161,059 research outputs found

    Automatic Stress Detection in Working Environments from Smartphones' Accelerometer Data: A First Step

    Full text link
    Increase in workload across many organisations and consequent increase in occupational stress is negatively affecting the health of the workforce. Measuring stress and other human psychological dynamics is difficult due to subjective nature of self- reporting and variability between and within individuals. With the advent of smartphones it is now possible to monitor diverse aspects of human behaviour, including objectively measured behaviour related to psychological state and consequently stress. We have used data from the smartphone's built-in accelerometer to detect behaviour that correlates with subjects stress levels. Accelerometer sensor was chosen because it raises fewer privacy concerns (in comparison to location, video or audio recording, for example) and because its low power consumption makes it suitable to be embedded in smaller wearable devices, such as fitness trackers. 30 subjects from two different organizations were provided with smartphones. The study lasted for 8 weeks and was conducted in real working environments, with no constraints whatsoever placed upon smartphone usage. The subjects reported their perceived stress levels three times during their working hours. Using combination of statistical models to classify self reported stress levels, we achieved a maximum overall accuracy of 71% for user-specific models and an accuracy of 60% for the use of similar-users models, relying solely on data from a single accelerometer.Comment: in IEEE Journal of Biomedical and Health Informatics, 201

    An Empirical Study Comparing Unobtrusive Physiological Sensors for Stress Detection in Computer Work.

    Get PDF
    Several unobtrusive sensors have been tested in studies to capture physiological reactions to stress in workplace settings. Lab studies tend to focus on assessing sensors during a specific computer task, while in situ studies tend to offer a generalized view of sensors' efficacy for workplace stress monitoring, without discriminating different tasks. Given the variation in workplace computer activities, this study investigates the efficacy of unobtrusive sensors for stress measurement across a variety of tasks. We present a comparison of five physiological measurements obtained in a lab experiment, where participants completed six different computer tasks, while we measured their stress levels using a chest-band (ECG, respiration), a wristband (PPG and EDA), and an emerging thermal imaging method (perinasal perspiration). We found that thermal imaging can detect increased stress for most participants across all tasks, while wrist and chest sensors were less generalizable across tasks and participants. We summarize the costs and benefits of each sensor stream, and show how some computer use scenarios present usability and reliability challenges for stress monitoring with certain physiological sensors. We provide recommendations for researchers and system builders for measuring stress with physiological sensors during workplace computer use

    Patient and Sample Identification. out of the Maze?

    Get PDF
    Background: Patient and sample misidentification may cause significant harm or discomfort to the patients, especially when incorrect data is used for performing specific healthcare activities. It is hence obvious that efficient and quality care can only start from accurate patient identification. There are many opportunities for misidentification in healthcare and laboratory medicine, including homonymy, incorrect patient registration, reliance on wrong patient data, mistakes in order entry, collection of biological specimens from wrong patients, inappropriate sample labeling and inaccurate entry or erroneous transmission of test results through the laboratory information system. Many ongoing efforts are made to prevent this important healthcare problem, entailing streamlined strategies for identifying patients throughout the healthcare industry by means of traditional and innovative identifiers, as well as using technologic tools that may enhance both the quality and efficiency of blood tubes labeling. The aim of this article is to provide an overview about the liability of identification errors in healthcare, thus providing a pragmatic approach for diverging the so-called patient identification crisis

    Prerequisites for Affective Signal Processing (ASP) - Part V: A response to comments and suggestions

    Get PDF
    In four papers, a set of eleven prerequisites for affective signal processing (ASP) were identified (van den Broek et al., 2010): validation, triangulation, a physiology-driven approach, contributions of the signal processing community, identification of users, theoretical specification, integration of biosignals, physical characteristics, historical perspective, temporal construction, and real-world baselines. Additionally, a review (in two parts) of affective computing was provided. Initiated by the reactions on these four papers, we now present: i) an extension of the review, ii) a post-hoc analysis based on the eleven prerequisites of Picard et al.(2001), and iii) a more detailed discussion and illustrations of temporal aspects with ASP

    Grounded, in High Orbit: Undergraduate Space Research at the University of New Hampshire

    Get PDF

    Campus Update: April 1994 v. 6, no. 3

    Get PDF
    Monthly newsletter of the BU Medical Campu
    corecore