384 research outputs found

    Can Subcategorisation Probabilities Help a Statistical Parser?

    Full text link
    Research into the automatic acquisition of lexical information from corpora is starting to produce large-scale computational lexicons containing data on the relative frequencies of subcategorisation alternatives for individual verbal predicates. However, the empirical question of whether this type of frequency information can in practice improve the accuracy of a statistical parser has not yet been answered. In this paper we describe an experiment with a wide-coverage statistical grammar and parser for English and subcategorisation frequencies acquired from ten million words of text which shows that this information can significantly improve parse accuracy.Comment: 9 pages, uses colacl.st

    Exploiting multi-word units in statistical parsing and generation

    Get PDF
    Syntactic parsing is an important prerequisite for many natural language processing (NLP) applications. The task refers to the process of generating the tree of syntactic nodes with associated phrase category labels corresponding to a sentence. Our objective is to improve upon statistical models for syntactic parsing by leveraging multi-word units (MWUs) such as named entities and other classes of multi-word expressions. Multi-word units are phrases that are lexically, syntactically and/or semantically idiosyncratic in that they are to at least some degree non-compositional. If such units are identified prior to, or as part of, the parsing process their boundaries can be exploited as islands of certainty within the very large (and often highly ambiguous) search space. Luckily, certain types of MWUs can be readily identified in an automatic fashion (using a variety of techniques) to a near-human level of accuracy. We carry out a number of experiments which integrate knowledge about different classes of MWUs in several commonly deployed parsing architectures. In a supplementary set of experiments, we attempt to exploit these units in the converse operation to statistical parsing---statistical generation (in our case, surface realisation from Lexical-Functional Grammar f-structures). We show that, by exploiting knowledge about MWUs, certain classes of parsing and generation decisions are more accurately resolved. This translates to improvements in overall parsing and generation results which, although modest, are demonstrably significant

    Large and noisy vs small and reliable: combining 2 types of corpora for adjective valence extraction

    Get PDF
    International audienceThis work investigates a possibility of combining two different types of corpora to build a valence lexicon for French adjectives. We complete adjectival frames extracted from a Treebank with statistical cues computed from a large automatically parsed corpus. This experiment shows how linguistic knowledge and large amount of annotated data can be used in a complementary manner

    Linear logic-based semantics construction for LTAG

    Get PDF
    In this paper we review existing appoaches to semantics construction in LTAG (Lexicalised Tree Adjoining Grammar) which are all based on the notion of derivation (tree)s. We argue that derivation structures in LTAG are not appropriate to guide semantic composition, due to a non-isomorphism, in LTAG, between the syntactic operation of adjunction on the one hand, and the semantic operations of complementation and modification, on the other. Linear Logic based “glue” semantics, by now the classical approach to semantics construction within the LFG framework (cf. Dalrymple (1999)) allows for flexible coupling of syntactic and semantic structure. We investigate application of “glue semantics” to LTAG syntax, using as underlying structure the derived tree, which is more appropriate for principle-based semantics construction. We show how linear logic semantics construction helps to bridge the non-isomorphism between syntactic and semantic operations in LTAG. The glue approach allows to capture non-tree local dependencies in control and modification structures, and extends to the treatment of scope ambiguity with quantified NPs and VP adverbials. Finally, glue semantics applies successfully to the adjunction-based analysis of long-distance dependencies in LTAG, which differs significantly from the f-structure based analysis in LFG

    Treebank-based acquisition of Chinese LFG resources for parsing and generation

    Get PDF
    This thesis describes a treebank-based approach to automatically acquire robust,wide-coverage Lexical-Functional Grammar (LFG) resources for Chinese parsing and generation, which is part of a larger project on the rapid construction of deep, large-scale, constraint-based, multilingual grammatical resources. I present an application-oriented LFG analysis for Chinese core linguistic phenomena and (in cooperation with PARC) develop a gold-standard dependency-bank of Chinese f-structures for evaluation. Based on the Penn Chinese Treebank, I design and implement two architectures for inducing Chinese LFG resources, one annotation-based and the other dependency conversion-based. I then apply the f-structure acquisition algorithm together with external, state-of-the-art parsers to parsing new text into "proto" f-structures. In order to convert "proto" f-structures into "proper" f-structures or deep dependencies, I present a novel Non-Local Dependency (NLD) recovery algorithm using subcategorisation frames and f-structure paths linking antecedents and traces in NLDs extracted from the automatically-built LFG f-structure treebank. Based on the grammars extracted from the f-structure annotated treebank, I develop a PCFG-based chart generator and a new n-gram based pure dependency generator to realise Chinese sentences from LFG f-structures. The work reported in this thesis is the first effort to scale treebank-based, probabilistic Chinese LFG resources from proof-of-concept research to unrestricted, real text. Although this thesis concentrates on Chinese and LFG, many of the methodologies, e.g. the acquisition of predicate-argument structures, NLD resolution and the PCFG- and dependency n-gram-based generation models, are largely language and formalism independent and should generalise to diverse languages as well as to labelled bilexical dependency representations other than LFG

    Interaction Grammars

    Get PDF
    Interaction Grammar (IG) is a grammatical formalism based on the notion of polarity. Polarities express the resource sensitivity of natural languages by modelling the distinction between saturated and unsaturated syntactic structures. Syntactic composition is represented as a chemical reaction guided by the saturation of polarities. It is expressed in a model-theoretic framework where grammars are constraint systems using the notion of tree description and parsing appears as a process of building tree description models satisfying criteria of saturation and minimality

    On Left and Right Dislocation: A Dynamic Perspective

    Get PDF
    The paper argues that by modelling the incremental and left-right process of interpretation as a process of growth of logical form (representing logical forms as trees), an integrated typology of left-dislocation and right-dislocation phenomena becomes available, bringing out not merely the similarities between these types of phenomena, but also their asymmetry. The data covered include hanging topic left dislocation, clitic left dislocation, left dislocation, pronoun doubling, expletives, extraposition, and right node raising, with each set of data analysed in terms of general principles of tree growth. In the light of the success in providing a characterisation of the asymmetry between left and right periphery phenomena, a result not achieved in more wellknown formalisms, the paper concludes that grammar formalisms should model the dynamics of language processing in time.Articl

    Treebank-Based Deep Grammar Acquisition for French Probabilistic Parsing Resources

    Get PDF
    Motivated by the expense in time and other resources to produce hand-crafted grammars, there has been increased interest in wide-coverage grammars automatically obtained from treebanks. In particular, recent years have seen a move towards acquiring deep (LFG, HPSG and CCG) resources that can represent information absent from simple CFG-type structured treebanks and which are considered to produce more language-neutral linguistic representations, such as syntactic dependency trees. As is often the case in early pioneering work in natural language processing, English has been the focus of attention in the first efforts towards acquiring treebank-based deep-grammar resources, followed by treatments of, for example, German, Japanese, Chinese and Spanish. However, to date no comparable large-scale automatically acquired deep-grammar resources have been obtained for French. The goal of the research presented in this thesis is to develop, implement, and evaluate treebank-based deep-grammar acquisition techniques for French. Along the way towards achieving this goal, this thesis presents the derivation of a new treebank for French from the Paris 7 Treebank, the Modified French Treebank, a cleaner, more coherent treebank with several transformed structures and new linguistic analyses. Statistical parsers trained on this data outperform those trained on the original Paris 7 Treebank, which has five times the amount of data. The Modified French Treebank is the data source used for the development of treebank-based automatic deep-grammar acquisition for LFG parsing resources for French, based on an f-structure annotation algorithm for this treebank. LFG CFG-based parsing architectures are then extended and tested, achieving a competitive best f-score of 86.73% for all features. The CFG-based parsing architectures are then complemented with an alternative dependency-based statistical parsing approach, obviating the CFG-based parsing step, and instead directly parsing strings into f-structures
    corecore