171,816 research outputs found

    Dynamic structural and topological phase transitions on the Warsaw Stock Exchange: A phenomenological approach

    Full text link
    We study the crash dynamics of the Warsaw Stock Exchange (WSE) by using the Minimal Spanning Tree (MST) networks. We find the transition of the complex network during its evolution from a (hierarchical) power law MST network, representing the stable state of WSE before the recent worldwide financial crash, to a superstar-like (or superhub) MST network of the market decorated by a hierarchy of trees (being, perhaps, an unstable, intermediate market state). Subsequently, we observed a transition from this complex tree to the topology of the (hierarchical) power law MST network decorated by several star-like trees or hubs. This structure and topology represent, perhaps, the WSE after the worldwide financial crash, and could be considered to be an aftershock. Our results can serve as an empirical foundation for a future theory of dynamic structural and topological phase transitions on financial markets

    Entropic Dynamic Time Warping Kernels for Co-evolving Financial Time Series Analysis

    Get PDF
    In this work, we develop a novel framework to measure the similarity between dynamic financial networks, i.e., time-varying financial networks. Particularly, we explore whether the proposed similarity measure can be employed to understand the structural evolution of the financial networks with time. For a set of time-varying financial networks with each vertex representing the individual time series of a different stock and each edge between a pair of time series representing the absolute value of their Pearson correlation, our start point is to compute the commute time matrix associated with the weighted adjacency matrix of the network structures, where each element of the matrix can be seen as the enhanced correlation value between pairwise stocks. For each network, we show how the commute time matrix allows us to identify a reliable set of dominant correlated time series as well as an associated dominant probability distribution of the stock belonging to this set. Furthermore, we represent each original network as a discrete dominant Shannon entropy time series computed from the dominant probability distribution. With the dominant entropy time series for each pair of financial networks to hand, we develop a similarity measure based on the classical dynamic time warping framework, for analyzing the financial time-varying networks. We show that the proposed similarity measure is positive definite and thus corresponds to a kernel measure on graphs. The proposed kernel bridges the gap between graph kernels and the classical dynamic time warping framework for multiple financial time series analysis. Experiments on time-varying networks extracted through New York Stock Exchange (NYSE) database demonstrate the effectiveness of the proposed approach.Comment: Previously, the original version of this manuscript appeared as arXiv:1902.09947v2, that was submitted as a replacement by a mistake. Now, that article has been replaced to correct the error, and this manuscript is distinct from that articl

    Structural and topological phase transitions on the German Stock Exchange

    Full text link
    We find numerical and empirical evidence for dynamical, structural and topological phase transitions on the (German) Frankfurt Stock Exchange (FSE) in the temporal vicinity of the worldwide financial crash. Using the Minimal Spanning Tree (MST) technique, a particularly useful canonical tool of the graph theory, two transitions of the topology of a complex network representing FSE were found. First transition is from a hierarchical scale-free MST representing the stock market before the recent worldwide financial crash, to a superstar-like MST decorated by a scale-free hierarchy of trees representing the market's state for the period containing the crash. Subsequently, a transition is observed from this transient, (meta)stable state of the crash, to a hierarchical scale-free MST decorated by several star-like trees after the worldwide financial crash. The phase transitions observed are analogous to the ones we obtained earlier for the Warsaw Stock Exchange and more pronounced than those found by Onnela-Chakraborti-Kaski-Kert\'esz for S&P 500 index in the vicinity of Black Monday (October 19, 1987) and also in the vicinity of January 1, 1998. Our results provide an empirical foundation for the future theory of dynamical, structural and topological phase transitions on financial markets

    Interlinkages and structural changes in cross-border liabilities: a network approach

    Get PDF
    We study the international interbank market through a geometrical and a topological analysis of empirical data. The geometrical analysis of the time series of cross-country liabilities shows that the systematic information of the interbank international market is contained in a space of small dimension, from which a topological characterization could be conveniently carried out. Weighted and complete networks of financial linkages across countries are developed, for which continuous clustering, degree centrality and closeness centrality are computed. The behavior of these topological coefficients reveals an important modification acting in the financial linkages in the period 1997-2011. Here we show that, besides the generalized clustering increase, there is a persistent increment in the degree of connectivity and in the closeness centrality of some countries. These countries seem to correspond to critical locations where tax policies might provide opportunities to shift debts. Such critical locations highlight the role that specific countries play in the network structure and helps to situates the turbulent period that has been characterizing the global financial system since the Summer 2007 as the counterpart of a larger structural change going on for a more than one decade.Comment: 24 pages, 11 figure

    On the Von Neumann Entropy of Graphs

    Full text link
    The von Neumann entropy of a graph is a spectral complexity measure that has recently found applications in complex networks analysis and pattern recognition. Two variants of the von Neumann entropy exist based on the graph Laplacian and normalized graph Laplacian, respectively. Due to its computational complexity, previous works have proposed to approximate the von Neumann entropy, effectively reducing it to the computation of simple node degree statistics. Unfortunately, a number of issues surrounding the von Neumann entropy remain unsolved to date, including the interpretation of this spectral measure in terms of structural patterns, understanding the relation between its two variants, and evaluating the quality of the corresponding approximations. In this paper we aim to answer these questions by first analysing and comparing the quadratic approximations of the two variants and then performing an extensive set of experiments on both synthetic and real-world graphs. We find that 1) the two entropies lead to the emergence of similar structures, but with some significant differences; 2) the correlation between them ranges from weakly positive to strongly negative, depending on the topology of the underlying graph; 3) the quadratic approximations fail to capture the presence of non-trivial structural patterns that seem to influence the value of the exact entropies; 4) the quality of the approximations, as well as which variant of the von Neumann entropy is better approximated, depends on the topology of the underlying graph
    corecore