a larger

taper (e.g. thinner edges) to produce more sustain, and is used primarily for accen-

tuation and phrasing (Pinksterboer, 1992), thus being played less frequently and at a

louder volume compared to the ride cymbal.12

Rossing (2000) notes that there are three key features in the sound of a cymbal. The

first feature relates to the strike sound where after initial excitation, there is the ini-

tial wave propagation in the first millisecond. This is followed by a frequency increase

at between 700-1000Hz for approximately 20ms, with the third phase of the sound at

around a second afterwards containing frequencies of mostly 3-5kHz. It is this final

phase of the sound that provides the “shimmer” effect (Rossing, 2000, p. 92).

Using double-pulsed TV holography, Schedin et al. (1998) captured the wave propaga-

tion through a cymbal. A laser pulse excited the cymbal at two points: one millimetre

from the edge, and at half the radius. It was found that waves with longer wave-

lengths were more pronounced, and more reflected from the central dome and edge of

12 For a comprehensive discussion on the history of and differences between cymbals, the reader is

invited to read Pinksterboer (1992).
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the cymbal, compared to waves with shorter wavelengths. This transient behaviour

will occur irrespective of how the cymbal is excited, due to the nonlinear coupling of

the vibrational modes (Fletcher and Rossing, 1998; Touze and Chaigne, 2000). The

nonlinear behaviour produced harmonics, then sub-harmonics before becoming chaotic

in nature. This can be seen in phase plots for a crash cymbal (Wilbur and Rossing,

1997, as cited in Rossing, 2000, p. 95). Describing how the nonlinear nature of cymbals

causes frequential chaos as the initial strike excites a large number of frequencies in a

short time, Touze and Chaigne used a Lyapunov exponent in order to successfully quan-

tify the frequency transition from quasi-periodicity to chaos (Touze and Chaigne, 2000).

Other experiments into the vibrational characteristics of cymbals include an investi-

gation into the effect of different sized and positioned holes on commercial cymbals

(Peaden and Worland, 2011). This investigation found that the modal frequencies were

affected, depending on the size and location of the hole in relation to the modal pattern,

where the wave propagation is affected by the hole’s lower mass and stiffness.

The hi-hat consists of two cymbals facing each other (Black, 2003, p. 24), typically

with a thinner (lighter) cymbal on top, and a thicker (heavier) cymbal on the bot-

tom (Pinksterboer, 1992, p. 71). These cymbals are mounted on a rod through the

middle of the cymbals. The top cymbal is mounted to a foot-operated clutch that

clamps the cymbals together, by lowering the top cymbal, thus providing an additional

method of excitation and changing the boundary conditions of the cymbals to adjust

the timbre. The spacing between the cymbals in the open position can be varied by

using the clutch, from resting on the lower cymbal to completely devoid of contact

altogether. Pinksterboer (1992, p. 88) describes how “a very tight clutch will deaden

the sound of the hi-hat”, while Black (2003, p. 24) suggests that the optimum space

should be between one and two inches to allow for the closing of the hi-hat with the foot.

An open hi-hat displays the same characteristics as a typical cymbal with a free edge,

with the exception that the mounting on the rod prevents the third dimensional planar

deviation. In the clamped (closed) position the two cymbals have a damping effect on

each other, which decreases the overall decay time, with the coupling of the cymbals

causing vibrations that are normally only reflected from the edge (in the case of a free

edge boundary condition), to be transferred into the edge of the counterpart cymbal.

In addition, vibrations are also transmitted through the rod mounting, producing a

damping effect. The amount of decay and vibrational transmission through contact is
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dependent on two variables: the strike strength, and the clamping force between the

two cymbals. Both of these variables give rise to significant differences in sound. It

is worth noting that there is currently very little literature on the physics of hi-hat

cymbals mounted on a stand, under different damping conditions.

3.1.3 Configuration Characteristics

So far, this chapter has been concerned with the mechanics of the individual instruments

of a jazz drum set. It has been noted that there are individual micro-variables that can

contribute towards timbre and tone production with each of the instruments, although

these are predominantly due to the materials and construction of the instrument, and

the relationship between strike location and the mechanics of the instrument under

ideal conditions. This section will discuss two, more global instrumental variables,

both of which affect the resultant sound of a jazz drum set, and are variables that

(beyond the strike location) are ultimately controlled by the performer in each instance

of performance. These two variables relate to drum tuning, and drum set configuration.

3.1.3.1 Drum Tuning Uniformity

So far the vibrational characteristics of an ideal membrane in relation to the bass drum,

snare drum and tom-tom have been discussed, in order to provide an overview of the

complexities of tone production in membranophones. This also included a description

concerning the differences between a real and ideal membrane. The complexity of these

vibrational systems become compounded when considering how an ideal membrane is

mathematically modelled using Bessel functions which assume a “uniformly stretched

uniform circular membrane” (Bowman, 1958, p. 20) that inherently disregards the

notion of membrane tuning dis-uniformity. Such dis-uniformity can occur in new mem-

branes where striking stretches the membrane causing a perceived detuning (Schroedl,

2003). Tuning can be defined as “the process of adjusting a musical instrument such

that the tones produced by the instrument obey certain relations” (Christensen and

Jakobsson, 2009, p. 5). This definition, although defining relative tuning and aimed

at stringed instruments (e.g. violin or guitar), is also relevant to membranophones

due to the relationship between modes caused by cross-tensional forces. In addition,

the material properties of idiophones cannot be easily adjusted (e.g. tightened)13 to

manipulate tonal production.

13 This excludes the use of tape and other dampening techniques.
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Drum tuning can be done in two ways: cross-tensional and clockwise (Black, 2003,

p. 4; Sweeney, 2004b), although only cross-tensional tuning “maintains even tension

throughout the tuning process” (Sweeney, 2004b, p. 7).14 In an investigation into the

acoustics of snare drums, Rossing et al. (1992, p. 85) notes the lack of standard prac-

tice for tuning snare drum heads, while emphasising how the investigation relied upon

achieving the most uniform tension possible. However, drum tuning is not only impor-

tant when undertaking empirical acoustic investigations, but is also important for live

performance and studio-based music production. From a live performance perspective,

repeatability of drum setup is important in tour situations, with tuning being important

to tone quality and instrumental context in the recording studio (Toulson et al., 2008,

p. 2). The investigation by Toulson et al. found that advanced musicians were able

to understand and manipulate drum tuning, compared with amateur performers who

appreciated the drum tuning, but could not tune their drums. Unsurprisingly, both

Toulson et al. and Rossing et al. are in agreement regarding the lack of standard tuning

practice, although Toulson et al. focuses on benchmarking different tuning setups for

different musical genres, while the focus for Rossing et al. was on experimental validity.

A comprehensive investigation into the axial forces and in-plane displacements of snare

drum heads of different materials during a tuning procedure, was done by Antonelli

(2010), consisting of various quantitative measurement techniques. Antonelli found

that the method of analysis was suitable for latex drumheads, but required further

refinement for drumheads made from mylar. An acoustical analysis of the tuning of

snare drums was undertaken by Richardson (2010), whose findings showed that de-

tailed and accurate tuning was possible, and that modal frequency ratios that were

previously considered fixed could be managed with tuning and damping to create new

modal frequency ratios, thus creating a desired tone.

An early mathematical investigation into the vibrations of circular membranes with

“non-uniform tensile forces at the edge” was done by Mei (1969, p. 693), who at-

tempted to identify the vibrational behaviour for a non-ideal membrane using a finite

element method. In this investigation, Mei found that lower modes were the same as

an ideal membrane, although nodal patterns associated with higher modal frequencies

became distorted, suggesting that non-uniform tuning can have an effect on the tim-

bre of drum. This is apparent in later research into the simulation of a kettledrum

by Rhaouti et al. (1999) where during a comparison of simulations and experiments,

14 For an overview on drum tuning, the reader is invited to read Schroedl (2002).
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Rhaouti et al. states that: “the simulations were used in order to check whether or not

this feature [beating] is due to imperfect tuning of the membrane, as it is usually as-

sumed” (Rhaouti et al., 1999, p. 3556). In order to quantify this assumption, Rhaouti

et al. simulated a kettledrum at both uniform and non-uniform tension, presenting a

comparative example of tension distributions, shown in Figure 3.5. The authors also

note that an adjustment in membrane tension within the model could yield similar

results to modifications in other parameters of the model.

Figure 3.5: A comparison of (a) uniform and (b) non-uniform tension distribution. Higher

areas of tension are shown in white, lower areas of tension are shown in black (Rhaouti

et al., 1999, p. 3556).

In order to assist the approximation of an ideal membrane during the tuning of drums,

Worland (2008) analysed the modal patterns of a single-headed drum under non-

uniform tension, using electronic speckle pattern interferometry (ESPI) in order to

“image the mode shapes on the drumhead and identify corresponding frequencies”

(Worland, 2008, p. 5). In one experiment, the tightening of a lug by two turns caused

the (1,1) mode to split and curve away from the tuned lug, as the opposing lug retained

the original tension (e.g. a two-fold perturbation), thus creating “perpendicular fast

and slow axes on the membrane” (Worland, 2008, p. 11). Worland also notes that

the modal curvature due to irregular tuning is not “directly related” to the frequency

splitting (p. 7), and that higher modes (those outside of the investigation) “can be

split by higher order perturbations in the applied tension” (Worland, 2008, p. 11).

Further research by Worland (2010) saw the expansion of this approach to include

time-averaged ESPI on the (1,1) mode. Worland then created a generalised model to

encompass all other modes, and found agreement with the model in representing fre-

quency splitting in modes from differently applied tension. The principal findings of
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this investigation found that the splitting of the (1,1) mode via a two-fold perturbation

was the “largest contributor to the sound of a drum not being in tune with itself”

(Worland, 2010, p. 533).

3.1.3.2 Drum Set Configuration

The typical drum set configuration has constantly evolved since the earliest drum sets

in approximately the 1900s (Starr, 2009, p. 263), with changes resulting from either

economic drivers, or through stylistic changes in musical tastes over the decades (e.g.

Be-bop jazz to Rock) (Aldridge, 1994, pp. 28-30).15 A typical modern drum set

configuration is described in Huber and Runstein (2005, p. 162), Murakami and Miura

(2008, p. 450) and Strong (2006, p. 13), and consists of only the basic elements of

a drum set, compared to extended configurations that cover “all of the instruments

potentially used” (Murakami and Miura, 2008, p. 450; illustrated in Murakami and

Miura, 2008, p. 451). Taking these configurations into account, Strong (2006, p. 65)

describes left and right handed configurations, where in a right handed position, the

hi-hat is struck with the lead (right) hand, and the bass drum with the lead (right)

foot. Within different configurations of drum set, there are many ways to arrange

the drums, and is usually based upon personal preference. However, the main criteria

for positioning the drums are comfort, ease of use, and injury avoidance (Starr, 2009,

pp. 12-13), although Black describes how positioning to “minimize reaching, stretching

and twisting” is dependant on the performers’ “physical size and technical ability”, and

how correct positioning “will help to assure optimum sound quality and volume while

minimizing the possibility of damage to the cymbal” (Black, 2003, p. 22).16

3.1.4 Simulating Percussion using Sound Synthesis

Timbral perception plays two very important roles within sound synthesis. Firstly, per-

ception can be causal. Perceptual attributes can be used to assist in new processes for

synthesizing sound, or to shape synthesis parameters, and can affect the efficiency of

the implementation. Secondly, perception can be affective. Perception can determine

the quality of the synthesis by its similarity to the modelled instrument. Owing to the

existing body of literature pertaining to perception, synthesis and analysis, this section

will provide only a brief overview of the subject, and identify some key considerations

15 For a comprehensive history of the drum set, the reader is directed to Aldridge (1994).
16 For further discussion on the proper positioning of a drum set, the reader is invited to read Starr

(2009, pp. 12-14).
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that must be taken into account when evaluating different sound synthesis approaches.17

Chowning (2000) provides a concise history of the convergence and importance of per-

ception within the fields of acoustics and synthesis beginning with the 1960s drive for

perceptual studies brought about by computer limitations and high cost (causal), and

the need to understand sound from a design perspective (affective). Citing Mathews

(1963), Chowning (2000, p. 1) reflects how auditory studies addressed causal motiva-

tions more so than affective reasons, largely due to the tangibility of computational

constraints. However, the analysis by synthesis approach meant that perceptual mod-

els could concentrate on the most perceptually relevant features of the sound, which

inherently reduces the computational overhead (Risset and Wessel, 1999). In cases

where data reduction is still required to reduce the computational overhead, there is a

reciprocal effect on the perception of the sound. Charbonneau (1981) investigated the

effect of data reduction along three dimensions: amplitude, frequency and time, and

found that data reduction in amplitude values had the most significant effect to the

timbre, followed by frequency, and then time.

Using perceptual parameters as synthesis mapping (control) parameters enables im-

proved perception of expressivity in synthesis, and ensures that the parameters are

“strong or powerful” parameters that make audible differences to the sound (Jaffe,

1995). Interestingly, Jaffe describes how synthesis techniques with more parameters,

tend to have weaker parameters. In other words, changes to the parameter are less

audible. Although it is widely accepted that timbre is multidimensional, the parame-

terisation of perceptual attributes of timbre is not exact. Furthermore, in some syn-

thesis techniques there are more dimensions of timbre than parameters available. The

challenge here is to evaluate the “stronger” perceptual dimensions, and prioritise their

mappings, for example, spectral centroid and rise time (Lakatos, 2000). However,

mappings by perceptual parameter have compositional implications. Unwanted side

effects in using perceptual parameters include dimensional incongruences; for example,

spectral centroid and inharmonicity. A spectral approach makes for interesting compo-

sitional methods. On the one hand, it enables the exploration of an instrument’s timbre

through a perceptual lens; on the other hand, it challenges the listener’s conventions of

the instrument, and challenges the listening strategy of the listener (e.g. transitioning

17 For a more comprehensive discussion, the reader is invited to read Beauchamp (2010); Butler

(1992); Cook (2002a); Deutsch (1999); Donnadieu (2010); Hartmann (1997); Howard and Angus (2009);

Pierce (1992); Risset and Wessel (1999); Roederer (2008); Sethares (2005) and Warren (1982).
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between causal and reduced listening modes, Chion (1983/2009)).

The listening state transition in the perception of an instrument is not limited to the

timbre. Correlations have been made between the physical nature of the instrument

(materials, dimensions) and perceived nature of the instrument (materials, dimensions)

(Aramaki et al., 2006). These studies range from the perception of material (Klatzky

et al., 2000), shape and material (Kunkler-Peck and Turvey, 2000), size, shape and ma-

terial in damped and free vibrating plates (Tucker and Brown, 2002), mallet hardness

and applied damping forces (Lutfi and Liu, 2007) to tonal interaction with the envi-

ronment and the perception of the instrument in that environment (Roederer, 2008).

The psychological representation of an instrument includes many variables, and is an

extremely complex subject. For this reason, it is more useful here to consider the per-

ceptual implications of the instrument’s timbre to be exclusive of environmental factors,

and ignore the perception of physical properties. Considering these perceptual impli-

cations, a practical approach to evaluating physical and spectral modelling techniques

will focus on their computational implementation against the expressive variation of the

technique. Such a framework for evaluation is proposed by Jaffe (1995) who describes

ten criteria of which, only five are applicable in this context:

1. Robustness: e.g. does the synthesis sound similar with expressive variation?

2. Efficiency: The efficiency of the algorithm, in terms of:

• Memory (RAM/Hard Drive Space)

• Processing (CPU power)

• Control stream e.g. how are synthesis calculations implemented within the

system architecture?

3. Sparseness of control stream: e.g. which aspect of the synthesis is doing the

most work - the synthesis, or the control data?

4. Sound class representation: e.g. whether a sound can be created with a single,

hybrid or multiple techniques;

5. Latency: e.g. does the computational method prevent immediate playback?

Ideal synthesis techniques have a robust identity, efficient algorithms that are good on

memory, CPU, with a sparse control stream, and can represent multiple sound classes,
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with minimal latency. This section will evaluate these approaches, with a view to se-

lecting the most suitable method for sonically rendering the complete instrument set.

The Karplus-Strong technique maintains a sound’s identity with expressive variation

for both plucked string and drum timbres. However, in the context of the discussions in

Chapter Two, the amount of timbral variation available in this technique is limited due

to few control parameters being available. As a result, it is difficult to create an accurate

representation of producible timbres caused by different modal excitations. Although

it is computationally efficient in its basic form, as demonstrated by the limited system

resources of the computer in the initial implementation, there are two factors that could

affect the efficiency of this algorithm. With between three and seven active degrees of

freedom in cymbal vibrations, a large number of equations are required for physical

modelling in order to model the vibrational characteristics of cymbals (Rossing, 2000,

p. 96).

As a result, this method will not sufficiently model these active degrees of freedom

without significantly changing the method. The number of oscillators and independent

random parametric variations required to create an accurate representation of a cym-

bal sound, degrades the performance from the original real-time implementation and

makes the control stream very dense. As a result, the sound class representation of the

drum set is a significant problem for using this technique, although an alternative is to

combine it with other techniques (e.g. using filtered white noise to simulate a cymbal).

Karplus-Strong Extensions employ additional filters to simulate the damping of a string,

particularly the plucked string of the original Karplus-Strong implementation. The

Karplus-Strong Extensions fall victim to many of the problems of the original tech-

nique, although with the additional filters, simulation of the chaotic nature of cymbals

with time-varying filters is possible. However, the number of filters and subsequent use

of multiple parameters per filter needed, will not only increase computational overhead,

but will make interdependent expressive control difficult.

Digital waveguides are a popular synthesis technique because of their ability to real-

istically reproduce complex resonators. This is particularly true with one-dimensional

models (a plucked string or wind instrument) as the required equations are compu-

tationally more efficient than calculating the wave equation (Murphy et al., 2007, p.

59). However, the two-dimensional waveguide mesh typically used to model the wave
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propagation in membranes, is less efficient due to the number of calculation steps re-

quired in the scattering junctions to calculate the wave propagation, particularly when

boundary reflections are calculated. This is because numerical errors are more likely

to occur as filters simulate losses in wave propagation. Reducing the number of scat-

tering junctions increases the computational efficiency, and in the case of the Digital

Waveguide Mesh (DWM) it “reduces the sample rate” (Murphy et al., 2007, p. 59).

Another limitation of digital waveguides is dispersion error. Dispersion error is where a

waveguide mesh derives an unexpected mode due to miscalculation of the velocity and

direction of the wave propagation (Murphy et al., 2007), which is particularly relevant

when considering the effects of drum tuning dis-uniformity on wave propagation and

modal excitation. Although existing implementations are robust, there are difficulties

in mathematically representing non-ideal drum tunings without creating a dense con-

trol stream. Additionally, the real-time implementation is constricted by the resolution

of the equations. In the case of a nine-piece jazz drum set, real-time modelling of all

instruments via this method is possible but difficult to implement.

Modal synthesis models the modal and harmonic interactions of a system, from the

input excitation. As a result, modal synthesis has a very sparse control stream, and is

generally robust with expressive variation as it is typically defined by the excitation.

However, this method is computationally very expensive when representing instruments

with high numbers of modal frequencies, such as membranophones and idiophones. This

is exacerbated in the case of modal interactions for non-ideally tuned membranes, where

more modal data is required. Expanding this technique to include all nine instruments

of the jazz drum set is too computationally inefficient to implement.

The finite-difference time-domain (FDTD) method was noted to accurately reproduce

cymbals and other percussion instruments, although the performance of the method

for complex vibrations such as cymbals, and higher sample rates, required between 1

to 160 seconds to render (Bilbao, 2010, p. 879). This is too slow for a real-time imple-

mentation, particularly where multiple re-rendering was required to simulate different

excitation locations.

Additive synthesis is the creation of complex timbres using multiple sine waves from

multiple oscillators. Additive synthesis is particularly useful for synthesizing sounds

with little noise. As drums, particularly cymbals are very noisy and contain lots of par-
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tials, a significant number of oscillators with independent timevarying envelopes will be

required (Roads, 1996, p. 141), making the control stream dense and significantly in-

creasing the computational overhead. Similar to the Karplus-Strong (and Extensions)

this would require complex control techniques to simulate percussive variation.

Linear predictive coding (LPC) can be applied to percussion by separating the ex-

citation from the resonance, and predict the resonances from the inversely filtered

input signal. One of the drawbacks of using LPC for modelling drums is that the

analysis component involves source separation and subsequent filtering, and the input

data should represent the micro-timbral variations possible on a drum. In the case

of Sandler (1990), the input source used was pseudo-random noise; for a nine-piece

jazz drum set, this would require a significant amount of input data. This affects not

only the computational overhead but makes the control stream sparse. Furthermore,

the robustness of the expressive variation is not good with LPC, as noted by Sandler

where there is a trade-off between sonic flexibility and precision of recreation. Para-

metric fine-tuning would be required to ensure that there were significant variations

in output, particularly in cases where small micro-timbral deviations are detectable in

the input signal, but the resonant effect in the synthesised output is not predicted as

expected. Issues arise with latency, where the computational overhead is affected by

simultaneous analysis and synthesis of the input data.

In order to create drum sounds using wavetable synthesis, different wavetable tech-

niques are required. This is because drums contain an attack transient and are complex

time-varying sounds. As a result, an ADSR envelope must be used to create the attack

transients, and wavetable stacking must be done in order to create the complex timbre.

Owing to the time-varying nature of cymbal spectra, the stacked wavetables would also

need to be crossfaded so that the timbres change over time. In addition, the resultant

output of a wavetable is largely dependent on the signal stored in the individual input

wavetable, meaning that choice of the input signal is important, and because of the

need to store multiple input signals, contributes to an increased computational over-

head. In addition to wavetable input selection, the parametric control of an ADSR

envelope to each wavetable, and the parameterisation of the wavetable crossfading are

also issues for this implementation.

In terms of expressive variation (PCM) sampling synthesis (see section 3.4) is the least

robust. Conversely it is also the most accurate and can model any sound class. Samples
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can be processed in real-time by adjusting gain (amongst other things), but because

the sample is fixed, changes in the spectral evolution and timbral variations associated

with vibrational changes due to differences in playing do not correspond well to changes

applied to the whole sample. To overcome this, multisampling techniques have been

used, although these come at a high cost in terms of computer memory and hard drive

space. A reduction in sample rate, or in the number of samples in a multi-sampled

system, can mitigate the computational overheads although this can affect the quality

of the sound. Despite this, the playback of recorded samples is both computationally

efficient and there is generally low latency in the playback. The largest problem with

the sampling lies in the control parameters, where playback usually consists of “play”

and “stop” messages. As a result, the control mapping for sample selection can be com-

plex and highly abstracted. With PCM sampling being the chosen synthesis technique

to be used in this investigation, these limitations will need to be addressed.

3.2 Why is Modelling Human Performance on a Jazz Drum

Set so Difficult?

In the first part of this chapter, empirical research into the vibrational characteristics

of membranophones and idiophones in a typical jazz drum set were reviewed. Differ-

ences were highlighted between the instrument groups in terms of modal excitation

and decay rates due to material, construction and supporting mechanisms. In addi-

tion, differences across the surfaces of the instruments were shown, characterised by the

tuning and strike location. Of particular relevance, were differences in modal excita-

tion arising from variations in strike location, which produce micro-timbral variations.

Understanding the causes of variations in strike location is important for constructing

the model’s timbral representation.

The interaction between the player and instrument is perhaps the most significant

variable to affect timbre production. It is the most significant variable in the distinc-

tiveness of performance. This is manifested in different techniques, skill levels, musical

knowledge and experiences, and the physical attributes of the performers themselves

(e.g. height, body mass, fitness etc.). In fact, the act of musical performance en-

compasses a variety of different contributory aspects. More specific examples of this

include physiological (Fujii et al., 2009; Lee, 2010), cognitive (Dahl and Friberg, 2004;

Laukka and Gabrielsson, 2000; Repp, 1999), technical (Dahl et al., 2011) and musi-

cal (Repp, 1997), and include both theoretical and empirical perspectives (Shove and
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Repp, 1995).18

This section will describe a drummer’s development goals, and then present an analyt-

ical framework in which to understand the underlying causes of performance variation,

particularly regarding instrumental interaction. This will involve a summary review of

the literature in the discipline of biomechanics, and the subsequent application of these

principles in relation to percussive performance, in order to augment the theoretical

framework for the underlying performance modelling paradigm. The following sections

will deconstruct the principal physical factors that cause imperfections in performance,

and their combined effect with instrumentation mechanics on the timbre of the sound.

It is not the objective of this investigation to discuss the different options and timbral

and acoustical effects of striking implements (see Halmrast et al., 2010, pp. 204-207),

nor is it intended to be an exhaustive discussion. There are specific aspects that have

been omitted, including the effect of batter head models on timbre (Henzie, 1960; Lewis

and Beckford, 2000);19 the effect of non-uniform tension; potential tonal evolution due

to the age (and usage) of the head; tempo (Desain and Honing, 1993); feedback condi-

tions (Brandmeyer et al., 2011; Dahl and Bresin, 2001; Pfordresher and Palmer, 2002)

and temporal independence (Goebl, 2011). In addition, aspects such as style and genre

which, with their obvious contextual performance differences, will not be discussed in

detail.

3.2.1 Drum Rudiments and Development Goals

Drummers develop their technique by learning drum rudiments established by the in-

ternational drum rudiment committee, part of the Percussive Arts Society (PAS). The

rudiments currently consist of 40 techniques (PAS, 2014),20 and have been derived from

different musical styles to form a pedagogical method for learning percussion. This

method is designed to provide an “orderly progression for the development of physical

control, coordination, and endurance” (see the foreward in Carson and Wanamaker,

1984). Although not explicitly defined, these development goals can be interpreted and

summarised as follows:

18 For an overview, the reader is referred to Gabrielsson (1999, 2003) and Palmer (1997).
19 Although this is not a real-time timbral phenomena, it certainly has an effect, and can be con-

sidered as important as the striking implement, which might change during a performance.
20 Drum rudiments were initially created by the National Association of Rudimental Drummers

(N.A.R.D.) in 1933, and subsequently expanded from 26 rudiments by the PAS. In addition, the

40 rudiments are considered to be a work in progress, to enable future development (Carson and

Wanamaker, 1984).
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• Physical control: refers to the performers’ management of stick and instrument

interaction, extending to the wrist, hand and including arm control;

• Coordination: refers to the strike accuracy and the performers’ ability to exert

physical control over sequences of strikes in different locations; and,

• Endurance: refers to performer attributes, instrumental configuration and the

complexity of piece being performed.

Although these development goals can be considered independent of each other, there

is a large amount of interdependence between the three. One example of this is where

a performer has good stick and instrument management but poor coordination. The

result is a drummer that could play the strikes correctly but not necessarily hit the

drum in time. Another example is maintaining arm control and coordination of move-

ment in complex sequences, which depending on the endurance levels of the performer,

can deteriorate over different periods of time. The relationship between these goals is

described in Figure 3.6. Although these goals are fundamental to the development of

Figure 3.6: The interdependency of the three development goals. Adapted from Carson

and Wanamaker (1984).

a percussionist’s skill, obtaining an understanding of percussive performance by way

of deconstructing principles of human movement from these goals is difficult due to

the effect of environmental factors in skilled movements (Dahl, 2005). Such factors

could include the effect of temperature and altitude on endurance, auditory feedback
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on coordination, and stick thickness on physical control, amongst others. As a result, it

is both impractical and difficult to account for all of these independent variables. The

reduction of independent variables in the analysis of human movement, extending to

environmental variables, is not new. In fact, the dimensionality of variables in under-

standing human movement has been the subject of investigation since Nikolai Bernstein

first proposed the theory of the degrees of freedom (DOF) in 1967. He theorised that

because there are an almost infinite number of ways a movement could be executed

through the large network of muscles, joints and cells in the human body, there are an

infinite number of ways that muscles can achieve the different movements.

The control of the nervous system on the musculoskeletal system is highly complex

as for any given movement there are a high number of degrees of freedom. This com-

plexity is illustrated during the activation of a single muscular element in either isolation

or in any particular sequence from another (Bernstein, 1967). Thus, if the nervous sys-

tem controls movement by controlling synergistic groups rather than individual muscles

and joints, the number of DOF (and therefore the dimensionality of variables) is re-

duced (Turvey, 1990). Bernstein also suggested that the sensory feedback from the

environment interacted with the nervous system to reduce the number of DOF. Turvey

substantiates the omission of environmental factors within the context of Carson and

Wanamaker’s development goals for this framework, by arguing that:

“if the environment to which the movement system relates is interpreted as

just another large set of variables, then the juxtaposition of an animal and

its environment would amplify the problem of degrees of freedom” (Turvey,

1990, p. 940).

Including the juxtaposition of environmental factors on percussive performance, would

not only concern human movement and the number of degrees of freedom, but would

also necessitate extending environmental variables to the vibrational behaviour of each

of the nine percussion instruments under investigation. Since the speed of sound in-

creases with air temperature (Fletcher and Rossing, 1998, p. 70) a bigger picture

emerges as to the inherent difficulty in adequately applying several environmental fac-

tors as variables across the different themes of this thesis. In light of this, Turvey’s

position will be considered to be the most appropriate view, and consequently envi-

ronmental factors will be considered outside of the scope of this thesis in relation to

instrumental mechanics and human movement.
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3.2.2 The Analysis of Human Movement

In 1982, the neuroscientist David Marr presented a tri-level hypothesis by which infor-

mation processing systems should be analysed. These levels of analysis can be sum-

marised as follows (Marr, 1982, p. 25):

• Computational level: what does the system do?

• Algorithmic/Representational level: how does the system do what it does?

• Physical level: how is the system physically realised?

Marr describes how these three levels of analysis are not intrinsically dependant on one

another and how, in some circumstances, analysis can be achieved by using only one or

two levels. The choice of analytical level is critical in correctly understanding certain

systems. More importantly, Marr continues to describe how the computational level

of analysis is particularly important in understanding certain phenomena, particularly

where there are significant levels of abstraction between the understanding of a system

and the computational representation. Examples of this include a priori understanding

of the nature of biological or perceptual processes, prior to computational represen-

tation, than by analysing the computational representation of such process in a given

computational environment (Marr, 1982, p. 27).

In David Rosenbaum’s (2010) book on motor control, he describes how Marr’s three

analytical levels of information processing systems also represent “the study of hu-

man motor control” (Rosenbaum, 2010, p. 4). At the computational level of analysis,

Rosenbaum describes how, during physical activity, animals and humans plan their

movements using what he describes as “implicit equations”. These implicit equations

are derived from Marr’s computational level, where a system must achieve a function,

which in computer terms is often described mathematically. However, for humans and

animals this refers to the mental representation of task to be performed. One example

of this is the mental representation a rock climber has of a “dyno” (a jump or leap) to

the next position. In the context of percussive performance, this can be a mental repre-

sentation of an impending drum fill and the striking of a sequence of instruments from

the current position. Rosenbaum notes that the computational level of analysis does

not include the execution of the action, which is unsurprising considering the number

of DOF.

In applying Marr’s second level, the algorithmic/representational level, Rosenbaum
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notes that algorithms in a computer system are designed to enable a system to under-

take their function, with guaranteed success. In the natural world, movements operate

in real-time (analogous to algorithms at runtime) but there is no guarantee of success.

For example, a rock-climber might not jump high enough to grab the next hold (and fall

to the crash-mat below); the drummer can hit the wrong instrument or strike the shell

of the drum by accident. As Rosenbaum points out, each of these real-time movements

relies upon a procedure, and the person executing the action will draw upon behaviour

and cognition in order to execute and verify the movement, hence Rosenbaum’s exten-

sion of this term as the “procedural level” (Rosenbaum, 2010, p. 5).

Rosenbaum describes the final level of Marr’s analysis, the implementation level, bio-

logically as the physical aspects of the movement. Such physical aspects are described

by Rosenbaum as muscle operation, brain activity etc. It is in this level that our rock

climber can use their leg muscles to jump, stretch their arms to grab the hold and,

finally, use their fingers and forearms to grip and maintain the hold. For the drummer

playing a snare drum followed by a ride cymbal with the same hand, muscle operation

can include the fingers and hand for gripping the stick, adduction of the lower arm

for the strike, followed by a lateral rotation and abduction of the arm to reach cymbal

height. These examples are highly simplified, as it is in this analytical level that the

DOF problem is encountered.

Rosenbaum’s biological adaptation of Marr’s tri-level analysis provides a solid approach

to understanding the movement process. If this three-stage analysis is undertaken in

the context of Carson and Wanamaker’s development goals, it is possible to objectively

evaluate existing research and literature on human movement, specifically for percus-

sion. Furthermore, the bottom-up nature of the three analytical levels in relation to

performing a drumming action, allows for a more comprehensive and structured dis-

cussion. This re-contextualisation is described in Table 3.2. Understanding the nature

of percussive performance variation requires only the computational level of analysis in

order to gain an understanding of the relevance of human performance on timbre and

timing, and uncover common aspects of human performance. Although there are other

aspects in other levels that contribute to performance variation, the majority of these

are outside of the scope of this investigation due to their highly individual and highly

subjective nature, and the difficulty in adequately proving these. These parts of the

framework are highlighted in light grey.
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The first aspect of this framework outside of the scope of this investigation is the be-

havioural and cognitive aspect of carrying out a physical movement (physical/procedura-

al). This is because behaviour and cognition are highly individual, and also highly

dependent on the context of the performance (e.g. genre). An important cognitive

element of this analytical level and context comprises sensorimotor synchronization

(SMS), which is the rhythmic coordination of an action with a regular external event

(Repp, 2005). As a result, the computational representation of SMS would be difficult

to realise, and the empirical testing required for such a model is outside the scope of

this investigation.21

Another area of the framework outside of investigative scope is the physical aspect

of carrying out a movement (physical/implementation), particularly regarding muscle

and brain activity. This particular area presents two separate problems. In terms of

muscle activity, the most significant modelling challenge lies with the DOF problem

and determining which classifiers and representative organisational systems of muscle

activation to model. One such solution would be to use a single DOF as a representa-

tive for all similar movements in the model. In the case of a drummer, there would be

more than one DOF that would need to be modelled to cover all limbs. In addition,

determining the most appropriate DOF for the movement, and making such assump-

tions, will produce some theoretical shortcomings (particularly for neurophysiologists).

Modelling muscle activations also presents problems in relation to the relationship be-

tween abstracted models of muscle movement and timbre production - a problem that

is also found in modelling brain activity.22

The behavioural and cognitive mechanisms associated with performance feedback (co-

ordination/procedural) encompass a range of methods of feedback acquisition. These

include auditory, visual, tactile, haptic and kinaesthetic, or combinations of one or

more. Each of these individual types of feedback has different effects on cognitive and

behavioural mechanisms, and varies depending on the performance conditions. With

so many combinations of feedback conditions and environmental variables, finding an

appropriate representative model is difficult. Additionally, modelling specific effects of

21 For further reading on this subject, the reader is invited to read Fujii et al. (2010); Hove et al.

(2007); Repp (2005, 2006); Wing et al. (1989) and Wing and Kristofferson (1973a,b).
22 For further reading on muscle activation and brain activity during performance, the reader is

invited to read Fujii et al. (2009); Fujii and Moritani (2012a,b); Gabrielsson (2003) and Todorov and

Jordan (2002).
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certain feedback conditions would have limited practical application.23

It was noted above that modelling muscle activity was difficult given the DOF prob-

lem, the high level of abstraction from timbre production and timing of both muscle

activity and brain function, and the selection of suitable organisational systems for

modelling control and muscle activation. This problem is compounded when consider-

ing inter-limb coordination as a physical aspect of coordinating multiple instruments

(coordination/implementation), particularly in complex tasks such as rhythm produc-

tion. In creating complex rhythms bimanually, task difficulty between the hands (which

include cooperative and disjointed tasks), together with the dexterity levels and hand-

edness of the individual, will affect the brain’s organisational control of the two hands.

In the case of drumming, it is more likely to include leg control for operating the bass

drum and hi-hat. This would result in a highly complex study with many variables that

may or may not be relevant to performance modeling. Consequently this is outside the

scope of this research.24

Endurance is unique to individuals and can be increased with correct training. How-

ever, during performance, endurance can be affected by an individual’s level of physical

exertion, which can be mitigated by employing techniques that increase their economy

of movement. The behavioural and cognitive aspects of improving levels of endurance

fit firmly in the realms of performance psychology, which are difficult to represent in a

computational model of a performance. Similarly, the modelling of training and warm

up protocols is also outside of the scope of this investigation, as they do not bring

any direct benefit to the modelled system. Similarly, no benefit would be gained by

modelling a performer with an impairment because, like modelling a drummer with

low levels of endurance, the system would be designed with a level of performer obso-

lescence, resulting in poor playing after a period of time. Therefore, computational,

procedural, and implementation levels of analysis relating to endurance are outside the

scope of this investigation.25

23 For further information on aspects of performance feedback, the reader is directed to Brandmeyer

et al. (2011); Dahl and Bresin (2001); Fujii et al. (2010); Gabrielsson (2003); Petrini et al. (2009);

Pfordresher and Palmer (2002) and Pfordresher and Benitez (2007).
24 For further reading on this subject, see Bernstein (1967); Calvin et al. (2010); Iannarilli et al.

(2013) and Kelso et al. (1979).
25 However, for further reading the reader is directed to Abernethy et al. (2005); Gabrielsson (1999,

2003) and Shaffer (1989).

63



3.2 Why is Modelling Human Performance on a Jazz Drum Set so
Difficult?

It is worth noting that although some aspects of the framework are specifically noted

as being outside the scope of investigation, there are overlaps between some of the

variables mentioned and aspects of performance that will be discussed in the following

sections. Their inclusion within the discussion serves to highlight the complexity of per-

cussive performance, and demonstrates the wide reaching implications and importance

of the discussion.

3.2.3 Controlling Instrumental Interaction

Why is physical control so important? Striking an object with another object has two

repercussions. Firstly, as the struck object produces sound, vibration in the stick travels

through the fingers to the hand. In some instances, and depending on the force of the

strike and the materials involved, this can extend into the arm. In severe cases this can

cause discomfort (e.g. striking with extreme force a large mass of solid metal using a

metal bar). Secondly, striking an object can cause the striking tool to be deflected away

from the surface and, depending on the elasticity, the level of deflection will be either

minimal (e.g. a hard metal struck surface) or more significant (e.g. a struck membrane

under tension). Since playing the drums requires striking many objects consisting of

different materials at different strengths, the amount of vibration experienced in the

player’s body differs between instruments. In addition, each instrument will deflect

the striking implement differently depending on the elasticity of the struck surface, the

angle of the initial strike, and strike force. It was noted earlier in the chapter, that

strike location played a significant part in modal excitation and the timbre of the drum.

Since playing the drums often requires multiple strikes, it is important for timbral con-

sistency that the drummer maintains physical control of the striking implement across

a diversity of potential strike interactions.

The first point of interaction between a drummer and the drum lies with the stick

contact with the surface of the drum. Earlier in this chapter the effect of stick contact

location was described in relation to modal excitation and timbre, but the contact time

between the striking implement and the surface was not discussed. Billon et al. found,

during finger tapping exercises of accented beats, that finger contact time was greater

than non-accented beats (Billon et al., 1996). An investigation into stick contact times

on a tom-tom by Dahl (1997b) found contact times to decrease with strike force. These

stick contact times were measured electrically by using adhesive copper foil on both the

surface of the drum and the stick, for different strength strokes (pp, mp, mf, and ff ), in

the centre of the membrane (Dahl, 1997b, pp. 64-65). The results showed that contact
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time decreased in a non-linear manner with increased strike strength, ranging from 8ms

to 5.5ms for the four dynamic levels of strikes in the experiment. Dahl ruled out the

surface material and vibrational reflections from the rim of the drum as contributing to

this behaviour by performing similar strikes on a softer surface (a carpet) and obtain-

ing similar results, and by measuring the reflected waves of the drum head on the stick

with an accelerometer. Dahl found that the reflected waves were not strong enough to

influence the stick motion, but did affect the stick’s bending mode at around 475Hz.

These findings present an interesting paradox in accented playing and contact times.

In some kinematic analysis of percussionists, Dahl found that interleaved drumming

accents were played with increased stroke height (Dahl, 2004). With a correlation be-

tween higher preparatory strike heights and striking velocity, including higher dynamic

levels (Dahl, 2004, p. 768), Dahl found that accented strikes tended to have lower stick

contact times. In a direct comparison between tapping with a finger and drumstick on

a force transducer, Fujii and Oda (2009) found that there was little difference between

tap speed and peak force variability between the finger and stick, in ten-second tapping

bursts between seventeen drummers. However the authors found that tapping with a

stick produced shorter contact times, with a larger peak force and greater stability in

the intertap interval than finger tapping. The authors concluded that the stick “allows

drummers to play drums powerfully and stably” (Fujii and Oda, 2009, p. 969). The

authors also noted a difference in tap rate and stability between the left and right hand,

with the left hand being generally the weaker of the two in right-handed drummers.

Beyond the practical aspect of force and stability, the player can dampen the vibration

of the instrument by forcing extended contact with the drum head, thereby adjusting

the timbre of the strike. Additionally, due to the small contact times with the drum

head, such actions must be preparatory and integrated into the strike (Dahl, 2005, p.

19). The difficulty faced by the player, particularly with higher striking velocities, is

the deceleration of the drumstick when it makes contact with the membrane, and the

rejection of the drumstick when the membrane accelerates it in the opposite direction

(Wagner, 2006, pp. 20-23), or rebound. In the case of a damping effect, the player

must exert an opposing force greater than the accelerating force of the membrane, and

in the case of a non-damping strike, the player must cease the downward force on the

membrane to ensure no further stick contact is made once the initial opposing acceler-

ation has subsided (e.g. a stroke that can rebound freely). In either case, the stroke is
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largely determined by the player’s grip on the stick.

The effect of stick grip on the sound characteristics of a drum was investigated by

Dahl and Altenmüller (2008, 2013) who measured contact force, duration, and pre-

and post- stick velocity for two different types of grip: a normal grip where the stick

was allowed to rebound freely, and a controlled grip where the player was asked to

stop the stick as close to the membrane after the strike as possible. The authors mea-

sured the movement of the stick, index finger knuckle (Metacarpophalangeal, or MPC

joint),26 and wrist for both grip types and found that more energy was transmitted to

the drumhead in the controlled stroke, with higher peak force and lower contact dura-

tions. In addition, the constraining actions of the wrist and MPC joint in the controlled

stroke produced a lower post-strike velocity. In order to identify the effect of these grips

on the sound of the drum, listening tests were carried out and the normal stroke was

considered to have a more full timbre compared to the timbre of the controlled stroke.

The authors note that this is due to the longer contact durations dampening some

modes of the drum but, more interestingly, they “appeared to have affected both the

effective mass and possibly also the stick modes” (Dahl and Altenmüller, 2008, p. 1494).

Exclusive of the timbral variations created by the instrumental mechanics, produc-

ing an accent or a desired timbre requires preparation on the part of the performer.

The performer must be able to adjust (loosen or tighten) their grip or adjust the loose-

ness of their lower arm (the wrist and MPC joint) to change the interaction of the stick

and the drumhead, thus producing variations in timbre. One of the key drivers for grip

modification in drumming is to control the amount of rebound. However, as Dahl and

Altenmüller notes, a grip adjustment for controlling rebound should theoretically be

done post-strike because the implicit equation in the preparation for physical movement

affects the sound production of the stroke.

Stick rebounds can have both a positive and negative effect on drumming depending on

the required loudness of the subsequent stroke (Dahl, 2003, p. 11). Furthermore, stick

rebound is determined largely by the player’s grip, with looser grips allowing more

rebound. In a pilot study into drumming sequences with interleaved accents, Dahl

(1997a) found that the stick tip position immediately following an accented strike was

heavily influenced by the rebound. This was shown by the height of the tip and the

upward velocity immediately after the strike (shown in Figure 3.7 (c)). In addition,

26 An approach similar to Wing et al. (1989).
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Figure 3.7: The vertical position of a hand and tip of the drumstick of the drumming

sequence, in relation to (a) the accented sequence; (b) the horizontal plane; and (c) velocity

of the tip of the drumstick (Dahl, 1997a, p. 4).
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the horizontal angle of the drumstick is at its second highest point immediately after

the accented strikes (Figure 3.7 (b)). Dahl notes that the tip height of the rebound

following an accent is “above the optimal starting position for the following soft blow”

(Dahl, 1997a, p. 5), the relative starting position of the tip for the other unaccented

strikes in the sequence (S1, S3, S4, and S6).

The players’ dampening of the rebound is described in Figure 3.7 (a), where the tip

position fluctuates after the accented strikes. This fluctuation is a result of the player

exerting force on the stick, in opposition to the upward acceleration, and then reacting

to a minute overcompensation before returning to the typical stick motion (albeit with a

higher starting position for an unaccented strike). Despite the increased (sub-optimal)

stick height, the IOIs of the unaccented strikes (S2 and S5) appears unaffected, owing

to an increased strike velocity to counteract the height, even though planning of the

pre-accented strike included playing S4 early (Figure 3.7 (a)).

A later study by Dahl presented data addressing this issue, in which larger ranges

of IOIs occurred in sequences played at softer dynamic levels and at slower tempi

(Dahl, 2000, p. 229). In this later study, Dahl concluded that the 68% drop in IOI

range from ff at 200BPM to pp at 160BPM was the result of weak rebounds from the

softer strikes that, in turn, “makes the playing more difficult to control” (Dahl, 2000, p.

232). Generally, notes can be accented using either higher dynamic level or prolonged

note durations. The former method for accentuation requires higher preparatory move-

ment. Despite this, Dahl observed that movement increase did not necessarily equate

to a delay in the accented note. Instead some of the unaccented strokes following an

accent were delayed, although this delay was not consistent. This lack of consistency is

suggestive of rebound control stemming from the greater accented stroke preparatory

movement that, when combined with the difficulty in controlling weak rebounds, could

account for the “short term variations between adjacent IOIs” or “flutter” (Dahl, 2000,

p. 228). This flutter ranged between 2-8% of the relative tempo of the subjects and

was more noticeable at slower tempos.

In contrast to weaker rebounds, stronger rebounds are more conducive to player con-

trol. Furthermore, players can exploit the upward acceleration of stronger rebounds

to achieve greater preparatory height with less effort (Dahl, 2000, p. 232). Ignoring

stroke height apex control, the exploitation of rebounds requires significant planning

and has some far-reaching implications on a player’s drum set performance. A drum
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set consists of more than one drum and often features drums on different dimensional

planes. For example, tom-toms (particularly those mounted on a bass drum) can be

adjusted to any degree of angle from the horizontal plane depending on preference.

Additionally, cymbals tend to be angled to avoid weakening the edge of the cymbal,

chewing up the drumstick, and to allow the player to strike the bell. From a practical

viewpoint, these instruments can also be positioned at any angle on the vertical plane

relative to another instrument, depending on personal preference. Thus, the angles of

deflection of the rebound can be more or less complementary to a subsequent stroke on

another drum depending on their relative positioning. Furthermore, the angle of deflec-

tion on the first drum is also dependent on the initial stroke angle. This is determined

largely by the positioning and deflection angle of precedent strokes (if any), planar

positioning of the drum relative to the player, and player posture. This is described in

Figure 3.8. For clarity, the strike locations have been placed off centre, although the

principle applies to a centrally struck drum.

Figure 3.8: An illustration showing a potential deflection angle on a horizontal drum

(left) and an angled drum (right). Arrows indicate strokes (green) and the rebounds (red).

The horizontal drum on the left is a simplified example of a typical rebound of a drum

in a low horizontal plane, similar to the position of a snare drum, where the downward

stroke tends to be more vertical due to the player’s superior position. The stroke angle

is assumed to be closer to the player and the rebound angle away from the player and

follows the motion trajectory of participant S2 in Dahl (2000, p. 227). The angled

drum on the right is an example of a drum closer to the vertical plane, and positioned

to the right of the player. This example shows the effect of a single strike in a drum

fill, where the previous instrument was positioned to the left of the player, and the

rebound points towards the next drum target. In this example, the deflection angle is
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complementary to the following stroke.

However, a deflection is reliant on a number of variables. One of these is shown in

Figure 3.9, a theoretical ideal of the angle of deflection, relative to the strike trajectory.

Figure 3.9 (b) shows how, during a narrow strike angle (the angle between the strike

trajectory and the membrane), coupled with momentum, contact between the drum

and stick can be forcefully increased. In this example the angle of deflection becomes

wider, potentially reducing the complementarity to the subsequent stroke. The pro-

longed interaction of the stick and drumhead can also affect the timbre of the drum.

Figure 3.9: An ideal deflection of a drumstick on a membrane (a), and the deflection of

a drumstick with an acute strike trajectory and momentum forced contact (b).

There are many variables that can affect the rebound angle and velocity, several of

which have been discussed. However, it has also been noted by Wagner (2006) that

the rebound speed is also dependent on the tension of the membrane. Wagner’s exper-

iments on force, contact time, and acceleration of a drumstick at different membrane

tensions, demonstrate that the increase in stiffness affects the speed of the transversal

wave propagation and internal reflection from the rim, together with a decrease in con-

tact time as fewer vibrational modes are excited due to a reduced force pulse (Wagner,
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2006). The results of Wagner’s experiments are shown in Figure 3.10.

Figure 3.10: Two graphs showing force, contact time and acceleration of a f drum stroke

in the centre of a single drumhead at different tensions. The vertical lines denote the first

arrival of the reflected travelling wave (Wagner, 2006, p. 33).

It is worth noting that drums come in different sizes with different tensions, so a drum

set contains variations in rebound behaviour. While Dahl’s experiments used two-

headed drums, the investigations focussed on player movement. Wagner’s experiments

concentrated on the interaction between the stick and drum, but used single-headed

drums. There is currently no detailed literature investigating stick and cymbal inter-

action although, given the pivotal movement of a ride or crash cymbal on a stand, it

can be assumed that there would be limited interaction with the stick as the cymbal

moves away from the stick with the downward force. In the case of a rebound that is

in opposing trajectory to the subsequent strike, Dahl’s controlled striking experiment

demonstrates that the player compensates for this prior to the stroke, using finger,

wrist, and arm muscles to counteract the acceleration.

Rebounds also occur in the foot pedals associated with the bass drum and the hi-hat.
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In the case of a bass drum, the static strike location of the beater on the membrane

ensures that rebounds operate consistently in the same way between strikes. The bass

drum pedal mechanism also amplifies the rebound, as the weight of the beater on the

swing arm, and torque from the movement of the foot pedal, tends to push the beater

to its default “open” position. As a result, pedal control is important and muscle use

is more constant. In the case of the hi-hat, the opposing force to the foot is in the

counterweight of the upper hi-hat cymbal, thus, releasing the pedal opens the hi-hat.

Because opening the hi-hat generally occurs less than striking the bass drum, constant

pressure is applied to the pedal with pressure release opening the hi-hat. The ratio

of pedal to hi-hat movement can be adjusted but, in general, controlling this is much

easier than controlling a bass drum.

Rebounds do not always have an inherently positive effect on playing. Weak rebounds

are difficult to control, and opposing rebound trajectories can require either more effort

to control or quick reflexes for immediate control. For immediate control, the player

must anticipate the rebound and/or modify the preparatory movement of the stroke.

In Dahl (2000) the comparison between the motion of a drumstick tip and the hand,

during an accented stroke, showed that the hand moved upwards before the tip of the

drumstick. Moreover, this occurred while the stick was still in contact with the surface

of the membrane (Dahl, 2000, p. 232). The maximum upward velocity of the hand was

2m/s with a height of 50cm above the membrane compared with 4m/s for the tip and

a height of 70cm (Dahl, 2000, p. 227). Dahl describes how the differential in upward

velocity and height means that it is:

“Not until the stick has passed its upper turning point an actual force

delivery may be applied by the wrist (or fingers) to increase the speed. The

result is a “whiplash” of the tip of the drumstick but the motion of the hand

is smooth, resembling a fishtail-gesture. This characteristic fishtail motion

of the hand in the preparation and delivery of the accented blow is certainly

used in other ways in drumming, like reaching a position on another drum

far away in ample time. By starting the movement before the last note

is finished the player gains time and thereby effort. While the hand and

fingers still control the last stages of the present tone the lower and upper

arm have already started to move in position for the next” (Dahl, 1997a, p.

5).

The fishtail movement described by Dahl is characteristic of several of the findings by
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Kelso et al. (1991) in which the sequence of strikes resembles prone in-phase move-

ments of the forearm (where similar muscles simultaneously contract) to a metronome.

Such prone in-phase movements were found to produce a more curvilinear trajectory

than anti-phase movements (Kelso et al., 1991, p. 440), and has implications in drum-

ming performance. Firstly, Kelso et al. found that at a certain metronome frequency,

around 1.5Hz, or 90BPM, a participant starting in an anti-phase manner spontaneously

switched to an in-phase movement to keep in time with an increase in metronomic fre-

quency. Kelso et al. note that, prior to the automatic switch to an in-phase movement,

the velocity (which was generally more stable with in-phase movements compared to

anti-phase movements) became unstable with a sharp decrease of instability observed

shortly after the phase switch. They also observed that, conversely, a participant start-

ing in an in-phase position does not switch to an anti-phase position with an increase

in frequency. This one-way automatic phase transition suggests that the heterologous

nature of the muscle activity in the anti-phase movement is less economical, resulting

in a decrease in consistency of velocity and ultimately comfort. Additionally, the prone

in-phase hand positions coupled with the velocity stability allows drummers greater

control of the stick to hand interaction.

On the subject of movement analysis, two distinguishing features exist between Kelso

et al. and Dahl. These relate to the lowest part of the movement (the stick and drum

interaction) and highest part of the movement (the fishtail motion at the top of the

stroke height). When a player starts a movement early (e.g. from the moment of im-

pact) it causes the player to be ahead of time, therefore reducing the need to reactively

make inefficient movements. It also allows the player to take advantage of the existing

lower and upper arm movement, which is important in instances where the subsequent

stroke requires bodily rotation to achieve optimal positioning for the next preparatory

movement. For example, this is particularly relevant in sequences involving drums po-

sitioned at distance from one another. The greater the distance between the drums,

the further the body must move. At higher tempos, it becomes increasingly difficult to

make the movement in the required time.

The second component of the hand movement is the fishtail motion at the upper turn-

ing point of the tip. It is this upper turning point that is subject to the least amount

of force, and so is easier to influence. In contrast to the bottom of the strike, there is

no rebounding force, so the player employs a fishtail motion of the hand to cause the

tip to change direction quickly, and to move with greater acceleration. Because playing

73



3.2 Why is Modelling Human Performance on a Jazz Drum Set so
Difficult?

the drums is an ongoing time-sensitive activity, both of these two components must be

employed if the player wishes to increase their efficiency through improved economy

of movement. The overriding goals of these components draw parallels to Shaffer’s

description of the motor geometry in piano performance:

“Getting the fingers to the right locations on an instrument is important

but only part of the motor task in playing. The performer can learn to

shape the trajectories of movement so as to achieve timing of rhythm and

variation of dynamic and tone quality with an economy of motor effort”

(Shaffer, 1989, p. 383).

It is evident from both Dahl and Shaffer’s description of performance that drumstick

management, particularly the control of rebound, and control of the stick at the height

of strike motions, are all technical elements of playing the drums that contribute towards

accuracy in timbre production and timing control. Although Dahl describes variations

in the overall motion between the participants (especially at different skill levels), the

curvilinear trajectory follows the findings by Kelso et al. (1991).

3.2.4 Bodily Coordination

The previous section discussed aspects of physical control that can create variations

in performance. Specifically, the way a performer interacts with the instrument, and

how this interaction can be controlled, through implicit calculations and preparatory

movements. Of particular relevance was how the interaction with the drum has much

wider affects than localised variations in timbre and timing. One example was seen in

the rebound of the drumstick and it’s effect on the trajectory of the subsequent strike.

Playing the drums requires both bilateral movement (both pairs of limbs moving in

unison) and unilateral movement (one limb moving at a time). Aruin and Latash

(1995) investigated the effect of opposing bilateral fast movements in the shoulders

(with and without load) of subjects standing on a force platform. They found that

anticipatory postural muscle adjustments (APAs) in the trunk and leg muscles were

made by the subjects, increasing to a maximum when arms were moved in a forward or

backward motion, and decreasing to no APAs when moving the arm along the coronal

plane. Furthermore, there were no significant differences in muscle adjustment as a

result of additional load on the arms (Aruin and Latash, 1995). These APAs were

evident by changes in the subjects’ anterior, posterior, and vertical centres of pressure
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and gravity on the force plate, prior to the movement (Aruin and Latash, 1995, p. 326).

In the case of jazz drumming, it is quite common for the drummer to be in a seated po-

sition with much of the player’s weight supported by the seat. This relegates the effect

of the leg muscles, in the redistribution of centres of force and gravity for an APA, and

is further complicated by the legs’ use in applying independent pressure to the hi-hat

and bass drum pedals. Consequently, upper body stabilization is carried out by the

trunk, specifically the Erector spinae (ES) and Rectus abdominis (RA), irrespective

of the types levels of support in the legs (Aruin and Shiratori, 2003). These findings

were supported by Santos and Aruin (2008) who also found that the lateral muscles

contributed to upright posture control in feedforward movements, akin to feed-forward

movements in drumming, with the level of muscle activation being directionally spe-

cific. For a drummer with both legs in a fixed position for operating the hi-hat and

bass drum, directional posture control is of great importance, particularly in controlling

movements requiring axial rotation of the upper body.

Thus, APAs in “compound” multijoint movements, especially those involving changes

in direction (Holmes, 1939, pp. 17-19), in this instance, bilateral fast movements of

shoulders coupled with point-to-point axial rotation, are critical in maintaining postu-

ral stability. However, when playing the drums the player does not only play bilateral

movements. In many cases, arm movements are unilateral, are not directly opposing,

and are executed at different strengths and speeds depending on the relative location

between subsequent drums. Furthermore, with different maximum arm heights, rela-

tive to the horizontal plane, and different maximum distances in arm reach required

from the centre of the torso between strikes, postural control and stability also affects

movement on the vertical (sagittal) plane, where a “hunched over” position is not con-

ducive to playing strikes at greater heights. With this in mind, it is easy to imagine

the variations in the centres of pressure and gravity of a player during the course of a

percussive performance. In fact, Alén (1995) suggested similar links between movement

and performance variations. In his analysis of the Cuban toque macota, Alén described

how the large size of a Cuban bulá drum may have affected the performer’s stabiliza-

tion, requiring torso movements that could have contributed towards timing deviations.

Although there are vast differences between the jazz drum set and the bulá, it is con-

ceivable that Alén’s links also apply to playing the jazz drum set. One theoretical view

is that a performer mitigates these effects by maintaining a postural equilibrium, with
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extreme changes in postural stability countered by APAs stemming from performance

planning and musical “read-ahead”, both of which can be linked to performance skill,

having repercussions on musical gesture as a learned deviation.27

Therefore, it can be concluded that one general rule of performance variation is that

the greater the distance and angle of movement (relative to the torso) prior to the

strike, the greater the inequality between the opposing reach angle and distance of the

other hand, and the synchrony/asynchrony of the arm movements, the more complex

the biomechanical and neurophysiological process and the increased likelihood of per-

formance variation.

The trajectory of a drum strike is important in drumming, to such an extent that drum

strike trajectory has been used as an important component in compositional specifica-

tion (e.g. Stockhausen’s composition Zyklus). Previous discussion has described how

rebound control can be used to affect the trajectory of the subsequent strike in a se-

quence of percussive hits. Between rebounds, the player must move the stick from one

strike location to another at a speed sufficient enough to maintain correct timing. The

success of which is largely dependent on trajectory, defined by Abend et al. (1982) as:

“the path taken by the hand as it moves to a new position and the speed

of the hand as it moves along the path” (Abend et al., 1982, p. 331).

In their study of hand trajectory to target, Abend et al. found the majority of subjects

when asked to move their hand deliberately to a target with no instruction, opted for

a straight line. With the shortest distance between two points being a straight line,

one would expect movements with straight trajectories to have a shorter duration than

curved trajectories to the same target. Although this was found to be true, movement

duration is also dependent on speed, which Abend et al. found to be more irregu-

lar during curved trajectories. However, in cases where the average speed was low,

even straight trajectories showed irregular speed patterns, suggesting greater difficulty

controlling the movement. In a performance context, a lower movement speed and,

therefore, a lower strike velocity, will produce weaker rebounds. Thus, the interac-

tion with the instrument, in terms of rebound control, and the movement between the

27 Musical gesture is closely associated with the behavioural and cognitive aspects of carrying out a

physical movement (physical/procedural analytical level). Consequently, gesture is outside of the scope

of this investigation. For further information on this topic, the reader is directed to Godøy and Leman

(2010).
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strikes is harder for the player to control.

Regarding the irregular speed profiles of the curved trajectories in Abend et al., it

was noted previously that the movement of a drumstick during a strike has curvilinear

resemblances due to the phasing of muscle movements (Kelso et al., 1991). However,

a connection between the two cannot drawn as there were differences in planar move-

ment. The participants in Abend et al., for example, operated on a horizontal plane,

compared to sagittal movements in Kelso et al., and compared to both sagittal and

horizontal movements in Dahl (2000). Despite this, there was a correlation in the in-

creased irregularity in hand speed, relative to the anti-phase of the angular velocity

of the shoulder and elbow; a joint-focussed dichotomy with parallels to Kelso et al.’s

muscle synergies.

Drumming invariably uses multiple joints, each with different torques applied from

the muscles which, in a multijoint movement, extends to the interaction of other joints

and torques in the movement. In the case of multijoint movement, each joint will be

subject to different velocity interactions at different points in the movement. Where a

trajectory is changed mid-air and not using a rebound (e.g. at a higher preparatory

stick height, as in Dahl et al., 2011), the joint torques will change depending on the

new trajectory. Such a movement is subject to interactional forces during the plan-

ning and control of the movement, such as Coriolis, reaction, and centripetal torques

(Abend et al., 1982, p. 331), although the effect of these forces change dynamically

over the movement. Hollerbach and Flash (1982) observed such behaviour in relation

to a curved trajectory:

“The velocity interaction torques in fact completely dominate the dynamics

at the movement midpoint because the inertial torques go through zero as

the movement switches from acceleration to deceleration and the arm is

moving the fastest at this point” (Hollerbach and Flash, 1982, p. 76).

In the case of a single stroke, as measured in Dahl et al. (2011), the midpoint would be

the arc at the peak of the preparatory movement. In some instances, a change in trajec-

tory at this point would have three benefits. Firstly, this enables a greater preparatory

stroke height for the next strike. Secondly, the greater height enables higher maximum

acceleration and downward velocity. Thirdly, as a point with the least amount of in-

ertial torque, the player can prepare for the joint torque of the next movement. Such

torque control can mitigate timing variation.
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In terms of accuracy, it has been found that the trajectory of aimed movement can

be learned. These learned trajectory movements were demonstrated by Georgopoulos

et al. (1981) during a study of aimed movements in Rhesus monkeys. They found that

practice over a period of time reduced the mean variability of the trajectory towards a

target, together with improved accuracy, irrespective of target location. The implica-

tion here is that a human drummer is likely to do the same using the drums as targets.

However, as previously noted, drumming requires bilateral and unilateral arm move-

ment, and humans can be either left handed or right handed. Each of these have been

demonstrated to be a contributing factor towards target accuracy (Garry and Franks,

2000), with increases in reaction time for bilateral strikes with targeting aimed by the

weaker hand compared to unilaterally mirrored targeting. The effects of this can be

minimised through drum set configuration, with little impact on multijoint bilateral

movement.

Although there are several factors that can affect trajectory and control during percus-

sive performance, the most significant factor occurs during multijoint movement, where

joint torques impact not only the choice of trajectory, but also the control and speed

of the movement. In the case of drumming, sequences involving multijoint movements

can often include multiple simultaneous planes of motion and axes of rotation. Such an

action is illustrated in Figure 3.11, where a drummer’s movement is described between

changes of strike location, from a strike on a snare drum to a strike on a crash cymbal.

In this example, a movement of the right hand from the starting position (snare drum)

to the crash cymbal, there is abduction and extension of the right shoulder on the

frontal plane with a posterior axis of external rotation. There is also an elbow and

wrist extension on the sagittal plane with a lateral axis of rotation. Assuming no

movement to the left arm, then there is also a vertical axis of rotation of the trunk on

the horizontal plane in order for the drummer to position the body for reaching the

new target. Kinetically, each of these axes of rotation and movement in this multijoint

sequence contain torque forces that affect the movement.

If the drummer in the illustration had not included a strike at the crash cymbal, but a

repeat strike to the snare drum, there would have been minimal changes to the existing

patterns of joint torque and muscle activation. Additionally, another drum located at

the same height as the snare drum, but closer to the crash cymbal, would cause the
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Figure 3.11: An illustration showing the typical movements associated with a change of

strike location with a drummer moving from a snare drum strike to a crash cymbal strike

(Sources: instrument pictures: Musician’s Friend Inc., 2013; Buddy Rich photograph:

JazzCorner.com, 2012).

drummer to make a trunk and shoulder rotation. However, because the drums are

at a similar height, there would be less movement over the three planes. Therefore,

movements spanning multiple planes of motion and axes of rotation are most likely to

affect the movement of a drummer and, subsequently, the timbre and timing variations.

Multijoint movements such as those in Figure 3.11 are considerably difficult to model,

due to there being 17 DOF; 9 kinematic net moments and 8 dynamic with optimised

muscle forces, in movements of the shoulder, elbow, and wrist (Chadwick and van der

Helm, 2003, p. 15).

3.3 Compositional Application

This investigation has two objectives: to develop a percussive performance model; and

to create a compositional tool that can be applied to a variety of different musical

genres. So far, this chapter has presented a theoretical framework for the implemen-

tation of the performance model. The methodologies and theoretical foundations of

the performance model should be considered an intrinsic part of the construct of the
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compositional concept. Additionally, the technological implementation of the model’s

processes must be considered an intrinsic part of the compositional process, in order to

conjugate the theoretical and conceptual frameworks of performance and composition.

The compositional application of the software tool is critical in evaluating the efficacy

of the model. As Jordanous (2011) points out, it is important to identify the creative

focus or “domain” (Colton, 2008; Ritchie, 2007) in which the system will be applied,

and then identify the components that are relevant to that domain. The domain here is

musical composition, which encompasses a vast amount of literature, approaches, and

techniques and, therefore, is too broad to define the relevant components. Instead, a

compositional objective must be defined. In addition, further sub-domains defined in

order to identify the components of each. In the context of compositional computer

systems, Pearce and Wiggins (2001) identifies two types:

“A general distinction can be made between those systems which are de-

signed to compose within a particular genre of music or in the style of a

particular composer and those which designed to allow the generation of

new styles (essentially an artistic pursuit)” (Pearce and Wiggins, 2001, p.

25).

These two types of systems are descriptive of “empirical style modelling” and “active

style synthesis” (Ames, 1992, p. 55; Pearce and Wiggins, 2001, p. 3). Although the

empirical data in a performance model may contain stylistic traits from the initial

performance, it is not the intention here to empirically model either the genre or the

compositional attributes of the music from which the performance data was captured.

Existing evaluation of empirical style modelling makes use of quantitative methods

based upon audience judgement ratings and controlled experiments (Eigenfeldt et al.,

2012; Katayose et al., 2012). However, the generation of new musical styles is more

suited to qualitative methods, that is, the analysis of the pieces.

For a percussive composer, the creation of new music is of paramount concern. To limit

the compositional tool to a particular genre of music would inhibit creative possibility.

Moreover, such a tool would benefit only those in a particular genre. Furthermore,

the artistic imitation of a piece in the style of a particular composer would be coun-

terproductive. Although composers may exhibit some form of compositional influence,

stylistic copying to the degree implied by Pearce and Wiggins (2001) is contradictory to

the point of being a composer of new music, even if the goal is objective evaluation of

a system. Therefore, in preserving maximum compositional application and integrity,

the purpose of the system presented in this thesis will not only allow the generation of
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new styles, but will be applied to existing styles in order to demonstrate the versatility

of the compositional tool. Consequently, this thesis will take a combined quantitative

and qualitative approach to performance modelling and the generation of new music.

The successful application of this tool to different genres of music will be relevant to

composers, studios, and sound designers. These styles, discussed in the next sections,

consist of jazz drumming; the complex meso-periodic rhythms of Africa; live impro-

visation; spectral-based composition (feature-based parameters); and electroacoustic

composition.

Consequently, for the purposes of this research, an evaluation of the compositional

application of the software is limited to its application across different and varied mu-

sical genres. A qualitative evaluation of the composition portfolio, and the suitability

of the compositional tool to those music types, will be presented in later chapters.

3.3.1 Computer-Assisted Composition

Composers and musicians have always had different views on the role of computers in

music making. This includes, but is not limited to, the creation of musical instruments

themselves (Mathews, 1963); tools for augmenting existing instruments (Maki-Patola

et al., 2006); to one-stop compositional environments (Decker et al., 1986); computa-

tional representations of pre-existing ideas (Xenakis, 1992); and new idea formalization

or representations of music afforded only by computer technology (Zavada, 2008). The

latter two examples, from Xenakis and Zavada, are examples of how computers have

changed the way composers think about making music.

This change in thinking is best described by Laske (1989) where composers have

changed from model-based thinking (a mental representation of a subject, and the

accumulation of awareness and abstraction of existing musical works to create a new

composition) to rule-based thinking (the awareness, including analysis, of composi-

tional processes). Rule-based thinking, Laske argues, involves three stages: inter-

pretive (analysing the computergenerated musical structure); design-based (specifying

the relationship between abstract rules); and improvisational (real-time exploration of

the composition). Although not implicitly discussed, these three stages of rule-based

thinking are evident in many computer compositions and compositional systems, and

demonstrate the change in compositional thinking brought about by the computer.

One common theme of many computer composition systems is the use of stochastic
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operations to control timbre and timing and, in some cases, structure.

One of the first major computer compositions was Hiller and Isaacson’s work Illiac

Suite for String Quartet (1956) (Hiller and Isaacson, 1957; Kirke and Miranda, 2009;

Miranda, 2001). This piece was borne from experimentation to assess the suitability of

different programming methods on computer composition using random selection algo-

rithms constrained by rules and Markov chains to generate pitches and rhythms. This

work resulted in a composing computer system called MUSICOMP28 and a subsequent

composition called the Computer Cantata (Ames, 1987; Hiller and Baker, 1964). The

Computer Cantata used the general methods used in the Illiac Suite, with the addition

of serial methods drawn from Pierre Boulez’s Structures (1952) (Ames, 1987, p. 171),

in order to test MUSICOMP’s efficiency (Hiller and Baker, 1964). The piece employed

multiple instruments, with two sections (the Prologue and Epilogue) written solely for

two pitched percussion instruments (glockenspiel and xylophone), eight un-pitched per-

cussion instruments (snare, tambourine, castanets, cymbal, tabor, maracas, bass drum

and tam-tam), and noise.

Both the Prologue and Epilogue of the cantata use density of attacks and dynamic

level over time, combined with probability distributions, to create the structure. The

general logic for these sections is described by Hiller and Baker29 and is summarised in

a representative flow diagram in Figure 3.12. The density of attacks was derived from a

weighted probability distribution of twenty-two different event durations, divided into

five classes based upon their relationship to common time measures, with Class I more

highly weighted than the others. As noted by Ames, “the laws of probability distribu-

tions only apply to large populations” (Ames, 1987, p. 84), thus, the distributions only

become meaningful as more samples are taken. Ames describes fallacies in Hiller and

Baker’s original implementation, where decisions rejected by the computer could be

re-evaluated in view of the random nature of the decision-making process. If a solution

was not found after a number of attempts, the program would fail (Ames, 1987, pp.

93-94).

Interestingly, there are some synergies between the approach that Hiller and Baker

took implementing Computer Cantata, and the raw/organised timbre dichotomy de-

28 An acronym for MUsic Simulator Interpreter for COMpositional Procedures.
29 For a more comprehensive description of the organisational principles, orchestrations, and rules,

please refer to Ames (1987, p. 170) and Hiller and Baker (1964, pp. 66-67).
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scribed by Boulez, where structural articulation is determined by characteristics of the

music, and the timbre (raw timbre; as defined by roll, tremolo and natural decay in this

context) determined by the localised structure of the density and duration of attack

points (organised timbre). The incorporation of probability distributions within the

algorithm as a basis for parametric selection are akin to performer freedom, although

the extent of this is depends on the number of set operations to validate the complete

distribution. Even though the distributions are weighted, they remove implicit instruc-

tion and introduce pseudo-random variations to the composition.

Figure 3.12: An overview of the computer programming logic to Prologue to Strophe I

and Epilogue to Strophe V. Adapted from Hiller and Baker (1964).

The experiments conducted by Hiller and Baker were designed to test the suitabil-

ity of a computer for musical composition, rather than represent an existing compo-

sitional approach. It is, however, interesting to note some conceptual parallels and

dissimilarities between the two. Given the lack of precedent for such an approach, the

creative output is unconventional, underpinning its distinctiveness. In this case, the

typical human performance characteristics do not apply. By extension, the authors

were constrained by technology, which limited the timbral variation of the percussion,

thus reducing even further the perception of human performance. Despite these dif-

ferences, one could argue that the programmed procedures are conceptually equivalent
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to compositional specification, and that the probability distributions are equivalent to

random variables in human performance. However, given that the computer lacks prior

knowledge of human performance, the probability distributions are simply to add aes-

thetic variation.

Another piece that was written entirely by computer was GENDY3 in 1991, by Xenakis.

This piece was based around the stochastic processes and the theory of probability that

Xenakis had introduced into his compositions between 1953-1955 (Xenakis, 1992),30 an

approach that was not computationally realised until Achorripsis (1956-57). From the

1960s, Xenakis began using the computational power of the computer to improve the

stochastic operation of his works (Serra, 1993, p. 237), where the computer was used

to generate the stochastic elements, which were subsequently notated by hand.

As an aside, in 1978 British mathematician John Myhill began experimenting in com-

putational representations of this method, and proposed an implementation designed

to simplify and improve it (Myhill, 1979b). During this research, Myhill began exper-

imenting with periodic and aperiodic rhythm, by combing a deterministic background

with a stochastic foreground. Myhill notes that an example of this formalism can be

seen in his percussive piece Dialectic (Myhill, 1979a).31

However, it wasn’t until the 1970s that Xenakis extended this technique to stochas-

tic synthesis program called GENDYN, where the stochastic operations controlled the

synthesis and timbre. In 1991, he linked the stochastic elements of the computer

operations with microstructure and macrostructure through the use of probability dis-

tributions, thus creating “dynamic stochastic synthesis” (Hoffmann, 2000; Serra, 1993,

p. 236). For increased functionality, the user could choose a microstructural preset

based upon stochastic laws (Xenakis, 1991, p. 518). Xenakis’ further enhancements to

the stochastic algorithm led to another work entitled S.709 (1994) (Hoffmann, 2000).

Xenakis’ GENDYN program was then extended by Hoffmann to include the mathe-

matical concept of “random walks” to create structural and timbral deviations.

Because Xenakis’ random numbers are drawn from probability distributions in the

same way as Hiller and Baker’s, the application of stochastic operations to timbre pro-

30 Most notably Metastasis and Pithopraka.
31 The only published work of John Myhill is Toy Harmonium (1986), performed at the Japan Expo

1985, and later released as “Computer Music Retrospective” by Lejaren Hiller on WERGO (Hiller

et al., 1986).
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duces interesting variations, which is particularly suited to the abstract nature of the

synthesis. Had the synthesis paradigm been any different, or had the resultant sound

been an approximation of a real instrument, then Xenakis would have needed to in-

crease the level of constraint of the random nature of the stochastic operations, in order

to make the resultant timbral variations consistent with aesthetic expectations of the

synthesised instrument.32 One way to achieve this is by applying probability distri-

butions to various abstracted parts of the instrument. This can be done by grouping

parameters with similar characteristics and, in the case of a real instrument, grouping

the sounds by virtue of the excitation location.

Using stochastic operations for manipulating timing is more complex, as the timing

variations need to be constrained in order to preserve relevance to the performance

context. This is where methods employing techniques such as Gaussian distributions

fail to provide contextually relevant timing variations (see Hellmer, 2006). In order for

stochastic timing methods to work, a large sample set must be taken into account, and

minimum/maximum deviation times need to be constrained within a current metrical

level.

3.3.2 Live Improvisation

Tipei (1975) developed a computer program called the MP1 for music composition.

Tipei’s approach embedded general musical assumptions into the MP1 to assist the

composition process through “restricted tasks of local scope and consequence” (Tipei,

1987, p. 49). Like Hiller and Baker and Xenakis, Tipei also employed stochastic distri-

bution in order to simulate random occurrences, although he describes how the MP1’s

randomness and probability indicates an “absence of form” (Tipei, 1989, p. 193). One

major difference with the MP1 was that it was designed for both musicians and non-

musicians, and had a base rule set that could be augmented by anyone wishing to

expand the program to fit additional compositional needs. In addition, the musical

patterns could be pre-programmed using pre-prepared data cards that were read at

runtime. This allowed the composer to retain greater control over the compositional

details, rather than let the computer have complete control and determine the aes-

thetics. Nevertheless, the MP1 still used some stochastic processes and Tipei adopted

the view that it is better to combine the organisational and creative skill of humans

towards musical structure, with the capabilities for randomness and transitory random-

smoothness of computers (Tipei, 1989, p. 191). For this reason, the MP1 contained

32 This assumes that the algorithmic architecture remains closely related.
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presets where:

“any continuous succession of sounds or of values for the same sound param-

eter can be described either as a Markov chain, as a stochastic distribution

or as a random occurrence” (Tipei, 1975, p. 1).

In order to create more coherent compositional form, Tipei restricted the possibilities

resulting from the stochastic level by using various techniques. The first of these tech-

niques, “sieves” (Tipei, 1989, p. 192), was a concept first used by Xenakis (Dean,

2009, p. 121; Xenakis and Brown, 1989). Sieves are sets of restrictive selection and

parametric correlation functions, consisting of logical expressions capable of probabilis-

tic weighting. Secondly, Markov chains were used to calculate probabilities between

parametric intervals over time and generate more coherent sequences of values (e.g.

pitch interval distances). Finally, relying on pattern input from the user, a subroutine

called “UPDATE” (Tipei, 1987, p. 54) was used in order to cause the computer to

faithfully reproduce the pattern. For this to occur, the MP1 evaluated the pattern

for reproducibility given the current sieve constraints and, if possible, reproduce the

pattern with 100% accuracy. In the event that sieve constraints inhibited suitable play-

back, the subroutine reverted to the default pattern algorithm, ignoring the input user

pattern.

Unfortunately, no percussive compositions were made using this program, although

subsequent revisions of the MP1 led to the composition and score for Maiden Voyages

(1987).33 Fundamentally, Tipei took a different conceptual approach to machine com-

position than Xenakis (in the case of his early computer compositions that were notated

by hand), insofar as the attribution of compositional responsibility and local choice is

not yielded completely to the computer.34 In each case, the creator of the program

inputs operations, rules, and constraints by which the computer works but, in the case

of Xenakis, the computer was ultimately responsible for the output. In Tipei’s case,

at runtime the computer allowed human intervention to create the desired outcome

(a support system). In both cases, the computer generated notational material rather

than the sound itself, leaving performance-related (timbre and timing) deviations in

33 Tipei (1984). Maiden Voyages for trumpet, piano, three slide projectors and two-channel tape,

on the 25th Anniversary of the Experimental Music Studios album. School of Music, University of

Illinois at Urbana-Champaign.
34 A sentiment echoed by Horacio Vaggione in an interview with Budón (2000, p. 12).
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the domain of the performer.35

These examples of computer-assisted composition have dealt with multiple algorithms

combined into a single computer program as either a support system or notational

generator. Since one outcome of this thesis is to apply the compositional software tool

to different rhythmic types and different genres of music, it is important that the com-

poser retains control of the software, rather than deferring the compositional control

to the algorithm. This involves ensuring that the computer operations are linked to

specific humanization functions, in an effort to allow maximum creative application of

the software tool. This has two benefits. Firstly, the composer can obtain inspiration

from the interaction and musical input, which may be more difficult in a system com-

pletely controlled by computer. Secondly, the level of interaction with the composer

may differ, from entering a pattern at runtime and allowing the computer to apply the

humanization, to complete control of the output by the composer. In order to achieve

this, the humanization algorithm can be bypassed to allow the composer total control

of the live output.

3.3.3 Complex Rhythms

In order for the human mind to make sense of any musical input, it must first be

organised into some form of temporal order. One of the first ways a listener will attempt

to create order is to establish the pulse. A pulse is described as a series of “regularly

recurring, precisely equivalent stimuli” (Cooper and Meyer, 1963, p. 3) that serves to

demarcate equal points in time. In some music, such as the bass drum in electronic

dance music, pulse is evident. In other music, such as Aphex Twin’s Vord Hosbn

(James, 2001), the pulse is less evident. Pulses can be objective (occurring with sounds)

or subjective (implied by a mental representation of pulse), and are necessary for the

perception of meter. Pulse also acts as a supporting mechanism for the perception of

rhythm (Cooper and Meyer, 1963). The objective and subjective nature of pulse is

characterised by three pulse listening models presented by Danielsen (2010):

1. Metronome model

This model assumes that there is only one dominant or correct placement of the

internal beat, and that the beats are equally spaced.

2. Local time shift model

35 For a comprehensive discussion on machine musicianship, the reader is invited to read Rowe

(2001).
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This model takes a view that variations in interval duration of the internal beat

differ from the global tempo; the listener shifts the expectation and focus of the

pulse to a different temporal location. This may be temporary or permanent and

most often occurs upon syncopation. In this model, pulse is a dynamic feature of

rhythm (this model is adapted from Honing, 2001).

3. Beat bin model

In this model, each beat is described as having a rhythmic tolerance - the tempo-

ral distance from the beat, to which rhythmic details (temporal deviations from

a prescribed beat) appear in time.

Danielsen presents these three models in relation to the musical example Left and Right

(D’Angelo, 1999). While these models can be applied successfully to this example, each

of them appears to suit different types of rhythm. For example, the metronome model

appears the most suitable model for describing divisive rhythms, like that of electronic

dance music. This is largely because divisive rhythms are metrically regular. In con-

trast, the local time shift model assumes internal beat differences from global tempo

caused by dynamic pulses. The metrical regularity of divisive rhythms does not pro-

duce dynamic pulse locations relative to the meter, making this model less favourable

to this rhythmic type. Instead, this is more suitable to additive rhythms, which feature

irregular durational groups and patterns. The beat bin model can be applied equally

to both additive and divisive rhythms although, in the case of divisive rhythms, the

metronome model is most widely assumed. Therefore, the beat bin model captures a

higher complexity of rhythm than would typically be evident in a divisive rhythm.

In his 1985 doctoral thesis concerning the automatic transcription of expressive music,

Schloss (1985) proposed a global theory of rhythm. This theory is illustrated in Figure

3.13. In this system, Schloss proposes three additional types of rhythm: two hybrid

rhythmic types, denoted by H1 (Indian music) and H2 (Latin American music); and

meso-periodic rhythm. In this thesis, particular emphasis will be placed on composing

with meso-periodic rhythms. Commonly found in African music, examples occur in the

music of the Shona people of Zimbabwe and of the Ewe people of Ghana (Schloss, 1985,

pp. 41-42). The relationship between African music and the meso-period, together with

the explanation of these rhythms, is described by Schloss:

“Music involves periodicity at many levels, from the signal itself to high-level

structure. In the case of African music, there is a very fertile middle-ground
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Figure 3.13: The rhythmic categories in the global theory of rhythm (Schloss, 1985, p.

38).

temporal level that is based on what I call “meso-periodicity,” typically a

1-4 second long pattern. The pattern is repeated thousands of times, with

very small variations in two modes: 1. rational deviations from the pattern

(embellishment), and, 2. minute timing deviations from canonical pattern

(“floating”).

These variations can be introduced by a single player, or more typically,

by several players who deviate in very small amounts from their given pat-

terns, resulting in the bimodal deviations described above. This creates

a succession (in varying temporal scope) of tension and release, which is

what allows an endlessly repeated pattern to remain interesting. The rep-

etition of this single period is fundamentally different from the other two

forms, in which there is a metrical structure supporting the other aspects of

the music. In African music, the meso-period is the focal point of the music.

This category is possibly the most subtle rhythmically. It is played in ref-

erence to movement, and not in reference to a pulse; that is, there is not a

hierarchy of subdivided beats, but rather a parallel stream of voices (drum

parts) that are “woven” together, in interlocking polyrhythm” (Schloss,

1985, pp. 40-41).
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The notion that meso-periodic rhythms are streams of voices, rather than pulse-driven

or bound to hierarchy of subdivided beats, suggests that the beat-bin model is the

most appropriate listening model for this type of rhythm. Focus on a single “reference”

stream allows listeners to identify a beat. Additionally, the concept of rhythmic toler-

ance in this model takes into account the inherent bimodal pattern variations, which

Schloss describes as being inherent to this type of rhythm. The upper and lower tem-

poral levels of the “middle-ground” make such variations more important in smaller

duration patterns, where repeatability is higher, compared to larger duration patterns,

where repeatability is lower. Therefore, such variation, combined with high repeata-

bility of different temporal pattern lengths, will affect perceptual organisation and,

subsequently, the perception of meter.

Temporal groups and patterns are the direct result of the organisation of sounds by the

listener into smaller units and can be distinguished from meter, where regular patterns

of different strength beats infer a reference point to which a listener contextualises

the musical sound (Lerdahl and Jackendoff, 1983). As London (2012) points out, the

mental organisation of sound events is based more on temporal grouping or “subjective

metricization” (London, 2012, p. 15), as the listener requires a strategy to make sense of

forthcoming temporal groups and patterns. Although rhythm can exist without meter,

as in the case of Gregorian chant (Cooper and Meyer, 1963, p. 6), the rhythmic contex-

tualisation of temporal groups within meter are dependant on the level of the metrical

hierarchy and accented beats as focal points of the rhythm (Cooper and Meyer, 1963,

p. 8). This is particularly relevant in the case of meso-periodic rhythms where Schloss

argues, accents (bimodal variations) are the focal point rather than other aspects of the

music that require metrical and structural cues. Essentially, meso-periodic rhythms do

not use phenomenalogical accents as perceptual cues to metrical accents (Lerdahl and

Jackendoff, 1983), they use them as variations for perpetuating the repeated rhythmic

cycles. This demonstrates the difference in listening approach toward meso-periodic

rhythms, compared to additive and divisive rhythms whose phenomenal accents are

indicative of meter. From a compositional standpoint, particularly electronic composi-

tion, this raises some interesting questions.

Since the use of digital technology in creating rhythms, there have been two approaches

to the manifestation of variations inherent in human musical performance in rhythm

and groove. On the one hand, digital technology enables millisecond modification of

sonic events to create rhythmic feel by way of adding these human performance varia-
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tions. Conversely, digital technology also allows for the creation of rhythmic feel and

groove that is devoid of any human variations, as in the case of electronic dance music

(Danielsen, 2010). This dichotomy suggests that human variation is not necessarily

required in order for a listener to perceive rhythm or groove. From an electronic music

perspective, meso-periodic rhythms are the polar opposite of electronic dance music,

with regards to a genre typically devoid of human variation. With human variation so

ingrained into the fabric of the meso-periodic rhythms, its removal would significantly

affect the perception of rhythm. Additionally, if one considers meso-periodic rhythm

to be different streams of instruments, an electronic representation of human variation

will require a number of timbral representations of each stream, in order to maintain

rhythmic authenticity. To date, there is no electronic compositional software that rep-

resents meso-periodic rhythms from this perspective.

Schloss describes how the root of the meso-periodic pattern typically consists of a

bell pattern, with two patterns being most prominent throughout much of West Africa

(identified by Jones (1959), as cited in Schloss (1985, p. 44)) derived from “special

subsampling of a 12-pulse meso-period” (Schloss, 1985, p. 44). Of the two common

patterns identified by Jones, Schloss identifies the following pattern:

ˇ ˇ (ˇ ˇ ˇ ˇ (ˇ
as being of particular interest, as a representation of this in relative durations presents

the following pattern:

2 2 1 2 2 2 1

this is equivalent to the whole (W) and half steps (H) in the diatonic scale:

W W H W W W H

Schloss also notes that if the pattern (period) is started out of phase, the resultant

period represents different Greek modes. With this in mind, multiple out of phase se-

quences/streams produce tension in much the same way that two scales can melodically

convey a sense of tension. To demonstrate this rhythmic/melodic isomorphism, Schloss

presents a graphical representation of the meso-period in relation to the chromatic

scale. Based on TUBS notation (Koetting, 1970), this illustration comprises of two bell

patterns, including the pattern shown above (pattern 1), representing the pentatonic
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and diatonic scales. This is shown in Figure 3.14.

Figure 3.14: A graphical representation of the meso-period in relation to the chromatic

scale (Schloss, 1985, p. 46).

Such grid representations are the basis of step sequencers, with each box representing a

beat (in this case referred to as the “density referent” or the “fastest regularly occurring

pulse” (Schloss, 1985, p. 46)). However, as most electronic music (and Western music)

is based upon divisive rhythms, there are usually sixteen steps, rather than the twelve

steps shown in this example. For this reason, step sequencers tend not to lend them-

selves to the composition of meso-periodic rhythms. In addition to the number of steps,

the levels of potential human variation across multiple periods in traditional sequencers

are not sufficient. Decomposing the structure of the meso-period in this way presents

interesting isomorphic elements between the meso-period and the melodic framework of

Western music. Reconstructing the meso-period electronically, and incorporating the

human elements so integral to the foundation of the rhythm, is a significant challenge,

hence no such system exists. The compositional software tool in this thesis fills this gap.

One of the most significant differences in aesthetic perspective between Western and

African music is embedded in the social functions of the music. Arom (2004) describes

this in relation to central Africa:

“As a means of communication and an indispensable intermediary between

men and the supernatural forces surrounding them, music serves to make

contact the shades of the ancestors, the spirits and the djinns [demons].

That is why the Central Africans do not consider music to be an aesthetic

phenomenon, even though they are quite capable of expressing their tastes
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and making very precise value judgments about both the music itself and the

quality of the performance. But aesthetics remains a secondary question,

and is not an end in itself. The European notion of “Art for Art’s sake” has

no meaning in the African tradition. Indeed, music only exists here in order

to serve something other than itself, and for clearly defined purposes. That

is why it is invariably a part of a more inclusive activity, a whole of which

is merely a part, be it the celebration of a cult, a collective work session,

a dance for pleasure on the night of a full moon or, simpler still, a mother

singing to soothe her child” (Arom, 2004, pp. 7-8).

The social function of music also implies several unique aesthetics in the construction

of African music. The first of these is the relationship with dance. Offering a differ-

ent example of the construction of African music, Agawu (2003) describes “Rhythmic

Topoi” or “Time lines” as repetitive rhythmic cycles linked with specific sections of

choreographed dances in specific communities. Consequently, Agawu describes how

one must understand the dance to understand the topos. In addition, the dance and

music are intertwined at the same conceptual level, owing to the metrical structure of

their relationship. It is this lack of understanding of dance, Agawu argues, that presents

difficulties in understanding the metrical structure of African music. The music should

be heard in relation to the sound of the feet during dancing. The dancing informs both

the pulse selection and the pulse phasing at higher metrical levels. This is illustrated

in Figure 3.15, which shows the relationship between the dance beat and the relative

drumming pattern for one particular topos.

Figure 3.15: An illustration of the drum pattern construction on the topos “Highlife”

(Agawu, 2003, p. 78).

Arom’s account of the social function of African music, and the supporting example by

Agawu, indicates that there is a contradictory aesthetic view in composition and music

making between the Western and African musician.
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African rhythm is distinctly different to Western music in both function and construct.

In fact, difficulties faced by Western musicians and scholars in understanding African

music has been ascribed to several factors including Western musical predispositions,

and the lack of understanding of the complexities of the music embedded in its oral

traditions (Agawu, 2003; Jones, 1959). The latter is compounded given the range of

micro-cultural variation in both tradition and music, and the difficulty in assigning

“stylistic traits” to localised groups (Kubik, 2010, p. 10).

Differences in African music stemming from micro-cultural variation are not easy to

define, although a good explanation for these differences centres on ethnic clusters, sub-

cultures, and the link to language via the oral traditional of passing on music (Arom,

2004; Kubik, 2010). With this in mind, it is difficult to compose meso-periodic African

rhythms that transcend these micro-cultural differences. Therefore, it is more composi-

tionally useful to examine the key commonalities across meso-periodic African rhythms,

with a view to using these commonalities to form the key aspects of the conceptual

compositional framework. It is also acknowledged that not all commonalities can be

discussed in this investigation owing to the complexity of the African musical culture.

Discourse on African polyrhythm extends beyond simple aesthetic understanding and

has been the source of much discussion on African music. It is not easy to notate

African music, despite several attempts (Agawu, 2003; Arom, 2004; Ekwueme, 1974;

Jones, 1959), consequently leading to different views of the relationship between musi-

cal devices, for example polyrhythm and polymeter (Arom, 2004).

In determining a formal structure for African musical form, Ekwueme (1974) describes

four characteristics: constant (elements that occur without much change); variable

(elements that appear in changed at different parts of the piece); essential (elements

critical to the piece); and non-essential (ornaments). In what he calls a “hierarchy of

usefulness”, Ekwueme (1974, p. 47) identified four distinct groups (essential constant,

essential variable, non-essential constant, and non-essential variable) and discussed their

usefulness in determining form:

“An analysis of FORM will take into account such delimiters as musical

phrases and accompaniment patterns. Repetitions of melodic or rhythmic

fragment should be taken into consideration in determining the structure

and, when possible, the reduction should be made graphically or represented

in mathematical symbols” (Ekwueme, 1974, p. 47).
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With this in mind, a graphical representation is shown in Figure 3.16.

Figure 3.16: An illustration showing the hierarchy of usefulness. Adapted from Ekwueme

(1974).

Interestingly, Ekwueme omits one critical point in relation to the hierarchy of use-

fulness. That is, the change in hierarchy of an element over time. For example, the bell

sequence being critical to African music (in Afro-Cuban music, the functional equivalent

is the “Clave” pattern (Washburne, 1998)), could transform over time to occupy differ-

ent hierarchies of usefulness. Therefore, this graphical representation of the hierarchy

of usefulness allows musical elements to be transformed over time. A representation of

this is shown in Figure 3.17.

Figure 3.17: The transformational stages of a musical element’s usefulness over time.

Adapted from Ekwueme (1974).

To describe the hypothesis in Figure 3.17, one example could be the usefulness of
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the bell transformed over time. The bell pattern begins at point A by providing the

temporal reference point to which all other instruments rhythmically lock. Then, to

continue this hypothetical example, as the other instruments become more rhythmi-

cally and temporally independent from the bell pattern, a reduction in the bell pattern

towards irregular but key components of the pattern would see the usefulness move

to point B. The bell pattern could then be reduced further, to the playing of one or

two regularly recurring strikes with little rhythmic significance, which would place the

bell pattern at point C. Finally, the regularity of the strikes at point C is reduced to

irregular strikes, with irregular accents, which has little or no musical relevance to the

overall structure of the music (point D). The bell pattern could then repeat the starting

pattern and return to its original usefulness at point A (represented by the dotted line).

This representation is compositionally useful in order to define the structure of African

music, away from the Western lens. However, it is important to define the variables

that are essential and non-essential, and also to quantify the variability.

Given the social functions of African music, it is unsurprising that a performance of

African music involves many performers. Herein lies some tension between the compo-

sitional framework of the meso-period and the performance model. The performance

model in this investigation simulates a single human percussionist playing nine individ-

ual percussion instruments simultaneously. In African music, however, one person plays

each instrument. Furthermore, as the constraints of the performance model include the

physical limitations of the performer: there is a maximum of four instruments that can

be played simultaneously.

As a method for extending the performance model to meso-periodic rhythms, the re-

peat use of the same instruments in a single representation of the performance model,

does little to compositionally explore the efficacy of the performance model in differ-

ent musical paradigms, particularly meso-periodic rhythms. Given that there are nine

instruments in the performance model, the addition of two further representations of

the performance model is sufficient to allow for each of the nine instruments to be

used at any given time. Therefore, a minimum of three simultaneous representations of

the model will be implemented, representing a maximum of 12 instruments. This will

require the user of the model, and the listener, to consider each instrument as being

independent rather than as a component of a set of instruments to be played by one

person (as in the jazz drum set). One advantage to this change in instrumental per-

spective is that each instrument can be thought of as a stream, in which sequences of
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successive notes containing similar timbral properties are perceived as stemming from

a single source (Parncutt, 1989).

The decoupling of instrumentation from the performance embedded in the model has

deeper underlying effects on the construction of meso-period rhythms. The indepen-

dence of each performer in meso-periodic music creates musical tension (Schloss, 1985,

p. 51). Schloss also describes independency, where each player represents a feedback

loop that creates complex independent variations in the complexity of the timing and

tone, or “flux”, where the independant variations cumulatively affect the resultant

meso-periodic pattern (Schloss, 1985, p. 52). In the context of the performance model,

the timing and timbral variations are independent for each instrument. In the case of

three representations of the model, there are twelve independent algorithms for deter-

mining temporal and timbral variations, which will cumulatively affect the resultant

meso-periodic patterns. Furthermore, the exploitation of independent streams allows

greater flexibility regarding the structure or form of a given piece.

The notion of independency also supports the hierarchy of usefulness, with the analysis

of hierarchy being relevant to different streams of instruments, as well as individual or

sequences of elements. Such an approach can also be considered a methodology toward

an extended technique of the jazz drum set. As each player creates independent varia-

tions in timing or timbre from a predefined pattern, changes in rhythmical tension are

created in higher-order rhythmical sequences, which can be used as a structural device

in a given composition.

The previous section described how the performance model is able to simulate in-

dependency by virtue of the timing fingerprints and timbral variations. However, in

the case of timbre, the amount of timbral flux generated by the performance model is

context-dependent. This presents an interesting compositional challenge when consider-

ing the specification of three representations of the performance model, where multiple

instruments are selected across the representations. One limitation of the performance

model in the independency paradigm, relates specifically to the independent levels of

flux for instruments in a representation, which are intrinsically linked to the selection

of another instrument in the sequence. An example of this is where, in any given repre-

sentation, the local and global parameters produce lower levels of flux. Therefore, the

composer must be mindful of the resultant flux when selecting independent streams of
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instruments across multiple representations of the performance model.

In African music, an assortment of different percussion instruments are typically used.

In the performance model, nine percussion instruments are used, ranging from mem-

branes with low frequencies, and membranes that convey a greater sense of pitch, to

idiophones that display non-linear characteristics containing multiple frequencies with

chaotic behaviour. The term broad bandwidth is used to describe the range of fre-

quencies in a collection of percussive instruments and, more specifically, “the physical

correlates of the source” (Schloss, 1985, p. 55). Schloss suggests two reasons why broad

bandwidth is important in meso-periodic rhythms, particularly those rhythms that give

rise to trance-like states in listeners:

“The broad bandwidth is important for two reasons: physiologically, in that

it may result in a wider breadth of neural excitation patterns, and cogni-

tively, in that it obscures pitch, which results in the abstraction of melody

and the resultant strengthening of the pure rhythmic impact” (Schloss, 1985,

p. 55).

Based on this description, compositional uses of the concept of broad bandwidth can be

defined. That is, the greater the broad bandwidth of the instruments at any given time,

the greater the rhythmic impact, and the reduction in the perception of melody. The

latter is particularly relevant in the case of sequences of instruments conveying different

senses of pitch, which may result in an implied melodic phrase. This interrelationship

is illustrated in Figures 3.18 and 3.19.

Figure 3.18: The interrelationship between broad bandwidth, rhythm and melody.

Adapted from Schloss (1985, p. 55). In this example, the bandwidth and perception

of rhythm is high, and the perception of melody is low.

It is worth reiterating that this interrelationship is an hypothesis presented by Schloss.

Consequently, there is no strict linear relationship between the three variables and
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Figure 3.19: The interrelationship between broad bandwidth, rhythm and melody.

Adapted from Schloss (1985, p. 55). In this example, the bandwidth and perception

of rhythm is low and consequently, the perception of melody is high.

no guarantee that this model is robust enough to fit all potential percussive genres.

However, from a compositional perspective this hypothesis has the potential to form

the basis for some interesting structural implementations by re-conceptualising some of

the important elements of the meso-periodic rhythms of Africa. This relationship will

be explored in the portfolio of compositions.

3.3.4 Composing using Feature-Based Parameters

Loudness is a common measurement of dynamics in Western music. Loudness is also

a useful parameter for the creation of both structural devices and local phrasing. The

loudness of an individual strike within human performance aids in accentuating and

conveying expression. One of the most common effects caused by loudness is that of

masking. Masking is defined as the “complete or partial “drowning out” of one sound

by another” (Parncutt, 1989, p. 174). This is particularly relevant in the context of

independency, where part of an instrument’s stream is not audible owing to another in-

strument. This may have some perceptual implications for the listener, where a stream

at the top of the hierarchy of usefulness is masked by another less useful element in the

hierarchy.

Spectral flatness is indicative of how closely a sound resembles white noise. Since

white noise has a perfectly broad bandwidth, there is a positive correlation between

the spectral flatness of a sample, and its broad bandwidth. Using this parameter as

a basis for composition in musical form or structure will, to a certain degree, affect

the perception of melody and rhythmic impact. However, a single instrument can have

extreme spectral flatness, irrespective of the broad bandwidth of all of the instruments.
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In such cases, the total bandwidth can be either wide or narrow, resulting in a localised

effect similar to that of broad bandwidth, which will produce interesting aesthetic re-

sults. A compositional exploration of spectral flatness from both a local and global

perspective will be explored in the composition portfolio.

The spectral centroid of an audio signal is the centre of gravity or weighted mean of the

frequency distribution, and is often cited as an indicator of the audio signal’s bright-

ness (Eigenfeldt, 2010) where a higher centroid correlates to higher spectral frequency

distribution. There are many instances where spectral centroid does not correlate to

physical performance. For example, a strong strike of a large membranophone (e.g.

kettle drum) will produce a lower centroid, whereas a very weak strike will produce

a higher centroid, as there is less energy to excite the lower modes. In the case of

idiophones the reverse is true. As the strike strength increases, more frequencies are

excited, leading to an increase in spectral centroid and subsequently brightness.

Since each instrument has inherently different levels of brightness, and since the in-

crease in brightness between each instrument is not correlated with each other, this

will increase the perceived independence of the instruments. As a compositional pa-

rameter, spectral centroid offers the potential to create interesting aesthetic results,

where the effect of such parametric organisation creates instability in the broad band-

width, and subsequently instability in the perception of rhythmic impact and melody.

Spectral centroid as a compositional parameter will be explored in the composition

portfolio.

3.3.5 Electroacoustic Application

Before computers were readily available and applied to composition, many of the Euro-

pean avant-garde composers were composing electroacoustic tape music (music con-

crete, pioneered by Pierre Schaeffer). Notable examples of this are Stockhausen’s

Konkrete Etüde (1952) and Schaeffer’s Orfée 53 (1953). At around that time, tape

was being spliced into small pieces and concatenated to create “micromontage” works

such as John Cage’s Williams Mix (1952), Xenakis’ pieces Concret PH (1958), and

Analogique B (1985-1959) (Xenakis, 1992, p. 54; Roads, 2004, pp. 64-66; Sturm, 2006).

Once the micromontage technique was extended into the digital domain, the computer

began to have distinct advantages over tape splicing, particularly when manipulating

sound on micro levels. Two of the main proponents of microsound and, more recently,
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“granulation” (Roads, 1978) and “mosaicking” (Zils and Pachet, 2001) are Horacio Vag-

gione and Curtis Roads (2004, 2005). These new methods of computer composition led

to an exploration of sound palettes, texture, and different levels of time, which utilise

different computer-based effects to manipulate the textures, such as waveshaping, time

stretching, and phase vocoding (Roads, 2005; Sedes, 2005). A notable piece using these

techniques based on a sound palette of percussion is Vaggione’s Nodal (1997). How-

ever in light of the transformation of many of the source sounds via digital techniques,

many are difficult to identify, and the piece is very abstracted from the source palette.

Other notable techniques similar to mosaicing include the CATERPILLAR system for

data-driven concatenative sound synthesis developed by Schwarz (2004).

The range of complex timbres associated with a nine-piece jazz drum set provides

a useful palette of sounds to digitally manipulate in order to create new textures for

use in electroacoustic compositions. The application of the model for electroacoustic

purposes extends the compositional relevance of the tool, and explores the timbral

limits of the software and the implementation.

3.4 Pulse Code Modulation (PCM) Sampling

Sampling refers to the digital copying of sounds from one source to another (McKenna,

2000). Sampling creates a digital representation of a signal for storage and playback,

and differs from wavetable synthesis by storing a large wavetable containing “thousands

of cycles” (Roads, 1996, p. 117) rather than a single cycle (Kahrs and Brandenburg,

2002, p. 318). This is done by taking “snapshots” of a signal at a prescribed sample rate

(Huber and Runstein, 2005), and quantizing the resulting numerical time domain rep-

resentation, whose numerical length corresponds to the bit depth.36 A high resolution

sampling process allows high quality approximations of the original signal (Goldberg

and Riek, 2000, p. 1; Klingbeil, 2009; Zagaykevych and Zavada, 2007) and, combined

with its convenient storage, manipulation, and playback capabilities (Bongers, 2000, p.

42), has led to popular use within the music industry in both hardware and software

forms.

The first commercial sampler was the Fairlight in 1979 (Roads, 1996, p. 120). By

the 1990s, sampling was the basis of music genres such as hip-hop, particularly drum

36 For further information on sampling, the reader is invited to read Puckette (2007); Roads (1996);

Rocchesso (2004); Russ (2004); Smith (2004); and Zölzer (2008).
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machines (Greenwald, 2002, p. 265), the first of which to use sampled drums being the

LM-1 by Roger Linn (Souvignier, 2003, p. 30). Improvements in modern technology

have allowed a variety of software-based sampling applications, including “FXpansion

BFD, Toontrack EZdrummer, DigiDesign Strike, Reason Drum Kits, Native Instru-

ments Battery” (Tidemann and Demiris, 2008, p. 145) amongst others. These sampling

programmes often include large sample libraries (Tidemann and Demiris, 2008), em-

ulating different performance dynamics, implemented using “complex mappings, cross

faded overlays and keyswitch programs” (Klingbeil, 2009, pp. 5-6).

Another area of research that has grown with the development of sampling is the

management, archiving, and exploitation of large databases of sound files, which al-

though relating primarily to the field of Music Information Retrieval (MIR) has much

wider practical applications, for example, sample banks and sampler operating sys-

tems (Herrera et al., 2002, p. 69). Feiten and Günzel (1994) describe how automatic

sample selection based upon specific auditory attributes could be problematic with

large databases of sound files. More specifically, problems arise where there are dis-

similarities between the file descriptors of auditory attributes and the actual auditory

attributes that extend to the physical sound representation, and include multiple at-

tributes of the sound space. Feiten and Günzel pre-processed the sounds in order to

reduce the descriptors of the sample feature set and applied a Kohonen Feature Map

(KFM), a computational technique for dynamically arranging two-dimensional data.

The pre-processing stage had the effect of improving memory space and computational

overheads, although the authors noted that the computational cost was still very high.

This was apparent in increased execution times during basic database functions requir-

ing infological level reorganisation (Sockut and Goldberg, 1979, p. 375).

Automatic classification and feature selection was extended to percussion sounds by

Herrera et al. (2002) who, in contrast to Feiten and Günzel, began with fifty descrip-

tors and gradually refined the feature set to twenty. In addition, the authors devised

a three-level taxonomy of the percussion instruments, including “super-category level”

(classification based on physical properties), “basic level” (based on the instrument),

and “sub-category level” (based upon more specific features of the instruments, e.g.

high and low tom) (Herrera et al., 2002, p. 71). Both the descriptors and the tax-

onomy were applied to five classification techniques, with no appreciable performance

differences between them under the current taxonomy. This research was then extended

by Herrera et al. (2003) to include un-pitched acoustic and synthetic percussion instru-
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ments, using both temporal and spectral descriptors. However, the authors note a high

error rate of between 10-30%.

Van Steelant et al. (2004) used a support vector machine (SVM) (an algorithm for

analysing data, recognising patterns within the data, and subsequently classifying the

data) for the classification of percussive sounds. However, this approach differs from

Herrera et al. in that the sounds were taken from existing recordings. This led to dif-

ferent classification structures, based on the contextual occurrence of the sound rather

then the physical properties of the sound, and included “Isolated drum sounds”, “Over-

lapping drum sounds”, and “Overlapping drum sounds layered with other instruments”

(Van Steelant et al., 2004, p. 4). The authors compared two types of SVM implemen-

tation by using a linear SVM and a Gaussian SVM. The authors found that the linear

SVM was more computationally efficient by a significant amount, compared to the

Gaussian SVM.

One example of the exploitation of a large database of samples for synthesis can be

seen in Schwarz (2004). Schwarz developed a system called CATERPILLAR, which un-

like the automatic classification techniques described above, synthesised musical sounds

from the database of samples. The concatenation of the audio samples required analysis

and segmentation of the audio samples into smaller units and, using content classifica-

tion data from the database of samples to drive the synthesis parameters, the author

was able to preserve the spectral integrity of the synthesised tone as a single sound. Dy-

namic time warping and hidden Markov models (HMM) were used to maintain smooth

transitions and the accuracy of the synthesis technique. The advent of sampling tech-

nology also had an impact on other synthesis methods, particularly with regards to

improving the instrumental articulation (Horner, 2003). An example of this is hybrid

sampling-wavetable synthesis (Yuen and Horner, 1997) where samples were used for the

attack portions of a sound, and wavetables (including wavetable interpolation) used for

the sustain and decay portions, with crossfading between the two applied to harmonic

sounds. Other hybrid techniques using sampling include granular synthesis where the

samples provide the source material for the granulation (Truax, 1987), with extensions

and applications to other signal processing architectures using different digital signal

processing techniques such as time-stretching (Lippe, 1994).

Sampling without modification and application with other synthesis techniques has

come under significant criticism due to the inflexibility of the medium. Vaggione (1994)

103



3.4 Pulse Code Modulation (PCM) Sampling

differentiates sampling from synthesis, describing it “difficult to consider” them as the

same thing (Vaggione, 1994, p. 74) or, more specifically, sampling a type of synthesis.

This perspective is taken in the context of micro-timbral structural composition, where

unmodified samples inherently compositionally operate within more macro time levels.

In fact, Vaggione draws upon an argument by Smith (1991) regarding the implementa-

tion of spectral modelling approaches (STFT) to understand how sound operates and

transforms over time in order to allow greater micro-structural composition of samples.

Comparing sampling and (additive) synthesis, Jaffe (1995) describes sampling as having

“weaker” parameters, whereby the manipulation of both musical and physical param-

eters of the synthesis technique are limited (Cook, 1997, p. 38). Jaffe also describes

sampling as an “identity synthesis technique” (Jaffe, 1995, p. 78), where the samples

themselves are parameters of the synthesis. This is supported by Kahrs and Branden-

burg (2002) who described an interesting expressivity vs. accuracy dichotomy between

sampling needing greater expressivity and synthesis needing greater accuracy. In ad-

dition, Kahrs and Brandenburg propose a third axis: implementation cost. Describing

the third dimension, cost, Kahrs and Brandenburg states that:

“Sampling on the other hand is extremely efficient for sound designers to

produce instrument data sets for. While still requiring a fair amount of

technical skill, it is very straight forward to produce a data set for a sam-

pler once a representative set of the desired instrument sounds is recorded”

(Kahrs and Brandenburg, 2002, p. 317).

This dichotomy is presented in Figure 3.20, the evolution of an ideal between the two

approaches. Undoubtedly, the lack of expressivity of sampling is a significant limitation

to the technique, despite improvements through the use of filters and other methods

(Cook, 1997). In addition, the limitations imposed through accurate instrumental

modelling using sampling synthesis are summarised by Cook:

“infinite memory would be required to store all possible samples, the equiv-

alent of a truly exhaustive physical model would have to be computed in

order to determine which subset of the samples and parameters would be

required to generate the correct output sound, and the requirement that

the correct samples be loaded and available to the synthesis engine would

tax any foreseeable real-time sound hardware/software” (Cook, 2002b, p.

2).
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Figure 3.20: Accuracy, expressivity, and cost for synthesis and sampling approaches

(Kahrs and Brandenburg, 2002).

As has been previously highlighted, the dis-uniform tuning of a membrane fundamen-

tally changes the timbral characteristics of a drum sound, depending on the excitation

location. Such a variety of timbral differences would require significantly more sam-

ples in order to represent the complete spectrum of variations, and therefore more

computer memory, which supports Cook’s more theoretical approach to instrumental

modelling. However, the use of all possible samples for instrumental modelling may

not be required, due to finite differences in timbral variation between strike locations

that would mitigate the perceptual differences between the two.

Limiting the samples used for instrumental modelling could reduce the computational

overhead. Such an approach was taken by Loureiro et al. (2004) who analysed the sam-

ples and, through a series of mathematical procedures, classified and clustered them

using analysis and data reduction techniques, determined a more general representation

of the instrument that remained robust under auditory scrutiny. The result was a data

reduction rate of 64:1 (de Paula et al., 2004). Combined with increases in computa-

tional overhead since 2002, a re-evaluation of Cook’s position is needed, although the

challenge remains in reducing the data for the computational overhead, while retaining

convincing instrumental modelling.

3.5 Summary Evaluation

The first part of this chapter initially discussed the differences in the vibrational char-

acteristics of membranophones and idiophones closely associated with a nine-piece jazz

drum set. Drawing upon previous empirical research, the discussion has shown that
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there are also differences in the vibrational characteristics and behaviour within each

instrument classification. The intra-class differences in vibrational characteristics that

lead to subsequent timbral variation are the result of many different factors, most no-

tably the construction of the instrument, either through differences in shell size or plate,

membrane configuration (single or double head), or through supporting mechanisms.

Despite the timbral variation afforded by the differences in vibrational characteristics

of these factors, the vibrational behaviour of equivalent drums with similar or slightly

deviating properties is largely the same. This is of particular relevance in the case of

a performer’s ability to predict and exploit the vibrational behaviour of a drum on an

unfamiliar drum set. From a theoretical standpoint, these similarities facilitate the syn-

thesis of these instruments by implementing the similarities as generalised parameters

in the synthesis process. This is particularly relevant to physical modelling synthesis

that aims to simulate the physical behaviour of an instrument to produce a sound.

Conversely, and more problematically, is the generalised parameterisation of context

in synthesis, where there are some physical characteristics unique to different drum

sets. These are usually due to the configuration of the drum set and drums. One

example relates to the choice and location of each drum’s supporting mechanisms (e.g.

a bass drum mounted tom-tom, or an open/closed hi-hat), however this example could

also be related to preferences in individual configuration. By far the most significant

factor in the production of timbral variation lies with level of uniformity of the tun-

ing of a membrane. A dis-uniformly tuned drum can alter the vibrational behaviour

of a drum set and, at a fundamental level affect the timbre production of the drum

(particularly the micro-timbre) by exciting different modes than observed in theoretical

ideals. Ultimately, this leads to the potential for an infinite number of micro-timbral

variations across the surface of a membrane for a single instrument, and has significant

implications on the repeatability of, and timbral consistency of, performance, as well as

the computational methods associated with synthesis paradigms, such as some physical

modelling techniques.

From a synthesis perspective this presents significant challenges. The chosen synthesis

technique must not only be able to produce a sonic representation of the constituent

drum types (membranophones and idiophones), but also different vibrational character-

istics and timbre within the classification types, and potential micro-timbral variations

across the instruments’ performance space. While some synthesis techniques are more

suitable to modelling membranophones, others are more suitable to idiophones. Some
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techniques produce more accurate representations of the sounds, while others have

better control parameters for implementations. As one of the key motivations of this

investigation is to develop a performance modelling compositional tool that simulates

human performance variation, the development of a new technique for synthesizing

percussion is outside of the scope of this thesis.

One critical factor in the ability of this model to simulate performance variation lies

in the representation of micro-timbral and temporal variation. This chapter has de-

scribed several determinants of timbral variation in membranophones and idiophones.

The diversity of these underlying factors, combined with the differences in acoustical

variation, highlights the difficulty in modelling the potential timbral variations of all of

the drums simultaneously, and in an efficient manner that does not impede the real-time

implementation of the model. An intermediate position to this dilemma is finding a

solution that creates a successful balance between the quality of the sound reproduction

and the algorithms that control the sound generation. For this reason, and despite the

drawbacks to this technique, PCM sampling synthesis will be the technique adopted

for this investigation.

There are several reasons for this. For the most part, the quality of the reproduction

of PCM sampling in reproducing micro-timbral deviations in both membranophones

and idiophones, is the most accurate synthesis technique. This is important because it

has implications on the perception of micro-timbral variations. A performance model

that does not accurately represent micro-timbral variations in either of these instru-

ments can significantly affect the efficacy of the performance model. With advances in

modern computing, the effect of multisampling on computer memory and hard drive

space is becoming less problematic. It is intended that the performance model in this

investigation will also include timing deviations, which makes real-time implementation

of this model time-critical. An important requirement, therefore, is to ensure that the

synthesis technique chosen has the least amount of latency possible. PCM sampling

achieves this goal.

For the purposes of this investigation, there are two exclusive benefits that can be

drawn from this approach. Firstly, the creation of a sample bank allows for the analysis

and extraction of musical information from these samples for compositional purposes.

Such feature extraction would allow for the re-parameterisation of drum timbres. Ad-

ditionally, such analysis allows for the creation of a database of percussive hits for
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classification, and could be adapted for application to other musical synthesis systems

like CATERPILLAR (Schwarz, 2004). Secondly, because there is little empirical data

on the micro-timbral variability of percussion, this sample bank will provide pertinent

material for researchers and scholars for analysis, perhaps with a view to further work

in the areas of analysis-resynthesis of percussive timbre.

One drawback of the PCM sampling technique is that it is the least expressive of

all methods discussed in this chapter. As Jaffe (1995) points out, each sample can be

considered a “parameter”. Therefore, an underlying computational model must be a

more abstract representation, which can be guided by classification and features of the

samples themselves. Another drawback of PCM sampling, particularly multi-sampling,

is described by Smith (2004) as the difficulty in capturing a complete range of play-

ing conditions of the instrument. This is particularly relevant here as, unlike Smith’s

description of a piano, there are multiple excitation locations across a drum. Concep-

tually, multisampling can be thought of as a representation of an instrument, with a

larger number of samples providing a higher resolution of the representation. A balance

must be found in the collection of the sample database between practicality of sample

control and computational overheads, and the resolution of the sonic representation of

the instrument. This is shown in Figure 3.21.

Figure 3.21: A conceptual representation of an instrument using multi-sampling.
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On their own the samples do not resemble the full range of the instrument. Instead,

context must be created, and the relationship between each of the samples, as parame-

ters, must be defined in order for the representation to be accurate. Without this, the

samples are an unorganised database of sounds. This has two implications. Firstly, how

are differences between the sounds defined, and how are they organised? Earlier in this

section it was mentioned that feature extraction is useful for re-parameterising drum

timbres for composition and database classification. Extracting various features from

the database, therefore, is an effective way of generating parameters and classifying

the samples in the database. The problem here is defining a relationship between the

feature to be extracted and the physical cause of the difference between the minimum

and the maximum in the database.

The second implication lies in defining the relationship between how the samples op-

erate together in the real world. That is to say, the relationship must be defined by

identifying the causal connections between strikes producing sounds correlating to sam-

ple 1, compared to sample 4. Based on the discussion in the first part of this chapter,

there are many variables that can affect the relationship between the samples. Ar-

guably, excitation is the most fundamental causal factor but, in order to understand

and subsequently define this computationally as rules, the underlying reasons that cause

variations in excitation must be understood.

The temporal relationship between samples is also an area for investigation. This

is because the states of dynamic systems often change over time, sometimes displaying

vast differences between states. Music is no exception. Systems employing nth-order

Markov chains use previous states to inform the current state, with higher numbers

of orders having greater state predictability. Such systems are usually aimed towards

machine learning. Conceptually, the model presented here should not be capable of

learning, as ultimately such a system may theoretically learn to not produce the ex-

pressive variation this model seeks to create. This suggests a lower dimensionality of

control constrained by the choice in synthesis technique and by the objective of the

model.

The second part of this chapter introduced three broadly defined, interdependent devel-

opment goals of drummers: physical control, coordination, and endurance. In order to

narrow the analytical focus of these development goals, a tri-level analysis framework,

primarily used to analyse computer simulations of human behaviour, was applied to

109



3.5 Summary Evaluation

these development goals, resulting in a focus on the computational and intrinsic anal-

ysis of physical control and coordination in human movement, specifically percussive

performance.

The order of human analysis followed a bottom-up approach (local to global vari-

ables), focussing on stick management, rebound control and strike control, extending

to the coordination of posture and stability control of the player, and trajectory and

movement control in relation to the player’s body. Stick management was found to

play an important part in the interaction between the stick and the drum, by changing

stick contact times that alter the vibration of the drum (and the subsequent timbre).

Similarly, stick grip influences the rebound of the stick from the drum, which has two

effects on drumming: force contact dampening of a drum after a strike; and positive

and negative rebound use for the subsequent strike, particularly in sequences of drums

operating at different angles and locations relative to the torso. Although, in most cases

stick control was evident during the strike, much of the rebound and strike control was

done during preparatory movements.

During the downward motion of a strike, a curvilinear trajectory was observed in Dahl

(1997a). This can be accounted for by the phasing of muscle activity in the homologous

muscle groups of the arm (Kelso et al., 1991). In-phase muscle activity produced greater

arm stability and economy of movement, which is a contributory factor towards stick

control. At the top part of the strike, a fishtail motion was described (Dahl, 1997a),

which further exploits the existing synergy between muscle activities by taking advan-

tage of the upstroke to minimise additional muscle activity in the upper arm.

In bimanual and unilateral arm movement, which are common occurrences during

drumming, anticipatory postural muscle adjustments (APAs) were observed in order to

maintain postural stability. These involved small muscle movements that compensate

for changes in force (e.g. changes in the centre of gravity) resulting from arm extension.

The effect of this, in a seated position, is that the trunk is responsible for postural sta-

bility in the upper body. With more complex arm movements in drumming sequences,

compared to the simple arm movements in previous studies, the potential need for

constant postural anticipation and control was highlighted, particularly in arrhythmic

unilateral strikes at non-opposing angles and at different distances from the torso.

The problem identified in this section has presented is not only akin to, but includes
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the DOF problem. Fundamentally, the main problem in modelling a jazz drum set is

that arm movements (e.g. reach distance, height, and angle) are often unequal, and

the rhythmic striking of these can be irregular. The inequality of arm location, and ir-

regularity in drumming, constantly changes the joint torques and the force interactions

that affect trajectory control, movement stability, and posture and stability, which sub-

sequently affect strike control, strike accuracy, rebound control, and stick management,

ultimately causing variations in timbre and timing.

This problem is compounded by an almost infinite number of combinations of move-

ments between cartesian strike coordinates during drumming and, if one takes into

account the DOF problem, there is an extreme abundance of potential system repre-

sentations. Such an abundance of potential representations would not only be hard to

computationally implement, but a selection of a smaller number of representatives is

difficult to theoretically justify. As Abend et al. (1982) note, there would need to be an

inverse kinematic transformation of the Cartesian to joint coordinates and then, using

inverse dynamics, the joint torques would need to be calculated. Therefore, modelling

performance variation in drumming must take a pragmatic view. In this thesis, the

modelling will be guided by the discussion in this chapter. One way this will be done

is by taking a broader and more basic view of the key findings in this discussion, and

creating a representative abstraction. The broader view to be adopted in this thesis,

for the purposes of modelling percussive performance, is that large multijoint move-

ments operating in multiple planes of motion are more likely to generate performance

variations.

3.5.1 Compositional Summary Evaluation

The final part of this chapter described the compositional application of the software.

The initial part of the discussion defined the compositional approach of this thesis by

broadly summarising ways of evaluating compositional systems based upon their rele-

vance to a given application. Then, a compositional perspective was presented in order

to justify the exclusion of certain compositional approaches. The conclusion was that,

because the compositional software can be applied to a variety of different genres, it

should be evaluated as a tool with diverse application.

With that in mind, a variety of different genres were described in greater detail, begin-

ning with a broad discussion on computer-assisted composition. A variety of composi-

tional software systems, that compose music with percussion, were described. Notably,
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these systems differ from the models described in Chapter Two because they were not

intended to humanize percussion. Their main relevance here is two-fold: firstly, in the

approach to composition; and secondly, in the relationship between the composer and

the computer in the generation of musical material. One of the main conclusions drawn

from the discussion in this section is that, for the purposes of creating a software tool

with a diversity of application, complete compositional control must not be yielded

to the computer. Such a system should support the compositional process. Following

on from this, the discussion then focussed on the application of systems in live im-

provisation, thus continuing the theme of compositional control. Specific examples of

live improvisational systems were described, including the conceptual reasons for the

human-computer relationship regarding compositional control. The discussion in this

section reinforced the notion that the computer should control certain functions and, in

extending this to live improvisation, provision should be made to enable the composer

to bypass certain functions and retain complete compositional control of the software.

From a musical perspective, this part of the chapter also described the musical context

in which the software will be applied. Different types of rhythm were described, with

a particular emphasis on the meso-periodic rhythms of Africa. Parallels were drawn

between the construction of rhythmic sequences and the chromatic scale, which also

presented a method for constructing meso-periodic rhythms. The difficulties in defining

an aesthetic perspective of African music were also described owing to the subcultural

variations in Africa, resulting in a description of analytical methods common to most

West African music. These included the hierarchy of usefulness, independency, broad

bandwidth, and flux. Each of these analytical methods is useful in not only composing

meso-periodic rhythms, but in qualitatively evaluating the resulting compositions in

that genre using the software tool.

The final part of the discussion focussed on using the spectral analysis of samples in the

database as compositional parameters. It was suggested that re-ordering the samples

by spectral content will produce interesting compositional results. The selected spectral

features were loudness, spectral centroid, and spectral flatness. The final compositional

application was described in relation to electroacoustic music. Notably. the creation of

electroacoustic music with this model tests the limits of application, and situates the

compositional tool presented in this thesis as one component within a larger composi-

tional process.
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The final part of the discussion also focussed on describing PCM sampling, with empha-

sis on the considerations of using this synthesis technique in the context of capturing

a timbral representation of a jazz drum set, and in creating the humanizing algorithm.

Particular attention was paid to the expression vs. accuracy dichotomy of sampling.

Notably, this section presented overall considerations to the methodology presented in

the next chapter regarding the chosen synthesis approach.

3.5.2 Implications of the Methodology

Adopting a physical-based approach presents us with two levels of conceptual represen-

tation of the system. The first relates to David Marr’s representational level, whereby

the relationship between the samples in a database conceptually represent an instru-

ment. The second level further abstracts performance, and presents a more contextual

understanding of the variables that can affect relationship between the samples by

inferring a relationship between the instrumental representations themselves. This is

described in Figure 3.22, a simplified diagram showing the context of two instrumental

representations. This illustration extends Figure 3.21.

Figure 3.22: The interaction of instrumental representations in context.

Holistically, the instrumental representations are part of a larger conceptual construct

related to performance context. With this in mind, a theoretical model is presented

in Figure 3.23, which shows a compositional framework derived from information in

the sample data, augmented by the performance model. This figure also shows the

conceptual flow and linkage between components in the theoretical framework.
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The link between the instruments and the performance context is characterised by the

interaction of the performer and the instrument, and comprises both intra- and inter-

instrumental interaction. This draws upon the discussions in parts one and two of this

chapter.

The link between instruments and the sample database is an inherent feature of the

chosen PCM sampling technique, and was driven by the diversity of acoustical be-

haviours of the instruments as discussed in the first section of this chapter. However, it

is important that the feature extraction and classification methodologies in the sample

database are informed by the performance context, to ensure that the parameterisation

and control of the sample database is consistent with human performance, particularly

as the sample database is critical in ensuring an accurate representation of instrumen-

tal performance in the model. In addition, performance context is not implied by the

presence of a sample database alone. Therefore, the control of the sample database in

the performance model must be informed by the performance context, at both intra-

and inter- instrument levels, in order to imply a human performance on the control

paradigm.37 The methodology for the implementation of the performance model will

be dealt with in the following chapter. The compositional framework has two links: the

sample database as being the source of a compositional framework; and the influence

of the performance model on the compositional framework. The feature extraction of

the sample database for use in the performance model can be exploited to create new

compositional parameters that extend the performance model into new creative realms.

This will be discussed in the following chapter.

It was noted earlier that performance characteristics change across different genres

of music. The implications of the performance model, as a representation of a per-

formance in a particular genre, on composition is significant. The re-contextualisation

of instruments and the representation of any musical structure implied in the model,

coupled with the production of expressive aspects of performance in the model (as

implied by the timbral and timing variations of these instruments) present enormous

opportunities for developing new aesthetical paradigms of rhythm. The discussions in

this chapter have identified the fundamental aspects of performance context relating

to the production of micro-timbre in an instrument, and the potential causes of micro-

temporal strike variations. In order to represent these, the performance model must

make use of relevant approaches. These will be discussed in the following chapter.

37 Similar to note, intra-note and note-to-note transitions (Maestre et al., 2009).
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Chapter 4

Research Design and

Methodological Approach

“Personally, for my conceptions, I need an entirely new medium of expression: a

sound-producing machine”

– Edgard Varèse, 1966



4.1 The Performance Model Defined

This research took a two-part experimental approach. The first part of the method-

ological approach, which is discussed in the first half of this chapter, concerned the

collection of timbral data from the instruments of a nine-piece jazz drum set. The

main aim was to assess the effects of strike strength and location on drum timbre in

order to develop a methodology with which to create an effective micro-timbral model.

Existing research designs were evaluated in order to formulate a research design method

for the collection and extraction of percussive timbral information. This comprised a

brief overview of existing approaches, with specific emphasis on limitations of feature

extraction methods with un-pitched percussion and subsequent difficulties in apply-

ing this for compositional purposes. The second part of the methodological approach,

which is also discussed in the first half of this chapter, concerned the collection of human

percussive performance information captured from three differently skilled drummers.

The main aim was to assess the relationship between performer skill level, movement,

performance variation, and timing variation during a performance, in order to develop a

methodology with which to create an effective micro-timing model. Timing fingerprints

are presented, and the methods for creating these timing fingerprints using analytical

software are evaluated, in this section.

The latter half of this chapter begins with a discussion of the preliminary results of the

data, including instrumental micro-timbre, data reduction and classification by strike

location, timing fingerprints, and participant video and accelerometer data. This is

followed by a discussion of the creation of the performance model, PD-103, with par-

ticular emphasis on computational design. The chapter concludes with a discussion on

the compositional design aspects for the PD-103.

4.1 The Performance Model Defined

This section will detail the methodological approach of the performance model. It will

also further define this methodological approach in relation to the theoretical model

presented in the previous chapter (see Figure 3.23). Having presented a conceptual

overview of the model and the role of the instruments, performance context, sample

database, and compositional framework, attention will now turn to defining the flow

of control data in the performance model, and describing the various operations and

functions. The model presented here is iterative, and dynamically changes the timbral

output depending on the user input. This methodological approach is shown in Figure

4.1.
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4.1 The Performance Model Defined

This methodology contains four significant elements that distinguish it from other

methodologies. The first signifant characteristic of this method relates to the per-

formance context. Represented here are three different skill levels of drummer, the

function of which was to provide three performance sub-environments. The manual

selection of three drummers of different skill levels comprised the historiographical

context of the drummers, with differing proficiency towards development goals. More

specifically, the effect of rhythmic complexity and compound movement on performance

variation. The creation of three sub-environments from real human performance had

four key advantages. The methodology:

1. allowed for the capturing of various percussive performance parameters;

2. facilitated the comparative analysis of performance across skill levels;

3. enabled the definition of rules from the comparative analysis of several different

parameters; and

4. yielded real performance data for use in the implementation of the performance

model.

It was important, therefore, to ensure that capturing the percussive performances was

approached experimentally, using appropriate methods. These methods included video,

audio, and accelerometer data. Current research shows that there are no methodolog-

ical approaches to simulating percussive performance that use this combined method-

ological approach, particuarly in the use of extracted data from real human percussive

performances.

The second characteristic of this model relates to the performance reconstruction. This

was a three-stage process, consisting of a physical constraint function (PC), a per-

formance weighting function (PW), and local and global parameter change functions

(LGP). Once the three performance contexts had been defined, and appropriate rules

had been identified from the analysis of the experimental performances, high level phys-

ical constraints were applied to the percussive performance model based upon relevant

rules in the each of the three performance contexts. The PC function was the first

step towards realising the physical context of human performance. Since this model

is concerned with creating compositions and live performances, the PC function was

designed to accept instrumental selection via manual input, and either accept or reject

the input according to the predefined rules in the function. The PC function was also
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4.2 A Method for Representing Micro-Timbre

designed to apply these rules discretely to the manual input.

Notably, the PW function is a major component in defining the performance recon-

struction. Firstly, the PW function was designed to accept the constrained manual

input from the PC function. Then, it was designed to analyse the current and previ-

ous output of the PC function, and hierarchically smooth between the discrete points

(first-order smoothing). Where a previous point does not contain a physical output,

a zero-order smoothing method was applied to the current output. This hierarchical

smoothing then applied weighting to the sample selection criteria. Relevant samples

were then selected according to the weights which are governed by rules generated from

the performance analysis.

The third significant element of this model manifests itself in the form of timing vari-

ations using real performances of differently skilled drummers. The LGP function was

designed to select a temporal deviation from the timing fingerprint of the currently

selected performance context, and apply that deviation to the weighted output of the

PW function for the current operation. In addition, a LGP function then adjusted

the duration of the temporal variations in the fingerprint according to the manually

selected beat level. This method of creating temporal variations in percussive perfor-

mance modelling differs from existing systems, where the timbral and timing variations

here are dynamically selected at runtime.

The resultant performance reconstruction, from the collection of functions and parame-

ter changes, then produced the output to be applied compositionally. Consequently, the

manual input and the resulting performance reconstruction directs the compositional

application, which is the fourth element that distinguishes this model from other sys-

tems. Compositional parameter changes, occurring from manual input, consist of two

types: the re-classification of samples based upon spectral content; and the structural

organisation of the content in performance reconstruction, including the repetition of

percussive sequences.

4.2 A Method for Representing Micro-Timbre

This section will describe the required properties of the sample database, including

the database size and feature extractions that will serve as compositional elements. It

is not intended to be an exhaustive discussion on analytical MIR methods, as this is
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4.2 A Method for Representing Micro-Timbre

not the focus of this investigation. Upon conclusion of this section, the key properties

of the sample database will be defined, together with a description of the features

that will be extracted from the database, as well as the computational methods using

MIRToolbox (Lartillot and Toiviainen, 2007) that will be used to extract these features.

A brief description of the compositional application of these features in relation to the

instruments of the jazz drum set is also described.

4.2.1 The Sample Database

In order to fully represent the number of possible micro-variations of a drum, an in-

finite number of samples must be taken. However, this is neither practical owing to

computational constraints, nor are such levels of micro-timbral detail necessary from a

perceptual perspective. However, it is important to address the limitations of existing

sample databases when considering the sonic representation of an instrument. Such

limitations include the number of samples taken per instrument. Hellmer (2006) used

a database totalling 98 samples across nine instruments, of which a maximum of 28

samples represented the hi-hat, a minimum of 4 samples represented the bass drum,

and 4 samples represented a crash cymbal. This falls short of the multisampling ap-

proach of many commercial software drum programs, whose databases use on average

127 drum sounds per instrument - the maximum number of samples assignable to a

MIDI note. However, the samples in these databases are intended to produce smooth

timbral changes across the MIDI note velocity, with minimal micro-timbral variation.

In capturing percussive gestures, Tindale et al. (2004) recorded 1,260 samples of a

snare drum using a brush and a stick at different locations on the membrane, with a

view to analysing the spectral features of the samples for timbral classification. Tindale

acknowledges the timbral variation caused by excitation location, by specifying five dif-

ferent strike locations, each location struck 20 times by three different subjects. These

strike positions are shown in Figure 4.2. Although the specification of these strike loca-

tions provides a more detailed timbral representation of the snare drum, the locations

are only representative of part of the membrane. As noted in chapter two, dis-uniform

tuning can create areas of higher tension in different parts of the membrane, and cause

changes to the speed of the vibrations and boundary reflection times. It is important,

therefore, to take samples from a range of locations across the drumhead, and not just

specific locations across one line of a single polar axis.

Tindale’s results demonstrate the successful automatic recognition of samples with
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4.2 A Method for Representing Micro-Timbre

Figure 4.2: The strike locations specified by Tindale during data collection of snare drum

timbres (Tindale et al., 2004, p. 543; Tindale, 2004, p. 23; Tindale et al., 2005a, p. 5).

differences in timbre resulting from different strike locations (Tindale, 2004). These re-

sults suggest that recording of samples across the entire surface of the drum, together

with an increased sample size of at least 1,000 samples per instrument, is the next

logical step in extending Tindales methodology. With a total of nine instruments, the

sample database in this model contained a minimum of 9,000 samples. In order to

ensure that micro-timbral variations are present in the membranophones, the drums

were not tuned uniformly.

4.2.2 Timbral Feature Extraction

Feature extraction is an area of inquiry within MIR that has seen a number of systems

and tools developed for extracting information from sound, for a variety of audio and

music classification purposes. As a result, some systems are more general with broader

high-level features, while others are designed with low-level features for more specific

use. Since this thesis is concerned primarily with the performance of un-pitched per-

cussion (including those instruments that evoke a greater sense of pitch, such as the

tom-tom), there are limitations in the types of features that can be extracted, and

the suitability of these tools for extracting relevant features. Finding a set of features

that are robust across all of these instruments is a challenge, particularly with features

intended for compositional application. This section will define the features that will

be extracted from the audio, and describe the tools to be used to undertake the feature

extraction.
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4.2 A Method for Representing Micro-Timbre

Extracting pitch values from un-pitched samples is extremely difficult owing to the

autocorrelation algorithms that attempt to find stable pitches where none exist. This

results in artefacts and misleading pitch values for these sample types. Feature ex-

traction programs such as Praat (Boersma and Weenink, 2013), a specialised speech

analysis and synthesis tool,38 and MIRToolbox (Lartillot and Toiviainen, 2007), a suite

of modular music analysis functions available for use with the commercial software Mat-

lab,39 both use autocorrelation in their pitch algorithms. Furthermore, pitch analysis

in Praat is difficult with sounds containing higher noise floors (Boersma and Weenink,

2013), of which cymbals can be considered “noisy” due to their nonlinear and chaotic

behaviour.

In MIRToolbox, however, there are a number of other algorithms for extracting other

features that do not use autocorrelation methods,40 and are therefore suitable for use

on both pitched and un-pitched percussion. The extractable musical features in the

original implementation of MIRToolbox (2007) are shown in Figure 4.3, with a complete

list in the latest version shown in Figure 4.4.

Figure 4.3: Extractable musical features in MIRToolbox (Lartillot and Toiviainen, 2007).

38 Although Praat is mainly concerned with speech analysis, it has been successfully applied to a

flute for pitch estimation in Hindustani classical music (Ramesh and Sahasrabuddhe, 2008).
39 For further reading concerning Matlab, the reader is referred to Hunt et al. (2001); Kiusalaas

(2005); Mirza (2010); Quarteroni et al. (2010); Register (2007) and Trefethen (2000).
40 Later versions of MIRToolbox contain additional features, such as inharmonicity, that use auto-

correlation methods (Lartillot, 2010).
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4.2 A Method for Representing Micro-Timbre

Strike strength is a common parameter used to map samples to MIDI keyzones in

commercial software, particularly for simulating dynamics where spectral changes occur

(Dahl, 1997b; fxpansion, 2005, p. 22). One function that computes the global (RMS)

energy of the sample in MIRToolbox is mirrms, which uses the following calculation:

xrms =
√

1
n

n∑
i=1

x2
i =

√
x2

1+x2
2+...+x2

n

n

Although using loudness as a parameter for composition is not new, it was useful to

include this parameter for two reasons. Firstly, this parameter allowed for the recreation

of performance for evaluation of the model. Secondly, and more importantly, from a

compositional perspective this parameter is important for critical compositional devices,

for example, crescendos, decrescendos, dynamics, sound duration, and timbre. Since

average values per sample are required, segmentation and framing were not necessary.

4.2.3 Compositional Feature Extraction

When looking at timbral parameters for musical form, it is useful to consider the most

perceptually important timbral dimensions. One such dimension is brightness (Ara-

maki et al., 2006; Barthet et al., 2008; Darke, 2005; Donnadieu, 2010; Giordano and

McAdams, 2006; Marozeau and de Cheveigne, 2007; Pressnitzer and McAdams, 2000;

Schubert and Wolfe, 2006; Turcan and Wasson, 2003 and Risset and Wessel, 1999, pp.

147-148). The mirbrightness function in the MIRToolbox measures the proportion of

spectral energy over a designated cut-off frequency (Juslin, 2000, as cited in Lartillot,

2010).41 The nine instruments in the jazz drum kit provide a rich palette of sound for

compositional exploration, ranging from the low frequencies of the bass drum, to the

higher frequencies of the cymbals.

Another useful timbral parameter is spectral flatness. In MIRToolbox, mirflatness de-

termines the flatness of the frequency distribution from a ratio between the geometric

and arithmetic mean (Lartillot, 2010, p. 148) using the following equation:

N
√

ΠN−1
n=0 x(n)(

ΣN−1
n=0 x(n)

N

)
41 The default cut-off frequency in mirbrightness is 1500Hz.
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4.3 Data Collection: Micro-Timbre

Spectral flatness is indicative of how closely the sound resembles white noise (Dubnov,

2006). This particular parameter produced interesting compositional results given the

propensity for cymbals to have very noisy spectra, for example, a high flatness value

(Brent, 2009).

4.3 Data Collection: Micro-Timbre

The overall specification of the sample database was described in section 4.2.1, and was

derived from a review of limitations of previous methodologies in percussive research. A

sample database consisting of at least 1,000 strikes per drum was suggested, leading to

a sample database of 9,000 samples. The number of strikes per instrument was selected

as an optimum amount to balance constraints in computational overhead, with the

need for higher resolution sonic representation of the instrument. It was also noted

that the samples must represent different strike strengths and surface locations and, in

order to produce micro-timbral variety, the drum should not be uniformly tuned.

4.3.1 Protocol and Procedure

Recordings were taken of the isolated drums inside a studio reinforced with sound

absorbing curtains in order to mitigate early reflections and outside noise.42 The drums

were arbitrarily tuned by the author with the intention of ensuring that the membrane

tuning was not uniform, so as to generate as much micro-timbral variation as possible.

A set of “capture” rules were devised to ensure maximum timbral variation, and to

ensure a random sample of strikes from the widest possible surface area of the drum.

Firstly, each drum should be struck at least 1,000 times (1,000 +5%). Secondly, each

strike must be: a) executed with a stick; b) devoid of expression; c) a single stroke;

d) in a different location to the previous stroke; e) at a different strike strength to

the previous strike; and f) commence only when the sound from the previous strike is

perceived to have ended. Any mis-hits (for example, strikes that include contact with

the rim) will be included in the database. Owing to the excitation method of the bass

drum using a bass drum pedal and beater, rules (a) and (d) do not apply to this drum.

4.3.2 Equipment

A full list of drum set instruments can be seen in Table 4.1. Each drum sound

42 The sound absorbing curtains and tracks were made by JANDS (www.jands.com.au).
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4.3 Data Collection: Micro-Timbre

EQUIPMENT LIST

Instrument Diameter (in) Depth (in) Height (in)

Bass drum 22 16 23

Snare drum 14 7 27

Hi-hat 14 3 32

Floor tom 16 25 23

Low tom 12 11 36

Medium tom 13 8 36

High tom 10 10 38

Ride cymbal 20 3 48

Crash cymbal 16 3 49

Table 4.1: A list of drums used, their size, depth, and height (top to the floor).

was recorded using two Neumann KM140s, due to their cardioid characteristics, non-

coloured reproduction, and suitability for close-miking with percussion. In addition,

these were also chosen due to the quality of the reproduction against other micro-

phones.43 The microphones were positioned in an X-Y configuration and were posi-

tioned exactly 11” (approx 30cm) above the centre of each drum. Other equipment

used during the recording process included:

• 2 x Canon HG21 HDD video Cameras. One camera was situated directly above

the drum to capture the strikes from above, and the other camera was placed to

the side to capture an alternative angle;

• 1 x 24 Apple iMac; and

• 1 x Millennia pre-amp.

All strikes were recorded continuously (in one take) into Adobe Audition as 44.1kHz,

16-bit, .wav files. Some photographs showing the experimental setup are shown in

Figures 4.5 - 4.11. The low, medium and high toms were kept on their respective

stands during the capture of the strikes, to ensure that accurate representations of the

instrumental decay through the stands were maintained. The low and medium toms

were mounted on the bass drum, and the hi-tom was mounted on the crash cymbal.

43 A pair of B&K pressure sensitive microphones and a HATS device was also used to record the

individual strikes, although the audio was discarded in favour of the audio from the KM140s.

127



4.3 Data Collection: Micro-Timbre

Figure 4.5: Microphone placement above the ride cymbal.

Figure 4.6: Microphone placement for the bass drum.
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Figure 4.7: Microphone placement above the low tom.

Figure 4.8: Microphone placement above the medium tom.
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Figure 4.9: Microphone placement for the high tom.

Figure 4.10: Microphone placement above the crash cymbal.
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Figure 4.11: Microphone placement for the hi-hat. Note that the placement is slightly

off-centre to avoid contact with the centre-rod.

4.3.3 Data Preparation

Once 1,000 drum sounds were recorded, the resulting audio files were imported into

Pro Tools 9, where the attack points were identified using Pro Tools “Beat Detective”.

Each attack point (the first zero crossing before the attack) was then visually accounted

for, and exported as a region into a separate audio file in a wav format. Each of the

individual audio files (samples) was manually accounted for and truncated in Wavelab

5, in order to compensate for perceived differences in the sample end point, between

the strike during recording (see procedural rule (f) above) and the actual recording and

representation of the recording in a digital system. There were no changes to the audio

file format, sample-rate, or bit depth during the use of Pro Tools or Wavelab.

4.3.4 Feature Extraction

The feature extraction method is outlined in section 4.2.2. MIRToolbox was chosen

to analyse the audio samples, owing to the large number of musical feature extraction

functions, particularly those related to timbre (mirrms, mirbrightness, mirroughness,

mircentroid). MIRToolbox was also chosen because of its capability to conduct batch
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operations, as well as its capacity for a range of analysis output formats.

4.3.5 Analysis

Although it was noted in section 3.3.4 that loudness, spectral centroid, and spectral

flatness were the key features to be used in this model, additional features were ex-

tracted. The reason for this is two-fold: firstly, at the time of analysis the efficacy

of the approach and analysis of the instruments were untested and, in the event that

analysis of these features failed, time was saved in the re-analysis; and secondly, having

completed the analysis, data exists for further work, where different features can be

applied to the model. The features extracted from the audio files can be seen in Table

4.2.44

Feature Measurement/Output

Loudness (RMS) DBFS

Bark Envelope Float value (0.0=min, 1.0=max)

Brightness % of spectral energy >1500Hz (0.0=min, 1.0=max)

Centroid Frequency (Hz)

Cepstrum Quefrency (Hz)

Flatness Float value (0.0=min, 1.0=max)

Roughness Float value (0.0=min, 1.0=max)

Table 4.2: A list of features extracted from the audio files using the MIRToolbox.

The resultant values of the measurements for each instrumental sample were aggre-

gated into a text file representing each instrument, and are shown in Appendix B.1.

These text files were then used to evaluate the variation in features among the captured

strikes.

4.3.6 Data Preparation

Once the audio files were analysed using MIRToolbox, the data showed that a number

of individual samples had failed to produce a valid measurement. However, these

processing failures amounted to only 0.04% of the total samples processed, well within

the +5% tolerance that was factored into the number of strikes taken. Samples that

produced failed measurements were removed from the database.

44 All values are a mean average of the total audio file.
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4.4 A Method for Representing Micro-Timing

This section describes the timing paradigm for the performance model. This will include

describing the methods and tools used in the extraction of empirical performance data.

4.4.1 Timing “Fingerprints”

Each person has their own kinematic “fingerprint”, as a result of their unique anatomi-

cal proportions, dimensions, and physical constraints (Runeson and Frykholm, 1983, p.

592). Musically (and by no means strictly limited to physiological or kinematic condi-

tions), each drummer has their own unique way of playing the drums. This is manifested

as “the unique time-feel of each person that is like a fingerprint or signature” (Keil,

1995, p. 11). This model used extracted timing fingerprints of three different skill

levels of drummer. Capturing and analysing percussive performance from drummers

of different skill levels allows for a comparative analysis of the performances, in order

to establish general causes and effects between skill level, performance, and timing. In

order to achieve this, the selected skill levels under investigation are: unskilled, semi-

skilled, and skilled.

These timing fingerprints were extracted from recordings of the performances of three

jazz drummers, playing to reference material in a controlled environment. The onset

times of every strike in the performances were compared to the reference material, in

order to determine the exact temporal deviations of each participant. The timing fin-

gerprints represent these unique differences in temporal performance. Analysis of the

participants’ recordings were done using Sonic Visualiser, and are described in greater

detail in the next section. These fingerprints were then analysed, and the temporal vari-

ation of the model was derived from these timing fingerprints. These timing fingerprints

contain both positive and negative asynchronies, and also include both systematic and

expressive variations. As a result, the model is able to produce both early and late

temporal values, and the representative method for comparing the onsets to the refer-

ence material was capable of incorporating both types of variations.

However, for a more accurate assessment of the performances, it was necessary to cap-

ture additional performance data, such as video information and sensor data, to assess

performance movement and the underlying causes of performance variation. Beyond

the creation of timing fingerprints via recorded audio the observation of performance

from video and the analysis of movement from sensor data, assisted in the development
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of performance rules, which more accurately represent real human percussive perfor-

mance. The data extraction methods for the audio, video, and accelerometer data are

described later in this chapter.

4.4.2 Temporal Data Extraction

Another system developed for analysing the content of audio is Sonic Visualiser (Can-

nam et al., 2006). Sonic Visualiser allows for visual multidimensional analysis of several

simultaneous features using layers, and the subsequent extraction of information from

each layer. Although spectral analysis can be undertaken in Sonic Visualiser, one of the

strengths of this system is the beat detection function, which enables comparative beat

detection of different layers and the export of each beat as a time value. In addition, the

markers that represent the beats are manually adjustable, allowing for visual inspection

should the beat tracking algorithm fail to accurately identify a beat (as in the case of

Naveda et al., 2009). These advantages have led to Sonic Visualiser being used in the

analysis of micro-timing and expressive asynchronies in different musical performance

(Dodson, 2011; Naveda et al., 2009, 2011). In the case of extracting timing information

from real performance, Sonic Visualiser was used to extract the onset times from the

performances, relative to the source material.

4.5 Data Collection: Performance and Micro-Timing

The first phase of the experiment was the collection of the 9,000 individual strikes of

instruments of a nine-piece jazz drum set, and the analysis of the sample data. The

second phase of the construction of the performance model involved the collection of

data from real human performance, to construct timing fingerprints, and to generate

rules for the implementation of the model. This was done using captured audio, video,

and accelerometer data of three drummers of differing skill levels. The following sections

will describe the participants, methods, protocols, and procedures used in capturing

the performances, and present an analysis of the data in order to generate the rules for

the model.

4.5.1 Participant Overview

In order to collect the timing fingerprints for the model, and to collect performance data

for rule generation, it was necessary to recruit three participants with different levels

of drumming skill. Potential participants were asked to complete a questionnaire, with
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the selected participants chosen based upon their drumming experience and preferred

musical style. The three selected participant responses to the questionnaire are shown

in Appendix B.2.45 The questionnaires revealed different levels of playing experience

in different styles, and with differing levels of musical education.

Although each of the participants had experience in composing and playing music

in different genres, both acoustically and electronically, their experience in playing

the jazz drum set differed significantly, from no experience, some experience, to pro-

fessional experience. The skilled drummer was the only participant that could read

percussive notation. Their musical experience indicated that each participant had at

least a rudimentary understanding of rhythm and timing, and knowledge of the role

of, and constitution of, the drums despite different experiences in their physical per-

formance. As a result, these participants made suitable references for a comparative

analysis for rule generation.

4.5.2 Audio Data Collection

In order to create a timing fingerprint, the timing deviation values of each strike, rel-

ative to a specified beat, were obtained. These values were then used to represent the

timing fingerprint, as each performer had different values. This was done using audio

recordings of the performances. Previous studies that have examined human musical

performance focussed on IOIs and note durations of recorded audio to determine devia-

tions in timing and synchronisation of musical performance (Butterfield, 2010; Friberg

and Sundstrom, 2002; Kilchenmann and Senn, 2011; Petrini et al., 2009; Prögler, 1995).

A similar approach was taken here, as this was a previously tested empirical method.

Other methods, such as capturing MIDI performance data, present problems with high

latencies. A latency of 5ms (Repp, 1994) can significantly affect the timing fingerprints,

which can increase during the capture of fast performances owing to the serial nature

and baud rate of the MIDI protocol. However, disadvantages to using recorded audio

are the separation of strikes from waveform data, which can be labour intensive, and

the difficulty in extracting performance dynamics data (Goebl et al., 2005).

Since not all participants had sight-reading ability, it was concluded that each par-

ticipant would play along with an audio recording of a jazz piece for reference, in order

45 Recruitment and participation of the three drummers was subject to the University of Sydney

Human Ethics Committee, protocol number: 12943 (2012/1714).
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to maintain similar experimental conditions. The onsets of each strike were analysed

in relation to a defined “beat” in the reference material in order generate the timing

fingerprints.

4.5.3 Movement Data Collection

In order to infer performance context, it is important to understand how each performer

moved at various points during the performance. To perform such an analysis, video

data of each performance was captured. In order to understand the movement context,

the angles of trajectory and strike velocity, and data from hand-mounted dual-axis

accelerometers was also captured. The use of accelerometers as a direct measurement

technique of human movement, in gesture tracking of percussive performances, and in

musical interface design, is well documented and, in some cases, these are augmented

with video recordings (Dolhansky et al., 2011; Friberg and Sundberg, 1999; Hajian

et al., 1997; Tindale et al., 2005b; Wagner, 2006; Winter, 2009; Young and Fujinaga,

2004).

4.5.3.1 Audio Reference Material

The audio reference material chosen was Bird’s Lament, by Moondog (Hardin, 1969)

and is shown in Appendix B.3. The piece was chosen for this investigation because it

is well known, highly expressive, with an isochronous pulse originating from the basso

ostinato (see also Figure 4.12), and has different metrical levels that allows performers

of all skill levels to play along. In addition, the short duration of the track was of

practical benefit for data management, given the potential to extract large quantities

of performance information.46

4.5.3.2 Protocol and Procedure

All of the performances were recorded in the recording environment described in section

4.3.2., using the same equipment. The microphones were placed above the drum set

to capture the whole performance. Participants were given a ten-second preview of

the reference material via headphones. Following the preview, the reference material

was then played in full through the headphones (no monitoring of the performance was

played through the headphones), and the participants were asked to play along as closely

46 Philosophically, the profound influence of African music on jazz allows the model to indirectly

embody this influence through the choice of reference material. This influence will metaphysically

augment the meso-periodic compositional approach to rhythm.
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as possible. Participants played wearing gloves that had been modified to include small

pockets sewn into the back of the hand to hold the dual axis-accelerometers. The wires

from the accelerometers were then taped to the participants’ arms, so as to minimise

interference during performance.

4.5.3.3 Equipment

The same drum set used in the sample collection methods described in section 4.3.2

was used in the performances. The audio of each performance was recorded into Pro

Tools on a 24” Apple iMac via a Millennia pre-amp as 44.1kHz, 16-bit, .wav files, using

a pair of Neumann KM140s positioned over the drum set. The microphones and their

positioning were favoured over the individual recording of instruments with separate

microphones for two reasons. Firstly, it reduced the number of microphones required

to collect the audio data. Secondly the audio captured during a pilot was sufficient

for analysis purposes, as it distinctively captured each strike. In addition, high quality

audio data was not required, because only the extracted timing deviation values are to

be used in the model.

The video was captured using two Canon HG21 HDD video cameras. One was placed

directly above each participant, and the other to the side of each participant. This

approach, previously employed in section 4.3.2, captured the performance movement

in the different planes of rotation.

The hands were measured using two T302D/E dual-axis accelerometers,47 which mea-

sured the roll (X axis) and the tilt (Y axis) of each of the participant’s hands during the

performance. The physical range of the accelerometers was +/−5g on both axes, with

a response time of 20ms. The accelerometer data were read by an ElectoTap Teabox48

sensor interface at 4000kHz, which transmitted the sensor data optically to a MacBook

Pro, which was then recorded into Max/MSP using the Tap Tools suite of objects. The

sensor data were then saved in text files for analysis purposes. The analysis algorithm

is described in more detail in section 4.5.4.2.

4.5.4 Data Extraction Methods

Once audio recordings of the participants’ performances were captured, they were im-

ported into Sonic Visualiser together with the reference material. The bar and beat

47 Manufactured by Analog Devices (www.analog.com/en/index.html).
48 Full technical details of the ElectroTap Teabox can be found at (www.electrotap.com/teabox/).
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tracker analysis plugin was used to plot time instants of beats per bar. This is shown

in Figure 4.12. The exact timings for each instance of the beat were then exported

as a text file. Each of the performance audio files was imported to Sonic Visualiser

and, using an onset detection algorithm, each strike was initially highlighted and then

personally verified. A low onset detection threshold was initially used, and any uniden-

tified onsets were manually added. This is shown in Figure 4.13.

Figure 4.12: The beat tracked audio reference material in Sonic Visualiser.

Figure 4.13: A screenshot showing the beat-tracked participant performances in Sonic

Visualiser. The top pane shows the reference material from which beats are indicated in

alternating background colours. The second (grey) pane shows the unskilled participant,

the third (blue) pane shows the performance audio from the semi-skilled participant, and

the bottom (red) pane shows the performance audio from the skilled participant. Each

vertical line in the participant panes represents the onset of a drum strike.

The exact temporal locations of the start of every strike were exported into text files,

together with the tempo at each strike point relative to the last strike. The relative

strike-to-strike tempo was extracted in Sonic Visualiser by obtaining the temporal loca-
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tion of each strike, and calculating the tempo relative to the reference tempo, in order

to determine the stability of the strikes.

4.5.4.1 Video Recordings

The video recordings were copied from the camera and visually inspected. In addition,

the video data was analysed through the Jitter component of Max/MSP. Movement lev-

els were calculated by comparing the inter-frame movement in the video. The algorithm

reads the video file, converts the video into greyscale, and then compares the current

frame of the video with the previous frame using the Tap Tools object tap.jit.motion to

output the global measure of per-pixel frame-to-frame difference. The output is then

saved as a text file. This empirical extraction of movement allows for a comparative

analysis between the three drummers. A screenshot of the Max/MSP video analysis

algorithm is shown in Figure 4.14, and the patch is available in Appendix B.4.

Figure 4.14: The Max/MSP video analysis algorithm.

139



4.6 Preliminary Results

4.5.4.2 Accelerometer Data

The accelerometer data was captured in Max/MSP at 20ms intervals and saved in time-

stamped text files with the corresponding tilt and roll values. Both of the participants’

hands were recorded simultaneously using objects from the Tap Tools suite of objects.

A screenshot of the Max/MSP patch, which analysed the accelerometer data, is shown

in Figure 4.15. The Max/MSP patch is available in Appendix B.5.

Figure 4.15: The Max/MSP patch used to capture the accelerometer data.

4.6 Preliminary Results

This section will provide a summary interpretation of the data analysis and, the rele-

vance of these findings to the performance model. It will begin by analysing the timbral

feature extraction of the sample database. The results of this discussion will inform

the approach to using the sample data for both the performance model and the com-

positional approach.

The second part of this section will continue analysing the timing fingerprints of the

participants. It will describe the differences between the percussive performances from
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a temporal perspective, and will define the implications of these differences in relation

to the model. The timing fingerprint data is presented using graphs showing the tem-

poral deviations from the reference beat and their respective inter-onset-interval times,

coupled with time-series graphs showing the IOTs for each of the participants. These

are shown in Figures 4.36 and Figures 4.37 to 4.39. Following on from the analysis

of the timing fingerprints, attention will turn to an analysis of the movement levels

between the participants, shown in Figure 4.40. These time-series representations of

movement will add context to the timing fingerprints by way of identifying the global

movement patterns of the participants relative to the timing fingerprint.

The final part of the analysis will focus on hand movement, and will involve the anal-

ysis of the accelerometer data for the participants’ left and right hands. This will help

to identify the relative hand/arm movements between the drummers, particularly in

relation to the three dimensional performance space in which the performances were

undertaken: a three-dimensional performance space determined by the instrumental

configuration. This analysis will allow for localised three-dimensional movement varia-

tions to be considered in the model’s rule generation process. The analysis undertaken

here is not intended to be exhaustive. Instead, it seeks to provide a greater understand-

ing of percussive performance across skill levels for generating computational rules for

the performance model.

4.6.1 Initial Results of Instrumental Micro-Timbre

Results of the MIRToolbox analysis showed variations in loudness, flatness, and spectral

centroid for each of the instruments’ captured samples. These are shown in Figures 4.16

to 4.24, and are grouped by membranophones (Figures 4.16 to 4.21) and idiophones

(Figures 4.22 to 4.24). The results demonstrate that the proposed methodology for

capturing variations in percussive strikes produced a sample database that adequately

represented the micro-timbral variations in each instrument.

Although it is not the intention of this section to explicitly describe these graphs,

as this is beyond the scope of this investigation, the results show adequate variation in

the ratings of samples, between the loudness, flatness, and spectral centroid features.

A comprehensive range of values in each parameter has been captured, allowing for

interesting compositional devices, such as crescendo, where the database is classified

based upon loudness ratings.
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Figure 4.16: Variations in (a) loudness; (b) spectral flatness; and (c) spectral centroid in

the bass drum samples captured.

Figure 4.17: Variations in (a) loudness; (b) spectral flatness; and (c) spectral centroid in

the snare drum samples captured.

Figure 4.18: Variations in (a) loudness; (b) spectral flatness; and (c) spectral centroid in

the floor tom samples captured.
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Figure 4.19: Variations in (a) loudness; (b) spectral flatness; and (c) spectral centroid in

the low tom samples captured.

Figure 4.20: Variations in (a) loudness; (b) spectral flatness; and (c) spectral centroid in

the medium tom samples captured.

Figure 4.21: Variations in (a) loudness; (b) spectral flatness; and (c) spectral centroid in

the high tom samples captured.
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Figure 4.22: Variations in (a) loudness; (b) spectral flatness; and (c) spectral centroid in

the hi-hat samples captured.

Figure 4.23: Variations in (a) loudness; (b) spectral flatness; and (c) spectral centroid in

the ride cymbal samples captured.

Figure 4.24: Variations in (a) loudness; (b) spectral flatness; and (c) spectral centroid in

the crash cymbal samples captured.
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The presence of parametric variation in the sample database, within and between fea-

tures, indicates that any classification of parameters will feature different schematisa-

tions, resulting in differing sample selections. Furthermore, these findings also high-

light the timbral variation inherent within each instruments’ dataset. The findings

also suggest that there are sufficient differences between each of the parameters to pro-

duce different database structures, particularly where the database is ordered by min-

imum/maximum feature values (as seen in most MIDI volume key assignments). This

will result in different samples being played depending on the parameter, irrespective of

whether the parameters are ordered in the same way. However, it is acknowledged that

this is not a conclusive timbral representation of the instruments due to the limited

feature extraction and the multi-dimensional nature of timbre. This limited represen-

tation of the instruments presents problems with the database in its current form.

These figures do not represent relationships between other parameters excluded from

the analysis and, therefore, do not provide a comprehensively detailed timbral descrip-

tion of the strikes. As a result, it is possible that two samples with similar values in a

database may exhibit differences in other timbral features. Conversely, it is also pos-

sible that two samples with different database values have similar secondary timbral

features. Since one of the main objectives of the model is to simulate human percussive

variation, any timbral variation between two strikes of similar value in these parame-

ters will add to the perceived variability of human performance. However, such a large

dataset has the potential to create too much variation, with three contextual effects:

instrumental; performance; and compositional.

Instrumentally, each database is a representation of the sounds produced when striking

across the entire surface of the instrument. In the case of membranophones, excita-

tion location is a significant cause of the vibrational characteristics of the drum and,

although locally these variations may be consistent, across the surface of a drum the

vibrational differences may produce large differences in other timbral features. This is

relevant when considering large differences between minimum and maximum values in

a database. One example of this relates to the vibrational differences between strikes

at the centre of the membrane and close to the rim, where membrane stiffness may be

higher, increasing the pitch with the reflection of transversal waves affecting the decay

time.

From a performance perspective there are two implications. Firstly, the dataset con-
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sists of samples at different strengths, causing changes in the vibrational behaviour

and subsequently changes in secondary timbral features. One example of this relates to

changes in frequency observed in tom-toms with greater strike strength, in which pitch

was difficult to measure given the autocorrelation function of the analysis method. The

selection of a sample with a higher variation in salient timbral feature may result in

the model playing a strike that is out of context (e.g. the performance of an accent in

a structurally atypical place). This is tightly linked to the second implication, which

relates to problems in individual sample selection, where the control algorithm, as an

abstraction of the performance context, must repeatedly select a specific value to play

a sample, representative of the current performance context.

A 3D correlation of the spectral features, as shown in Figure 4.25, provides further

insight into the timbre model, particularly in relation to instrumental behaviour and

compositional implication. Concerning instrumental behaviour, there are clear correla-

tions with centroid and flatness tending to increase with loudness, particularly among

the idiophones. The tom-toms also display a characteristic “boomerang” or “hockey

stick” curve, in which there is a tendency for higher levels of flatness with lower loud-

ness, and a higher centroid with increased loudness. Similarly, the bass drum also

displays higher flatness with lower loudness, although the correlation is less distinct

compares with the tom-toms, possibly owing to the bass drum pedal mechanism. The

snare drum also exhibits higher flatness with lower loudness, and the centroid is fairly

consistent across the loudness and flatness dimensions. With instrumental behaviour

governing the distribution of points in each of the instrument’s 3D loudness/timbre

space, the sample selection paradigm allows for the arbitrary selection of any point

within the timbre space, thus intersecting instrumental behaviour with composition.

Understanding the correlation and between the spectral features of an instrument’s be-

haviour, also allows for greater compositional freedom, as correlated timbre space (e.g.

higher loudness and high spectral centroid) can be used in conjunction with orthogonal

point selection in more uncorrelated timbre space (e.g. lower loudness and high spectral

flatness).

The potential timbral variations arising as a consequence of the sample collection

methodology, supports the compositional validity of employing database classifications

based upon the timbral features of loudness, flatness, and spectral centroid for the

purposes of exploring the micro-timbre of the percussion instruments. Since the com-

positional perspective consists of an exploration of percussive micro-timbre using the
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Figure 4.25: 3D correlations of the spectral features for (a) bass drum; (b) snare drum;

and (c) hi-hat; (d) floor tom; (e) low tom; (f) medium tom; (g) high tom; (h) ride cymbal;

(i) crash cymbal.

database schemas as compositional parameters, there is a necessity to mitigate the ef-

fect of uncorrelated salient timbral features, which are analogous to the implications

in instrumental context. In summary, these findings support the use of these parame-

ters for the modelling performance variation, and for compositional use, although the

database must be timbrally constrained in a way that is useful in both applications. It

is therefore necessary to perform data reduction on the dataset of each instrument in

order to confine the timbral variation.
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4.6.2 Data Reduction and Classification by Strike Location

The dataset of each instrument lacks both instrumental and performance context, which

must be addressed by way of data reduction. One way the dataset can be reduced is

to classify the samples according to strike location, where excitation location can po-

tentially excite different modes of vibration, thus causing changes in timbre. This is

particularly the case for membranophones, where the impact of dis-uniform tension is

likely to produce localised timbral similarity. Furthermore, as vibrational modes op-

erate both concentrically and diametrically, it is useful to consider such an approach

to classifying the samples, where more complex movement affects strike accuracy on

different radial planes on the skin, that traverse both diametric and concentric modes.

Furthermore, a change in strike location may be deliberate in trajectory planning.

However, classifying samples based on existing vibrational modes are not conducive

to inferring a performance context owing to extremes in precision that the modes

would infer on performance, from a precise (6,3) mode (see Figure 3.4), to the less

precise (1,1) mode (see Figure 3.3). Consideration must be given to the reclassified

sample sizes. Therefore, a performance-based demarcation, adapted from Fletcher and

Rossing’s (2,2) mode, has been chosen to re-classify each instruments’ samples. This is

shown Figure 4.26, with: (a) the original (2,2) mode; (b) the adapted membranophones

demarcation; and (c) the adapted idiophone demarcation. The centre area in (b) re-

lates to the tendency for a drummer to strike in the centre and the option for centre

spots in the tom-tom. This area corresponds to 1/3 of the diameter. In (c) the centre

area represents the bell in the centre of the cymbal.

Figure 4.26: The (2,2) mode from Fletcher and Rossing (1998) (a); and the adapted

demarcations for (b) membranophones and (c) idiophones.

To re-classify the sample database, a trace of each drum from the overhead video footage

was put onto acetate, with the demarcation points calculated from scaled measurements

of the video at full screen. Each strike was visually accounted for, and manually as-

signed a number based upon the location of the strike, relative to the demarcation
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zones for the respective instruments in (b) and (c) above. Since the strike location of

the bass drum pedal is constrained to one location by the mechanism, such demarcation

does not apply. The bass drum is the only instrument with such a large database. The

resultant sample re-classification increased the total number of potential zones in which

a performer can strike, and reduced the sample size in each zone, while maintaining

adequate timbral variations in each zone. Graphical representations of each parameter

and zone are shown in Figures 4.27 to 4.31 (membranophones) and Figures 4.32 to

4.34 (idiophones). This approach also facilitates the use of stochastic methods to infer

performance inaccuracies, contextualising strike locations relative to other drums, with

zonal striking weighted according to rules generated from the performance analysis.

It is not the intention of this investigation to describe the differences or trends be-

tween each of the instruments. However, there are a few observations that should be

noted from the graphs, which are useful for this investigation. The findings suggest that

in general there are consistencies between the parameters in each zone in each instru-

ment. For example, the flatness and spectral centroid of the snare drum are generally

the same across the five zones, with similar ranges between minimum and maximum

values, even though each zone consists of different strikes. The data reduction method

has retained a large diversity of values in some zones, most notably in the tom-toms

and idiophones. Additionally, there are large differences between idiophones with the

hi-hat having higher average flatness and spectral centroid values compared to the ride

and crash cymbals, which display similar characteristics. This can be attributed to the

interaction between the top and bottom cymbals. However, on listening to the mem-

branophone samples there are clear differences between the five zones in other timbral

attributes, such as pitch. These variations are related to the dis-uniform tuning of

the drum and suggest that this approach to zonal demarcation is relative to timbral

variation across the entire instrument.

A significant implication of this data reduction method relates to the allocation of

samples to zones. The findings indicate that there are different numbers of samples in

each demarcated zone. In some instances there are very few samples compared to other

zones in the same instrument.49 An example of this is shown in Figure 4.33 (d), ride

cymbal mode 4. In the context of samples from this mode being played in sequence

with samples from the other modes, timbral variations may be produced as values are

49 This is a result of the random nature of the sample capture, in which data reduction via the

demarcation points were neither required, nor conceived.
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Figure 4.27: Snare drum sample features after modal demarcation (loudness, flatness,

and centroid, left to right). Modes 1-5 are (a) to (e) respectively.
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Figure 4.28: Floor tom sample features after modal demarcation (loudness, flatness, and

centroid, left to right). Modes 1-5 are (a) to (e) respectively.
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Figure 4.29: Low tom sample features after modal demarcation (loudness, flatness, and

centroid, left to right). Modes 1-5 are (a) to (e) respectively.
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Figure 4.30: Medium tom sample features after modal demarcation (loudness, flatness,

and centroid, left to right). Modes 1-5 are (a) to (e) respectively.
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Figure 4.31: High tom sample features after modal demarcation (loudness, flatness, and

centroid, left to right). Modes 1-5 are (a) to (e) respectively.
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Figure 4.32: Hi-hat sample features after modal demarcation (loudness, flatness, and

centroid, left to right). Modes 1-5 are (a) to (e) respectively.
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Figure 4.33: Ride cymbal sample features after modal demarcation (loudness, flatness,

and centroid, left to right). Modes 1-5 are (a) to (e) respectively.

156



4.6 Preliminary Results

Figure 4.34: Crash cymbal sample features after modal demarcation (loudness, flatness,

and centroid, left to right). Modes 1-5 are (a) to (e) respectively.
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skipped in the parametric mapping, resulting in the selection of relatively higher (or

lower) parametric values for similar mapping values. This will result in an ordered

database of a zone producing variation between values in the same database, and be-

tween other similar values in other zones of the same instrument. One hypothesis is

that the variations produced by the different sample numbers in each mode will produce

variations significant enough to be considered “accented strikes”, subsequently assist-

ing in the model conveying a greater sense of human performance. This is in contrast

to the complete dataset producing “irrational” strikes which, are strikes so timbrally

and dynamically irregular that they convey a greater sense of artificial performance.

It is expected that the data reduction method will localise secondary timbral features,

thereby making the timbre of the samples in each zone more consistent, particularly for

membranophones. The demarcation of the drums based upon a combined approach to

instrumental mechanics and performance lends itself to the structural implementation

of the audio in the performance model.

4.6.3 Timing Fingerprints

The onset deviation values from the reference beat (quarter notes) were obtained by

calculating the mid-point of each reference beat IOI. Quarter notes were used as the

reference because this was the regularly marked recurring beat (pulse) contained within

the larger IOI durations for whole and half notes. Consequently, any data analysed at

these higher metrical levels will include deviations from the more prominent quarter

note beats. Each value within the temporal space between each IOI mid-point (the

magnetic area) is then assigned to the reference beat within that area, and the relative

asynchrony calculated as the difference in milliseconds from the reference beat position.

This is illustrated in Figure 4.35.

Figure 4.35: An illustration of the method for calculating strike onset asynchrony.
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Since the values for the inter-onset-tempo (IOT) were previously calculated in Sonic

Visualiser, it was possible to plot the asynchrony and IOT per strike, or timing finger-

print, for each performance. Figure 4.36 presents the timing “fingerprints” of the three

participants. Timing “fingerprints” can be defined as a performer’s unique temporal

performance characteristics, and are shown as graphic representations in relation to

tempo (BPM) and deviation value (ms). The findings suggest that in general, as the

skill level of the drummer increased, the variations in tempo and timing reduced. This

is apparent in the deviations from the reference beat, and in the increased stability

and regularity of the IOT series across the participants, where the unskilled drummer

displays the least discernable temporal strike patterns and IOT groupings.
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Figure 4.36: Timing fingerprints for the (a) unskilled; (b) semi-skilled; and (c) skilled

drummers. The red line indicates the tempo of the reference material at 119BPM.
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A pattern in onset deviations becomes apparent in Figure 4.36 (b), where the semi-

skilled drummer shows three significant temporal strike locations: −0.25s, 0s, and

+0.25s. From an IOT perspective, these temporal locations are also visible at high

tempos. This finding indicates that the semi-skilled drummer is more temporally con-

sistent in sequences of greater complexity. However, there is greater temporal instability

at mid-range IOTs, suggesting that the participant may have had difficulty with cer-

tain aspects of the percussive sequence. These findings are also supported in the IOT

time series graphs for the unskilled and semi-skilled drummers (Figures 4.37 and 4.38),

where the semi-skilled drummer shows regions of IOT flatness at approximately 30-45

seconds, with some spikes in IOT indicative of periodic changes in strike density. In-

terestingly, the unskilled drummer is more consistently closer to the reference tempo,

although this is largely due to double-time components in the reference audio in which

the unskilled drummer was unable to execute. Relative to the reference beat, the un-

skilled drummer is inconsistent, and displays erratic IOTs between the reference and

double-time tempos.

The onset deviations are more targeted for the skilled drummer in Figure 4.36 (c),

indicating greater consistency across the strikes. Furthermore, there is significantly less

IOT variability than both the unskilled and semi-skilled drummers. This is particularly

visible at higher IOTs (>2,500) that are consistent with the onset deviations at lower

IOTs (−0.2s, 0s, +0.2s). The IOT stability is supported by the greater consistency in

the time-series graph (Figure 4.39), where strikes are temporally more regular with the

regular spikes in tempo being indicative of recurring patterns that have consistent IOT

times. In Figure 4.39 the skilled drummer has two prominent tempo spikes between

approximately 75 and 85 seconds. Critically, the subsequent IOTs very quickly become

stable, a feature that is not as prominent in either the semi-skilled or skilled drummers,

whose fast IOT times are often succeeded by IOT instability with prominent increases

and decreases in IOT. For the unskilled drummer this is apparent at approximately 26

and 46 seconds, and for the semi-skilled drummer this is apparent at approximately 93

seconds.
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4.6.4 Participant Video Data

Having identified the differences between the participants’ timing fingerprints, it is im-

portant to understand the effect of bodily movement on temporal deviations and IOTs.

Figure 4.40 shows the relative movement amounts between the three participants. Un-

surprisingly, the amount of movement correlates to the IOT amounts, where increased

movement corresponds to increased occurrences of higher IOT events. An example of

this can be seen Figure 4.40 (a), in the spikes in movement and the increased activity in

IOT at 40 seconds and 80 seconds for the unskilled drummer. These can be attributed

to the participant moving to strike a different drum in order to create a fill, and subse-

quently attempting another fill, but being indecisive about the planning of the strike,

and consequently waving his sticks in the air. These can be seen in the overhead video

footage in Appendix B.6.

Interestingly, this correlation is less apparent for the semi-skilled drummer and, al-

though there are points of high movement corresponding with increased higher IOT

activity (at approximately 65-70 seconds, demonstrated by a change in strike location

and pattern in the video in Appendix B.7), and relatively lower movement and lower

IOT activity (approximately 40 seconds, Figure 4.40 (b) and another change in strike

pattern in the video), there are several points with an inverse correlation. Two exam-

ples of this are at approximately 30 and 50 seconds, both of which correspond to the

participants’ changes in drum pattern. In the first instance, the old and new patterns

are temporarily interlocked in order to preserve timing, although the merging of these

two patterns causes extra movement. In the second instance, the pattern changes to a

variation on the “Boogaloo” groove, which produces high IOTs due to the additional

16th-beat snare strikes.

With the most overall amount of movement, the skilled drummer’s performance has

two IOT spikes at approximately 75 and 85 seconds, corresponding to high levels of

movement (Figure 4.40 (c) and Appendix B.8). This is particularly interesting, con-

sidering that there were noticeably less temporal variations in the timing fingerprint of

the skilled drummer. These findings indicate that strike sequence density corresponds

to movement, but not vice-versa. This is due to the combination of instruments in the

sequence, and their location. Some percussive techniques can generate dense sequences

of strikes with high IOT amounts that require minimal movement (e.g. a drum roll),

while other less dense sequences require greater amounts of movement (e.g. a slow,

short drum fill, using a variety of instruments).
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Figure 4.40: A visualisation of the performance movement for the (a) unskilled; (b)

semi-skilled; and (c) skilled drummers.
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Differences in movement amount can also be attributed to the skill level of the per-

former, and their technique. This is particularly relevant where the unskilled drummer

may lack confidence in their playing and, owing to a lack of experience in performing

actions associated with playing the drums, their body becomes rigid as a result of not

being relaxed. In addition, an unskilled drummer may find decision making difficult

because their drumming technique has not been developed enough to make quick im-

provisational decisions, or to make drumming more instinctive. Of course, this is fairly

speculative, but this relates significantly to the development goals and drum rudiments

that were discussed in section 3.2.1.

A further variable linked to the skill level of the drummer is the difficulty of the audio

reference material. The reference material may have impacted the performance across

the participants where it was too complex a piece for the unskilled and semi-skilled

drummers, but still very easy for the skilled drummer. This particular variable was

difficult to control, as assessing the skill of a performer relative to another is not easily

quantifiable. Finally, it is worth noting that the video also included movement of the

drums. Although this is the same for all participants (with the camera being in the

same location for each participant), there may be differences given the choice of the

instruments, where cymbals may move for longer post-strike periods, and given the

average strength of the strikes across the participants, where the skilled drummer may

cause greater residual movement in the struck drums.

Due to these reasons, the findings of the movement analysis are largely inconclusive.

However, this analysis does extend the knowledge from the timing fingerprints for the

model. Since sequences employing the use of different drums give rise to greater move-

ment, which was found from higher IOT values being closely associated with minute

fluctuations in the surrounding IOTs, any rules generated for inferring the effect of

movement of percussive variation must take two things into consideration: multi- and

cross-instrument sequence density. The next section will discuss the accelerometer data

to further define the effect of instrumental location on the spatial coordination of bi-

manual movement for increased rule specificity.
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4.6.5 Participant Acelerometer Data

Figure 4.40 shows the accelerometer data from the participants in time-series box scat-

terplots. One initial finding of this data lies in the similar increases in the levels of

movement between the unskilled, semi-skilled, and skilled drummers. Despite this,

direct comparisons between the overall spatial movement of each of the participants’

hands is impossible due to the differences in strike sequence and hand/drum use. There-

fore, specific differences in the spatial location between the hands of the participants

must be contextually examined.

For the unskilled drummer, the left and right hands show higher average periods of

elevation, characterised by a higher average tilt value. This can be seen in Appendix

B.6, where the participant unconventionally uses rim shots primarily on the snare drum

and medium tom. This participant’s use of rim shots limits the variations in recorded

spatial locations, particularly for the right hand. Another key feature of the unskilled

drummer’s performance lies in the stick technique and the management of the stick

control, where the stick is held in the palm halfway towards the tip, horizontally and

facing the floor (although elevated and pronated due to the drum position).

This can be seen by the consistently higher tilt and roll values. The data for the

unskilled drummer’s left hand indicates a tendency for supination, where the roll val-

ues indicate inward tilt. At approximately 53 seconds in the video performance, the

unskilled drummer adjusts the position of the left hand on the hi-hat from a horizontal

position to more vertically pronated position. This is reflected in the data where the

variations in roll become more scattered after a period of constraint, at about halfway

through the performance.
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Figure 4.41: Tilt and roll accelerometer data for left hand (a, c, e) and right hand (b, d,

f) of each participant’s performance of the reference material.
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4.7 Creation of the Performance Model

This part of the chapter is concerned with presenting an analysis of the performance

data, followed by a section describing the computational implementation, drawn from

the data analysis, and within the confines of the performance data extracted. The

computational implementation will formalise the performance rules that have been

developed directly from observation of the participants, and from analysis of the video,

audio and accelerometer data. The rules here also define how the two methodological

approaches, described in the previous chapter, will be amalgamated by contextualising

the sequences of events, and applying different functions to the data flow. The final

section in this chapter describes how some of the aspects within the compositional

framework will be incorporated into the construction user interface of the compositional

software tool. This section concludes with an overview of minimum system requirements

for the compositional software tool.

4.7.1 Computational Design

So far this investigation has covered a range of different aspects of human percussive

performance, ranging from instrumental behaviour, to variables in physical performance

in Chapter Three. This discussion led to the theoretical framework in Chapter Four,

which presented key areas of performance context containing three drummers of differ-

ent skill level, physical constraint, and performance weighting functions that conjugate

to represent the performance field. In the previous section, discussion focussed on the

analysis of results collected from performance data of the three drummers, with a view

to describing the performance context, and to assist in the development of computa-

tional performance rules for the performance reconstruction. This section will begin by

defining performance rules and describing their computational implementation.

4.7.1.1 Performance Rules

One of the most significant findings of the performance analysis was the relation between

timing variations and movement, in which a skilled drummer with more movement gen-

erated significantly less timing variations relative to drummers of different skill levels.

This finding has implications on the performance model, as timing variation cannot be

easily implemented based upon abstracted rules. Since the collected timing fingerprints

are inherently weighted (particularly with the skilled drummer), the implementation of

this in the model has two characteristics. Firstly, rules will not apply to timing vari-

ations. Instead, the rules will apply only to the generation of timbral variation. The
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second, and most important, characteristic of this model is a direct result of the first

characteristic. That is, there is no direct relationship between the timing and timbral

variations. This raises interesting philosophical discussions particularly concerning the

perception of human performance. Despite this, it is expected that there will be little

impact on the perception of the model, particularly as asynchronies less than 20ms are

difficult to perceive (and a large proportion of the strikes for each fingerprint are within

20ms).50

The performance rules have been developed based upon previous discussion and focus

on the physical aspects of human performance, and the physical nature of the inter-

action with the instrument. As a result, these rules are divided into three categories:

the physical constraints of the performer; the physical constraints of the instrumental

configuration; and the context of simultaneous movement, which will be described in

the following three sections.

4.7.1.2 Physical Constraints of the Performer

At any given time the hands can play only two instruments with a stick. Since the hi-

hat and bass drum are played using the feet, four of the nine instruments can be played

simultaneously, two of which are the bass drum and hi-hat. Therefore, the first function

that simulates the performer must prohibit the manual selection of simultaneous strikes

to simulate this physical constraint (the physical contraint or PC function). This

function is called MultiSwitch, the Java code for which is shown in Appendix B.9.

4.7.1.3 Constraints from Instrumental Configuration

Simultaneous bimanual cooperative and disjointed movements produce different biome-

chanical effects on the body. These biomechanical effects are more apparent in com-

pound disjointed movements, in which playing the drums requires the simultaneous

striking of instruments in a disjointed manner, and at different heights.51 In order to

abstract the level of biomechanical effects, the drums will be divided into three classes

based upon relative height from the floor. This has three benefits. Firstly, these instru-

ments are usually positioned in the same height, irrespective of location in the drum set

50 In addition, the collection of the sample data was done independently of the participant perfor-

mances, rendering the model an approximation of the performance.
51 One exception to this is the bass drum, which is solely foot operated. Since there is only one

excitation location on a bass drum (the beater contact area), it is difficult to computationally abstract

constraints from the use of the bass drum. As a result, the bass drum will be excluded from this rule.
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configuration and their relative position from the drummer. Secondly, this approach

does not infer a specific drum-kit configuration, so can conceptually represent different

drum set configurations. Finally, this approach allows for the assignment of values

representing different combinations of simultaneous drum strikes, from cooperative to

disjointed movements. Consequently, the three drum set classes are as follows:

1. High Drums

• Crash cymbal

• Ride cymbal

2. Medium drums

• High tom

• Medium tom

• Low tom

3. Low drums

• Floor tom

• Snare drum

4.7.1.4 The Context of Simultaneous Movement

Manual selection of simultaneous drums can include drums from different classes, so it

important to define the relationships between these classes and implement this relation-

ship as a PC function. Since cooperative movement occurs when both hands function

similarly, simultaneous strikes at similar heights will be considered to have a low level

of movement. Where drums from opposing heights (low and high) are selected, the

disjointed action will be considered to have a high level of movement. Since an instru-

ment in any class can be selected first, from within the three classes, there are nine

potential combinations of movement value that can be manually selected. The levels

of movements and their respective combinations are shown in Table 4.3.

Where instruments from only one class is selected, the movement level will be con-

sidered to be low. The “rounding down” of the movement levels (e.g. High-Medium

movement becomes Medium not High) has been done for two reasons. Firstly, there

are biomechanical considerations of arm trajectory and motion planning where, as de-

scribed in Chapter Three, there is a tendency to use the most economical movement
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TRUTH TABLE FOR INFERRED MOVEMENT

Drum Set High Medium Low

High Low Medium High

Medium Medium Low Medium

Low High Medium Low

Table 4.3: A truth table for defing simultaneous movement.

(Abend et al., 1982). Secondly, although there are combinations of instruments that

produce high levels of movement under certain drum set configurations, these are rel-

atively few, and addressing this by “rounding up” the movement level to High would

affect the majority of combinations that would fall into the Medium level. The Java

code implementation for the PC function, Fuzzy, is shown in Appendix B.10.

4.7.1.5 The Context of Sequential Movement

In Chapter Three, the sequences of strikes and the implications on the interaction of

the drum were discussed in relation to trajectory formation and bodily control. It was

noted that sequences of movements spanning multiple planes of motion and axes of

rotation were more likely to affect performance variation more specifically, the tim-

bre. Assigning a movement value (Low, Medium, High) to the current instrumental

selection, as defined in the previous section, does not take into consideration sequences

of movements, and the transition between the previous instrumental selection and the

associated class, or the current instrumental selection and the associated class (e.g. low

movement to high movement). Depending on the current temporal location in a per-

formance, each instrumental selection will eventually become the current instrumental

selection and, since the movement of the current class is only directly associated with

the movement of the previous class (e.g. a strike in a sequence is only affected by the

previous strike location, and not the 10th previous strike), only a first-order depen-

dency is necessary.

As the previous instrumental selection and associated class has been defined according

to the truth table in Table 4.3, the most appropriate method for smoothing the previous

movement value with the current value is through the use of recursion; that is, to apply

the same logic to the values in the current and first-order classes. This is described in

Figure 4.41. In this example, the movement level of the previous selection was Medium,
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Figure 4.42: The truth tables for defining sequential movement levels.

and the movement level of the current selection was High. Recursion of these movement

values produces a sequential movement level of Medium, which is transitively applied to

the current selection. The rationale for this originates in the height relationship in the

initial drum classes of both selections. In the previous and current selection, a drum in

the High class, was selected. The movement across the planes of motion and the axes

of rotation of these instruments over the sequence is relatively low and, based upon the

discussion on trajectory formation and bimanual coordination from Chapter Three, as

well as the results from the analysis of the performance data in the previous sections,

it is most likely that any struck combinations of these instruments will employ the use

of the same hand. In contrast, the other classes in the selection change from Medium

to Low (e.g. a tom-tom to a snare drum). Although the movement level in the current

class is High, the overall levels of movement across the sequence, when both hands are

taken into consideration, is Medium.

Since music exists linearly over time, it is necessary to specify how the logic will tran-

sition at different temporal points in the composition. This can be done by considering

that the next period in the sequence will become the current selection, and the current

selection will become the previous selection, and so on. In the event that a selection

is changed, the simultaneous movement value is updated and automatically propa-
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gated for recursion. This method of auto-propagating recursion differs from existing

percussive control algorithms because this method allows the system to dynamically re-

configure according to the real-time manual selection. In most conventional percussive

control algorithms, the configuration of the system does not alter based upon man-

ual selection. The output of this PC function must then be passed to a PW function

in order to transform the abstracted movement value into a weighted output. The

Java code for the recursive logic for sequential movement is shown in the PC function,

FuzzyAggregated, in Appendix B.11.

4.7.1.6 Performance Weightings

Having defined the PC functions that represent physical constraints in human percus-

sive performance, the next stage is to define the PW function. This entails determining

the methods for weighting the input value from the PC function and, since the primary

concern of the performance reconstruction relates to creating timbral variation, the

movement level values generated by the PC function will be directly related to sample

selection. This section describes the construction and implementation of the PW func-

tion operator and the transformation of values from the PC function to weightings for

sample selection and timbral output.

In section 4.6.2, a data reduction method reclassified the captured drum samples ac-

cording to demarcated strike locations, adapted from Fletcher and Rossing’s (2,2) mode

of vibration (shown in Figure 4.26). Data reduction was undertaken in view of the im-

pact of secondary timbral variations, and the timbral relevance of a given sample in

a specific performance and compositional context. The chosen data reduction method

restricts the timbral variation by grouping samples of similar strike locations together,

which in the context of the vibrational characteristics of membranes also restricts the

timbral variation across the zone. The data reduction method also allows for the infer-

ence of performance variation and performance accuracy through zone selection.

In the previous sections a method was defined for determining the level of move-

ment based upon instrumental selection and context, with the movement levels High,

Medium, and Low, the outputs from the PC function. This establishes the input argu-

ment for the PW function taken from the output of the PC function. The selection of

zones via probabilistic methods is one potential method for zone selection. By applying

different weightings for zone selection for each of the three movement levels, timbral

variation becomes linked to performance context. It is therefore necessary to specify
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the relationship between strike location and movement level, in order to determine the

probability difference between the movement levels.

Low levels of movement are those that are least affected by biomechanical effects caused

by the movement itself, resulting in greater strike accuracy. For membranophones, this

will result in the greater probability of striking a drum in the centre of the membrane

(zone 5), as this is typically the primary target location (Sweeney, 2004a, p. 13). This

does not, however, preclude other zones from being struck. The additional length of the

drummer’s reach increased, by the drumstick, does not proportionately disadvantage

distal striking areas of the membrane (zones 1 and 4). Rather, proximal zones (2 and

3) are disadvantaged due to the oblique angle of the drum (the snare and tom-toms

are usually at oblique angles) and the acute angle of the lower rim of these oblique

drums. However, the most important consideration in the weightings between the two

sets of proximal and distal zone is the posture of the drummer. The importance of

posture and stability control in movements involving axial and sagittal movements of

the upper body was described in section 3.2.4. Having the correct posture creates less

biomechanical bias to striking the more proximal zones.

The probability of striking different zones of an idiophone requires a different approach

than for membranophones, largely owing to the assignment of zone 5 to the “bell” area

of the cymbal. Since the striking of the bell area is limited to specific performance con-

texts (demonstrated by the assignment of its own notational symbol), for the purposes

of clarity, the striking of the bell will be considered an error in performance. The ma-

jority of cymbals (particularly the ride and crash cymbals) are positioned at a greater

height, in distal locations, and tend to be positioned at an oblique angle. Consequently,

there is a biomechanical bias towards striking these cymbals at the proximal zones (2

and 3) rather than the distal zones (1 and 4). Despite its position to the performer

relative to the other cymbals, different biomechanical effects in playing the hi-hat pro-

duce similarities in the strike bias with the ride and crash cymbals. This bias is a

direct result of striking the cymbal with the opposing hand (crossing the arms), which

reduces the reach of the drummer, and creates a bias towards proximal zones 2 and 3.

This biomechanical constraint has a similar effect on distal zones 1 and 4, with their

selection being reduced. Consequently, the idiophone weightings are inverted from the

zones on the membranophones. Six general rules for the probability of striking a zone

on both membranophones and idiophones are:

176



4.7 Creation of the Performance Model

Membranophones:

1. Zone 5, will be the most likely struck zone

2. Zones 1 and 4 will be the second most equally struck zones

3. Zones 2 and 3 will be the least struck zones

Idiophones:

1. Zones 2 and 3 will be the most likely struck zones

2. Zones 1 and 4, will be the second equally struck zones

3. Zone 5 will be the least struck zone

With these six rules defined, the next stage is to describe the effect of different lev-

els of movement on these rules. For higher levels of movement, particularly where the

drummer is playing at the limits of their ability, the overall stability of the performance

reduces. Conceptually, a decrease in performance stability can be simply expressed in

probabilistic weighting as a tendency for more equal probability of selection across the

zones. Since the input of the PW function contains varying degrees of movement, these

levels of movement can be assigned individual weightings. Furthermore, the differences

in weightings for each zone across the skill levels can be scaled for weighting reduction

and promotion depending on the implied movement level.

A set of weightings, which aim to reflect the factors described in this section regarding

the movement and positioning of the various drums, will be discussed here. The prob-

ability weightings for each strike zone can be seen in Tables 4.4 (membranophones)

and 4.5 (idiophones). Table 4.6 shows the overall percentage change in probability

weightings between the unskilled and skilled drummer. These tables are represented

graphically in Figures 4.42 (membranophones) and 4.43 (idiophones). Although the

zones generally display inverse distributions of weighting between the two instrument

types, there are subtle differences in the movement between the weightings, which can

be characterised by the differences in the amount of scaling between the zones for each

movement level. The most significant percentage change in probability between the two

instrument types is in zone 5 where, as noted previously, this zone differs contextually

between idiophones and membranophones.
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Membranophones Low Medium High

Zone 1 25% 23% 21%

Zone 2 5% 11% 17%

Zone 3 5% 11% 17%

Zone 4 25% 23% 21%

Zone 5 40% 32% 24%

Total 100% 100% 100%

Table 4.4: The PW function’s membranophone zone weightings by movement level.

Idiophones Low Medium High

Zone 1 13% 16% 19%

Zone 2 34% 29% 24%

Zone 3 34% 29% 24%

Zone 4 13% 16% 19%

Zone 5 6% 10% 14%

Total 100% 100% 100%

Table 4.5: The PW function’s Idiophone zone weightings by movement level.

Zone Membranophones Idiophones

Zone 1 −4% +6%

Zone 2 +12% −10%

Zone 3 +12% −10%

Zone 4 −4% +6%

Zone 5 −16% +8%

Total 100% 100%

Table 4.6: Percentage change in probability between skilled and unskilled weightings.
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Figure 4.43: Membranophone mode weightings for different movement levels.

Figure 4.44: Idiophone mode weightings for different movement levels.
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One way to ensure that the zone selection corresponds to the weightings is to represent

each zone number in an array, n number of times (depending on the percentage value).

Then, using a random number generator, performing a value lookup on the array po-

sition. The random number generator in Java code is as follows:

randomNumber = (int) (Math.random() * (max − min + 1) ) + min;

Once the zone number has been returned from the array lookup, a sample from that

particular sample bank can be selected and, subject to the local and global parameters,

played back. The advantage of this method over existing systems is that repetition of

identical samples becomes less likely and, with the probabilities based on performance

context, the timbral variation inherent in the sample bank will be representative of the

performance context.

4.7.1.7 Performance Data

In the previous sections, the LGP functions were defined as a function whose effects

include the transformation of an instance or sequence of a performance reconstruction

on a local or global level. Examples of this include temporal phenomenon, such as

tempo, and temporal effects relating to metrical beat level conditions. Therefore, in

order to define these functions, it is necessary to firstly describe the implementation of

the timing fingerprints as performance data.

4.7.1.8 Timing Fingerprints

The values of the onsets in the captured audio performances were derived from the onset

position relative to the nearest beat. This was determined by calculating the mid-point

between the current and previous beats, and applying this value as the cut-off point, or

magnetic area, for the beat assignment (see Figure 4.35). The onset deviation values

were then given as negative (early) and positive (late) values. These were shown in

relation to IOT in Figure 4.36. Due to the distribution of values and likelihood of

onsets occurring at specific times, depending on the skill level chosen, the system will

determine the onset times for each synthesised note according to the timing fingerprints

and the calculated onset strike asynchrony.

In order to implement the timing fingerprints into the performance model, the complete

set of onset values (positive and negative) for each performance was loaded into an array.

Since the timing fingerprint is inherently weighted towards the participants’ skill level,
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a similar approach to onset value selection can be taken, to that of the zone selection

algorithm in the physical operator: a random number is generated and a value lookup is

done on the randomly generated array position: a zeroth-order Markov model. This can

be seen in the methods Mode1DevLookup(), Mode2DevLookup() and Mode3DevLookup()

in PerformanceWeightings.mxj in Appendix B.12, where the “Mode” numbers in the

methods’ naming convention are a reference to the three participants.

Once an onset value has been obtained from the array, it is then passed as a vari-

able to a method called Timing() (also found in PerformanceWeightings.mxj ). Since

the physical operator has already identified the correct sample bank in which to select a

sample, the next stage is to control the flow of information in order to simulate tempo-

ral deviations. The control of information parsing was chosen as an alternative to using

silence at the beginning of a sample, as previously done by Hellmer (2005), in order to

reduce computational overhead caused by the extra buffering of the silence as audio.

However, in order to control the flow of information, there are two considerations. The

first consideration is the simulation of negative (early) onset deviations. A negative

onset deviation theoretically occurs before the onset of a beat. Therefore, latency must

be built into the system, with the reduction in latency relative to the negative onset

deviation. For example, in the case of a 20ms negative onset deviation, a standard

system latency of 100ms would be reduced to 80ms. In the case of positive (late) onset

deviations, a 20ms value would need to be added to the 100ms system latency to pro-

duce 120ms latency. One of the problems in using system latency is the appropriateness

of the size of the latency, with time-critical applications operating at different temporal

levels. For example, an appropriate latency at 60BPM would be 1,000ms. At 120BPM

(or double time), such latency would make an on-time onset appear late because the

latency is larger than the beat interval.

The second consideration is independently controlling the latency of multiple onset de-

viation values. A computational approach that addresses this issue is multi-threading,

where different threads of code run simultaneously and independently. In addition,

using the thread.sleep() function, each thread can be simultaneously suspended for a

specific time in milliseconds. Furthermore, the reporting of a thread’s status can allow

for time-critical events to be managed. One drawback to this method relates directly to

the size of the latency, whereby the longer the thread sleeps, the more threads are re-

quired. Conversely, in the case of shorter thread sleeps, fewer threads are needed. This

can be described in terms of concurrent sample selection, whereby the PC function
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defines a maximum of four instruments playable simultaneously. Where the latency

level is higher than the beat interval to the following beat, more threads will be needed

to accommodate the new selection while the previous selection is woken up and released.

There are two options that can overcome this. Firstly, a large number of threads

can be used to accommodate all potential thread.sleep() values to beat interval over-

laps. Secondly, the latency can be reduced to minimise the sleep time of each thread.

This will subsequently reduce the beat overlap of the thread suspension. One critical

difference between these two options relates to their suitability towards changes in beat

interval or metrical level or, by extension, tempo. Since tempo and metrical level are

important compositional parameters, this is a significant consideration in the address-

ing this issue. As a result, the system latency will be set to 100ms, with a maximum

thread sleep time of 200ms, and minimum sleep time of 0ms. The implementation of the

multi-threading can be seen in the method Timing() in PerformanceWeightings.mxj,

in Appendix B.12. This method uses four threads.

4.7.1.9 Integrating Global Parameters with Micro-Temporality

Having established that timing fingerprints determine the temporal flow of the control

data, attention must now turn to the implications of the local and global parameters.

By definition, a parameter transforms the performance reconstruction on a global level.

Since the PC and PW functions have defined timbral control, the local and global pa-

rameters must be concerned with the temporal transformations. Therefore, we can

define these parameters as being concerned with transforming the asynchrony values

from the tempo in the reference audio, to that of the newly specified tempo. However,

since the flow of data in the fingerprint and the performance model operates on a sub-

second temporal level, the transformation of the timing fingerprints not only occurs in a

global context (e.g. tempo), but also at a local level (e.g. metrical levels), characterised

by differences in localised variation.

There are, however, difficulties in implementing temporal transformations using global

contexts such as tempo, particularly in the case of human performance variation. Previ-

ous research into timing and tempo have suggested links between structure and tempo

deviations (Desain and Honing, 1993), and deviations in swing ratio being linearly

linked with tempo (Friberg and Sundstrom, 2002). Since the focus of this investigation

is on the creation of a compositional tool, there is no a priori structure in which trans-

formations can be applied. The number of structural conditions that would need to be
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accounted for would entail significant analysis of multiple percussion pieces, which is

outside the scope of this investigation.

One solution to this problem was suggested by Mazzola and Zahorka (1994), in which

hierarchies of performance “fields” represent a structure of musical time starting from

localised performance that extends upwards to affect the global nature of performance.

Mazzola and Zahorka assigned local tempi to performance fields, with each performance

field represented as a “subframe” of another (Mazzola and Zahorka, 1994, p. 47). This

approach gives performance fields their own tempo within the constraints of a master

tempo. Conceptually, this applies to the independent tempo differences in musical per-

formance brought about by the complexity of musical structure. An example of this is

the assignment of local tempi to each hand in piano performance.

The linear link between deviations in swing ratio and tempo, as suggested by Friberg

and Sundstrom (2002), offers another conceptual way that global tempo can be implied

from a static tempo. The calculation of IOI between the reference beat at different tem-

pos, and the subsequent scaling of each value in the timing fingerprint, is one method

of simulating tempo change. However, this method is not ideal since the timing fin-

gerprint is relative to one metrical level. In order to simulate half, quarter, or eighth

notes which are commonly found in percussive rhythm, the tempo would need to be

increased. This would result in extremely high tempo values that could potentially

impact system performance, and many of the smaller asynchronies would be impercep-

tible at extreme tempi.

One solution is to use a combined approach, applying the concept of tempo hierarchies

to linear performance variation, where hierarchies representing different note levels con-

tain independent fingerprint values. One benefit of this approach is a decrease in note

duration between whole and half notes, which represents a tempo change equivalent

to 60BPM to 120BPM. Consequently, the global tempo can remain static, with the

perceived tempo being changed simultaneously. Compositionally, this approach allows

for increases in density, and sequences of accented strikes. In this way, the local and

global parameters can be considered a parameter whose function is the transformation

of the timing fingerprint data into different hierarchical tempo levels in response to

manual input.

183



4.7 Creation of the Performance Model

4.7.1.10 Note, IOT, and Temporal Variation Hierarchies

In order to create note, tempo, and variation hierarchies from existing data, it is nec-

essary to firstly determine the correct metrical hierarchy. The creation of hierarchies

from the division of, and relational pattern of, metrical units in western music is not

uncommon. In most cases, whole notes constitute the highest level of the metrical hier-

archy (Cooper and Meyer, 1963; Lerdahl and Jackendoff, 1983), and allow subdivisions

to several lower levels (half, quarter, eighth, sixteenth, and thirty-second notes etc.).

The initial onset asynchrony values for the timing fingerprints were analysed in re-

lation to quarter notes, owing to the pulse of the reference audio, and the large IOIs

between whole and half notes, which, in turn, include quarter note asynchronies. Con-

sequently, there were difficulties in detecting asynchronies relative to whole and half

notes. Furthermore, if assumptions were made concerning the linearity of asynchrony,

relative to the tempo inferred by whole and half note durations, it would impact the

system latency. Since whole and half notes both occur at the quarter note level, quarter

notes constitute the highest analytical level in the system, and whole and half notes will

derive their timing fingerprint data (e.g. the magnetic area) in the same way as quarter

notes. Conceptually, having quarter note durations as the root of the hierarchy allows

the hierarchy to be extended to lower metrical levels relevant to micro-timing. Extreme

examples of subdivision at different metrical levels include asynchronies as low as 32nd

notes. Compositionally, extending the metrical hierarchy to such a low level also allows

for faster tempos. For example, the relative tempo of a sixteenth note at 100BPM is

equivalent to 1,600BPM, which, as noted earlier in Figures 4.37 to 4.39, is similar to

the IOTs of the participants’ drum strikes at lower metrical levels. Furthermore, low

metrical levels also provide greater scope for the compositional exploration of faster

drum sequences, micro-timing, and the meso-periodic level, particularly the interaction

between the lower and higher metrical levels.

In order to extrapolate the lower hierarchical levels of timing asynchronies from the

timing fingerprint data, a similar method was used to that described in Figure 4.35.

Since the subdivision of each lower metrical level is 50% of the IOI duration of the

higher metrical level, the magnetic area is reduced by 50%. For each subdivision, the

magnetic area is based on the previous note mid-point, and the values within that

magnetic area are used for the timing asynchrony. This is illustrated in Figure 4.44.
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Figure 4.45: Membranophone mode weightings for different movement levels.

4.7.1.11 The Sample Bank

In order to ensure timely playback of the audio files, it is necessary to load the samples

into RAM, and assign each sample to a MIDI velocity. As the audio data consists of

approximately nine thousand samples covering nine different instruments, the imple-

mentation of the sample database is critical to minimising computational overhead.

Since each instrument contains five demarcated zones, each zone can be assigned to an

individual MIDI key number, which spans 41 keys. Since the bass drum has only one

demarcated zone, there is only one MIDI key assigned to this instrument. An additional

benefit of this approach is that the PD-103 can be used for live performances with a

MIDI keyboard. Given the large dataset, compromises were necessary to ensure that

playback was not affected by allocating too much memory into RAM. After several load

tests, it was decided that 25 samples per MIDI key were sufficient, representing 100

samples per instrument. This allowed for significant timbral variation without affecting

the performance of the software.

Each sample has four parameters: the designated sample number; a value for loud-

ness; a value for spectral flatness; and a value for spectral centroid. Each of these

parameters are stored in a separate array, and sorted in an ascending order based upon

parametric value. The advantage of this approach is that a custom MIDI velocity

curve can be created by converting a graphical representation of the MIDI velocity

curve (constrained by the minimum and maximum parametric values), and performing

an array lookup for the sample number corresponding to the parametric value. An

example of this can be seen in the Velocity Curve Window, a screenshot of which is
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shown in Figure 4.45. The java code for the implementation of the velocity curves is

shown in Appendix B.13, and is contained in the following files: KickRMSarraymes-

sage.java, RMSarraymessage.java, KickCentroidarraymessage.java, Centroidarraymes-

sage.java, KickFlatnessarraymessage.java, Flatnessarraymessage.java.

Figure 4.46: The Velocity Curve window of the PD-103.

4.8 Compositional Implementation

In section 3.3.3, the meso-period rhythms of Africa were discussed. From that dis-

cussion, parallels were drawn between the construction of the meso-period and the

Western chromatic scale. In particular, Koetting (1970) identified a 12-note TUBS

notation system as a suitable method for graphically representing African music, to-

gether with some key features of the meso-period. These key features (independency,

flux, and broad bandwidth) were then expanded upon, and a compositional framework

derived, for this thesis. Conceptually, these features are inherent in the performance

model so do not require any specific computational implementation. Another part of

the compositional framework is derived from the analysis of the sample banks them-

selves, and relates to the feature extraction methodology, which resulted in the timbral
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parameters of loudness, spectral flatness, and spectral centroid. This section will detail

the functions of the software that relate to the compositional framework.

4.8.1 The 12-Step TUBS Representation

Since much of the compositional framework has been derived from the meso-periodic

rhythms of Africa, it is important that the interface between the composer and com-

puter program is conducive to its composition, including that of other genres. The link

between the chromatic scale indicates that cycles of twelve notes are suitable for the

generation of meso-periodic rhythms. From a Western perspective, cycles of sixteen

(at a 4/4 time signature) are more common and, because twelve is divisible by four,

it is still possible to create rhythms in 4/4. As a result, the interface will be based

upon the 12-step TUBS model as defined by Koetting (1970). As mentioned earlier,

three performance model representations are required in order to independently play all

instruments. These are shown in the screenshot of the main PD-103 window in Figure

4.46.

4.8.2 Rhythmic Cycles

Referring to Figure 4.46, it is worth noting the red graphic sliders above the 12-step

TUBS banks. These are called form banks, and refer to the cycling of the sequences for

the TUBS bank below. Each sequence created by the TUBS system can be stored as a

preset for live recall. The form banks allow the user to determine the number of cycles

of a particular sequence in a preset, before moving to the next preset/sequence. Com-

positionally this is useful, as it allows for the graphic representation of cycle length for

each bank, and allows the cycling for each bank to be independent. Furthermore, each

form bank can be stored to a preset, allowing for the recall of macro-level compositional

structures.

4.8.3 Compositional Timbre Parameters

It was noted that three representations were required in order to simulate indepen-

dency within meso-periodic rhythm, as a result of the constraints in the performance

model. In order to extend the compositional application of the model, in the context of

the three timbral parameters discussed previously, it is necessary to create three rep-

resentations for each parameter. This results in the creation of nine representations of

the performance model, three representations each for loudness, spectral flatness, and

spectral centroid. One of the benefits of this approach is that meso-periodic rhythms
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Figure 4.47: The main window of the PD-103, showing the three representations of the

12-step TUBS system, with each step labelled with an associated chromatic scale.

and high levels of independence can be achieved for non-conventional compositional

parameters. Since the performance model seeks to simulate human performance, the

use of flatness and spectral centroid also has the potential to generate interesting per-

formance dynamics. Furthermore, with the ability to store sequences and form cycles

as presets, it is possible for a composition to be split into three parts: one for each

timbral parameter.

4.8.4 MIDI and Rewire Integration

The PD-103 was designed for composers and producers to create rhythms. The main

method for operating the PD-103 is via the on-screen graphical user interface. However,

modern home and commercial production and recording studios commonly use elec-

tronic instruments that employ different communications protocols. In order to make

the PD-103 suitable for a variety of different musical applications, a design decision
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was made that would see the PD-103 capable of being controlled by a programmable

MIDI controller, such as the Novation Remote 37SL, Novation Launchpad or similar.

Such functionality would also enable the PD-103 to be used for live performance or

improvisation. Other communications protocols such as Open Sound Control (OSC)

are less limiting than MIDI, owing to their communications format. However, OSC is

not as widely available as a communications protocol in many hardware controllers,

whereas MIDI is still considered the universal standard. For this reason, it was decided

that the PD-103 would be designed to include additional control via MIDI hardware

devices. For example, the volume faders in the “Mixer” window are controllable using a

MIDI controller. Although the software tool can be used with MIDI, it is not designed

around the MIDI specification, which allows for future revisions of the software outside

of the MIDI protocol.

A consequence of this decision was the limitation on velocity steps per MIDI note

in during live performance or improvisation. Since the sample database was reclassified

via demarcated zones, it was logical to assign each of the zones to an individual MIDI

key. However, owing to computational overhead, it was not possible to preload all of the

samples into memory. Consequently, a design decision was taken to limit the number

of samples loaded to 25 samples per zone. The MIDI keyzone assignment (MIDI key

numbers 0-41) is shown in Figure 4.48.

Figure 4.48: The PD-103 MIDI keyzone assignment.
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One limitation of this implementation is that only one spectral parameter can be con-

trolled at any given time. In order to change spectral parameter, the MIDI channel

needs to be changed.52 Operating the software via MIDI controller requires a MIDI

channel change to trigger samples from the banks, where loudness, spectral flatness

and spectral centroid are assigned to MIDI channels 1, 2 and 3 respectively. No such

limitation exists when operating the software via the graphical user interface (see sec-

tion 4.8.6 below for further information on bank polyphony). Any samples triggered via

the MIDI keyboard are not subject to system generated timbral or timing asynchronies.

Because the performance model uses nine individual instruments, having the PD-103

output only a single stereo channel was seen as a limitation of the compositional work-

flow for mixing and mastering. Owing to the distribution and likelihood of timbral and

timing variation selection in the software, replicating timbres in rhythmic sequences are

unlikely. Using only a stereo output, requires multiple takes to output all nine instru-

ments, and is not only time consuming, but may also hinder the creative process. This

was overcome by extending the number of audio output channels to nine, and adding

Rewire integration. The Rewire integration improves the compositional workflow of the

PD-103 to allow it to record all nine instruments simultaneously in other compositional

software such as Cubase, Logic or ProTools.

4.8.5 Presets

The PD-103 contains three main presets based upon performances of real drummers:

unskilled, semi-skilled and skilled. However, there may be an instance where a composer

may wish to have a “deadpan” performance (e.g. with no timing variations). For

this reason, an additional preset entitled “User”, bypasses all the system-determined

onset times for the synthesised notes. However, the timbral selection algorithm is still

operational, with the zone weightings being based upon the “skilled” preset.

4.8.6 Bank Polyphony

Bank polyphony is concerned with configuring the playback of the banks. There are

three options for bank polyphony: “monophonic bank”, “bank diversion”, and “poly-

phonic bank”. In monophonic bank mode, only the currently visible bank and param-

eter will be heard. Any sequence not visible is automatically muted. In bank diversion

mode, a sequence that is not currently visible will be diverted to play according to the

52 This being one of the limitations of MIDI compared with OSC.
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currently visible parameter, irrespective of the original parameter of the sequence. In

polyphonic bank mode, the parameters assigned to invisible sequences are preserved

and played with those features. Polyphonic bank mode is the default mode. Operating

the software via MIDI controller requires a MIDI channel change to trigger samples

from the banks, where loudness, spectral flatness and spectral centroid are assigned to

MIDI channels 1, 2 and 3 respectively.

4.8.7 Minimum System Requirements

Operating instructions are included in the disk image of the software, located in Ap-

pendix A.2. The PD-103 software was saved as a standalone Max/MSP application,

which includes MAX Runtime 5.1.8. The application package includes the GUI com-

ponents, the sample database and all relevant .jar files.

The minimum system requirements are:

• Mac with Intel processor

• Mac OSX version 10.6 or later

• 8GB RAM (16GB recommended)

• 7.5GB of Hard Disk Space

• 1280 x 1024 screen resolution (2880 x 1800 recommended)

Some additional features in the software may require third-party applications for full

functionality. These, however, are not essential. Additional components requiring

manual installation (see Appendix A.3) are:

• Maxscore (free). Maxscore is the notation interface for Max/MSP.

• JSML License (US $50 students, US $120 others). This license allows you to use

Maxscore. Licenses can be obtained from: http://www.algomusic.com/jmsl/

purchase.html.

• Finale Notepad (free). The notation component of the software uses the font

“Maestro 24”, and is available to download from: http://www.finalemusic.

com/products/finale-notepad/.

• Rewire (free). The PD-103, when used in conjunction with Rewire, enables the

user to route the audio output directly into a Rewire-compatible DAW, such as
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Cubase. This also enables the user to record audio without the need for additional

hardware. It is recommended that 16Gb RAM is used when the PD-103 is used

in Rewire mode. Rewire is available from: http://www.propellerheads.se/

download/updates_rewire/.

• “Digital 7” font. This font is used for the LCD display throughout the software.

If this font is not installed, the font will revert to the default Max/MSP system

font.

It is recommended that the sample bank be loaded in a sequential two-step process to

ensure that all samples are loaded, and ensure the smooth operation of the software.

Firstly, it is recommended that the user load the parametric values into memory. Sec-

ondly, it is recommended that the user load the samples into the memory. Failure to

follow this procedure may result in the sample bank being incompletely loaded into the

computer’s memory. The recommended process is as follows:

1. Load the velocity curve preset in the Velocity Curve Window and wait for the

velocity curve presets to be loaded. Once the load bar indicator in the Velocity

Curve panel on the main screen has turned completely grey, move on to the next

step.

2. Load the samples into memory and wait for the three load bar indicators on the

parameter selection menus on the main screen to turn red before pressing play.

When using the PD-103, it recommended that the tempo remain between 100BPM

and 120BPM. This is because the multi-threading for the timing variations through

the thread.sleep() function in the java code, suspends the thread. At higher tempi,

with multiple simultaneous events, it is more likely that all of the threads will be

in sleep mode, resulting in the dropping of events or queues for events to be parsed

through the thread. This will result in unpredictable behaviour, which can be remedied

in future versions by adding more threads.
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Chapter 5

Composition Portfolio and

Analytical Notes

“Numbers don’t make art. People do. It’s all in the choice of the tools, the colors,

the textures and the rendering”

– Gary Lee Nelson, 1990



5.1 Study No 1: African Meso-Periodic (I)

5.1 Study No 1: African Meso-Periodic (I)

• Length: 04:27

• Parameters: Loudness

• Skill Level: Skilled

• Number of TUBS Banks: One primary, two supporting

Study No. 1 was written solely for percussion, using the complete range of instruments

contained in the PD-103, and augmented with orchestral gongs. This study was com-

posed using one primary bank, in conjunction with two supporting TUBS banks. It used

“loudness” as the main feature-based parameter. The skill level of the drummer, from

which the human performance data was initially drawn, was “skilled”. Notably, the

rhythmic construction of this study was based upon Walter Schloss’ dichotomy between

relative duration and the chromatic scale intervals, which was described in section 3.3.3.

As previously mentioned, the theory of Participatory Discrepancies, and its relationship

to African music, was a particular inspiration for research into the area of percussive

performance variation and composition. This inspiration is reflected in the creation of

Study No. 1, which embraces African meso-periodic rhythms. Meso-periodic music is

typically characterised by the repetition of rhythmic patterns, using a variety of dif-

ferent instruments. While it was theoretically possible to apply this type of repetition

to the pattern described in Figure 3.14, which showed the graphical representation of

the meso-period in relation to the chromatic scale, such an approach was aesthetically

limited owing to the restricted number of instruments in the PD-103. Aesthetically,

it was more pleasing to consider the instruments as separate streams with different

aesthetic and structural functions, within a meso-periodic inspired contemporary per-

spective. Thus, the motivic rhythmic pattern was composed with a focus on four main

instruments: ride cymbal; low tom; medium tom; and high tom. This is shown in

TUBS notation in Figure 5.1.

Following typical African musical convention, the ride cymbal in this piece was as-

signed the role of the fundamental bell pattern, owing to the similarities with the ride

cymbal’s “bell”. Chromatically, the ride cymbal represents a C major scale. The high

tom pattern in this piece was based upon the standard pentatonic scale, with the ex-

ception of the extra note at the beginning of the pattern (C/1), which was used to
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Figure 5.1: The TUBS notation for the fundamental rhythm in Study No. 1. Adapted

from Schloss (1985).

accentuate the start point of the cycle. The medium tom was represented by a C#

locrian 2 scale. This was chosen for two reasons. Firstly, the software was created using

specific performance rules, one of which was derived from the physical constraints of the

performer whereby, at any given time, the performer can only strike two instruments

with the hands simultaneously. This prevented the phasing of scales with the same

tonic. Secondly, by dividing the twelve periods in half, the C# locrian scale creates

tension within the cycle by complementing the ride cymbal (appearing between the

ride cymbal) for most of the first six periods, followed by a complementary inversion

towards the high tom.

As a compositional tool, the software presented some very interesting compositional

challenges. As mentioned above, the software was created using specific performance

rules, one of which was derived from the actual physical constraints of the performer.

As a result, the density referent, which was limited to the simultaneous selection of only

two instruments, made applying additional phased modes to the pattern impossible.

Thus, the low tom was based upon the C natural minor scale, with several scale notes

omitted (C, D#, and G). By using this constrained partial scale on the rhythm, the
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rhythm density increased on the ride cymbal at intervals 9 and 11. Density was then

shifted to the high tom at intervals 9 and 11. Ultimately, the shift in density produced

changes to the movement level in the current selection of the sample selection algo-

rithm. Despite the change in movement levels, however, once the previous selection

was taken into consideration the movement levels became more consistent, with low

movement levels occurring at intervals 1 and 6. Consequently, the timbral stability of

events at intervals 1 and 6 were greater than at other intervals in the pattern. Those

intervals corresponded to the second ride cymbal strike, in both semitone intervals, in

the pattern. The movement levels for the fundamental pattern for this study are shown

in Figure 5.2.

Figure 5.2: Movement levels of the fundamental pattern for Study No. 1.

While the rhythm pattern of Study No. 1 extends the complexity, and complemen-

tary nature, of the period sub-samplings, it presents difficulties in parsing the patterns

individually. This is due to algorithmic constraints, and the instrumental limitations of

the software. African musical form consists of rhythmic fragments and accompaniment

patterns. This study deconstructs the fundamental rhythmic pattern and augments

it with additional instruments. The independent evolution of the additional instru-

ments, in relation to their usefulness over time, indicated by numbers in the sequence,

is reflected in Figure 5.3. The instruments are, for the most part, Essential/Constant,
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with the exception of the ride cymbal, whose evolution though different levels of useful-

ness moves from Essential/Variable, to Non-Essential/Variable, and back again. This

demonstrated a clear correlation between the idiophones and the increase in broad

bandwidth. The evolution of the ride cymbal, therefore, allowed a greater exploration

in the interplay between broad bandwidth, rhythm, and melody. This exploration was

facilitated by strategically ensuring that other idiophones were either Essential/Variable

or Non-Essential/Constant. By reducing the impact of the ride cymbal, from an Essen-

tial/Constant role, the underlying rhythmical patterns in the membranophones were

exposed.

Figure 5.3: The hierarchy of usefulness for the instruments in Study No. 1.

This study can be separated into seven passages:

1. Introduction and rising tension of the fundamental pattern;

2. Extension of the pattern to include the bass drum;52

3. Exposure of the tom-toms in the fundamental pattern, with the ride cymbal

becoming Non-Essential;

52 In this part of the study, the bass drum is intended to be representative of the pulsating sound of

the dancers’ footsteps during an African music performance. At this point, the ride cymbal becomes

variable, and the tension from the previous section is released.

197



5.1 Study No 1: African Meso-Periodic (I)

4. Return of the ride cymbal with accompaniment fragments of Essential/Variable

instruments;

5. Low complexity rhythmic pattern using constant instruments not included in the

fundamental pattern;

6. Membrane pattern, increasing in complexity from basic rhythmic fragment; and

7. Rhythmic complexity increases, all instruments audible, leading to a resolution.

Study No. 1 drew on the broad bandwidth, melody, and rhythm paradigm for compo-

sitional purposes. This provided a very useful method for visualising the parameters

over time and, specifically, mapping the evolution of the parameters across different

sections of a piece. The first section of the study emphasises rhythm, for example,

with less emphasis on bandwidth and melody. The subsequent two sections see an

increase in bandwidth. This is followed by section four, which shows an increase in

rhythm while maintaining the bandwidth. Sections five and six gradually decrease in

speed and volume. The final section finishes the piece with high broad bandwidth and

high rhythmic complexity. Figure 5.4 is a visual representation of the changes in broad

bandwidth, melody and rhythm across the different sections for Study No. 1.

Figure 5.4: Broad bandwidth for the sections in Study No. 1.
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5.2 Study No 2: African Meso-Periodic (II)

• Length: 04:50

• Parameters: Loudness

• Skill Level: Unskilled

• Number of TUBS Banks: One primary, two supporting

Study No. 2, like the previous study, was composed using one primary bank, in con-

junction with two supporting TUBS banks. It also used “loudness” as the main feature-

based parameter. However, in this study the skill level of the drummer, from which

the human performance data was initially drawn, was “unskilled”. Following on from

Study No. 1, this piece makes a deeper exploration of meso-periodic rhythms in an

attempt to extend the reach of the compositional tool. The bell pattern was replaced

with a floor tom in a C major scale pattern. A timpani was used to accentuate vari-

ous rhythmical elements, and to convey a sense of both “motion” and “tension”. The

pattern was spread across three different TUBS banks, in order to produce lower move-

ments levels, compared to those in Study No. 1. Notably, only the first bank (with

the fundamental pattern) contained a current sequence with more than one instrument

being played simultaneously.

The first section of this study used a TUBS notation for the fundamental rhythm

and augmenting patterns. This is shown in Figure 5.5, and includes an overlay of the

patterns in the second and third TUBS banks. Where an instrument in TUBS banks

two or three are played at the same time as an instrument in the first bank, the bank

number is indicated in the period As the pattern progressed, the low, medium, and

high toms were introduced. This rhythmical fusion produced an interesting compound

meso-periodic rhythm, which contained different pitches that conveyed melodic under-

tones. The consistent pitch stability saw variations in timbre and dynamic strike levels.

This can be attributed to the sample selection algorithm, which gives the impression

of multiple performers improvising a similar pattern, as seen in African music. In this

piece, the introduction of the bass drum evoked the pulsating sound of dancers’ foot-

steps, which is an inherent part of African music, in much the same way it did in Study

No. 1. At the same time, the regularity of the bass drum created a tension between the

genre and rhythm of African music and Western electronic dance music. The increased

pattern density, augmented by the bass drum, also increased the perceived movement
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Figure 5.5: The TUBS notation for the fundamental rhythm and augmenting patterns

on the secondary and tertiary TUBS banks, for the first section in Study No. 2. Adapted

from Schloss (1985).

complexity in the performance model. This presented some rhythmic irregularities,

whereby the temporal location, and irregular dynamic levels of the strikes, made the

rhythm feel “rushed”. It also made the piece sound like the performers had reached

their playing capacity.

In the previous study, it was noted that the sub-samplings of the periods between

the ride cymbal and the high tom were complementary, thus increasing the rhythmic

instability for parsing the rhythm. In contrast, the pattern in the first section of this

study saw the ride cymbal replaced with the floor tom, as an Essential/Constant in-

strument in the rhythm. While the other tom-toms in this pattern are complementary,

there is greater stability in the second half of the rhythm. This can be attributed to the

spectral similarity of the instruments in the pattern, which is indicative of the pattern

having a lower broad bandwidth, thereby producing an increase in melodic and rhyth-
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mic elements. Spreading the patterns across three TUBS banks increased the density

referent, while maintaining lower overall movement. This resulted in greater timbral

stability, and greater rhythmic complexities.

The second section of Study No. 2 saw the instrumental focus move towards the

idiophones. The Essential/Constant nature of the floor tom was replaced by the ride

cymbal, with the hi-hat and crash cymbal supporting this transition. The low-tom was

reintroduced, with an increased level of usefulness. The bass drum added pulse at a

lower metrical level. The TUBS notation for this part of the study is shown in Figure

5.6.

Figure 5.6: The TUBS notation for the fundamental rhythm and augmenting patterns on

the secondary and tertiary TUBS banks, for the second section in Study No. 2. Adapted

from Schloss (1985).

The second section of this study has similar characteristics to the first. For example,

the broad bandwidth is lower, due to the focus on idiophones. This resulted in a less

melodic rhythm, compared to the first section where the tom-toms were the dominant
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rhythmical component. This can be attributed to the mechanical properties of idio-

phones, and the production of nonlinear chaotic frequencies. Notably, by spreading the

patterns across three TUBS banks, timbral variation was reduced while maintaining a

higher density referent. This is demonstrated by the timbral stability in ride cymbal

strikes across the patterns.

Interestingly, for the most part, the first half of the fundamental pattern in section

one had medium levels of movement. Combined with the density referent caused by

the number of simultaneous strikes in the other TUBS banks, at lower levels of move-

ment, there was a mixture of stable and varied timbral variation. However, this effect

is less pronounced in the second section. A comparative diagram illustrating the move-

ment levels for the two fundamental patterns for both sections is shown in Figure 5.7.

Study No. 2 is structured in rounded binary form, based upon the repetition of rhyth-

mic patterns in the low tom. While this is apparent both the first and second sections

of the study, it is not overtly noticeable because the density referent, and the spectral

similarity of multiple patterns on the same instrument, presents problems perceiving

the isolated pattern. The second occurrence of the primary low tom pattern appears in

isolation, stripped down to a skeleton pattern whilst still being both Essential/Constant

in the hierarchy of usefulness. This is shown in Figure 5.8.

In this study, the transitions in the different degrees of usefulness are more “one-way”

than in Study No. 1, that is to say, the instruments do not return to their original

levels of usefuleness but remain in the new usefulness context. Therefore, the changes

in usefulness are more pronounced in this piece compared to the previous piece. The

first study demonstrated the use of movement across quadrants, at different times,

and particularly involving return movements (e.g. the bass drum, and the crash and

ride cymbals). In this study, transitions between usefulness stemmed from intermittent

instruments. In the first section, intermittent instruments were used to accentuate ten-

sion. In the second section, these intermittent instruments constituted the fundamental

rhythm.

The most significant difference between the first and second sections of Study No. 2 is

the change in the Variable/Constant nature of the idiophones. Because the tom-toms

were the most dominant instruments in the first section of this piece, albeit augmented

by idiophones at various points, the overall broad bandwidth was reduced. Moreover,

because tom-toms tend to convey a sense of pitch, the overall structure of this pattern

conveys a greater sense of melody. With a greater sense of melody, is an increased per-
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5.2 Study No 2: African Meso-Periodic (II)

Figure 5.7: A comparative diagram showing the movement levels of the fundamental

patterns for sections one and two in Study No. 2.

ception of rhythm. In the second section of the piece, the transition to idiophones as

the principal instrument type reduced the melodic feel of the rhythm. The reintroduc-

tion of the tom-toms, bass drum, and the snare drum increased the overall bandwidth

and, at the same time, reduced the sense of rhythm. A comparison of the bandwidth

in both sections of this study is show in Figure 5.9.

Study No. 2 demonstrates the ways in which the compositional software tool, can

extend the fundamental concepts of meso-periodic rhythmic construction. By extend-

ing these concepts, composers can create new compositions that explore the synergies

between rhythm and melody, particularly in the context of an instrument’s broad band-

width and rhythmic context. Furthermore, this study demonstrates the suitability of
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Figure 5.8: The hierarchy of usefulness for the instruments in Study No. 2: African

Meso-Periodic (II).

Figure 5.9: Movement levels of the fundamental pattern for Study No. 2.

the compositional tool in creating temporal and timbral variations, which are inherent

in meso-periodic African music, and in creating different rhythmic effects for differing

rhythmic contexts.
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5.3 Study No 3: Exploration of Pitch Variation in the Tom-Toms

5.3 Study No 3: Exploration of Pitch Variation in the

Tom-Toms

• Length: 03:37

• Parameters: Spectral flatness

• Skill Level: Semi-skilled

• Number of TUBS Banks: One primary, one supporting

Study No. 3 was composed using one primary bank and one supporting bank. It used

“spectral flatness” as the main feature-based parameter. The skill level of the drum-

mer, from which the human performance data was initially drawn, was “semi-skilled”.

Tom-toms convey a greater sense of pitch than other membranophones, and each tom

is capable of conveying a different pitch. In fact, given the potential for dis-uniform

tuning, it is possible for a tom-tom to convey different pitches across the surface of the

membrane. This study begins with the floor tom, and explores how the pitch varies

across the instrument, with a view to investigating the relationship between pitch and

timbre. From 17-28 seconds, the floor tom pattern presents interesting varieties of pitch

and timbre, including some intra-instrument pitch discordancy, and some dominantly

resonating high-low pitches, reminiscent of other pitched instrument types. This dis-

tinct high-low pitch combination produced a sense of tension, which was composition-

ally explored by accentuating the lower pitches with additional instruments. This both

heightened and temporarily resolved the tension. At the same time, random dynamic

amplitude variations (including the inherent conveyance of strike strength) reinforced

the tension created by the pitch variations. This tension was then dispersed by the in-

troduction of the medium tom, whose dynamic amplitude variations were more stable,

but whose pitch was discordant with the floor tom, thereby producing a “drone” effect.

The modulatory strike pattern of the medium tom caused the discordancy to subside,

returning temporarily to the original floor tom, which, in those few short strikes, con-

tinued to generate intra-instrumental pitch discordance.

Following the investigation of joint pitches and timbres between the floor and medium

tom, was an exploration of the pitch interaction in the floor and low tom. The low tom

pattern was more irregular than that of the medium tom. The result was that, with an

increase in density, a complex rhythm was produced which had no regularity or discern-

able pulse, but retained a sense of tension through intra- and inter-instrument pitch
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differences (00:58-01:06). The next stage of the exploration saw the addition of the

high tom, combined with the floor tom and the low tom, as well as the reintroduction

of the medium tom (01:28-01:45). The high tom assumed a role similar to that of the

snare jazz drum in order to augment the addition of the bass drum at regular intervals

relative to the low tom. The addition of the high tom and the bass drum enhanced the

pulse, and added a beat to the floor and low tom combination. However, despite the

addition of this beat, deriving a pulse from the irregularity of the floor and low tom

patterns produced a rhythmic dissonance, increasing the sense of rhythmic complexity

and irregularity.

The complexity and irregularity of the floor and low tom patterns produced non-

repeated, small, melodic patterns as the PD-103 cycled through the pattern and selected

the samples. At the same time, the speed and density referent of the patterns made

it difficult to parse individual pitches. Consequently, regularity in the sub-patterns

was inferred through the presence of individual pitches and timbres with high dynamic

amplitudes. In the fourth section of this study, a change to the floor, high, and low tom

patterns continued the irregular rhythm, with the slower tempo creating more space

for the different timbres and pitches to be recognised. The first floor tom pitch in this

section provided a reference pitch, which can be recognised throughout the section, and

which created tension and contrast against other pitches. The droning medium tom

pattern, from the previous sections, was reintroduced in the second part of this section

to provide rhythmic stability. This rhythmic stability, however, was reduced when the

floor tom pattern was played at double time. The louder strikes and dominant pitches

of the floor tom masked the medium tom.

Inherent in this study is timbral discordancy, which can be attributed to the use of

“spectral centroid” as a compositional parameter. In particular, this is due to the

similarity in the brightness of strikes across the surface of a tom-tom, being distinct

from the perceived pitch differences. This secondary effect was described in section

4.6.1. Nevertheless, a sense of tension was evoked by the discordancy in the tom-tom

pitches that was heightened by the irregularity and complexity of the rhythm. This

relationship is worthy of future investigation.
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5.4 Study No 4: Spectral Centroid and Isomorphic Rhythm

5.4 Study No 4: Spectral Centroid and Isomorphic Rhythm

• Length: 05:03

• Parameters: Spectral centroid

• Skill Level: Semi-skilled

• Number of TUBS Banks: Three primary

Study No. 3 was written solely for percussion, using the complete range of instruments

contained in the PD-103, and augmented with synthesiser, brass ensemble, timpani, and

crash cymbal. The study used “spectral centroid” as the main feature-based parameter.

The skill level of the drummer, from which the human performance data was initially

drawn, was “semi-skilled”. The study was composed using all three TUBS banks. Each

bank represents a different level in the metrical hierarchy, with differences in velocity

across the levels. These are:

• Bank 1: 1/4 note. The velocities of all events in this bank are at maximum;

• Bank 2: 1/8 note. The velocities of all events in this bank are at 50

• Bank 3: 1/16 note. The velocities of all events in this bank are at minimum.

In the General Theory of Tonal Music put forward by Lerdahl and Jackendoff (1983),

hierarchical meter is based upon amplitude. This study expands on this concept, in the

context of spectral centroid. In particular, the aim of this study was to examine the

effect of spectral centroid on the organisation and perception of different metrical levels.

Continuing the TUBS notation, and construction of African meso-periodic music, the

high tom pattern in this piece was expressed as the diatonic scale. The medium tom

was expressed as a pentatonic scale, with an added E(5). The low tom had strikes at

D(3), F(6), and A(10). The floor tom had strikes at C(1) and F(7). While the pattern

of this study is similar to those of Study No. 1 and No. 2, it makes use of different

instruments. This study differs in its use of the high and medium tom, as well as the

recursive hierarchical meter with scaled spectral centroid. A rudimentary illustration of

the patterns, and their relative spectral centroid amounts, at different metrical levels,

is show in Figure 5.10.

207



5.4 Study No 4: Spectral Centroid and Isomorphic Rhythm

Figure 5.10: An illustration of the isomorphic rhythmic patterns in Study No. 4.

This study, using spectral centroid as the main feature-based parameter, produced some

interesting compositional results. Most noticeably, dull sounds from the lowest metrical

level (Bank 3). In general, notes generated from the highest metrical level (Bank 1)

had considerably more amplitude and brightness. This observation is commensurate

with greater strike strength, and the excitation of more modes, thereby producing an

effect similar to that of a metrical hierarchy by amplitude.

In addition, the use of the tom-toms provided an opportunity to explore the timbral

and melodic potential of the different metrical levels. This is particularly noticeable at

the beginning of the study (15-40 seconds). In this section, the first Bank 1 cycle was
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repeated to produce a familiar melodic and rhythmic line, which added coherence.

The start of section two (01:20-01:40) was composed using TUBS banks 1 and 2, whilst

Bank 3 was omitted. This resulted in a less complex, and less dense, pattern, with an

increase in brightness over the cycle. As the piece began to slowly deconstruct, layers

of brightness and complexity were removed. Notably, many of the strikes in this piece

consisted of rim shots that were coincidentally captured in the sample database. The

spectral centroid parameterisation made these strikes more prominent because the rim

shots themselves contained wide bandwidth frequencies and brightness. A secondary

reduction in rhythmic complexity occurred at 03:30-03:50, which contained no distinct

rhythmic patterns. However, this did not necessarily reduce the complexity of the pat-

tern in this piece because consecutive notes used different instruments. In particular,

this piece contains significant timbral variation, metrical layers, and depth. This can

be attributed to the range of velocities available to the composer, with each velocity

occupying a different subset of samples.

The final part of this piece began with a slow crescendo of simultaneous rhythms,

some of which are reminiscent of patterns in the previous studies. Because each of

the different metrical levels employ different samples from the same instruments, it is

difficult to identify a pulse. Firstly, this makes it difficult to isolate samples from a

single bank. Irregularities in the samples, within the TUBS banks, make it difficult

to identify regularly recurring patterns, even though the representations of the cycled

patterns are regular. Secondly, there is a large IOI time of 5.5 seconds with the floor

tom in Bank 1. Such a large IOI makes identifying a pulse, particularly with the density

and rhythmic complexity in between, difficult.
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5.5 Study No 5: “Quark”

• Length: 01:00

• Parameters: Loudness

• Skill Level: Skilled

• Number of TUBS Banks: One primary, one supporting

Quark was written for Vox Novus 60x60 Radio Request Extravaganza, and aired on

August 24, 2012, on WDGR 91.1 FM, Plainfield, Vermont U.S.A.53 It was based on the

premise that, since the beginning of civilisation, humans have excited different objects

in order to produce sound. In addition, rhythm, as a fundamental aspect of music,

has undergone dramatic change. Quark represents the evolution of percussive rhythm,

over human development, from the distant clanging of early man, to the techno-centric

rhythms in modern popular music.

Quark used the complete range of instruments contained in the PD-103. It was com-

posed using one primary TUBS bank, and one supporting TUBS bank. It used “loud-

ness” as the main feature-based parameter. The skill level of the drummer, from which

the human performance data was initially drawn, was “skilled”. Timpani and synthe-

siser augment this piece.

One of the challenges in composing this piece was how to communicate the concept

of rhythmic evolution within a one-minute timeframe. This was achieved by breaking

the piece into two parts: the “old” and the “new”.

The piece opens dramatically with timpani (at 0-24 seconds) and marks the begin-

ning, and early growth of, human civilisation (the “old”). The synthesiser adds a layer

of motion, and represents the fast-forwarding of clock hands as time moves forwards

through the centuries. The initial tom-tom patterns are filtered, with the early fil-

tering representative of early percussion. The irregularity of the rhythm represents

early musical formation, which, coupled with low-pass filtering, is representative of the

primitive construction of percussion, with all its inherent vibrational flaws. As the

filter evolves, so too does the rhythmic pattern, which incorporates a snare drum and

53 The full radio programme is available to download from: https://v2-staging-nickf.

soundcloud.com/wgdr/60x60-radio-extravaganza-part.
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5.5 Study No 5: “Quark”

additional tom-toms. The addition of these instruments is representative of the growth

of human civilisation, as generations expand and build upon previous knowledge. The

second timpani (at 12 seconds) signals a change in the speed of evolution. This is

intended to depict evolution moving forward thousands, not hundreds, of years. The

conceptual speed shows empires rising and falling. Three things heighten the tension

here. Firstly, the evolution of the low-pass filter, which, at this point, does not feel

resolved. Secondly, the synthesiser increases in frequency and amplitude to form the

start of a crescendo. Thirdly, the gradual introduction of idiophones represent techno-

logical progress.

At 24 seconds, just prior to the third timpani, a small rhythmic stutter, created by

an unusual sample selection of the snare drum, coupled with an unexpected crash cym-

bal strike, represents the transition from “old” to “new”. It is this crash cymbal that

marks the end of the first section of this piece.

The second section of this piece begins at 24 seconds with the bass drum, which is

reminiscent of electronic dance music, and signifies the early proliferation of technology

in music, and the beginnings of the interconnectedness of human civilisation from both

a cultural and musical perspective (the “new”). The irregular metrical locations of the

crash cymbal, as well as the sudden and short appearance of the snare drum, provides

unexpected accentuations, similar to unexpected global political and historical events.

A final challenge of this piece was to present the concepts of “old” and “new” in the

context of the compositional software tool, and by simulating real human percussive

performance.
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5.6 Study No 6: Demonstration of Improvisational Ap-

plication

• Length: 09:18

• Parameters: Loudness

• Skill Level: Unskilled

• Number of TUBS Banks: One primary, one supporting

• Additional equipment used: Novation Remote 37SL

Study No. 6 was composed using one primary bank, in conjunction with one support-

ing bank. It used “loudness” as the main feature-based parameter. The skill level of

the drummer, from which the human performance data was initially drawn, was “un-

skilled”.

When designing a creative software application, it is important to ensure that the

user can maximise the potential for creative application by producing the most rele-

vant and versatile music tool possible. The improvisational capabilities of the PD-103

allows for the accurate creation of dynamic phrases and embellishments, which, due to

the stochastic nature of the sample selection and temporal variation algorithm, is more

difficult under normal operating conditions. The PD-103 sample database was mapped

from MIDI keys 0-40. Each key triggers samples from a demarcated performance zone

(one zone for the bass drum, five zones for all others). In addition, the MIDI keys were

not subject to timing variations. Thus, this study should only be considered in rela-

tion to the improvisational application of the software, when combined with composed

patterns.

There are two key challenges in composing a piece that uses composed and impro-

vised material. The first challenge, which is unique to this compositional tool, concerns

the disconnect between the user interface and the sound material. Mapping the samples

to different keys on a MIDI controller, for example, makes it difficult to adequately im-

provise, particularly in the way a real drummer might improvise during a performance.

The second challenge lies in determining the function of the improvisation, and whether

the improvisations are intended to augment the composed rhythms, or to act as the

main aspect of the composition, with the composed rhythms assuming a supportive role.
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Limitations in the implementation of the software, notably the way the samples were

loaded and played back, and the disconnect between the interface and sound of the

instruments, made the improvisational implementation more suited to an exploration

of timbre by simulating ornamental free-form phrases. In this piece, these free-form

phrases were used as structural devices to develop tension and release tension between

the composed rhythms, and support the increase in tension created by the harp.

One notable part of the improvisation are the snare drum rolls. which had to be man-

ually edited. While it is possible to perform snare rolls in a real drum performance,

it is not easy to reproduce snare rolls on a keyboard using samples. One particular

challenge of manually editing a snare roll is how to manage the timbral variety of the

roll. This was achieved by ensuring that the samples were not repeated. It was also

achieved by changing the temporal compression and expansion of the roll, so that the

drum roll had enough dynamic variation to convey a sense of improvisation by a real

drummer. In addition, small variations in timbre and dynamic accents were added to

also convey a sense of improvisation.

The composed rhythms gradually increased in tempo towards the end of the piece.

To achieve this, it was necessary to increase the speed of the improvisation. This is

apparent at approximately 3 minutes, where fast, cross-instrument strikes are played.

Although it is possible for a real drummer to achieve these speeds, the instrumental

variation in the sequence combined with the speed of the strikes, may be more con-

ducive to producing perceptual effects such as temporal masking. This may present

difficulties in parsing the improvisation as that of a real drummer.

The improvisations contained in this piece provide a convincing simulation of real hu-

man improvisation on drums. Further work could address the challenges discussed

above in order to explore improvements to the implementation. For example, mapping

the samples to real drum pads for MIDI performance by a real drummer, or by using

instruments other than the harp.
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5.7 Study No 7: Electroacoustic Study

• Length: 10:00

• Format: Surround Sound (5.1)

One important goal of this research was to extend the PD-103 beyond existing genres

of music. To demonstrate the applicability of the compositional tool for composers of

other musical genres, a surround-sound electroacoustic piece was created using individ-

ual samples from the PD-103. This study combined rhythmical elements from Study

No. 3, with samples with different timbres, in order to create subtle variances in sonic

effects and textures. This study also comprised micro-timbral and micro-temporal vari-

ations, which were inherent in the rhythmical elements in Study No. 3.

This piece has two sections. The first section is an exploration of micro-timbre. Us-

ing different effects-processing algorithms and spatialisation techniques on different

membranophone and idiophone samples produced an intensification of micro-timbral

differences. This resulted in consonant and dissonant spectra and artefacts. Much of

the consonance and dissonance encountered in the first section of this study was caused

by the physical properties of the instruments, such as their vibrational characteristics

and resonance and decay properties. These physical properties were manipulated to

conceptually represent the flowing effect of vibration through different molecules in or-

der to produce different sounds.

The second section of this study also used effects-processing algorithms and spatial-

isation techniques in order to magnify the micro-timbral and micro-temporal variations

that were inherent in Study No. 3. In some instances, micro-variations in the rhythm

were in conflict with different effect-processing algorithms. In nearly all instances,

the micro-variations were magnified. This produced unexpected results, which cas-

caded through various rhythmic and textural elements in order to create an entirely

new rhythmic experience. The spatialisation of the micro-timbral and micro-temporal

variations conceptually represent the listener existing microscopically, observing the

molecule interaction caused by the drum strikes.

In this piece, spatialisation was approached from several different perspectives. Firstly,

the layered background textures contain high pitch noises reminiscent of distant screams.

To provide depth and a sense of chaos, these textures were generated by short, delayed,

filtered, bass drums. This background texture also has a circular panning trajectory,
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which accentuates a feeling of motion, space, and urgency.

The foreground textures were created from individual, processed, membranophone

strikes of the bass drum and different toms. The bass drum produced small rhythmic

fragments, which were interrupted by a powerful floor tom strike that was accentuated

by a prior escalation of background textures. The floor tom was filtered and delayed,

creating a pulse that continued beyond the second strike. Beyond the second strike,

the floor tom textures were explored, evolving from a deep pulse to a single-pitched

rhythmic texture. Finally, the gradual mutation into noise (via bit-crushing) was sub-

jected to a low-pass filter, which maintained a steady, background pulse.

The textured background, combined with the pulse, conveys a sense of urgency and

tension, which slowly concludes after the ride cymbal (at 2:50). The finality of the ride

cymbal in this section is critical. It marks the transition from a timbral exploration of

membranophones, to a timbral exploration of idiophones. At the same time, the pro-

cessing and increased resonance of the ride cymbal changes the sonic qualities of the

strike in such a way that its sound conveys a different excitation characteristic, from a

strike, to a scraping texture. Moreover, the frequencies in the ride cymbal, which are

usually chaotic and non-linear, are much smoother, with bell undertones.

The spatialisation approach to the cymbals was also chaotic in nature, with almost

tumultuous panning. The prominent ride cymbal strike (at 3:34) demonstrates an in-

crease in higher frequencies, and produces a more crisp, scraping texture. In addition,

the decay of the ride cymbal, which continues for almost sixty seconds, was gradually

modulated with an increase in resonance. This produced an interesting spectromor-

phological effect whereby the final parts of the decay resemble a single tone.

A reverb and equaliser was applied to one floor tom (at 4:10), signalling the end of

the timbral exploration of the idiophones. The floor tom itself symbolically represents

large planks of wood being dropped on the floor of an empty warehouse. At this point,

background textures and the floor tom pulse were reintroduced in order to create a

sense of tension, which was heightened by an increase in volume. The regularity of the

pulse was then contrasted with a delayed, pitch-shifted, snare drum whose spatialisa-

tion followed the delayed drums. These effects evoke the sound of a snare drum rolling

down a flight of stairs, bouncing on the steps.
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The second section began with a sustained buzzing texture (at 5:16), which increased in

pitch. This was followed by the introduction of a rhythmic pattern from Study No. 3.

Separating the individual components of the rhythm, applying individual delays, and

assigning them to opposing spatial locations increased the complexity of this rhythmic

pattern. A bass tone added a sense of metrical regularity and tension to the pattern.

This pattern was then gradually deconstructed. The removal of the floor, left, and

right toms produced a scarce rhythm which, in combination with delays and reverbs,

conveys a sense of irregularity and space.

The final part of section two began with a reversed, delayed, ride cymbal (at 7:47).

A second pattern, comprising the medium and high tom, was then introduced. The

pitches and timbres in the rhythmic pattern were intended to be reminiscent of African

percussive music. The delays applied to this rhythm created small repetitions, and

include some minor phasing from applied modulation. This evoked a sense of release

from the tension in the previous sections, which is accentuated by the interspersed bass

drum at different metrical points. The piece finishes with a slow decay of the delayed

rhythmic pattern, overlayed by the background texture from the beginning of the piece,

which crescendos to completion of the piece.
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5.8 Study No 8: Demonstration of Skill Levels

• Total Length: 02:40

• Part 1: Solo Unskilled (length: 00:25)

• Part 2: Solo Semi-skilled (length: 00:28)

• Part 3: Solo Skilled (length: 00:27)

• Part 4: Accompanied Unskilled (length: 00:25)

• Part 5: Accompanied Semi-skilled (length: 00:28)

• Part 6: Accompanied Skilled (length: 00:27)

• Parameters: Loudness

Study No. 8 is intended as a demonstration of performer skill levels. Divided into six

sections, this study comprises of solo “unskilled”, “semi-skilled”, and “skilled” perfor-

mances, and accompanied “unskilled”, “semi-skilled”, and “skilled” performances. It

was composed using “loudness” as the main feature-based parameter.

When forming a musical group, performer skill is often a key factor in the choice of a

musician. However, skill is a highly subjective quality and its perception is dependent

on a number of factors. Two ways in which skill can manifest itself in a drumming

performance is through consistent performance timing, and stable timbre production.

The extraction of performance data, from three differently skilled drummers, was a

significant component of this work. In section 4.6, a comparison of participants’ timing

fingerprint data found differences in the consistency of onset deviations, and inter-

onset tempos, across participant skill levels. A subsequent evaluation of performance

movement led to the formulation of a hypothesis, which linked levels of movement and

timbre production to higher levels of movement, which led to higher variations in strike

location and, consequently, more variations in timbre production. This hypothesis was

tested by way of zone weightings, as described in section 4.7.

This study, therefore, seeks to demonstrate performer skill by providing a direction

comparison to each skill level. It is comprised of six parts, each part using an identical

rhythm. Parts one to three contain an identical solo drum rhythm using the unskilled,
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semi-skilled, and skilled presets respectively. Parts four to six contain the same three

excerpts, augmented by additional jazz VST instruments. Because the jazz instruments

are MIDI-based, their playback is consistent. This is particularly useful in providing a

reference point with which to listen to the drums.

From a temporal perspective the differences between the three skill levels are sub-

tle. The unskilled preset appears more rigidly timed, whilst the semi-skilled preset had

more “feel”. The skilled drummer had a distinct swing, particularly on the ride cymbal.

From a timbral perspective, the unskilled preset had much less timbral stability. During

the demonstration some of the instruments were unexpectedly accented (e.g. the ride

cymbal and the hi-hat), while other instruments appeared to have softer strikes in some

places, and stronger strikes in others, with little regard for structural appropriateness

(e.g. the snare drum). The semi-skilled preset had similar timbral characteristics, but

was more timbrally consistent with the snare drum, hi-hat, and ride and crash cymbals.

In contrast, the skilled drummer was more consistent with timbre, especially in the case

of the snare drum, and the accents on the ride cymbals appear to be more consistent.

One primary observation was that the results of the timbral selection algorithm worked

as expected, although it is not easy to differentiate the temporal variations across the

skill levels.

In the context of the jazz accompaniment, the performance from the unskilled preset

appears largely uninspiring. The variations highlighted above were more prominent,

and had a much greater effect on the overall excerpt. For the semi-skilled drummer,

the differences in the snare drum, most notably the greater consistency, contribute

to a more “bouncy” feel. The ride cymbal in the skilled preset produced a differ-

ent feel compared to the unskilled and semi-skilled presents, producing more “swing”

than “bounce”. Further listening tests, however, would provide more insight into the

implementation in order to make refinements to the algorithms.
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5.9 Study No 9: Demonstration of Parametric Variation

• Total Length: 05:15

• Part 1: Loudness (length: 01:45)

• Part 2: Spectral Flatness (length: 01:45)

• Part 3: Spectral Centroid (length: 01:45)

• Skill Level: Skilled

The compositional approach in Study No. 9 used all three feature-based parameters:

loudness; spectral flatness, and spectral centroid. In order to understand the differ-

ences and compositional effects of these parameters, this study comprises three short,

identical, rhythmic patterns using each of the three parameters. One of the intentions

of this study was to create a simple, repetitive, rhythmic pattern, using the loudness

parameter, and to transpose this onto the other two parameters (spectral flatness and

spectral centroid). This piece is augmented with Djembe and Krin in order to provide

a rhythmical reference point. In order to assist in the understanding of the effect of the

feature-based parameters, Figure 5.11 (overleaf) shows a spectrogram of the first 34

seconds of the three parts of this study, with loudness (top), spectral flatness (middle),

and spectral centroid (bottom).

In part one, loudness, there is an identifiable motif towards the end of each cycle,

which emanates from the right tom. Although the pattern is temporally stable, the

ride cymbal has periods of both higher and lower amplitude. In contrast, the rhythm,

using spectral flatness, had no discernable motif. In general, the sounds were indicative

of greater strike strength. This is supported in the spectrogram, with a greater number

of high-amplitude frequencies across this excerpt. In this example, the ride cymbals

appear to be more consistently struck, with fewer weak sections. Interestingly, the low

and medium toms in the spectral centroid example are less pronounced, with the high

tom having become more prominent. This is supported in Figure 5.11, which shows a

general reduction in amplitude of frequencies below 7019Hz. This overall frequency re-

duction can be attributed to the default frequency threshold in the MIRToolbox spectral

centroid analysis algorithm (1500Hz). Notably, an alteration of this frequency threshold

might produce vastly different results and, thus, constitutes an area for further research.

The three parameters shared little similarity in the temporal locations of events with
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5.9 Study No 9: Demonstration of Parametric Variation

Figure 5.11: A comparative spectrogram of the first 34 seconds of each parameter in

Study No. 9, showing loudness (top), spectral flatness (middle), and spectral centroid

(bottom).

wide bandwidth. In typical drumming performances it is common for events with sim-

ilar spectral characteristic to positively correlate to a dynamic phrase or accent. The

arbitrary nature of those events, particularly in the flatness excerpt, produced an inter-

esting sequence of variations, which bore little resemblance to real human performance.
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Chapter 6

Conclusion

“To emphasise only the beautiful seems to me to be like a mathematical system

that only concerns itself with positive numbers”

– Paul Klee, 1906



6.1 Sample Collection, Analysis, and Classification

As discussed in Chapter One, the main aim of this research was to create a composi-

tional software tool that simulates human performance variation in percussion, using a

nine-piece jazz drum set, in order to generate new and varied musical works. Due to the

interdisciplinary nature of computer music, this research took a multifaceted approach,

taking into consideration: the effect of instrumental mechanics on timbre; synthesis

techniques for modelling timbre; human performance; computational representation of

human performance; and the subsequent implementation and compositional applica-

tion of the instrumental and performance model.

Firstly, the theoretical framework upon which the performance software model was

based comprised of three parts: a nine-piece jazz drum set; human performance; and

compositional approaches. Part one involved an investigation into the acoustical and

mechanical behaviour of key instruments of a nine-piece jazz drum set, and their effect

on the production of timbre. In part two the biomechanics of human percussive per-

formance on a nine-piece jazz drum set were examined. Part three reviewed relevant

compositional approaches, including computer-assisted composition, complex rhythms,

composing using spectral features, and electroacoustic composition. Secondly, the re-

search took a two-part experimental approach. The first part of the methodological

approach was concerned with the collection of timbral data from the instruments of a

nine-piece jazz drum set. The main aim of which, was to assess the effects of strike

strength and location on drum timbre, in order to develop a methodology with which

to create an effective micro-timbre model. The second part was concerned with the col-

lection of human percussive performance information captured from three differently

skilled drummers. The aim was to assess the relationship between performer skill level,

movement, performance variation, and timing variation during a performance, in or-

der to develop a methodology with which to create an effective micro-timing model.

Finally, the composition portfolio and analytical notes demonstrate the compositional

applications of the software tool.

This chapter summarises and draws conclusions from the work presented in this thesis,

and provides directions for future research.

6.1 Sample Collection, Analysis, and Classification

In order to create a compositional software tool that simulates human performance

variation in percussion, the first part of the approach comprised of sample collection,
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analysis, and classification.

The sample collection comprised nine-thousand individual hits taken from instruments

of a nine-piece jazz drum set. It should be noted that the drum set used in the experi-

ment was a typical, and relatively inexpensive, jazz drum set. It had seen considerable

use in different environments and, therefore, was not in the best condition. This re-

sulted in lower quality samples, and the potential for vibrational inconsistencies owing

to the drum sets history. In addition, at the time the samples were collected the

performance classification concept was still in its infancy. This meant that some in-

struments had greater variations in amplitude and timbre across performance modes at

similar parametric values. Although, large timbral variations might also be attributed

to the size of the strike surface area in each of the demarcated performance zones,

encompassing the area close to the centre and, at the other extreme, the rim. Tension

in the drum is higher towards the rim, thus the timbral variation is inherently different.

One of the most important factors to consider, when attempting to sonically rep-

resent a nine-piece jazz drum set for sound synthesis in computer modelling, is the

inherent micro-timbral variety in the instruments. In this thesis, the sampling synthe-

sis paradigm served to identify the protocols and procedures necessary for capturing

timbres for each instrument. The sampling synthesis paradigm included a set of rules

that governed the performance of strikes for data capture (see section 4.3.1). The lev-

els of micro-timbral variation, across the different parameters, attest to the robustness

of the protocols and procedures. The methods used to capture the strikes, including

the microphone type and the positioning of each instrument, produced clear samples

with minimal tonal coloration. In addition, the neutral-reproduction characteristics of

the microphones effectively facilitated the capture of micro-timbral variations, which

were audible across the sample database, and were visually represented in the graphical

analysis of the samples.

The sample database had to be prepared for analysis. The beat detection points were

manually checked and verified using Pro Tools “Beat Detective”. This prevented trun-

cation errors that could have negatively impacted the sample analysis. However, this

process was time-consuming and labour-intensive. One area for process improvement

might be to consider alternative methods, requiring less manual intervention, for auto-

matic beat detection. This would allow for the faster creation of new sample databases

and timing fingerprints. Once the truncation points were manually checked and veri-
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fied, MIRToolbox was used to analyse the sample database. This process was relatively

straightforward, and the sample database yielded minimal calculation errors (approxi-

mately 10% for each instrument, presented as NaN values in the Matlab output files).

It is important to note that it was not the intention to appraise the applicability of the

analysis functions to the dataset. This is owing to the potential for idiosyncratic be-

haviours in the construction of these functions when applied to percussion instruments.

One example of this was in the difficulty of correctly analysing cymbals using the au-

tocorrelation function in MIRToolbox. One area for further investigation would be the

exploration of the use of the MIRToolbox as an analytical tool for the compositional

parameterisation of percussion by producing another, larger, dataset for each timbral

parameter. It would also create greater stability in the sample selection by mitigating

timbral and amplitude disparities caused by having unequal numbers of samples in

each classification. Increasing the number of samples would also increase the number

of performance modes. This would enhance the resolution of the instrumental sonifica-

tion. However, increasing the number of demarcated performance zones would increase

the resolution of the performance context, thus requiring more parametric datasets,

contextual rules, and performance weightings.

Once the sample database had been analysed in MIRToolbox, it was reclassified us-

ing three feature-based parameters (loudness, spectral flatness, and spectral centroid),

and reordered based on those parameters (low to high). After listening to the database,

it became clear that the process of sample reclassification and reordering would produce

some very inspiring aural and compositional possibilities. At the same time, however,

the linear ordering of samples by feature had one unexpected consequence. This was

due, primarily, to the large number of samples in the database. The linear ordering of

samples, using each of the three feature-based parameters, rendered other timbral fea-

tures non-linear. For example, when the sample database was manipulated to increase

loudness levels, from low to high, it produced random pitch variations. This can be

attributed to the wide timbral variations in the instruments. This issue was addressed

by classifying the drum strikes by location, taking into account the vibrational char-

acteristics of drums (see Chapter Three). Reducing the surface area of each group of

samples ensured that each sample, within each group, was subject to similar vibrational

behaviours. This resulted in a reduction in differences in timbral characteristics.

It was necessary to demarcate the surface of each instrument of the nine-piece jazz
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drum set in order to maintain the timbral consistency of the sample database. As

discussed in section 4.6.1, one unexpected consequence of arbitrarily tuning the mem-

branes was the presence of timbral inconsistencies in the sample database. Consistent

tuning would have made timbral variations less prominent and negated the need to

demarcate the surface of each drum component into smaller strike zones. Neverthe-

less, from a performance-modelling perspective, the decision to demarcate strike zones

across the surface of each drum instrument marked an entirely new approach to gen-

erating micro-timbre through performance weightings, as well as zonal demarcations

based upon vibrational characteristics. Having said that, further research might assess

the viability of this approach on uniformly tuned drums.

While the samples in the database displayed other, secondary, timbral characteristics,

each of the feature-based parameters (loudness, spectral flatness, and spectral centroid)

had their own, unique, characteristics. The “loudness” parameter, for example, worked

as expected across all of the instruments. When assigned linearly to MIDI velocity, the

changes in amplitude were commensurate with the velocity value. The timbral varia-

tions across the loudness curve were more pronounced than expected, however this can

be attributed to the strike area of the demarcated performance zones.

Likewise, using a similar MIDI velocity-mapping process, the “spectral flatness” pa-

rameter produced some interesting timbral, and dynamic results, which differed across

the instruments. A higher spectral flatness value produced a flatter sound in the snare

drum. Notably, the snare drum was consistently lower in amplitude at higher spec-

tral flatness values across the demarcated zones. Similarly, the amplitude of the hi-hat

changed with increased spectral flatness. Samples with the greatest spectral flatness had

a characteristic “closed hi-hat” sound, indicating that the vibrational interaction with

the bottom cymbal caused greater spectral flatness. The decrease in amplitude, with

increased spectral flatness, indicated a peak strike-strength equivalent to the maximum

amplitude of the vibrational interaction. This closely resembled white noise compared

to louder strikes and suggests that strikes with attack transients, greater in amplitude

than the vibrational interaction of the two cymbal’s decay, produce lower levels of spec-

tral flatness.

The amplitude of the tom-toms behaved in much the same way as the hi-hat, with

spectrally flatter samples having lower amplitudes. This is consistent with changes

in spectral slope, which reduced the spectral flatness for increased strike strengths.
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Conversely, the ride and crash cymbals were louder at higher spectral flatness levels.

Stronger strikes excite a large number of non-linear chaotic frequencies very quickly.

Therefore, in the case of the cymbals, this is most likely attributed to the chosen method

of calculating averages in the MIRToolbox mirflatness analysis algorithm, whereby fre-

quencies are measured as an average over the duration of the sample. Further research

might investigate the suitability of this algorithm, on percussion instruments, for the

purposes of producing more accurate representations of spectral flatness at different

strike strengths. Further research might also investigate the compositional possibilities

of combining the inverse amplitude mappings (of the ride and crash cymbals) with the

inherent secondary timbral features.

The spectral centroid parameter, with similar MIDI velocity mappings, produced some

compelling compositional possibilities. At the same time, it produced unsurprising

acoustical results. In certain instances, the spectral centroid parameter behaved in

much the same way as the spectral flatness parameter, particularly in the case of the

snare drum. In other instances, however, the spectral centroid parameter produced

results that differed to spectral flatness. For example, the hi-hat tended to produce

more “open” sounds at maximum flatness. Nevertheless, this was expected and was

most likely caused by the increase in the number of frequencies excited, and the longer

decay times, which corresponded to an increase in strike strength, resulting in a higher

proportion of spectral energy in frequencies higher than the spectral centroid cut-off.

This is also true of the crash and ride cymbals. The tom-toms displayed similar ampli-

tude characteristics, to that of spectral flatness, although the samples had a brighter

decay, with a higher spectral centre of gravity. Moreover, as the spectral centre of

gravity increased, there was a small, but noticeable, change in pitch. A further area of

work might repeat the sample database analysis, using a different threshold level than

the 1500Hz default setting in MIRToolbox.

6.2 Performance Capture and Analysis

The second part of the approach involved performance capture and analysis. Human

percussive performance information was captured from three drummers. This informa-

tion was then analysed in order to assess the relationship between performer skill level,

movement, performance variation, and timing variation during a performance, in order

to develop a methodology with which to create an effective micro-timing model.
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The recruitment and selection of participants took place over a six-week period. The

selection process was conducted at The University of Sydney, and was open to both

staff and students of the university.

Skill level is an important part of percussive performance. Therefore, three differ-

ently skilled drummers (unskilled, semi-skilled, and skilled) were chosen to participate

in this study. In addition, the differently skilled drummers were selected with a view

to investigating the ways in which skill development manifests empirically. However,

this approach was limited given the small number of participants in the study, and

given the subjective nature of judging performance skill. Further research might em-

ploy a larger number of participant performances, within each skill level, in order to

fully explore characteristic traits. This thesis examined the behavioural and cognitive

aspects of carrying out a physical movement, and the physical aspects of carrying out

and coordinating a movement (procedural implementation) in Table 3.2. However, fur-

ther research could be augmented with studies in the areas of human movement, and

performance learning and development, not covered in Chapter Three.

The next phase of the approach involved the collection of data from real human per-

formance in order to construct timing fingerprints, and to generate rules for the imple-

mentation of the model. This was done using captured audio, video, and accelerometer

data from the performances of each of the three differently skilled drummers. Notably,

the audio, video, and accelerometer data was crucial in understanding the effect of

human movement as a contributory factor in timing variations.

In the first part of the methodological approach, timbral data was collected from the

instruments of a nine-piece jazz drum set and incorporated into a sample database.

As a result, it was not necessary to do an individual instrument capture during the

real performances because only the timing values relative to the reference audio were

required. The audio was collected using the same technical set-up used in the collection

of the initial sample database, which minimised the amount of data collected. Whilst

this method captured all of the performance strikes, the approach was limited. Captur-

ing each specific instrument separately would enhance the contextual timing variations.

Further research, therefore, might focus on improving the timing fingerprints.

In order to identify the effect of movement on performance timing, the performances

were captured using overhead and side video cameras. Accelerometers were used to
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capture the roll and tilt of the participants’ hands during performance. The video

was then analysed using a Jitter algorithm, which compared inter-frame differences in

movement. Taking video recordings of the performances was beneficial in two ways.

Firstly, it enabled the empirical analysis of movement. Secondly, it afforded an oppor-

tunity to make observations on the participants’ performances and, more generally, on

percussive performance, in order to develop performance rules for the model.

The video analysis algorithm worked as expected, albeit with some limitations. Firstly,

the algorithm did not discriminate between participant movement and other move-

ment in the frame, because it was designed to analyse frame-by-frame video movement.

This limitation was particularly important in the case of the semi-skilled drummer,

whose drum strikes were generally stronger than those of the other two drummers.

The stronger drum strikes caused the drum kit to move, on occasion, which led to an

increase in movement levels in the video. Secondly, each of the participants struck

different instruments of the drums a different number of times. For example, the crash

cymbal moves more when struck, compared to a snare drum, resulting in greater move-

ment per strike. At the same time, more participant movement was required to strike

a crash cymbal. Thus, cymbal movement was more exaggerated in certain instances.

Thirdly, additional factors, such as clothing and jewellery, contributed towards move-

ment levels. These factors might be considered “sensor noise”, however they had a

minimal effect on the results. Further research might attempt to address each of these

three limitations.

Accelerometer data were collected from each performance. Importantly, the empiri-

cal sensor data provided information from which a series of rules were created to infer

performance context. In addition, the sensor data was particularly useful in identifying

the tilt and roll of each of the participants’ hands. The level of biomechanical move-

ment captured in this investigation presents insights into the differing stick techniques

and control of differently skilled performers. However, a greater understanding of the

biomechanical aspects of performance is required to create rules that take into account

intra-instrument level performance variations, compared to the inter-instrument level

variations in this model. Further research might analyse percussive performance using

analysis techniques available in the sports sciences, such as telemetric EMG systems,

and motion analysis systems. This could lead to an improved understanding of perfor-

mance injury to percussionists.
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In the experiment, each of the drummers was asked to play along to a single refer-

ence track, Bird’s Lament by Moondog. Once the fingerprint data was captured from

the three performances, it was analysed in order to assess the relationship between

performer skill level, movement, performance variation, and timing variation during a

performance. For the purposes of this research, the decision to use a single track pro-

vided sufficient timing variations upon which to base a compositional tool that could

be applied to different compositional styles, such as the one presented in this thesis.

Notably, Sonic Visualiser was a particularly useful and accurate tool for analysing the

performance data, and extracting and generating the timing fingerprints to be used in

the model. However, this part of the methodology was very time-consuming. Further

research might investigate ways of creating a more automated and efficient analysis

methodology. Nevertheless, the timing fingerprint data did produce valuable informa-

tion, which the drummers could use to critique performance with a view to making

improvements.

The decision to use data based on a single performance, in order generate timing

fingerprints representative of each individual drummer, presented an interesting para-

dox. On one hand, the re-contextualisation of raw performance data across different

musical genres extended the performance information into new conceptual realms for

compositional purposes. On the other hand, performance data based on a single jazz

piece had specific genre constraints, owing to differences in performance technique and

style across genres. Further research might investigate whether multiple cross-genre

timing fingerprints can produce a more generic, stylistic performance fingerprint, and

identify genre-neutral temporal features. This, however, would require an increase in

sensor resolution, which, in itself, constitutes another area of research.

6.3 Performance Model

The third part of the approach comprised the computational design of the performance

model, which included five methodological features (performance rules, physical con-

straints, instrumental configuration and movement levels, performance weightings, and

timing fingerprints), and the implementation of the performance model.

The main aim of this thesis was to create a compositional software tool that simu-

lates human percussive performance variation. As part of this investigation, a unique

methodological framework was developed which linked disparate timing and timbral in-
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formation with performance-driven rules. The compositional approach relied primarily

on three feature-based parameters, one of which was “loudness”. The loudness param-

eter was particularly useful for recreating performance and evaluating the model. With

that in mind, the stochastic approach to sample selection, that is, the demarcation

of performance zones in the context of movement in human percussive performance,

produced timbral variations, which, in many cases, were consistent with performance

complexity. However, in many instances these timbral variations were inconsistent with

typical motivic dynamic changes. This can be attributed to the unequal distribution of

samples within each demarcated zone. Notably, the sample selection algorithm, based

upon current and first-order instrument selection, worked as expected, with greater

inferred movement complexity producing greater timbral variations across the instru-

ments. This was particularly relevant in the case of the membranophones because

timbral variation in the idiophones was limited across the demarcation zones.

Performance rules, based on the physical aspects of human performance, and the phys-

ical nature of the interaction, were the first of five methodological features of computa-

tional design. These rules were generated from the analysis of three different types of

data (the physical constraints of the performer, the physical constraints of the instru-

ment configuration, and the context of simultaneous movement), which was extracted

from participant performances. Notably, the analysis of these three types of data made

a significant contribution to timbral and temporal variation.

Modelling the physical constraints of the performer benefited and limited the per-

formance model to different degrees. For example, to replicate human performance

and, in particular, the physical constraints of the performer, the number of strikes

was limited to four (two each for the hands and feet). As a result, when it came to

programming, having a smaller number of instrument combinations made it easier to

implement the model, and it decreased the computational overhead by reducing the

control stream. However, this approach was limited compositionally because the choice

of simultaneously playable instruments for new music was significantly reduced. This

was particularly relevant for meso-periodic music, where each instrument is considered

a separate entity, played by multiple hands. To overcome this limitation in the study,

three banks were created. This allowed for more instruments to be played simultane-

ously. It also facilitated the selection of instrumental combinations, from each bank,

which allowed the user to consider the effect of movement level determined by instru-

230



6.3 Performance Model

mental configuration.

Modelling the physical constraints of the instrumental configuration was based upon

relative height from the floor (high drums, medium drums, and low drums). The

physical constraints also considered biomechanics and posture control. This approach

made allowances for different drum configurations by assuming generic properties for

each instrument. Assigning movement levels to different combinations of instruments

made it possible to simulate strike accuracy through modal demarcations. Moreover,

abstracting the combinations of drums being played also allowed for sequences of com-

binations to be evaluated in real-time for overall first-order movement. This dynamic,

performance-context driven approach minimised timbral variation between sequences

by modifying the probability of timbral variation. By varying the probability of tim-

bral variation between the representations of skill levels, the perception of performance

error was manipulated through timbre.

Different performance weightings, for zone selection, were applied to each of the three

drum configurations, or movement levels discussed above (high drum, medium drum,

and low drum). This approach directly linked timbral variation to performance con-

text. One example of this is Study No. 6, which contained fewer timbral variations due

to the improved consistency of the performance (skilled drummer). However, further

research might undertake a series of listening tests to identify the efficacy of timbral

and temporal variations (timing fingerprints) inherent in the model, and validate the

performance model.

Timing fingerprints were another important methodological feature of the computa-

tional design. However, one disadvantage of this approach was the choice of temporal

variation values. The model selects values without differentiating between instruments

(e.g. a crash cymbal or a snare drum), even though values with a high inter-onset

tempo are, statistically, more likely to be the direct result of a faster sequence, or an

accenting fill at the end of a bar, which often contains a crash. Consequently, the timing

fingerprint fails to contextualise the role of the instrument with the timing variations.

Further research might investigate the ways in which timing fingerprint data can be

more relevant for real instrument variations.

From a temporal perspective, the timing fingerprints were stochastically weighted to-

wards specific temporal locations, relative to the beat, in the reference track. This was
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particularly the case for the unskilled and skilled drummers, who were more consistent

in their temporal accuracy. The result was a larger percentage of sub +/−20ms asyn-

chronies, which are difficult for a listener to detect in light of the complexity added

by discrete timbral events. Further research might undertake a series of listening tests

in which participants are asked to identify temporal asynchronies in a short excerpt

produced using the compositional tool.

Further research might also investigate the lack of structural music context in larger

temporal values. Larger temporal variations were more noticeable because the tempo-

ral variation values were selected stochastically. Additional rules, which infer the effect

of structural elements of percussive performance variation, similar to that of the KTH

rule systems and GERM model rules, might address this issue.

6.4 Software Implementation

The fourth part of the approach comprised the implementation of the software. One

of the main aims of this thesis was to create a piece of software that ensured a level of

human interaction that facilitates compositional applicability across music genres.

To do so, one important consideration was in the design philosophy. Performance

variation was assigned to the computer in order to ensure the user maintains compo-

sitional control. In addition, other features were added to the software in order to

provide the user with more compositional control. This included a mixer, rewire inte-

gration, automation, velocity curve control, and reverb and delay effects. All of these

features combined to provide a composer with a stable, useable, aesthetically pleasing

compositional tool that successfully simulates human percussive performance.

The most effective way to link the sample paradigm, with compositional paradigm was

by using the TUBS notation system, particularly in the first and zero order selection,

and the calculation of the movement levels. Although the TUBS notation is not unique

to percussion-based software- and hardware-tools, this approach was unique insofar as

the maximum cycle length was twelve, rather than the standard sixteen. This cycle

length contributed to the creation of complex rhythms such as meso-periodic rhythm.

Further research might investigate different graphical methods for representing sound

events and samples, and might include the auto-generation of percussive material from
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additional sources.

The time-sensitive nature of the software, together with the need for user-stability,

meant that it was necessary to ensure sufficient computational overhead at runtime.

One of the main constraints, in using samples, was the need to load the samples into

memory for playback. This constraint reduced the number of samples loaded in each

demarcated zone. Despite this reduction, each instrument was represented by 125 sam-

ples. This resulted in significant timbral variety. Increased computer memory would

allow this number to be increased, to a maximum of 127 samples per demarcated zone,

which is a total of 635 samples per instrument. Further increases would allow for an

increase in the number of demarcated zones, and in the number of instrument samples.

The time-sensitive nature of the software constrained the implementation of tempo-

ral variation, where timing variations were created by adding/subtracting the selected

timing value in the fingerprint from a default latency of 100ms built into the flow of

the sample trigger messages, in two ways. Firstly, from a performance perspective, the

effect of a temporal variation, greater than an IOI of the beat, resulted in a “skipped”

beat. Secondly, large variations tended to queue messages, and resulted in the delayed

performance of simultaneous and concurrent samples.

The first constraint was addressed by scaling the selected variations from the finger-

print to different beat levels. Whilst this approach made assumptions concerning the

relationship between variations and tempo, the effect was not noticeable when chang-

ing to adjacent tempi, for example from 119BPM to 120BPM. The second constraint

was addressed by multithreading the sample trigger messages. However, as the system

tempo and complexity increases, messages were still queued, causing late and missed

notes. Further research might address this issue by increasing the number of threads

in the system in order to allow for greater thread redundancy, as well as increased

system performance at higher tempi and with greater complexity. Further work might

also identify the impact of small asynchronies, in the context of computational software

performance within time-critical applications, by benchmarking system performance.

6.5 Compositional Implementation

The fifth part of the approach comprised the compositional implementation of the

software tool, which considered 12-step TUBS representation, rhythmic cycles, com-
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positional timbre parameters, and minimum system requirements. The composition

portfolio and accompanying analytical notes are intended to demonstrate the compo-

sitional implementation and musical applications of the human performance variation

software tool.

The compositional framework of this study was, for the most part, derived from the

meso-periodic rhythms of Africa. It was important, therefore, that the interface be-

tween the composer and the computer program was conducive to composition, par-

ticularly of other musical genres. The compositional interface used in this study was

based upon the 12-step TUBS model, discussed in Chapter Four. This interface enabled

the recreation of meso-periodic rhythms, as demonstrated in the composition portfolio.

In addition, the grid-system in the TUBS model allowed for the creation of complex

rhythms. It also allowed for the user to choose multiple simultaneous compositional

parameters. These parameters (loudness, spectral flatness, and spectral centroid) pro-

duced interesting aesthetic results, which are demonstrated in the composition portfolio.

It should be noted, however, that the use of parameters, other than loudness, caused

sequences of timbral and dynamic variations, thereby reducing the efficacy of the per-

formance model. This also occurred when combinations of compositional parameters

were used simultaneously. However, it produced collateral compositional benefits inso-

far as the system produced uniquely varied timbral and dynamic effects, which enabled

an exploration of contemporary percussive composition. Further work could include

representing timbre multidimensionally, with a view to developing a timbre space for

controlling both loudness and timbral parameters.

The broad bandwidth paradigm presented in this work was intended as a way of eval-

uating melody, rhythm, and spectral form (see Chapter Three). Indeed, this paradigm

provided a useful framework upon which to visualise the melodic, rhythmic, and overall

spectral form of Study No. 1 and No. 2, which are included in the composition portfolio.

Three compositional timbre parameters (loudness, spectral flatness, and spectral cen-

troid) were used in this study. They were intended to simulate independency with

meso-periodic rhythm, and to extend the compositional application of the model. These

parameters produced some interesting compositional results. Firstly, the use of spec-

tral flatness as a compositional parameter, with the tom-toms, produced unexpected

discordancy and tension, which can be attributed to changes in amplitude. Study No.

3, in the composition portfolio, demonstrates this in particular. Secondly, the use of
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spectral centroid as a compositional parameter, and, at the same time, varying the

levels of centroid hierarchically, produced a piece that was multi-layered (by perceived

brightness). Study No. 4, in the composition portfolio, demonstrates this. In Study

No. 9, spectral flatness conveyed the greatest sense of randomness in both temporal and

timbral variation, compared to just timbral variation using spectral centroid. Further

research might investigate the ways in which the current model can be extended into

new compositional realms. Further research might, for example, consider replacing the

percussive samples with non-musical sounds. Such research could use the same anal-

ysis paradigms and compositional parameters, or it might extend the compositional

parameters to include other spectral features.

6.6 Summary Evaluation

In conclusion, this thesis presents a compositional tool that simulates human percus-

sive performance variation. This compositional tool has been successfully applied to

different genres of music to create rich and diverse rhythms, as demonstrated by the

composition portfolio. This research makes several contributions to the fields of per-

formance modelling, computer music, and percussive composition. It is of particular

relevance to composers, the music-software community, percussive performers, and per-

formance analysts. This research also highlights several areas for further work, which

will be of interest to both the academic community and to industry.
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Chapter 7

Appendices

“When words leave off, music begins.”

– Heinrich Heine
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A The PD-103 Software DVD

A The PD-103 Software DVD

1 The PD-103 Software Installer Package

2 PD-103 Readme

3 Additional Software Components
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B Data DVD

B Data DVD

1 Text File Outputs of the MIRToolbox Feature Extraction

2 Questionnaires and Responses of the Selected Participants

3 Audio Reference Material: Moondog’s Bird’s Lament

4 The Max/MSP Video Analysis Patch

5 The Max/MSP Accelerometer Analysis Patch

6 Participant Video: Unskilled Overhead

7 Participant Video: Semi-skilled Overhead

8 Participant Video: Skilled Overhead

9 Java Code for the MultiSwitch External

10 Java Code for the Fuzzy External

11 Java Code for the FuzzyAggregated External

12 Java Code for the PerformanceWeightings External

13 Java Code for the Velocity Curve External

14 The Compositional Portfolio as .Wav Files
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C Audio CD

C Audio CD

1 Study No 1: African Meso-Periodic (I) (4:27)

2 Study No 2: African Meso-Periodic (II) (4:50)

3 Study No 3: Pitch Variation in the Tom-Toms (3:37)

4 Study No 4: Spectral Centroid and Isomorphic Rhythm (5:03)

5 Study No 5: Quark (1:00)

6 Study No 6: Demonstration of Improvisational Application (9:18)

7 Study No 7: Electroacoustic Piece (10:00)

8 Study No 8: Demonstration of Skill Levels (2:40)

9 Study No 9: Demonstration of Parametric Variation 3 x (1:45)

Total Running Time: (43:55)
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1.5 available from: https://www.jyu.fi/hum/laitokset/musiikki/en/research/

coe/materials/mirtoolbox/MIRtoolbox1.5Guide . 123, 124, 125

Lartillot, O. and Toiviainen, P. (2007). A Matlab Toolbox for Musical Feature Ex-

traction From Audio. In Proceedings of the 10th International Conference on Digital

Audio Effects, Bordeaux, France. 7, 121, 123

Lartillot, O., Toiviainen, P., and Eerola, T. (2008). A matlab toolbox for music infor-

mation retrieval. In Preisach, C., Burkhardt, H., Schmidt-Thieme, L., and Decker,

R., (Eds.). Data analysis, machine learning and applications. Freiburg, Germany:

Springer Verlag. 7

255

http://www.klingbeil.com/data/Klingbeil_Dissertation_web.pdf
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox/MIRtoolbox1.5Guide
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox/MIRtoolbox1.5Guide


REFERENCES

Laske, O. (1989). Composition theory: An enrichment of music theory. Interface,

18(1-2):45–59. doi:10.1080/09298218908570537. 81

Laukka, P. and Gabrielsson, A. (2000). Emotional Expression in Drumming Perfor-

mance. Psychology of Music, 28(2):181–189. doi:10.1177/0305735600282007. 55

Lee, S. (2010). Hand Biomechanics in Skilled Pianists Playing a Scale in Thirds. Medical

Problems of Performing Artists, 25(4):167–174. 55

Legge, K. A. and Fletcher, N. H. (1989). Nonlinearity, chaos, and the sound of shal-

low gongs. The Journal of the Acoustical Society of America, 86(6):2439–2443.

doi:10.1121/1.398451. 4, 28

Leonard, III, N. (1996). “Legacy: San Lazaro” The integration of composition, perfor-

mance, and computer programming. Computers and Mathematics with Applications,

32(1):89–92. 23, 24

Lerdahl, F. and Jackendoff, R. S. (1983). A Generative Theory of Tonal Music. Cam-

bridge, MA: MIT Press. 90, 184, 207

Lewis, R. and Beckford, J. (2000). Measuring tonal characteristics of snare drum batter

heads. 38, 56

Lippe, C. (1994). Real-time granular sampling using the IRCAM sig-

nal processing workstation. Contemporary Music Review, 10(2):149–155.

doi:10.1080/07494469400640381. 103

London, J. (2012). Hearing in Time: Psychological Aspects of Musical Meter (2nd ed.).

New York, NY: Oxford University Press. 90

Loureiro, M., De Paula, H., and Yehia, H. C. (2004). Timbre classification of a sin-

gle musical instrument. In Proceedings of the International Conference on Music

Information Retrieval (ISMIR), (pp. 546–549). Barcelona, Spain. doi:10.1.1.106.416.

105

Lutfi, R. A. and Liu, C.-J. (2007). Individual differences in source identification

from synthesized impact sounds. The Journal of the Acoustical Society of Amer-

ica, 122(2):1017–1028. doi:10.1121/1.2751269. 51

Macon, M. W., McCree, A., Lai, W., and Viswanathan, V. (1998). Efficient analy-

sis/synthesis of percussion musical instrument sounds using an all-pole model. In

256



REFERENCES

Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and

Signal Processing. Vol. 6. (pp. 3589–3592), Seattle, USA. 3, 4

Maestre, E., Ramirez, R., Kersten, S., and Serra, X. (2009). Expressive concatenative

synthesis by reusing samples from real performance recordings. Computer Music

Journal, 33(4):23–42. 115
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