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AbstractSyntactic parsing is an important prerequisite for many natural language processing(nlp) applications. The task refers to the process of generating the tree of syntacticnodes with associated phrase category labels corresponding to a sentence.Our objective is to improve upon statistical models for syntactic parsing by lever-aging multi-word units (mwus) such as named entities and other classes of multi-wordexpressions. Multi-word units are phrases that are lexically, syntactically and/or se-mantically idiosyncratic in that they are to at least some degree non-compositional.If such units are identi�ed prior to, or as part of, the parsing process their boundariescan be exploited as islands of certainty within the very large (and often highly am-biguous) search space. Luckily, certain types of mwus can be readily identi�ed in anautomatic fashion (using a variety of techniques) to a near-human level of accuracy.We carry out a number of experiments which integrate knowledge about di�erentclasses of mwus in several commonly deployed parsing architectures. In a supplemen-tary set of experiments, we attempt to exploit these units in the converse operationto statistical parsing�statistical generation (in our case, surface realisation fromLexical-Functional Grammar f-structures). We show that, by exploiting knowledgeabout mwus, certain classes of parsing and generation decisions are more accuratelyresolved. This translates to improvements in overall parsing and generation resultswhich, although modest, are demonstrably signi�cant.
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Chapter 1
Introduction
In general terms, parsing is the task of deducing the hierarchical grammatical struc-ture of a sequence of tokens. In natural language processing (nlp), the term usuallyrefers to �shallow� syntactic parsing. The task of shallow (or skeletal) syntactic pars-ing is to generate the tree of syntactic nodes with associated phrase category labelscorresponding to a sentence (whereas �deep� parsing also resolves non-local depen-dencies and associates richer relations between the syntactic nodes). Since syntacticstructure is strongly correlated with semantic interpretation, parsing is a prerequi-site for a number of nlp tasks. This makes it a potential corner-stone technologyin applications such as grammar checking, text understanding, question answering(qa) and transfer-based approaches to machine translation (mt).In many cases skeletal parses are used as a prerequisite to generate deeperlinguistic representations. The syntax trees generated by a shallow parser canbe mapped to a deep functional representation such as that provided by Lexical-Functional Grammar (lfg) (Kaplan and Bresnan, 1982, Bresnan, 2001). It hasbeen shown that deep dependencies (or predicate-argument relations) generated fromtreebank-trained shallow parser output can outperform those generated by hand-crafted uni�cation/constraint-based grammars (Cahill, 2004, Cahill et al., 2008).The past decade has seen considerable advances in data-driven approaches toparsing�those that do not rely on hand-crafted grammar rules. Such models have6



been trained on large-scale syntax tree-annotated corpora such as the Penn WallStreet Journal (wsj) Treebank (Marcus et al., 1994).State-of-the-art probabilistic (stochastic) parsing models such as the history-based lexicalised generative parsers of Collins (1999) and Charniak (2000) can achievelabelled syntactic bracket recall and precision in the region of 90% when trained andevaluated on the wsj treebank. Reranking the candidate parse trees produced bysuch parsers using discriminative machine learning (ml) techniques has been shownto yield further modest gains in parse quality (e.g. Charniak and Johnson 2005).In such models, it is commonly held that parse accuracy has reached an upperbound when we do not incorporate some form of additional knowledge, supplemen-tary to the syntactic information encoded in the treebank resource. For exampleAgirre et al. (2008) incorporate word sense data as an additional source of knowl-edge. Additionally it has been noted that re�nements relying solely on the Pennwsj dataset run the risk of over-�tting to the speci�c idiosyncrasies of that corpus;which is largely of the same topic written in a particular ��nancial-speak� style. Ifwe are to improve treebank-based probabilistic parsing and achieve a more generalpurpose, less domain-speci�c parsing architecture, then more generalised sources ofknowledge are a necessity.We believe that bringing together di�erent knowledge sources that encode dif-ferent types of linguistic information as part of, or as a complement to, a statisticalmodel could yield an improved parser. This information might come from a num-ber of sources: machine-readable dictionaries, knowledge-banks and ontologies, etc.and could be exploited by means of incorporating machine learning techniques todisambiguate problematic cases in parsing.Another potential source of linguistic information might come from identifyingand �agging certain classes of multi-word units (mwus), such as named entities andother �xed and semi-�xed expressions. This would be achieved by employing machinelearning-based classi�ers in the initial stages of a parsing pipeline.Multi-word units are phrases that are lexically, syntactically and/or semanti-7



cally idiosyncratic in that they are to at least some degree non-compositional (Saget al., 2002). The term is a broad one that encompasses a wide range of distinct,but related, phenomena: from truly �xed �lexicalised� expressions (e.g. �by andlarge�, �ad hoc�), to semi-�xed expressions such as compound nominals (�chief ex-ecutive o�cer �, �machine translation�), to more syntactically �exible units such asphrasal verbs (�write�+�up�, �get�+�over �). Borrowing some terminology from theinformation extraction (ie) �eld, we include the concept of named entities (nes) inour de�nition of mwus. These are �xed and semi-�xed expressions that refer toproper names (�Pierre Vinken�, �New York City�), time expressions (�two days ago�,�October 19th�) and number expressions (�one million dollars�, �60 mph�).The correct treatment of multi-word units presents a challenge in a wide varietyof tasks, as much in purely statistical approaches to nlp as in more linguistically-grounded approaches (and all that fall in between). Their identi�cation is a non-trivial consideration in information extraction (ie), question answering (qa), ma-chine translation (mt), corpus construction, the speci�cation of linguistic formalismsand�as we explore in this thesis�parsing. While it is clear that mwus can present achallenge in parsing (and it is often assumed that incorporating some degree of mwuknowledge in parsing is bene�cial) there is surprisingly little published research onthe subject matter of this thesis. In this context, we believe that our work �lls aconspicuous gap in the literature.Our core research hypothesis is that, if we possess a means of accurately iden-tifying mwus, we can exploit knowledge about their syntactic (phrasal) boundariesin parsing as �ground truths� or �islands of certainty� within the parse chart. It isour intuition that this should help resolve certain important classes of ambiguousparsing decisions (such as the well-known stumbling-blocks of preposition-phrase at-tachment and co-ordination), yielding better overall parse accuracy. We also believethat improvements in e�ciency (i.e. parse speed) should be brought about by takingadvantage of this mwu information.To test our hypotheses we will carry out a number of experiments which integrate8



knowledge about di�erent classes of mwus. Given the broad range of phenomena thatfall under the umbrella term �multi-word unit�, the identi�cation and treatment ofmwus is often a complex proposition. Luckily however, there exist certain classes ofmwus that can be quite readily identi�ed in an automatic fashion�in some cases toa near-human level of accuracy. We will demonstrate that by exploiting informationabout these units, certain classes of parsing decisions are indeed more accuratelyand e�ciently resolved by the parser. This translates to improvements in overallparsing results which are modest (at best a 1.8% reduction in error) but demonstrablysigni�cant. Among the speci�c research questions that we will address are:1. How should we integrate mwu information in a statistical parsingarchitecture? We will look at two general approaches to integrating multi-word units in parsing: on the one hand, modifying (essentially, retokenising)the corpus used to train an existing parser such that mwus are treated as single�words with spaces�; and on the other, implementing a constraints mechanisminternal to the parser such that mwu boundaries are adhered to.2. What kinds of mwus are useful in statistical parsing? mwu is abroad term. In our case we we will look speci�cally at several classes of namedentities�name expressions, time expressions and number expressions�as wellas prepositional multi-word expressions.3. What e�ect does mwu information have across di�erent parsers? Wetest our approach with tree di�erent parsing architectures: a �vanilla� proba-bilistic context-free grammar (pcfg); a history-based, lexicalised, generativeparsing model; and a pcfg exploiting latent annotations.In a sense, our research is as much an investigation of how well several existing parsingmodels already (implicitly) account for the various phenomena associated with multi-word units as an evaluation of explicitly incorporating mwus in the model.As a supplementary task, we will also explore the role that knowledge aboutthe same mwus can play in the converse operation to statistical parsing: statistical9



sentence generation (speci�cally, surface realisation from lfg f-structures). To thisend, we will present the results of some preliminary experiments that exploit mwusin a statistical chart-based sentence generator (Cahill and van Genabith, 2006).We have published parts of the research presented here in Hogan et al. (2007)and Ca�erkey et al. (2007). To the best of our knowledge, this research is the �rstsystematic investigation of the e�ect of mwu data in treebank-based, wide-coveragecfg parsing and generation.1.1 Thesis structureThe remainder of this thesis is structured as follows:Chapter 2 This chapter provides a summary of some of the prominent statisti-cal approaches to natural language parsing�covering linguistic formalisms, parsingarchitectures, the current state of the art and principal areas of current research.Chapter 3 Here we describe multi-word units, including named entities and othertypes of multi-word expressions. The chapter covers the characteristics of such units,their syntactic (non-)compositionality and semantic interpretation and methods fortheir identi�cation. We also present the motivation for incorporating mwus in thetask of syntactic parsing.Chapter 4 This chapter represents the core of our research�evaluating the ef-fects of di�erent approaches to incorporating both automatically-deduced and gold-standard mwu data in several parsing architectures. We analyse our results anddiscuss the implications of our work.Chapter 5 Here we describe several experiments where we exploit multi-word unitsin the task of statistical sentence generation (speci�cally, surface realisation from lfgf-structures). We provide an introduction to Lexical-Functional Grammar (lfg) and
10



the task of surface realisation from lfg f-structures before presenting our results andanalysis.Chapter 6 We provide a comparison of our work with related research on multi-word units in several approaches to parsing, including dependency parsing and pars-ing with Lexical-Functional Grammar. We also discuss related work on constrainedparsing.Chapter 7 Finally, we summarise our work and o�er conclusions and some futureresearch directions.
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Chapter 2
Statistical Parsing
Syntactic parsing is the process of recognising a sentence and assigning a syntacticstructure to it. Data-driven, statistical approaches to parsing�employing supervisedlearning and large-scale syntactically-annotated corpora�have been among the bestperforming approaches to the task. In this chapter we will cover some of the morewidely deployed statistical approaches to syntactic parsing. We will cover proba-bilistic context-free grammars (pcfgs), parsing algorithms, treebanks, the currentstate of the art and some areas of ongoing research. We will also brie�y discuss somealternative linguistic formalisms for syntactic parsing.2.1 IntroductionParsing�the task of deducing the syntactic structure of a string�is the prerequi-site for a range of natural language processing tasks. Amongst the tasks to whichparsing has been applied are information extraction (e.g. Surdeanu et al., 2003),machine translation (Riezler and Maxwell, 2006, Charniak et al., 2003) and sen-tence compression (Turner and Charniak, 2005). For an overview of how parsing isemployed in these and other tasks see Lease et al. (2006). There exist a numberof approaches and linguistic formalisms for parsing�ranging from purely statisticalmodels to hand-crafted, rule-based systems. Here we are concerned with data-driven,statistical approaches to �shallow� parsing (where the aim is to generate the phrase-12



structure tree corresponding to a sentence�e.g. Figure 2.2). These models areusually trained on large-scale syntax tree-annotated corpora such as the Penn WallStreet Journal (wsj) Treebank (Marcus et al., 1994).2.2 Formal grammarsA range of concepts from formal language theory can be applied to natural language,and the concept of formal grammars is the basis for most approaches to parsing. Aformal grammar G is de�ned as a quad-tuple (N,Σ, P, S) consisting of:� A �nite set N of nonterminal symbols (or �variables�)� A �nite set Σ of terminal symbols that is disjoint from N� A �nite set P of production rules, each of the form
(Σ ∪ N)∗N(Σ ∪ N)∗ → (Σ ∪ N)∗� A distinguished symbol S ∈ N that is the start symbolIn a formal grammar, each production rule maps from one string of symbols toanother, where the �rst string contains at least one nonterminal symbol. In thecase that the second string is the empty string�that is, that it contains no symbolsat all�λ is typically written. The language of a formal grammar G = (N,Σ, P, S),denoted as (G), is de�ned as all those strings over Σ that can be generated by startingwith the start symbol S and then applying the production rules in P until no morenonterminal symbols are present.2.2.1 The Chomsky hierarchyThe Chomsky hierarchy (Table 2.1) is a taxonomy of classes of formal grammars (andtheir corresponding formal languages). Under the Chomsky classi�cation, the over-whelming majority of the syntax of natural languages can be expressed by context-free grammars (those recognisable by a non-deterministic pushdown automaton). It13



Grammar Language Automaton Production rule formType 0 Unrestricted Turing machine α → βType 1 Context-sensitive Linear-boundedautomaton αAβ → αγβType 2 Context-free Non-deterministicpushdown automaton A → γType 3 Regular Finite state automaton A → a or A → aBTable 2.1: The Chomsky hierarchy; where α and β are (possibly empty) strings ofterminal and nonterminal symbols, γ is a non-empty string of terminals and nonter-minals, A and B are non-terminals, and a is a terminal symbol.is therefore unsurprising that cfgs of one form or other are the underlying model onwhich the majority of natural language parsers are based.2.3 Context-free grammarsA context-free grammar (cfg) is a grammar that imposes the restriction that theleft-hand side of each production rule consists of a single nonterminal symbol only.Formally, a cfg is a 4-tuple (N,Σ, P, S) consisting of the following parameters:1. A set of nonterminal symbols N2. A set of terminal symbols Σ disjoint from N3. A set of productions P , each of the form A → β, where A is a nonterminal and
β ∈ (Σ ∪ N)∗4. The designated start symbol S ∈ N2.3.1 Probabilistic context-free grammarsProbabilistic context-free grammars (pcfgs) represent a simple augmentation to acfg whereby each production rule has an associated probability p:

A → β [p] (2.1)
14



A pcfg is therefore a 5-tuple (N,Σ, P, S,D) where D is a function assigningprobabilities to each production in P such that:
∀i

∑

j

p(Ai → βj) = 1 (2.2)Given a pcfg, the probability of a speci�c parse T for a sentence S is de�ned asthe product of the probabilities of all of the production rules r used to expand eachnode n in the parse tree:
p(T, S) =

∏

p(r(n)) (2.3)Therefore, the optimum parse for the the sentence S is the highest-probabilitytree in the set of possible parses τ(S):
T̂ (S) = arg max

T∈τ(S)
p(T ) (2.4)pcfgs are the core model upon which many state-of-the-art parsers are based, andindeed many such sophisticated parsing models can be viewed merely as re�nementsof the pcfg model (Charniak, 1997).2.3.2 Lexicalised context-free grammarsA head-lexicalised pcfg, as �rst described by Black et al. (1992), is based on theassumption that syntactic constituents can be associated with a lexical head. In sucha grammar the lexical head of a given constituent is associated with a correspondingproduction rule, constituting a means whereby lexical (i.e. word) dependencies canbe integrated into the model.It has been demonstrated that lexical dependencies are useful in resolving certainclasses of syntactic ambiguity (such as preposition-phrase attachment as documentedby Hindle and Rooth, 1993).The utility of lexicalisation is however limited by the fundamental sparsity oflexical dependency data inherent in the training corpora upon which parsing models15



have been trained. Nonetheless, many of the best-performing statistical parsers (e.g.Collins 1999, Charniak 2000, Charniak and Johnson 2005) employ, and clearly bene�tfrom, lexicalised parsing.12.4 The Penn wsj TreebankStatistical approaches to syntactic parsing typically require large amounts of trainingexamples from which, say, a probabilistic context-free grammar can be derived. Thisis typically in the form of a large-scale syntactically-annotated corpus, or treebank.The most widely used such treebank has been the Wall Street Journal (wsj) portionof the Penn Treebank (Marcus et al., 1993).The Penn Treebank project was undertaken at the University of Pennsylvaniabeginning in 1989 with the aim of producing a large-scale annotated corpus of Amer-ican English. The initial goal was the construction of a corpus annotated in terms ofparts of speech and skeletal parse structure; this was performed in a semi-automaticmanner whereby the outputs of part-of-speech tagger and syntactic parser were cor-rected by human annotators. The version of the corpus used here�Treebank Release2�was completed in 1995.Treebank Release 2 provides a corpus of one million words of 1989 Wall StreetJournal material annotated in Treebank II bracketing style (Marcus et al., 1994).This combines part-of-speech, syntactic, and some semantic functional annotations.A full listing of the Penn Treebank pos and syntactic tags can be found inAppendices A and B; Table 2.2 shows the set of Penn functional sub-tags; Figures2.1 and 2.2 show a typical sentence annotated in Treebank II bracketing style.We will discuss how to extract a probabilistic context-free grammar from thePenn wsj Treebank in Chapter 4.1This is underpinned by back-o� and smoothing techniques, and through more sophisticatedre�nements of the pcfg model (e.g. history-based models).
16



Tag Description Tag DescriptionText Categories: -sbj Surface subjects-hln Headlines and datelines -tpc Topicalised and fronted constituents-lst List markers -clr Closely related-ttl Titles Semantic roles:Grammatical functions: -voc Vocatives-clf True clefts -dir Direction and trajectory-nom Non-nps that function as nps -loc Location-adv Clausal and np adverbials -mnr Manner-lgs Logical subjects in passives -prp Purpose and reason-prd Non-vp predicates -tmp Temporal phrasesTable 2.2: Treebank II functional sub-tags
(S (NP-SBJ ( Mr.) (NNP Baker) )(VP(VP(VBZ wears)(NP (DT a)(NP (NN tweed) (NN jacket) ))(PP-LOC (IN on)(NP (PRP$ his)(NP (NN ghostbusting) (NNS forays) )))))Figure 2.1: A syntactic analysis for the sentence �Mr. Baker wears a tweed jacketon his ghostbusting forays� annotated in Treebank II bracketing style (adapted fromwsj �04, sentence 347).

17



SNP-SBJNNPMr. NNPBaker VPVPVBZwears NPDTa NPNNtweed NNjacket
PP-LOCINon NPPRP$his NPNNghostbusting NNSforaysFigure 2.2: Graphical representation of analysis of the sentence �Mr. Baker wears atweed jacket on his ghostbusting forays� from Figure 2.1.2.5 Parsing with pcfgsParsing can be regarded as a search problem whereby we search through the spaceof possible parse trees to �nd the correct parse for a given sentence (this searchspace is de�ned by the grammar). One of the most commonly used algorithms forfor context-free parsing is the Cocke-Younger-Kansami (cyk) algorithm (Aho andUllman, 1972).2.5.1 The cyk algorithmThe (probabilistic) cyk parser is a bottom-up dynamic programming algorithm thatallows us to e�ciently calculate (in cubic time) the most probable parse for a givensequence of word tokens w1...wn and a probabilistic context-free grammar G.The algorithm requires that the grammar be in Chomskey Normal Form (cnf);meaning that production rules are of the form A → B C or A → α, where A, Band C are nonterminal symbols and α is a terminal symbol (in other words, all non-preterminal productions are binary-branching). Since it is quite trivial to convert anycontext-free grammar to cnf, a cyk parser can be used to recognise any context-free18



#initialisationfor all i,j,kp[i,j,k] = 0#base casefor i = 1...nfor k = 1...Gif k → wi is in grammarp[i,i,k] = P(k → wi)#recursive casefor s = 2...nfor i = 1...n-s+1j = i+s-1for m = i...j-1for k = 1...Gfor k1 = 1...Gfor k2 = 1...Gprob = p[i,m,k1] * p[m+1,j,k2] * P(k → k1 k2)if (prob > p[i,j,k])p[i,j,k] = probB[i,j,k] = {m,k1,k2}Figure 2.3: Pseudo-code for the cyk algorithm (based on that given in Cahill, 2004).language.Figure 2.3 gives the pseudo-code for a cyk implementation. First, we initialisea parse chart of size n by n. The base case then populates the diagonal of the chart([i][i]) with unary productions�rules of the form A → a, where A is the syntacticcategory (usually corresponding to a part of speech tag) associated with the wordtoken a. Binary productions (rules spanning two constituents�A → AB) will beconsidered during the recursive case.The recursive case �lls the chart bottom-up, left-to-right. At any chart position[i][j], a rule A → A|a B|b may be inserted into the chart (with a correspondingprobability) if there is already a rule with a lhs A at position [i][k] and a rulewith lhs B at cell [i+k][j-k], for all i ≤ k ≤ j.The most common version of the algorithm determines the most probable ruleat each stage, and retains that rule only (in this way we can e�ciently calculate themost likely derivation). Once this process is completed, the sentence is recognisedby the grammar if the subsequence containing the entire sentence is matched by the19



Rule Prob. Rule Prob.s → np vp 1.0 dt → Mr. 0.5np → dt np 0.6 nnp →Baker 0.7np → nn nn 0.2 vbz → wears 1.0np → nnp nnp 0.2 dt → a 0.5vp → vbz np 1.0 nn → tweed 0.3nn → jacket 0.7nn → Baker 0.3Figure 2.4: An example probabilistic context-free grammar.Mr Baker wears a tweed jacket0 1 2 3 4 50 dt = 0.5 np = 0.6 s = 1.01 nnp = 0.7nn = 0.32 vbz = 1.0 vp = 1.03 dt = 0.5 np = 0.64 nn = 0.3 np = 0.25 nn = 0.7Figure 2.5: Probabilistic cyk parse chart for the sentence �Mr. Baker wears a tweedjacket�.start symbol.By way of an example, Figure 2.5 illustrates the parse chart for the sentence �Mr.Baker wears a tweed jacket�, given the pcfg grammar in Figure 2.4.2.6 History-based (lexicalised, generative) parsingIn a history-based parsing model the parse tree is represented as a sequence of de-cisions, the decisions being made in some derivation of the tree. Each such decisionhas a probability and the product of the probabilities in a given derivation de�nesits likelihood over all possible derivations. History-based parsing models were �rstdescribed by Black et. al (1992) as �history-based grammar models� (for a formal,generalised de�nition of history-based models see Bikel 2004). In its most general20



form, a history-based parsing model states that all prior parse decisions can in�uenceany later parse decisions in the derivation. In practice, however, only speci�c condi-tioning features are used in the history (such as path to the root node) to lend speci�cbiases to the model. Here we will describe two such history-based approaches: thatof Collins (1999) and that of Charniak (2000, 2005).2.6.1 Collins (1999)The three generative lexicalised parsing models described by Collins (1999) are ex-amples of history-based models. Collins' model 1 extends a pcfg into a lexicaliseddependency grammar-like framework, modelling dependencies between pairs of headwords (bilexical statistics). Lexicalisation is performed using a set of head-�ndingheuristics based on those used by Magerman (1995).Collins' model 2 additionally attempts to distinguish arguments from adjunctsand to model probabilities over subcategorisation frames. Another important linguistically-motivated feature of Collins models is that it treats �base nps� (i.e. non-recursivenoun phrases) quite di�erently from normal nps (for details see Collins 1999, Bikel2004).Collins' model 3 further re�nes the model, making use of the trace annotationspresent in the Penn Treebank which describe Wh-movement. This particular aug-mentation, however, does not yield signi�cant performance gains over model 2.In Chapter 4 we will make use of Bikel's (2002) multilingual statistical parsingengine2 emulating Collins' (1999) model 2.2.6.2 Charniak (2000)Charniak's (2000) �maximum entropy-inspired� parser employs a similar history-based approach to that of Collins. The major technical innovation of Charniak'sparser is the use of a �maximum-entropy-inspired� model for conditioning and smooth-ing, where all probability distributions are heavily backed o� and smoothed using2available from http://www.cis.upenn.edu/~dbikel/software.html21



Chen and Goodman's (1996) method.2.6.2.1 Reranking: Charniak and Johnson (2005)The Charniak and Johnson (2005) approach takes the n-most likely parses pro-posed by a modi�ed version of the Charniak (2000) parser and employs a discrimina-tive reranker�a maximum-entropy based estimator�to select the best parse. Thismethod allows the incorporation of syntactic relationships that are more di�cult toexpress in the generative model. This type of �pipeline� parsing architecture repre-sents the current state of the art in statistical parsing.2.7 pcfg with latent annotationsIt was demonstrated by Klein and Manning (2003)�building on similar work car-ried out by Johnson (1998)�that an unlexicalised, �plain� pcfg parser can achieveperformance that approaches that of history-based, lexicalised models if suitablelinguistically-motivated heuristics are employed to augment the set of grammar sym-bols. For example, if the training corpus is modi�ed such that the syntactic categoryof each node's immediate parent is appended to its syntactic label a signi�cant im-provement in accuracy is brought about.Matsuzaki and Miyao (2005) introduced the idea of a �pcfg with latent annota-tions� (pcfg-la), where �ne-grained pcfg rules are induced using an expectation-maximisation (em) algorithm to append �latent variables� to the nonterminal gram-mar symbols. This is similar in spirit to Klein and Manning's (2003) work, whichuses manual feature selection to augment the grammar symbols. Petrov et al.(2006) expand on this idea with the Berkeley parser, which exploits the conceptof a hierarchically-split pcfg.
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2.7.1 Berkeley parserThe Berkeley Parser (Petrov et al., 2006)3 employs an algorithm in which basicnonterminal symbols of a unlexicalised pcfg are alternately split and merged tomaximise the likelihood of the training treebank. Their grammars automaticallylearn the kinds of linguistic distinctions exhibited in previous work with heuristic-based tree annotation.The parser is trained by starting with a treebank-induced grammar and repeat-edly splitting, merging and smoothing grammar symbols using an expectation max-imisation algorithm.2.8 Alternative linguistic formalisms for parsingThere exist many di�ering approaches to the analysis of natural language syntaxand therefore there are many possible approaches to syntactic parsing. Among theseare deep linguistic formalisms�such as hpsg, lfg and ccg�and dependency-basedanalyses.2.8.1 Deep parsingIn �deep� parsing we generate phrase-structure trees similar to those that wouldbe output by a skeletal parser but with a much richer set of grammatical relationsbetween the nodes of the tree. These relations might include predicate-argumentdependencies as well as other types of functional and semantic relations. In orderto obtain accurate and complete representations deep parsers usually involve therepresentation and resolution of non-local dependencies (nlds).Examples of deep linguistic formalisms include Head-driven Phrase StructureGrammar (hpsg�Pollard and Sag, 1994), Lexical-Functional Grammar (lfg�Dalrymple,2006), Tree-Adjoining Grammar (tag� Joshi, 1987) and Combinatory CategorialGrammar (ccg�Steedman, 2000).3available from http://nlp.cs.berkeley.edu/23



In contrast to the statistical approaches to parsing with which we are concernedin this thesis, deep parsing has traditionally employed rule-based approaches basedon hand-crafted grammars (a notable exception being the Statccg parser for Com-binatory Categorial Grammar).4In this thesis we will perform a number of experiments exploiting multi-wordunits in sentence generation from lfg f-structures and, accordingly, we provide asummary of Lexical-Functional Grammar in Chapter 5.2.8.2 Dependency parsingAn alternative formalism for syntactic parsing is dependency grammar. Depen-dency grammar parsing is the task of deriving the tree which represents grammaticalrelations�dependencies�between a given sequence of word tokens. Dependenciesare de�ned in terms of direct grammatical relationships between the the word tokensin the sentence.Dependency parsing is often said to combine many of the attributes of shal-low (constituency) parsing with those of deeper approaches to parsing grounded inlinguistic formalisms such as hpsg or lfg. Among the advantages of dependencygrammars is their ability to naturally model non-nested constructions, which is im-portant in freer-word order languages such as Czech, Dutch, and German (Nivre,2005).Figure 2.6 shows the sentence �Mr. Baker wears a tweed jacket� in dependencyannotation (cf. Figure 2.2).Among the current state of the art dependency parsers are Nivre et al.'s (2007)MaltParser, McDonald et al.'s (2006) mstParser and �ensemble� approaches suchas Sagae and Tsujii (2007). Dependency parsing has been the subject of a numberof recent workshops and shared tasks including the Conll-x and Conll-2007 tasks(Buchholz and Marsi, 2006, Nivre et al., 2007a).4More recently, a large amount of research has concentrated on automatic treebank-based acqui-sition of deep hpsg, ccg and lfg resources (Miyao et al., 2004, Hockenmaier, 2003, Cahill et al.,2008). 24



Figure 2.6: A dependency structure analysis for the sentence �Mr. Baker wears atweed jacket� (from Figure 2.2).Parser % Recall % Precision F-scoreCollins (1999) model 2 88.47 89.30 88.88Bikel (2002) model 2 emulation 88.72 89.03 88.87Charniak (2000) 89.6 89.5 89.55Charniak and Johnson (2005) 90.1Berkeley Parser (Petrov et al., 2006) 89.8 89.6 89.7Table 2.3: Published state of the art results for statistical parsing of the Penn wsjTreebank. Labelled recall, precision and f-score. All sentence lengths.2.9 Summary and research directionsSome of the state-of-the art results reported in the literature for parsing the Pennwsj corpus are given in Table 2.3.5 Scores are given according to parseval labelledbracketing recall and precision measures (see Section 4.6).We summarise some of the principal avenues of ongoing research in statisticalparsing below.2.9.1 Evaluation metricsThere have been many criticisms of the parseval bracketing recall and precisionmetrics (Abney et al., 1991) as a means of evaluating parser performance. Speci�ccriticisms that have been leveraged are that the parseval measures penalise cer-5The scores given here for Bikel's model 2 implementation and the Berkeley parser di�er fromthe baseline scores that we will see in Chapter 4 due to di�erent settings (in particular, we usegold-standard part-of-speech tags in our experiments).25



tain attachment errors types too harshly, and that they are overly sensitive to thetreebank annotation scheme. Other approaches to parser evaluation that have beenproposed include leaf-ancestor (Sampson and Babarczy, 2003) and dependency-basedevaluations (Carroll et al., 2002).2.9.2 Domain adaptationParsers trained and repeatedly evaluated on the wsj treebank run the risk of over-�tting to that particular corpus, meaning that the parser generalises poorly to otherdomains. Domain adaptation (or genre portability) is thus an important topic. Somenotable work on the subject of domain adaptation includes Sekine (1998), Gildea(2001) and Foster et al. (2007).2.9.3 Semi-supervised trainingSince there is only a �nite amount of hand-annotated training data available (in theform of treebanks), semi-supervised learning is highly desirable in statistical parsing.Examples include Steedman et al. (2003) and McClosky et al. (2006). The approachtaken for learning latent annotations in the Berkeley parser can also be seen as aninstance of semi-supervised learning.2.9.4 Extra-treebank linguistic informationIt is our contention in this thesis that bringing together di�erent knowledge sourcesthat encode di�erent types of linguistic information as part of, or as a complementto, the treebank-induced statistical model could yield an improved parser. Thisinformation might come from a number of sources: machine-readable dictionaries,knowledge-banks and ontologies, etc. and could be exploited by means of incorporat-ing machine learning techniques to disambiguate problematic cases in parsing. Suchapproaches have shown promise in some areas; for example, Hogan (2007) showsthat exploiting WordNet (Fellbaum et al., 1998) information can improve parsingco-ordinate structures. 26



Chapter 3
Multi-Words Units
This chapter de�nes the concept of multi-word units (mwus)1, which include (multi-word) named entities (nes), compound nouns, compound function words, idioms, andmany other forms of multi-word expressions (mwes). We describe the classi�cationof these units, their syntactic and semantic compositionality, methods for their iden-ti�cation and nlp applications that can bene�t from the notion of mwus. Finally,we present the case for incorporating knowledge of mwus in statistical approachesto syntactic parsing.3.1 De�nition and classi�cationAt a high level, we can de�ne multi-word units as lexically, syntactically and/orsemantically idiosyncratic phrases (i.e. sequences of two or more word tokens).2Such expressions can often be treated as single lexical units. mwus are comprised ofa large number of related but distinct phenomena.The concept of mwus is one that has been widely employed in information re-trieval (ir), information extraction (ie) and question-answering (qa) systems where1Since we will borrow terminology and technology from the information extraction �eld we usethe more general term `multi-word unit' rather than `multi-word expression' which is commonlyfound in the computational linguistics literature. This is to be interpreted as mwu = mwe + ne,treating named entities as a separate class of mwu.2In general these units are contiguous, composed of non-disjoint strings of word tokens, althoughthis need not be the case. 27



collocations and named entities play important roles. These mwu types are only thetip of the iceberg however: the term can refer to a broad range of lexically, syntacti-cally and/or semantically irregular strings of word tokens such as idioms, compoundnouns, proper names, verb-particle constructions and light verbs. mwus are foundto varying degrees across all text genres and thus their identi�cation, �agging, anal-ysis and interpretation is potentially useful in almost all nlp applications. Although(as is the case in nlp in general) the phenomena associated with mwus are mostdocumented for English, they are by no means unique to English.3.1.1 Types of multi-word unitsAs noted, the term �multi-word-unit� is a broad one. Here we will provide somedescription of the speci�c types of mwu to which we will refer. Table 3.1 providessome examples which illustrate some of the characteristics of these mwu classes.We will discuss the main classes of mwus in more detail below. Our classi�cationof mwus roughly follows that of Sag et al. (2002), consisting of four main types (inorder of lexical rigidity): �xed expressions, semi-�xed expressions, syntactically-�exible �xed expressions and institutionalised phrases. We will treat multi-wordnes as a separate class, although there is some overlap with the aforementionedcategories.3.1.1.1 Fixed expressionsFixed expressions are syntactically fully non-compositional and as such are lexically,morphologically and syntactically immutable. Examples include phrases such as �byand large� and foreign-language terms used in English such as �ad hoc�. Althoughthere certainly exists a large amount of such expressions, they are much less plentifulthan other, more lexically �exible types of mwus.
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Syntactically rigid units:Fixed expressions by and largefor examplead hocNon-decomposable idioms kick the buckettrip the light fantasticshoot the breezeCompound nominals chief executive o�cercar parkmachine translationSyntactically-flexible units:Verb-particle constructions write + upfall + o�brush up + onDecomposable idioms let the cat out of the bagspill the beanssweep under the rugLight verbs make + a mistakegive + a demotake + a napNamed entities:Personal names Martha MatthewsYoshio HatakeyamaOrganisations Rolls-Royce Motor Cars Inc.Washington State UniversityLocations New York CityPeople's Republic of ChinaTime expressions October 19thtwo years agothe 21st centuryQuantities $2.7 million to $3 millionabout 25%60 mphTable 3.1: A possible taxonomy of multi-word unit types, with examples. For ourpurposes we treat named entities as a separate class of mwus (although this distinc-tion is not always clear-cut).
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3.1.1.2 Semi-�xed expressionsThe class of semi-�xed expressions�although for the most part lexically and syn-tactically rigid�are sometimes variable in terms of in�ection, re�exive forms anddeterminer selection. Such expressions include non-decomposable idioms, compoundnominals and proper names:Non-decomposable idioms The syntactic composition of true idioms follows nor-mal grammar rules, but they are semantically non-decomposable. As a consequencethey tend to occur as syntactically rigid units. Examples include the oft-cited �Kickthe bucket�.Compound nominals These are syntactically immutable units that in�ect fornumber. Such units are plentiful in English, with examples such as �chief execu-tive o�cer �, �machine translation� and countless others. Compound nominals cansometimes be idiosyncratic in their in�ections.Proper names These are names of people, organisations, locations, etc.�equivalentto the class of enamex-type named entities (see below).3.1.1.3 Syntactically-�exible �xed constructionsLess rigid units such as verb-particle constructions (or phrasal verbs), decomposableidioms and light verbs are subject to a much greater degree of syntactic variability.This means that they are likely to require more complex treatments than the �xedand semi-�xed expressions that we have seen.Verb-particle constructions A verb-particle construction is comprised of a verbtogether with one or more associated �particles�, constituting a single semantic unit.Examples include �write�+�up�, �fall�+�o� � and �brush up�+�on�. Any treatmentof these units at the lexical level will prove problematic since they are not necessarilycomprised of a contiguous string of tokens.30



Decomposable idioms These are idiomatic expressions that are semantically de-composable, and can thus be subject to syntactic variability. Examples include �Letthe cat out of the bag�.Light verbs A light verb is a verb participating in complex predication that haslittle semantic content of its own, but provides through in�ection some details onthe event semantics. Examples include �make�+�a mistake�, �give�+�a demo� and�take�+�a nap�.3.1.1.4 Institutionalised phrasesInstitutionalised phrases are syntactically and semantically compositional, but sta-tistically frequent (e.g. �at the weekend �). Lexicalised statistical models of languageshould (at least theoretically) already capture the information required to accountfor the statistical bias of such expressions. Since these phrases are subject to fullsyntactic variability we will not consider them �true� mwus in the sense with whichthis thesis is concerned.3.1.1.5 Multi-word named entitiesNamed entities are single- or multi-word units that convey the names of speci�cpeople, organisations, locations, times or quantities. Strictly speaking, nes refer torigid designators�most commonly proper names; for example the names of people,organisations and locations. The term often also encompasses time and quantityexpressions (which are not necessarily rigid designators).The names of people, organisations, locations, etc. are referred to as name expres-sions (generally denoted enamex); times, dates, days of the week, etc. are classi�edas time expressions (timex); while quantities and other values are categorised asnumber expressions (numex).A number of type hierarchies have been de�ned for named entities : most notablythe bbn hierarchy (Weischedel and Brunstein (2005)�designed for the qa task) andSekine's extended hierarchy (Sekine et al., 2002).31



The bbn Pronoun Coreference and Entity Type Corpus (Weischedel and Brun-stein, 2005) supplements the Penn wsj treebank (see Chapter 2) with annotationsof the 29 ne types de�ned in the bbn hierarchy, including nominal-type nes suchas person, organisation, location, etc. as well as numeric types such as date, time,quantity and money. We will make use of this resource in Chapters 4 and 5.3.2 (Non-)Compositionality and interpretationThe questions of syntactic and semantic compositionality and interpretation of mwuscome up to varying degrees in di�erent nlp tasks. In applications that are linguistically-informed (i.e. not purely statistically-driven) it will not su�ce to merely identifymwus without some degree of further analysis. As we have seen, the degree of com-positionality and thus syntactic and semantic interpretability varies depending onthe class of mwu. The syntactic function performed by an mwu as a whole is ofteneasily and systematically discernible�but this is not always the case. It follows thatany computational treatment of mwus should at least in some way be informed bythe degree of (non-)compositionality of a given class of units.Truly �xed expressions are essentially non-compositional and as such do not re-quire any further analysis. It thus makes sense to treat them as immutable units(or �words with spaces�). Semi-�xed expressions can often be given a similar treat-ment. More �exible expressions require a more sophisticated, semantically-orientedapproach however. We will partially explore this in Chapter 4, but the question ofsemantic interpretability is, for most part, beyond the scope of this thesis.3.3 Identifying multi-word unitsThere exists are growing body of research on the identi�cation and classi�cation ofmwus of various types. This has been yielded by several workshops on the subject(at acl-2006 and 2007, for example) and, in particular, the Multiword ExpressionProject led by Stanford University. 32



Approaches have ranged from hand-crafted, rule-based approaches to�particularlyin the case of named entities�statistical methods. The two obviously are not com-pletely disjoint, for example a statistical classi�er (the latter case) might make useof mwu resources compiled using hand-crafted approaches (the former).3.3.1 Simple approachesSimple approaches such as identifying statistical co-occurrences of word tokens (col-locations) or manually listing out sequences deemed to be mwus (laboriously adding�words with spaces� to the lexicon of a rule based parser, for example) can be usefulfor certain, more lexically rigid mwu types. However such approaches scale poorly�they do not take into account the underlying phenomena at play and fail to accountfor the varying lexical, syntactic and semantic behaviours of di�erent types of mwus.3.3.2 Rule-based approachesAnother method for mwu identi�cation is to employ a rule-based approach to ex-tract units from large-scale corpora in an automatic and semi-automatic fashion.This might be based on, for example, parts of speech and template matching. Thedictionary of candidate prepositional multi-word expressions3 that we will use inChapters 4 and 5 was generated in this manner from the British National Corpus(bnc�Burnard, 2000).3.3.3 Supervised learningA more scalable solution is to employ supervised learning in the form of �semantictaggers� (sequential classi�ers)�or cascades of such taggers�trained on large-scalemwu-annotated corpora. An example of this approach is that of Piao et al. (2003).Machine learning-based methods have, in particular, been applied to named entityrecognition (see below).3Based on resource from http://mwe.stanford.edu
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[enamexDiamond Shamrock Offshore] 's stock rose [numex12.5 cents][timexFriday] to close at [numex$ 8.25] in [enamexNew York StockExchange] composite trading .Figure 3.1: Output from a named entity recognition (ner) system for the sentence�Diamond Shamrock O�shore's stock rose 12.5 cents Friday to close at $8.25 in NewYork Stock Exchange composite trading�.System % precision % recall f-scorebaseline 71.91 50.90 59.61Florian et al. (2003) 88.99 88.54 88.76Chieu and Ng (2003) 88.12 88.51 88.31Table 3.2: CoNLL-2003 language-independent ner task: English results. Precision,recall and f-score (harmonic mean of precision and recall).3.3.4 Named entity recognitionSigni�cant work has been carried out on the automatic identi�cation (and classi-�cation) of named entities. The task of named entity recognition (ner), which isgenerally presented as a subtask of information extraction, has been the subject of anumber of shared tasks and workshops. The problem is essentially a sequential clas-si�cation task, to which both knowledge engineering- and machine learning-basedapproaches have been applied.One of the �rst competitive evaluations of approaches to ner was as part of theMessage Understanding Conferences (muc-6, muc-7) in 1995 and 1998. More re-cently, the Conll-2002 and Conll-2003 shared tasks evaluated language-independentner systems which employed supervised learning using a wide range of machine-learning paradigms. The muc and Conll tasks focused speci�cally on name expres-sions (enamex), de�ning four broad subcategories: persons (denoted per), locations(loc), organisations (org), and miscellaneous (misc). The performance achievedby the state-of-the-art systems is summarised in Tables 3.2 and 3.3.Purely statistical approaches achieve performance below rule-based systems (al-though it should be noted that the datasets used to evaluate these di�ering ap-proaches are not directly comparable). In both cases performance can approachnear-human levels (e.g. on the muc-7 task: human 97.6%, best ner 93%).34



System % precision % recall f-scorebaseline 58.89human 98 98 97.60Mikheev et al. (1998) 95 92 93.39Table 3.3: muc-7 (1998) ner task. Precision, recall and f-score (harmonic mean ofprecision and recall).Figure 3.1 shows a typical output from a named entity recogniser for the sen-tence �Diamond Shamrock O�shore's stock rose 12.5 cents Friday to close at $8.25in New York Stock Exchange composite trading�, where name expressions, numberexpressions and time expressions have been �agged.In Chapters 4 and 5 we will make use of the output from the Chieu and Ng's(2003) ner system as evaluated in the Conll-2003 shared task. Chieu and Ng'ssystem uses a maximum entropy sequential classi�er to assign tags to unseen data,achieving almost 90% recall and precision. The English-language training and testdata was derived from the Reuters corpus supplemented with gold-standard annota-tions of the four ne types de�ned in the task.3.4 Multi-word units in nlp applicationsThe treatment of multi-word units presents a challenge in a wide variety of tasks,as much in purely statistical approaches to nlp as in more linguistically-groundedapproaches (and all that fall in between). An obvious example is that of namedentities, which are an important concept in information extraction (ie), and therelated task of question answering (qa). Here the ability to accurately recogniserigid designators such as proper names is vital, and has been the impetus for muchof the research on named entity recognition.Other types of mwu are equally important in nlp, however this importanceis often under-estimated. In addition to the tasks of ie and qa the identi�cationand treatment of mwus is a non-trivial component in (among other areas) machinetranslation (mt), corpus construction, the speci�cation of linguistic formalisms and�as we explore in this thesis�parsing. 35



3.4.1 Exploiting multi-word units in parsingIt is often assumed that mwus are useful in syntactic parsing as a means of resolvingcertain types of ambiguous cases, and indeed some parsing architectures attempt toexploit knowledge about limited classes of mwus such as compound nouns. Despitethis, there is a surprisingly small amount of research reported in the literature thatputs the conjecture to the test (see Chapter 6 for a summary). In particular, weare not aware of any comprehensive work that investigates the utility of recognisingdi�erent types of mwus in data-driven, statistical approaches to syntactic parsingsuch as Collins' models.4Identifying mwus for parsing should permit us to partially address the problemof syntactic ambiguity at the lexical level. We can regard this as a means of reduc-ing the e�ective number of word tokens, thereby reducing the overall complexity.Alternatively, it can be seen as a way of incorporating a form of additional (i.e. non-treebank) information into the parsing model. From either standpoint, one wouldreasonably expect that �agging mwus prior to (or as part of) the parsing task shouldhelp in resolving ambiguous cases.Figures 3.2 and 3.3 illustrate an example of how determining the boundariesof mwus might improve parsing. Figure 3.2 gives a potential erroneous parse forthe sentence �In the meantime job losses continued�. If we can identify the mwu�In the meantime� and disallow hypotheses containing syntactic units (phrases) thatoverlap with this mwu (such as those that include the possible noun phrase �themeantime job�) we are more likely to achieve the correct parse (Figure 3.3). A parserthat respects the boundaries of mwus in this manner could, in particular, go someway towards addressing the well-documented stumbling blocks of preposition-phraseattachment and co-ordination.Figure 3.4 shows a hypothetical example where an mwu�the named entity �Peo-ple's Republic of China��creates a troublesome pp-attachment case. Here, this re-sults in an erroneous parse tree where the preposition phrase �of China� is attached4the exception being Nivre and Nilsson's (2004) work on mwus in dependency parsing.36



S
PPINIn NPDTthe NNmeantime NNjob

NPNNSlosses VPVBDcontinued
Figure 3.2: A potential erroneous parse tree for the sentence �In the meantime joblosses continued�. Here the boundary of the preposition phrase�the mwu �In themeantime��has been incorrectly determined (the phrase wrongly includes the noun�job�).

S
PPINIn NPDTthe NNmeantime

NPNNjob NNSlosses VPVBDcontinuedFigure 3.3: If we have identi�ed the mwu �In the meantime� and, accordingly, wedisallow phrases whose spans overlap with that of this unit, the correct parse tree isyielded.
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at the wrong level. A parser made suitably �aware� of this class of mwus shouldyield the correct parse tree shown in Figure 3.5.As a �nal example, Figure 3.6 illustrates a potential erroneous co-ordination ofthe noun phrases in the sentence �The Securities and Exchange Commission madean unequivocal ruling�. If we can identify the named entity �Securities and ExchangeCommission� this previously ambiguous case becomes quite trivial, yielding the cor-rect parse shown in Figure 3.7.In the next chapter we will investigate a number of ways of putting knowledgeabout mwus into practice in some of the statistical approaches to syntactic parsingthat we have described in Chapter 2.
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NP
NPDTthe NNconstitution PPINof NPDTthe NPNNPPeople's NNPRepublic

PPINof NPNNPChina
Figure 3.4: A potential erroneous parse tree for the noun phrase �the constitution ofthe People's Republic of China�, where the preposition phrase �of China� is incor-rectly attached.

NPNPDTthe NNconstitution PPINof NPDTthe NPNPNNPPeople's NNPRepublic PPINof NPNNPChinaFigure 3.5: Identifying the mwu �People's Republic of China� simpli�es the case inFigure 3.4, yielding a correct parse with the desired pp attachment.
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S
NPNPDTThe NNPSecurities CCand NPNNPExchange NNPCommission

VPVBDmade NPDTan JJunequivical NNrulingFigure 3.6: A potential erroneous parse tree for the sentence �The Securities andExchange Commission made an unequivocal ruling�. Here, the single unit �Securitiesand Exchange Commission� has been incorrectly parsed as two separate entities:�Securities� and �Exchange Commission�.
S

NPDTThe NPNPNNPSecurities CCand NNPExchange NNPCommission
VPVBDmade NPDTan JJunequivical NNruling

Figure 3.7: If we have �agged the multi-word unit �Securities and Exchange Com-mission� (an enamex-type named entity), the correct parse is more forthcoming.
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Chapter 4
Parsing with Multi-Word Units
In this chapter we describe a set of experiments designed to examine the impact ofseveral approaches to exploiting multi-word units (mwus) in syntactic constituencyparsing. We provide a brief recap of our motivation, our core hypotheses and expec-tations. We then describe our experimental setup, our results and observations, anddiscuss some of the implications of our work. Although the small gains we achievefall short of our initial optimistic expectations, they are consistent and demonstrablysigni�cant.14.1 IntroductionIn Chapter 2 we discussed a number of architectures for statistical approaches tosyntactic constituency parsing. We have also described (in Chapter 3) the conceptof multi-word units and the problems that they pose in a variety of natural languageprocessing (nlp) tasks. We speculated that integrating knowledge about mwus in astatistical parsing model could yield improvements in both e�ciency and accuracy.Speci�cally, we hope that in determining the boundaries of these fundamental unitswe can populate the parse chart with certain �ground truths� or �islands of certainty�.Here we will put our core hypotheses to the test though a number of experiments.1Parts of the work presented in this chapter have been published in Ca�erkey et al. (2007).41



4.2 Parsing architecturesWe perform experiments using three di�erent parsing architectures: a �vanilla� prob-abilistic context-free grammar (pcfg) parser; a history-based, lexicalised parsingmodel; and a pcfg with latent annotations.For each of three parsers we use sections 02-21 of the Penn Wall Street Journal(wsj) Treebank (39,832 sentences) as our training data, section 24 (1,346 sentences)as our development set, and section 23 (2,416 sentences) for our �nal evaluations.4.2.1 �Vanilla� pcfgThe probabilistic context-free grammar is a fundamental concept in statistical ap-proaches to natural language parsing and is the basis for other, more complex parsingarchitectures. As such, it represents a good starting point from which we can evaluatethe e�ects of introducing the concept of mwus in statistical parsingFor our pcfg-based experiments we use the BitPar parser (Schmid, 2004). Thisis an e�cient implementation of a slightly modi�ed version of the Cocke-Younger-Kasami (cyk) algorithm.Our baseline grammar is extracted from the training data (�02-21 of the corpus)using the well-known procedure described by Charniak (1997). Each pcfg produc-tion rule and its corresponding probability are simply read o� from the wsj syntaxtrees such that:
P (A → β|A) =

count(A → β)count(A)
(4.1)Prior to extracting our grammar, we perform the following commonly-used pre-processing steps on the wsj corpus data (see also Figure 4.1):� add a �top� node to each sentence� remove null terminals / trace annotations� remove functional sub-labels 42



SNP-SBJNNExecutives VPMDcould RBn't VPVBbe VPVBNreached NP-NONE-* PP-CLRINfor NPNNcommentTOPSNPNNExecutives VPMDcould RBn't VPVBbe VPVBNreached PPINfor NPNNcommentFigure 4.1: Preprocessing performed on wsj corpus trees prior to extracting a pcfggrammar. We add a �top� node, and remove null terminals and functional sublabels(wsj �02-21, tree 1172).
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This results in a baseline grammar with 14,972 production rules2, achieving a labelledbracketing f-score of 72.82 when evaluated on �23 of wsj corpus (see Section 4.6;Table 4.4).4.2.2 History-based, lexicalised model (Collins model 2)Collins' (1999) describes three history-based, lexicalised generative parsing models(for a more in-depth discussion see Section 2.6.1). The most well known of these(model 2) has been widely deployed in a range of nlp applications.For our experiments we use Bikel's (2002) parsing engine to emulate Collins'model 2 parser. We use Bikel's implementation of the Collins model as it is highlymodular and more readily retrained and adjusted than Collins' original implemen-tation. The Bikel parser also implements a framework for performing constrainedparsing that we will make use of in Section 4.4.2.2.When trained and evaluated on the wsj treebank the Bikel parser baselineachieves an f-score of 88.66 (see Section 4.6; Table 4.4).4.2.3 pcfg with latent annotations (Berkeley parser)We use the Berkeley parser (Petrov et al., 2006) as an additional testbed for hy-potheses. This parser uses an expectation maximisation (em) technique to inducelatent annotations during training of a pcfg-type parser (for further details see Sec-tion 2.4.2). The Berkeley parsing model represents the state of the art in statisticalapproaches to natural language parsing. In contrast to Collins' parsing model, theparser is unlexicalised.For all experiments we use the parser's default settings for training and set thresh-olds for accuracy during parsing. When trained and evaluated on the wsj treebankour baseline achieves an f-score of 90.06 (see Section 4.6; Table 4.4).2We remove cyclical rules of the form X → X (a consequence of removing null terminals) fromour grammar.
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Source Avg. mwus per sent. % words part of mwu Avg. mwu lengthbbn 1.22 4.79 2.64ner 0.6 2.36 2.38mwe 0.19 0.73 2.31Table 4.1: mwu frequency and average length as they occur in �02-21 of the wsjtreebank, per mwu source.4.3 mwu sourcesWe experiment with three di�erent sources of mwu data: gold-standard namedentity (ne) data from the bbn Pronoun Coreference and Entity Type Corpus; thenamed entity recognition (ner) system of Chieu and Ng (2003); and a dictionaryof preposition-phrase expressions derived from the British National Corpus (bnc)3.Table 4.1 shows the frequency in the wsj treebank of the mwus from each source aswell as the average number of word tokens per mwu as they occur in the treebank.4.3.1 bbn corpusAs described in Chapter 3, the bbn Entity Type and Coreference Corpus (Weischedeland Brunstein, 2005) supplements the Penn wsj Treebank with additional anno-tations of various classes of nes: covering name expressions, number expressionsand time expressions. Since the bbn corpus represents highly-comprehensive, gold-standard ne data we should be able to establish an approximate upper bound forthe utility of exploiting multi-word nes in syntactic parsing.Before we could use the bbn corpus a certain amount of data clean-up was re-quired: we encountered inconsistencies in tokenisation of the corpus versus the orig-inal wsj treebank (these were in general systematic); and in sentence segmentationversus the original treebank (which, although for the most part systematic, wereoften erratic). We also �xed a number of erroneously-labelled entities as we cameupon them.The bbn nes are the most plentiful of the mwu sources that we use, with anaverage of 2 mwus per sentence (Table 4.1). Appendix C provides a list of the most3Based on a resource from http://mwe.stanford.edu/45



common nes identi�ed in the bbn corpus.4.3.2 Chieu and Ng's (2003) ner systemIn Chapter 3 we described the Chieu and Ng (2003) named entity recogniser. Thisner system identi�es nes under four categories: persons (denoted per), locations(loc), organisations (org), and miscellaneous (misc). These are roughly equivalentto the enamex-type nes identi�ed in the bbn corpus. As we noted, the systemachieves close to 90% recall and precision on the CoNLL-2003 test set (ReutersCorpus data).The nes identi�ed by Chieu and Ng's system in the wsj treebank are not asplentiful as the bbn corpus nes (Table 4.1) and will obviously include a certainamount of noise. Appendix D provides a list of the 100 most common nes identi�edby Chieu and Ng's system for the wsj corpus.4.3.3 Dictionary of multi-word expressionsAs our �nal mwu source, we use a dictionary of candidate preposition-phrase multi-word expressions obtained from the Stanford Multi-Word Expression Project4. Thelist was derived semi-automatically from the British National Corpus (bnc).Additionally, the bnc�in contrast to the wsj Treebank�includes a set of mwusthat are treated as �words with spaces� (these include compound function words,foreign-language terms). We combine this set with the dictionary of preposition-phrase mwu candidates.The units in our mwu dictionary are less plentiful in the wsj corpus than thosefrom the other sources, with an average of 0.19 mwus per sentence (Table 4.1).Appendix E provides a list of the 100 most common such expressions occurring inthe wsj corpus.4The list can be downloaded from http://mwe.stanford.edu
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Diamond/NNP Shamrock/NNP Offshore/NNP 's/POS stock/NNrose/VBD 12.5/CD cents/NNS Friday/NNP to/TO close/VB at/IN$/$ 8.25/CD in/IN New/NNP York/NNP Stock/NNP Exchange/NNPcomposite/NN trading/NN ./.Figure 4.2: A sequence of part-of-speech annotated word tokens given as input to aparser.Diamond_Shamrock_Offshore/NNP 's/POS stock/NN rose/VBD12.5_cents/NNS Friday/NNP to/TO close/VB at/IN $_8.25/$in/IN New_York_Stock_Exchange/NNP composite/NN trading/NN ./.Figure 4.3: The parser input string from Figure 4.2 after retokenisation, featuring�words with spaces�.4.4 Integrating mwus into parsingWe explore two general approaches to integrating mwus in the parsing task: on theone hand, using a given parsing architecture �as is� and retokenising the training andtest data such that mwus are treated as single word tokens (Ca�erkey et al., 2007);and on the other, prebracketing the training and test data such that a modi�edparser imposes phrase-boundary constraints on the parsing chart (cf. Glaysher andMoldovan, 2006).It should be noted that, for our purposes, we are not overly concerned withdi�erences between the several classes of mwus used in our experiments�we merelyexploit the fact that mwus can be treated as atomic units, or as a means of imposingbracketing constraints, in parsing.4.4.1 Corpus retokenisationFor the retokenisation approach we simply concatenate sequences of word tokensthat have been �agged as mwus�by, for example, an ner system�into single �wordswith spaces�, whereby each new �word� assumes the pos tag of its head constituent5.Figure 4.2 shows a part-of-speech annotated sequence of word tokens to be passed to aparser; following mwu-retokenisation the sequence might resemble that in Figure 4.3,5determined using Collins' (1999) head �nding heuristics47



NPNNPBank PPINof NPNNPAmerica
⇒ NPNNPBank_of_America

Figure 4.4: A retokenised training tree fragment. The entity �Bank of America� istreated as a single �word with spaces� and the corresponding syntax tree collapsed.Grammar # pcfg rules Tokens Typesbaseline 14,972 950,028 44,389bbn (all entity types) 13,793 870,484 57,221ner (Chieu and Ng, 2003) 14,385 917,146 50,551mwe (mwe.stanford.edu) 14,844 944,161 45,475bbn + mwe 13,680 862,038 58,384ner + mwe 14,256 907,413 51,413Table 4.2: Number of pcfg production rules per retokenised corpus (wsj �02-21):with bbn corpus entities; entities from Chieu and Ng's ner system; multi-wordexpressions from dictionary lookup; and mwe dictionary combined with bbn andner, respectively.where the nes �Diamond Shamrock O�shore� (a name expression), �12.5 cents� and�$ 8.25 � (number expressions), and �New York Stock Exchange� (a name expression)have become single tokens.One question which we will explore in this approach is whether we should merelyretokenise the test data (leaving the training data unaltered) or perform retokenisa-tion on both. In the latter case, nodes in the training trees that dominate an mwuwill be collapsed (Figure 4.4). This brings about a corresponding reduction in thenumber of production rules in a pcfg grammar (Table 4.2) as well as a decreasein the number of lexical tokens (together with an increase in the number of lexicaltypes).4.4.1.1 Re-inserting mwu subtreesThe retokenisation approach throws up a problem when we wish to perform evalua-tion: there will be fewer word tokens in the parser output than in the baseline parse.48



( Diamond/NNP Shamrock/NNP Offshore/NNP ) 's/POS stock/NNrose/VBD ( 12.5/CD cents/NNS ) Friday/NNP to/TO close/VBat/IN ( $/$ 8.25/CD ) in/IN ( New/NNP York/NNP Stock/NNPExchange/NNP ) composite/NN trading/NN ./.Figure 4.5: The parser input string from Figure 4.2 with prebracketed mwus.This means that we cannot draw an unbiased comparison with the baseline parsefor a given sequence. To facilitate such a comparison we perform a supplementaryexperiment in which we re-expand collapsed mwu tokens after parsing with the cor-responding gold tree fragment (the converse operation to that illustrated in Figure4.4). This allows us to evaluate against our baseline with con�dence, and to performstatistical signi�cance testing (Section 4.7).4.4.2 Constrained parsingFor the constrained parsing approach, we leave the wsj corpus data unaltered andinstead modify the parser itself such that it honours the syntactic boundaries ofsequences of word tokens that have been �agged as mwus6. A suitably modi�edparser will accept partially prebracketed input such as that in Figure 4.5.In this scheme, the modi�ed parser treats the input bracketings as constraintson the spans that are permitted to be added to the parsing chart. This seems anintuitively more satisfactory approach than the retokenisation method that we havediscussed, since we maintain the original tokenisation of the training and test data(preserving the full lexicon, and production rule set). We perform experiments todetermine whether we do in fact achieve better results.4.4.2.1 Constrained parsing with pcfgThe changes to a cyk-type parser (such as BitPar) required to implement constrainedparsing are quite straightforward: we modify the parser such that when an edge(span) that has been proposed is inconsistent with the constrained chart�that is,it overlaps with one or more constraint spans�we discard it and do not explore6For a comparison of our approach to constrained parsing with related work, see Chapter 6.49



Table 4.3: A constrained cyk chart for the string �New York stocks fell sharply�.Grey cells represent constraint spans. Hypotheses that include spans represented bythe black cells will not be explored; for example, the possible noun phrase �Yorkstocks� at span (1, 2) is disallowed.any hypotheses dependent on that span. Following the notation of Glaysher andMoldovan (2006), we de�ne a span as pair c = (s, t) where s is the index of the �rstword in the span and t is the index of the last word. Two spans (c1 and c2) are saidto be overlapping i� s1 < s2 ≤ t1 < t2 or s2 < s1 ≤ t2 < t1. The pseudocode forthe necessary modi�cation to the parser can be found in Glaysher and Moldovan'spaper7.Figure 4.3 illustrates the parse chart for the sentence �New York stocks fellsharply�, represented as a pyramid where each cell refers to a span (s, t). The greyed-out cells represent constraint spans, while the blackened cells are those whose spansoverlap with constraint spans. Analyses that include the spans in the blackened cellsare prohibited and thus only derivations consistent with the mwu bracketings canbe generated.4.4.2.2 Bikel parser constraintsBikel's parser has a built-in constraints framework that allows us use prebracketedinput. We modify the PartialTreeConstraint class that ships with the parser suchthat it enforces bracketing constraints in the same manner as the constrained pcfg7They refer speci�cally to the parse() function of Collins' (1999) parser, but the approachgeneralises to the plain pcfg architecture. 50



parser above.4.4.2.3 Berkeley parserNo facility is available in the Berkeley parser to allow prebracketed input (and we didnot attempt to modify the parser to allow this). We are therefore unable to presentresults for constrained parsing using this architecture.4.5 Other design considerationsIn all cases we assume gold part-of-speech (pos) tags; that is, we use the tags assignedin the wsj corpus.We disregard mwus that cross the original Penn bracketings. Also, we disregardmwus that contain null terminals.4.6 Experimental resultsThe performance of each parser (trained on �02-21 of the treebank) for each of ourexperiments was evaluated against �23 using the parseval bracketing recall andprecision measures (Black et al., 1992). This was performed using the standard toolevalb8. Bracketing recall and precision are de�ned as follows:recall =
# correct constituents in test parse# constituents in gold parse (4.2)precision =
# correct constituents in test parse# constituents in test parse (4.3)The results presented in this thesis are for labelled recall and precision; that is,we consider the syntactic category label assigned to each constituent in addition toits span. We also calculate the harmonic mean of the two (the f-score):8available at: http://nlp.cs.nyu.edu/evalb/
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Parser Recall Precision F-scorepcfg (BitPar) 70.28 75.56 72.82Bikel parser (Collins model 2) 88.61 88.71 88.66Berkeley parser 90.03 90.31 90.17Table 4.4: Baseline performance (labelled bracketing recall, precision and f-score)for the three parsing architectures: �vanilla� pcfg; history-based, lexicalised model;and pcfg with latent annotations (wsj �23).f-score =
2× precision× recallprecision + recall (4.4)It is standard practice to ignore punctuation tokens in evaluation and, for thesake of comparison with other work, we do likewise. We consider all sentence lengths.The baseline results for each of the parsing architectures is given in Table 4.4.94.6.1 Parsing with the retokenised corpusFor the retokenisation approach we will present results for the case in which weretokenise both the test and training data as well as those for retokenising the testdata alone. We do not present results where the grammar gives less than full coverage.We also present scores for the case in which we re-expand collapsed mwus afterparsing�this provides a means of more accurately comparing our results against thebaseline (see Section 4.4.1.1).4.6.1.1 pcfgTable 4.5 gives our results for parsing with a plain pcfg and mwu-retokenised data.The �rst row gives the results for our baseline grammar (as described in Section4.2.1); the second gives the results of integrating mwus identi�ed by Chieu and Ng'sner system; the third gives the results of integrating mwus from our dictionary ofmulti-word expressions; the fourth gives the results of integrating the enamex typemwus identi�ed by the bbn corpus (see Table 4.6 for other mwu types identi�ed inthe bbn corpus); the �nal two rows give the results of combining the mwus from the9The baseline and subsequent results for Bikel's implementation of Collins' model 2 are di�erentfrom those reported in Ca�erkey et al. (2007) as we use the parser in gold pos mode for this thesis.52



Test + train retokenised Test only retokenisedSource Recall Precision F-score Recall Precision F-scorebaseline 70.28 75.56 72.82 70.28 75.56 72.82ner 70.27 75.75 72.91 70.19 75.75 72.87mwe 70.13 75.53 72.73 69.72 75.21 72.36bbn (enamex only) 70.39 75.93 73.05 70.19 75.81 72.90ner + mwe 70.11 75.72 72.81 69.64 75.40 72.40bbn (enamex) + mwe 70.25 75.90 72.96 69.67 75.49 72.46Table 4.5: Plain pcfg results for retokenised corpus (wsj �23).dictionary of multi-word expressions with those derived from the ner system andthe bbn corpus, respectively.We achieve modest improvements in all cases except for that in which we re-tokenise based on our dictionary of multi-word expressions�which, in fact, provesdetrimental to parsing performance. In each case, retokenising both the test andtraining data yields greater improvements than retokenising the test data alone.Our best result, with an f-score of 73.05, is achieved by retokenising both the testand training data based on the enamex type mwus identi�ed in the bbn corpus.When we look individually at the di�erent classes of nes identi�ed in the bbncorpus�name expressions (enamex), number expressions (numex) and time ex-pressions (timex)�we observe that retokenising based on the numex and timexclasses is detrimental to parsing performance (in contrast to the enamex class, whichyields the best overall results). We will investigate the reasons for this in Section4.8.The results obtained when, after parsing with the retokenised corpus, we re-expand all tokens that have been concatenated with their corresponding gold treefragment are given in Table 4.7. The table follows the same format as Table 4.5 above,save that we only present results for the enamex class of nes from the bbn corpus(we have already seen that the other ne types are not useful in this retokenisationapproach). The baseline is the same as that in Table 4.5.
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Test + train retokenised Test only retokenisedbbn entity type Recall Precision F-score Recall Precision F-scoreenamex 70.39 75.93 73.05 70.19 75.81 72.90numex 69.73 75.25 72.39timex 70.05 75.46 72.66 70.07 75.54 72.70all 69.80 75.65 72.61Table 4.6: Breakdown of bbn entity types for plain pcfg (wsj �23).Test + train retokenised Test only retokenisedSource Recall Precision F-score Recall Precision F-scorebaseline 70.28 75.56 72.82 70.28 75.56 72.82ner 70.29 75.77 72.93 70.21 75.77 72.89mwe 70.30 75.69 72.89 69.90 75.37 72.53bbn (enamex only) 70.45 75.99 73.12 70.26 75.87 72.96ner + mwe 70.30 75.90 72.99 69.84 75.57 72.59bbn (enamex) + mwe 70.49 76.11 73.19 69.91 75.70 72.69Table 4.7: Plain pcfg results for retokenised corpus with gold mwu subtrees re-inserted (wsj �23).4.6.1.2 Bikel parserTable 4.10 gives our results for integrating mwus with the retokenisation approachusing the Bikel parser in Collins model 2 emulation mode. The �rst line is our baselineas described in Section 4.2.2. The remainder of the table follows the same format asthat for our pcfg experiments except that, based on our previous results, we onlyinclude the enamex class of nes from the bbn corpus. Overall we achieve smallgains similar in relative proportion to those observed in our plain pcfg experimentswith our best result, an f-score of 88.82, obtained by retokenising both the trainingand test based on the bbn corpus name expressions.Table 4.5 gives the results for the re-insertion experiment (for comparison withthe baseline). Our best result here is a f-score of 88.85 when we retokenise the boththe training and test based on the bbn corpus name expressions combined with themwe dictionary.
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Test+train retokenised Test only retokenisedSource Recall Precision F-score Recall Precision F-scorebaseline 88.61 88.71 88.66 88.61 88.71 88.66ner 88.67 88.76 88.71 88.60 88.63 88.62mwe 88.62 88.63 88.63 87.84 88.03 87.94bbn (enamex only) 88.75 88.88 88.82 88.60 88.73 88.67ner + mwe 88.73 88.72 88.73 87.81 88.02 87.91bbn (enamex) + mwe 88.75 88.77 88.76 87.82 88.16 87.99Table 4.8: Results for Bikel parser with retokenised corpus (wsj �23).
Test + train retokenised Test only retokenisedbbn entity type Recall Precision F-score Recall Precision F-scoreenamex 88.75 88.88 88.82 88.60 88.73 88.67numex 88.41 88.80 88.60timex 88.49 88.63 88.56 87.87 88.05 87.96all 88.50 88.86 88.68Table 4.9: Breakdown of bbn entity types for Bikel parser (wsj �23)

Test+train retokenised Test onlySource Recall Precision F-score Recall Precision F-scorebaseline 88.61 88.71 88.66 88.61 88.71 88.66ner 88.67 88.76 88.72 88.61 88.64 88.63mwe 88.69 88.70 88.69 87.91 88.10 88.01bbn (enamex only) 88.77 88.91 88.84 88.62 88.76 88.69ner + mwe 88.80 88.79 88.80 87.89 88.10 88.00bbn (enamex) + mwe 88.84 88.86 88.85 87.92 88.26 88.09Table 4.10: Bikel parser results for retokenised corpus, with gold mwus subtreesre-inserted (wsj �23).
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Test+train retokenised Test only retokenisedSource Recall Precision F-score Recall Precision F-scorebaseline 90.03 90.31 90.17 90.03 90.31 90.17ner 89.71 90.20 89.95 89.83 90.31 90.07mwe 89.82 90.11 89.97 88.71 89.14 88.93bbn (enamex only) 89.93 90.33 90.13 89.87 90.39 90.13ner + mwe 89.51 89.96 89.73 88.47 89.09 88.78bbn (enamex) + mwe 89.72 90.19 89.95 88.48 89.15 88.82Table 4.11: Berkeley parser with retokenised corpus (wsj �23)4.6.1.3 Berkeley parserTable 4.11 shows our results for the retokenisation approach with the Berkeley parser.The �rst row is our baseline as described in Section 4.2.3, the remainder of thetable follows the same format as those for the pcfg and Bikel parsers above. Here,parsing with the retokenised corpus in fact had, in most cases, a negative e�ect onperformance. Since we did not observe any discernible gains we do not present resultsfor re-inserting the gold mwu subtrees.4.6.2 Constrained parsingFor the constrained parsing approach we present the results for only the pcfg andBikel parsers (as previously noted, we did not attempt to implement constrainedparsing with the Berkeley parser).4.6.2.1 pcfgTable 4.12 shows our results when we do constrained parsing using the pcfg parsermodi�ed as per Section 4.6.2.1. The �rst row is our baseline (the same as that fromthe previous pcfg experiments); the second is when we impose constraints on theparse chart based on the ner system; the third based on the mwe dictionary; thefourth based on the bbn corpus nes; and the �nal two rows are when we combinethe mwe dictionary with the ner system and the bbn corpus, respectively. As withthe retokenisation experiments, we also examine the individual contributions of thedi�erent classes of nes identi�ed in the bbn corpus (Table 4.13). Our best improve-56



Source Recall Precision F-scorebaseline 70.28 75.56 72.82ner 70.45 75.68 72.97mwe 70.35 75.65 72.90bbn 70.74 75.93 73.24ner+mwe 70.52 75.77 73.05bbn+mwe 70.81 76.01 73.32Table 4.12: Plain pcfg with constrained parsing (wsj �23).bbn entity type Recall Precision F-scoreenamex 70.50 75.74 73.03numex 70.38 75.65 72.92timex 70.41 75.66 72.94all 70.74 75.93 73.24Table 4.13: Breakdown of bbn entity types for constrained pcfg (wsj �23).ment was achieved by constraining the parser based on the bbn corpus nes combinedwith the dictionary of multi-word expressions, achieving an f-score of 73.32). Thiswas the largest overall relative increase observed across all of our experiments (seeSection 4.8).4.6.2.2 Bikel parserTable 4.14 shows the Bikel parser (Collins model 2) using the span constraint thatwe implemented (Section 4.4.2.2). The baseline is the same as that in the earlierBikel parser experiments and, as before, we provide a breakdown of the in�uence ofthe di�erent classes of nes from the bbn corpus (Table 4.15). Our best improvementwas achieved by constraining the parser based on the bbn corpus nes combined withthe dictionary of multi-word expressions, yielding an f-score of 88.84.mwu source Recall Precision F-scorebaseline 88.61 88.71 88.66ner 88.52 88.58 88.55mwe 88.67 88.82 88.74bbn 88.70 88.86 88.78ner + mwe 88.58 88.69 88.64bbn + mwe 88.74 88.94 88.84Table 4.14: Bikel parser with constrained parsing (wsj �23).57



bbn entity type Recall Precision F-scoreenamex 88.65 88.78 88.72numex 88.63 88.76 88.70timex 88.63 88.74 88.69all 88.70 88.86 88.78Table 4.15: Breakdown of bbn entity types for constrained Bikel parser(wsj �23).Experiment F-score Basef-score % errorreduction p-value1. Constr. pcfg, bbn + mwe 73.32 72.82 1.84 0.000092. Constr. Bikel, bbn + mwe 88.84 88.66 1.59 0.000093. Constr. pcfg, bbn 73.24 72.82 1.55 0.000094. Retoke. Bikel, bbn (enamex) 88.82 88.66 1.41 0.000995. Constr. Bikel bbn 88.84 88.66 1.06 0.00009Table 4.16: Top �ve largest relative reductions in error4.7 Statistical signi�canceWe performed statistical signi�cance testing using a strati�ed shu�ing test with10,000 iterations.10 Despite the modest scale of the improvements, most were foundto be highly statistically signi�cant (typically to a level of p ≤ 0.0001). We givep-values for the �ve best-performing experiments in Table 4.16.4.8 Further discussion4.8.1 OverviewAcross the di�erent parsing architectures, mwu sources, and approaches to handlingmwus, we achieved visible gains. However these improvements tended to be verysmall, falling short of our initial optimistic expectations. Notwithstanding, the re-sults are by and large consistent with our intuitions about each given experiment and,we believe, vindicate our argument for the identi�cation of mwus to inform parsing.Table 4.16 gives the �ve experiments that yielded the best improvements over therespective baselines. For each we give the f-score, baseline f-score, percentage errorreduction and p-value.10available from http://www.cis.upenn.edu/~dbikel/software.html58



NPNPBudget Rent NP
NPNPa Car Corp. PPINof NPNNPChicago

CCand NPNPNational Car Rental Systems Inc. PPINof NPNNPMinneapolisFigure 4.6: Co-ordinated entities containing preposition phrases cause the non mwu-aware Bikel parser to produce an incorrect parse for the sentence fragment �BudgetRent a Car Corp. of Chicago and National Rental Systems Inc. of Minneapolis�(wsj �23, sent. 2088).Figure 4.6 illustrates a case where the non mwu-aware Bikel parser generates anincorrect parse for the phrase �Budget Rent a Car Corp. of Chicago and NationalRental Systems Inc. of Minneapolis�. The combination of pp-attachment ambiguityand co-ordination makes this phrase particularly di�cult for the parser. Since themwu-aware parser knows that �Budget Rent a Car Corp.� and �National RentalSystems Inc.� are named entities, this case becomes straightforward and, indeed,the mwu-aware parse generates the correct parse (Figure 4.7).Figure 4.8 gives an example where the non mwu-informed pcfg parser producesan entirely incorrect parse for the phrase �Up to now only speci�c aspects have beenchallenged�. Exploiting the mwu dictionary lookup, however, the multi-word expres-sion �Up to now � is identi�ed and the parser guided to the optimum parse (Figure4.9).Knowledge about mwus doesn't always lead to the correct parse however. Inthe case of the incorrect parse tree produced by the baseline Bikel parser in Figure4.10, exploiting mwus with the constrained parser still yields an erroneous (thoughdi�erent) result (Figure 4.12). The correct parse tree is shown in 4.11.59



NP
NPNPBudget Rent a Car Corp. PPINof NPNNPChicago

CCand NPNPNational Car Rental Systems Inc. PPINof NPNNPMinneapolisFigure 4.7: Correct parse tree produced by the mwu-aware Bikel parser (constrainedparsing with bbn corpus mwus) for the sentence fragment in Figure 4.6.
S

PPINUp SVPTOto ADVPRBnow NPJJonly JJspeci�c NNSaspects
VPVBPhave VPVBNbeen VPVBNchallenged

...

Figure 4.8: Another example, this time from the pcfg parser, where the multi-wordexpression �Up to now � is incorrectly bracketed (wsj �23, sent. 1989)60



S
S

ADVPINUp PPTOto NPRBnow
NPJJonly JJspeci�c NNSaspects VPVBPhave VPVBNbeen VPVBNchallenged

...

Figure 4.9: Correct parse for the example in Figure 4.8. The mwu �Up to now�(highlighted) receives the correct bracketing (pcfg parser with mwe dictionary).
NPNPNNPUniversity PPINof NPNPNNPMedicine CCAnd NNPDentistry PPINof NPNNPNew NNPJerseyFigure 4.10: Incorrect parse tree for the sentence fragment �University of Medicineand Dentistry of New Jersey� produced by the non mwu-aware Bikel parser wherethe preposition phrase �of New Jersey� has been attached at the wrong level (wsj�23, sent. 2088). 61



NPNPNPNNPUniversity PPINof NPNPNNPMedicine CCAnd NNPDentistry
PPINof NPNNPNew NNPJersey

Figure 4.11: Correct parse tree for the sentence in Figure 4.10.
NPNPNACNNPUniversity PPINof NPNNPMedicine

CCAnd NNPDentistry
PPINof NPNNPNew NNPJersey

Figure 4.12: Still erroneous (though di�erent) parse tree produced by the mwu-awareBikel parser (constrained parsing with bbn corpus mwus)
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NPRBAlmost QPCD12 NN%
⇒ NPRBalmost_12_%Figure 4.13: Less-than-optimum pos tag (�rb��adverb) assigned to the concate-nated word in the retokenisation approach (a better pos tag in this case might bemight be �cd��cardinal number).4.8.2 Speci�c observations4.8.2.1 Corpus retokenisation versus constrained parsingConstrained parsing represents an intuitively more satisfactory approach than corpusretokenisation. In the retokenisation approach one of the problems is the di�culty ofassigning a new pos. We used Collins' head �nding rules which didn't always assignan optimum tag (particularly in the case of the bbn corpus-derived numex andtimex entities�see Figure 4.13). Moreover, in the case of the preposition-phrasemulti-word units it is in fact usually undesirable to treat them as a single lexicalentry.In the case of corpus retokenisation, it is clear that it is preferable to retokeniseboth the test and training data. It is evident, however, that the optimum resultswill be achieved using prebracketing and constrained parsing.4.8.2.2 bbn corpusThe timex and numex entities are poorly suited to our task; even though we aredealing with gold-standard data. The entity boundaries are often inconsistent withthe treebank bracketings. Also, in these cases, our approach often assigns a less thanoptimum pos tag to the concatenated word units (as above). This would be easilyremedied by modifying the heuristics that identify the head constituent word of suchmwus; however, based on our results, using constrained parsing would represent abetter option. 63



4.8.2.3 Bikel parserGiven its lexicalised nature, the Bikel parser will be more susceptible to data sparsityproblems brought about by the retokenisation approach. Nonetheless we achievegains similar in relative proportion to those observed in the plain pcfg experiments.4.8.2.4 Berkeley parserDisappointingly, we did not achieve any discernible improvements over the baseline inour experiments with the Berkeley parser. Any `gains' observed were very small and,in fact, retokenising the corpus usually had a negative impact. It is perhaps the casethat the node splitting and merging performed in training implicitly adapts the modelsuch that the idiosyncrasies of the mwus with which we are concerned are alreadysu�ciently accounted for. It might still however be the case that implementingparser-internal constraints could prove fruitful.
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Chapter 5
Sentence Generation with mwus
In the preceding chapter we explored a number of approaches to exploiting multi-word units (mwus) in statistical approaches to syntactic parsing. Here, as a sec-ondary task we present several experiments where we make use of mwu informationin the converse operation to statistical parsing: statistical generation. Speci�cally, weattempt to exploit information about the mwu types that we have previously seenin the task of sentence generation (or surface realisation) from Lexical-FunctionalGrammar (lfg) f-structures.1 In this chapter we will provide a brief introductionto lfg, outline the task of sentence generation and its applications, describe ourexperimental setup and results obtained, and conclude with a commentary on theirimplications.5.1 Lexical-Functional GrammarLexical-Functional Grammar (Kaplan, 1995) is a constraint-based theory of gram-mar, which analyses strings in terms of c(onstituency)-structure and f(unctional)-structure (Figure 5.1). C-structure is de�ned in terms of cfgs, and f-structures arerecursive attribute-value matrices which represent abstract syntactic functions (suchas subject, object, oblique, complement (sentential), adj(n)unct), agreement,1This was joint work with Deirdre Hogan. Parts of the research presented in this chapter havebeen published in Hogan et al. (2007) and Ca�erkey et al. (2007).65
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Figure 5.1: An lfg c-structure (on the left) and f-structure (on the right) for thesentence �John likes Mary�. φ-links denoted by curvy arrows.control, long-distance dependencies and some semantic information (e.g. tense, as-pect). C-structures and f-structures are related in a projection architecture in termsof a piecewise correspondence φ. The correspondence is indicated in terms of thecurvy arrows pointing from c-structure nodes to f-structure components in Figure5.1.Given a c-structure node ni, the corresponding f-structure component fj is φ(ni).F-structures and the c-structure / f-structure correspondence are described in termsof functional annotations on c-structure nodes (cfg grammar rules). An equation ofthe form (↑ F ) = ↓ states that the f-structure associated with the mother of the cur-rent c-structure node (↑) has an attribute (grammatical function) (F ), whose valueis the f-structure of the current node (↓). The up- and down-arrows are shorthandfor φ(M(ni)) = φ(ni) where ni is the c-structure node annotated with the equationand M is the mother function on cfg tree nodes.For a full description of Lexical-Functional Grammar, refer to Kaplan (1995).5.1.1 Parsing into lfg: Cahill et al. (2004, 2008)The automatic lfg annotation algorithm of Cahill et al. (2004, 2008) provides ameans of annotating cfg trees (such as those found in the Penn wsj treebank,or those generated by a parser such as Collins') with lfg f-structure information66



based on a set of rules, heuristics and automatically-extracted subcategorisationinformation. This allows the rapid induction of lfg resources from treebanks. Theperformance of an English lfg grammar induced in this manner is comparable to orexceeding that of the hand-crafted English ParGram grammar (Cahill et al., 2008).Cahill et al. (2004) present two approaches for using a pcfg grammar to parseinto lfg2: a pipeline architecture, and an integrated parsing architecture. In thepipeline architecture, a pcfg-type grammar is extracted from a treebank and usedto parse unseen text into trees, the resulting trees are automatically annotated withf-structure equations, and the corresponding f-structure produced by a constraintsolver. In the integrated architecture, the treebank trees are �rst automaticallyannotated with f-structure information, a pcfg-type grammar is then extracted withrules containing the f-structure information, unseen text is parsed into trees with f-structure annotations, which are then passed to the constraint solver to produce thef-structure.5.2 Sentence generation from f-structuresSentence generation (or surface realisation) is the task of generating meaningful,grammatically correct and �uent text from some abstract semantic or syntacticrepresentation of the sentence�in our case, lfg f-structures. It is an importantand growing �eld of natural language processing with applications in areas such astransfer-based machine translation (Riezler and Maxwell, 2006) and sentence con-densation (Riezler et al., 2003).In our speci�c case the surface generation task is, given an f-structure, to generatethe corresponding surface string.2That is, lfg approximations (context-free grammars are not su�ciently expressive to fullydescribe constraint-based formalisms such as lfg).
67



5.2.1 History-based statistical chart generator: Hogan et al. (2007)We will use a history-based statistical chart generator (Hogan et al., 2007) to per-form the sentence generation task. This is an augmented version of Cahill and vanGenabith's (2006) chart-based generator which is, in turn, based on the methodologyof Kay (1996). The generator achieves state-of-the-art results.The generator maximises the probability of a tree given an f-structure (Eqn. 5.1),and the surface string generated is the yield of the highest probability tree.
Treebest := argmaxTreeP (Tree|FStr) (5.1)In the case of the Cahill and van Genabith (2006) generator, f-structure annotatedcfg production rules (lhs → rhs) are conditioned on their lhss and on the setof features/attributes Feats = {ai|∃vj(φ(X))ai = vj} where attribute ai have anassociated value vi (Eqn. 5.2).

P (Tree|F-Str) :=
∏

X → Y in Tree

Feats = {ai|∃vj(φ(X))ai = vj}

P (X → Y |X,Feats) (5.2)
The probability of a tree is decomposed into the product of the probabilitiesof the f-structure annotated production rules contributing to the tree. Conditionalprobabilities are estimated by maximum-likelihood estimation. The generator e�ec-tively turns the f-structure annotated pcfgs from the integrated parsing architectureof Cahill et al. (2004, 2008) into probabilistic generation grammars.The Hogan et al. (2007) generator expands on this architecture, implementing ahistory-based model that increases the conditioning context in pcfg-style rules byincluding the grammatical function of the f-structure parent. This is a means ofbreaking down some of the independence assumptions inherent in the Cahill and vanGenabith model. 68



Gold Sentence:By this time, it was 4:30 a.m. in New York, and Mr. Smith �elded a call froma New York customer wanting an opinion on the British stock market,which had been having troubles of its own even before Friday's New Yorkmarket break.Generator Output:By this time, in New York, it was 4:30 a.m., and Mr. Smith �elded a callfrom New a customer York, wanting an opinion on the market British stockwhich had been having troubles of its own even before Friday's New York marketbreak.Figure 5.2: mwu boundaries and word ordering fragmented by the generator. Goldstring above, and generator output below.5.2.2 mwus in sentence generationWe observed that in the surface strings output by the generator, mwus can often befragmented. Given this, we speculate that the identi�cation of mwus may be usefulin the generation task as a means of reducing complexity and imposing word-orderconstraints.Take the example in Figure 5.2. In this case, the multi-word units �New York � and�stock market � are fragmented in the generator output. If such mwus were treatedas single units (�words-with spaces�) or, alternatively, if we impose constraints onthe generator such that the boundaries and word ordering of the units are strictlyadhered to, this should help improve generation accuracy.5.3 Experimental designThe automatic lfg f-structure annotation algorithm of Cahill et al. (2004, 2008)was used to produce the f-structures for development, test and training sets to beused with the generator (Hogan et al., 2007). As was the case for parsing (Chapter4), sections 02-21 of the wsj treebank were used to train the generator, section 24was used as a development set and section 23 was used for �nal test results.We employ the same three sources of mwu data used in our parsing experiments:69
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Figure 5.3: Original f-structure (on the left) for the mwu �New York � and theequivalent f-structure from the retokenised corpus (on the right).the bbn corpus (Weischedel and Brunstein, 2005); Chieu and Ng's (2003) namedentity recogniser; and a dictionary of mwu candidates3. Refer to Section 4.3 formore details on the mwu sources.We perform two types of experiments: on the one hand, retokenising the wsjcorpus data according to word sequences that have been �agged as mwus (cf. Sec-tion 4.4.1); and, on the other hand, retaining the original tokenisation but addingsupplementary annotations that delimit the boundaries of the units�allowing us toimpose constraints within the generator (cf. Section 4.4.2).5.3.1 RetokenisationWe retokenise the Penn wsj corpus in the same manner as previously done forour parsing experiments (Chapter 4). As was the case for parsing, we performexperiments for the case where we retokenise both the test and training data; and alsofor the case where we retokenise the test set but train on the original, unretokenisedtreebank. Figure 5.3 illustrates the e�ect of retokenisation, showing the originalf-structure and the retokenised f-structure for the mwu �New York �.5.3.2 Constrained generationIn the constrained generation approach, a mechanism is introduced to the generationalgorithm which penalises the generation of sequences of words which violate theinternal word order of mwus. The input is marked up in such a way that, althoughmwus are no longer concatenated into single words, the generator can determine3As before, based on a resource from mwu.stanford.edu70
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Test + train retokenised Test only retokenisedmwu source bleu Edit dist. % cov. bleu Edit dist. % cov.baseline 0.6724 0.6989 98.18 0.6724 0.6989 98.18ner 0.6753 0.7032 99.92 0.6775 0.7030 99.92mwe 0.6663 0.6952 99.92 0.6700 0.6976 99.92bbn (all) 0.6815 0.7052 99.96 0.6856 0.7066 99.96ner + mwe 0.6696 0.6975 99.96 0.6743 0.7012 99.96bbn (all) + mwe 0.6808 0.7071 100 0.6755 0.7020 100Table 5.1: Results for generation with retokenised corpus (wsj �23)Test + train retokenised Test only retokenisedEntity type bleu Edit dist. % cov. bleu Edit dist. % cov.enamex 0.6787 0.7022 99.96 0.6783 0.704 99.96numex 0.6784 0.7039 99.88 0.6733 0.6986 99.88timex 0.6784 0.7039 99.88 0.6776 0.7014 99.88all 0.6815 0.7052 99.96 0.6856 0.7066 99.96Table 5.2: bbn breakdown by entity type (wsj �23)5.4.1 RetokenisationTable 5.1 shows our results for the retokenisation approach. The �rst row is ourbaseline generator; the second gives the results of retokenising according to the mwusidenti�ed by Chieu and Ng's ner system; the third gives the results of retokenisingaccording to the mwus from the Stanford dictionary of multi-word expressions; thefourth gives the results of retokenising according to the mwus identi�ed by thebbn corpus; the �nal two rows give the results of combining the mwus from thedictionary of multi-word expressions with those derived from the ner system andthe bbn corpus, respectively. The best result for each column is shown in boldface. Table 5.2 gives a breakdown of the contribution of each of the types of entityidenti�ed in the bbn corpus.Our best bleu score (0.6856) was achieved with the bbn nes when we retokeniseonly the test set (training the generator on the unretokenised wsj corpus). Whenwe combine our mwe list with the bbn nes (retokenising both the test and trainingsets) we achieve the best string edit distance score (0.7071) and full coverage overthe test set. 72



mwu source bleu Edit dist. % coveragebaseline 0.6724 0.6989 98.18ner 0.6756 0.701 99.88mwe 0.6740 0.701 99.79bbn 0.6785 0.7010 99.88ner + mwe 0.6771 0.7028 99.79bbn + mwe 0.6800 0.7027 99.79Table 5.3: Results for generation with internal constraints (wsj �23)5.4.2 Constrained generationTable 5.3 shows the results achieved when we use the mwu-markup and constrainedgeneration approach. The �rst row is our baseline generator (the same as that fromthe previous experiments); the second is when we impose constraints based on thener system; the third based on the mwe dictionary; the fourth based on the bbncorpus nes; and the �nal two rows are when we combine the mwe dictionary withthe ner system and the bbn corpus, respectively.The best result for each column is shown in bold face.The constrained generation approach did not perform as well as the retokenisationapproach. We achieve the best results with the bbn corpus nes combined with mwedictionary lookup: bleu score of 0.68, string edit distance of 0.7027 and 99.79%coverage.5.4.3 SummaryOverall, the best coverage (100%) was achieved by retokenising both the test andtraining data according to the bbn corpus-derived nes combined with the dictionaryof mwe candidates, this also yielded the best overall string edit distance score(0.7071).The best overall bleu score (0.6856) was achieved by retokenising the test dataaccording to the bbn corpus-derived nes (with the generator trained on the original,unretokenised training set). Near-full coverage (99.96%) was achieved in this case.These improvements were found to be statistically signi�cant using a bootstrapresampling test with 10,000 shu�es to level p = 0.006 and p = 0.00009, respectively.73



5.5 Discussion and implicationsIn our evaluation of incorporating mwus in surface generation from lfg f-structureswe have demonstrated that moderate improvements in generator accuracy can beachieved. For automatically acquired mwus, we found that this could best beachieved by concatenating input items when producing the f-structure input to thegenerator, while training the input generation grammar on the original (i.e. nonmwu-concatenated) sections of the treebank.While our investigations here have shown that there exists potential to exploitmwus as a means of informing both word ordering and selection in surface realisationfrom f-structures, there remains much room for additional experiments and analysis.Referring back to Figure 5.2, the compound-noun mwu �stock exchange� is notidenti�ed by our approaches (because such non-ne compound nominals are notpresent in our training data). It is therefore clear that there is scope for improve-ments by the identi�cation of such compound nouns (and other, additional mwutypes).While the constrained generation approach performed reasonably well, it is sur-prising that it yielded scores lower than those achieved with the retokenisation ap-proach (where we retokenise the test data alone, leaving the training set unaltered).Although we did not conduct thorough investigation, we believe that the constraintsmechanism might be interacting poorly with the generation model (or vice versa). Ifsuitable improvements were made, we expect that the performance could equal (infact, might exceed) that of the retokenisation approach. This is a potential avenueof further research.
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Chapter 6
Comparison with Related Work
In this chapter we will compare our research to similar work that we believe to berelevant.1 As we have previously noted, there is a surprisingly small amount of workpublished on the subject of exploiting knowledge about multi-word units (mwus) insyntactic parsing. Moreover, the majority of such work falls in the realm of hand-crafted, rule-based approaches to parsing rather than the data-driven, statisticalmethods with which we are concerned. Although parallels can be drawn betweensuch approaches and our own research, we believe that our work �lls a conspicuousgap in the literature.6.1 IntroductionMulti-word units have traditionally been integrated into hand-crafted grammars inthe form of �words with spaces�, primarily as a means of improving coverage androbustness. While there have been a number of investigations into the utility ofleveraging mwus in the context of these hand-crafted, rule-based approaches to pars-ing (which we will discuss below), there has been very little work carried out whichevaluates the utility of identifying mwus for statistical parsing.1Since our research does not speci�cally deal with mwu identi�cation (for the most part weexploit existing methods and resources) we will not discuss related work on that issue here (seeChapter 3 for an overview of the subject). 75



6.2 mwus in shallow parsingOur experiments have fallen under the category of shallow (or �skeletal�) syntacticparsing, as opposed to �deep� parsing based on linguistic formalisms such as lfgor hpsg (see Section 6.3 below). We are not aware of any research that deals withevaluating the e�ect of leveraging mwus in our speci�c context (data-driven syntacticconstituency parsing). Indeed, there has been only a very limited amount of workcarried out with respect to mwus in statistical approaches to parsing in general.The most notable of such research, and most analogous to our own work, is that ofNivre and Nilsson (2004) who exploit multi-word units in the loosely related task ofstatistical dependency parsing.6.2.1 Dependency parsing: Nivre and Nilsson (2004)Dependency parsing is the task of deriving the tree which represents grammaticalrelations�dependencies�between a given sequence of word tokens. In dependencygrammars, no nonterminal nodes are present between a head and its dependent; thatis, dependencies are de�ned in terms of direct grammatical relationships between thethe nodes of the sequence. Dependency parsing is often said to combine many ofthe attributes of shallow (constituency) parsing with those of deeper approachesto parsing grounded in linguistic formalisms such as hpsg or lfg. (Section 2.8.2provides a more detailed look at the subject of dependency parsing.)Nivre and Nilsson (2004) investigate the in�uence of identifying certain classesof mwus with respect to dependency parsing of Swedish using a parser employingmemory-based learning. Their approach to integrating mwus in the parsing processis roughly equivalent to our retokenisation method.The types of mwus with which their investigations are concerned are those thathave been �agged in the Talbanken05 (Swedish treebank) corpus (Nivre et al., 2006).These are quite diverse: they include named entity-type mwus such as multi-wordnames and number expressions; as well as various types of compound function wordsincluding adverbs, prepositions, subordinating conjunctions, determiners and pro-76



Non-lexicalised parser Lexicalised parseras las as lasbaseline 83.0 76.1 84.7 80.7mwu 83.5 77.4 85.6 81.6Table 6.1: Summary of Nivre and Nilsson's (2004) results: as = attachment score;las = labelled attachment score.nouns.Nivre and Nilsson (2004) evaluate in terms of attachment score: the proportionof tokens (excluding punctuation) that are assigned the correct head. They reportresults for both the unlabelled and labelled case of the attachment score (as andlas, respectively). Table 6.1 summaries their experimental results (consult the paperfor further results and discussion). They achieve gains that they determine to bequite positive, corresponding to up to 5% error reduction (which, although seeminglymodest, is signi�cant when the relative scarcity of the mwus is taken into account).6.3 mwus in deep parsingIn �deep� parsing we generate phrase-structure trees similar to those that wouldbe output by a skeletal parser but with a much richer set of grammatical relationsbetween the nodes of the tree. These relations might include predicate-argumentdependencies as well as other types of functional and semantic relations. Examplesof deep linguistic formalisms include hpsg (Pollard and Sag, 1994), lfg, (Dalrymple,2006), tag (Joshi, 1987) and ccg (Steedman, 2000).In contrast to the statistical approaches to parsing with which we are concernedin this thesis, deep parsing has traditionally employed rule-based approaches basedon hand-crafted grammars (a notable exception being the Statccg parser for Com-binatory Categorial Grammar).2 In research carried out relating to incorporatingmwus in these deep parsing architectures the primary goal has typically been toprovide a semi-automated way of increasing the lexicon size and thus increasing agrammar's coverage and robustness. We will summarise some of this work below.2Many rule-based approaches now incorporate statistical disambiguators, however.77



% coverage # solutions Best f-scorebaseline 76 482 82with nes 78 263 86Table 6.2: Summary of Kaplan et al.'s (2003) results6.3.1 lfg: Kaplan et al. (2003)Lexical Functional Grammar (see Section 5.1 for an overview) is a constraint-basedtheory of grammar which analyses strings in terms of constituency structures andfunctional structures. Constituency structures are de�ned in terms of context-freegrammars while functional structures are recursive attribute-value matrices that rep-resent abstract syntactic functions, agreement, control, long-distance dependenciesand some semantic information.Kaplan and King (2003) perform an experiment using the English ParGramgrammar (Butt and King, 1999) incorporating named entities�speci�cally, propernames�based on gold-standard data as parsing constraints (this is analogous to ourexperiments using the enamex class of nes from the bbn corpus in Chapter 4).Evaluating against the parc-700 Dependency Bank (King et al., 2003), a subsetof the Penn wsj Treebank that has been annotated with f-structures, they reportsome substantial gains across the board: increased coverage, reduced ambiguity andimproved accuracy (Table 6.2).Although they allude to additional experiments that they have performed usingautomatically-acquired nes, they present results for gold standard ne data only.6.3.2 hpsg: Villavicencio et al. (2007)A good deal of the literature on identifying multi-word units has come from e�ortsassociated with Head-driven Phrase Structure Grammar (hpsg). The MultiwordExpression Project3 led by Stanford University is a good example of this (we makeuse of mwu resources developed under the auspices of this project in our experimentsin Chapters 4 and 5). Despite this, there are very few papers that deal speci�cally3http://mwu.stanford.edu/ 78



# items # parsed # avg. analyses % coverageerg 674 48 335.08 7.1erg with mwe 674 153 285.01 22.7Table 6.3: Summary of Villavicencio et al.'s (2007) resultswith methodologies for incorporating such mwus in a hpsg parsing architecture.One pertinent example found in the literature however is that of Villavicencio etal. (2007) who perform experiments in which they exploit automatically identi�edmwus with the English Resource Grammar (erg�Copestake and Flickinger, 2000).They report an impressive increase in coverage on a subcorpus of the bnc from 7%to 21% (see Table 6.3).6.3.3 ccg, tag and othersSag et al. (2004) report that there are ongoing attempts to integrate mwus to varyingdegrees in grammars based on several other deep linguistic formalisms includingCombinatory Categorial Grammar (ccg) and Tree-Adjoining Grammar (tag).6.4 Related work on constrained parsingOur approach to constrained parsing is based on that of Glaysher and Moldovan(2006) who use a modi�ed version of the Collins parser. In their experiments, theyuse a hmm-based syntactic chunker (partial parser) to identify chunks which are usedto enforce restrictions on the spans permitted to be added to the parse chart suchthat parse derivations are consistent with these syntactic chunks (this is exactly howwe treat our mwus in our constrained parsing experiments in Chapter 4). Theyreport an almost threefold increase in the e�ciency (i.e. speed) of the parser whileincurring a minimal loss in accuracy.6.4.1 Kulick et al. (2006)Kulick et al. (2006) report on research where they exploit partial prebracketing andconstrained parsing with a view to expedite treebank construction. They perform79



experiments with the Penn Treebank and the Penn-Helsinki Parsed Corpus of EarlyModern English (Kroch and Taylor, 1999) and, like us, they make use of the con-straints framework built in to Bikel's (2002) parser. They encounter some issueswhere the constraint mechanism interacts poorly with some of the complex and in-teracting parameters of Collins' (1999) parsing model�these issues do not apply toour approach however, since we use a much more straightforward technique in whichwe are not concerned with the syntactic categories of our constraint spans. That isto say, in their approach the parse chart is seeded with speci�c labelled spans priorto parsing (they also implement �negative constraints�). In our approach we do notrigidly impose such spans but rather impose restrictions on which spans are permit-ted to be added to the chart by stipulating that a span may not overlap with ourconstraint spans (it may however, again unlike the Kulick et al. approach, subsumethe constraint span).
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Chapter 7
Conclusions
Our core hypothesis in this thesis has been that we can exploit knowledge aboutcertain types of multi-word units (mwus) as a means to improve statistical parsing.We speculated that this should improve both parsing accuracy and e�ciency. Morebroadly, we believe that syntactic parsing can be improved by incorporating othertypes of extra-treebank linguistic information.We have described several approaches to parsing natural language and placedour work within this context, focusing on statistical approaches to �shallow� syntac-tic parsing. We have de�ned the concept of multi-word units�sequences of wordtokens that are (to at least some degree) syntactically non-compositional�and havedescribed some of the phenomena that can be classi�ed as such: including varioustypes of �xed and semi-�xed expressions, and named entities (nes).In the core of our research we have described a number of experiments thatput our intuitions to the test. Speci�cally we assessed the impact of exploitingmwu data in three di�erent parsing architectures, comparing two general approaches:corpus retokenisation and constrained parsing. In the former, we alter the corpuson which the parser is trained and evaluated (the Penn wsj treebank) such thatmwus are treated as single word tokens; while in the latter we retain the originaltokenisation of the corpus and instead impose partial phrase-boundary constraintsduring parsing. We have also reported on additional experiments where we make81



use of the same mwu information in the converse operation to statistical parsing�statistical sentence generation. Finally we have compared our research with similarand related work on multi-word units in syntactic parsing and on constrained parsingin general. To the best of our knowledge, the research reported here is the �rstsystematic investigation of the e�ect of mwu data in treebank-based, wide-coveragecfg parsing and generation.Our experimental results have shown that incorporating mwus in statistical pars-ing can indeed be bene�cial in some cases, and we have discussed concrete exampleswhere mwu data addresses speci�c classes of syntactic ambiguity and improves over-all parse quality. However, the gains that we have reported have been modest atbest (we achieve a reduction of 1.8% in parser error for gold-standard data). Oursupplementary experiments with sentence generation exploiting mwus yielded gainsof a similar scale to those observed in our parsing experiments. This is somewhatdisappointing; but, at the same time, is testimony to the value of statistical modelsin natural languages processing: it turns out that the statistical parsing and gen-eration architectures that we have employed in our experiments already do a quitegood job of accounting for the phenomena associated with multi-word units. It couldbe argued that the very fact that the speci�c types of mwus that we employed arequite readily-identi�able with a high degree of accuracy means that they are usuallyunlikely to cause major problems for a statistical parser.The small scale of the improvements that we observed in our experimental resultsare in stark contrast to the case of hand-crafted, rule-based approaches to parsing�where the e�ect of incorporating mwu data (e.g. nes) has been to yield substantialimprovements in parsing performance (Kaplan and King, 2003).State-of-the-art results for parsing have reached the region of 90%+ f-measure.We believe that if further improvements in parsing are to be brought about thatgeneralise across corpora and text domains then it is a necessity to incorporate other(non-treebank) linguistic information to statistical parsing models. The methodolo-gies described for incorporating mwus (in particular constrained parsing) are general82



and could be applied to other types of linguistic phenomena (e.g. syntactic chunksas per Glaysher and Moldovan, 2006). It is our contention that machine-learningbased classi�ers�such Chieu and Ng's (2003) maximum entropy-based named en-tity recogniser�could be a useful way of incorporating other forms of linguisticinformation into a parsing pipeline, either as a pre- or postprocessing module.Even though the gains in parsing performance reported in this thesis are modest,our work �lls a conspicuous gap in the research literature as we are not aware ofsimilar work published that deals speci�cally with multi-word units in statisticalapproaches to syntactic (constituency) parsing and generation.7.1 Future workIn our research we have dealt with di�erent types of named entities (name expres-sions, time expressions and number expressions) and with certain types of lexicallyrigid prepositional multi-word expressions but, as we described in Chapter 3, thereexist many other classes of multi-word units. From this perspective, our research hasmerely scratched the surface of the possibilities for integrating knowledge of multi-word units in statistical models of syntactic parsing. Another potential source ofmwu data, for example, is WordNet (Fellbaum et al., 1998) (where 41% of lexicalentities in version 1.7 are multi-word). In addition, we might try to account formore complex phenomena such verb-particle constructions and light verbs. Otherapproaches to integrating the data in the parsing architecture could also be explored(e.g. using mwu data as feature variables in a reranker).
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Appendix A
Penn Treebank pos Tags

Tag Description Tag Descriptioncc Co-ordinating conjunction prp$ Possessive pronouncd Cardinal number rb Adverbdt Determiner rbr Comparative adverbex Existential �there� rbs Superlative adverbfw Foreign word rp Particlein Preposition sym Symboljj Adjective to �to�jjr Comparative adjective uh Interjectionjjs Superlative adjective vb Base-form verbls List item vbd Past-tense verbmd Modal vbg Gerund verbnn Singular noun vbn Past-participle verbnns Plural noun vbp Non-3sg present-tense verbnnp Singular proper noun vbz 3sg present-tense verbnnps Plural proper noun wdt Wh-determinerpdt Predeterminer wp Wh-pronounpos Possessive ending wp$ Possessive wh-prp Personal pronoun wrb Wh-adverb93



Tag Description Tag Description$ Dollar sign ) Right parenthesis# Pound sign , Comma� Left quote . Sentence-�nal punctuation� Right quote : Mid-sentence punctuation( Left parenthesis
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Appendix B
Penn Treebank Syntactic Labels
Tag Descriptionadjp Adjective phraseadvp Adverb phraseconjp Conjunction phrasefrag Fragmentintj Interjectionnac Not a constituentnp Noun phrasenx Head sub-phrase of complex noun phrasepp Prepositional phraseqp Quanti�er phraserrc Reduced relative clauses Simple declarative clause (sentence)sbar Clause introduced by complementisersbarq Question introduced by wh-wordsinv Inverted declarative sentencesq Inverted yes-no questionucp Unlike co-ordinated phrasevp Verb phrase 95



Tag Descriptionwhadjp Wh-adjective phrasewhadvp Wh-adverb phrasewhnp Wh-noun phrasewhpp Wh-prepositional phrasex Constituent of unknown or uncertain category
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Appendix C
List of Most Common bbn CorpusEntities
Here we give the most common named entities identi�ed by the bbn corpus forsections 02-21 of the wsj Treebank (39,832 sentences, 1,014,129 word tokens)�asused in our parsing and generation experiments (described in Chapters 4 and 5,respectively). We list the 100 most common name expressions (denoted enamex),number expressions (numex) and time expressions (timex).C.1 100 most common name expressions (enamex) count1. new york 5012. vice president 3373. new york stock exchange 2244. san francisco 2035. chief executive o�cer 1746. big board 15097



7. white house 1288. hong kong 1189. los angeles 11710. soviet union 8011. securities and exchange commission 7812. west germany 7213. west german 7114. moody 's1 6715. hurricane hugo 6416. dow jones 6417. chief operating o�cer 6018. supreme court 5919. chapter 112 5420. navigation mixte 5421. merrill lynch 5322. sci tv 5223. prime minister 5124. bay area 4925. lloyd 's 4726. federal reserve 471the possessive case marker ('s) is treated as a distinct token in the Penn Treebank2as in bankruptcy 98



27. east germany 4728. justice department 4729. fannie mae 4630. new york city 4631. sotheby 's 4532. vice chairman 4333. the wall street journal 4334. chief �nancial o�cer 4035. british air 4036. qintex australia 3937. new jersey 3938. south africa 3839. freddie mac 3440. world series 3241. south korea 3242. american stock exchange 3243. philip morris 3144. international business machines corp. 3145. general electric co. 3146. control data 3147. american express 3099



48. merrill lynch capital markets 3049. new york-based 3050. air force 2951. attorney general 2952. shearson lehman hutton 2953. united airlines 2954. general motors corp. 2855. commerce department 2856. �rst boston 2857. european community 2758. time warner 2759. brooks brothers 2660. bloomingdale 's 2561. las vegas 2562. morgan stanley 2563. george bush 2564. ual corp. 2565. pinkerton 's 2566. bay bridge 2467. qintex entertainment 2468. state department 24100



69. ford motor co. 2470. north america 2471. drexel burnham lambert inc. 2472. �rst boston corp. 2373. american airlines 2374. eastern europe 2375. du pont 2376. costa rica 2377. bear stearns 2378. salomon brothers inc. 2279. east bloc 2280. gulf power 2281. social security 2282. bond corp. 2283. east german 2284. san jose 2185. new zealand 2186. british airways 2187. moody 's investors service inc. 2188. goldman , sachs & co. 2189. morgan stanley & co. 20101



90. general motors 2091. telerate systems inc 2092. red cross 2093. standard & poor 's corp. 2094. federal reserve board 1995. merrill lynch & co. 1996. federal national mortgage association 1997. k mart 1998. shearson lehman hutton inc. 1999. mcdonald 's 19100. communist party 19C.2 100 most common number expressions (numex)count1. 10 %3 912. 15 % 893. 50 % 794. 8 % 675. 9 % 646. 20 % 647. 5 % 633the percentage and dollar symbols are treated as a distinct tokens in the Penn Treebank102



8. 7 % 619. $ 1 billion 5810. 12 % 5611. $ 1 million 5412. 25 % 5213. $ 1,000 5214. $ 200 million 5115. 30 % 4916. $ 100 million 4617. 40 % 4618. $ 150 million 4519. 2 % 4320. 6 % 4121. $ 50 million 4022. $ 500 million 4023. 11 % 3924. 4 % 3725. 16 % 3526. 12.5 cents 3427. 25 cents 3428. $ 2 billion 33103



29. $ 10 million 3330. 22 % 3331. 3 % 3332. 8.50 % 3233. 14 % 3234. 1 1/4 3135. 13 % 3136. 8 3/4 % 3037. 0.2 % 3038. 18 % 3039. 17 % 3040. only one 3041. 60 % 2942. 50 cents 2943. 51 % 2844. $ 15 million 2845. about half 2846. $ 1 2847. at least three 2848. 8 11/16 % 2849. 1 3/8 27104



50. $ 10,000 2751. 35 % 2652. $ 20 million 2553. $ 3 billion 2554. $ 5,000 2455. $ 400 million 2456. $ 40 million 2357. 80 % 2358. 33 % 2359. $ 350 million 2360. 1 1/2 2261. $ 100,000 2262. more than half 2263. 19 % 2164. 10 cents 2065. 1 1/8 2066. 75 cents 2067. $ 4 billion 2068. $ 30 million 2069. 23 % 2070. �ve cents 20105



71. 2.5 % 2072. 100 % 1973. 4.6 % 1974. $ 300 million 1975. $ 8 million 1976. $ 4 million 1977. $ 1.1 billion 1978. $ 500,000 1879. 37.5 cents 1880. 5.5 % 1881. 0.3 % 1882. $ 1.3 billion 1883. 1 % 1884. 4.5 % 1885. 8.45 % 1786. $ 300-a-share 1787. 1 7/8 1788. $ 1.5 billion 1789. 70 % 1790. 1 3/4 1791. 44 % 17106



92. 28 % 1793. 24 % 1694. $ 25 million 1695. $ 250 million 1696. 49 % 1697. 21 % 1698. 45 % 1699. 55 % 15100. $ 750 million 15C.3 100 most common time expressions (timex) count1. last year 3112. a year earlier 2943. this year 2844. last week 2465. the third quarter 1586. a year ago 1457. last month 1268. next year 1259. this week 12310. the quarter 117107



11. earlier this year 9912. the day 8613. the nine months 8514. the year 7115. recent years 6116. this month 5617. six months 5418. three months 5019. earlier this month 5020. oct. 13 4921. the fourth quarter 4922. the second quarter 4823. next month 4624. the latest quarter 4425. one month 4426. last friday 4327. 30 days 4328. �ve years 4329. a year 3830. sept. 30 3831. two years ago 37108



32. three years 3633. two years 3534. these days 3535. the weekend 3436. one year 3437. next week 3138. early next year 3039. this summer 2940. �scal 1990 2941. the week 2942. two months 2943. late yesterday 2744. year end 2745. 60 days 2646. the past year 2647. recent weeks 2648. 90 days 2549. �scal 1989 2450. oct. 31 2351. last spring 2352. three years ago 22109



53. a day 2154. four years 2155. recent months 2156. each year 2157. the end of the year 2058. the previous year 2059. the past 30 days 2060. the year-earlier quarter 1961. the month 1962. two days 1963. a month 1964. several years 1965. the �rst nine months 1966. a week 1867. 10 years 1868. october 1987 1869. the years 1870. the past two years 1871. two weeks ago 1872. nov. 15 1873. the 1970s 18110



74. late friday 1775. the year-ago quarter 1776. the latest week 1777. nov. 1 1778. last summer 1679. the early 1980s 1680. this fall 1681. the �rst year 1682. seven years 1683. that day 1584. the 1980s 1585. late monday 1586. the 1990s 1587. the past �ve years 1588. three days 1589. nov. 30 1590. next spring 1491. 15 years 1492. four months 1493. recent days 1494. september 1988 14111



95. the past century 1496. dec. 15 1497. the past decade 1498. last thursday 1499. every day 14100. the next few years 13
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Appendix D
100 Most Common ner-Identi�edEntities
Here we list the most common named entities identi�ed by the Chieu and Ng namedentity recogniser (ner) for sections 02-21 of the wsj Treebank (39,832 sentences,1,014,129 word tokens)�as used in our parsing and generation experiments (de-scribed in Chapters 4 and 5, respectively). count1. new york 5132. san francisco 2253. new york stock exchange 1894. wall street 1825. dow jones 1776. big board 1427. white house 1288. hong kong 1229. los angeles 122113



10. soviet union 8011. mr. bush1 7812. securities and exchange commission 7813. west germany 7214. moody 's 6715. merrill lynch 6016. supreme court 5717. navigation mixte 5518. standard & poor 5219. lloyd 's 5220. federal reserve 5021. sci tv 5022. new york city 4923. new jersey 4724. east germany 4725. president bush 4726. mr. guber 4427. the wall street journal 4428. fannie mae 4429. mr. gorbachev 411unlike the bbn corpus' annotators, the ner system considers personal titles (mr., etc.) as neconsituents 114



30. south africa 4031. qintex australia 3832. justice department 3833. british air 3734. american stock exchange 3435. philip morris 3336. freddie mac 3337. mr. noriega 3338. new hampshire 3339. south korea 3240. mr. lawson 3241. west german 3142. mr. krenz 3143. world series 3144. international business machines corp. 3145. air force 3046. united airlines 2947. mr. peters 2948. mr. roman 2849. american express 2850. commerce department 28115



51. merrill lynch capital markets 2852. general motors corp. 2753. time warner 2754. bay bridge 2655. brooks brothers 2656. costa rica 2657. control data 2658. las vegas 2559. morgan stanley 2560. george bush 2561. ual corp. 2562. north america 2563. new zealand 2464. state department 2465. mr. steinhardt 2466. red cross 2467. qintex entertainment 2368. ford motor co. 2369. american airlines 2370. du pont 2371. bear stearns 23116



72. �rst boston 2373. drexel burnham lambert inc. 2374. mr. jones 2275. general electric co. 2276. eastern europe 2277. salomon brothers inc. 2278. gulf power 2279. social security 2280. st. louis 2281. united states 2282. new york-based 2283. smith barney 2184. federal national mortgage association 2185. general motors 2186. san jose 2187. �rst boston corp. 2188. british airways 2189. moody 's investors service inc. 2190. mr. rey 2191. goldman , sachs & co. 2192. bond corp. 21117



93. mr. breeden 2094. mr. engelken 2095. mr. corry 2096. morgan stanley & co. 2097. telerate systems inc 2098. north american 2099. shearson lehman hutton 20100. mr. dinkins 20
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Appendix E
100 Most CommonDictionary-Identi�ed mwus
Here we list the most common multi-word units identi�ed by looking up a dictionaryof candidates for sections 02-21 of the wsj Treebank (39,832 sentences, 1,014,129word tokens)�as used in our parsing and generation experiments (described in Chap-ters 4 and 5, respectively). count1. more than 5102. because of 3903. such as 3434. at least 2995. for example 1756. a lot 1727. as well as 1428. in addition 1299. rather than 116119



10. for instance 8311. in fact 8012. even though 7813. instead of 7814. even if 7615. no longer 7016. a little 6917. less than 6718. of course 6719. as well 6620. up to 6621. as a result 6322. at par 6323. no one 6124. at all 5025. in order 4926. each other 4827. in the past 4528. for sale 4529. a bit 4330. in part 38120



31. at the time 3732. at home 3433. about half 3234. for the year 3135. after all 3036. in general 3037. for the company 2938. as high 2939. since then 2840. on the other hand 2841. in turn 2742. in the market 2743. in the world 2644. by contrast 2645. per share 2646. all but 2447. to work 2448. under way 2449. in e�ect 2450. over the weekend 2251. at the moment 22121



52. in place 2253. in particular 2254. in principle 2155. so that 2156. on the market 2157. on average 2158. as if 2059. by the company 1960. in the end 1961. to date 1962. for a while 1963. in this case 1964. on the issue 1865. over time 1766. in the future 1767. as a whole 1768. no doubt 1769. in prison 1770. as far 1771. to maturity 1772. just about 16122



73. once again 1674. on abortion 1675. close to 1676. in the country 1677. as president 1678. to the company 1579. to come 1480. due to 1481. in court 1482. as usual 1483. by the government 1484. in the meantime 1485. in any case 1486. in the case 1487. around the world 1488. that is 1389. at �rst 1390. to three 1391. for some time 1392. even when 1393. in the region 13123



94. one 's 1295. in mind 1296. in the area 1297. at this time 1298. in this country 1299. on the line 12100. now that 12
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