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MODEL-FREE OPTIMIZATION OF TRAJECTORY AND IMPEDANCE
PARAMETERS ON EXERCISE ROBOTS WITH APPLICATIONS TO HUMAN
PERFORMANCE AND REHABILITATION

HUMBERTO DE LAS CASAS ZOLEZZI

ABSTRACT

This dissertation focuses on the study and optimization of human training and its
physiological effects through the use of advanced exercise machines (AEMs). These
machines provide an invaluable contribution to advanced training by combining ex-
ercise physiology with technology. Unlike conventional exercise machines (CEMs),
AEMs provide controllable trajectories and impedances by using electric motors and
control systems. Therefore, they can produce various patterns even in the absence of
gravity. Moreover, the ability of the AEMs to target multiple physiological systems
makes them the best available option to improve human performance and rehabilita-

tion.

During the early stage of the research, the physiological effects produced under train-
ing by the manual regulation of the trajectory and impedance parameters of the
AEMs were studied. Human dynamics appear as not only complex but also unique
and time-varying due to the particular features of each person such as its muscu-
loskeletal distribution, level of fatigue, fitness condition, hydration, etc. However, the
possibility of the optimization of the AEM training parameters by using physiological

effects was likely, thus the optimization objective started to be formulated.

Some previous research suggests that a model-based optimization of advanced train-

ing is complicated for real-time environments as a consequence of the high level of



complexity, computational cost, and especially the many unidentifiable parameters.
Moreover, a model-based method differs from person to person and it would require
periodic updates based on physical and psychological variations in the user. Conse-
quently, we aimed to develop a model-free optimization framework based on the use

of Extremum Seeking Control (ESC).

ESC is a non-model based controller for real-time optimization which its main advan-
tage over similar controllers is its ability to deal with unknown plants. This framework
uses a physiological effect of training as bio-feedback. Three different frameworks
were performed for single-variable and multi-variable optimization of trajectory and
impedance parameters. Based on the framework, the objective is achieved by seeking
the optimal trajectory and/or impedance parameters associated with the orientation
of the ellipsoidal path to be tracked by the user and the stiffness property of the

resistance by using weighted measures of muscle activations.
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Figure 15: Multi-variable perturbation-based ESC scheme for 2 variables.

Newton-based ESC

The Newton-based approach is one of the fastest algorithms in Extremum Seeking
Control. Its speed lies in the fact that the Newton-based convergence is independent
of the Hessian which significantly matters in model-free methodologies (where the

Hessian is unknown). This approach has three important parts: the perturbation
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with the musculoskeletal, cardiovascular, and cardiorespiratory systems respectively.

Objective 2: Develop a model-free framework for single-variable optimiza-

tion of a trajectory parameter using muscle activations as biofeedback.

Using the outcomes from previous investigations suggesting that muscle activations
can be controlled leading to a maximization of training performance for fitness and
rehabilitation, the methodology was proposed. We aim to develop a single-variable
optimization framework using perturbation-based ESC for automatic regulation of
the ellipsoidal trajectory orientation to be tracked by the subject exercising. The
objective required to follow a model-free approach using muscle activation as biofeed-
back. We aim to evaluate the performance in simulation using a human arm model

and in real-time experiments with a human controlling 2 different robots.

Objective 3: Develop a model-free framework for single-variable optimiza-

tion of an impedance parameter using muscle activations as biofeedback.

Using the model-free methodology from the previous objective as a starting point,
we aim to adapt the framework for impedance regulation. For this objective, we aim
to use a fixed ellipsoidal trajectory orientation with a variable impedance automati-
cally regulated using muscle activation as biofeedback. Unlike trajectory parameters,
impedance parameters are sensitive to the system stability (especially the damping
and inertia parameters). Therefore, we aim to regulate only the stiffness impedance
parameter while keeping damping and inertia constant. We also aim to evaluate the
performance in simulation using a human arm model and in real-time experiments

conducted with a human controlling a robot.
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the pull and return stroke. The resistance produced is modeled as follows:

fplx,2,0), for &y > 0 (pull phase),
F= (2.5)

folx,@,0), for 3 <0 (return phase),

where 6 can be any system variable or set of variables such as acceleration of the

handle.

The resistances used in this study for the pull and return stroke were gen-

erated according to the following equations:

Kaxy +bpdy + Cpiy|2y|, for & > 0 (pull phase),
F = (2.6)

Koy + byoiy, for #; < 0 (return phase),

For instance, an increase in eccentric workloads can be achieved by increasing

the stiffness during the return stroke (Ky3).

2.4.2 Sliding Mode Robust Impedance Controller

The controller developed for the powered rowing machine was a robust impedance
control. A basic impedance controller works regulating the relationship between force
and velocity without ensuring that the impedance obtained is as expected. A robust
impedance controller is an approach that makes it possible to control this relationship
despite disturbances or inaccurate estimates of the parameters. The full control of
the programmed impedances is very important for the safety of the users operating
the machine (stability) and the validation and reliability of the results (accuracy).

These reasons supporting the use a robust approach are summarized below:

e During the parameter estimations, the accuracy is never optimal.
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this research are electromyography (EMG), heart rate (HR), and oxygen consumption
(VO,). Despite the simplicity of their measurements, physiological effects are com-
plex as everyone has varying physiological functioning. They depend on the unique
features of each person (organismic variables) such as force capacity, musculoskele-
tal distribution, body mass index, and flexibility. Besides, they display time-varying
dynamics due to fatigue, body temperature, level of hydration, etc. As a result, mod-
eling and controlling muscle performance is challenging but necessary in some areas

of research.

2.7.1 Dynamics

Human dynamics are the description of the mechanical, physical, and biochemical
behavior of the human body to determine current and future states associated with
actions and reactions. Human dynamics is a very wide term, but in this research,
they will be focused on the human reaction to the interaction with an AEM during

advanced exercise.

Biological Factors

Human dynamics during exercise are very complex and time-varying because of the

several biological factors affecting these dynamics such as, for example:

e Interaction force between human and machine (impedance magnitude).

Musculoskeletal position, speed, and orientation.

Musculoskeletal distribution (lengths, weights, etc).

Fitness level (strength, flexibility, stamina, etc).

Level of hydration.
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per minute, HR(t) is the variation of the heart rate respect to time, and H Ry,qe and

VOgy_ ez are constant obtained from a VO,_,,.,» experiment.

Same as the previous physiological effects (muscle activations and heart rate)
the oxygen consumption dynamics are complex and unpredictable, so, they are mainly

measured by closed-circuit respirometry methods.
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(¢) Gastrocnemius (GM).

(d) Tibialis Anterior (TA).

(e) Biceps Brachii (BB).

(f) Posterior Deltoid (PD).

(g) Trapezius (LT).

(h) Latisimus Dorsi (LD).

2. Metabolic data: oxygen (Oi) consumption was collected through a mobile
metabolic system. The measurements presented are the average recorded during

each stage.

3. Heart rate (HR): heart rate was monitored by using a heart rate sensor. The

measurements presented are the average recorded during each stage.

For this study, the experiment trials required the use of a dSpace Micro-
LabBox real-time data acquisition and control system (dSPACE GmbH, Paderborn,
Germany), a COSMED K4b2 portable metabolic unit (The Metabolic Company,
Rome, Italy), a heart rate sensor (Polar USA, United States), and a set of wireless
EMG sensors (Trigno Wireless EMG, Delsys Inc.). The MicroLabBox was utilized
for controlling and operating the powered rowing machine, while also allowing for the
recording of all data related to the experiments. The COSMED K4b2 collected and
wirelessly transmitted metabolic diagnostics (heart rate and oxygen consumption) to
the K4b2 software, while the Delsys Trigno Wireless EMG system aided in collecting
the EMG (muscle) activity of the eight muscles selected for the study. Eight wire-
less EMG sensors transmitted data back to the Delsys EMGworks data acquisition

software for further analysis.
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CHAPTER IV

MODEL-FREE OPTIMIZATION FRAMEWORKS OF TRAINING
PARAMETERS IN ADVANCED TRAINING

4.1 Overview

This chapter presents the model-free frameworks for single-variable and multi-variable
optimization. Then, the framework performance is evaluated in simulation against
another model-free approach based on the use of the global evolutionary optimizer
Biogeography-Based Optimization (BBO). This last framework promises a good per-
formance as a result of exhaustive searches but with a high computational cost limiting

its use on real-time experiments.

The purpose of the validation was to evaluate the framework performance
by comparing its results against the other model-free optimizer. The performance
validation is conducted by comparing the optimal results between these 2 methods
by using five human arm models from our virtual population. An average of less than
5 degrees for the absolute difference between the optimal trajectory parameters is

expected for the validation.
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ESC block, the RT processor will redirect the signal for convergence testing. For
the case of the trajectory optimization, it sends the parameter value and tracking
positions to the DAQ. For the case of the impedance parameter optimization, the RT
processor performs the convergence criterion and it sends the tracking positions and
the digital convergence result (5 volts or high for positive convergence status and 0

volts or low for a negative convergence status).

4.2.1 Convergence Criteria

Two different approaches were developed for the convergence criteria. It is important
to highlight that the reason for those 2 (one for each single-variable framework) was
to provide 2 different alternatives for convergence identification. Both work equally

well and they can be used interchangeably.

It is also important to note that the convergence criterion might be affected
by the presence of biological factors (time-varying dynamics) or special circumstances
such as critical environmental conditions, exercise with untrained people, or using
the wrong combination of configuration parameters. The configuration parameters
play a key role especially for the success of the convergence criteria. For instance,
a high framework gain might accelerate the convergence process, but introducing
disturbances that are not recommended because of undesired performances. On the
other hand, a low framework gain might the convergence process slow or even unable
to achieve convergence. These configuration parameters can be selected by performing

pre-tests following the same exercise protocol of the experiments.

An average of less than 1 degree for the absolute difference between the

optimal trajectory parameters is expected for the validation.
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Single-Variable Convergence Criterion - Trajectory Parameter

The convergence criterion for the trajectory parameter (0) optimization is performed
in the DAQ subsystem and it works by computing the absolute value of the maxi-
mum difference (f47;) between the 6 parameter and its last n samples (where n is a
configuration parameter). Once that difference remains under the threshold (6y,) for
more than the trigger time (¢4, ), the convergence is accomplished and the converged
value becomes the average value between the last n 6 values (6,,). The reason to
use 6, instead of 8 is for considering the convergence value as an intermediate value
between the value at the trigger time (when the variable starts to remain between

the thresholds) and the final value.
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Model-free algorithm running

ax(|0aigr) < Ou,

Activate time trigger

max(|0aigrl) < Ou,

STOP
Solution converged (0,,)

Figure 61: Block diagram of the convergence criterion for the trajectory parameter.

An example of a trajectory parameter convergence can be seen in the Figure

below:
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Model-free algorithm running

Parameter is high-pass filtered
K — (Kyp)

Yes

Activate time trigger

STOP
Convergence failure

STOP
Solution converged (K)

Figure 63: Block diagram of the convergence criterion for the impedance parameter.
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Model-free algorithm running Model-free algorithm running

Parameter is high-pass filtered
K _— (Kip)

000 (|0airfl) < Ou,

No
Kup < o
Activate time trigger
Yes

Activate time trigger

000 (|0aipfl) < Ou,

Yes

STOP
Convergence failure

Yes

No@l\lo

Convergence

STOP
Solution converged (6 and K)

Figure 65: Block diagram of the simultaneous convergence criterion for the trajectory
and impedance parameter.
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Upon completion of the experiments, the feasibility of the optimization of
training parameters by using biological factors as biofeedback (automatic training per-
sonalization) was tested. Both frameworks (BBO and ESC) found similar solutions
supporting the fact that they were able to find the optimal ellipsoidal orientations.
Besides, as was expected, different optimal solutions were obtained with each hu-
man arm model suggesting the existence of a unique combination of optimal training

parameters for each person/model.

Despite the variety of optimal orientations observed in the simulation and
real-time results, all of them were in the neighborhood of 26°. Results seem to sug-
gest that an inclined ellipsoidal orientation in the neighborhood of 26 © might produce
desirable muscle efforts for the selected glenohumeral muscles. However, more simu-
lations with a bigger population would be required to provide stronger conclusions.
Given the case of a deeper study, human performance and rehabilitation practices
could use this information for muscle training optimization by muscle activation max-
imization (fitness improving) and muscle activation minimization (muscle-isolation or

rehabilitation practices).

It is important to point out that the BBO optimization performance takes
over 5 hours for a single optimization run with the human arm model simulator.
On the other hand, ESC takes about 2 minutes. For that reason, even though both
proved to be effective by finding the optimal training parameters, ESC is more suitable
for real-time experiments. It is also important to consider that the BBO and ESC
frameworks use a different approach (despite both working on the same optimization
objective). On one side, BBO provides the results for a fixed ellipsoidal orientation.
Meanwhile, ESC provides variable orientation (small oscillations after convergence is

achieved).

These results were important to go forward into research related to the
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model-free optimization of training parameters by training personalization.
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parameter there is a unique optimal impedance parameter and vice versa. It can also
be concluded that the optimal training parameters depend on the musculoskeletal
distribution, the optimization objective, and others. However, further study is still
required to identify how strict the relationship between these parameters is, and thus,
evaluate the feasibility of a relationship estimator. Being able to estimate the optimal
parameters offline would provide the benefit of the initial conditions during real-time
experiments avoiding large oscillations that normally occurred when the optimization

variables are not close to the optimizers.

5.2.3 Hypothesis Testing

Before choosing the hypothesis testing approach, some graphical correlations were
performed by plotting the musculoskeletal differences (||0M]||) against the training
parameter differences (||0¢||) for each model comparison. The musculoskeletal differ-
ences were obtained by computing the norm of the vector representing the normalized

difference between the arm link lengths of the 2 models as follows:

SM = [(L1; — L1,)/(Elmar—a)s (L2 — L23)/ (L 2mas—a)]: (5.2)

where L1; and L2; are the upper and lower arm lengths of the model number i
respectively, and the subscript “max — d” is the maximum difference obtained from

the difference between the maximum and the minimum value.

The training parameter differences were obtained by computing the norm
of the vector representing the normalized difference between the optimal training

parameters as follows:

0¢ = [(07 = 07)/Omaz—a, (K] = K}) [ Kiaz—al, (5.3)
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each value by its maximum activation (isometric test in trial 0).

. A second-order Butterworth band-pass filter between 30 and 950 Hz is used to

clean the data.

. A full-wave rectification is implemented to convert the signal into only positive

values.

. A second-order Butterworth low-pass filter at 50 Hz is used to attenuate the

signal.

. A normalization of each muscle activation is performed with respect to the sum

of all activations to obtain the muscle effort distribution as follows:

My, My, M3, My, Ms, M|

M = [ 5 ,
Zi:l M;

(5.7)

where M is the vector of muscle effort distribution. For instance, a muscle vector
equal to M = [0.1,0.1,0.2,0.2,0.2,0.2] represents a muscle effort distribution
where the 2 first muscles and the last 4 muscles perform 10% and 20% of the

total effort respectively.

The dataset including 1-minute trials was split into training (75%) and test-

ing (25%) data. To observe the performance of the estimated model over time, the

testing data was used as segments and as a whole. The testing data used by segments

was built from 3 equally-divided periods of 15 seconds each and they were labeled in

the plots as “First”, “Second”, and “Third” for the first, second, and third 15-seconds

respectively. The whole data results are labeled in the plots as “Whole”.

The ANN algorithm was developed based on the feedforward neural network

and the calibration was performed using the training data and the recommended
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Figure 92: Example for the redundancy on the musculoskeletal orientation. (S, E,
and H represents shoulder, elbow, and hand respectively).
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10.

11.

12.

13.

14.

. Start the first test of the day. The initial values for the optimization variables

are randomly set.

. Wait for the solution to converge. If convergence is not achieved in less than 4

minutes, the experimental test results in a convergence failure, and no optimal
parameters are obtained. Regardless of the success or failure of convergence,

the next step follows.

Rest for 2 minutes.

Start the second test of the day. The initial values for the optimization variables

are randomly set.

. Wait for the solution to converge. If convergence is not achieved in less than 4

minutes, the experimental test results in a convergence failure, and no optimal
parameters are obtained. Regardless of the success or failure of convergence,

the next step follows.

Remove and place the EMGs in the other upper body side.

A minimum of 2 isometric tests for each EMG are performed for calibration.

Start the third test of the day. The initial values for the optimization variables

are randomly set.

Wait for the solution to converge. If convergence is not achieved in less than 4
minutes, the experimental test results in a convergence failure, and no optimal
parameters are obtained. Regardless of the success or failure of convergence,

the next step follows.

Rest for 2 minutes.
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For the first phase:

1. Anterior deltoid.

2. Lateral deltoid.

3. Biceps brachii.

4. Pectoralis major.

For the second, third, and fourth phase:

1. Anterior deltoid.

2. Lateral deltoid.

3. Posterior deltoid.

4. Pectoralis major.

The deltoid muscles (lateral, anterior, and posterior) were chosen because
they are the main glenohumeral drivers and responsible for the motion of the arm
in the three dimensions. The chest was chosen because it is the main contributor to
the stabilization and adduction of the shoulder. The bicep was initially chosen (only
for the first stage) as it works synergistically with the anterior deltoid to hold the
lower arm in a fixed position while the upper arm is moved into flexion or extension
about the glenohumeral joint. Besides, the bicep has a relationship with the elbow
flexion providing information about undesired rotations causing loss of focus in the
glenohumeral action. However, its low effort distribution and the use of elbow immo-
bilizers in the second, third, and fourth phases removed the need to continue to use

this muscle for the study.
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6.7 Discussions

Based on the result observed from each of the experiments, the possible existence
of more than a local optimum, especially for the trajectory orientation, is likely.
Regarding the trajectory parameter, all the solutions were computed and found in
the neighborhood between 30° and 60° and the symmetric results with respect to
the axes between —60° and —30°. These results suggest that an inclined ellipsoidal
trajectory seems to provide a desired performance for the selected weight muscle
vector. Regarding the impedance parameters, most results were in the neighborhood
of 3 Nm/rad suggesting that not big changes are expected between trials and body

sides.

It is important to note that the success of the model-free approach strictly
depends on the configuration and calibration parameters which are highly related
to the physiology of the subject. Therefore, despite following a model-free method-
ology, the framework requires some pre-tests to find a good combination of setting
parameters for each subject. For instance, higher gains or frequencies might produce
faster convergence, but at the cost of a higher sensitivity which is not recommended
on this approach because of undesired performances. On the other hand, low gains
or frequencies might never achieve a convergence or not being able to deal with the
time-varying dynamics due to the fatigue and the thermogenic effect of the muscles.
Nonetheless, the parameters chosen for each of the 4 phases were accurate enough
to produce robustness and a convenient convergence speed to deal with these vari-
ations. That means, the success rate of the convergence criteria was 100% (all the
experimental trials converged). However, as it was previously stated, convergence is

not always guaranteed. Some of the possible reasons for that high success rate might

be:

e Subjects have performed several sets of experiments. Thus, the configuration
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movements to lead to typical exercise movements such as presses or lifts.

It is important to note that there are still multiple issues limiting the max-
imum capacity of the framework. Some of them have been overcome as the phases
progressed, but others, including uncaptured ones, will be part of future works. For
instance, results might be greatly affected by the psychological effects of training with

an unconventional machine as a robot is.

In general, these results support the feasibility of the formulated model-free
optimization method to successfully enable the user to exercise optimally, but more

studies with bigger sample size are required for deeper analytical studies.
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Muscle training focalization and/or isolation.

Safer and more controllable workout /rehabilitation environments.

Reduced injuries and accidents in training facilities.

Inclusive environments for beginner trainers, older populations, and people with

reduced motor skills.

7.2 Limitations of The Study and Future Perspectives

7.2.1 Equipment

The framework is computationally expensive making it difficult to be replicated on
systems with low computational speed, power, and data storage requirement. Simi-
larly, it requires the use of high-end sensors able to measure signals with high precision

and deal with electrical noise in the environment.

e In terms of precision, the correct selection of sensors plays the most important
role. Previously, the integration of multiple systems showed how noise and
delays can affect measurements due to inefficient electrical insulators, algorithm

failures, and other technical issues.

e In terms of versatility, the framework requires running multiple processes related

to software and hardware at the same time and in real-time.

e In terms of speed, the framework requires the computing of complex algorithms
while it synchronizes multiple sub-systems with a sampling rate of at least 2

kHz.

e In terms of data storage requirement, the framework requires mass storage

of data including more than a hundred variables been recorded with a high
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sampling rate during protocols that can last hours.

This framework could be shrunk to the use of less sophisticated robots and
training parameters reducing the computational cost and the requirement of high-
precision sensors and devices. Oppositely, the framework could be extended to endless

variations including but not limited to:

e The use of a more sophisticated robot and/or multiple robots simultaneously.

e The use of biofeedback based on other physiological systems such as the car-

diorespiratory, cardiovascular, or simultaneous multiple-systems.

e The regulation of other training parameters such as damping, inertia, trajec-

tory’s dimension, frequency, etc.

7.2.2 Configuration, tuning, and calibration parameters

It is important to highlight that despite following a model-free methodology, the
framework requires the manual selection of some parameters which are strictly related
to the framework’s performance. Among them, there are configuration, tuning, and
calibration parameters. Configuration parameters are associated with the exercise
protocol objective such as the weight muscle vector including the selection of muscles
to be maximized, minimized, and their priorities. Tuning parameters are associated
with the architecture framework including the ESC gain and frequencies. Calibration
parameters are associated with the parameters which are modulated at the beginning

of each experimental trial during the warm-up and isometric tests.

The configuration parameters which are associated with the exercise proto-
col objective are freely selectable. Therefore, any muscle or group of muscles can be
selected for muscle maximization or minimization with any priority. However, some

muscles work synergistically better with some muscles than with others. Thus, a bad
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selection of these configuration parameters might not produce the expected perfor-
mance by focusing or defocusing the wrong muscle or group of muscles. For that
reason, it is recommended to be professionally selected by a professional trainer or

therapist for maximum efficiency.

Unlike the configuration parameters, the tuning and calibration parameters
are not freely selectable but require procedures for their correct identification to
avoid undesired performances. For instance, bad tuning or calibration parameters
might increase or decrease the framework’s sensitivity. A high-sensitive framework
configuration might accelerate the convergence process, but introducing disturbances
that are not recommended because of undesired performances. On the other hand, a
low-sensitive framework configuration might never achieve a convergence or not being
able to deal with the time-varying dynamics due to the fatigue and the thermogenic
effect of the muscles. Therefore, tuning and calibration procedures have to be carefully

conducted.

The tuning parameters are related to the physiology of the subject. For
instance, the muscle activations on untrained people are more difficult to measure
and their muscles get fatigued easier and faster. Therefore, higher gains and lower
frequencies are required to deal with the low muscle activation signals without in-
creasing the sensitivity too much. These parameters can be selected by performing
pre-tests following the same exercise protocol of the experiments. During these tests,
the gain is set at a very low level, and by trial and error, it is increased until small
oscillations start to happen. Then, a pilot test is performed for the modulation of
the frequency (for the single-variable approach) or frequencies (for the multi-variable
approach). During the pilot test, the frequencies are modulated by regulating the
speed of the oscillations. There is not an ideal speed of oscillations, thus by trial and

error, these frequencies can be selected. From experience, these pre-tests by trial and
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based on the fact that new muscle motor units start to activate (increase in mus-
cle activation) together with the increase of fatigue, results suggest that there is a
possible relationship between convergence time, fatigue, and thus muscle calibration
parameters. This increase in the muscle activations produces an increase in the frame-
work’s sensitivity introducing disturbances. As a result, the convergence might not
only be delayed but also might even be blocked. Therefore, a recalibration process
for the muscle parameters might be needed after a few minutes of training (when
fatigue starts to show up). The increase in the sensitivity previously observed might
be solved by simply decreasing the framework gain. However, an automatic muscle

parameter calibration system would be optimal to overcome this current limitation.

7.2.3 User experience effects

It is important to note that the efficiency of the framework (accuracy of the optimal
variables), especially for the optimization of the trajectory parameters, lies in the
precision of the user to track accurately the desired trajectory. Thus, it is highly rec-
ommended the user gets expertise with the exercise protocol before the experiments.
Furthermore, it was observed that sometimes the subject unconsciously focused more
on activating the measured muscles than maintaining proper alignment with the vi-
sual display. As a result of the multi-tasking, the level of difficulty increases together
with the tracking error. Therefore, it is important to aware the user of the priority

focus of the exercise protocol.

7.2.4 Impedance regulation

It is a known fact that a negative impedance is an unstable impedance (unstable
system), for that reason, real-time experiments were performed by using saturation
blocks to limit the stiffness value from 0 to 10 Nm/rad. Unlike real-time experi-

ments, simulation experiments were performed by using unconstrained optimization
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future experiments could explore deeper the possible existence of the multiple local

optima for the impedance parameter.

7.2.6 Population availability and self-experimentation

The recruitment of volunteers for experimental tests is never easy, especially during
pandemic times. For that reason, the feasibility of the approach was performed
by conducting self-experimentation where my person was the designer, researcher,

operator, subject, and reporter.

Self-experiments provide some limitations against experimenting with vol-
unteer subjects mainly when the subject is the same person who developed the frame-
work and who best knows the system in detail and how it works intimately. These
limitations present during the real-time experiments are related to the following cri-

teria and they are presented below:

e User experience:
As previously stated, the precision of the user to track accurately the desired
trajectory plays an important role in the efficiency of the framework (accuracy
of the estimation in the optimal variables). This precision can be enhanced by

practice because, similarly to a game, practice leads to skill improvements.

A normal subject from an experimental group might be exposed to practice
sessions of 1 hour approximately which might be enough to reach acceptable
dexterity levels. However, after years of research, the self-experimenting subject
might have completed over 200 hours of practice. As a result, this subject’s skill

would be potentially better than the average volunteer subjects.

e Configuration, tuning, and calibration parameters:

The parameters selection is also strictly related to the framework’s performance.
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Those parameters vary between people and during the time, so there is not any
initial guess about the possible parameters that can work well for each new

subject.

This selection can become very challenging, so a bad parameter selection is
always possible. For this case, the parameters that work well for the self-
experimenting subject are already known because they have been used several
times. So, the selection is reduced to only tunning processes guarantying a good

performance.

e Population size:
Self-experiments are single-subject studies where the experimenter experiments
on himself or herself. That means, there is only one subject available for the

whole study.

A limitation related to the single-subject population studies is the fact that
they restrict the depth of the research. As a result, they can’t provide enough

or either strong conclusions.

For all those limitations previously stated, real-time experiments were lim-
ited to only test the feasibility of the framework and to provide early discussions.

Additional experiments with a larger population are part of the future work.

In addition to the previous limitations, some general advantages self-experiments

might include for instance:

e A better and more comfortable time management.

e Faster decision making.

e A more relaxed and less distracting environment.
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Regarding the general disadvantages, self-experiments might include:

e [t is hard to multi-task.

Less help leads to more work.

In case of an issue, it takes more time to solve it or find a solution.

Lack of cooperation and brainstorming leading to reduced quality and quantity

of ideas.

It’s not entertaining.

7.2.7 Other limitations

Some limitations of the study were overcome as the phases progressed, but there are
still some others limiting the potential of this framework. Some of them have been

already been reported, some others include for instance:

e The impedance controller in the robots guarantees passivity with the user, thus
they create a safe environment for the exercise protocol. However, this doesn’t
prevent the psychological effects produced as a result of training with an un-
conventional machine as a robot. Some subjects felt afraid during the exercise
protocol and their physiological effects such as muscle activation, heart rate,

and ventilation significantly increased.

e High cost including purchase, installation, configuration, and maintenance.

e The presence of an operator is required.

e Others not yet identified.
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A.2.2 Male arm model parameters

Table XXXIV: Male arm model parameters. The subscripts M, I, L, and C'M repre-
sent the mass, inertia, length, and center of mass properties of the links respectively.

Model | Lips (kg) | L2y (kg) | L17 (kgm) | L27 (kgm) | Ll (m) | L2p (m) | Llgay (m) | L2¢ar (m)
1 2.0927 1.9093 0.025312 0.044252 0.3226 0.35 0.14742 0.24478
2 2.273 2.0074 0.024041 0.043286 0.3264 0.354 0.14622 0.25183
3 2.2308 1.9187 0.025789 0.042627 0.3289 0.3566 0.13676 0.25351
4 2.1767 2.0188 0.025251 0.043089 0.3323 0.3605 0.14319 0.23657
5 2.3599 2.0926 0.02635 0.044291 0.3378 0.3667 0.14017 0.25332
6 2.3956 2.0048 0.026943 0.046643 0.3416 0.3711 0.14215 0.24417
7 2.4033 2.0821 0.026188 0.045251 0.3447 0.3746 0.15499 0.24528
8 2.3545 2.1444 0.025443 0.04526 0.3475 0.3777 0.14838 0.25971
9 2.4506 2.0391 0.027266 0.0452 0.35 0.3805 0.15737 0.25592
10 2.4445 2.1064 0.026705 0.045751 0.3524 0.383 0.16005 0.25657
11 2.5118 2.1084 0.027211 0.046906 0.3547 0.3855 0.14869 0.26759
12 2.4801 2.1926 0.027206 0.046529 0.357 0.3879 0.15213 0.26525
13 2.4607 2.2236 0.027666 0.047891 0.3592 0.3903 0.15099 0.27486
14 2.376 2.1154 0.027347 0.049553 0.3615 0.3927 0.15688 0.26849
15 2.5556 2.2143 0.028256 0.047299 0.3639 0.3951 0.15734 0.27168
16 2.4855 2.154 0.027898 0.047247 0.3663 0.3977 0.16086 0.28086
17 2.6002 2.2764 0.029008 0.049458 0.3689 0.4003 0.15882 0.26772
18 2.5377 2.2501 0.029625 0.048177 0.3718 0.4032 0.15626 0.28306
19 2.6229 2.3078 0.02913 0.049724 0.375 0.4065 0.15649 0.2777
20 2.604 2.3035 0.028473 0.052001 0.3787 0.4104 0.16623 0.28272
21 2.5868 2.3068 0.029151 0.051466 0.3835 0.4152 0.17203 0.2781
22 2.6388 2.2517 0.029768 0.050325 0.3906 0.4225 0.17384 0.27789
23 2.7885 2.3546 0.031264 0.05179 0.3951 0.4274 0.17818 0.28889
24 2.7952 2.4405 0.030707 0.054772 0.3983 0.4311 0.17222 0.29668
25 2.6735 2.3162 0.030274 0.054499 0.4033 0.437 0.18134 0.2922
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methodology because they are strictly related to the safety of the training environ-
ment. Other factors such as the computational cost and processing time can always
be part of improvements and future research, so they do not represent part of our
design requirements. For those reasons, it was decided to use the multi-variable

perturbation-based ESC for this research.
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APPENDIX D

Informed Consent Form for Training with a Powered Rowing Machine

Introduction

My name is Kevin Kleis and I am inviting you to participate in a research study
that I am conducting for my Master’s Thesis in the Human Performance Laboratory
at Cleveland State University. The research study will be conducted under the su-
pervision of Dr. Kenneth Sparks and Dr. Douglas Wajda, and partnered with the
Mechanical Engineering Department at CSU. The purpose of my thesis is to examine
the effects of varying eccentric workloads on muscular contraction and metabolic cost.
Please read all sections carefully and understand the testing protocol, as the informed
consent is very important in helping you decide if you would like to participate in the

study.

Procedures

Testing will include two sessions on the powered rower and one session gathering max-
imal isometric contraction data of predetermined muscle groups. Before beginning
tests, height, age, and weight will be collected to be entered into the COSMED K4b2.
Rowing sessions will include a full body row and lower body row on a powered rower

machine (adapted from the Concept 2 model) that was designed in the mechanical
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engineering department of Cleveland State University. The type of rowing (low vs.
full) will be randomized to prevent and order effect. Before beginning the tests, you
will have eight electromyography (EMG) sensors placed on selected muscles. A Po-
lar heart rate sensor will also be worn. Next, the COSMED K4b2 will be attached

through a harness to collect metabolic data while rowing.

Once all equipment is on, you will have a two-minute warm-up period to prepare for
the test. Following the two-minute warm-up period, two minutes of resting data will
be collected. Next, when instructed to start, you will begin a twelve-minute session

in which every three minutes, the power rower eccentric workload will be increased.

During this time, there will be a cadence provided for you to follow in order to control

the speed of the exercise.

Risks and Discomforts

Risks of this test are minimal and do not exceed those of a standard exercise session.
Possible risks and discomforts could be muscle strain and soreness from the powered
rower testing. Other potential risks that may arise from exercise include abnormal

heart rate and/or blood pressure, fainting, and in rare cases, heart attack, stroke, or

death.

Every effort will be made to minimize potential risks through a proper warm-up
prior to testing. In addition, you must have no physical limitations that prevent you
from participating in regular exercise. In an event that you are injured, please notify
the research team as soon as possible and seek medical attention from you primary

physician.
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Benefits

There are no direct benefits to you from this investigation. The results of this research
will help exercise and engineering professionals in the improvement and design of

exercise machines for space travel and rehabilitation.

Privacy and Confidentiality

To ensure that all information is confidential, your data will be kept in a folder and
stored in a secure file in the CSU Human Performance Laboratory where only the
researchers will have access. Your name will not be used in any publications of this
research to ensure confidentiality. However, data obtained from this study may be
used for statistical or scientific purposes to benefit future research with your right of

privacy retained.

Participation

I understand that participation in this study is voluntary and that I have the right

to withdraw myself at any time with no consequences.

If T have any questions about my rights as a subject, I understand that I can contact

the Cleveland State University Institutional Review Board at (216) 687-3630.

If T have any questions regarding the procedures, I can contact Dr. Kenneth Sparks at

(216) 687-4831 or Graduate Student Kevin Kleis at (440) 429-5110 or kleis.kevin@yahoo.com.

Acknowledgement

The purpose, procedures, risks and discomforts and possible benefits have been ex-
plained to me. I attest that [ am 18 years of age, understand this form, and agree to

participate in the study. I have been given a copy of this informed consent form.
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Participant Signature: Date:

W itness Signature: Date:
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Privacy and Confidentiality

To ensure that all information is confidential, your data will be kept in a folder and
stored in a secure file in the CSU Human Performance Laboratory where only the
researchers will have access. Your name will not be used in any publications of this
research to ensure confidentiality. However, data obtained from this study may be
used for statistical or scientific purposes to benefit future research with your right of

privacy retained.

Participation

[ understand that participation in this study is voluntary and that I have the right to
withdraw myself at any time with no consequences. If I have any questions about my
rights as a subject, I understand that I can contact the Cleveland State University

Institutional Review Board at (216) 687-3630.

If T have any questions regarding the procedures, I can contact Humberto De las Casas
at h.delascasas@pucp.pe or (216) 804-6434 or Dr. Hanz Richter at h.richter@csuohio.edu.
Acknowledgement

The purpose, procedures, risks and discomforts and possible benefits have been ex-
plained to me. I attest that [ am 18 years of age, understand this form, and agree to

participate in the study. I have been given a copy of this informed consent form.

Participant Signature: Date:

W itness Signature: Date:
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