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MODEL-FREE OPTIMIZATION OF TRAJECTORY AND IMPEDANCE 

PARAMETERS ON EXERCISE ROBOTS WITH APPLICATIONS TO HUMAN 

PERFORMANCE AND REHABILITATION

HUMBERTO DE LAS CASAS ZOLEZZI

ABSTRACT

This dissertation focuses on the study and optimization of human training and its 

physiological effects through the use of advanced exercise machines (AEMs). These 

machines provide an invaluable contribution to advanced training by combining ex­

ercise physiology with technology. Unlike conventional exercise machines (CEMs), 

AEMs provide controllable trajectories and impedances by using electric motors and 

control systems. Therefore, they can produce various patterns even in the absence of 

gravity. Moreover, the ability of the AEMs to target multiple physiological systems 

makes them the best available option to improve human performance and rehabilita­

tion.

During the early stage of the research, the physiological effects produced under train­

ing by the manual regulation of the trajectory and impedance parameters of the 

AEMs were studied. Human dynamics appear as not only complex but also unique 

and time-varying due to the particular features of each person such as its muscu­

loskeletal distribution, level of fatigue,fitness condition, hydration, etc. However, the 

possibility of the optimization of the AEM training parameters by using physiological 

effects was likely, thus the optimization objective started to be formulated.

Some previous research suggests that a model-based optimization of advanced train­

ing is complicated for real-time environments as a consequence of the high level of 
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complexity, computational cost, and especially the many unidentifiable parameters. 

Moreover, a model-based method differs from person to person and it would require 

periodic updates based on physical and psychological variations in the user. Conse­

quently, we aimed to develop a model-free optimization framework based on the use 

of Extremum Seeking Control (ESC).

ESC is a non-model based controller for real-time optimization which its main advan­

tage over similar controllers is its ability to deal with unknown plants. This framework 

uses a physiological effect of training as bio-feedback. Three different frameworks 

were performed for single-variable and multi-variable optimization of trajectory and 

impedance parameters. Based on the framework, the objective is achieved by seeking 

the optimal trajectory and/or impedance parameters associated with the orientation 

of the ellipsoidal path to be tracked by the user and the stiffness property of the 

resistance by using weighted measures of muscle activations.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Today’s demanding society forces human beings to be in a continuous search for 

better and faster results mainly aimed at education,fitness performance, and health. 

Human Performance Improvement (HPI) refers to the tools used to adjust physical 

and psychological factors to achieve higher levels of human function. HPI has been 

a popular area widely used in different fields from education to health and fitness. 

HPI in education contributes to long-run increases in productivity. The key reason 

for education demanding is the fact that education affects earning generating interest 

from both employers and employees [43]. On the other side, HPI has also shown 

popularity and beneficial contributions to the health and fitness industry. HPI focused 

on Conditioning For Strength And Human Performance (CSHP) includes applications 

for leisure, rehabilitation recovers, and job requirements. For instance, some jobs such 

as firefighters, police, prison guards, and military are physically demanding requiring 

high-efficiency training for personal welfare [132].

This work focuses in CSHP aiming to enhance current exercise procedures 

by providing more efficient and safer training. Only in the US, over 450 thousand 

injuries were reported as a result of exercise training in the year 2019 [65]. Simi- 
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larly, more than 114 deaths were reported up to the year 2007 [86] estimating that 

more than 2 of 5 gym users have had at least one injury while working out [118]. 

Therefore, safety enhancements for CSHP could be beneficial to considerably reduce 

the number of reported cases associated with injuries and deaths as a result of the 

exercise training. Additionally, the high demand for the health and fitness industries 

generates a high economic impact worldwide. Only in North America, 71.06 billion 

dollars has been accounted for in the sports market during the year of 2018 [142] (see 

Figure 1). This market value includes, but is not limited to, gate revenues, media 

rights, merchandising, sponsorship, and exercise equipment . These latter segments 

(sponsorship and exercise equipment) are the ones with the largest share as a result 

of their largest contribution to athletes’ performance, sportsmanship, and equipment 

developments. The market size for fitness equipment was estimated at more than$2.5 

billion with an estimated compound annual growth rate of 5.01% by 2020 [52, 51]. 

The market of rehabilitation systems and equipment has also evidenced promising 

economic impacts. Only in the United States, there are over 38,000 clinics providing 

services such as physical therapy, occupational therapy, speech therapy, and audiol­

ogy supporting this massive market with more than 30 billion dollars in market share 

and a growth forecast of 7% average annual pace [130, 69] (see Figure 2). Finally, 

in addition to the economic impact, CSHP can be of significant benefit to people ex­

periencing chronic illness, obesity, or reduced motor abilities. This additional strong 

motivation is priceless providing invaluable contributions to these people’s lives and 

their families.
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Figure 1: North America sports market size from 2009 to 2023 (in billion U.S. dollars) 
[142].

Figure 2: North America physical therapy market size from 2004 to 2018 (in billion 
U.S. dollars) [130].

It is important to highlight that the greatest developments in CSHP have 

been accomplished through the interaction between humans and machines (human­

machine interaction or HMI). These developments have become highly relevant be­
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cause of their growth potential and opportunities oriented toward human perfor­

mance and rehabilitation. Some applications include interactive environments using 

advanced exercise machines (AEMs), virtual reality, and information technology as 

a means of measuring, supporting, and enhancing human exercise and rehabilitation 

practices [77, 76, 58]. This technology aims to improve the strength,flexibility, and/or 

manipulation skills of people with disabilities as well as high-level athletes.

One of the first robots aiding exercise and rehabilitation was the MIT-Manus 

(MITM) (see Figure 3). This system was introduced in 1991 to study and quantify 

the potential of robot assistance in rehabilitation. Since then, MITM has assisted 

thousands of stroke patients in improving their reduced motor skills. The subject 

using this robot fits his or her lower arm and wrist into a brace attached to the robot 

arm. Then, this subject is required to follow a trajectory provided by the system. 

The activity integrating the human and robot seems to help the subject by developing 

new neural connections that eventually support the re-learning process of the muscles 

[62, 61]. Several expansions and new configurations following similar approaches to 

the concept of the MITM have been developed over the years. For instance, robots 

for upper-limb rehabilitation [96, 120] providing an increased efficiency by achieving 

partial/fully recovery on disable people through robot-assisted technology [16, 129]; 

exoskeleton for neurorehabilitation [14] overcoming the single joint control of reha­

bilitation patients by allowing the full control of the arm kinematics; and advanced 

exercise machines [10, 78] enhancing the exercise performance by empowering different 

training patterns [151, 30].
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Figure 3: NMIT-MANUS (Interactive Motion Technologies, Cambridge, MA). [36].

The biggest limitation of most of the current AEMs is the manual or semi­

automatic regulation of the system parameters requiring the professional assistance of 

trainers or therapists to handle the different machine parameters, which in most cases, 

are results of guesses [101, 45]. Besides, the increasing of cardiovascular problems as 

a result of heart diseases, core health behaviors (lack of physical activity, smoking, 

and unbalanced diet), and health factors (high levels of cholesterol, glucose, and 

blood pressure) is causing more and more severe disabilities around the world and 

consequently a higher demand for professional therapists [75, 152]. Another crucial 

limitation is related to the efficiency which is low because of the current exercise 

protocols based on weights, elastic, and pneumatic resistances with manual or semi­

automatic regulations [139].

An optimal or more efficient training could potentially help to diminish or 

suppress the current alteration in the musculoskeletal loading and the muscle toning 
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of the astronauts as a result of the lack of gravity for long periods of time [114]. 

Currently, these microgravity alterations and their health consequences represent one 

of the most important limitations for space exploration. These consequences include 

but are not limited to motion sickness, muscle degeneration (atrophy), loss of bone 

mineral density (BMD), and change in bodyfluids, responding on losing mass propor­

tional to the time of exposition to the microgravity with an average of 1% BMD per 

month [106, 57, 153]. Finally, the development of a new generation of smart systems 

for automatic regulations of AEMs will motivate future research overcoming several 

of the current limitations on human performance and rehabilitation while providing 

valuable contributions.

1.2 Literature Review

1.2.1 Exercise and Rehabilitation Practices

The physiological effects associated with human training are the natural response of 

the body to remain in the homeostasis state (steady internal conditions) [131]. The 

presence of any internal or external disturbance such as a higher muscle energy de­

mand, changes in the intensity and/or duration of the exercise, and environmental 

conditions (such as temperature, humidity, and even colors) produces an alteration 

on these effects [12]. For instance, a person running requires oxygen in the muscles 

to produce muscle contractions. To satisfy this demand (recover the homeostasis 

state), the body inhales more oxygen while the heart increases its pumping rate. Sev­

eral physiological effects of multiple biological systems are associated with exercise 

training. However, this research focus on the study of the effects of the musculoskele­

tal (muscle activation), cardiorespiratory (oxygen consumption), and cardiovascular 

(heart rate) systems [41].

Physiological effects have been used as performance metrics in CSHP for 
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several years. In early research, these effects were manipulated through conventional 

methods based on post-training measurements. For instance, the level of glucose in 

the serum, plasma, or urine was widely used to measure the intensity of training 

[72]. Other methods a little more sophisticated used to include invasive electrodes 

[34]. Some years later, HMI began to receive more attention because of its several 

benefits. Thus, the areas of rehabilitation and physical conditioning started to grow 

by including better sensors and equipment such as AEMs.

AEMs provide an invaluable contribution to human performance and reha­

bilitation by combining exercise physiology with technology [71]. Unlike conventional 

exercise machines, AEMs provide controllable trajectories and resistances through the 

use of electric motors and control systems with the capacity to produce workloads 

even in lack of gravity. Thus, these machines would become very effective under mi­

crogravity conditions by allowing astronauts operating in space to receive a similar 

stimulus as they would otherwise obtain while under the effects of gravity. Finally, 

the ability of the AEMs to target multiple systems makes them the best option avail­

able to improve human performance and rehabilitation practices by providing a rich 

variety of training effects.

AEMs have been used for many and varied applications. Some applications 

have been developed as portable orthotic devices to provide stability and alignment 

for the body while including real-time control and monitor of patients [97]. Other 

developments have been developed as home-based systems to aid in the functional 

recovery of post-stroke patients from the comfort of home [167]. Some more novel ap­

plications including graphical user interfaces have been used through teleoperation for 

remote rehabilitation [166]. Rehabilitation machines developed based on the Internet 

of Things (IoT) technology have been also reported claiming to be able to mitigate 

problems associated with the lack of health professionals [40]. Other research focus­
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ing on humanfitness improvement has reported a variety of physiological effects on 

the musculoskeletal, cardiovascular and cardiorespiratory systems as a result of the 

manual variation of trajectory and impedance parameters [30, 28, 27].

AEM has always been part of HMI by connecting the human and machine 

through conventional and smart processes. The smart integration between humans 

and machines which has been used in this study is the smart-HMI (S-HMI) [56, 99]. 

S-HMI considers the human dynamics inside of the closed-loop system enabling the 

integration of human science together with mechanical, electrical, and information 

technology. Most of the applications have been mainly focused on the integration 

between human and IoT technologies [109, 54]. However, S-HMI provides endless 

applications in different areas with multiple benefits for quality of life.

S-HMI research oriented to rehabilitation has been reported for systems 

with learning capabilities and biological model estimations [9, 154]. For instance, 

muscular activations have been previously used to enhance rehabilitation results by 

regulating joint trajectory and/or torque in a rehabilitation robot system for lower 

limbs [2]. This system requires training sessions where the subject is required to 

follow some special procedures while an artificial neural network model is fitted for 

posterior probability estimations. Results show good performances but, besides the 

training requirements, performance is time-sensitive because of the loss of accuracy in 

the model over time. Other S-HMI research has shown promising results compared to 

the conventional practices by using a semi-automatic selection of machine parameters 

based on biofeedback such as exoskeletons and active prostheses [53]. The use of 

biofeedback on this application guarantees the enhancement of human mobility by 

identifying the optimal exoskeleton or prostheses assistance to minimize energy cost 

during walking and running [163]. The optimization is performed byfinding patterns 

related to the required assistance while parameters are manually customized for each 

8



need. On the other side, S-HMI research oriented to fitness performance has been 

reported with applications such as heart rate control during exercise with treadmills 

[123, 145, 146, 147]. The feasibility and the methods of these studies have been 

experimentally demonstrated. Most of these works are based on a PID controller 

for heart rate regulation. Although improvements in human performance have been 

reported, there is not any evidence about the optimization of training based on these 

results. A possible reason for this conclusion could be the fact that there is not an 

optimal heart rate. Heart rate depends on several parameters including the physiology 

of a person including age, gender, physical condition, and the kind of training to be 

performed. Other S-HMI researches have been oriented to synergy optimization. The 

concept of muscle synergy was introduced to divide muscle activations into a lower­

dimensional synergy space. This synergy space defines the possible combinations of 

muscle activations to control the movement [160, 138].

1.2.2 Virtual Populations Analysis (VPA)

In addition to human subjects, this study has been supported by using Virtual Popu­

lation Analysis (VPA). The objective of this technique is not to replace the analyses 

using real populations, but to support it by providing a faster and simpler data anal­

ysis especially when the required population is large and/or it is not easily available. 

The first VPA studies were conducted by Gulland and they date back to around the 

1960s as a cohort statistical technique mainly used for fisheries science [ 94]. In these 

studies, historical reconstructions offish populations were performed to estimate the 

numbers offish based on individual births and deaths during each year [ 116]. Al­

though these studies did not turn out to be very accurate during the early stages due 

to wrong assumptions associated with lack of parameters and randomfluctuations 

in the natural mortality of the species, VPA immediately garnered much broader 

interest and its popularity continued to grow and spread to more areas of research
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[150, 70].

There are lots of popular areas where VPAs have been used including but 

not limited to manufacture, medicine, and social sciences. These industries are highly 

dynamic as a result of rationally changing environments. For instance, VPA in the 

manufacturing industry (or Functional Virtual Population as it is also known) was 

proposed to assist the scheduling knowledge for systems by using techniques includ­

ing machine learning such as artificial neural networks [87]. Regarding VPA in the 

medicine industry, computational whole-body human models were developed for sev­

eral applications from electromagnetic exposure evaluations to closed-loop glucose 

control developments for subjects with type 1 diabetes [50, 55, 70]. This technique 

has become very useful by allowing the inclusion of different models needed for reli­

able, effective, and safe diagnostic and therapeutic applications.

The virtual population used in this research includes 50 human models with 

25 female and 25 male models. The model description, the generation process, and 

the list of them can be seen in Appendix A.

1.2.3 Model-Free Training Optimization and Rehabilitation

The first research about model-free training optimization including human dynamics 

in the closed-loop system was reported in 1996 [89, 88]. This work used a single degree 

of freedom (DOF) manipulator with variable speed (see Figure 4). The optimization 

objective was the maximization of a performance function based on the biomechanical 

configuration of the user (estimated by its force-velocity relationship in Figure 5).
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One link 
direct dirve robot

Figure 4: 1 DOF machine setup on the research [89].

Figure 5: Hill muscle curve. Force-velocity relationship [89].

The performance function (Jp) to be maximized was based on the user’s 

power output as follows:
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Jp(F, x, x) = Fxp, (1.1)

where F is the interaction force, and x and x are the angular position and velocity 

respectively. The parameter p it a gain parameter which allows to emphasize 

or de the interaction force with respect to the angular velocity. For instance a 

p-value lower thao 1 (p<1) de-emphasizes the force a p-value higher thao 1 (p>1) 

emphasized forced and a p-value equal to 1 (p= 1) emphasized power.

Aw a graphical example emphasizing the user power (p= 1)c the power cost 

function would have a parabolic shape (wee Figure 6). Based on the force-velocity 

relationship (wee Figure 7) and Eq. 1.1c the optimal velocity and force cao be derived 

aw follows:

F = xex)) = (x)— — b(x)x, (1.2)

wherea(x) aonb(x) are the iotercept with the vertical axis and slope of the Hill 

muscle curve io Figure 5 respectively.

Jp = a(x)xp — b{x)xp+1 (1.3)

= 0 = naa" )p+1 — p -nawv" )p (1.4)

p x 1 atb)
V (x) (p + 1) b(x) 2 b(x) ’ j

where V* is the optimal velocity to be tracked and the optimal force becomes

F *(x) = a(x) (1.6)
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Figure 6: Power function over the Hill muscle curve [89].

Figure 7: 3D-state relationship. Force-position-velocity relationship [89].

Results reported on this research showed an accurate tracking of the desired 

velocity. However, the biomechanical parametersa(x) andb(x) were not known ac­
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curately. Besides, these parameters were wrongly used as constant when they are 

time-variable as a result of physiological factors during exercise training such as fa­

tigue, body temperature, and level of hydration. Consequently, the maximization of 

the performance function or the optimality of the training was not proved.

The previous research was replicated 8 years later and reported in 2 different 

papers [164, 165]. The AEM used was a 1 DOF rotational handle similar to the 

original from [89] (see Figure 8). For this approach, two Extremum Seeking Control 

(ESC) algorithms were used. The first algorithm was used to maximize the user’s 

power output under the assumption that the user’s torque is available, and the second 

algorithm was used to estimate the user torque.

Figure 8: 1 DOF machine setup on the research [165].

The results obtained from this research showed that the desired velocity 

to be tracked was close to the one presented in the previous research (see Figure 9). 

However, based on the same considerations previously made, the optimal velocity can 

not be constant but depending on other variables. Besides, since the biomechanical 

parameters are unique in each person, different subjects should produce different 

solutions.
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Figure 9: Velocity tracking for the training optimization [165].

Some model-free optimization applications have also been developed for 

prostheses. For several years, the setting parameters on prostheses, which are impor­

tant to achieve a good balance between performance and comfort, have been manually 

configured by trial and error. A proposed ESC for the auto-tuning of these param­

eters in a powered prosthetic leg was reported [82] (see Figure 10). The use of ESC 

successfully improved the control of the prostheses at different walking speeds and 

conditions achieving optimal settings only using tracking errors as feedback. This 

model-free approach supports the personalized configuration process between people 

achieving a desirable performance without specific knowledge about the subject.
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Figure 10: Prosthesis leg auto-tuned by ESC [82].

Rehabilitation systems have made use of both, model-based and model-free, 

approaches in a wide range of applications but mainly based on functional electrical 

stimulation (FES) (see Figure 11). FES is a promising procedure to restore movement 

in people following spinal cord injury (SCI) by reanimating their paralyzed muscles 

[161]. The development and setting of FES controllers can become very challenging 

because of the multiple variables and muscles involved in the approach [127]. Among 

the smart and optimization systems developed for FES, some of them have been 

oriented to maximize the extraction of data associated with the recruitment curve 

parameters [126], others to predict joint torques using musculoskeletal positions, ve­

locities, and the electrical stimulation applied to the muscles [128], and some others 

to optimize the integrated controllers working simultaneously with them. For in­

stance, neuromuscular electrical stimulation (NMES) systems are mainly controlled 

by a proportional derivative integral controller (PID) and its performance lies in the 

right selection of these parameters (which requires knowledge, experience, and some 

16



trial and error). However, since the human dynamics are nonlinear, these parameters 

are not constant depending on some biological factors. Based on that limitation, a 

model-free methodology based on ESC was proposed to auto-tune the PID parame­

ters. The auto-tune was achieved by minimizing a cost function reflecting the desired 

performance attributes. The work has been presented in 4 different stages. The first 

stage was a proof of concept using a multi-variable and deterministic ESC approach 

which was was successfully tested in healthy people [110]. Later, the work was repli­

cated with eight post-stroke patients. A reduced root-mean-square error (RMSE) 

tracking and improvements were reported compared to the initial evaluation cycle 

[112]. Then, the multi-variable approach was replaced by a stochastic ESC. This 

approach was tested with healthy and post-stroke patients. Results seem to be simi­

lar to those previously reported [113]. Finally, the stochastic approach was replaced 

by the original deterministic. New experiments were conducted with healthy volun­

teers and stroke patients. Significant advances compared to the previous approach 

were reported [121]. Similar research using ESC together with NMES has also been 

developed to optimize the frequency and voltage modulation of the electrical stimula­

tion. The stimulation was applied to the quadriceps muscles producing desired knee 

joint displacements. Experimental results illustrating the real-time positioning per­

formance have been reported with better results compared to the traditional methods 

using manual modulation [144].
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Figure 11: Mechanical system operated with ESC and PID to neuromuscular electrical 
stimulation [121].

Some studies on exercise optimization have also been developed based on 

the use of ESC [117]. This work was developed in a simulation environment to 

support the feasibility of model-free exercise optimizations in real-time experiments. 

ESC was proposed to fulfill the need for an automated resistance able to optimize 

muscle performance. This resistance was produced by a variable impedance control 

proportional to the position tracking error (stiffness impedance). The performance 

function to be maximized was the average of the squared power of muscles. The 
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model-free controller was simulated against two muscle-actuated linkages models. 

The first model was a single DOF manipulator actuated by two antagonistic muscles 

(see Figure 12). This first model under the action of a stiffness impedance revealed the 

existence of a local maximum. The solution was achieved under specific parameters 

and initial conditions close to the local maximizer. The second model was a two DOFs 

manipulator actuated by seven muscles (see Figure 13). Unlike the first linkage model, 

the second was not able to find an optimizer. After several iterations evaluating the 

performance function using different parameters, the controller was unable to locate 

an optimum point. In some cases, it was shown that an optimum did not exist. 

Although the optimization was not achieved for all the cases, the proposed framework 

encouraged this work by presenting its partial feasibility.

Figure 12: Single DOF manipulator actuated by two antagonistic muscles [117].
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Figure 13: Two DOFs manipulator actuated by seven muscles [117].

1.2.4 Extremum Seeking Control and Applications

Extremum seeking control (ESC) is a branch of adaptive control developed for op­

timization. This control aims to the output of a dynamical system to converge to 

unknown maximum or minimum operating points. Several ESC algorithms have been 

developed and studied since their first appearance in the 1920’s [ 5]. Some of them 

are model-based methods. However, the popularity of ESC lies in its model-free 

optimization algorithms and its ability to operate in real-time.

The ESC algorithm works by applying a variable input (a sin(W) in Figure 

14) while measuring the output (yin Figure 14) as a result of those variations. If the 

input and output are in phase (the input value increases together with the output), 

by applying a zero-mean normalization to both variables, and then, by multiplying 

them together, the direction towards the optimization variable is defined as positive. 

Oppositely, if the input and output are out of phase (the input value increases while 
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the output value decreases), the direction towards the optimization variable is de­

fined as negative. If the direction is defined as positive, the maximizer/minimizer 

is greater/lower than the estimated variable (0), and if the direction is defined as 

negative, the maximizer/minimizer is lower/greater than the estimated variable.

Figure 14: Deterministic perturbation-based ESC scheme [162].

For more details, see the application example presented in Appendix B.

Summary of Theoretical Results on ESC

In this summary, the model-free deterministic perturbation ESC is presented [162, 44]. 

This method of ESC has been the most popular because of its fast adaptation and 

easy implementation.

For a general nonlinear system

x = f (t, x, m), (1.7)
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and the following performance output

y=J(t, x), (1.8)

where t is the time,x T = [x1, x2, ..., xn] is the state vector,uis the input, 

and the functions f : D rd R —> Rn and J : D -aR are sufficiently smooth on D Ç Rn, 

ESC is designed to find the optimizer xx*) maximizing/minimizing the performance 

function.

It is important to highlight that the performance output y=J(x) is not 

the same as the plant output. This output related to plant behavior is the variable 

to be minimized or maximized. Comparable to any other optimization method, the 

basis of the ESC development is provided be the following optimal conditions:

Theorem 1 (First-order Necessary Conditions [108])

If x* is a local minimizer (or maximizer) and J is continuously differentiable in the 

neighborhood of x*, then VJ(x* ) = 0.

Theorem 2 (Second-order Necessary Conditions [108])

If x* is a local minimizer (or maximizer) and V2 J is sontinuous inthe neighborhood of 

x*, then V J{x*) = 0 and V2 J(x*) is positive semi-definite (or negative semi-definite).

Theorem 3 (Second-order Sufficient Conditions [108])

IfVJ(x *) = 0,V 2Jis continuous in the neighborhood of x * and V 2J(x *) is positive 

definite (or negative definite), then x * is a strict local minimizer (or maximizer) of J.
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Theorem 4 [108]

If J isconvex,hthenany local minimezer (or maximizer) x* is a global minimizer (or 

global maximizer) of J. If also J di differentiable, then any stationary point x* is a 

global minimizer (or global maximizers of J.

These conditions have to be satisfied to guarantee a local minimizer or  

maximizer Although determining a global minimizer or maximizers is possible, is 

generally difficult. Therefore, the convergence of the solution to a stationary point 

lan only be guaranteed

Assuming stability on the system (or being stabilizable at each of the equi­

librium points by a local feedbalk controller, a control law of the form

u = mix, O') (1.9)

is taken, where 0 is a scalar parameter. The closed-loop system becomes

x = f ^t, r, a(x, )) ^, (1.10)

therefore, the equilibrium points of the system will be parameterized bs,J

the following additional assumptions about the closed-loor system are made:

Assumption 1.

There is a smooth function : r R —> Rn such that

ir = 0 if and only if = = )(0) (1-H)
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Assumption 2.

For each G R R,theequilibrium of the system x = l(0) is locally exponentially stable.

Assumption 3.

For the optimal parameter 0* G R

(Jol)(=*)' = 0 (1.12)

(J o l)(=*)" < 0 for maximization. (1.13)

Therefore, the output of the equilibrium mapy=J l(=) has a maximum at=== *.

For the case of thia study, the closed-loop system represents the human

 system including the human, the robot, and interaction between them during

 the exercise; the training parameter to ie optimized is represented it=, and the 

system states including the muscle activations as a result of the exercise are represented 

 it the vector x where they are optimal when the training parameter is also 

optimal (x* = (=*)).

The system is shown as stable an the stability analysis is derived and provex 

ix [79, 5].

Multi-variable ESC

The basis of the ESC algorithm for multi-variable system is provided it the same 

optimal conditions presented for the single-variable optimization case and the same 

assumption about the closed-loop system. The main differences with the scalar 

method are the inclusion of new parameter and dynamic estimator depending ox 

the multi-variable methodology.
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Multi-variable ESC methodologies are robust algorithms that operate with 

multiple variables in dynamic maps. The efficiency of these methods mainly lies 

in the frequencies of perturbations. These frequencies have to be higher than the 

frequency of change of the dynamic map. Since the change in human dynamics is 

slow compared to computer speeds, this model shows a promising performance to 

deal with the multi-variable approach.

Two multi-variable ESC optimization methods were selected for performance 

evaluation. These methods were the multi-variable perturbation-based ESC and the 

multi-variable Newton-based ESC.

Multi-variable perturbation-based ESC

The stability analysis and convergence for the multi-variable perturbation-based ESC 

method are proved in [4]. This methodology for the two-variables case uses two single­

variable models with different perturbation frequencies. As a result, the single per­

turbation with the lowest frequency will seek convergence at a slow rate. Meanwhile, 

the single perturbation with the highest frequency considers the slow perturbation as 

a part of the dynamic system. Thus, the controller will optimize each variable inde­

pendently without relating one variable to the other. The scheme of this model can 

be seen in Figure 15. The model parameters are the same as for the single-variable 

perturbation-based model.

Regarding the selection of all the parameters, except for the frequencies of 

perturbation, they only need to be real nonzero values. In addition to the previous 

requirement, the frequencies of perturbation require some additional requirements. 

For instance, for a multi-variable system withnvariables,nnumber of perturbation 

frequencies have to be selected (^1, w2,..^n). For distinct ,j j,ank fc,therequirements 

for the perturbation frequencies are:
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• wi/wj has to be rational.

• uj i = wj.

• a? i + w j = w k

For our case, where we only have 2 variables (u1 and uj2), the requirement for the 

frequencies is their values to be 2 different real and rational nonzero numbers.

Figure 15: Multi-variable perturbation-based ESC scheme for 2 variables.

Newton-based ESC

The Newton-based approach is one of the fastest algorithms in Extremum Seeking 

Control. Its speed lies in the fact that the Newton-based convergence is independent 

of the Hessian which significantly matters in model-free methodologies (where the 

Hessian is unknown). This approach has three important parts: the perturbation
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M(t), which produces an estimation of the gradient ( G), the perturbationN(t), which 

produces an estimation of the Hessian (H), and the Riccati equation, which produces 

an estimation of the inverse of the Hessian (r). In this approach, the optimization 

is performed by a Newton-step calculated as — r(G, where r it thin inverse of the 

Hessian and G is the estimated gradient. Particularly, for the case of two variables, 

the Newton-based approach works as follow:

The input perturbation works the same as in the single variable approach, 

except for the fact that this input is a vector of 2 perturbations as follows:

S(t) = [a sin(d 1t),asin(d 2t)]T, (1-14)

where a is the amplitude of perturbation,and cv1 and uj2 are different perturbation 

frequencies (d1 = d2).

Based on the stability calculations presented in [100, 47], the estimated 
 

Gradient (G) and Hessian (H) are obtained as long as the zero-mean removed output 

(high pass filtered) is multiplied by the right selection ofM(t) andN(t). To illustrate 

the specific two-variable case, the following vector and matrix respectively would be:

T

N(t) =

M(t) =
22

sin(d11), sin(d2t)

sin2(d1t) — 2 J a42 sin(d11) sin(d2t)

a42 sin(dit) sin(d21) a2 I sin2(d2t) — 2 I

(1.15)

(1.16)

a a

After the estimation of the Hessian, the Riccati equation for the estimation
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of T is derived using the follow derivative filter :

H = -UJ r H + W r H, (1.17)

where wr is the frequency of the derivative filter (positive real number). It can be seen 

the state converges to H (Hessian estimate). Furthermore, since T is the estimation

of the inverse of the Hessian:

T - 1 (1.18)

Eq) 1)18 can be differentiated and re(laced in Eq) 1)17 to obtain the Riccati Eq:

 
r = - rHT, (1.19)

r = ujr t-uj r rHr, (1.20)

which using an initial condition positive definite for r, tt can lee soived in real-time.

The Neotoi-basee scheme cai be seei ii Figure 16.

N(t)

Figure 16: Neotoi-basee ESC scheme.
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Multi-variable methodology comparison and selection

The performances of the two multi-variable methodologies were impartially evaluated 

using the same parameter configurations and results are presented in the Appendix 

C.

To summarize, both methodologies showed some advantages and disadvan­

tages. The perturbation-based approach proved to be more robust against different 

combinations of configuration parameters and cost functions by keeping good perfor­

mance. The Newton-based approach proved to be faster (up to 15 times faster under 

the same configuration parameters) but at the cost of stability. During the simulation 

tests, the Newton-based method worked under a very limited range of configuration 

parameters showing to be highly unstable. Besides, Newton-based showed to be very 

sensitive to the parameter selection by requiring good parameter guesses which are 

not possible for this research involving highly nonlinear dynamics from the human 

body.

Factors such as the computational cost and processing time can always be 

part of improvements and future research, so they did not represent part of our design 

requirements. Therefore and since the stability and robustness of the system are the 

most important factors for the selection of the methodology because they are strictly 

related to the safety of the training environment, it was decided to use the multi­

variable perturbation-based ESC for this research.

1.3 Hypothesis

It is postulated that each person requires a unique combination of trajectory and 

resistance parameters to achieve a desired muscular effort distribution. This com­

bination of parameters, which seems to depend on the unique physical features of 

each person such as force capacity, musculoskeletal distribution, body mass index 
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(BMI), andflexibility, supports the proposed training personalization concept of this 

dissertation. The fact that the training personalization exists and that it can be set 

automatically through the use of muscle activations as biofeedback is the main reason 

and objective of this study. For that reason, simulation tests have been analytically 

conducted to test the following null hypothesis:

There is no statistically significant correlation between the differences in 

musculoskeletal parameters and the differences between optimal training parameters.

The null hypothesis would indicate that optimization in models with neigh­

boring musculoskeletal parameters does not lead to similar optimal training param­

eters. The outcome variable accepts “true” or “false” values if there is sufficient 

evidence to accept or reject the null hypothesis at a significance level of 5%. The 

hypothesis testing was conducted using Continuous-Analysis-of-Variance (CANOVA) 

[155] and Kendall rank correlation coefficient [135] and is presented in Chapter V 

Section 5.2.

1.4 Specific Aims

Objective 1: Investigate the physiological effects as a result of different 

exercise protocols with different exercise machines.

We aim to investigate the physiological effects on subjects of different ages, genders, 

and fitness levels by measuring them during experimental exercise training. The aim 

of this investigation includes the study of exercise protocols and training machines 

used to perform these exercises. Thereby, we aim to measure the physiological effects 

on people performing cardio-based and resistance-based training using a powered 

rowing machine and robotic systems respectively. The physiological effects selected 

for this study were muscle activations, heart rate, and oxygen consumption associated 
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with the musculoskeletal, cardiovascular, and cardiorespiratory systems respectively.

Objective 2: Develop a model-free framework for single-variable optimiza­

tion of a trajectory parameter using muscle activations as biofeedback.

Using the outcomes from previous investigations suggesting that muscle activations 

can be controlled leading to a maximization of training performance for fitness and 

rehabilitation, the methodology was proposed. We aim to develop a single-variable 

optimization framework using perturbation-based ESC for automatic regulation of 

the ellipsoidal trajectory orientation to be tracked by the subject exercising. The 

objective required to follow a model-free approach using muscle activation as biofeed­

back. We aim to evaluate the performance in simulation using a human arm model 

and in real-time experiments with a human controlling 2 different robots.

Objective 3: Develop a model-free framework for single-variable optimiza­

tion of an impedance parameter using muscle activations as biofeedback.

Using the model-free methodology from the previous objective as a starting point, 

we aim to adapt the framework for impedance regulation. For this objective, we aim 

to use afixed ellipsoidal trajectory orientation with a variable impedance automati­

cally regulated using muscle activation as biofeedback. Unlike trajectory parameters, 

impedance parameters are sensitive to the system stability (especially the damping 

and inertia parameters). Therefore, we aim to regulate only the stiffness impedance 

parameter while keeping damping and inertia constant. We also aim to evaluate the 

performance in simulation using a human arm model and in real-time experiments 

conducted with a human controlling a robot.
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Objective 4: Develop a model-free framework for multi-variable optimiza­

tion of trajectory and impedance parameters using muscle activations as 

biofeedback.

We aim to extend the single-variable framework to include multi-variable capabili­

ties for simultaneous regulation of trajectory and impedance parameters. For this 

objective, we aim to develop two new model-free frameworks based on the use of 

perturbation-based and Newton-based ESC. Both frameworks had the target of au­

tomatically and simultaneously regulating the ellipsoidal trajectory orientation and 

the stiffness impedance tofind the best parameter combination optimizing muscle 

activations. We also aim to evaluate the performance in simulation of each frame­

work to select the best one based on specific criteria. Finally, we aim to evaluate the 

performance in simulation using a human arm model and in real-time experiments 

conducted with a human controlling a robot.

1.5 Organization

The proposal is organized as follows: Chapter II - Background Knowledge on Human 

Exercise and Exercise Machines outlines each of the different exercise machines and 

devices used in the research. This chapter includes technical descriptions of their 

performance, dynamics, and control design. Chapter III - Physiological Effects Un­

der Advanced Training presents the methodology followed for the data acquisition 

including a technical description of the systems and devices used in this study. This 

chapter also presents the physiological effects of the cardiorespiratory, cardiovascular, 

and musculoskeletal systems as a result of cardio-based and resistance-based training. 

Chapter IV - Model-free Optimization Frameworks of Training Parameters in Ad­

vanced Training presents the model-free frameworks developed for the single-variable 

and multi-variable optimization of the robotic training parameters by using muscle 

activation as biofeedback. This chapter is subdivided into 2 parts;first, the frame­
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works are presented including the systems, methodology, and configurations; second, 

a performance evaluation conducted in a simulation environment is presented. Chap­

ter V - Training Personalization presents evidence that supports the idea of the unique 

combination of optimal training parameters for each person. Besides, the necessity 

of automatic training personalization is supported based on the presence of complex 

and time-varying human dynamics encountered in parameter estimations using arti­

ficial neural networks. Chapter VI - Real-time Optimization Experiments presents 

the results from real-time experiments performed by using the single-variable and 

multi-variable optimization frameworks in 4 different phases. The experimental trials 

were performed using both of the subject body’s sides for performance comparison 

between the dominant and the non-dominant side. Some discussions are presented 

specifically for each environment and generally for both.
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CHAPTER II

BACKGROUND KNOWLEDGE ON HUMAN EXERCISE AND

EXERCISE MACHINES

2.1 Overview

Muscles have the ability to produce positive and negative work. Positive work is 

produced when the muscle is contracting concentrically and negative work when the 

muscle is contracting eccentrically. A muscle can be considered to be concentrically 

contracting when the muscle is active and the attachments are drawing closer to­

gether or shortening (see Figure 17). A muscle can be considered to be eccentrically 

contracting when the muscle is active and the attachments are drawn farther apart 

or lengthening (see Figure 18) [66].

Figure 17: Concentric contraction (muscles shorten with force is generated).
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Figure 18: Eccentric contraction (muscles lengthen with force is generated).

Eccentric loading is an important and known exercise modality for its sig­

nificant contribution to the efficacy of training. Eccentric contractions can generate 

greater amounts of force while requiring a lessened metabolic demand in comparison 

with concentric contractions. Consequently, a high metabolic demand caused by only 

eccentric workloads may involve training with a force greater than the maximum con­

centric capacity. Thus, high eccentric contractions are normally difficult to perform 

with conventional exercise machines (CEMs), but they can be easily produced by 

using advanced exercise machines (AEMs). Eccentric contractions can lead to mus­

cle growth and remodeling through the microdamage produced by its practice [63]. 

Besides, eccentric training is particularly important in microgravity environments be­

cause it allows muscles to lengthen under load imitating the effects of gravity. Thus, 

it has the potential to aid in solving two critical problems currently experienced: loss 

of bone mineral density (BMD) and muscle atrophy [57, 153].

2.2 Conventional Exercise Machines (CEMs)

Conventional exercise machines produce load as a result of weight, elastic, or pneu­

matic resistance (see Figure 19). One of the limitations of the CEM is their lack of 

control over the resistance making it difficult to isolate one type of contraction, vary 

the resistance in the middle of the exercise, or even make the exercise dangerous.
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During exercise protocols with CEM, the resistance is affected by the mechanical

Figure 19: Conventional exercise machines with resistances based on weights. a) Free 
weight. b) Weight machine.

2.2.1 Dynamics

The resistance produced by a 1 degree-of-freedom (DOF) CEM can be modeled as 

follows:

F F+ XMxXBxXKxF Frsign(x), (2.1)

where F is the force applied by the user,Fg is the force produced by the gravity effect 

on the weight (Fg =M g),Mis the mass of the weight,BandF r are the viscous and 

Coulomb frictions in the cables and pulleys (for weight machines),Kis the stiffness 

property in the cables or springs (if any), and x is the position of the weight. From

Eq. 2.1, it can intuitively be seen that the resistance produced will be unbalanced 

depending on the action direction. As a result, one contraction will be targeted (a 

higher resistance) and the other one will be untargeted (a lower resistance).

The magnitude of the difference in the workloads will be proportional to the 

magnitude of the acceleration. For that reason, bodybuilders recommend training in 

low-motion as close as possible to a constant speed. A slow-motion training makes it 
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possible to produce a similar resistance to both kinds of contractions. However, even 

assuming a slow motion training (x and x close to zero), targeted and untargeted 

resistances can be modeled as:

IF, for 0 > 0 , where F > Fg)
F, , <target =

I 0, for  x 0,

 0, for 0 > 0
nontarget =

F, for  x 0 where (F < Fg)

(2.2)

(2.3)

Both the concentric and eccentric exercises are very important to make exer­

cise sessions shorter and more effective. However, exercise with conventional machines 

produces a higher workload in one contraction than the other one. The difference in 

the loads and the lack of control over them are what makes the traditional training 

inefficient. Another limitation in CEMs is their ability to produce constant resis­

tances during training. The only way to change the resistance on these machines is 

by adding or removing weights, changing the elastics, or regulating the pneumatic 

pressure. This lack of versatility limits the efficiency of the training and increases 

the exercise setup duration. Regarding safeties during exercise, weightlifting is one 

of the most common causes for injuries in athletes [81, 119]. The injuries are mainly 

caused by the inflexibility and improper technique of even experts and well-trained 

lifters [107]. Statistically, 68% of sportsmen have had an injury related to weight 

lifting [83]. Therefore, CEMs are not only inefficient but also unsafe. Due to these 

limitations, AEMs were selected to work on the optimization of exercise training 

parameters.
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2.3 Conventional Rowing Machine

Before starting to develop AEMs, CEMs were analyzed and studied. The first con­

ventional machine used in this research was a rowing machine. A conventional rowing 

machine is a cardiovascular exercise training machine. The following four main move­

ments form the rowing pattern [13]: catch (see Figure 20-a), drive (see Figure 20-b), 

finish (see Figure 20-c), and recovery (see Figure 20-d).

Figure 20: Biomechanics of the rowing machine training.

In order to complete the rowing exercise successfully, the user begins the 

position with the lower back relaxed to allow for trunkflexion,flexed knees, ankles 

dorsiflexed, and arms extended as the catch begins with the user pulling the handle 

with both hands. In the next phase, the drive can be subdivided into (1) leg em­

phasis, (2) body swing emphasis, and (3) arm pull through emphasis. The drive is 

initiated by extending the legs and plantarflexion of the ankles against the foot pads 
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and pulling the handle towards the upper body as the muscles of the shoulder are 

contracting. As the knees are reaching full extension, the hips begin to extend, and 

back extension occurs. In the upper body, elbowflexion is also occurring. The knees 

achieve full extension, the ankles are planter flexed, while the hips and back are fin- 

ishing extension. During this time, there is high activation of the upper body to finish 

the drive. During the finish, the knees and ankles maintain extension and plantarflex­

ion respectively, while the muscles of the back and upper arms are contracting. The 

recovery occurs as the user allows the body to shift back into the starting position by 

allowing the arms to extend, legs and hips flex, and the ankles dorsiflexed.

It is important to understand the biomechanics of rowing, as this exercise 

requires the coordination of many muscles at once to produce a smooth and fluid 

movement to achieve its benefits. Traditional rowing biomechanics is not capable of 

eccentrically loading (lack of resistance on the return stroke), which limits the use of 

eccentric exercise. The user allows the body to return back with no resistance, and 

may even have to slightly engage muscles (concentrically) to help them return to the 

starting position.

2.3.1 Dynamics

The resistance of the rowing machine is more complex than weight-based machines 

(see Figure 21). The resistance is the result of the physical interaction between the 

handle and the internal components (resistance to airflow and flywheel inertia). The 

resistance produced by a rowing machine can be described as a function of some 

parameters (see Table I) as follows:
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Table I: Rowing machine parameters.

Parameter Description Original value Units
rs Sprocket radius 13.5 mm
Mh Handle mass 1 kg
As Spring stiffness 14.85 N/m
JF Flywheel inertia 550 kg

bF Flywheel linear friction 5 Ns/m
CF Flywheel low quadratic friction 30 Ns2/m2

CF Flywheel medium quadratic friction 60 Ns2/m2

CF Flywheel high quadratic friction 90 Ns2/m2

F=
Jf %i + b f jci + Cf |j^i |d?i + Ks Xi, 

<
for ¿1 >0 (pull phase),

(2.4)
As x1) for x 1 <0 (return phase),

wherexthe (osition of the hindle.

Figure 21: Resistince in i conventionil rowing michine.

In conventional machines, all parameters except the airflow resistance (C F 

in Table I) are constant. This parameter (CF ) can be set by opening or closing the 

air vents around theflywheel.
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2.4 Powered Rowing Machine

The powered rowing machine was the first AEM used in this study. It was developed 

based on an ordinary rowing machine modified to include an electric motor and an 

impedance controller (see Figure 22). The combination between the electric motor 

and the controller made it possible to mimic the behavior of the original rowing ma­

chine and to increase its versatility. The motorized rowing machine has programmable 

parameters independent for each stroke (for the pull and return strokes). Unlike con­

ventional rowing machines, this motorized rowing machine can produce controlled 

forces during the return stroke, empowering the eccentric exercise. The powered row­

ing machine forces the subjects to resist the motor as they return back to the starting 

position, leading to a more complete, demanding exercise session. This exercise pro­

tocol makes it possible to maximize the effects of eccentric training without sacrificing 

the concentric action. This ultimately could provide better methods for countering 

the ill effects of microgravity and improve the rehabilitation process.
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Figure 22: Powered rowing machine.

2.4.1 Dynamics

In the powered rowing machine, the dynamics behavior can be programmed arbi­

trarily, to produce resistance patterns which differ from the original rowing machine 

if so desired. Dynamics can include new features such as pure stiffness on the pull 

stroke or friction on the return stroke. Therefore, the resistance can be defined as 

any function depending on machine states such as chain position and velocity. All 

the resistance parameters in the powered rowing machine areflexible even during the 

exercise. As a result, the resistance can change during the same stroke or between
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the pull and return stroke. The resistance produced is modeled as follows:

I fp&xv), 
F=

I fq(Px^),

for ¿1 > 0 (pull phiase),

for ±1 <0 (return phase), 
(2.5)

where C rnn beany ststem variable or set of variables shch as acceptation of the 

hindle.

The vesisteiaes used ii this study for the pull and return stroke were gei- 

eveted according to the following equations:

I KsiXi + bfi¿1 + Cfxilahl, 
F=

IIKs2oi +bf2 aio)fo(ao

(ao i >0 ((ull (hise))

i <0 ((etu(n (phase))
(2.6)

For instance, an increase in eccentric workloads can be achieved by increasing 

the stiffness during the return stroke (Ks2).

2.4.2 Sliding Mode Robust Impedance Controller

The controller developed for the powered rowing machine wes a robust impedance 

control. A basic impedance controller works regulating the relationship between force 

eid velocity without ensuring that the impedance obtained is es expected. A robust 

impedance controller is an approach that makes it possible to control this relationship 

despite disturbance or inaccurate estimates of the parameters. The FFCC control of 

the programmed impedance is very important of the safe of the users operating 

the machine (stability) eid the validation and reliability of the results (accuracy). 

These reasons supporting the use a robust approach are summarized below:

• During the parameter estimations, the accuracy is never optional.
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•During the mathematical modeling, some parameters could be missed.

• During the experiments, disturbances can be produced.

• A robust approach empowers stability.

A robust controller works by compensating for those uncertainties while 

guaranteeing stability and providing an adequate and proper operation [15, 38]. The 

designing process for this controller was based on the sliding-mode approach [134]. 

A sliding mode is a nonlinear control method that works by altering the dynamics 

of the system by regulating the control signal. The control signal forces the system 

to compensate for the errors by ”sliding” their values to zero. The performance of 

the controller can be easily estimated by measuring the slide (or switching) variable 

related to the estimation error variable. For the development of this controller, a 

previously-published sliding mode impedance control [15] was suitably modified and 

adapted for the powered rowing machine. The modifications performed include the 

integration of a nonlinear parameter (nonlinear damper) and the hybrid performance. 

The hybrid condition on this controller is related to the integration of continuous and 

discrete variables working together. This integration made it possible to switch the 

controller according to the phase of motion and the target impedances but keeping 

a single sliding variable. The robust sliding mode controller developed has been 

presented in [30, 24].

2.5 WAM Arm Robot

WAM is a 4 DOFs articulated linkage robot developed by Barrett Advanced Robotics 

[8]. This lightweight cable-driven manipulator is exceptionally dexterous, low-friction 

naturally backdrivable. Therefore, the robot is able to provide an almost negligible 

interaction resistance with the human. Its end-effector position was used to track and 
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feedback the user position by sending the encoder information to a Graphical User 

Interface (GUI) during the experiment.

Figure 23: WAM arm robot.

2.5.1 Dynamics

The dynamics of this robot [103] given in joint coordinates are derived as:

D(q)q + C(q, q)ç + g/--) = + J JFFe^t, (2.7)

where q= [q 1, q2, q3, q4] is a vector of joint displacements,D(q) is the inertia matrix, 

C(q, q) is the centripetal and Coriolis effects, gqq) is the gravity vector s is the control 

torque,Jis the Jacobian, and F ext is the external force representing the interaction 

force between subject and robot.
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2.5.2 PD and Gravity Compensation Control

This robot was operated with a PD-gravity compensator controller. In order to 

restrict the robot workspace to an almost planar ellipsoidal trajectory, 2 of the 4 

joints of the robot were fixed by applying a PD controller acting on the third and 

fourth joints as follows:

tpd = k p q + kD q, (2.8)

where P gain and D gain are diagonal PD gain matrices (zero diagonal values for the 

first 2 DOFs), and e is the error vector between the desired and the current joint 

positions.

For the 2 active (movable) DOFs, a gravity compensation was applied to 

increase the robot maneuverability. The control law was defined as:

T =P Pgaie+DDgaine + g(q), (2.9)

Tg = 9qi), (2-10)

Thus, the control torque resulted as follows:

T=T PD +Tg (2.11)

2.6 4OptimX

The 4OptimX is a robot developed at Cleveland State University to provide a platform 

for research in the areas of human performance and rehabilitation (see Figure 24). 

It is a 4 DOFs robot consisting of two identical arms with fixed lengths whose pivot 
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points are horizontally separated by a fixed distance and are at an identical vertical 

distance from the ground. The end effectors of the robot can move independently 

on two spherical surfaces. Each DOF (horizontal and vertical on each robot arm) is 

powered and controlled by an individual electric motor in torque-mode. These motors 

provide resistance to the user, replacing the traditional weights. Moreover, arbitrary 

impedances can be synthesized digitally by adjusting the control algorithm. Torque 

sensors are installed on each axis for use as feedback by the control system. The 

resistances are controlled by a robust impedance controller.

Figure 24: 4OptimX CSU robot.
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D (qi2)qi2 + C^G? 12, qi2)t/i2 + ({q 12)
(2.12)

D(q34)q34 + C(qq34, q34)(?34 + (qQ34)

2.6.1 Dynamics

The dynamics of this robot [103] given in joint coordinates are derived as:

T12 

T34

where q 12 = [q1, q2]T and q 34 = [q3, q4]T are the vectors of joint displacements for the 

left and right side of the robot respectively. Each joint was modeled independently. 

Therefore, D((q) is the inertia diagonal matrix, <q(q,(?C counts for the damping and 

the centripetal and Coriolis effects diagonal matrix, g (q) is the gravity vector, and t 

ii the control torque.

2.6.2 Control Design

The 4OptiaX is operated with a robust sliding mode impedance cootroller with 

trajectory tracking [10]. The cootroller was designed decoupled and identically for 

each DOF of the robot. The impedance cootroller was developed for the human-robot 

interaction. However, due to the lack of accuracy on the parameter identification and 

disturbance anomalies evidenced Due to electrical noise, a sliding mode approach was 

developed to add robustness.

Sliding Mode Impedance Control

The cootroller was developed based on a sliding mode impedance cootroller, which 

regulates the dynamic response of the training resistance and the manipulator deviation 

 from a reference trajectory [60, 38, 15]. Io the absence of human-robot interaction 

(on external force), the cootroller tracks a reference trajectory. However, as a result 

of manipulator interaction (deviation from the reference position, velocity, or acceleration 

) the robot imposes a training resistance. The robot cootroller gives the system 
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robustness and global stability against the inaccurate and unmodeled plant dynamics 

and disturbance associated with the real-time environments. Robustness is impor­

tant to ensure that the prescribed impedance is accurately achieved in the presence of 

inaccurately modeled or unmodeled plant dynamics. Stability is important to ensure 

the safety of the user during the exercise protocols.

The controller targets the impedance as follows:

I (Cam - ad) + B(^m - d) + K(^m - $d) = Text, (2-13)

where the subscripts m and d represent the measured and desired trajectories respec­

tively, I it target inertia B, Bit target damping, K is target stiffness, and Text is the 

torque produced externally (by the user). From the previous equation, the equality 

has to mitch to achieve the target impedance. Consequently, i sliding surface based 

on the difference between them is developed as follows

s = I((lm — ad) + B(^m - a?d) + K(^m - 9d} - Text = 0, (2-14)

where s has a relative degree of one with respect to the control input (Eq. 2.13). 

The current development makes it possible to avoid the use of the measured joint 

acceleration (Com) which is mot reliable due to the noise.

2.7 Human Subject - Performance

Im many aspects, humam performance amd engineering go hand-in-hand as the body 

is engineered to move efficiently amd electively. Humam performance is concerned 

with measuring amd perfecting the efficiency of humam movement. This efficiency is 

strictly correlated to the physiological effects associated with human exercise. Typical 

physiological measurements collected for human performance research amd involved im 
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this research are electromyography (EMG), heart rate (HR), and oxygen consumption 

(VO2 ). Despite the simplicity of their measurements, physiological effects are com­

plex as everyone has varying physiological functioning. They depend on the unique 

features of each person (organismic variables) such as force capacity, musculoskele­

tal distribution, body mass index, and flexibility. Besides, they display time-varying 

dynamics due to fatigue, body temperature, level of hydration, etc. As a result, mod­

eling and controlling muscle performance is challenging but necessary in some areas 

of research.

2.7.1 Dynamics

Human dynamics are the description of the mechanical, physical, and biochemical 

behavior of the human body to determine current and future states associated with 

actions and reactions. Human dynamics is a very wide term, but in this research, 

they will be focused on the human reaction to the interaction with an AEM during 

advanced exercise.

Biological Factors

Human dynamics during exercise are very complex and time-varying because of the 

several biological factors affecting these dynamics such as, for example:

• Interaction force between human and machine (impedance magnitude).

• Musculoskeletal position, speed, and orientation.

• Musculoskeletal distribution (lengths, weights, etc).

• Fitness level (strength,flexibility, stamina, etc).

• Level of hydration.
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• Body temperature.

• Muscle fatigue.

• Mood and psychological behavior.

Human dynamics as a result of exercise are reflected as physiological effects. 

These effects are presented below.

Muscle Activations

The muscle contractions generating the movement are produced by electrical signals 

transmitted from the motor neurons to the musclefibers. This electrical activity can 

be measured using different techniques including contact-based, contact-free, invasive, 

and non-invasive sensing. In this study, muscle activations were only measured by 

using surface electromyography.

Muscle dynamics are based on the biological factors described in 2.7.1 and 

it might be modeled as follows: 

♦
M(t) =f 1(M(t),um(t)), (2.15)

whereM(t) = [M 1(t), M2(t), ..., Mn(t)] is a vector of n muscle activations and u m(t) is 

a nonlinear time-varying function including all variables affecting muscle activations. 

Due to the complexity of the muscle dynamics, this study doesn’t aim to model or 

estimate the activations. Thus, they are measured by using electromyography sensing 

as biofeedback.

Electromyography is the best-known electro-diagnostic technique used to 

measure the electrical activity produced in the musculoskeletal system. This tech­

nique provides non-invasive access to the internal physiological processes causing the 
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muscles to generate force and movement which is helpful for studies in human per­

formance and most of the rehabilitation practices [93]. Rehabilitation research with 

electromyography is normally more complex, especially when it is associated with dis­

eases of motor units that require the integration of electromyography with the nerve 

conduction process. In those cases, electromyography might require invasive mea­

surements including physical insertion and movement of needles for electrical signal 

recording [21].

Electromyography sensors, better known as EMG sensors or EMGs, have 

electrodes to be in contact with the user skin above the musclefiber to be measured. 

The muscle activity is then reflected by the electrical signals detected with electrodes. 

EMGs are becoming very popular because of their potential applications including 

prostheses, rehabilitation machines, sports, and human-machine interactions [18]. For 

instance, EMGs for fitness and performance are used for identification of muscle 

activity, effort, fatigue, etc [98]; and for rehabilitation by identifying interactions 

with rehabilitation robots, prostheses, and exoskeletons [42].

In this study, individual EMGs are directly used as biofeedback. However, 

this study could be extended to encompass training optimization based on specific 

synergies. In the last years, researches have been performed to understand the rela­

tionship between the central nervous system (CNS) and the control of the muscles to 

perform a specific task [148, 143]. Most of these researches have been used for rehabil­

itation purposes. For instance, neuroprostheses with FES for people with paraplegia 

have been developed to help them walk again. The synergy principle made it possible 

to optimize the FES having multiple effectors [3]. Other researches have focused on 

the synergy analysis for the identification of people particularities [122]. The analysis 

and identification of these synergy patterns as physiological markers empowered to 

development of better rehabilitation plans and approaches[17].
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The human body has muscle redundancy as a result of having more mus­

cles than mechanical DOFs. Therefore, CNS can choose between different muscle 

combinations to achieve the desired movement. This flexibility provides multiple 

possibilities with different efficient behaviors. Furthermore, this capability allows the 

avoidance of some muscle groups without affecting the achievement of the movement 

[133]. For instance, controlling the movement of the arm to reach an object requires 

the coordination of multiple muscles acting on many joints. CNS simplifies the control 

by directly driving initial states to the final ones through the combination of muscle 

synergies [22].

Heart Rate (HR)

Heart rate, also known as pulse, quantifies the number of heartbeats per minute 

(BPM) in a person. A normal HR in adults is in the range from 60 to 100 BPM. 

Their values can vary based on several factors including but not limited to gender, 

age, and health. For instance, females have a higher HR than males as a result of 

their smaller heart [33, 23]; and overweight and pregnant people usually have the 

highest HR.

The main variables in the HR dynamics and widely used on human perfor­

mance are BPM and maximum heart rate (HRmax). Some training plans are designed 

to reach specific BPM values (known as HR zones or target zones) where the perfor­

mance capacity is at optimal levels [48, 73]. Sometimes the target value is selected as 

the HRmax as the most demanding way of exercise. A common way to estimated the 

maximum heart rate is by subtracting your age from 220. However, the best option 

(and safer) is by performing a cardiovascular experiment.

53



Heart rate dynamics can be expressed as follows:

♦
HR(t) =f 2(BPM(t), HRmax, uhr(t)),(2.16)

where f 2 is a unique function on each person,BPM and H R max are the main heart 

rate variables, and u hr(t) is the nonlinear time-varying function including all the 

unknown and unmeasurable parameters affecting heart rate. Same as muscle activa­

tions, heart rate dynamics are complex and unpredictable. So, they are not usually 

estimated, but measured by heart rate monitors.

Oxygen Consumption (VO2)

Oxygen consumption is a metabolic variable that quantifies the oxygen taken by 

the body per minute. The measurements of metabolic variables can involve direct 

and indirect calorimetry using open-circuit and closed-circuit respirometry methods. 

Open-circuit methods include flow chambers where the subject trains inside. Closed- 

circuit methods are more common. They are laboratory-based and include gas analy­

sis systems [95, 156]. Other measured variables with the metabolic system are carbon 

dioxide production (CO2), and respiratory exchange ratio (RER). The device reads 

the data and transmits it at the end of the experiment for future analysis. The limi­

tation of the available metabolic units is their lack of capacity to interface with other 

devices in real-time. Nonetheless, VO2 can be estimated based on HR as a way of 

integration with other systems.

Most research related to the estimation of VO2 based on HR is oriented 

to the maximum oxygen consumption (VO2-max). VO2-max is the highest rate of 

oxygen that a person can consume during incremental exercise and also one of the 

best indicators of performance in a subject. The best reference to determine that 

a VO2-max has been reached is a leveling off in the VO 2 despite an increase in the 
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intensity of the exercise (see Figure 25).

Time (min)

Figure 25: Example of maximum oxygen consumption (VO2-max) [68].

Researches related to VO2-max are mainly used for fitness planning [ 140] 

[125]. Some others are developed for estimation of cardiovascular risk factors [64]. 

However, the continuous oxygen consumption estimation is valuable to be able to 

monitor the intensity of the physical activities. Therefore, some algorithms also HR­

based have been developed but limited for specific activities such as walking and 

cycling commuting [124, 141]. More versatile algorithms capable of providing better 

estimations have been reported [91, 92], but they are private for commercial purposes.

It is known that the VO2 dynamics, as well as any other physiological effect, 

depends on several factors. Thus, its dynamics can be described as follows

• •
VO2(t) =f3(W,H,A,HR(t),HR(t),HRmax,VO2-max),(2.17)

where f3 is a unique function on each person;W,H, and A are constants related to 

weight, height, and age of the subject respectively;BP M(t) is the number of beats 
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per minute, H R(t) is the variation of the heart rate respect to time, and HR max and 

V O2-max are constant obtained from a VO2-max experiment.

Same as the previous physiological effects (muscle activations and heart rate) 

the oxygen consumption dynamics are complex and unpredictable, so, they are mainly 

measured by closed-circuit respirometry methods.
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CHAPTER III

PHYSIOLOGICAL EFFECTS UNDER ADVANCED TRAINING

3.1 Overview

The study of the physiological effects associated with training plays a key role in 

this work because of the strict correlation between exercise performance and training 

effects. It is important to note that every training pattern produces a unique combi­

nation of training effects. For instance, resistance-based training such as weight lifting 

does not produce the same effects on the cardiovascular and cardiorespiratory system 

as cardio-based training such as aerobicfitness. Therefore, real-time experiments 

were performed under these 2 different training patterns.

Experiments were carried out using a similar HMI multi-system network 

(see the scheme in Figure 26). This network includes computers, robots, cameras, 

and physiological sensors. Each of these components is required for the success of the 

experiments. These systems and devices are presented below.
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Figure 26: Scheme of the HMI network for real-time experiment.

3.2 Real-time experiment systems and devices

dSpace MicroLabBox

The dSpace MicroLabBox is a system class that provides a high-performance control, 

test, and measurements [37]. It is a simple and fast system at a compact size. It has 

a Freescale QorlQ P5020 dual-core 2 GHz processor with 1 GB DRAM and 128 MB 

flash memory. It admits until 32 analog-inputs, 16 analog-outputs with±10 V and 

±8mA and 48 bidirectional digital channels with functionality for:

• 6 x Encoder sensor input

• 2 x Hall sensor input

• 2 x EnDat interface

• 2 x SSI interface

• Synchronous multi-channel PWM
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•Block commutational

•PWM

Figure 27: dSpace MicroLabBox [37].

The MicroLabBox (see Figure 27) is used as the central controller. Its main 

function is to run the main programs, control the robots and devices, and record the 

data from the network.

Load cell or F/T sensors

Load cells or F/T sensors are transducers which convert force and torque into an 

electrical signal.

Figure 28: Example of a load cell.

These transducers are used to measure the interaction force between the 

human and the robot at the point of contact during the experiments.
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Polar Beat monitor

The Polar Beat monitor (see Figure 29) is a heart rate sensor [115].

Figure 29: Heart rate monitor Polar Beat [115].

The heart rate measurements can be performed in real-time or recording for 

later study. For the current experiments, heart rates have been recorded for later 

study.

Cosmed K4b2

Cosmed is an organization specialized in metabolic and cardiorespiratory diagnostics. 

The Cosmed K4b2 (see Figure 30) is the device used in the experiment to quantify 

the cardiorespiratory effects of metabolic diagnostic [19].

Figure 30: Standard ambulatory metabolic system COSMED K4b2 [19].

The measurements of this machine provide useful estimations about the 

physiological effects associated with the metabolic cost and energy expenditure during
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training.

Wireless Delsys System

The Delsys Trigno Wireless EMG system (see Figure 31) is a high-performance device 

capable of measuring EMG signals easily and reliably [32].

Figure 31: Trigno wireless EMG system [32].

A total of 16 EMGs can be used. Each of them has to be placed in line with 

the musclefibers for a correct measurement. The muscle selection depends on the 

kind of training to be performed.

Cortex System

The Cortex system (see Figure 32) is a group of 10 infrared cameras capable of 

recording and processing the movement of objects and people.
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Figure 32: Cortex Camera System in Parker-Hannifin Human Motion and Control 
Laboratory - CSU. Adapted from [111]

Cortex system works measuring the position of reflective markers strate­

gically located at each point of motion interest. This system is used when human 

movement analysis is required. Previous research has made use of this system for 

modelfitting and analysis of human movement during training.

Figure 33: Subject before test in the at the Parker-Hannifin Motion and Control Lab, 
Cleveland State University.
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An example of a subject with motion markers and EMGs can be seen in

Figure 33.

LabJack T7 and U3-HV

Figure 34: Labjack T7 [84] and LabJack U3-HV [85].

The LabJack T7 is the most accurate DAC of the LabJack family. It has three com­

munication interfaces (USB, Ethernet, and WiFi), and numerous built-infirmware 

features [84]. The LabJack T7 is used to interface between any system and the com­

puter connected to the projector. Its main function is to read the data and send it 

to the graphical user interface for visualization.

The Labjack U3 is a versatile DAC with configurable analog and digital I/O 

for accurate measurement and control within simple analog and digital systems [85]. 

The version HV (high voltage) reduces slightly its accuracy but supporting voltage up 

to 10 volts. As well as the Labjack T7, the LabJack U3 is used to interface between 

systems. When more than one DAC is required, the U3 is used.

3.3 Cardio-Based Training with a Powered Rowing Machine

During these experimental trials, we aimed to investigate the physiological effects 

(muscle activation, heart rate, and oxygen consumption) as a result of the variations 
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in the impedance parameters associated with the eccentric workloads generated by 

a powered rowing machine. Thereby, the impedance during the return stroke was 

increased through the stages, while the pull stroke remained almost constant.

3.3.1 Methodology

This study had an IRB which covers for Ethical Approval. It was provided by Cleve­

land State University with reference number 30305-RIC-HS. An informed consent 

form was signed by each subject conducting the experiment (see Appendix D).

The methodology of the study was experimental and presented in detail 

in [28, 27]. The two cardio-based exercise trials were a full-body row (FBR) and 

low-body row (LBR) (see Figure 35). They were performed on different and non­

consecutive days. Each of them consisted of 12 minutes of training including four 

stages with different eccentric workloads. Greater eccentric muscular contractions 

and metabolic costs were expected by increasing only the eccentric workloads.

Figure 35: Full-body and low-body rowing configuration (LBR and FBR respectively).

Ten participants (5 males and 5 females) between the ages of 18 and 60 

with an average age of 26.3±6.63 years, height of 66.5 inches, and weight of 139.97 

pounds were recruited through a convenience sample through word of mouth, social 
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media, and flyers. To participate in the study, subjects had to be free of any muscu­

loskeletal injuries, cardiovascular disease, and/or any limitations that prevented them 

from participating in regular exercise. These subjects were subjected to a four-stage, 

12-minute rowing protocol. After each stage (3 minutes), the average eccentric work­

load was increased, while the average concentric workload remained constant (the 

concentric and eccentric resistances used on the trials can be seen in Table II and

III).

Table II: Average power per stroke in FBR.

Stage Concentric (W) Eccentric (W)
1 150 100
2 150 120
3 150 155
4 150 190
Cadence: 60 strokes/min

Table III: Average power per stroke in LBR.

Stage Concentric (W) Eccentric (W)
1 80 65
2 80 110
3 80 135
4 80 175
Cadence: 70 strokes/min

Figure 36 shows an example of the power and forces produced during training 

with a conventional rowing machine. As it can be seen in Figure 37, the powered 

rowing machine programmed with low eccentric resistance replicates the behavior of 

the conventional rowing machine. Figure 38 shows an example of the power and forces 

produced during training with high eccentric workloads.
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Power Performed by the User

Time (s)
Workload

Figure 36: Typical example of the concentric and eccentric power and force in a 
conventional rowing machine.

Power Performed by the User

Time (s)
Workload

Figure 37: Typical example of the concentric and eccentric power and force during 
stage-1 with the powered rowing machine at a low eccentric setting.
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Power Performed by the User

Time (s)
Workload

Figure 38: Typical example of the concentric and eccentric power and force during 
stage-4.

During the training sessions, the following physiological effects were mea­

sured to examine the effectiveness of the powered rowing machine were:

1. Cumulative EMG: muscle activations from both contractions (concentric and 

eccentric) were collected as a single raw signal. First, the data was normalized 

by removing the mean and dividing each value by its maximum activation. 

Then, the resulting data was rectified to obtain a positive signal. Finally, the 

measurement values of the data were added for each of the 3-minute trials. As a 

result, the cumulative EMG provides information about the total activation for 

both contractions. The same procedure was performed for each of the following 

eight muscles selected for the experiment:

(a) Rectus Femoris (RF).

(b) Biceps Femoris (BF).
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(c) Gastrocnemius (GM).

(d) Tibialis Anterior (TA).

(c) Biceps Brachii (BB).

(f) Posterior Deltoid (PD).

(g) Trapezius (LT).

(h) Latisimus Dorsi (LD).

2. Metabolic data: oxygen (O2) consumption was collected through a mobile 

metabolic system. The measurements presented are the average recorded during 

each stage.

3. Heart rate (HR): heart rate was monitored by using a heart rate sensor. The 

measurements presented are the average recorded during each stage.

For this study, the experiment trials required the use of a dSpace Micro­

LabBox real-time data acquisition and control system (dSPACE GmbH, Paderborn, 

Germany), a COSMED K4b2 portable metabolic unit (The Metabolic Company, 

Rome, Italy), a heart rate sensor (Polar USA, United States), and a set of wireless 

EMG sensors (Trigno Wireless EMG, Delsys Inc.). The MicroLabBox was utilized 

for controlling and operating the powered rowing machine, while also allowing for the 

recording of all data related to the experiments. The COSMED K4b2 collected and 

wirelessly transmitted metabolic diagnostics (heart rate and oxygen consumption) to 

the K4b2 software, while the Delsys Trigno Wireless EMG system aided in collecting 

the EMG (muscle) activity of the eight muscles selected for the study. Eight wire­

less EMG sensors transmitted data back to the Delsys EMGworks data acquisition 

software for further analysis.
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Following the study, 1-way repeated measures of ANOVA were used for the 

statistical analysis of the mean, standard deviation, mean difference, and level of sig­

nificance of oxygen consumption (VO2) and heart rate (HR). The level of marginal 

significance selected to determine the difference in metabolic variables was 0.05 (sta­

tistically significant). The statistical difference was evaluated between each stage 

where the eccentric workload was increased. The statistical analysis for both, FBR 

and LBR, were performed separately.

3.3.2 Results - Four Levels of Eccentric Impedance

Upon completion of the powered rowing machine sessions, our initial aim was achieved 

by acquiring a variety of physiological effects as a result of the impedance variations. 

Increases in muscle activation, oxygen consumption, and heart rate were witnessed 

through each stage, thus displaying the effectiveness of the system’s ability to harness 

the effects of eccentric exercise. Muscle activation was shown to increase for all 

muscles with each stage through the use of EMGs for both, the LBR (see Figure 41) 

and the FBR (see Figure 42). It is important to consider that there are variations 

in the biomechanics of each subject - especially when none of the participants were 

avid rowers - thus affecting to what extent each subject targeted each particular 

muscle. For example, those who showed smaller activation of the lower body muscles 

generally compensated by utilizing more of their upper body. Despite this, with each 

increasing eccentric workload, the overall muscle activation of all subjects continued 

to increase. Rectus femoris (RF) and biceps femoris (BF) increased dramatically with 

the eccentric load. These muscles have exactly opposite functions, so this suggests 

a large increase in antagonistic co-contraction. This is likely the result of the task 

becoming difficult to control (intrinsically unstable), and because the human neural 

system has large time delays, the joints are stiffened by co-contraction, so the series 

elastic elements operate at a higher point in their nonlinear force-length relationship.
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Oxygen consumption also revealed a significant increase (p<0.05), seen between stages 

one and two for both the FBR and LBR, and continued to increase through the third 

stage for the FBR sessions (see Figure 39). Heart rate significantly increased (p<0.05) 

as well through each stage for both configurations (see Figure 40). When calculated 

for the percentage of maximum heart rate (MHR), subjects showed an increase from 

61.5% to 75.4% of MHR during the FBR and from 55.8% to 67.3% of MHR during the 

LBR sessions, thus demonstrating an effective training effect on the cardiovascular 

system.

Positive training effects on the cardiorespiratory, cardiovascular, and mus­

culoskeletal systems were exhibited, suggesting that the powered rowing machine can 

lead to effective training protocols. The powered rowing machine was capable of 

maximizing the return stroke through a controllable resistance parameter and max­

imizing the strength of muscles when they are eccentrically contracting. With no 

change in the concentric phase of the rowing stroke, it can be assumed that the in­

creased metabolic demand during the sessions was a result of the eccentric muscle 

contractions during the return phase of the rowing stroke. This is also true of the in­

creased muscle activation, as the muscles were only targeted with a heavier workload 

when performing negative work. The ability to have great control over the parame­

ters of the movement in a fluid and dynamic manner provides a great tool that can 

contribute to human performance, injury prevention, and rehabilitation.
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LBR - Muscle Activation

Figure 41: Cumulative activation average for each stage during LBR.
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FBR - Muscle Activation

Figure 42: Cumulative activation average for each stage during FBR.

With its ability to utilize eccentric exercise, a powered machine shows much 

promise in the improvement of human performance in a variety of settings. In a 

microgravity environment, a powered machine offers to be an effective tool that al­

lows for both resistance and aerobic exercise in one, lightweight apparatus. The 

adaptability of the machine is its strongest asset. For instance, based on the same 

functionality principle, the machine can be adapted for a different type of training 

similar to ARED [105], a resistive exercise device developed for microgravity that
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uses a rowing machine-like mechanism. Besides, by its ability to maximize eccentric 

training through customized resistance, the powered rowing machine could serve as 

a starting point to develop better training methods or rehabilitative tools.

3.4 Resistance-Based Training with the 4OptimX

During these experimental trials, we aimed to investigate the physiological effects 

(muscle activation, heart rate, and oxygen consumption) as a result of the variations 

in the trajectory and impedance parameters from the robot. The robot used was 

the 4OptimX and the variable parameters related to the trajectory and impedance 

were the orientation of the ellipsoidal training trajectory and the stiffness impedance 

respectively.

3.4.1 Methodology

This study had an IRB which covers for Ethical Approval. It was provided by Cleve­

land State University with reference number 30305-RIC-HS. An informed consent 

form was signed by each subject conducting the experiment (see Appendix E).

The experimental procedure followed a conventional calibration process con­

sisting of a warm-up and isometric tests [7] (trial 0 in Table IV). The isometric tests 

are used to assess muscle strength for the EMG sensor calibration. The subject is 

required to maintain a constant position where muscles are capable of producing 

maximum forces [46]. Then, the experiment proceeds with a 36-minute protocol of 

17 1-minute trials. Each 1-minute workout (odd-number trials from 3 to 35 in Table 

IV) was followed by a 1-minute rest (even-number trials).
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Figure 43: 4OptimX experiment configuration.

Table IV: 4OptimX experiment planning (reference in Table V and VI

Trial Impedance Speed Ellipse orientation (deg)
1 (Warm up) (Warm up) (Warm up)
3 Low Low 90
5 Low Low 45
7 Low Low 0
9 Low Low -45
11 High Low 90
13 High Low 45
15 High Low 0
17 High Low -45
19 High High 90
21 High High 45
23 High High 0
25 High High -45
27 Low High 90
29 Low High 45
31 Low High 0
33 Low High -45
35 Low Super-high 0
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One male participant of 22 years old, height of 180 cm, and weight of 91.8 

kg was recruited. To participate in the study, he had to be free of any musculoskele­

tal injuries, cardiovascular disease, and/or any limitations that prevented him from 

participating in regular exercise. The 17 workout trials were resistance-based train­

ing including different levels of resistance and speeds of the trajectory (see resistance 

and speed parameters in Table V and VI). Greater eccentric muscular contractions 

and metabolic costs were expected by increasing the impedance and the speed of the 

trajectory.

Table V: Impedance reference for the 4OptimX experiment planning (the same pa­
rameter for each DOF).

Impedance Inertia (kgm2/rad) Damping (Nms/rad) Stiffness (Nm/rad)
Low 0.035 0.4 1
High 0.035 0.4 7

Table VI: Speed reference for the 4OptimX experiment planning.

Speed 
Low 
High 

Super-high

Period of revolution (s)
8
4
2

During the protocol, the user is asked to follow a path against the machine’s 

neutral path and resistance. The robotic machine establishes a zero-effort circular 

path, and the subject is asked to follow an elliptical trajectory of 90 and 60 cen­

timeters of axes. The control system produces a user-defined resistance based on the 

deviations from the neutral path and the force/torque applied by the subject. The 

trajectories and positions involved in the training protocol can be seen in Figure 44. 

The target position (Xd) is labeled with a blue dot which moves periodically over a 

blue ellipsoidal curve of fixed axis lengths and programmable orientation. The user 

position (Xa) is labeled with a green dot and tries to follow the blue dot except on 

the simulation environment where the user performs a perfect tracking (in simulation 

76



the user position is equal to the desired position). The red label (X) moving period­

ically over a red circular curve of a radius of 40 centimeters represents the machine’s 

trajectory where the impedance is zero. Any deviation from the machine’s trajectory 

produces an interaction force by impedance control as follows:

Fext =I e+B e+Ke,

e = XX - XXa,
(3.1) ♦ •

e = X- Xa,

e=X-X a,

where Xa, and X are the 2 dimensional vectors of the actual user (green dot) and the 

machine reference position (red dot) respectively;Iis the acceleration gain (inertia 

impedance in Table V);Bis the velocity gain (damping impedance in Table V); and 

Kis the position gain (stiffness impedance in Table V).

It is important to note that results depend on the relative position of the 

subject with respect to the machine. Thus, a mark was placed on the ground to make 

the subject have the same relative position with respect to the machine during all the 

trials.

Meanwhile the subject is following the protocol, his/her muscle activations 

are measured and recorded. Since the supplied trajectories were in various ellipsoid 

patterns (horizontal, vertical, and angled), the major movements involved were flexion 

and extension in the sagittal plane, horizontal abduction and adduction in the trans­

verse plane, and anterior circumduction movement. Therefore, some glenohumeral 

muscles [11] (see Figure 45) were selected for the study in the following order:

1. Brachialis.

2. Posterior deltoid.
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3. Anterior deltoid.

4. Biceps.

5. Triceps.

6. Chest.

Figure 44: Positions involved in the training protocol: user position (green dot or 
Xa), target position (blue dot or X d), and robot trajectory (red dot or X).

The brachialis and triceps, despite not belonging to the glenohumeral mus­

cles, were chosen because of their relationship with the elbow movement. This rela­

tionship is able to provide information about involuntary rotations. The anterior and 

posterior deltoids were chosen because they are the main glenohumeral drivers. They 

are responsible for the space motion of the extended arm. The biceps brachii was 

chosen because of its synergistic work with the deltoid muscles. The chest was chosen 

because it is the main contributor in the glenohumeral adduction and stabilization of 

the shoulder.

During the resistance-based training session, the following physiological ef­

fects were measured:
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Figure 45: EMG location on the glenohumeral muscles.

1. Muscle activation: the raw muscle signals were recorded at a frequency of 2 

kHz and real-time processed to obtain the muscle activations. First, they were 

normalized by removing the mean and dividing each value by its maximum ac­

tivation (isometric test in trial 1). Then, a bandpass second-order Butterworth 

filter between 30 and 950 Hz is applied. Later, a full-wave rectification was 

performed. Finally, a low pass second-order Butterworthfilter at 50 Hz was 

performed. The same procedure is performed for each of the 6 selected muscles.

2. Metabolic data: the VO2 , and CO2 were collected through a mobile metabolic 

system. The measurements presented are the average recorded during each 

stage.

3. Heart rate: heart rate was monitored using a heart rate sensor. The measure­

ments presented are the average recorded during each stage.

For this study, the experiment trials required the use of a dSpace Micro­

LabBox real-time data acquisition and control system (dSPACE GmbH, Paderborn, 

Germany), a COSMED K4b2 portable metabolic unit (The Metabolic Company,
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Rome, Italy), a heart rate sensor (Polar USA, United States), a set of wireless EMG 

sensors (Trigno Wireless EMG, Delsys Inc.), and a Labjack data acquisition system. 

The MicroLabBox was utilized for controlling and operating the 4OptimX, while also 

allowing for the recording of all data related to the experiments. The COSMED K4b2 

collected and wirelessly transmitted metabolic diagnostics (VO2, CO2, and HR) to 

the K4b2 software, while the Delsys Trigno Wireless EMG system aided in collecting 

the EMG (muscle) activity of the six muscles selected for the study. Six wireless EMG 

sensors transmitted data back to the Delsys EMGworks data acquisition software for 

further analysis. The Labjack was used to interface between the human and the robot 

providing a graphical user interface (GUI) for visualization.

3.4.2 Results

Upon completion of the experimental trials, our initial aim was achieved by acquiring 

a variety of physiological effects as a result of the changes in the trajectory and 

impedance parameters. These changes were witnessed in muscle activation, oxygen 

consumption, and heart rate but in different shapes and magnitudes. The results 

from each physiological system are presented below.

Effects in the Musculoskeletal System

The complete muscle activations from each trial can be seen in Appendix F. For 

better visualization, the muscle activations from each trial have been averaged and 

presented below:
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EMG 1 - Brachialis

Figure 46: Average muscle activation on the brachialis (EMG-1) during each of the 
training trials.

Figure 47: Average muscle activation on the posterior deltoid (EMG-2) during each 
of the training trials.
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Figure 48: Average muscle activation on the anterior deltoid (EMG-3) during each 
of the training trials.

Figure 49: Average muscle activation on the biceps (EMG-4) during each of the 
training trials.
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Figure 50: Average muscle activation on the triceps (EMG-5) during each of the
training trials.

Figure 51: Average muscle activation on the chest (EMG-6) during each of the train­
ing trials.

Analyzing the results, the highest average muscle activation on the brachialis, 

posterior deltoid, and biceps (see Figures 46, 48, and 49) were observed in trial num­

ber 35 (the trial with the highest speed of trajectory). As a result, it could be seen 

that these three muscles are the most sensitive to the speed of the trajectory (more 

sensitive than by the impedance). On the other side, the anterior deltoid, triceps, 

and chest were mostly affected by the impedance.
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Regarding the trajectory variations, under the same conditions of resistance 

and speed, higher activations were measured on the trials with an ellipsoidal orien­

tation of 45o (trials: 5, 13, 21, and 29) and -45o (trials: 9, 17, 25, and 33). These 

results seem to suggest that inclined ellipsoidal trajectories produce a higher muscle 

effort. If that is the case, training protocols could be designed based on this finding.

Effects in the Cardiovascular and Cardiorespiratory Systems.

The HR (see Figure 52), VO2 (see Figure 53), and CO2 (see Figure 54) from each of 

the trials have been averaged and are presented below:

Heart Rate

Trial (units)

• Workout
• Rest

Figure 52: Heart rate during each of the training trials.
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O2 Consumption
1200

Figure 53: Oxygen consumption during each of the training trials.

CO2 Production

W Workout
• Rest

Figure 54: Carbon dioxide production during each of the training trials.

The physiological effects on the cardiovascular and cardiorespiratory systems 

experienced an expected behavior. In addition to trial 35 (the trial with the highest 

speed), the trials which produced the highest values for all of the systems were from 9 

and 23 (related to the trials with the high impedance). However, although the values 

were high, they were well below the maximum biological values showing a marked 

difference between resistance-based and cardio-based training. The peak values for 
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the heart rate and oxygen consumption during the experiments were 92 BPM and 1069 

ml/min; and based on the subject data, the estimated HRmax and VO2-max should 

be around 198 BPM and 4590 ml/min (50 ml/kg/min for a subject with 91.8 kg) 

respectively. In conclusion, the resistance-based experiment was able to reach 46.5% 

of the HRmax and 23.3% of the maximum VO2-max suggesting that the resistance­

based training is not adequate for controlling cardiovascular and cardiorespiratory 

physiological effects.

3.4.3 General Discussions

Upon completion of the 4OptimX trials, a great variety of results was evidenced 

during the trials. Furthermore, unique combinations of physiological effects per each 

combination of training parameters were observed. It is also important to consider 

that the resistance and speed of trajectory were not the only parameters affecting 

the muscle activation. Some biological factors such as fatigue, hydration, and mood 

play a crucial role in physiological dynamics. Nonetheless, this diversity of training 

effects shows the potential for training optimization by the optimal regulation of these 

training parameters.

It is important to note that the trajectory tracking was not perfect, but 

very consistent. There were not a lot of variations product of the impedances or 

trajectory speeds (see Figure 55). An RMS tracking error of 0.2792±0.0077 (mean 

±SD) meters was measured during the 17 workout trials. Since the interface is similar 

to a 3D game, it is required to make the subject practice before the experiments to 

develop some good tracking skills.
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Figure 55: RMS error on the tracking trajectory during each of the training trials.
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CHAPTER IV

MODEL-FREE OPTIMIZATION FRAMEWORKS OF TRAINING 

PARAMETERS IN ADVANCED TRAINING

4.1 Overview

This chapter presents the model-free frameworks for single-variable and multi-variable 

optimization. Then, the framework performance is evaluated in simulation against 

another model-free approach based on the use of the global evolutionary optimizer 

Biogeography-Based Optimization (BBO). This last framework promises a good per­

formance as a result of exhaustive searches but with a high computational cost limiting 

its use on real-time experiments.

The purpose of the validation was to evaluate the framework performance 

by comparing its results against the other model-free optimizer. The performance 

validation is conducted by comparing the optimal results between these 2 methods 

by using five human arm models from our virtual population. An average of less than 

5 degrees for the absolute difference between the optimal trajectory parameters is 

expected for the validation.
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4.2 Model-free Optimization Frameworks

The model-free approaches are based on the use of Extremum Seeking Control (ESC) 

as the real-time optimizer and they were designed to work with advanced exercise 

protocols. During these protocols, the user is required to follow the same procedure 

as previosuly presented in Section 3.4.1 where he/she is required to follow a path 

against the machine’s neutral path and resistance. This subject is asked to follow 

an elliptical trajectory while the robotic machine establishes a zero-effort circular 

path. A user-defined resistance is produced by the controller based on the interaction 

force/torque and the deviations from the neutral path.

As previously defined, the model-free framework is a multi-system structure 

including a robot as an advanced exercise machine, an electromyography (EMG) 

system, a real-time processor, and a data acquisition system (DAQ) (see Figure 56). 

These 4 systems and their connectivity are illustrated in the block diagram in Figure

57 and presented below.

Figure 56: Graphical representation of the model-free optimization framework.
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Figure 57: Summarized block diagram of the model-free optimization framework.

Robot:

The robot interacts with the human while it is been controlled by the RT processor. 

The human-robot interaction produces external forces (Fext) and alterations in the 

robot positions (q) which are acquired by using load cells and encoders respectively. 

The acquired data is automatically transmitted to the RT processor to feedback 

the controller and produce the required motor inputs (uinput) to achieve the desired 

training performance.

DAQ:

The DAQ receives from the RT processor the user and desired positions, the impedance 

parameter convergence status, and the ellipse orientation. In the case of training pa­

rameter optimization, the DAQ also processes the convergence criterion by analyzing 

its variation over a period of time. Finally, a script using the data builds the graphical 

user interface (GUI) (see Figure 58) which serves as visual feedback to the user. In 

this GUI, the convergence status is shown in 2 digital LEDs (red and green). When 

the convergence status is negative (“NO” in the GUI), the red LED is ON and the 
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green LED is OFF (shown as black). Oppositely, when the convergence status is 

positive (“YES” in the GUI), the green LED is ON and the red LED is OFF (shown 

as black).

Figure 58: Example of the GUI shown to the user during a negative convergence 
status (red LED ON and green LED OFF).

EMG System:

The EMG system measures wirelessly the raw muscle signals from the sensors located 

in the subject’s skin over his/her muscles. Then, the signals are sent to the RT 

processor.

RT-Processor

The RT processor measures the human-robot interaction forces and positions (Fext 

and q respectively) to control the robot and run the optimization framework. The 

process starts by measuring the raw muscle signals from the EMG system and real­

time processing into muscle activations. Then, the muscle activations are calibrated 

(M) and used in the performance function which is defined as the sum of the multi­

plication of a tracking weight vector and the tracking error (Wtr(|q — qtr ||)) and the 
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multiplication of a muscle weight vector and the muscle activations (WmM). The 

resulted value is then moving averaged to estimate the average cost per trajectory 

revolution. The complete moving averaged cost function is presented below:

min y= yts- ^ fwtr(||q- qtrII)+ WmM), (4-1)
a trev i=t-trev /ts

where i is the optimization variable (trajectoryand/or impedance parameter), ts is 

the simulation sample time,t rev is the period of rotation for the reference cursor (blue 

er red des)r)is the time M is she the vector  of muscle activations and W n is she muscle

weighs vector. Fer instance i value of [-1,1,1,1,1,1] forces she optimization frame-work 

 to maximize the first muscle; meanwhile she last five muscles ire minimized.

The muscle objective can be professionally selected by a therapist to emphasize er 

re-emphasize certain muscle groups. Next she moving averaged jess funcation works 

is in inous to she ESC algorithm.

The ESC algorithm is based on she approach (single-variable er multiple

 framework). The single-variable approach uses i single perturbation-based 

medel following she diagram in Figure 59.
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Figure 59: Block diagram extension from the block “ESC” for single-variable opti­
mization framework in Figure 57. The output parameter 6 represent S stheoptimizatioii 
training parameter (the trajectory or impedance parameter), a, w, hj,, wl, and k are 
the configuration parameters (amplitude of perturbation, frequency of perturbation, 
high-pass filter, low-pass filter, and gain respectively).

The multi-variable framework follows a similar process as the single-variable 

framework except for the fact that it uses 2 estimators working in parallel (see Figure 

60). A special rule about the parameter selection in the multi-variable framework is to 

not use the same value for the perturbation frequencies (u1 = u2) because, assuming 

a choice where uj 1 > uj2, the algorithm works by treating the second perturbation 

system as a dynamic map of slow frequency.
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Figure 60: Block diagram extension from the block “ESC” for the multi-variable op­
timization framework in Figure 57. The output parameters auK k represents the 
optimization training parameter (the trajectory or impedance parameter respectively), 
a, uj 1, uj2, ujh, ujl, and k are the configuration parameters((amplitudeoe perturbation, 
first and second frequency of perturbation, high-pass filter, low-passfilter, and gain 
respectively).

Based on the framework and the training parameter at the output of the
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ESC block, the RT processor will redirect the signal for convergence testing. For 

the case of the trajectory optimization, it sends the parameter value and tracking 

positions to the DAQ. For the case of the impedance parameter optimization, the RT 

processor performs the convergence criterion and it sends the tracking positions and 

the digital convergence result (5 volts or high for positive convergence status and 0 

volts or low for a negative convergence status).

4.2.1 Convergence Criteria

Two different approaches were developed for the convergence criteria. It is important 

to highlight that the reason for those 2 (one for each single-variable framework) was 

to provide 2 different alternatives for convergence identification. Both work equally 

well and they can be used interchangeably.

It is also important to note that the convergence criterion might be affected 

by the presence of biological factors (time-varying dynamics) or special circumstances 

such as critical environmental conditions, exercise with untrained people, or using 

the wrong combination of configuration parameters. The configuration parameters 

play a key role especially for the success of the convergence criteria. For instance, 

a high framework gain might accelerate the convergence process, but introducing 

disturbances that are not recommended because of undesired performances. On the 

other hand, a low framework gain might the convergence process slow or even unable 

to achieve convergence. These configuration parameters can be selected by performing 

pre-tests following the same exercise protocol of the experiments.

An average of less than 1 degree for the absolute difference between the 

optimal trajectory parameters is expected for the validation.
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Single-Variable Convergence Criterion - Trajectory Parameter

The convergence criterion for the trajectory parameter (0) optimization is performed 

in the DAQ subsystem and it works by computing the absolute value of the maxi­

mum difference (0dif f) between the0parameter and its last n samples (where n is a 

configuration parameter). Once that difference remains under the threshold (0th) for 

more than the trigger time (ttr), the convergence is accomplished and the converged 

value becomes the average value between the lastn0values (0 av). The reason to 

use0 av instead of0is for considering the convergence value as an intermediate value 

between the value at the trigger time (when the variable starts to remain between 

the thresholds) and the final value.
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Figure 61: Block diagram of the convergence criterion for the trajectory parameter.

An example of a trajectory parameter convergence can be seen in the Figure 

below:
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Figure 62: Two different examples of trajectory parameter convergence with 0th = 15° 

and t tr = 10 seconds.

Single-Variable Convergence Criterion - Impedance Parameter

The convergence criterion for the impedance parameter optimization was developed 

based on a previous work applied for Unmanned Aerial Vehicles (UAVs) [6]. This 

convergence criterion is performed in the RT processor subsystem and it works by 

high-pass filtering the stiffness parameter (« k Hhp )■ The high-pass filter will 

attenuate low frequencies producing a signal with zero-mean. This signal will become 

smaller as the oscillations are reduced. Therefore, when the impedance oscillations 

are reduced and the high-pass filtered value becomes smaller, the time threshold 

is activated. When the high-pass filteted tamains under the theeshold (hth) for a 

specific time, the exercise protocol ends. Finally, the obtained stiffness value (K) is 

compared with the stiffness tolerance( toll (one of the safety-parameters used to avoid 

negative impedance during the exercise protocol) to define the convergence result. If 

the difference between the impedance value and the impedance tolerance is higher 

than the tolerance threshold (|K-K toll|> T th), the convergence is accomplished, 

but if not, the convergence fails.
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Figure 63: Block diagram of the convergence criterion for the impedance parameter.
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An example of an impedance parameter convergence can be seen in the

Figure below:

Figure 64: Two different examples of impedance parameter convergence with 5th = 
0.01 and t tr = 10 seconds.

Time (s)

Multi-Variable Convergence Criterion - Trajectory and Impedance Param­

eter

The convergence criterion for the multi-variable framework encompasses each of the 

individual criteria including as a final condition the simultaneous convergence of each 

criterion (see Figure 63). Therefore, even after one of the conditions has been met, 

this can be broken while waiting for the others to converge.

In addition to the previous complications related to the convergence pro­

cess (presented at the beginning of this Section 4.2.1), the multi-variable approach 

results more demanding becoming more difficult to meet. For that reason, it is highly 

recommended to use lower framework gain with the multi-variable approach.
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Figure 65: Block diagram of the simultaneous convergence criterion for the trajectory 
and impedance parameter.
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4.3 Performance Evaluation

The performance of the model-free approach was evaluated in a simulation envi­

ronment by using a muscle-actuated linkage model with 5 human arm models from 

our virtual population. Previously, evident effects on muscle activations have been 

reported as a result of the regulation of trajectory and impedance settings [101]. Be­

tween those parameters, the trajectory parameter related to the ellipsoidal trajectory 

orientation resulted to be the most influential exercise parameter [25]. Thus, the op­

timization of this parameter (ellipsoidal orientation) was selected for the performance 

comparison between the single-variable optimization approach with ESC and BBO 

[31].

4.3.1 Biogeography-based optimization (BBO)

BBO is an evolutionary nature-inspired optimization method based on the study of 

the geographical distribution of biological life forms [136, 137]. The performance of 

this method lies in the biogeography mathematical models observed in the animal 

world relating the emigration and immigration of species from one isolated habitat 

to another one.

BBO works by defining habitats with a set of Suitability Index Variables 

(SIVs) representing their environmental features such as resource availability (food 

and water), space, climate, etc. Then, based on the features previously described, the 

suitability of the habitat is calculated by the Habitat Suitability Index (HSI). Each 

habitat is different and its capacity is based on the HSI, where the higher the HSI, 

the more species can become established, leading to abundant emigration (emigration 

from high HSI habitats to others). Therefore, the habitat’s immigration rate becomes 

affected by mainly the number of species there. For instance, when there aren’t any 

species, the habitat is full of space and resources producing a maximum immigration 
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rate. As the number of species increases, the habitat’s resources start to run out 

making it difficult the survive and decreasing the immigration rate. Thus, when a 

habitat is full of species (at maximum capacity), the immigration rate becomes zero.

Analogously in the optimization problems, each possible optimal solution is 

a habitat, its cost function is the HSI, and its features are the SIVs. The methodology 

is performed sequentially by generations where the first is randomly initialized. The 

best n solutions (where n is a configuration parameter) are stored, and its features 

are shared. In order to reduce the probability offending a local optimizer, some 

features from possible solutions are probabilistically mutated, and the best solutions 

are sorted and added to the population. On the other side, the worst n solutions are 

then eliminated. The resulting populations from each generation are used to initialize 

the next generation.

The effectiveness of this algorithm has been proven even for complex appli­

cations involving auto-setting of training parameters [149] and has been served as a 

starting point for multiple new approaches. However, the slow processing speed of 

BBO limits its use in real-time applications.

4.3.2 Simulation Setup

Simulation Environment

The simulation environment includes the human arm models from the virtual popu­

lation (see Appendix A for details), the exercise trajectories, and the resistance force 

acting at the end of arm model.

In the simulation environment, the linkage model receives the target position 

and the interaction force in order to compute the muscle activations required to 

accomplish the motion.
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Figure 66: Simulation environment including the human arm, user position (green 
dot X a), target position (Xd blue dot), and the machine’s trajectory (X red dot).

The simulation environment (see Figure 66) The target position is labeled 

with a blue dot which moves periodically over a blue ellipsoidal curve of fixed axis 

lengths and programmable orientation. The user position (labeled with a green dot) 

follows the blue dot except on the simulation environment where the user performs a 

perfect tracking (user position equal to the desired position). The red label moving 

periodically over a red circular curve represents the machine’s trajector Muscle acti­

vations were not known a priori. The muscle activations were simulated but their 

values were not recorded because the objective was oriented to compare the perfor­

mance of the frameworks by comparing their optimal results and cost but not the 

resulted muscle activations.y where the impedance is zero. Therefore, by impedance
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control the external force (Fext in Eqs. A.1) becomes:

Fext =I e+B e+Ke,

e=X- Xa , 
♦ • 

é = X- Xa,
(4.2)

where X a, and X are the user position (green dot) and the machine reference trajec­

tory (red dot) respectively;Iis the acceleration gain (inertia impedance);Bis the 

velocity gain (damping impedance); and K is the position gain (stiffness impedance).

Simulation Parameters

To make an impartial evaluation, each of the frameworks was tested using the same 

simulation parameters. The selection of these parameters was randomly performed 

and they can be seen in Table VII.

Table VII: Simulation parameters.

Variable Value Units
Ellipsoidal axes [0.25, 0.15] m
Ellipse center [0, 0.3] -
Ellipse orientation between [0.1, 2n] rad
Zero-impedance circle radius 0.12 m
Zero-impedance circle center [0, 0.3] -
Frequency of rotation between [0, 1] Hz
Trajectory direction Counterclockwise -
Inertia Impedance (I) 100 kg
Damping Impedance (B) 1 kg/s
Stiffness Impedance (K) 50 N/m
Muscle weight vector (Wm) [-1,1,-1,1.-1,1] -

From our virtual populations, 5 female arm models were used for the simula­

tions. The arm model parameters associated with these 5 models can be seen in Table 

VIII. The first and second links on each model (L1 andL2) represent the elements
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joining the shoulder with the elbow and the elbow with the wrist, respectively.

Table VIII: Arm model parameters. The subscriptsM,I,L, and CM represent the 
mass, inertia, length, and center of mass properties of the links respectively.

Model L1M (kg) L2m (kg) L1i (kgm) L2i (kgm) L1l (m) L2l (m) L1cm (m) L2CM (m)
1 1.9159 1.7175 0.0219 0.0389 0.28930 0.3258 0.1319 0.2297
2 1.9767 1.7876 0.0236 0.0421 0.29350 0.3277 0.1313 0.2214
3 2.1124 1.7835 0.0220 0.0392 0.2963 0.3292 0.1262 0.2329
4 2.0423 1.8957 0.0219 0.0427 0.3002 0.3317 0.1295 0.2200
5 2.1022 1.8281 0.0231 0.0423 0.3063 0.3363 0.1359 0.2357

4.3.3 Optimization objective

The objective of the optimization frameworks was designed to find the orientation of 

the ellipsoidal curve that minimizes a performance function. Both of the frameworks 

are completely model-free making only use of the estimation of the muscle activations. 

Therefore, the regulation of the orientation is automatically performed using these 

activations as biofeedback.

BBO frameworks optimize by exhaustive searches using complete cycles. 

Thus, the performance function was defined as the multiplication of a muscle weight 

vector and the muscle activations, and it is derived as follows: 

min 
e

y= WmMact (4.3)

where M act is the vector of muscle activations calculated from the muscle-actuated 

linkage model, and W n is the muscle weight vector.

Unlike BBO, ESC optimizes at each instant of time (at each sample time), 

therefore the same performance function (Eq. 4.3) was adapted by using the moving 

average of the multiplication of a muscle weight vector and the muscle activations,
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and it is derived as follows:

ts
min y = ----

Ö trev

t
^ ÎWmMact

i=t-trev /ts
(4-4)

where t s is the simulation sample time,t rev is the period of rotation for the reference 

cursor (blue or red dot),tis the time, and M act and W n are the same variables 

previously defined.

4.3.4 Results

The optimal ellipsoidal orientations obtained from the simulations with the BBO and 

ESC frameworks are presented in Figure 67 (exact results in Table IX).

30
Optimal Ellipsoidal Orientation
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0

Figure 67: Results obtained from the simulations with each arm model.

Table IX: Comparison of the optimal ellipsoidal orientation solution between the
model-free optimization frameworks.

Model
Number

BBO
Final Cost

ESC
Final Cost

BBO Optimal 
Orientation

ESC Optimal 
Orientation

Absolute 
Difference

1 -0.0377 -0.0738 25.065° 25.767° 0.702°

2 -0.0352 -0.0705 23.999° 26.026° 2.027°

3 -0.0398 -0.0684 25.799° 26.309° 0.510°

4 -0.0413 -0.0654 26.062° 26.895° 0.833°

5 -0.0432 -0.0609 24.292° 28.039° 3.747°

Mean 1.564°

Standard Deviation 1.357°
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Upon completion of the experiments, the feasibility of the optimization of 

training parameters by using biological factors as biofeedback (automatic training per­

sonalization) was tested. Both frameworks (BBO and ESC) found similar solutions 

supporting the fact that they were able to find the optimal ellipsoidal orientations. 

Besides, as was expected, different optimal solutions were obtained with each hu­

man arm model suggesting the existence of a unique combination of optimal training 

parameters for each person/model.

Despite the variety of optimal orientations observed in the simulation and 

real-time results, all of them were in the neighborhood of 26°. Results seem to sug­

gest that an inclined ellipsoidal orientation in the neighborhood of 26 ◦ might produce 

desirable muscle efforts for the selected glenohumeral muscles. However, more simu­

lations with a bigger population would be required to provide stronger conclusions. 

Given the case of a deeper study, human performance and rehabilitation practices 

could use this information for muscle training optimization by muscle activation max­

imization (fitness improving) and muscle activation minimization (muscle-isolation or 

rehabilitation practices).

It is important to point out that the BBO optimization performance takes 

over 5 hours for a single optimization run with the human arm model simulator. 

On the other hand, ESC takes about 2 minutes. For that reason, even though both 

proved to be effective byfinding the optimal training parameters, ESC is more suitable 

for real-time experiments. It is also important to consider that the BBO and ESC 

frameworks use a different approach (despite both working on the same optimization 

objective). On one side, BBO provides the results for a fixed ellipsoidal orientation. 

Meanwhile, ESC provides variable orientation (small oscillations after convergence is 

achieved).

These results were important to go forward into research related to the 
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model-free optimization of training parameters by training personalization.
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CHAPTER V

TRAINING PERSONALIZATION

5.1 Overview

Personalized fitness and rehabilitation are two popular research areas with several 

developments mainly focused on providing to the user more and better training tools. 

For instance, it is estimated that most of the gym centers upgrade their equipment 

at least once every 5 years (in addition to the purchase of the latest technology 

equipment) [102]. These upgrades are implemented because of the improvements in 

the training features offered by the new training machines to increase the potential 

of the exercise. However, to the best of my knowledge, this is the first time that an 

improvement is performed by providing automatic regulations of training parameters 

using robots and physiological parameters as biofeedback.

Training personalization is not only important but also required for most 

of the training protocols and rehabilitation practices. The necessity of personalized 

training is the reason why personal coaches have become very popular lately. They 

adapt their customer’s workouts to maximize their performance by manually changing 

their training parameters (trajectories and resistances) based on the subject’s goal, 

experience, and condition. Currently, these adaptations provide great results, but 

they are manually performed at the coach’s suboptimal criteria [35, 104]. Similarly, 
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personalized rehabilitation is a necessity because every patient has a particular diag­

nosis which, sometimes, this diagnosis can be difficult to determine even by the most 

experienced therapists. In effect, rehabilitation treatments and procedures become 

even harder. Currently, different kinds of rehabilitation robots work with several 

patients trying to personalize their treatment as best as possible [101, 45]. The reha­

bilitation tools normally utilized with these robots include training programs that are 

unique and suitable for each patient. These training programs are based on the sub­

ject’s body features and condition (such as degree of motor dysfunction). However, 

the adaptability of the training program requires a therapist. Thus, it is expected 

that automatic training personalization using robots and physiological parameters as 

biofeedback will enhance fitness and rehabilitation.

This chapter introduces the concept of training personalization by presenting 

early evidence about the unique combination of optimal training parameters that ex­

ists for each person/model. Additionally, evidence suggesting the presence of complex 

and time-varying human dynamics is presented based on the variety of the optimal 

parameters with respect to time.

5.2 Training Parameter Variations Based on Different Musculoskeletal 

Distributions

5.2.1 Methodology

It is not only believed that each person/model has a unique combination of opti­

mal training parameters, but also this combination is a function of biological factors 

including the musculoskeletal distribution. In this study, the musculoskeletal pa­

rameters associated with the lower and upper arms (including their lengths, masses, 

inertias, and centers of mass) were considered.

It is expected that people/models with similar musculoskeletal distributions 
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tend to have similar optimal training parameters. To test this theory, a null hypothesis 

was defined as follows:There is no statistically significant relationship between the dif­

ference in people/models’ musculoskeletal parameters and the difference between their 

combination of optimal training parameters. The outcome variable accepts “true” or 

“false” values if there is sufficient evidence to accept or reject the null hypothesis at 

a significance level of 5%.

To successfully test the hypothesis,first, the variety in optimal training pa­

rameters in the virtual population was evaluated by using the 50 arm models. The 

optimal training parameters associated with each arm model were measured by us­

ing the model-free optimization frameworks (single-variable trajectory, single-variable 

impedance, and multi-variable optimization) and the same simulation approach in­

cluding the muscle-actuated linkage system with the simulation environment pre­

sented in Section 4.3.2. The total virtual population of 50 human arm models includes 

25 females (see Table XXXIII) and 25 males models (see Table XXXIV) and it can be 

seen in detail in Appendix A. The training parameter optimization was performed by 

using 2 different weight muscle vectors in order to compare results with the effect of the 

optimization objective. The first weight muscle vector was [1,-1,1,-1,1,-1] that 

maximize the second, fourth, and sixth muscles (Posterior Deltoid, Triceps Brachii- 

long head, and Brachialis); and the other vector was [-1,1,-1,1,-1,1] that max­

imize the first, third, and fifth muscles (Anterior Deltoid, Biceps Brachii, Triceps 

Brachii-short head).

Given the number of arm models (25 male and 25 female models), a total of 

1200 comparisons between the musculoskeletal parameters and the optimal training 

parameters of the 2 models can be conducted. This total results from the 4 sets of 

models. Each set, including 25 models each, results in a total of 300 comparisons by 

comparing one model to the other. The 4 sets include two sets of males and 2 sets of 
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females each of them with a different weight muscle vector. These comparisons were 

conducted by obtaining the difference between their arm lengths, mass, inertia, and 

center of mass as a vector, obtaining the difference between their optimal training 

parameters as a vector, computing the norms of these vectors, and evaluating the pos­

sible correlation between them by using Continuous-Analysis-of-Variance (CANOVA) 

[155] and Kendall rank correlation coefficient [135] (see Section 5.2.3).

Each optimal parameter is presented with an independent color from black 

to red where black is the optimal parameter associated with the smallest arm model, 

and red with the largest one. Based on the musculoskeletal parameters considered 

for this study, the model size is defined as the norm of the vector including them as 

follows:

M= [L1, L2], (5.1)

whereL1 andL2 are the arm lengths associated with the lower and upper arm 

respectively. Thus, the smallest model is identified as the model with the lowest 

norm value and the largest as the one with the highest norm value.

5.2.2 Results

The optimal training parameters encountered from the simulation experiments with 

the virtual population are presented below.
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Figure 68: Optimal trajectory parameters for the virtual population with the first 
muscle weight vector ([-1,1,-1,1,-1,1]).

Figure 69: Optimal trajectory parameters for the virtual population with the second 
muscle weight vector ([1,-1,1,-1,1,-1]).
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At a first glance, results suggest that there is a pattern relating models and 

their optimal training parameters. For instance,figures 68 (muscle weight vector 

[-1,1,-1,1,-1,1]) and 69 (muscle weight vector [1,-1,1,-1,1,-1]) show how the 

optimal trajectory parameter increases as the human model becomes larger for both 

weight muscle vectors in males and females. These results don’t mean that the optimal 

trajectory parameter will always become bigger as the person/model becomes larger, 

but it provides strong evidence about the existence of this trend.

Figure 70: Optimal impedance parameters for the virtual population with the first 
muscle weight vector ([-1,1,-1,1,-1,1]).
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Figure 71: Optimal impedance parameters for the virtual population with the second 
muscle weight vector ([1,-1,1,-1,1,-1]).

Unlike the trajectory parameter optimization,figures 70 and 71 show how 

the optimal impedance parameter increases and decreases as the human model be­

comes larger for both (male and female models) depending on the weight muscle 

vector. For instance, Figure 70 (muscle weight vector [-1,1,-1,1,-1,1]) shows that 

the optimal impedance parameter increases together with the size of the model, while 

Figure 71 (muscle weight vector [1,1,-1,1,-1,1,-1]) shows the opposite effect. Al­

though the increase in value is not equally proportional in value either in direction, 

a clear pattern can be identified.

Besides the correlation, it is important to highlight that, as a result of the 

unconstrained optimization during the simulation experiments, the results show how 

some optimal impedance parameters converged to positive values while some others 

to negatives. Considering that the zero-effort path (the circular trajectory of zero 
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impedance) was located inside of the ellipsoidal tracking trajectory, a positive stiff­

ness impedance produces resistance forces acting centripetally, while negative stiffness 

impedance produces resistance forces acting centrifugally. Therefore, based on the 

skeletal distribution and the weight muscle vector, some optimal resistances might 

result in centripetal efforts and some others centrifugal efforts. In these cases, results 

associated with the weight muscle vector [-1,1,-1,1,-1,1] show that the largest 

models for both, males and females, have centripetal efforts as optimal impedance 

while the smallest models have centrifugal efforts. Contrarily, results associated with 

the weight muscle vector [1,-1,1,-1,1,-1] show that the largest models have cen­

trifugal efforts as optimal impedance while the smallest models have centripetal ef­

forts.

Figure 72: Optimal training parameters for the virtual population with the first 
muscle weight vector ([-1,1,-1,1,-1,1]).
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Figure 73: Optimal training parameters for the virtual population with the second 
muscle weight vector ([1,-1,1,-1,1,-1]).

For the multi-variable case,figures 72 (muscle weight vector [-1,1,-1,1,-1,1]) 

and 73 (muscle weight vector [1,-1,1,-1,1,-1]) show how the pattern becomes more 

complicated. The optimal training parameters increase and decrease in different di­

rections and proportions as the human model becomes larger based on the gender and 

weight muscle vector. Emphasizing the fact that the 2 weight muscle vectors have an 

opposite muscle objective (one maximizes the muscles that the other minimizes), a 

possible correlation is suggested, but it can’t be ensured at this point.

From these last 2figures, it is important to also highlight that the optimal 

trajectory and impedance parameters obtained from the single-variable optimiza­

tion frameworks were not the same as the ones obtained with the multi-variable 

optimization frameworks. Consequently, it can be concluded that there is a unique 

combination of optimal training parameters, or put another way, for each trajectory 
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parameter there is a unique optimal impedance parameter and vice versa. It can also 

be concluded that the optimal training parameters depend on the musculoskeletal 

distribution, the optimization objective, and others. However, further study is still 

required to identify how strict the relationship between these parameters is, and thus, 

evaluate the feasibility of a relationship estimator. Being able to estimate the optimal 

parameters offline would provide the benefit of the initial conditions during real-time 

experiments avoiding large oscillations that normally occurred when the optimization 

variables are not close to the optimizers.

5.2.3 Hypothesis Testing

Before choosing the hypothesis testing approach, some graphical correlations were 

performed by plotting the musculoskeletal differences (pM||) against the training 

parameter differences (|J^|) for each model comparison. The musculoskeletal differ­

ences were obtained by computing the norm of the vector representing the normalized 

difference between the arm link lengths of the 2 models as follows:

5M= [^1 i - L1 j )/(L1max-d), (L2 i - L2 j )/(L2max-d)], (5.2)

whereL1 i andL2 i are the upper and lower arm lengths of the model numberi 

respectively, and the subscript “max-d” is the maximum difference obtained from 

the difference between the maximum and the minimum value.

The training parameter differences were obtained by computing the norm 

of the vector representing the normalized difference between the optimal training 

parameters as follows:

¿^ = [G* - *j^max-d, K* - Kj)/Kmax-d], (5.3) 
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where 0* and K* are the optimal trajectory parameter (optimal orientation) and 

the optimal stiffness impedance of of the model number i respectively, and the sub­

script “max-d” is the maximum difference obtained from the difference between the 

maximum and the minimum value.

These differences were computed for each of the total 1200 comparisons. 

This total number is the result of the 2 weight muscle vectors and the 25 male and 

25 female models used in this study (300 per comparisons per each combination of 

gender and weight muscle vector as seen in Figure 74).

Models 

[!&••• m <25
1

231------------------------------- 1
241----------------------------------------- 1

3001----------1

Figure 74: Total of model comparisons per each combination of gender and weight 
muscle vector.
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Graphical correlation - trajectory parameter (single-variable)

Figure 75: Graphical relationship for the trajectory parameter in males. Subplots 
present the results related to the muscle weight vectors [-1,1,-1,1,-1,1] and [1,-1,1,­
1,1,-1] respectively.

Figure 76: Graphical relationship for the trajectory parameter in females. Subplots 
present the results related to the muscle weight vectors [-1,1,-1,1,-1,1] and [1,-1,1,­
1,1,-1] respectively.

121



Graphical correlation - impedance parameter (single-variable)

Figure 77: Graphical relationship for the impedance parameter in males. Subplots 
present the results related to the muscle weight vectors [-1,1,-1,1,-1,1] and [1,-1,1,­
1,1,-1] respectively.

urn
Figure 78: Graphical relationship for the impedance parameter in females. Subplots 
present the results related to the muscle weight vectors [-1,1,-1,1,-1,1] and [1,-1,1,­
1,1,-1] respectively.
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Graphical correlation - trajectory and impedance parameters (multi-variable)

Figure 79: Graphical relationship for the trajectory and impedance parameters in 
males. Subplots present the results related to the muscle weight vectors [-1,1,-1,1,­
1,1] and [1,-1,1,-1,1,-1] respectively.

Figure 80: Graphical relationship for the trajectory and impedance parameters in 
females. Subplots present the results related to the muscle weight vectors [-1,1,-1,1,­
1,1] and [1,-1,1,-1,1,-1] respectively.
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Regarding the trajectory parameter infigures 75 and 76, a correlation can be graphi­

cally seen between the difference in the optimal training parameter and the difference 

in the musculoskeletal distribution for male and female models with both weight 

muscle vectors. Although this correlation seems to be linear for the most part, some 

non-linearities are also evident, especially at the beginning and at end of the graphs, 

where the musculoskeletal differences are small and large in magnitude. Regarding 

the impedance parameter, it is essential to note that the level of correlation between 

the differences in the optimal impedance parameters and the difference in the muscu­

loskeletal distribution is less in comparison to the trajectory parameter. Nonetheless, 

figures 77 and 78 suggest its existence especially in the polynomial fit estimation. Re­

garding the multivariable case, a similar pattern was evidenced infigures 79 and 80. 

As a result of the previous plots, the hypothesis was tested for nonlinear dependencies 

by using CANOVA and Kendall rank correlation coefficient.

CANOVA is a novel method for testing nonlinear dependencies and correla­

tions between 2 variables [155]. The framework works by defining a neighborhood for 

each data point, calculating the variance among the data points neighborhood, and fi- 

nally, performing permutations to evaluate the significance of the observations within 

the neighborhood variance. CANOVA’s performance has been compared to six other 

methods (Pearson, Kendall, Spearman, Distance Correlation, Hoeffding, and MIC) 

showing not only outstanding results but also a more agile performance by providing 

a low computational cost making it potentially useful for big data. However, given 

the fact that CANOVA is a new framework, Kendall’s rank correlation coefficient was 

also used to support the results.

In hypothesis testing, the robustness of an estimator is very important but 

it normally comes at the price of an increased computational cost. However, Kendall 

correlation combines robustness (small gross error sensitivity) with high efficiency
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(small asymptotic variance) [135, 20] making it one of the most preferred frameworks 

for nonlinear dependence. Kendall’s framework works by evaluating the similarity 

between two variables given to the same set of objects and calculating a coefficient 

based on the number of required inversions of pairs of objects to transform one variable 

into the other [1].

After testing the hypothesis, the p-values for each of the 12 cases (trajectory, 

impedance, and multivariable for the 2 genders and 2 muscle weight vectors) were 10-6 

(very small values). The results reject the null hypothesis that there is no statistically 

significant relationship between the difference in the musculoskeletal parameters and 

the difference in the optimal training parameters.

Table X: Muscle weight vector [-1,1,-1,1,-1,1].

Parameter T-value z-value Conclusion (null hypothesis)
Trajectory - Male 0.8581 22.1637 Reject
Impedance - Male 0.7222 18.6552 Reject

Multivariable - Male 0.7107 18.3580 Reject
Trajectory - Female 0.8869 22.9078 Reject
Impedance - Female 0.8114 20.9570 Reject

Multivariable - Female 0.8240 21.2837 Reject

Table XI: Muscle weight vector [1,-1,1,-1,1,-1].

Parameter T-value z-value Conclusion (null hypothesis)
Trajectory - Male 0.6604 17.0588 Reject
Impedance - Male 0.7250 18.7266 Reject

Multivariable - Male 0.4926 12.7244 Reject
Trajectory - Female 0.7697 19.8808 Reject
Impedance - Female 0.8103 20.9301 Reject

Multivariable - Female 0.7360 19.0111 Reject

From the above tables, it can be seen that all the z-values are large enough 

(higher than 1.96) to reject the null hypothesis. Consequently, like the CANOVA 

framework, Kendall’s results favor the alternative hypothesis supporting the fact that 

there is a relationship between training parameters and musculoskeletal parameters.
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Given this fact, the next objective became to test the feasibility of a correlation 

estimator between these 2 variables.

5.3 Nonlinear Correlation Validation with Artificial Neural Networks

5.3.1 Approach

The objective of this part of the research is to estimate the nonlinear correlation be­

tween the musculoskeletal parameters and the optimal training parameters encoun­

tered previously. The successful identification of this correlation is very important 

because:

• It supports even stronger the existence of the correlation previously identified 

(reducing the probability of a type I hypothesis testing error).

• It provides additional information including a mathematical model of the cor­

relation of the musculoskeletal parameters and training parameters.

• It makes it possible to estimate the neighborhood of the optimal parameters to 

be used as initial parameter guesses during real-time experiments.

As a result, a model estimator based on Artificial Neural Networks (ANNs) was 

developed.

Two datasets, each of them with a different weight muscle vector, including 

the total virtual population of 50 human arm models were used for the development 

and testing of the estimator. Each total dataset was split into training (80%) and 

testing (20%) data. The ANN algorithm was developed based on the feedforward 

neural network presented in [80]. The framework was built to use 8 inputs (one per 

each musculoskeletal parameter), 2 outputs (one per each training parameter), and 

a hidden layer with 6 nodes (selected experimentally). The complete scheme can be
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seen in Figure 81.

Figure 81: ANN scheme for the relationship estimator between musculoskeletal dis­
tribution and optimal training parameters.

From this figure, the 2 internal ANN parameters,aandz, are defined as

follows:

ai = M parj Win-ij ,
j=1

~ _ 1
zi = 1 + e-ai,

(5.4)

(5.5)

where M paris the vector of musculoskeletal parameters,iis the hidden layer node 

number,jis the parameter number, and W in-ij is the value from the input weight 

matrix of the order (i, j). The output is calculated as follows:

Yk = ziWout-ki ,
i=1

(5.6)
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1 äV • j 1 j • ii i i i r /Î1T 7 • i i i i i irirwhere Y is the estimated output vector K, 6]T, k is the output nmmber,and W-k-ki 

is the value from the output weight matrix of the order (k, j).

The accuracy of the estimation relies on the calibration of the two weight 

matrices (Win and W out) performed through data training. Thus, the calibration was 

performed using the training data and the recommended backpropagation-of-error 

method from [80].

5.3.2 Results

Optimal Trajectory Estimation

The results from the estimations by using the testing data are presented in 4 different 

plots. All the trajectory parameter estimations (10 from the single-variable and 10 

from the multi-variable optimization with male and female models) are presented in 

figures 82 and 83 (one plot per each weight muscle vector).
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Figure 82: Optimal trajectory parameter estimation with a weight muscle vector 
equal to [-1,1,-1,1,-1,1].
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Figure 83: Optimal trajectory parameter estimation with a weight muscle vector 
equal to [1,-1,1,-1,1,-1].

Figures 82 and 83 show the estimations for the 2 weight muscle vectors with 

RMS errors of 0.8306 and 0.9906 degrees respectively.

It is important to note that previous studies [31] have shown similar cost 

values in training protocols following ellipsoidal orientations reflected with respect to 

the axes (as showing in Figure 84 suggesting the existence of local minima. Therefore, 

although it was not the case, further research could lead to this scenario.

Figure 84: Ellipsoidal orientations with similar cost.
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In a conclusion, the results show an acceptable estimation performance for 

potential use as an initial orientation during real-time experiments. Besides, they 

support the feasibility of an estimator for optimal trajectory parameters based on the

musculoskeletal distribution of a human/model.

Optimal Impedance Estimation

Similarly, all the impedance parameter estimations (10 from the single-variable and 

10 from the multi-variable optimization with male and female models) are presented 

infigures 85 and 86.

Figure 85: Optimal impedance parameter estimation with a weight muscle vector 
equal to [-1,1,-1,1,-1,1].

Figure 86: Optimal impedance parameter estimation with a weight muscle vector 
equal to [1,-1,1,-1,1,-1].
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Figures 85 and 86 show the estimations for the 2 weight muscle vectors with 

RMS errors of 0.3792 and 3.1096 Newton/meters respectively. Unlike the trajectory, 

the impedance seems to not have multiple local optima points and the impedance 

estimator seems to support this fact. In a conclusion, these results also show an ac­

ceptable estimation performance for potential using as an initial impedance parameter 

during real-time experiments. However, more information, supported by real-time ex­

periments, seems to be required to prove the feasibility of an impedance estimator 

onlybased on the musculoskeletal distribution of a human/model.

5.4 Time-Varying Dynamics present in Training Personalization

5.4.1 Approach

The objective of this work is to identify the presence of time-varying dynamics during 

exercise by relating muscle effort distributions to trajectory and resistance settings 

over time. To achieve this goal, the dataset from the real-time experiments presented 

in Section 3.4 was re-used. As a revision of this experiment, 17 trials of 1 minute 

each were conducted. One male participant of 22 years old, height of 180 cm, and 

weight of 91.8 kg free of any injuries, cardiovascular disease, and/or any other physical 

limitation was recruited. The trials were resistance-based training including different 

levels of resistance and speeds of the trajectory.

The muscular effort distributions, representing the participation of each mus­

cle in the training activity, were estimated based on the muscle activations. The 

complete process from the raw signals to the muscle effort distributions involves the 

following steps:

1. The raw signals are recorded at a frequency of 2 kHz.

2. A normalization is performed on the signals by removing the mean and dividing
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each value by its maximum activation (isometric test in trial 0).

5.7

3. A second-order Butterworth band-passfilter between 30 and 950 Hz is used to 

clean the data.

4. A full-wave rectification is implemented to convert the signal into only positive 

values.

5. A second-order Butterworth low-pass filter at 50 Hz is used to attenuate the 

signal.

6. A normalization of each muscle activation is performed with respect to the sum 

of all activations to obtain the muscle effort distribution as follows:

M = [M1,M2 ,M3,M4,M5,M6 ]
6 M Mi i=1 i

where M is the vector of muscle effort distribution. For instance, a muscle vector 

equal toM= [0.1,0.1,0.2,0.2,0.2,0.2] represents a muscle effort distribution 

where the 2first muscles and the last 4 muscles perform 10% and 20% of the 

total effort respectively.

The dataset including 1-minute trials was split into training (75%) and test­

ing (25%) data. To observe the performance of the estimated model over time, the 

testing data was used as segments and as a whole. The testing data used by segments 

was built from 3 equally-divided periods of 15 seconds each and they were labeled in 

the plots as “First”, “Second”, and “Third” for the first, second, and third 15-seconds 

respectively. The whole data results are labeled in the plots as “Whole”.

The ANN algorithm was developed based on the feedforward neural network 

and the calibration was performed using the training data and the recommended 
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backpropagation-of-error method presented in [80]. The ANN scheme was built with 

6 inputs (one per each muscle), 2 outputs (one per each training parameter), and a 

hidden layer with 6 nodes (selected experimentally). The complete scheme can be seen 
/\

in Figure 87. From this figure, the 2 internal ANN parameters,a,z, and Y(estimated 

output vector) are defined as the same as in Eqs. 5.4, 5.5, and 5.6 respectively.

z6
Figure 87: ANN scheme for the relationship estimator between muscle effort distri­
bution and training parameters.

5.4.2 Results

The average muscle effort distributions during each trial with low (see Figure 88) and 

high (see Figure 89) impedances are presented below.
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Ellipsoidal Orientation (deg) - Speed
■Brachialis
■Posterior deltoid
□Anterior deltoid
■Biceps
□Triceps
□Chest

Figure 88: Average muscle effort distribution during the training trials with low 
impedance. The speed label “S” refers to the trials with slow frequency (periods of 
rotation of 8 seconds).

Ellipsoidal Orientation (deg) - Speed
■Brachialis
■Posterior deltoid
□Anterior deltoid
■Biceps
□Triceps
□Chest

Figure 89: Average muscle effort distribution during the training trials with high 
impedance. The speed label “F” refers to the trials with fast frequency (periods of 
rotation of 4 seconds).

The results from the root-mean-square (RMS) error between the real output 

and the estimated output are presented in Figures. 90 and 91.
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Figure 90: RMS error in the estimation of the impedance parameter.
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Figure 91: RMS error in the estimation of the ellipse.

The previous figures show a good estimation for the training parameters 

based on the low magnitude of the errors and the similar magnitude values in the 

3 sections (“First”, “Second”, and “Third”) and the complete testing data (“Com­

plete”). However, it is important to highlight the fact that the best estimation was 

achieved in the first section (the estimation in the first 15 seconds). For the impedance 

estimation, the RMS error went from 1.97 Nm/rad in the first section to 2.0 and 2.36 

for the second and third sections respectively. For the ellipse orientation, the RMS 

error went from 24.68 deg in the first section to 36.7 and 38.05 for the second and 

third sections respectively. These results evidence that the prediction accuracy of the 

model is lost over time. These outcomes show the complexity of the muscle dynamics 

for long-term estimations suggesting the existence of time-varying dynamics playing 
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an important role in the relationship with the training parameters.

It is suggested that organismic and intervening variables such as muscu­

loskeletal distribution, performance status, level of hydration, and mood produce an 

effect on the muscles. However, biological dynamics like muscle temperature or fatigue 

seem to potentially introduce time-varying dynamics depending on biological factors 

associated with training such as fatigue, body temperature, and level of hydration.

It is important to also consider that the trajectory tracking was not perfect 

possibly introducing variation in the muscle effort distribution during each trial, and 

consequently affecting the model estimation. Besides, the over-actuated nature of 

the human body (having more muscle actuators than position variables) makes it 

possible to reach a target position with infinite possible musculoskeletal orientations 

(see Figure 92). Therefore, part of the changes in the model estimation could also 

be attributed to the involuntary elbow rotations able to generate a completely new 

muscle effort distribution. These involuntary rotations could occur because of muscle 

fatigue or simply distraction.
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Figure 92: Example for the redundancy on the musculoskeletal orientation. (S, E, 
and H represents shoulder, elbow, and hand respectively).
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CHAPTER VI

REAL-TIME OPTIMIZATION EXPERIMENTS

6.1 Overview

The main purpose of the study was to show the feasibility of the 3 model-free optimiza­

tion approaches by evaluating their performance in real-time experiments. Besides, 

we aimed to generate some discussions, identify limitations, and provide potential 

improvements towards future developments. Regarding these experiments, 2 robots 

(WAM and 4OptimX) were used. The first experiments were conducted using the 

WAM robot because it is lighter and more user-friendly than the 4OptimX providing 

an easier and safer environment to test the model-free for the first time. Later, in 

order to fully test the capabilities of the proposed model-free frameworks, the 4Op- 

timX, which is stronger (it supports higher iteration forces), more versatile (it can 

be integrated with other systems), and more precise (it supports a higher sampling 

rate), was used for the succeeding experiments.

Experiments were performed in 4 different phases to release new features 

progressively based on feedback and data from previous phases. These 4 phases were:

1. Single-variable trajectory optimization without impedance: The WAM robot 

operated with its PD and gravity-compensation control (see Section 2.5) was 
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used during this stage. The main objective of this phase was to test the feasi­

bility of the model-free approach in a safe environment.

2. Single-variable trajectory optimization with impedance: The 4OptimX robot 

operated with its impedance control (see Section 2.6.2) was used during this 

phase. The main objective of this phase was to test the model-free approach 

for trajectory optimization with afixed impedance acting based on the human 

behavior.

3. Single-variable impedance optimization: The 4OptimX robot was also used 

during this phase. The main objective of this phase was to test the model-free 

approach for impedance optimization with a fixed trajectory orientation.

4. Multi-variable trajectory and impedance optimization: The 4OptimX was also 

used during this phase. The main objective of this phase was to test all the 

features previously tested simultaneously with the multi-variable model-free op­

timization approach involving trajectory and impedance variables.

For each real-time experiments, the following dependent and organismic 

variables (in Tables XII and XIII respectively) were measured and collected:

Table XII: Dependent variables from the experimental data.

Variable Description
Convergence status
Solution
Convergence time

Yes/No
Ellipse orientation and/or stiffness value 
Time to meet the convergence criterion
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Table XIII: Organismic variables about subjects.

Variable
Height
Weight
Gender
Age
Side dominant
Upper arm length
Forearm length

Description
In centimeters
In kilograms
Male (M) or female (F)
In years
Left (L), right (R), or both (B)
From shoulder to elbow in centimeters
From elbow to wrist in centimeters

6.2 Experimental Protocol

This study had an IRB which covers for Ethical Approval. It was provided by Cleve­

land State University with reference number 30305-RIC-HS. An informed consent 

form was signed by each subject conducting the experiment (see Appendix E). How­

ever, due to the pandemic situation with SARS-CoV-2, the experiments performed 

after March 2020 (phases 2, 3, and 4) were self-conducted. That means I played the 

role of the subject and the experimenter simultaneously during these experiments.

Except for the first phase (the feasibility test) which was conducted with 

only the dominant side of the body, the experiments were conducted by using both 

sides of the body (the right and left arm). For an accurate analysis, no more than 1 

phase was performed on the same day and they were performed following the same 

protocol:

1. Fill the Table XIII with the measurements from the subject.

2. Warm-up for 2 minutes.

3. Place the EMGs in one of the upper body side (side randomly selected).

4. A minimum of 2 isometric tests for each EMG are performed for calibration.
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5. Start the first test of the day. The initial values for the optimization variables 

are randomly set.

6. Wait for the solution to converge. If convergence is not achieved in less than 4 

minutes, the experimental test results in a convergence failure, and no optimal 

parameters are obtained. Regardless of the success or failure of convergence, 

the next step follows.

7. Rest for 2 minutes.

8. Start the second test of the day. The initial values for the optimization variables 

are randomly set.

9. Wait for the solution to converge. If convergence is not achieved in less than 4 

minutes, the experimental test results in a convergence failure, and no optimal 

parameters are obtained. Regardless of the success or failure of convergence, 

the next step follows.

10. Remove and place the EMGs in the other upper body side.

11. A minimum of 2 isometric tests for each EMG are performed for calibration.

12. Start the third test of the day. The initial values for the optimization variables 

are randomly set.

13. Wait for the solution to converge. If convergence is not achieved in less than 4 

minutes, the experimental test results in a convergence failure, and no optimal 

parameters are obtained. Regardless of the success or failure of convergence, 

the next step follows.

14. Rest for 2 minutes.
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15. Start the fourth and last test of the day. The initial values for the optimization

variables are randomly set.

16. Wait for the solution to converge. If convergence is not achieved in less than 4 

minutes, the experimental test results in a convergence failure, and no optimal 

parameters are obtained. Regardless of the success or failure of convergence, 

the next step follows.

17. Save all the data.

18. Fill the Table XII with the results from the subject.

The trajectory pattern was supplied in an ellipsoid pattern (horizontal, ver­

tical, and angled). The major movements involved were flexion and extension in 

the sagittal plane, as well as horizontal abduction and adduction in the transverse 

plane. Together these movements combined into an anterior circumduction move­

ment. Therefore, the primary drivers for the glenohumeral joint [11] were selected for 

this study (see Figure 93) in the following order:

Figure 93: Elbow immobilizers for shoulder muscles isolation.
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For the first phase:

1. Anterior deltoid.

2. Lateral deltoid.

3. Biceps brachii.

4. Pectoralis major.

For the second, third, and fourth phase:

1. Anterior deltoid.

2. Lateral deltoid.

3. Posterior deltoid.

4. Pectoralis major.

The deltoid muscles (lateral, anterior, and posterior) were chosen because 

they are the main glenohumeral drivers and responsible for the motion of the arm 

in the three dimensions. The chest was chosen because it is the main contributor to 

the stabilization and adduction of the shoulder. The bicep was initially chosen (only 

for the first stage) as it works synergistically with the anterior deltoid to hold the 

lower arm in a fixed position while the upper arm is moved   or extension 

about the glenohumeral joint. Besides, the bicep has a relationship with the elbow 

flexion providing information about undesired rotations causing loss of focus in the 

glenohumeral action. However, its low effort distribution and the use of elbow immo­

bilizers in the second, third, and fourth phases removed the need to continue to use 

this muscle for the study.
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It is important to note that optimal solutions depend on the relative position 

of the subject with respect to the machine. Thus, a mark was placed on the ground 

and the subject was required to stand on it during the trials from the same phase 

to validate the results (similar converged solutions). However, it is also important to 

highlight that the framework is designed to achieve convergence independently of the 

relative position of the subject with respect to the machine.

The muscle activations from these glenohumeral muscles were computed 

from the raw signals recorded with EMGs at a frequency of 2 kHz. Then, they were 

real-time processed to obtain the muscle activations as follows:

1. Bandpass second-order Butterworthfilter between 30 and 950 Hz.

2. Full-wave rectification.

3. Low-pass second-order Butterworthfilter at 50 Hz.

Given the objective of these experiments was to show the feasibility of the 

model-free framework, the muscle weight vector (used to focus or defocus a muscle or 

group of muscles) was randomly choose during each stage. However, it is important 

to highlight that some muscles work synergistically better with some muscles than 

with others. Thus, for best results and maximum efficiency, it is recommended the 

muscle weight vector be professionally selected by a professional trainer or therapist.

As previously noted, the involuntary inclusion of other muscles (while con­

ducting experiments) potentially affects the results. For this reason, elbow immobi­

lizers were used to guarantee muscle group isolation (see Figure 94).

There were a total of 2 advanced exercise protocols. The first one was only 

used on the first phase where there wasn’t a zero-effort path (it was zero-effort in 

the complete robot’s workspace). The regulated trajectory was a geometric path to
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Figure 94: Elbow immobilizers for shoulder muscles isolation.

be tracked by the user (see Figure 95). User and desired positions were represented 

in the map by a red and a blue dot respectively. On the samefigure, the blue line 

represents the ellipsoidal curve of 80 cm and 40 cm of axes. The desired position 

(blue dot) moves periodically over the blue ellipse while this curve rotates.

Figure 95: Ellipsoidal path to be tracked by the user.
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The second advanced exercise protocol was followed in the second, third, 

and fourth phases. During these phases, the robotic exercise machine establishes 

a zero-effort circular path (machine’s neutral path) of 40 cm of radius producing a 

controlled impedance against the subject asked to follow an elliptical trajectory path. 

This elliptical trajectory path has 30 and 90 cm of axes. The user-defined impedance 

produced by the controller is based on the deviations from the neutral path and the 

force/torque applied by the subject. The positions and trajectories involved in the 

training protocol can be seen in Figure 96. The machine’s neutral position (X) is 

labeled with a red dot and it moves periodically over a red circular curve representing 

the machine’s trajectory where the impedance is zero. The target position (Xd) is 

labeled with a blue dot moving periodically over a blue ellipsoidal curve of fixed axis 

lengths and programmable orientation. The user position (Xa) is labeled with a green 

dot and tries to follow the blue.
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Figure 96: Positions involved in the training protocol: robot trajectory (red dot or 
X), target position (blue dot or X d), and user position (green dot or X a).

6.3 Phase I - Single Variable Trajectory Optimization No-Impedance

6.3.1 Methodology

During the first phase, the objective was to maximize all the activations from the 

involved muscles but assigning different weights (priorities) to each of them [26]. 

The model-free approach was implemented for performance maximization and the 

performance function was defined as the moving average of the multiplication of a 

muscle weight vector and the muscle activation derived as follows: 

max 
e

J(t) = trev

t
E 

(i=t-trev /ts )
WmM(t) (6.1)
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where i is the ellipse orientation, ts is the sample time set at 5 X0O-4 seconds, teev 

is the period of revolution of the blue dot (dot along the ellipsoidal path),tis the 

current time,W m is the muscle weight vector, and M the vector of muscle activations.

One subject of the age of 23 (see Table XIV) performed 3 sets of experiments 

on 3 different days (see Figure 97). During each day, one set of 2 trials (one trial 

next to the other one) was performed by using the same parameter configuration. 

The first set of experiments used the muscle weight vector W m = [1,5,3,5]. This 

set gave the highest priority to the anterior deltoid and pectoralis major, medium 

priority to the biceps brachii, and the lowest priority to the lateral deltoid. The 

second set used the muscle weight vector W m = [3,5,1,1]. This set gave the highest 

priority to the anterior deltoid, medium priority to the lateral deltoid, and the lowest 

to biceps brachii and pectoralis major. And the third set used the muscle weight 

vector W m = [1,1,5,5]). This latest set gave the highest priority to the biceps brachii 

and pectoralis major and the lowest to the lateral and anterior deltoid.
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Figure 97: Experiment of human training with AEM.

Table XIV: Organismic variables about the first subject.

Variable
Height
Weight
Gender
Age
Side dominant
Upper arm length
Forearm length

Description 
180.4 cm 
93.2 kg 
Male (M) 
23
Right (R)
33.0 centimeters 
24.2 centimeters

The ESC parameters used on this project (related to Figure 14) can be seen 

in Table XV.
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Table XV: Framework settings and configuration parameters for the first phase of 
experiments.

Parameter Description Value Units
a Perturbation amplitude 0.1 -
U Perturbation frequency 1 rad/s
Ml Low-pass filter cutoff frequency 0.1 rad/s
Uh High-pass filtrer cut off frequency 0.5 rad/s
k Gain 1000 -

0th Convergence tolerance for trajectory 10° deg
tcon Convergence time threshold 10 s

6.3.2 Results and Discussion

The results from the first phase of the experimental sets are presented in the plots 

and tables below:

Figure 98: First set of experiments with the muscle weight vector W= [1,5,3,5]

Time (s)
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Table XVI: Table of the experimental results for the first set (W= [1,5,3,5]).

Arm side Trial Convergence status Solution (◦) Convergence time (s)
Dominant 1 Yes 39.50 24.6
Dominant 2 Yes 27.60 25.6

Figure 99: Convergence solutions from the first set of experiments (W= [1,5,3,5]).

Figure 100: Second set of experiments with the muscle weight vector W= [3,5,1,1]

Time (s)

Table XVII: Table of the experimental results for the second set (W= [3,5,1,1]).

Arm side Trial Convergence status Solution (◦) Convergence time (s)
Dominant 1 Yes 30.77 23.9
Dominant 2 Yes -44.09 27.3
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Figure 101: 
[3,5,1,1]).

Convergence solutions from the second set of experiments (W=

Time (s)

Figure 102: Third set of experiments with the muscle weight vector W= [1,1,5,5]

Table XVIII: Table of the experimental results for the third set (W= [1,1,5,5]).

Arm side Trial Convergence status Solution (◦) Convergence time (s)
Dominant 1 Yes -58.14 27.7
Dominant 2 Yes 40.40 28.2
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Figure 103: Convergence solutions from the third set of experiments (W= [1,1,5,5]).

Upon completion of the 6 experimental trials, multiple outcomes and limi­

tations were identified which were useful to elaborate some discussions and improve 

the framework during the following phases. For instance, differences in the muscle 

performance between trials from the same experimental set were revealed. A higher 

performance value was exhibited in the second trials during all the experimental sets. 

This result seems to be associated with the reduced effort capacity of the muscles to 

perform activity when they start to get fatigued. However, despite the difference in 

the muscle performance between trials, they converged to similar solutions depending 

on the initial conditions and the muscle weight vector. These results suggest that the 

formulated model-free optimization method successfully enabled the user to exercise 

optimally.

It is important to consider that muscle dynamics are permanently changing. 

Therefore, ESC remains varying slightly even after reaching the optimal solution. 

However, based on the established convergence criterion, the solutions were computed 

and found in the neighborhood from 30° to 40° and its symmetric respect to the axes 

from-60 ◦ to-45 ◦ (see Figure 104).
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— First Set - Trial 1
---First  Set - Trial 2
— Second Set - Trial 1
- --Second Set - Trial 2

Third Set - Trial 1
- Third Set - Trial 2

Figure 104: Convergence solutions from the 3 sets of experiments.

It is important to consider that the success of the method depends on the 

accuracy of the user to track the desired trajectory. Accordingly, it is recommended 

that the user get expertise with robot handling before the experiments. But although 

the user had practiced before, the mean of the RMS tracking error in all the experi­

ments was 2.87 cm. However, the controller was robust enough to always converge to 

one of the local optima despite the lack of tracking. Nonetheless, it was assumed that 

future phases including resistances with multiple variables could significantly increase 

the tracking error, therefore the addition of a tracking error penalty was decided for 

the next phases.

It is important to note that at this point, only basic configurations (mini­

mal viable development) were implemented. For instance, elbow immobilizers were 

not used, thus, the involuntary elbow rotations producing alterations in the muscle 

dynamics was one of the issues during this first phase of experiments. Another chal­

lenge faced was the EMG sensitivity associated with the electronic noise produced 

by the other systems (servos, motors, sensors). Furthermore, the high computational 

cost was limiting the accuracy of the parameter estimates. Finally, the only maxi­

mization muscle activations limited the versatility of the approach. During the next 
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phases, new features, configurations, and improvements were incorporated such as 

the minimization of a specific muscle or group of muscles.

6.4 Phase II - Single-Variable Optimization by Trajectory Regulation.

6.4.1 Methodology

During the second phase, the objective was to maximize the activation of a muscle 

while minimizing the others by regulating the orientation of the training trajectory. 

For this objective, the framework was set for trajectory parameter regulation to op­

timize the orientation of the ellipsoidal training trajectory. The model-free approach 

was implemented for minimization and the performance function was defined as the 

moving average of the sum between the multiplication of a muscle weight vector 

and the muscle activation and the multiplication of a tracking penalty gain and the 

tracking error as follows:

min J(t) = t~~ ^ ( (WmM(t)) + (Wt(P(t) - P^))2) ), (6.2)
$ trev z . \ X / X / /(i=t-trev /ts)

where iS it the ellipse orientation, ts is the sample time set at 5 x00-4 

seconds,t rev is the period of revolution of the black dot (dot along the ellipsoidal 

path),tis the current time,W m is the muscle weight vector of “1”s (p positive for the 

muscles to be maximized aid negative for the ones to be miiimized),Mthe vector 

of muscle activatiois,W t is the tracking penalty gain, and P and P des are the current 

aid desired position respectively (Xa or green dot aid X d or blue dot respectively).

One subject of the age of 29 (see Table XIX) performed a total of 4 experimental 

 trials (2 per each body side). Each 2-trial set per each body side was 
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conducted by using the same settings and configuration parameters. The experimen­

tal order for each side of the body was randomly chosen, resulting in the experiments 

with the left side being performed first. The muscle weight vector (W m in Tables. 

XX and XXI) was chosen to maximize the activations of the anterior deltoid (the 

first muscle) while minimizing the other muscles (lateral deltoid, posterior deltoid, 

and pectoralis major).

Table XIX: Organismic variables about the subject.

Variable
Height
Weight
Gender
Age
Side dominant
Upper arm length
Forearm length

Description 
177 cm 
77 kg 
Male (M) 
29
Right (R)
34.0 centimeters 
28.0 centimeters

The settings and configuration parameters used during this phase of the 

experiments for the dominant and nondominant sides can be seen in the Tables. XX 

and XXI respectively.

Table XX: Framework settings and configuration parameters for the second phase of 
experiments with the dominant (right) side of the body.

Parameter Description Value Units
a Perturbation amplitude 0.1 -
U Perturbation frequency 1 rad/s
Wl Low-pass filter cutoff frequency 0.1 rad/s
Uh High-pass fitter cutoff frequency 0.5 rad/s
k Gain 1000 -

&th Convergence tolerance for trajectory 8° deg
tcon Convergence time threshold 10 s
Wm Muscle weight vector [-1,1,1,1] -
Wt Tracking penalty 1 -
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Table XXI: Framework settings and configuration parameters for the second phase of 
experiments with the nondominant (left) side of the body.

Parameter Description Value Units
a Perturbation amplitude 0.1 -
U Perturbation frequency 1 rad/s
Ml Low-pass filter cutoff frequency 0.1 rad/s
Uh High-pass fitter cutoff frequency 0.5 rad/s
k Gain 600 -

0th Convergence tolerance for trajectory 8° deg
tcon Convergence time threshold 10 s
Wm Muscle weight vector [-1,1,1,1] -
Wt Tracking penalty 1 -

6.4.2 Results and Discussion

The results from the second phase of the experimental sets are presented in the plots 

and tables below:

Figure 105: Results dominant side 1.
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Upon completion of the 4 experimental trials and based on the experimental 

results presented in Table XXII, some observations and discussions have been made. 

For instance, differences in the optimal trajectory orientation were observed between 

trials from the same body side. All the optimal solutions were in a neighborhood 

between 25° and 45° and its symmetric respect to the axes (see Figure 109). Coin­

cidentally for both sides of the body, the first and second trials converged to similar 

solutions. Regarding the first trials, the optimal trajectories obtained are almost 

symmetric with respect to the axes. This result was previously observed during the 

first phase of the experiment supporting the possible existence of more than a local 

optimum. Regarding the second trials, the parameters converged to a more hori­

zontal orientation (where the main or larger ellipsoidal axis was more aligned to the 

horizontal axis). Based on the fact that the second trial was performed after a few 

minutes of training, the orientation observed from the second trial could be associated 

with the optimal orientation for the user when the subject starts to get fatigued. In 

this particular case, where the posterior deltoid, lateral deltoid, and chest have to 

be minimized, a more horizontal orientation might contribute to the minimization of 

their muscle activations and likewise, in the optimization objective.

Table XXII: Summary of the experimental results from the second phase (single­
variable trajectory optimization).

Side Trial Convergence status Solution (◦) Convergence time (s)
Dominant 1 Yes -44.54 23.80
Dominant 2 Yes 22.49 38.85

Nondominant 1 Yes 45.39 32.32
Nondominant 2 Yes 24.39 37.56

It was also observed that the second trials converged in longer periods on 

both sides of the body. This result seems to be associated with the increase of muscle 

activations as a result of fatigue producing a higher system sensitivity (similarly to 

an increasing in the framework gain). This effect is observed similarly, but in a lower 
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proportion, by comparing the convergence time results between the dominant and 

nondominant sides. During the first trials, the dominant side converged much faster 

than the nondominant side, and during the second trials, they converged at very 

similar times.

During this phase, the implementation of the impedance (training resistance) 

significantly increased the level of difficulty in the training protocol. Thus, was also 

expected a considerable increase in the tracking error which didn’t result as expected 

suggesting that the implementation of the tracking error penalty was efficient in 

keeping the desired trajectory inside of feasible areas.

Regarding the issues noted during the first phase of the experiments, all 

of them were solved. The involuntary elbow rotations producing alterations in the 

muscle dynamics were successfully solved by using the elbow immobilizers. The EMG 

sensitivity associated with the electronic noise produced by the other systems (servos, 

motors, sensors) became neglected after using analog and digitalfilters. Finally, the 

high computational cost was significantly improved by using more efficient estimators 

and parameter configurations.

------Right Side (First Trial)
Right Side (Second Trial)

------ Left Side (First Trial) 
------ Left Side (Second Trial)

Figure 109: All results from the dominant and nondominant sides for the single 
variable trajectory optimization.

160



6.5 Phase III - Single-variable optimization by impedance regulation.

6.5.1 Methodology

During the third phase, the objective was to maximize the activation of a muscle 

while minimizing the others by only regulating the impedance. For this objective, 

the framework was set for impedance parameter regulation to optimize the impedance 

parameter associated with the stiffness property. During this phase, the orientation 

of the ellipsoidal training trajectory (orientation of its axis), damping, and inertia 

parameters remained constant. The model-free approach was implemented for mini­

mization and the performance function was defined as the moving average of the sum 

between the multiplication of a muscle weight vector and the muscle activation and 

the multiplication of a tracking penalty gain and the tracking error as follows:

min J(t) = Tts- y ( (WmM(t)) + (Wt(P(t) - M))2] I, (6.3)
K trev (i=t-trev /ts)

where K is the stiffness variable, ts is the sample time set at 5 x 10-4 seconds, 

trev is the period of revolution of the black dot (dot along the ellipsoidal path),tis 

the current time,W m is the muscle weight vector of “1”s (positive for the muscles to 

be maximized and negative for the ones to be minimized),Mthe vector of muscle 

activations,W t is the tracking penalty gain, and P and P des are the current and

desired position respectively (Xa or green dot and X d or blue dot respectively).

The same subject from the second phase (see Table XIX) performed another 

experimental set of 4 trials (2 per each body side) on a different day. Similarly, each 

2-trial set per body side was conducted ay using the same settings and configuration 

parameters. The experimental order for each side of the body was also randomly 
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chosen, resulting in the experiments with the left side being performed first. The 

muscle weight vector (Wm in Tables. XXIII and XXIV) was chosen in the same way 

as during the second phase to maximize the activations of the anterior deltoid (the 

first muscle) while minimizing the other muscles (lateral deltoid, posterior deltoid, 

and pectoralis major). The settings and configuration parameters used during this 

phase of the experiments for the dominant and nondominant sides can be seen in the 

Tables. XXIII and XXIV respectively.

Table XXIII: Framework settings and configuration parameters for the third phase of 
experiments with the dominant (right) side of the body.

Parameter Description Value Units
a Perturbation amplitude 0.1 -
U Perturbation frequency 0.7 rad/s
Wl Low-pass filter cutoff frequency 0.1 rad/s
Uh High-pass filter cutoff frequency 0.5 rad/s
k Gain 1000 -

Sth Convergence tolerance for impedance 0.025 Nm/rad
tcon Convergence time threshold 10 s
Wm Muscle weight vector [-1,1,1,1] -
Wt Tracking penalty 1 -

Table XXIV: Framework settings and configuration parameters for the third phase of 
experiments with the nondominant (left) side of the body.

Parameter Description Value Units
a Perturbation amplitude 0.1 -
U Perturbation frequency 0.7 rad/s
Ul Low-pass filter cuttoff frequency 0.1 rad/s
Uh High-pass filter cutoff frequency 0.5 rad/s
k Gain 600 -

Sth Convergence tolerance for impedance 0.025 Nm/rad
tcon Convergence time threshold 10 s
Wm Muscle weight vector [-1,1,1,1] -
Wt Tracking penalty 1 -
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6.5.2 Results and Discussion

The results from the third phase of the experimental sets are presented in the plots 

and tables below:

—HP Stiffness
—Stiffness
—Tolerance
# Optimal Solution

—HP Stiffness
—Stiffness
—Tolerance
O Optimal Solution
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—HP Stiffness
—Stiffness
—Tolerance
* Optimal Solution

—HP Stiffness
—Stiffness
—Tolerance
* Optimal Solution

Upon completion of the 4 experimental trials and based on the experimental 

results presented in Table XXV, some observations and discussions have been made. 

Except for the first trial, very similar optimal impedance parameters were observed 

between the other 3 trials (see all optimal solutions in Figure 114). These 3 results 

converged to values in the neighborhood of 3 Nm/rad, while the first trial from the 

dominant side converged to a value around 4.8 Nm/rad. Conclusions are difficult 

to make at this point with this sample size because the difference in the first trial 

could be associated with an error from the framework, as well as, the fact that the 
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dominant side is stronger especially during the first trial when the muscle is not 

fatigued. However, the similarity in the optimal solutions between 3 of the 4 trials 

suggests that the formulated model-free optimization method successfully enabled the 

user to optimize the impedance parameter in most cases.

Table XXV: Summary of the experimental results from the second phase (single­
variable trajectory optimization).

Side Trial Convergence status Solution (Nm/rad) Convergence time (s)
Dominant 1 Yes 4.81 28.72
Dominant 2 Yes 3.04 71.83

Nondominant 1 Yes 3.09 43.56
Nondominant 2 Yes 3.05 69.57

Similar to the previous phases, longer convergence times were observed in 

the second trials on both sides of the body. This result supports the observation 

previously made about the possible relationship between long convergence periods and 

fatigue associated with the increase of muscle activations producing higher sensitivity.

Figure 114: All results from the dominant and nondominant sides for the single 
variable impedance optimization.
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6.6 Phase IV - Multi-variable optimization by simultaneous trajectory 

and impedance regulation.

During the fourth phase, the objective was to maximize the activation of a muscle 

while minimizing the others by simultaneous trajectory and impedance optimiza­

tion. For this objective, the framework was set for multi-variable trajectory and 

impedance parameter regulation. Thus, the orientation of the ellipsoidal trajectory 

and the impedance parameter associated with the stiffness property were simultane­

ously optimized. The model-free approach was implemented for minimization and the 

performance function was defined as the moving average of the sum between the mul­

tiplication of a muscle weight vector and the muscle activation and the multiplication 

of a tracking penalty gain and the tracking error as follows:

ttmin J(t) = -s- WmM(t) + (Wt(P(t) - pdes(t))2) , (6-4)
e,K trev 7 v 7 /(i=t-trev /ts )

where i it the orientation of the ellipsoidal training trajectory, K is the 

stiffness variable, ts is the sample time set nt 5 x l0-4 secenOs, teev is the perieO 

of revolution of the black dot (dot along the ellipsoidal  ltth),tii the current time, 

Wm is the muscle weight vector of “1”s (positive for the muscles to be maximized O 

anO negative for the ones to be minimizeO),Mthe vector of muscle activatiens,W t 

is the tracking penalty iain, anOPanOP des are the current anO desired position 

respectively (Xa er green dot and X d er blue dot respectively).

The same subrect from the secenO anO third phase (see Table XIX) per-bermeo 

 another experimental set of 4 trials (2 per each body side) on a different Day. 

Similarly, each 2-trial set per body side was conducted by using the same settings anO 
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configuration parameters. The experimental order for each side of the body was also 

randomly chosen, resulting in the experiments with the right side being performed 

first. The muscle weight vector (Wm in Tables. XXIII and XXIV) was chosen in the 

same way as during the second and third phase to maximize the activations of the 

anterior deltoid (the first muscle) while minimizing the other muscles (lateral deltoid, 

posterior deltoid, and pectoralis major). The settings and configuration parameters 

used during this phase of the experiments for the dominant and nondominant sides 

can be seen in the Tables. XXVI and XXVII respectively.

It is important to note the most of the configuration parameter values used 

for the previous 2 frameworks were reused during this phase except for the framework 

gain. The multi-variable framework, as previously stated in Section 4.2.1, results more 

demanding than the single-variable cases becoming harder to meet. For that reason, 

the selected framework gains were lower than the single-variable approach (40% and 

50% of the value for the dominant and nondominant side respectively).

Table XXVI: Framework settings and configuration parameters for the fourth phase 
of experiments with the dominant (right) side of the body.

Parameter Description Value Units
a Perturbation amplitude 0.1 -
^1 Perturbation frequency 1 rad/s
-2 Perturbation frequency 0.7 rad/s
Wl Low-pass filter cutoff frequency 0.1 rad/s
^h High-pass filter cutoff freuuency 0.5 rad/s
k Gain 400 -

@th Convergence tolerance for trajectory 8° deg
8th Convergence tolerance for impedance 0.025 Nm/rad
tcon Convergence time threshold 10 s
Wm Muscle weight vector [-1,1,1,1] -
Wt Tracking penalty 1 -
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Table XXVII: Framework settings and configuration parameters for the fourth phase 
of experiments with the nondominant (left) side of the body.

Parameter Description Value Units
a Perturbation amplitude 0.1 -
^1 Perturbation frequency 1 rad/s
-2 Perturbation frequency 0.7 rad/s
^l Low-pass filter cutoff! frequency 0.1 rad/s
^h High-pass fiterr utoofi freuuency 0.5 rad/s
k Gain 300 -

Oth Convergence tolerance for trajectory 8° deg
Sth Convergence tolerance for impedance 0.025 Nm/rad
tcon Convergence time threshold 10 s
Wm Muscle weight vector [-1,1,1,1] -
Wt Tracking penalty 1 -

6.6.1 Results and Discussion

The results from the fourth phase of the experimental sets are presented in the plots

and tables below:
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Figure 115: Results dominant side 1.
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Figure 116: Results dominant side 2.
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Figure 117: Results nondominant side 1.
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Figure 118: Results nondominant side 2.

Upon completion of the 4 experimental trials and based on the experimental 

results presented in Table XXVIII, some observations and discussions have been made.

Regarding the optimal trajectory parameter, the optimal values converged 

to similar solutions (47.39° ± 101.3° for the mean ±the standard deviation). Unlike 

the second phase (single-variable trajectory optimization), all the optimal solutions 

were in a neighborhood between 37o and 59o without converging out of the first quad­

rant (see Figure 109). Regarding the optimal impedance results, 3 of 4 parameters 

converged to values in a neighborhood between 3 Nm/rad and 3.5Nm/rad, while the 

first trial from the dominant side converged to a value around 5.8Nm/rad (see all 

optimal solutions in Figure 119). These results are eery similar to the third phase, 

where the first trial produced a higher impedance parameter value with respect to 

the other 3 trials, while the other 3 trials converged to eery similar optimal param­

eters. These results suggest that the dominant side (normally the stronger side) is 

able to reach higher impedances (resistance) at least before the user getting fatigued. 

Finally, regarding convergence times, similarly to the previous phases, longer periods 

were observed in the second trials on both sides of the body.
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Table XXVIII: Summary of the experimental results from the fourth phase (single­
variable trajectory optimization).

Side Trial Convergence status Solutions Convergence time (s)
(°) Nm /rad)

Dominant 1 Yes 59.91 5.58 57.52
Dominant 2 Yes 37.04 3.05 71.03

Nondominant 1 Yes 41.72 3.05 55.03
Nondominant 2 Yes 50.87 3.45 83.09

------Right Side (First Trial)
------Right Side (Second Trial)
------Left Side (First Trial)
------Left Side (Second Trial)

Figure 119: All results from the dominant and nondominant sides for the multi vari-
able optimization.
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6.7 Discussions

Based on the result observed from each of the experiments, the possible existence 

of more than a local optimum, especially for the trajectory orientation, is likely. 

Regarding the trajectory parameter, all the solutions were computed and found in 

the neighborhood between 30° and 60° and the symmetric results with respect to 

the axes between-60 ◦ and-30 ◦. These results suggest that an inclined ellipsoidal 

trajectory seems to provide a desired performance for the selected weight muscle 

vector. Regarding the impedance parameters, most results were in the neighborhood 

of 3 Nm/rad suggesting that not big changes are expected between trials and body 

sides.

It is important to note that the success of the model-free approach strictly 

depends on the configuration and calibration parameters which are highly related 

to the physiology of the subject. Therefore, despite following a model-free method­

ology, the framework requires some pre-tests to find a good combination of setting 

parameters for each subject. For instance, higher gains or frequencies might produce 

faster convergence, but at the cost of a higher sensitivity which is not recommended 

on this approach because of undesired performances. On the other hand, low gains 

or frequencies might never achieve a convergence or not being able to deal with the 

time-varying dynamics due to the fatigue and the thermogenic effect of the muscles. 

Nonetheless, the parameters chosen for each of the 4 phases were accurate enough 

to produce robustness and a convenient convergence speed to deal with these vari­

ations. That means, the success rate of the convergence criteria was 100% (all the 

experimental trials converged). However, as it was previously stated, convergence is 

not always guaranteed. Some of the possible reasons for that high success rate might 

be:

•Subjects have performed several sets of experiments. Thus, the configuration
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and tuning parameters that work for them are very well known.

•Subjects have a lot of practice with the exercise protocol leading to good track­

ing, and consequently to a good framework performance.

Coincidentally in all the phases, longer convergence times were observed in 

the second trials (after a few minutes of working out) (see Figure 120). Similarly, 

lightly longer convergence times were observed on the nondominant side than on the 

dominant side. This result strongly suggests that there is a possible relationship be­

tween convergence time and fatigue. It is known that muscles consist of many motor 

units that are not fully active at the beginning of the workout, but they start to 

activate together as fatigue increases [90, 39]. Besides, nondominant side (normally 

the less trained side) tends to fatigue faster and easier. The increase in the activa­

tion of motor units produces an increase in the muscle activations similarly to an 

increasing in the framework gain producing a higher sensitivity, and thus undesired 

performances. These sudden changes might not only delay the convergence but also 

they might even block it. Therefore, it can be concluded that independently of the 

accuracy in the initial setting parameter selection, recalibration might become needed 

after a few minutes of training. The increase in the sensitivity previously observed 

might be solved by decreasing the framework gain, thus future studies could include 

automatic parameter calibrations to overcome this current limitation.

173



9090 I I I I I I

80 “ I I

il II il il il I
0-------------------------------■■------------■■------------

First Trial
Second Trial

0

Figure 120: Comparison of convergence time between the trials from the second (SV 
Trajectory ), third (SV Impedance), and fourth (MV) phase trials.

It is important to highlight that the success of the framework (accuracy of 

the optimal variables), especially for trajectory optimization, lies in the accuracy of 

the user to track accurately the desired trajectory. Accordingly, it is recommended 

the user gets expertise with robot handling before the experiments. During the trials, 

it was observed from the subject that conscious focus was put on activating the 

muscles being measured whilst maintaining proper alignment with the visual display. 

As the ellipsoid pattern was altered and moved, the level of difficulty was increased. 

The ellipse trajectory produces linear motion of the glenohumeral joint which in 

turn resulted in high muscular fatigue. As the ellipse rotates, the various muscles 

associated with the total glenohumeral movement were tasked. The orientation of 

the ellipse brought about an increased time of resistance which ultimately resulted 

in more muscular stimulation. With the ellipse pattern, the primary drivers in the 

shoulder were successfully activated as opposed to the stabilizers which were focused 

on in the smaller movement pattern. As a suggestion for future research, the combined 

modular resistance supplied by this technology might focus on the benefits of linear
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movements to lead to typical exercise movements such as presses or lifts.

It is important to note that there are still multiple issues limiting the max­

imum capacity of the framework. Some of them have been overcome as the phases 

progressed, but others, including uncaptured ones, will be part of future works. For 

instance, results might be greatly affected by the psychological effects of training with 

an unconventional machine as a robot is.

In general, these results support the feasibility of the formulated model-free 

optimization method to successfully enable the user to exercise optimally, but more 

studies with bigger sample size are required for deeper analytical studies.
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CHAPTER VII

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

7.1 Statement of Contributions

In this dissertation, we set out to explore the possibilities and limitations of smart 

frameworks able to optimize training parameters by using muscle activations as 

biofeedback. We aimed to investigate the capabilities of the AEMs and the phys­

iological effects on people performing cardio-based and resistance-based training by 

using these machines. Then, we aimed to develop the framework for the smart regu­

lation of the robotic training parameter. To achieve these goals, four objectives were 

set at the beginning of this dissertation.

Objective 1: Investigate the physiological effects as a result of different 

exercise protocols with different exercise machines.

The investigation of the physiological effects associated with exercise started in Chap­

ter II exploring the characteristics of the exercise protocols and the machines used 

to perform these exercises. This pre-investigation played a key role because of the 

strict correlation between machine parameters (trajectory and resistance parameters) 

and physiological effects. Then, we formulated and planned the strategy to acquire 

the required information related to these physiological effects as a result of exercise.
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In Chapter III, we explored these physiological effects by measuring and studying 

them through experimental trials with subjects of different ages, genders, and fitness 

levels. The physiological effects selected for this study were muscle activations, heart 

rate, and oxygen consumption associated with the musculoskeletal, cardiovascular, 

and cardiorespiratory systems respectively. Every training pattern produces a unique 

combination of training effects. For instance, resistance-based training such as weight 

lifting does not produce the same effects as cardio-based training such as aerobicfit­

ness. Therefore, we measured the physiological effects as a result of both cardio-based 

training (by using a powered rowing machine) and resistance-based training (by using 

robotic systems).

Publications:

• [ 24] De las Casas, H., Richter, H., and van den Bogert, A. Design and hybrid 

impedance control of a powered rowing machine. In ASME 2017 Dynamic 

Systems and Control Conference, October 2017.

• [ 30] De las Casas, H. Design and control of a powered rowing machine with 

programmable impedance. Master’s thesis, Cleveland State University, 2017.

• [ 28] De las Casas, H., Kleis, K., Richter, H., Sparks, K., and van den Bogert, 

A. Eccentric training with a powered rowing machine. Medicine in Novel Tech­

nology and Devices, 2:100008, 2019.

• [ 25] Humberto De las Casas, Santino Bianco, and Hanz Richter. Targeted 

muscle effort distribution with exercise robots: Trajectory and resistance effects. 

Medical Engineering & Physics, 2021.
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Objective 2: Develop a model-free framework for single-variable optimiza­

tion of a trajectory parameter using muscle activations as biofeedback.

In Chapter IV, we formulated the single-variable optimization framework by using 

perturbation-based Extremum Seeking Control (ESC) for the regulation of the ellip­

soidal trajectory orientation to be tracked by the subject exercising. The objective 

was designed to follow a model-free approach using a physiological effect as biofeed­

back. Thus, based on the outcomes from the previous investigations, we decided to 

use muscle activations because of the following reasons:

1. Safety: The use of superficial muscle activation sensors doesn’t produce any 

danger to the subject unlike to the other methods such as electrocardiography 

which can be dangerous.

2. Availability: We have muscle activation sensors available in one of our research 

laboratories.

3. Cost: The equipment purchase cost can be high, but the cost of its usage only 

lies in the sensor adhesive available at low cost (about 50 cents per adhesive).

4. Expertise: The use of muscle activations sensors doesn’t require high knowledge 

or expertise.

After the complete development of the framework, we evaluated its performance in 

simulation by using 5 human arm models from our virtual population and comparing 

its results with the ones obtained by using Biogeography-Based Optimization. Later, 

in Chapter V, we used this framework to study the concept of training personalization 

by presenting early evidence about the unique combination of optimal trajectory 

parameters for each person/model by performing a total of 300 comparisons by using 

our virtual population of 25 female and 25 male models. Finally, in Chapter VI, real­
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time experiments with 2 different robots (WAM and 4OptimX robots) were conducted 

to test the feasibility of the trajectory parameter optimization framework in real-time 

applications.

Publications:

•[ 31] Humberto De las Casas, Holly Warner, and Hanz Richter. Real-time op­

timization of an ellipsoidal trajectory orientation using muscle effort with ex­

tremum seeking control. Medical Engineering & Physics, 91:19-27, 2021.

•[ 26] De las Casas, H., Chambers, N., Richter, H., and Sparks, K. Real-time 

trajectory optimization in robot-assisted exercise and rehabilitation. Journal of 

Biomechanics. (under review)

Objective 3: Develop a model-free framework for single-variable optimiza­

tion of an impedance parameter using muscle activations as biofeedback.

In Chapter IV, we used the single-variable optimization framework previously de­

veloped for trajectory parameter optimization to adapt it for impedance parameter 

optimization. For this objective, we used a fixed ellipsoidal trajectory orientation 

with a variable impedance automatically regulated by using muscle activation as 

biofeedback. Since impedance parameters are more stability sensitive than trajectory 

parameters, we decided to only regulate the stiffness impedance (constant damping 

and inertia parameters) to not compromise the system stability. After the successful 

adaptation of the framework, in Chapter V, we used this framework to study the con­

cept of training personalization by presenting additional evidence about the unique 

combination of optimal impedance parameters for each person/model by using our 

virtual population. Finally, in Chapter VI, real-time experiments with the 4OptimX 

robot were conducted to test the feasibility of the impedance parameter optimization
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framework in real-time applications.

Objective 4: Develop a model-free framework for multi-variable optimiza­

tion of trajectory and impedance parameters using muscle activations as 

biofeedback.

After the successful development of the single-variable optimization frameworks for 

trajectory and impedance parameters, the multi-variable approach was formulated. 

In Chapter IV, we extended the single-variable framework to include multi-variable 

capabilities for simultaneous optimization of trajectory and impedance parameters. 

For this objective, we decided to use variable ellipsoidal trajectory orientation and 

stiffness impedance, same as before, automatically and simultaneously regulated by 

also using muscle activation as biofeedback. For the framework methodology selection, 

we developed 2 multi-variable frameworks based on the use of perturbation-based and 

Newton-based ESC. In Appendices C, we evaluated in simulation the performance of 

each framework to select the best fit based on specific criteria. After the successful 

selection and adaptation of the framework, in Chapter V, we used the framework to 

study the concept of training personalization by presenting additional evidence about 

the unique combination of optimal training parameters (trajectory and impedance pa­

rameters) for each person/model by using our virtual population. Finally, in Chapter 

VI, real-time experiments with the 4OptimX robot were conducted to test the fea­

sibility of the multi-variable framework for the optimization of the trajectory and 

impedance parameters in real-time applications.

Other contributions

The use of these smart frameworks for the optimization of the training parameters in 

human performance and rehabilitation promises development enhancements infitness 

and rehabilitation including for instance:
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•Muscle training focalization and/or isolation.

• Safer and more controllable workout/rehabilitation environments.

• Reduced injuries and accidents in training facilities.

• Inclusive environments for beginner trainers, older populations, and people with 

reduced motor skills.

7.2 Limitations of The Study and Future Perspectives

7.2.1 Equipment

The framework is computationally expensive making it difficult to be replicated on 

systems with low computational speed, power, and data storage requirement. Simi­

larly, it requires the use of high-end sensors able to measure signals with high precision 

and deal with electrical noise in the environment.

• In terms of precision, the correct selection of sensors plays the most important 

role. Previously, the integration of multiple systems showed how noise and 

delays can affect measurements due to inefficient electrical insulators, algorithm 

failures, and other technical issues.

• In terms of versatility, the framework requires running multiple processes related 

to software and hardware at the same time and in real-time.

• In terms of speed, the framework requires the computing of complex algorithms 

while it synchronizes multiple sub-systems with a sampling rate of at least 2 

kHz.

• In terms of data storage requirement, the framework requires mass storage 

of data including more than a hundred variables been recorded with a high
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sampling rate during protocols that can last hours.

This framework could be shrunk to the use of less sophisticated robots and 

training parameters reducing the computational cost and the requirement of high- 

precision sensors and devices. Oppositely, the framework could be extended to endless 

variations including but not limited to:

• The use of a more sophisticated robot and/or multiple robots simultaneously.

• The use of biofeedback based on other physiological systems such as the car­

diorespiratory, cardiovascular, or simultaneous multiple-systems.

• The regulation of other training parameters such as damping, inertia, trajec­

tory’s dimension, frequency, etc.

7.2.2 Configuration, tuning, and calibration parameters

It is important to highlight that despite following a model-free methodology, the 

framework requires the manual selection of some parameters which are strictly related 

to the framework’s performance. Among them, there are configuration, tuning, and 

calibration parameters. Configuration parameters are associated with the exercise 

protocol objective such as the weight muscle vector including the selection of muscles 

to be maximized, minimized, and their priorities. Tuning parameters are associated 

with the architecture framework including the ESC gain and frequencies. Calibration 

parameters are associated with the parameters which are modulated at the beginning 

of each experimental trial during the warm-up and isometric tests.

The configuration parameters which are associated with the exercise proto­

col objective are freely selectable. Therefore, any muscle or group of muscles can be 

selected for muscle maximization or minimization with any priority. However, some 

muscles work synergistically better with some muscles than with others. Thus, a bad 
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selection of these configuration parameters might not produce the expected perfor­

mance by focusing or defocusing the wrong muscle or group of muscles. For that 

reason, it is recommended to be professionally selected by a professional trainer or 

therapist for maximum efficiency.

Unlike the configuration parameters, the tuning and calibration parameters 

are not freely selectable but require procedures for their correct identification to 

avoid undesired performances. For instance, bad tuning or calibration parameters 

might increase or decrease the framework’s sensitivity. A high-sensitive framework 

configuration might accelerate the convergence process, but introducing disturbances 

that are not recommended because of undesired performances. On the other hand, a 

low-sensitive framework configuration might never achieve a convergence or not being 

able to deal with the time-varying dynamics due to the fatigue and the thermogenic 

effect of the muscles. Therefore, tuning and calibration procedures have to be carefully 

conducted.

The tuning parameters are related to the physiology of the subject. For 

instance, the muscle activations on untrained people are more difficult to measure 

and their muscles get fatigued easier and faster. Therefore, higher gains and lower 

frequencies are required to deal with the low muscle activation signals without in­

creasing the sensitivity too much. These parameters can be selected by performing 

pre-tests following the same exercise protocol of the experiments. During these tests, 

the gain is set at a very low level, and by trial and error, it is increased until small 

oscillations start to happen. Then, a pilot test is performed for the modulation of 

the frequency (for the single-variable approach) or frequencies (for the multi-variable 

approach). During the pilot test, the frequencies are modulated by regulating the 

speed of the oscillations. There is not an ideal speed of oscillations, thus by trial and 

error, these frequencies can be selected. From experience, these pre-tests by trial and 
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error during 5 minutes have shown to be efficient enough to find a good combination 

of these parameters for each subject. However, it is recommended to perform these 

pre-tests on a different day than the experimental trials to avoid muscle tiredness.

Regarding the calibration parameters, there are parameters associated with 

the machine and others associated with the subject. The calibration parameters as­

sociated with the machine are related to the machine’s sensors such as load cells, 

encoders, etc. The calibration parameters associated with the subject are related to 

the sensors measuring the subject’s signals used for biofeedback which, in the case 

of this study, was the muscle activations. For this calibration, the warm-up process 

plays an important role to boostflexibility, performance, and activation of the first 

motor units. After the warm-up, the isometric tests are important for the sensors’ 

calibration by assessing maximum forces (highest activations possible) [46]. For the 

isometric tests, the subject is required to perform static exercises (isometric resis­

tances) including pull-up holds, static push-ups, static dumbbell curls (with different 

angles), lateral shoulder raises, and flexed-arm hangs. Next, the maximum muscle 

activation observed from each muscle is used to calibrate the sensors (normalize the 

data with respect to these maximum activations).

Another current limitation observed is the loss of precision in the muscle 

calibration parameters over time. This effect was observed during the real-time ex­

periments where longer convergence times were coincidentally produced in the second 

trials (after a few minutes of working out) in all the phases. A similar effect (longer 

convergence times) was observed for the trials with the nondominant side in com­

parison with the trials with the dominant side. It is known that during fatigue, the 

maximum muscle activation is increased in comparison with the maximum activation 

measured during the calibration process (isometric tests). Besides, the nondominant 

side (normally the less trained side), tends to fatigue faster and easier. Furthermore, 
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based on the fact that new muscle motor units start to activate (increase in mus­

cle activation) together with the increase of fatigue, results suggest that there is a 

possible relationship between convergence time, fatigue, and thus muscle calibration 

parameters. This increase in the muscle activations produces an increase in the frame­

work’s sensitivity introducing disturbances. As a result, the convergence might not 

only be delayed but also might even be blocked. Therefore, a recalibration process 

for the muscle parameters might be needed after a few minutes of training (when 

fatigue starts to show up). The increase in the sensitivity previously observed might 

be solved by simply decreasing the framework gain. However, an automatic muscle 

parameter calibration system would be optimal to overcome this current limitation.

7.2.3 User experience effects

It is important to note that the efficiency of the framework (accuracy of the optimal 

variables), especially for the optimization of the trajectory parameters, lies in the 

precision of the user to track accurately the desired trajectory. Thus, it is highly rec­

ommended the user gets expertise with the exercise protocol before the experiments. 

Furthermore, it was observed that sometimes the subject unconsciously focused more 

on activating the measured muscles than maintaining proper alignment with the vi­

sual display. As a result of the multi-tasking, the level of difficulty increases together 

with the tracking error. Therefore, it is important to aware the user of the priority 

focus of the exercise protocol.

7.2.4 Impedance regulation

It is a known fact that a negative impedance is an unstable impedance (unstable 

system), for that reason, real-time experiments were performed by using saturation 

blocks to limit the stiffness value from 0 to 10 Nm/rad. Unlike real-time experi­

ments, simulation experiments were performed by using unconstrained optimization 
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to acquire data that wouldn’t be possible (because it wouldn’t be safe) with a real 

population. As a result, some models obtained negative optimal stiffness impedance 

values (unstable impedance parameters). Considering that the zero-effort path (the 

circular trajectory of zero effort) was located inside of the ellipsoidal trajectory, a posi­

tive stiffness impedance produces resistance forces acting centripetally, while negative 

stiffness impedance produces resistance forces acting centrifugally (see Figure 121). 

Therefore, based on the skeletal distribution and the weight muscle vector selected, 

optimal resistances might act centripetally as well as centrifugally.

Figure 121: Centripetal and centrifugal resistances associated with positive and neg­
ative stiffness impedances respectively.

These results evidence another limitation of this study for the impedance 

optimization in real-time applications. Currently, if the optimal impedance value is 

negative, the value would converge to the tolerance limit (set at 0 Nm/rad) without 

being able to reach the real optimal value. However, a good variation for future work 

that would potentially overcome this limitation would be to replace the regulation of 

the stiffness impedance with the regulation of the radius of the circle or the radii of 

the ellipse. As a result, centrifugal forces would be possible without using unstable 

parameters (see Figure 122).
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Figure 122: Centrifugal resistances with positive stiffness impedance (stable 
impedance).

7.2.5 Possibility of multiple local optima

The existence of more than one local optimum would complicate the fact of finding 

the optimal training parameters (the global optimum parameters).

Based on the results previously observed from the experiments, the possible 

existence of more than a local optimum for the trajectory orientation is likely. Regard­

ing this parameter, similar solutions in neighboring quadrants were found (trajectories 

symmetric with respect to the axes). The sample size was not large enough to provide 

strong conclusions, thus, future experiments could explore deeper the existence of the 

multiple local optima for the trajectory parameter.

Unlike the trajectory parameter, based on the results previously observed, 

there is not any evidence about the possible existence of more than a local opti­

mum for the impedance parameter. Nonetheless, based on the fact that optimal 

impedances were found acting in both directions (centripetally and centrifugally), 

there is a possibility that there is a local optimum for each direction. Similarly as 

before, the sample size was not large enough to provide strong conclusions. Thus, 
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future experiments could explore deeper the possible existence of the multiple local 

optima for the impedance parameter.

7.2.6 Population availability and self-experimentation

The recruitment of volunteers for experimental tests is never easy, especially during 

pandemic times. For that reason, the feasibility of the approach was performed 

by conducting self-experimentation where my person was the designer, researcher, 

operator, subject, and reporter.

Self-experiments provide some limitations against experimenting with vol­

unteer subjects mainly when the subject is the same person who developed the frame­

work and who best knows the system in detail and how it works intimately. These 

limitations present during the real-time experiments are related to the following cri­

teria and they are presented below:

•User experience:

As previously stated, the precision of the user to track accurately the desired 

trajectory plays an important role in the efficiency of the framework (accuracy 

of the estimation in the optimal variables). This precision can be enhanced by 

practice because, similarly to a game, practice leads to skill improvements.

A normal subject from an experimental group might be exposed to practice 

sessions of 1 hour approximately which might be enough to reach acceptable 

dexterity levels. However, after years of research, the self-experimenting subject 

might have completed over 200 hours of practice. As a result, this subject’s skill 

would be potentially better than the average volunteer subjects.

•Configuration, tuning, and calibration parameters:

The parameters selection is also strictly related to the framework’s performance.
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Those parameters vary between people and during the time, so there is not any 

initial guess about the possible parameters that can work well for each new 

subject.

This selection can become very challenging, so a bad parameter selection is 

always possible. For this case, the parameters that work well for the self­

experimenting subject are already known because they have been used several 

times. So, the selection is reduced to only tunning processes guarantying a good 

performance.

• Population size:

Self-experiments are single-subject studies where the experimenter experiments 

on himself or herself. That means, there is only one subject available for the 

whole study.

A limitation related to the single-subject population studies is the fact that 

they restrict the depth of the research. As a result, they can’t provide enough 

or either strong conclusions.

For all those limitations previously stated, real-time experiments were lim­

ited to only test the feasibility of the framework and to provide early discussions. 

Additional experiments with a larger population are part of the future work.

In addition to the previous limitations, some general advantages self-experiments 

might include for instance:

• A better and more comfortable time management.

• Faster decision making.

• A more relaxed and less distracting environment.
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Regarding the general disadvantages, self-experiments might include:

• It is hard to multi-task.

• Less help leads to more work.

• In case of an issue, it takes more time to solve it or find a solution.

• Lack of cooperation and brainstorming leading to reduced quality and quantity 

of ideas.

• It’s not entertaining.

7.2.7 Other limitations

Some limitations of the study were overcome as the phases progressed, but there are 

still some others limiting the potential of this framework. Some of them have been 

already been reported, some others include for instance:

• The impedance controller in the robots guarantees passivity with the user, thus 

they create a safe environment for the exercise protocol. However, this doesn’t 

prevent the psychological effects produced as a result of training with an un­

conventional machine as a robot. Some subjects felt afraid during the exercise 

protocol and their physiological effects such as muscle activation, heart rate, 

and ventilation significantly increased.

• High cost including purchase, installation, configuration, and maintenance.

• The presence of an operator is required.

• Others not yet identified.
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APPENDIX A

Virtual Population Models

A.1 Baseline Model - Muscle Actuated Linkage Model

The virtual population used in this research includes 50 human models with 25 female 

and 25 male models. It was built by using a muscle-actuated linkage model developed 

by Dr. Warner [158] as a baseline. This muscle-actuated linkage model was built by 

using physical parameters of a scaled real human arm [67]. The model includes two 

subsystems: the linkages (as a frame), and 6 muscles (as the actuators). The muscles 

were oriented as shown in Figure 123. The human arm’s dynamics are given by

D(q)q + C(q, q)q + grq)-j JTFext =AF muscles ,(A.1)

where q is the state vector representing the shoulder and elbow position,Dis the 

mass matrix,Cis the Coriolis matrix,gis the gravity vector,jis the Jacobian,F ext

is the external force representing the interaction between the arm and the exercise 

machine,Ais the matrix of muscle moment arms, and F muscles is the vector of muscle 

forces calculated based on the muscle dynamics [158, 159, 59].
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Figure 123: Locations of muscles: Anterior Deltoid (1), Posterior Deltoid (2), Biceps 
Brachii (3), Triceps Brachii (long head) (4), Triceps Brachii (short head) (5), and 
Brachialis (6) [31].

This muscle-actuated linkage model has a Lyapunov-based backstepping 

controller to generate a closed-loop tracking simulation while providing insight into 

muscle redundancy resolution. Furthermore, it has an optimization framework to 

produce an efficient human movement by using the insight from this controller [157].

Therefore, for the simulation experiments, the muscle actuated the linkage 

model receives the target position to be tracked by the end-effector (Xd) and the 

external/interaction force (Fext), and then the internal controller in the linkage model 

computes the muscle activations required to accomplish the target motion (see Figure 

124).
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Figure 124: Model-free optimization framework in the simulation environment.

The linkage model is based on the Hill muscle model [29] (see Figure 125)

including the following elements:

• A series elastic element (SEE) modeled as a nonlinear spring with a slack region 

(that simulates the effects of the human tendon).

• A parallel elastic element (P EE) representing the nonlinear stiffness of the 

human muscle produced after the muscle has been drawn beyond its optimal 

length.

• A contractile element (CE) that produces the activation and it is the active 

force generating element.

• The control input (neural input) to the system.

Figure 125: Hill muscle model used for the muscle-actuated arm model. The variables 
SEE,P EE,CE, and n represent the series elastic element, parallel elastic element, 
contractile element, and control input. The tendon force is represented by $S(LS) 
[157].
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For more details or intentions to make use of this muscle-actuated linkage 

model, please refer to the bibliography [157].

A.2 Generation Process

Each of the models from the virtual population was generated based on anthropo­

metric data (reported on [49]) and the parameters of the linkage arm model. This 

anthropometric data report includes descriptions, measurements, statistics, and per­

centile values built from almost 9000 subjects (males and females) of different ages 

and racial categories (see Figure 126).

Figure 126: Examples of anthropometric data points [49].

A total of 8 parameters representing the lengths, masses, inertia, and center 

of masses of the upper and lower arms were generated for each model. The first 2 

generated parameters were the lengths of the upper and lower arms. These 2 param­

eters received the values from the percentiles on the male and female anthropometric 

datasets as follows:
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Table XXIX: Relationship between the generated models and the percentiles in the 
anthropometric data.

Model Percentile
1 1th

2 2th
3 3th
4 5th
5 10th
6 15th
7 20th
8 25th
9 30th
10 35th
11 40th
12 45th
13 50th
14 55th
15 60th
16 65th
17 70th
18 75th
19 80th
20 85th
21 90th
22 95th
23 97th
24 98th
25 99th

Then, the set of physical parameters of the scaled linkage model (see Table 

XXX) was used to generate the remaining 6 parameters for each of the 50 models (25 

female and 25 male models).
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Table XXX: Physical parameters of the linkage scaled to a real human arm [67].

Parameter Value
L1m (kg) 2.24
L2M (kg) 1.76
L1i (kgm) 0.0253
L2i (kgm) 0.0395
L1l (m) 0.33
L2l (m) 0.32

L1CM (m) 0.1439
L2CM (m) 0.2182

The generation of the remaining 6 parameters was performed byfinding 

the ratio between the upper and lower arm lengths of each model and the linkage in 

Table XXX, multiplying the parameter for that ratio and then adding a random value 

between the±5% of the linkage parameter value. For example, the inertia parameter 

associated with the lower arm was calculated as follows:

L1I = L1L (0.0253) +
0.33

R [-0.0253,0.0253]

20
(A.2)

whereR([x, y]) is a function producing a random number betweenxandy.

Regarding the muscles, the lengths from the original linkage model were 

used and scaled based on the same ratio previously used as follows:

Table XXXI: Original muscle lengths from the linkage model and the scale factors [67]. 
The variables L o,L s,a 0 represent the optimal length of the contractile element, the 
slack length of the muscle, and the length of the muscle when the arm is completely 
extended respectively.

Muscle Lo Ls ao Scale factor
Anterior Deltoid (1) 0.1280 0.0538 0.1840 L1L/0.33
Posterior Deltoid (2) 0.1280 0.0538 0.1055 L1l/0.33

Biceps Brachii (3) 0.1422 0.2298 0.4283 L1l/0.33
Triceps Brachii (longhead) (4) 0.0877 0.1905 0.1916 L1l/0.33
Triceps Brachii (shorthead) (5) 0.0877 0.1905 0.2387 L2L/0.32

Brachialis (6) 0.1028 0.0175 0.1681 L2L/0.32
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Regarding the remaining muscle properties, they were selected as the default 

values (they were not varied) and they can be seen in Table XXXII).

Table XXXII: Default muscle parameters based on the musculoskeletal representation 
of a human model [158, 159, 59, 74].

Muscle Fmax (N) d1 (m) d2 (m)
Anterior Deltoid (1) 800 0.05 0
Posterior Deltoid (2) 800 -0.05 0

Biceps Brachii (3) 1000 0.03 0.03
Triceps Brachii (longhead) (4) 1000 -0.03 -0.03
Triceps Brachii (shorthead) (5) 700 0 -0.03

Brachialis (6) 700 0 0.03

A.2 Model Parameters

A.2.1 Female arm model parameters

Table XXXIII: Female arm model parameters. The subscriptsM,I,L, andC M 
represent the mass, inertia, length, and center of mass properties of the links respec­
tively.

Model L1m (kg) L2m (kg) L1I (kgm) L2i (kgm) L1L (m) L2l (m) L1cm (m) L2CM (m)
1 1.9159 1.7175 0.021916 0.038909 0.2893 0.3258 0.13192 0.22972
2 1.9767 1.7876 0.023645 0.042078 0.2935 0.3277 0.13128 0.22141
3 2.1124 1.7835 0.021983 0.039178 0.2963 0.3292 0.12619 0.23291
4 2.0423 1.8957 0.02195 0.042655 0.3002 0.3317 0.1295 0.21998
5 2.1022 1.8281 0.023062 0.042273 0.3063 0.3363 0.13594 0.23569
6 2.0406 1.9502 0.023653 0.042482 0.3104 0.3399 0.1384 0.2245
7 2.2257 1.8911 0.025121 0.040955 0.3137 0.3429 0.13861 0.23776
8 2.1279 1.8678 0.024249 0.043868 0.3166 0.3456 0.14085 0.24418
9 2.1278 1.9228 0.024918 0.044253 0.3192 0.348 0.13759 0.24595
10 2.0963 1.8872 0.023485 0.042977 0.3217 0.3502 0.14413 0.2326
11 2.2971 1.8963 0.023643 0.043501 0.324 0.3524 0.14229 0.23723
12 2.2875 1.9079 0.025415 0.043097 0.3262 0.3546 0.13571 0.23626
13 2.2649 1.8761 0.023997 0.043659 0.3284 0.3567 0.14634 0.24085
14 2.2925 2.0481 0.026349 0.045746 0.3306 0.3589 0.15113 0.25527
15 2.3271 1.9957 0.025914 0.046011 0.3329 0.3611 0.144 0.23809
16 2.2248 2.0586 0.025112 0.043486 0.3352 0.3634 0.13999 0.24515
17 2.3216 1.979 0.026494 0.043216 0.3377 0.3657 0.15386 0.24933
18 2.3342 2.0391 0.027054 0.047051 0.3404 0.3683 0.15286 0.25452
19 2.2531 1.9875 0.026049 0.04503 0.3434 0.3712 0.15393 0.24353
20 2.4072 1.9906 0.026678 0.045265 0.3469 0.3746 0.15548 0.2616
21 2.2898 2.1055 0.026011 0.046563 0.3515 0.3788 0.14644 0.24874
22 2.4714 2.1813 0.027006 0.048108 0.3584 0.3852 0.15626 0.25281
23 2.5275 2.1051 0.028063 0.048223 0.3629 0.3895 0.15822 0.27254
24 2.4492 2.1438 0.027996 0.047939 0.3664 0.3926 0.164 0.26428
25 2.5653 2.1993 0.028263 0.049002 0.372 0.3977 0.1644 0.27099
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A.2.2 Male arm model parameters

Table XXXIV: Male arm model parameters. The subscriptsM,I,L, andCMrepre- 
sent the mass, inertia, length, and center of mass properties of the links respectively.

Model L1m (kg) L2m (kg) L1i (kgm) L2i (kgm) L1L (m) L2l (m) L1cm (m) L2CM (m)
1 2.0927 1.9093 0.025312 0.044252 0.3226 0.35 0.14742 0.24478
2 2.273 2.0074 0.024041 0.043286 0.3264 0.354 0.14622 0.25183
3 2.2308 1.9187 0.025789 0.042627 0.3289 0.3566 0.13676 0.25351
4 2.1767 2.0188 0.025251 0.043089 0.3323 0.3605 0.14319 0.23657
5 2.3599 2.0926 0.02635 0.044291 0.3378 0.3667 0.14017 0.25332
6 2.3956 2.0048 0.026943 0.046643 0.3416 0.3711 0.14215 0.24417
7 2.4033 2.0821 0.026188 0.045251 0.3447 0.3746 0.15499 0.24528
8 2.3545 2.1444 0.025443 0.04526 0.3475 0.3777 0.14838 0.25971
9 2.4506 2.0391 0.027266 0.0452 0.35 0.3805 0.15737 0.25592
10 2.4445 2.1064 0.026705 0.045751 0.3524 0.383 0.16005 0.25657
11 2.5118 2.1084 0.027211 0.046906 0.3547 0.3855 0.14869 0.26759
12 2.4801 2.1926 0.027206 0.046529 0.357 0.3879 0.15213 0.26525
13 2.4607 2.2236 0.027666 0.047891 0.3592 0.3903 0.15099 0.27486
14 2.376 2.1154 0.027347 0.049553 0.3615 0.3927 0.15688 0.26849
15 2.5556 2.2143 0.028256 0.047299 0.3639 0.3951 0.15734 0.27168
16 2.4855 2.154 0.027898 0.047247 0.3663 0.3977 0.16086 0.28086
17 2.6002 2.2764 0.029008 0.049458 0.3689 0.4003 0.15882 0.26772
18 2.5377 2.2501 0.029625 0.048177 0.3718 0.4032 0.15626 0.28306
19 2.6229 2.3078 0.02913 0.049724 0.375 0.4065 0.15649 0.2777
20 2.604 2.3035 0.028473 0.052001 0.3787 0.4104 0.16623 0.28272
21 2.5868 2.3068 0.029151 0.051466 0.3835 0.4152 0.17203 0.2781
22 2.6388 2.2517 0.029768 0.050325 0.3906 0.4225 0.17384 0.27789
23 2.7885 2.3546 0.031264 0.05179 0.3951 0.4274 0.17818 0.28889
24 2.7952 2.4405 0.030707 0.054772 0.3983 0.4311 0.17222 0.29668
25 2.6735 2.3162 0.030274 0.054499 0.4033 0.437 0.18134 0.2922
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APPENDIX B

Extremum Seeking Control - Application Example

An application example is presented below to provide a better understanding of Ex­

tremum Seeking Control (ESC) performance. Considering the following function:

Figure 127: Performance output of the function y(()) =- — 02.

y(ff) = -e2, (B.1)

with its maximizer at 0* =0 (see Figure 127), the variable 0 is derived as follows:
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0 = 6 + sin(wt) (B.2)

where 6 is the estimated theta and a,sin(oi) is the input perturbation.

For this example, an input perturbation with an amplitude and frequency 

of a= 0.1 and= 10 Hz respectively was used.

Figure 128: Estimated variable (0 < 0*) tn the performance output.

Considering that the estimated variable ii 6=-0.5 (see Figure 128), the

variable6ane the out put y respect to time can be seen in Figure 129.
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Figure 129: Parameterized variable (0) and performance output.

Figure 129 shows that both variables, 6*edd y are in phase. Thus, by apply-

 a zero-mean normalization by using a high passfilter, and then, by multiplying 

both variables, a common-sign result is obtained.
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Figure 130: Result of OCy) oor ^ ^*-

Ie this example, the result from the previous multiplication became positive, 

thus, after integrating it, a positive result is obtained (see Figure 130). .his positive 
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number makes the estimated variable 6 increased proportionally to the k gain variable 

in direction to 0*.

Analogously, on the case of the estimated variable be 6= 0.5 (see Figure 

131), the variable ((Eq. B.2) and the output (y) would be out of phase by nr. There­

fore, the result from the multiplication between these two variables would produce 

a negative signal (see Figure 132). The resulted from the integration of this signal 

would make that the estimated variable 6 decrease in direction to 0*.

Figure 131: Estimated variable (6>6 *) on the performance output.
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In the case of seeking minimization, the k gain variable should be nega­

tive. Its negative value would force the system to go in the opposite direction of the 

maximizer.
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APPENDIX C

Multi-variable Methodology Comparison

These simulations have been performed to evaluate the performances of these methods 

by minimizing the following cost:

min f * +w(l)(w 1 — u *(1))2 + w(2)(u 2 — u *(2))2, (0.1)
u1,u2

To make an impartial evaluation, each of the methods was tested under the same 

conditions (same parameter configurations). These parameters can be seen in Table 

XXXV.

Table XXXV: Simulation parameters.

Variable Description Value
ts Sample time (fixed) 5(10-4) s
(0 Initial input conditions [2.2]
u* Optimal values [1,(5]]

ro Initial estimator condition 0.001 0
0 0.001

f* Optimal cost 2
w Weight vector [2.2]
a Amplitude of perturbations 0.01
k Gain -10
^i Frequency of the first perturbation 10
^2 Frequency of the second perturbation 40
^h Frequency of the high pass fitter 1
^r Frequency of the derivative filter 0.01
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C.1 Results - Multi-variable perturbation-based ESC

The first plot (Figure 133) shows the cost function for the perturbation-based method. 

The time of convergence seems to be close to 1200 seconds, however, Figure 134 

evidence that the convergence time is longer for both variables (close to 1800 seconds).

Figure 133: Cost function for the multi-variable perturbation-based with gainK= 
-10.

Perturbation-Based ESC: K=-10

Time (s)

Figure 134: Solution convergence for the multi-variable perturbation-based with gain 
K=-10.
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One of the biggest advantages of the multi-variable perturbation-based method 

is its robustness. The same parameters previously used were also simulated but chang­

ing only the gain variable (K) from -10 to -500. Figure 135 and Figure 136 show the 

very high speed of convergence (about 25 seconds for both variables).

Figure 135: Cost function for the multi-variable perturbation-based with gainK= 
-500.

Time (s)

Figure 136: Solution convergence for the multi-variable perturbation-based with gain 
K=-500.
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C.2 Results - Newton-based ESC

For the case of the Newton-based, Figure 137 and 138 show faster convergence with 

respect to the perturbation-based under the same parameters (about 120 seconds). 

This fact confirms the big advantage of Newton-based respect to the perturbation­

based related to the convergence speed. However, the biggest disadvantage of this 

approach is its lack of robustness. To make this approach work depends on the 

guessing of several parameters. Furthermore, these parameters are very sensitive. 

Therefore, small variations could produce a much better performance as easily as 

break the controller loop.

Figure 137: Cost function for the Newton-based with gainK=-10.
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Figure 138: Solution convergence for the Newton-based with gainK=-10.

C.3 Discussion

Some advantages and disadvantages of each of the approaches have been seen in 

these simulations. On the one side, the perturbation-based approach proved to be 

more robust by providing a good performance against any cost function and by using 

any combination of configuration parameters. On the other hand, the Newton-based 

approach proved to be faster (up to 15 times faster under the same configuration 

parameters) but highly unstable. It is important to highlight that during these sim­

ulation tests, this Newton-based method worked by using a very limited range of 

configuration parameters showing to be very sensitive to the parameter selection. 

Thus, despite being a model-free approach, this methodology requires good parame­

ter guesses which are not possible under this research environment involving highly 

nonlinear dynamics from the human body.

Finally, during these early stages of experimentation, the stability and ro­

bustness of the system represent the most important factors in the selection of the 
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methodology because they are strictly related to the safety of the training environ­

ment. Other factors such as the computational cost and processing time can always 

be part of improvements and future research, so they do not represent part of our 

design requirements. For those reasons, it was decided to use the multi-variable 

perturbation-based ESC for this research.
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APPENDIX D

Informed Consent Form for Training with a Powered Rowing Machine

Introduction

My name is Kevin Kleis and I am inviting you to participate in a research study 

that I am conducting for my Master’s Thesis in the Human Performance Laboratory 

at Cleveland State University. The research study will be conducted under the su­

pervision of Dr. Kenneth Sparks and Dr. Douglas Wajda, and partnered with the 

Mechanical Engineering Department at CSU. The purpose of my thesis is to examine 

the effects of varying eccentric workloads on muscular contraction and metabolic cost. 

Please read all sections carefully and understand the testing protocol, as the informed 

consent is very important in helping you decide if you would like to participate in the 

study.

Procedures

Testing will include two sessions on the powered rower and one session gathering max­

imal isometric contraction data of predetermined muscle groups. Before beginning 

tests, height, age, and weight will be collected to be entered into the COSMED K4b2. 

Rowing sessions will include a full body row and lower body row on a powered rower 

machine (adapted from the Concept 2 model) that was designed in the mechanical 
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engineering department of Cleveland State University. The type of rowing (low vs. 

full) will be randomized to prevent and order effect. Before beginning the tests, you 

will have eight electromyography (EMG) sensors placed on selected muscles. A Po­

lar heart rate sensor will also be worn. Next, the COSMED K4b2 will be attached 

through a harness to collect metabolic data while rowing.

Once all equipment is on, you will have a two-minute warm-up period to prepare for 

the test. Following the two-minute warm-up period, two minutes of resting data will 

be collected. Next, when instructed to start, you will begin a twelve-minute session 

in which every three minutes, the power rower eccentric workload will be increased.

During this time, there will be a cadence provided for you to follow in order to control 

the speed of the exercise.

Risks and Discomforts

Risks of this test are minimal and do not exceed those of a standard exercise session. 

Possible risks and discomforts could be muscle strain and soreness from the powered 

rower testing. Other potential risks that may arise from exercise include abnormal 

heart rate and/or blood pressure, fainting, and in rare cases, heart attack, stroke, or 

death.

Every effort will be made to minimize potential risks through a proper warm-up 

prior to testing. In addition, you must have no physical limitations that prevent you 

from participating in regular exercise. In an event that you are injured, please notify 

the research team as soon as possible and seek medical attention from you primary 

physician.
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Benefits

There are no direct benefits to you from this investigation. The results of this research 

will help exercise and engineering professionals in the improvement and design of 

exercise machines for space travel and rehabilitation.

Privacy and Confidentiality

To ensure that all information is confidential, your data will be kept in a folder and 

stored in a securefile in the CSU Human Performance Laboratory where only the 

researchers will have access. Your name will not be used in any publications of this 

research to ensure confidentiality. However, data obtained from this study may be 

used for statistical or scientific purposes to benefit future research with your right of 

privacy retained.

Participation

I understand that participation in this study is voluntary and that I have the right 

to withdraw myself at any time with no consequences.

If I have any questions about my rights as a subject, I understand that I can contact 

the Cleveland State University Institutional Review Board at (216) 687-3630.

If I have any questions regarding the procedures, I can contact Dr. Kenneth Sparks at 

(216) 687-4831 or Graduate Student Kevin Kleis at (440) 429-5110 or kleis.kevin@yahoo.com .

Acknowledgement

The purpose, procedures, risks and discomforts and possible benefits have been ex­

plained to me. I attest that I am 18 years of age, understand this form, and agree to 

participate in the study. I have been given a copy of this informed consent form.
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Participant Signature:  Date: 

Witness Signature:  Date: 
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APPENDIX E

Informed Consent Form for Training with Cyber Exercise Machines

Introduction

My name is Humberto De las Casas and I am inviting you to participate in a research 

study that I am conducting for my PhD’s Dissertation in the Center for Human­

Machine Systems (CHMS) at Cleveland State University. The purpose of my study is 

to examine the feasibility of the automatic regulation of the robot parameters able to 

optimize muscle activations using them as biofeedback. Please read all sections care­

fully and understand the testing protocol, as the informed consent is very important 

in helping you decide if you would like to participate in the study.

Procedures

Testing will include 3 sessions performed on different days. Before beginning tests, 

some measurements will be performed (see Table XXXVI). The experimental pro­

cedure begins with a conventional calibration process. This calibration consists of 

warm-up and isometric tests. The warm-up process is to boostflexibility and perfor­

mance, meanwhile, the isometric tests to assess muscle strength for the EMG sensor 

calibration. For the isometric tests, the subject moves to multiple fixed positions 

where muscles are capable to produce maximum forces. Then, the experiment pro­
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ceeds with the real-time optimization frameworks. One session will be performed by 

using a single-variable optimization framework for the automatic regulation of the 

trajectory parameter associated with the ellipsoidal curve orientation. The other will 

be performed by using a single-variable optimization framework for the automatic 

regulation of the impedance associated with the resistance of the training. And the 

last one will be performed by using a multi-variable optimization framework for the 

automatic and simultaneous regulation of the trajectory and impedance parameters 

previously described.

Table XXXVI: Subject measurements.

Variable Description
Height In centimeters
Weight In kilograms
Gender Male (M) or female (F)
Age In years
Side dominant Left (L), right (R), or both (B)
Arm length From shoulder to wrist

During each of the experiments, the subject requires to follow a desired position 

while receiving visual feedback from his or her current position (GUI can be seen on 

Figure. 139). This GUI consists of 4 curves and 2 dots. The black curve represented 

the reference trajectory which is tracked by the robot in the absence of an external 

force. The blue curve represented the ellipsoidal trajectory of fixed axis lengths and 

programmable orientation to be followed by the user. The 2 red dashed line curves 

represented the tolerance limits where the subject position is suggested to remain 

during the performance of the experiments. The 2 dots represent the desired and the 

actual positions. The desired position (rotating periodically over the blue ellipsoidal 

trajectory) is labeled with the black dot. The actual position defined by the end­

effector of the robot (user’s position) is labeled with the red dot. The user position 

(red dot) is required to track the desired position (black dot) as best as possible while
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remaining within the tolerance limits.

Desired
Position Actual Position

Figure 139: GUI for the experiments.

Risks and Discomforts

Risks of this test are minimal and do not exceed those of a standard exercise session. 

Possible risks and discomforts could be muscle strain and soreness from the testing. 

Every effort will be made to minimize potential risks through a proper warm-up prior 

to testing. In addition, you must have no physical limitations that prevent you from 

participating in regular exercise. In an event that you are injured, please notify the 

research team as soon as possible and seek medical attention.

Benefits

There are no direct benefits to you from this investigation. The results of this research 

will help exercise and engineering professionals in the improvement and design of 

exercise machines for space travel and rehabilitation.
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Privacy and Confidentiality

To ensure that all information is confidential, your data will be kept in a folder and 

stored in a securefile in the CSU Human Performance Laboratory where only the 

researchers will have access. Your name will not be used in any publications of this 

research to ensure confidentiality. However, data obtained from this study may be 

used for statistical or scientific purposes to benefit future research with your right of 

privacy retained.

Participation

I understand that participation in this study is voluntary and that I have the right to 

withdraw myself at any time with no consequences. If I have any questions about my 

rights as a subject, I understand that I can contact the Cleveland State University 

Institutional Review Board at (216) 687-3630.

If I have any questions regarding the procedures, I can contact Humberto De las Casas 

at h.delascasas@pucp.pe or (216) 804-6434 or Dr. Hanz Richter at h.richter@csuohio.edu.

Acknowledgement

The purpose, procedures, risks and discomforts and possible benefits have been ex­

plained to me. I attest that I am 18 years of age, understand this form, and agree to 

participate in the study. I have been given a copy of this informed consent form.

Participant Signature:  Date: 

Witness Signature: __________________________________ Date: _____________
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APPENDIX F

Muscle Activations in training with the 4OptimX

Muscle activations encountered during training with the 4OptimX are presented be­

low. These muscle activations are related to training with different configurations of 

impedance and trajectory.

Muscle Activation - Low Impedance and Slow Trajectory
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Figure 140: Muscle activation during training with low impedance and slow ellipsoidal 
trajectory oriented at 90 degrees.
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Figure 141: Muscle activation during training with low impedance and slow ellipsoidal 
trajectory oriented at 45 degrees.
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Figure 142: Muscle activation during training with low impedance and slow ellipsoidal 
trajectory oriented at 0 degrees.
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Ellipse orientation at -45 DEG
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Figure 143: Muscle activation during training with low impedance and slow ellipsoidal 
trajectory oriented at -45 degrees.

Muscle Activation - Low Impedance and Fast Trajectory
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Figure 144: Muscle activation during training with low impedance and fast ellipsoidal 
trajectory oriented at 90 degrees.
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Ellipse orientation at 45 DEG
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Figure 145: Muscle activation during training with low impedance and fast ellipsoidal 
trajectory oriented at 45 degrees.
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Figure 146: Muscle activation during training with low impedance and fast ellipsoidal 
trajectory oriented at 0 degrees.
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Figure 147: Muscle activation during training with low impedance and fast ellipsoidal 
trajectory oriented at -45 degrees.

Muscle Activation - High Impedance and Slow Trajectory
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Figure 148: Muscle activation during training with high impedance and slow ellip­
soidal trajectory oriented at 90 degrees.
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Figure 149: Muscle activation during training with high impedance and slow ellip-
soidal trajectory oriented at 45 degrees.
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Figure 150: Muscle activation during training with high impedance and slow ellip­
soidal trajectory oriented at 0 degrees.
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Figure 151: Muscle activation during training with high impedance and slow ellip­
soidal trajectory oriented at -45 degrees.
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Figure 152: Muscle activation during training with high impedance and fast ellipsoidal 
trajectory oriented at 90 degrees.
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Ellipse orientation at 45 DEG
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Figure 153: Muscle activation during training with high impedance and fast ellipsoidal 
trajectory oriented at 45 degrees.
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Figure 154: Muscle activation during training with high impedance and fast ellipsoidal 
trajectory oriented at 0 degrees.
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Figure 155: Muscle activation during training with high impedance and fast ellipsoidal 
trajectory oriented at -45 degrees.
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Figure 156: Muscle activation during training with low impedance and super-fast 
ellipsoidal trajectory oriented at 0 degrees.
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