1,109 research outputs found

    Computational neurorehabilitation: modeling plasticity and learning to predict recovery

    Get PDF
    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling – regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity

    Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients

    Get PDF
    Upper-limb impairment after stroke is caused by weakness, loss of individual joint control, spasticity, and abnormal synergies. Upper-limb movement frequently involves abnormal, stereotyped, and fixed synergies, likely related to the increased use of sub-cortical networks following the stroke. The flexible coordination of the shoulder and elbow joints is also disrupted. New methods for motor learning, based on the stimulation of activity- dependent neural plasticity have been developed. These include robots that can adaptively assist active movements and generate many movement repetitions. However, most of these robots only control the movement of the hand in space. The aim of the present text is to analyze the potential of robotic exoskeletons to specifically rehabilitate joint motion and particularly inter-joint coordination. First, a review of studies on upper-limb coordination in stroke patients is presented and the potential for recovery of coordination is examined. Second, issues relating to the mechanical design of exoskeletons and the transmission of constraints between the robotic and human limbs are discussed. The third section considers the development of different methods to control exoskeletons: existing rehabilitation devices and approaches to the control and rehabilitation of joint coordinations are then reviewed, along with preliminary clinical results available. Finally, perspectives and future strategies for the design of control mechanisms for rehabilitation exoskeletons are discussed

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    On-line feasible wrench polytope evaluation based on human musculoskeletal models: an iterative convex hull method

    Get PDF
    Β© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.International audienceMany recent human-robot collaboration strategies, such as Assist-As-Needed (AAN), are promoting humancentered robot control, where the robot continuously adapts its assistance level based on the real-time need of its human counterpart. One of the fundamental assumptions of these approaches is the ability to measure or estimate the physical capacity of humans in real-time. In this work, we propose an algorithm for the feasibility set analysis of a generic class of linear algebra problems. This novel iterative convex-hull method is applied to the determination of the feasible Cartesian wrench polytope associated to a musculoskeletal model of the human upper limb. The method is capable of running in real-time and allows the user to define the desired estimation accuracy. The algorithm performance analysis shows that the execution time has near-linear relationship to the considered number of muscles, as opposed to the exponential relationship of the conventional methods. Finally, real-time robot control application of the algorithm is demonstrated in a Collaborative carrying experiment, where a human operator and a Franka Emika Panda robot jointly carry a 7kg object. The robot is controlled in accordance to the AAN paradigm maintaining the load carried by the human operator at 30% of its carrying capacity

    Model-free Optimization of Trajectory And Impedance Parameters on Exercise Robots With Applications To Human Performance And Rehabilitation

    Get PDF
    This dissertation focuses on the study and optimization of human training and its physiological effects through the use of advanced exercise machines (AEMs). These machines provide an invaluable contribution to advanced training by combining exercise physiology with technology. Unlike conventional exercise machines (CEMs), AEMs provide controllable trajectories and impedances by using electric motors and control systems. Therefore, they can produce various patterns even in the absence of gravity. Moreover, the ability of the AEMs to target multiple physiological systems makes them the best available option to improve human performance and rehabilitation. During the early stage of the research, the physiological effects produced under training by the manual regulation of the trajectory and impedance parameters of the AEMs were studied. Human dynamics appear as not only complex but also unique and time-varying due to the particular features of each person such as its musculoskeletal distribution, level of fatigue,fitness condition, hydration, etc. However, the possibility of the optimization of the AEM training parameters by using physiological effects was likely, thus the optimization objective started to be formulated. Some previous research suggests that a model-based optimization of advanced training is complicated for real-time environments as a consequence of the high level of v complexity, computational cost, and especially the many unidentifiable parameters. Moreover, a model-based method differs from person to person and it would require periodic updates based on physical and psychological variations in the user. Consequently, we aimed to develop a model-free optimization framework based on the use of Extremum Seeking Control (ESC). ESC is a non-model based controller for real-time optimization which its main advantage over similar controllers is its ability to deal with unknown plants. This framework uses a physiological effect of training as bio-feedback. Three different frameworks were performed for single-variable and multi-variable optimization of trajectory and impedance parameters. Based on the framework, the objective is achieved by seeking the optimal trajectory and/or impedance parameters associated with the orientation of the ellipsoidal path to be tracked by the user and the stiffness property of the resistance by using weighted measures of muscle activations

    Down-Conditioning of Soleus Reflex Activity using Mechanical Stimuli and EMG Biofeedback

    Get PDF
    Spasticity is a common syndrome caused by various brain and neural injuries, which can severely impair walking ability and functional independence. To improve functional independence, conditioning protocols are available aimed at reducing spasticity by facilitating spinal neuroplasticity. This down-conditioning can be performed using different types of stimuli, electrical or mechanical, and reflex activity measures, EMG or impedance, used as biofeedback variable. Still, current results on effectiveness of these conditioning protocols are incomplete, making comparisons difficult. We aimed to show the within-session task- dependent and across-session long-term adaptation of a conditioning protocol based on mechanical stimuli and EMG biofeedback. However, in contrast to literature, preliminary results show that subjects were unable to successfully obtain task-dependent modulation of their soleus short-latency stretch reflex magnitude

    Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts

    Get PDF
    Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (nβ€Š=β€Š3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (β‰ˆ2Γ—) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance

    Switched Kinematic and Force Control for Lower-Limb Motorized Exoskeletons and Functional Electrical Stimulation

    Get PDF
    Millions of people experience movement deficits from neurological conditions (NCs) that impair their walking ability and leg function. Exercise-based rehabilitation procedures have shown the potential to facilitate neurological reorganization and functional recovery. Lower-limb powered exoskeletons and motorized ergometers have been combined with functional electrical stimulation (FES) to provide repetitive movement, partially reduce the burden of therapists, improve range of motion, and induce therapeutic benefits. FES evokes artificial muscles contractions and can improve muscle mass and strength, and bone density in people with NCs. Stationary cycling is recommended for individuals who cannot perform load-bearing activities or have increased risks of falling. Cycling has been demonstrated to impart physiological and cardiovascular benefits. Motorized FES-cycling combines an electric motor and electrical stimulation of lower-limb muscles to facilitate coordinated, long-duration exercise, while mitigating the inherent muscle fatigue due to FES. Lower-limb exoskeletons coupled with FES, also called neuroprostheses or hybrid exoskeletons, can facilitate continuous, repetitive motion to improve gait function and build muscle capacity. The human-robot interaction during rehabilitative cycling and walking yield a mix of discrete effects (i.e., foot impact, input switching to engage lower-limb muscles and electric motors, etc.) and continuous nonlinear, uncertain, time-varying dynamics. Switching control is necessary to allocate the control inputs to lower-limb muscle groups and electric motors involved during assisted cycling and walking. Kinematic tracking has been the primary control objective for devices that combine FES and electric motors. However, there are force interactions between the machine and the human during cycling and walking that motivate the design of torque-based controllers (i.e., exploit torque or force feedback) to shape the leg dynamics through controlling joint kinematics and kinetics. Technical challenges exist to develop closed-loop feedback control strategies that integrate kinematic and force feedback in the presence of switching and discontinuous effects. The motivation in this dissertation is to design, analyze and implement switching controllers for assisted cycling and walking leveraging kinematic and force feedback while guaranteeing the stability of the human-robot closed-loop system. In Chapter 1, the motivation to design closed-loop controllers for motorized FES-cycling and powered exoskeletons is described. A survey of closed-loop kinematic and force feedback control methods is also introduced related to the tracking objectives presented in the subsequent chapters of the dissertation. In Chapter 2, the dynamics models for walking and assisted cycling are described. First, a bipedal walking system model with switched dynamics is introduced to control a powered lower-limb exoskeleton. Then, a stationary FES-cycling model with nonlinear dynamics and switched control inputs is introduced based on published literature. The muscle stimulation pattern is defined based on the kinematic effectiveness of the rider, which depends on the crank angle. The experimental setup for lower-limb exoskeleton and FES-cycling are described. In Chapter 3, a hierarchical control strategy is developed to interface a cable-driven lower-limb exoskeleton. A two-layer control system is developed to adjust cable tensions and apply torque about the knee joint using a pair of electric motors that provide knee flexion and extension. The control design is segregated into a joint-level control loop and a low-level loop using feedback of the angular positions of the electric motors to mitigate cable slacking. A Lyapunov-based stability analysis is developed to ensure exponential tracking for both control objectives. Moreover, an average dwell time analysis computes an upper bound on the number of motor switches to preserve exponential tracking. Preliminary experimental results in an able-bodied individual are depicted. The developed control strategy is extended and applied to the control of both knee and hip joints in Chapter 4 for treadmill walking. In Chapter 4, a cable-driven lower-limb exoskeleton is integrated with FES for treadmill walking at a constant speed. A nonlinear robust controller is used to activate the quadriceps and hamstrings muscle groups via FES to achieve kinematic tracking about the knee joint. Moreover, electric motors adjust the knee joint stiffness throughout the gait cycle using an integral torque feedback controller. A Lyapunov-based stability analysis is developed to ensure exponential tracking of the kinematic and torque closed-loop error systems, while guaranteeing that the control input signals remain bounded. The developed controllers were tested in real-time walking experiments on a treadmill in three able-bodied individuals at two gait speeds. The experimental results demonstrate the feasibility of coupling a cable-driven exoskeleton with FES for treadmill walking using a switching-based control strategy and exploiting both kinematic and force feedback. In Chapter 5, input-output data is exploited using a finite-time algorithm to estimate the target desired torque leveraging an estimate of the active torque produced by muscles via FES. The convergence rate of the finite-time algorithm can be adjusted by tuning selectable parameters. To achieve cadence and torque tracking for FES-cycling, nonlinear robust tracking controllers are designed for muscles and motor. A Lyapunov-based stability analysis is developed to ensure exponential tracking of the closed-loop cadence error system and global uniformly ultimate bounded (GUUB) torque tracking. A discrete-time Lyapunov-based stability analysis leveraging a recent tool for finite-time systems is developed to ensure convergence and guarantee that the finite-time algorithm is Holder continuous. The developed tracking controllers for the muscles and electric motor and finite-time algorithm to compute the desired torque are implemented in real-time during cycling experiments in seven able-bodied individuals. Multiple cycling trials are implemented with different gain parameters of the finite-time torque algorithm to compare tracking performance for all participants. Chapter 6 highlights the contributions of the developed control methods and provides recommendations for future research extensions
    • …
    corecore