223 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationKernel smoothing provides a simple way of finding structures in data sets without the imposition of a parametric model, for example, nonparametric regression and density estimates. However, in many data-intensive applications, the data set could be large. Thus, evaluating a kernel density estimate or kernel regression over the data set directly can be prohibitively expensive in big data. This dissertation is working on how to efficiently find a smaller data set that can approximate the original data set with a theoretical guarantee in the kernel smoothing setting and how to extend it to more general smooth range spaces. For kernel density estimates, we propose randomized and deterministic algorithms with quality guarantees that are orders of magnitude more efficient than previous algorithms, which do not require knowledge of the kernel or its bandwidth parameter and are easily parallelizable. Our algorithms are applicable to any large-scale data processing framework. We then further investigate how to measure the error between two kernel density estimates, which is usually measured either in L1 or L2 error. In this dissertation, we investigate the challenges in using a stronger error, L ∞ (or worst case) error. We present efficient solutions for how to estimate the L∞ error and how to choose the bandwidth parameter for a kernel density estimate built on a subsample of a large data set. We next extend smoothed versions of geometric range spaces from kernel range spaces to more general types of ranges, so that an element of the ground set can be contained in a range with a non-binary value in [0,1]. We investigate the approximation of these range spaces through ϵ-nets and ϵ-samples. Finally, we study coresets algorithms for kernel regression. The size of the coresets are independent of the size of the data set, rather they only depend on the error guarantee, and in some cases the size of domain and amount of smoothing. We evaluate our methods on very large time series and spatial data, demonstrate that they can be constructed extremely efficiently, and allow for great computational gains

    Review : Deep learning in electron microscopy

    Get PDF
    Deep learning is transforming most areas of science and technology, including electron microscopy. This review paper offers a practical perspective aimed at developers with limited familiarity. For context, we review popular applications of deep learning in electron microscopy. Following, we discuss hardware and software needed to get started with deep learning and interface with electron microscopes. We then review neural network components, popular architectures, and their optimization. Finally, we discuss future directions of deep learning in electron microscopy

    Data Quality Management in Large-Scale Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPSs) are cross-domain, multi-model, advance information systems that play a significant role in many large-scale infrastructure sectors of smart cities public services such as traffic control, smart transportation control, and environmental and noise monitoring systems. Such systems, typically, involve a substantial number of sensor nodes and other devices that stream and exchange data in real-time and usually are deployed in uncontrolled, broad environments. Thus, unexpected measurements may occur due to several internal and external factors, including noise, communication errors, and hardware failures, which may compromise these systems quality of data and raise serious concerns related to safety, reliability, performance, and security. In all cases, these unexpected measurements need to be carefully interpreted and managed based on domain knowledge and computational models. Therefore, in this research, data quality challenges were investigated, and a comprehensive, proof of concept, data quality management system was developed to tackle unaddressed data quality challenges in large-scale CPSs. The data quality management system was designed to address data quality challenges associated with detecting: sensor nodes measurement errors, sensor nodes hardware failures, and mismatches in sensor nodes spatial and temporal contextual attributes. Detecting sensor nodes measurement errors associated with the primary data quality dimensions of accuracy, timeliness, completeness, and consistency in large-scale CPSs were investigated using predictive and anomaly analysis models via utilising statistical and machine-learning techniques. Time-series clustering techniques were investigated as a feasible mean for detecting long-segmental outliers as an indicator of sensor nodes’ continuous halting and incipient hardware failures. Furthermore, the quality of the spatial and temporal contextual attributes of sensor nodes observations was investigated using timestamp analysis techniques. The different components of the data quality management system were tested and calibrated using benchmark time-series collected from a high-quality, temperature sensor network deployed at the University of East London. Furthermore, the effectiveness of the proposed data quality management system was evaluated using a real-world, large-scale environmental monitoring network consisting of more than 200 temperature sensor nodes distributed around London. The data quality management system achieved high accuracy detection rate using LSTM predictive analysis technique and anomaly detection associated with DBSCAN. It successfully identified timeliness and completeness errors in sensor nodes’ measurements using periodicity analysis combined with a rule engine. It achieved up to 100% accuracy in detecting potentially failed sensor nodes using the characteristic-based time-series clustering technique when applied to two days or longer time-series window. Timestamp analysis was adopted effectively for evaluating the quality of temporal and spatial contextual attributes of sensor nodes observations, but only within CPS applications in which using gateway modules is possible

    Process Mining Workshops

    Get PDF
    This open access book constitutes revised selected papers from the International Workshops held at the Third International Conference on Process Mining, ICPM 2021, which took place in Eindhoven, The Netherlands, during October 31–November 4, 2021. The conference focuses on the area of process mining research and practice, including theory, algorithmic challenges, and applications. The co-located workshops provided a forum for novel research ideas. The 28 papers included in this volume were carefully reviewed and selected from 65 submissions. They stem from the following workshops: 2nd International Workshop on Event Data and Behavioral Analytics (EDBA) 2nd International Workshop on Leveraging Machine Learning in Process Mining (ML4PM) 2nd International Workshop on Streaming Analytics for Process Mining (SA4PM) 6th International Workshop on Process Querying, Manipulation, and Intelligence (PQMI) 4th International Workshop on Process-Oriented Data Science for Healthcare (PODS4H) 2nd International Workshop on Trust, Privacy, and Security in Process Analytics (TPSA) One survey paper on the results of the XES 2.0 Workshop is included

    Multiple-Aspect Analysis of Semantic Trajectories

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, in Würzburg, Germany, in September 2019. The 8 full papers presented were carefully reviewed and selected from 12 submissions. They represent an interesting mix of techniques to solve recurrent as well as new problems in the semantic trajectory domain, such as data representation models, data management systems, machine learning approaches for anomaly detection, and common pathways identification

    Likelihood-based Density Estimation using Deep Architectures

    Get PDF
    Multivariate density estimation is a central problem in unsupervised machine learning that has been studied immensely in both statistics and machine learning. Several methods have thus been proposed for density estimation including classical techniques like histograms, kernel density estimation methods, mixture models, and more recently neural density estimation that leverages the recent advances in deep learning and neural networks to tractably represent a density function. In today's age, when large amounts of data are being generated in almost every field, it is of paramount importance to develop density estimation methods that are cheap both computationally and in memory cost. The main contribution of this thesis is in providing a principled study of parametric density estimation methods using mixture models and triangular maps for neural density estimation. The first part of the thesis focuses on the compact representation of mixture models using deep architectures like latent tree models, hidden Markov models, tensorial mixture models, hierarchical tensor formats and sum-product networks. It provides a unifying view of possible representations of mixture models using such deep architectures. The unifying view allows us to prove exponential separation between deep mixture models and mixture models represented using shallow architectures, demonstrating the benefits of depth in their representation. In a surprising result thereafter, we prove that a deep mixture model can be approximated using the conditional gradient algorithm by a shallow architecture of polynomial size w.r.t. the inverse of the approximation accuracy. Next, we address the more practical problem of density estimation of mixture models for streaming data by proposing an online Bayesian Moment Matching algorithm for Gaussian mixture models that can be distributed over several processors for fast computation. Exact Bayesian learning of mixture models is intractable because the number of terms in the posterior grows exponentially w.r.t. to the number of observations. We circumvent this problem by projecting the exact posterior on to a simple family of densities by matching a set of sufficient moments. Subsequently, we extend this algorithm for sequential data modeling using transfer learning by learning a hidden Markov model over the observations with Gaussian mixtures. We apply this algorithm on three diverse applications of activity recognition based on smartphone sensors, sleep stage classification for predicting neurological disorders using electroencephalography data and network size prediction for telecommunication networks. In the second part, we focus on neural density estimation methods where we provide a unified framework for estimating densities using monotone and bijective triangular maps represented using deep neural networks. Using this unified framework we study the limitations and representation power of recent flow based and autoregressive methods. Based on this framework, we subsequently propose a novel Sum-of-Squares polynomial flow that is interpretable, universal and easy to trai

    Process Mining Workshops

    Get PDF
    This open access book constitutes revised selected papers from the International Workshops held at the Third International Conference on Process Mining, ICPM 2021, which took place in Eindhoven, The Netherlands, during October 31–November 4, 2021. The conference focuses on the area of process mining research and practice, including theory, algorithmic challenges, and applications. The co-located workshops provided a forum for novel research ideas. The 28 papers included in this volume were carefully reviewed and selected from 65 submissions. They stem from the following workshops: 2nd International Workshop on Event Data and Behavioral Analytics (EDBA) 2nd International Workshop on Leveraging Machine Learning in Process Mining (ML4PM) 2nd International Workshop on Streaming Analytics for Process Mining (SA4PM) 6th International Workshop on Process Querying, Manipulation, and Intelligence (PQMI) 4th International Workshop on Process-Oriented Data Science for Healthcare (PODS4H) 2nd International Workshop on Trust, Privacy, and Security in Process Analytics (TPSA) One survey paper on the results of the XES 2.0 Workshop is included

    Generative Models for Learning Robot Manipulation Skills from Humans

    Get PDF
    A long standing goal in artificial intelligence is to make robots seamlessly interact with humans in performing everyday manipulation skills. Learning from demonstrations or imitation learning provides a promising route to bridge this gap. In contrast to direct trajectory learning from demonstrations, many problems arise in interactive robotic applications that require higher contextual level understanding of the environment. This requires learning invariant mappings in the demonstrations that can generalize across different environmental situations such as size, position, orientation of objects, viewpoint of the observer, etc. In this thesis, we address this challenge by encapsulating invariant patterns in the demonstrations using probabilistic learning models for acquiring dexterous manipulation skills. We learn the joint probability density function of the demonstrations with a hidden semi-Markov model, and smoothly follow the generated sequence of states with a linear quadratic tracking controller. The model exploits the invariant segments (also termed as sub-goals, options or actions) in the demonstrations and adapts the movement in accordance with the external environmental situations such as size, position and orientation of the objects in the environment using a task-parameterized formulation. We incorporate high-dimensional sensory data for skill acquisition by parsimoniously representing the demonstrations using statistical subspace clustering methods and exploit the coordination patterns in latent space. To adapt the models on the fly and/or teach new manipulation skills online with the streaming data, we formulate a non-parametric scalable online sequence clustering algorithm with Bayesian non-parametric mixture models to avoid the model selection problem while ensuring tractability under small variance asymptotics. We exploit the developed generative models to perform manipulation skills with remotely operated vehicles over satellite communication in the presence of communication delays and limited bandwidth. A set of task-parameterized generative models are learned from the demonstrations of different manipulation skills provided by the teleoperator. The model captures the intention of teleoperator on one hand and provides assistance in performing remote manipulation tasks on the other hand under varying environmental situations. The assistance is formulated under time-independent shared control, where the model continuously corrects the remote arm movement based on the current state of the teleoperator; and/or time-dependent autonomous control, where the model synthesizes the movement of the remote arm for autonomous skill execution. Using the proposed methodology with the two-armed Baxter robot as a mock-up for semi-autonomous teleoperation, we are able to learn manipulation skills such as opening a valve, pick-and-place an object by obstacle avoidance, hot-stabbing (a specialized underwater task akin to peg-in-a-hole task), screw-driver target snapping, and tracking a carabiner in as few as 4 - 8 demonstrations. Our study shows that the proposed manipulation assistance formulations improve the performance of the teleoperator by reducing the task errors and the execution time, while catering for the environmental differences in performing remote manipulation tasks with limited bandwidth and communication delays
    • …
    corecore