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ABSTRACT

Deep learning is transforming most areas of science and technology, including electron microscopy. This review paper offers a
practical perspective aimed at developers with limited familiarity. For context, we review popular applications of deep learning in
electron microscopy. Following, we discuss hardware and software needed to get started with deep learning and interface with
electron microscopes. We then review neural network components, popular architectures, and their optimization. Finally, we
discuss future directions of deep learning in electron microscopy.

1 Introduction

Following decades of exponential increases in computational capability1 and widespread data availability2, scientists can
routinely train artificial neural networks3–10 (ANNs) to enable new science and technology11–15. The resulting deep learning
revolution16, 17 has enabled superhuman performance in image classification18–21, games22–27, medical analysis28, 29, relational
reasoning30, speech recognition31, 32 and many other applications33, 34. This introduction focuses on deep learning in electron
microscopy and is aimed at developers with limited familiarity. For context, we therefore review popular applications of deep
learning in electron microscopy. We then review resources available to support researchers and outline electron microscopy.
Finally, we review popular ANN architectures and their optimization, and discuss future trends in artificial intelligence (AI) for
electron microscopy.

Deep learning is motivated by universal approximator theorems35–43, which state that sufficiently deep and wide35, 38, 44

ANNs can approximate functions to arbitrary accuracy. It follows that ANNs can always match or surpass the performance of
methods crafted by humans. In practice, DNNs reliably45–47 learn generalizable48–55 models without a prior understanding
of physics. As a result, deep learning is freeing physicists from a need to devise equations to model complicated phenom-
ena12, 13, 15, 56, 57. Most modern ANNs have millions of parameters, so inference often takes tens of milliseconds on GPUs or
other hardware accelerators58. It is therefore unusual to develop ANNs to approximate computationally efficient methods with
exact solutions, such as the fast Fourier transform59–61 (FFT). However, ANNs are able to leverage an understanding of physics
to accelerate time-consuming or iterative calculations62–65, improve accuracy of methods28, 29, 66, and find solutions that are
otherwise intractable22, 67.

1.1 Improving Signal-to-Noise
A popular application of deep learning is to improve signal-to-noise70, 71. For example, of medical electrical72, 73, medical
image74–76, optical microscopy77–80, and speech81–84 signals. There are many traditional denoising algorithms that are not based
on deep learning85–87, including linear88, 89 and non-linear90–98 spatial domain filters, Weiner99–101 filters, non-linear102–107

wavelet domain filters, curvelet transforms108, 109, contourlet transforms110, 111, hybrid algorithms112–118 that operate in both
spatial and transformed domains, and dictionary-based learning119–123. However, traditional denoising algorithms are limited
by features (often laboriously) crafted by humans and cannot exploit domain-specific context. In perspective, they leverage
an ever-increasingly accurate representation of physics to denoise signals. However, traditional algorithms are limited by the
difficulty of programmatically describing a complicated reality. Case in point, an ANN was able to outperform decades of
advances in traditional denoising algorithms after training on two GPUs for a week66.

Definitions of electron microscope noise can include statistical noise124–126, 126–131, aberrations132, scan distortions133–136,
specimen drift137, and electron beam damage138. Statistical noise is often minimized by traditional denoising algorithms139, 140,
including a variety of denoising algorithms developed for electron microscopy. Examples include algorithms based on
block matching141, contourlet transforms110, 111, energy minimization142, fast patch reorderings143, Gaussian kernel density
estimation144, Kronecker envelope principal component analysis145 (PCA), non-local means and Zernike moments146, singular
value thresholding147, wavelets148, and other approaches137, 149–152. Noise that is not statistical is often minimized by hardware.
For example, by using aberration correctors132, 153–155, choosing scan shapes and speeds that minimize distortions134, and using
stable sample holders to reduce drift156. Beam damage can also be reduced by using minimal electron voltage and electron
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Figure 1. Example applications of a noise-removal DNN to instances of Poisson noise applied to 512×512 crops from TEM
images. Enlarged 64×64 regions from the top left of each crop are shown to ease comparison. This figure is adapted from our
earlier work68 under a Creative Commons 4.069 license.

dose157–159, or dose-fractionation across multiple frames in multi-pass TEM160–162 or STEM163.
Deep learning is being applied to improve signal-to-noise for a variety of applications164–172. Most approaches in electron

microscopy involve training ANNs to either map low-quality experimental173, artificially deteriorated66, 174 or synthetic175–177

inputs to paired high-quality experimental measurements. For example, applications of a DNN trained with artificially
deteriorated TEM images are shown in fig. 1. However, ANNs have also been trained with unpaired datasets of low-quality and
high-quality electron micrographs178, or pairs of low-quality electron micrographs179, 180. Another approach is Noise2Void164,
ANNs are trained from single noisy images. However, Noise2Void removes information by masking noisy input pixels
corresponding to target output pixels. So far, most ANNs that improve electron microscope signal-to-noise have been trained
to decrease statistical noise66, 173, 175, 176, 176–179, 181. Nevertheless, ANNs have been developed for aberration correction of
optical microscopy182–187 and photoacoustic188 signals, and to correct electron microscope scan distortions189, 190 and specimen
drift137, 190, 191.

1.2 Compressed Sensing
Compressed sensing194–198 is the reconstruction of a signal from a subset of measurements. Applications include image
compression199, 200, faster medical imaging201–203, lower medical radiation exposure204–206, and low-light vision207, 208. In
electron microscopy, compressed sensing can enable electron beam exposure and scan time to be decreased by 10-100× with
minimal information loss192, 193. Thus, compressed sensing can be essential to investigations where the high current density of
electron probes damages specimens157, 209–215. Even if the effects of beam damage can be corrected by postprocessing, the
damage to specimens is often permanent. Examples of beam-sensitive materials include organic crystals216, metal-organic
frameworks217, nanotubes218, and nanoparticle dispersions219. In electron microscopy, compressed sensing is especially
effective due to high signal redundancy220. For example, most electron microscopy images are sampled at 5-10× their Nyquist
rates221 to ease visual inspection, decrease sub-Nyquist aliasing222, and avoid undersampling.

Perhaps the most popular approach to compressed sensing is upsampling or infilling a uniformly spaced grid of signals223–225.
Interpolation methods include Lancsoz223, nearest neighbour226, polynomial interpolation227, Wiener228 and other229–231
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Figure 2. Example applications of DNNs to restore 512×512 STEM images from sparse signals. Adversarial training as part
of a GAN yields more realistic outputs than training a single DNN with mean squared errors. Enlarged 64×64 regions from the
top left of each crop are shown to ease comparison. a) Input is a Gaussian blurred 1/20 coverage spiral192. b) Input is a 1/25
coverage grid193. This figure is adapted from our earlier work under Creative Commons 4.069 licenses.

resampling. However, a variety of other strategies to minimize beam damage have also been proposed, including dose
fractionation232 and a variety of sparse data collection methods233. Perhaps the most intensively investigated approach to the
latter is sampling a random subset of pixels, followed by reconstruction using an inpainting algorithm233–238. Random sampling
of pixels is nearly optimal for reconstruction by compressed sensing algorithms239. However, random sampling exceeds the
design parameters of standard electron beam deflection systems, and can only be performed by collecting data slowly240, 241, or
with the addition of a fast deflection or blanking system236, 242.

Sparse data collection methods that are more compatible with conventional beam deflection systems have also been
investigated. For example, maintaining a linear fast scan deflection whilst using a widely-spaced slow scan axis with some small
random ‘jitter’234, 240. However, even small jumps in electron beam position can lead to a significant difference between nominal
and actual beam positions in a fast scan. Such jumps can be avoided by driving functions with continuous derivatives, such
as those for spiral and Lissajous scan paths192, 236, 241, 243, 244. Sang241, 244 considered a variety of scans including Archimedes
and Fermat spirals, and scans with constant angular or linear displacements, by driving electron beam deflectors with a
field-programmable gate array245 (FPGA) based system. Spirals with constant angular velocity place the least demand on
electron beam deflectors. However, dwell times, and therefore electron dose, decreases with radius. Conversely, spirals created
with constant spatial speeds are prone to systematic image distortions due to lags in deflector responses. In practice, fixed doses
are preferable as they simplify visual inspection and limit the dose dependence of STEM noise125.

Deep learning can leverage an understanding of physics to infill images246–248. Example applications include increasing
SEM174, 249, 250, STEM193, 251 and TEM252 resolution, and infilling continuous sparse scans192. Example applications of DNNs
to complete sparse spiral and grid scans are shown in fig. 2. However, caution should be used when infilling large regions
as ANNs may generate artefacts if a signal is unpredictable192. A popular alternative to deep learning for infilling large
regions is exemplar-based infilling253–256. However, exemplar-based infilling often leaves artefacts257 and is usually limited to
leveraging information from single images. Smaller regions are often infilled by fast marching258, Navier-Stokes infilling259, or
interpolation227.

1.3 Labelling
Deep learning has been the basis of state-of-the-art classification260–263 since convolutional neural networks (CNNs) enabled a
breakthrough in classification accuracy on ImageNet67. Most classifiers are single feedforward neural networks (FNNs) that
learn to predict discrete labels. In electron microscopy, applications include classifying potential imaging region quality264,
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material structures265, 266, and image quality267. However, siamese268–270 and dynamically parameterized271 networks can
more quickly learn to recognise images. Finally, labelling ANNs can learn to predict continuous features, such as mechanical
properties272. Labelling ANNs are often combined with other methods. For example, ANNs can be used to automatically
identify particle locations181, 273–275 to ease subsequent processing.

Figure 3. Example applications of a semantic segmentation DNN to STEM images of steel to predict dislocation locations.
Yellow arrows mark uncommon dislocation lines with weak contrast, and red arrows indicate that fixed widths used for
dislocation lines are sometimes too narrow to cover defects. This figure is adapted with permission276 under a Creative
Commons 4.069 license.

1.4 Semantic Segmentation
Semantic segmentation is the classification of pixels into discrete categories. In electron microscopy, applications include the
automatic identification of local features277, 278, such as defects279, 280, dopants281, material phases282, material structures283, 284,
dynamic surface phenomena285, chemical phases in nanoparticles286. Early approaches to semantic segmentation used simple
rules. However, such methods were not robust to a high variety of data287. Subsequently, more adaptive algorithms based on
soft-computing288 and fuzzy algorithms289 were developed to use geometric shapes as priors. However, these methods were
limited by programmed features and struggled to handle the high variety of data.

To improve performance, DNNs have been trained to semantically segment images290–297. Semantic segmentation DNNs
have been developed for focused ion beam scanning electron microscopy298–300 (FIB-SEM), SEM300–303, STEM276, 304, and
TEM275, 299, 300, 305–307. For example, applications of a DNN to semantic segmentation of STEM images of steel are shown
in fig. 3. Deep learning based semantic segmentation also has a high variety of applications outside of electron microscopy,
including autonomous driving308–312, dietary monitoring313, 314, magnetic resonance images315–319, medical images320–322 such
as prenatal ultrasound323–326, and translating satellite images327–331. Most DNNs for semantic segmentation are trained with
images segmented by humans. However, human labelling may be too expensive, time-consuming, or inappropriate for sensitive
data. Unsupervised semantic segmentation can avoid these difficulties by learning to segment images from an additional dataset
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of segmented images332 or image-level labels333–336. However, unsupervised semantic segmentation networks are often less
accurate than supervised networks.

Figure 4. Example applications of a DNN to reconstruct phases of exit wavefunction from intensities of single TEM images.
Phases in [−π,π) rad are depicted on a linear greyscale from black to white, and Miller indices label projection directions.
This figure is adapted from our earlier work337 under a Creative Commons 4.069 license.

1.5 Exit Wavefunction Reconstruction
Electrons exhibit wave-particle duality338, 339, so electron propagation is often described by wave optics340. Applications
of electron wavefunctions exiting materials341 include determining projected potentials and corresponding crystal structure
information342, 343, information storage, point spread function deconvolution, improving contrast, aberration correction344,
thickness measurement345, and electric and magnetic structure determination346, 347. Usually, exit wavefunctions are either
iteratively reconstructed from focal series348–352 or recorded by electron holography340, 351, 353. However, iterative reconstruction
is often too slow for live applications, and holography is sensitive to distortions and may require expensive microscope
modification.

Non-iterative methods based on DNNs have been developed to reconstruct optical exit wavefunctions from focal series65 or
single images354–356. Following, DNNs have been developed to reconstruct exit wavefunctions from single TEM images337, as
shown in fig. 4. Indeed, deep learning is increasingly being applied to accelerated quantum mechanics357–362. Other examples
of DNNs adding new dimensions to data include semantic segmentation described in section 1.4, and reconstructing 3D atomic
distortions from 2D images363. Non-iterative methods that do not use ANNs to recover phase information from single images
have also been developed364, 365. However, they are limited to defocused images in the Fresnel regime364, or to non-planar
incident wavefunctions in the Fraunhofer regime365.

2 Resources

Access to scientific resources is essential to scientific enterprise366. Fortunately, most resources needed to get started with
machine learning are freely available. This section provides directions to various machine learning resources, including
how to access deep learning frameworks, a free GPU or TPU to accelerate tensor computations, platforms that host datasets
and source code, and pretrained models. In support of Plan S366–368, we focus on resources that enhance collaboration and
enable open access369. We also discuss how electron microscopes can interface with ANNs and the importance of machine
learning resources in the context of electron microscopy. However, we expect that our insights into electron microscopy can be
generalized to other scientific fields.
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2.1 Hardware Acceleration
Deep neural networks (DNNs) perform sequences of tensor operations. Tensors can either be computed on central processing
units (CPUs) or hardware accelerators58, such as field programmable gate arrays370–373 (FPGAs), graphical processing
units374–376 (GPUs), and tensor processing units377–379 (TPUs). Most benchmarks show that GPUs and TPUs outperform CPUs
for typical DNNs that could be used for image processing380–384 in electron microscopy. However, GPU and CPU performance
can be comparable when CPU computation is optimized385. TPUs often outperform GPUs382, and FPGAs can outperform
GPUs386, 387 if FPGAs have sufficient arithmetic units388, 389. Typical power consumption per TFLOPS390 decreases in order
CPU, GPU, FPGA, then TPU, so hardware acceleration can help to minimize long-term costs and environmental damage391.

For beginners, Google Colab392–395 and Kaggle396 provide hardware accelerators in ready-to-go deep learning environments.
Free compute time on these platforms is limited as they are not intended for industrial applications. Nevertheless, the free
compute time is sufficient for some research397. For more intensive applications, it may be necessary to get permanent access
to hardware accelerators. If so, many online guides detail how to install398, 399 and set up an Nvidia400 or AMD401 GPU in
a desktop computer for deep learning. However, most hardware comparisons for deep learning402 focus on Nvidia GPUs as
most deep learning frameworks use Nvidia’s proprietary cuDNN primitives for deep learning403, which are optimized for
Nvidia GPUs. Alternatively, hardware accelerators may be accessible from a university or other institutional high performance
computing (HPC) centre, or via a public cloud service provider404–407.

Framework License Programming Interfaces
Apache SINGA408 Apache 2.0409 C++, Java, Python
BigDL410 Apache 2.0411 Python, Scala
Caffe412, 413 BSD414 C++, MATLAB, Python
Chainer415 MIT416 Python
Deeplearning4j417 Apache 2.0418 Clojure, Java, Kotlin, Python, Scala
Dlib419, 420 BSL421 C++
Flux422 MIT423 Julia
MATLAB Deep Learning Toolbox424 Proprietary425 MATLAB
Microsoft Cognitive Toolkit426 MIT427 BrainScript, C++, Python
Apache MXNet428 Apache 2.0429 C++, Clojure, Go, JavaScript, Julia, Matlab, Perl, Python, R, Scala
OpenNN430 GNU LGPL431 C++
PaddlePaddle432 Apache 2.0433 C++
PyTorch434 BSD435 C++, Python
TensorFlow436, 437 Apache 2.0438 C++, C#, Go, Haskell, Julia, MATLAB, Python, Java, JavaScript, R, Ruby, Rust, Scala, Swift
Theano439, 440 BSD441 Python
Torch442 BSD443 C, Lua
Wolfram Mathematica444 Proprietary445 Wolfram Language

Table 1. Deep learning frameworks with programming interfaces. Most frameworks have open source code and many support
multiple programming languages.

2.2 Deep Learning Frameworks

A deep learning framework8, 446–452 (DLF) is an interface, library or tool for DNN development. Features often include
automatic differentiation453, heterogeneous computation, pretrained models, and efficient computing454 with CUDA455–457,
cuDNN403, 458 and OpenMP459, 460. Popular DLFs tabulated in table 1 often have open source code and support multiple
programming interfaces. Overall, TensorFlow436, 437 is the most popular DLF461. However, PyTorch434 is the most popular DLF
at top machine learning conferences461, 462. Some DLFs also have extensions that ease development or extend functionality. For
example, TensorFlow extensions463 that ease development include Keras464, Sonnet465, Tensor2Tensor466 and TFLearn467, 468,
and extensions that add functionality include Addons469, Agents470, Dopamine471, Federated472–474, Probability475 and
TRFL476. In addition, DLFs are supplemented by libraries for predictive data analysis, such as scikit-learn477.

A limitation of the DLFs in table 1 is that users must use programming interfaces. This is problematic as many electron
microscopists have limited, if any, programming experience. To increase accessibility, a range of graphical user interfaces (GUIs)
have been created for ANN development. For example, ANNdotNET478, Create ML479, Deep Cognition480, Deep Network
Designer481, DIGITS482, ENNUI483, Expresso484, Neural Designer485, Waikato Environment for Knowledge Analysis486–488

(WEKA) and ZeroCostDL4Mic489. The GUIs offer less functionality and scope for customization than programming interfaces.
However, GUI-based DLFs are rapidly improving. Moreover, existing GUI functionality is more than sufficient to implement
popular FNNs, such as image classifiers262 and encoder-decoders294–297, 490–492.
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2.3 Pretrained Models
Training ANNs is often time-consuming and computationally expensive391. Fortunately, pretrained models are available from a
range of open access collections493, such as Model Zoo494, Open Neural Network Exchange495–498 (ONNX) Model Zoo499,
TensorFlow Hub500, 501, and TensorFlow Model Garden502. Some researchers also provide pretrained models via project
repositories66, 192, 193, 220, 337. Pretrained models can be used immediately or to transfer learning503–509 to new applications. For
example, by fine-tuning and augmenting the final layer of a pretrained model510. Benefits of transfer learning can include
decreasing training time by orders of magnitude, reducing training data requirements, and improving generalization508, 511.

Using pretrained models is complicated by ANNs being developed with a variety of DLFs in a range of programming
languages. However, most DLFs support interoperability. For example, by supporting the saving of models to a common format
or to formats that are interoperable with the Neural Network Exchange Format512 (NNEF) or ONNX formats. Many DLFs
also support saving models to HDF5513, 514, which is popular in the pycroscopy515, 516 and HyperSpy517, 518 libraries used by
electron microscopists. The main limitation of interoperability is that different DLFs may not support the same functionality.
For example, Dlib419, 420 does not support recurrent neural networks519–524 (RNNs).

2.4 Datasets
Randomly initialized ANNs525 must be trained, validated, and tested with large, carefully partitioned datasets to ensure that
they are robust to general use526. Most ANN training starts from random initialization, rather than transfer learning503–509, as

1. Researchers may be investigating modifications to ANN architecture or ability to learn.

2. Pretrained models may be unavailable or too difficult to find.

3. Models may quickly achieve sufficient performance from random initialization. For example, training an encoder-decoder
based on Xception527 to improve electron micrograph signal-to-noise66 can require less training than for PASCAL VOC
2012528 semantic segmentation294.

4. There may be a high computing budget, so transfer learning is unnecessary529, 530.

There are millions of open access datasets531, 532 and a range of platforms that host533–537 or aggregate538–541 machine learning
datasets. Openly archiving datasets drives scientific enterprise by reducing need to repeat experiments542–546, enabling new
applications through data mining547, 548, and standardizing performance benchmarks549. For example, popular datasets used to
standardize image classification performance benchmarks include CIFAR-10550, 551, MNIST552 and ImageNet553. A high range
of both domain-specific and general platforms that host scientific data for free are listed by the Open Access Directory554 and
Nature Scientific Data555. For beginners, we recommend Zenodo556 as it is free, open access, has an easy-to-use interface, and
will host an unlimited number of datasets smaller than 50 GB for at least 20 years557.

There are a range of platforms dedicated to hosting electron microscopy datasets, including the Caltech Electron Tomography
Database558 (ETDB-Caltech), Electron Microscopy Data Bank559–564 (EMDataBank), and the Electron Microscopy Public
Image Archive565, 566 (EMPIAR). However, most electron microscopy datasets are small, esoteric or are not partitioned for
machine learning220. Nevertheless, a variety of large machine learning datasets for electron microscopy are being published in
independent repositories220, 567, 568. In addition, a variety of databases host information that supports electron microscopy. For
example, crystal structure databases provide data in standard formats569, 570, such as Crystallography Information Files571–574

(CIFs). Large crystal structure databases575–577 containing over 105 crystal structures include the Crystallography Open
Database578–583 (COD), Inorganic Crystal Structure Database584–588 (ICSD), and National Institute of Standards and Technology
(NIST) Crystal Data589, 590.

To achieve high performance, it may be necessary to curate a large dataset. However, large datasets like DeepMind
Kinetics591, ImageNet553, and YouTube 8M592 may take a team months to prepare. As a result, it may not be practical to
divert sufficient staff and resources to curate a high-quality dataset, even if curation is partially automated592–599. To curate
data, human capital can be temporarily and cheaply increased by using microjob services600. For example, through microjob
platforms tabulated in table 2. Increasingly, platforms are emerging that specialize in data preparation for machine learning.
Nevertheless, microjob services may be inappropriate for sensitive data or tasks that require substantial domain-specific
knowledge.

2.5 Source Code
Software is part of our cultural, industrial, and scientific heritage601. Source code should therefore be archived where
possible. For example, on an open source code platform such as Apache Allura602, AWS CodeCommit603, Beanstalk604,
BitBucket605, GitHub606, GitLab607, Gogs608, Google Cloud Source Repositories609, Launchpad610, Phabricator611, Savan-
nah612 or SourceForge613. These platforms enhance collaboration with functionality that helps users to watch614 and contribute
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Platform Website For Machine Learning
Amazon Mechanical Turk https://www.mturk.com General tasks
Appen https://appen.com Machine learning data preparation
Clickworker https://www.clickworker.com Machine learning data preparation
Fiverr https://www.fiverr.com General tasks
Hive https://thehive.ai Machine learning data preparation
iMerit https://imerit.net Machine learning data preparation
JobBoy https://www.jobboy.com General tasks
Minijobz https://minijobz.com General tasks
Microworkers https://www.microworkers.com General tasks
OneSpace https://freelance.onespace.com General tasks
Playment https://playment.io Machine learning data preparation
RapidWorkers https://rapidworkers.com General tasks
Scale https://scale.com Machine learning data preparation
Smart Crowd https://thesmartcrowd.lionbridge.com General tasks
Trainingset.ai https://www.trainingset.ai Machine learning data preparation
ySense https://www.ysense.com General tasks

Table 2. Microjob service platforms. The size of typical tasks varies for different platforms and some platforms specialize in
preparing machine learning datasets.

improvements615–621 to source code. The choice of platform is often not immediately important for small electron microscopy
projects as most platforms offer similar functionality. Nevertheless, functionality comparisons of open source platforms
are available622–624. For beginners, we recommend GitHub as it is actively developed, scalable to large projects and has an
easy-to-use interface.

2.6 Finding Information
Most web traffic625, 626 goes to large-scale web search engines627–631 such as Bing, DuckDuckGo, Google, Yahoo, and YouTube.
This includes searches for scholarly content632–634. We recommend Google for electron microscopy queries as it appears
to yield the best results for general635–637, scholarly633, 634 and other638 queries. However, general search engines can be
outperformed by dedicated search engines for specialized applications. For example, for finding academic literature639–641,
data642, jobs643, 644, publication venues645, patents646–649, people650–652, and many other resources. The use of search engines
is increasingly political653–655 as they influence which information people see. However, most users appear to be satisfied with
their performance656.

Introductory textbooks are outdated657, 658 insofar that most information is readily available online. We find that some
websites are frequent references for up-to-date and practical information:

1. Stack Overflow659–664 is a source of working code snippets and a useful reference when debugging code.

2. Papers With Code State-of-the-Art549 leaderboards rank the highest performing ANNs with open source code for various
benchmarks.

3. Medium665 and its subsidiaries publish blogs with up-to-date and practical advice about machine learning.

4. The Machine Learning subreddit666 hosts discussions about machine learning. In addition, there is a Learn Machine
Learning subreddit667 aimed at beginners.

5. Dave Mitchell’s DigitalMicrograph Scripting Website668, 669 hosts a collection of scripts and documentation for program-
ming electron microscopes.

6. The Internet Archive670, 671 maintains copies of software and media, including webpages via its Wayback Machine672–674.

7. Distill675 is a journal dedicated to providing clear explanations about machine learning. Monetary prizes are awarded for
excellent communication and refinement of ideas.

This list enumerates popular resources that we find useful, so it may introduce personal bias. However, alternative guides
to useful resources are available676–678. We find that the most common issues finding information are part of an ongoing
reproducibility crisis679, 680 where machine learning researchers are unwilling to publish their source code or data. Nevertheless,
third party source code is sometimes available on GitHub. Alternatively, ANNs can reconstruct code from some research
papers681.

8/97

https://www.mturk.com
https://appen.com
https://www.clickworker.com
https://www.fiverr.com
https://thehive.ai
https://imerit.net
https://www.jobboy.com
https://minijobz.com
https://www.microworkers.com
https://freelance.onespace.com
https://playment.io
https://rapidworkers.com
https://scale.com
https://thesmartcrowd.lionbridge.com
https://www.trainingset.ai
https://www.ysense.com


2.7 Scientific Publishing
The number of articles published per year in reputable peer-reviewed682 scientific journals683, 684 has roughly doubled every
nine years since the beginning of modern science685. There are now over 25000 peer-reviewed journals684 with varying
impact factors686–688, scopes and editorial policies. Strategies to find the best journal to publish in include using online journal
finders689, seeking the advice of learned colleagues, and considering where similar research has been published. Increasingly,
working papers are also being published in open access preprint archives before peer-review690–692. For example, the arXiv693

is a popular preprint archive for computer science, mathematics, and physics. Advantages of preprints include ensuring
that research is openly available, increasing discovery and citations694, 695, inviting timely scientific discussion, and raising
awareness to reduce unnecessary duplication of research. Many publishers have adapted to the popularity of preprints690

by offering open access publication options696–699 and allowing, and in some cases encouraging700, the prior publication of
preprints. Indeed, some journals are now using the arXiv to host their publications701.

A variety of software can help authors prepare scientific manuscripts702. However, we think the most essential software
is a document preparation system. Most manuscripts are prepared with Microsoft Word703 or similar software704. However,
Latex705–707 is a popular alternative among computer scientists, mathematicians and physicists708. Most electron microscopists
at the University of Warwick appear to prefer Word. A 2014 comparison of Latex and Word found that Word is better at all
tasks other than typesetting equations709. However, in 2017 it become possible to use Latex to typeset equations within Word708.
As a result, Word appears to be more efficient than Latex for most manuscript preparation. Nevertheless, Latex may still be
preferable to authors who want fine control over typesetting710, 711. As a compromise, we use Overleaf712 to edit Latex source
code, then copy our code to Word as part of proofreading to identify issues with grammar and wording.

Figure 5. Reciprocity of TEM and STEM electron optics.

3 Electron Microscopy
An electron microscope is an instrument that uses electrons as a source of illumination to enable the study of small objects.
Electron microscopy competes with a large range of alternative techniques for material analysis713–715, including atomic force
microscopy716–718 (AFM); Fourier transformed infrared (FTIR) spectroscopy719, 720; nuclear magnetic resonance721–724 (NMR);
Raman spectroscopy725–731; and x-ray diffraction732, 733 (XRD), dispersion734, fluorescence735, 736 (XRF), and photoelectron

9/97



spectroscopy737, 738 (XPS). Quantitative advantages of electron microscopes can include higher resolution and depth of field,
and lower radiation damage than light microscopes739. In addition, electron microscopes can record images, enabling visual
interpretation of complex structures that may otherwise be intractable. This section will briefly introduce varieties of electron
microscopes, simulation software, and how electron microscopes can interface with ANNs.

3.1 Microscopes

Figure 6. Numbers of results per year returned by Dimensions.ai abstract searches for SEM, TEM, STEM, STM and REM
qualitate their popularities. The number of results for 2020 is extrapolated using the mean rate before 14th July 2020.

There are a variety of electron microscopes that use different illumination mechanisms. For example, reflection electron
microscopy740, 741 (REM), scanning electron microscopy742, 743 (SEM), scanning transmission electron microscopy744, 745

(STEM), scanning tunneling microscopy746, 747 (STM), and transmission electron microscopy748–750 (TEM). To roughly
gauge popularities of electron microscope varieties, we performed abstract searches with Dimenions.ai640, 751–753 for their
abbreviations followed by "electron microscopy" e.g. "REM electron microscopy". Numbers of results per year in fig. 6
qualitate that popularity increases in order REM, STM, STEM, TEM, then SEM. It may be tempting to attribute the popularity
of SEM over TEM to the lower cost of SEM754, which increases accessibility. However, a range of considerations influence the
procurement of electron microscopes755 and hourly pricing at universities756–760 is similar for SEM and TEM.

In SEM, material surfaces are scanned by sequential probing with a beam of electrons, which are typically accelerated
to 0.2-40 keV. The SEM detects quanta emitted from where the beam interacts with the sample. Most SEM imaging uses
low-energy secondary electrons. However, reflection electron microscopy740, 741 (REM) uses elastically backscattered electrons
and is often complimented by a combination of reflection high-energy electron diffraction761–763 (RHEED), reflection high-
energy electron loss spectroscopy764, 765 (RHEELS) and spin-polarized low-energy electron microscopy766–768 (SPLEEM).
Some SEMs also detect Auger electrons769, 770. To enhance materials characterization, most SEMs also detect light. The most
common light detectors are for cathodoluminescence and energy dispersive r-ray771, 772 (EDX) spectroscopy. Nonetheless,
some SEMs also detect Bremsstrahlung radiation773.

Alternatively, TEM and STEM can detect electrons transmitted through specimens. In conventional TEM, a single region is
exposed to a broad electron beam. In contrast, STEM uses a fine electron beam to probe a series of discrete probing locations.
Typically, electrons are accelerated across a potential difference to kinetic energies, Ek, of 80-300 keV. Electrons also have rest
energy Ee = mec2, where me is electron rest mass and c is the speed of light. The total energy, Et = Ee +Ek, of free electrons is
related to their rest mass energy by a Lorentz factor, γ ,

Et = γmec2 , (1)

γ = (1− v2/c2)1/2 , (2)

where v is the speed of electron propagation in the rest frame of an electron microscope. Electron kinetic energies in TEM and
STEM are comparable to their rest energy, Ee = 511 keV774, so relativistic phenomena775, 776 must be considered to accurately
describe their dynamics.
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Electrons exhibit wave-particle duality338, 339. Thus, in an ideal electron microscope, the maximum possible detection angle,
θ , between two point sources separated by a distance, d, perpendicular to the electron propagation direction is diffraction-limited.
The resolution limit for imaging can be quantified by Rayleigh’s criterion777–779

θ ' 1.22
λ

d
, (3)

where resolution increases with decreasing wavelength, λ . Electron wavelength increases with increasing accelerating voltage,
as described by the relativistic de Broglie relation780–782,

λ = hc
(
E2

k +2EeEk
)−1/2

, (4)

where h is Planck’s constant774. Electron wavelengths for typical acceleration voltages tabulated by JEOL are in picometres783.
In comparison, Cu K-α x-rays, which are often used for XRD, have wavelengths near 0.15 nm784. In theory, electrons can
therefore achieve over 100× higher resolution than x-rays. Electrons and x-rays are both ionizing; however, electrons often
do less radiation damage to thin specimens than x-rays739. Tangentially, TEM and STEM often achieve over 10 times higher
resolution than SEM785 as transmitted electrons in TEM and STEM are easier to resolve than electrons returned from material
surfaces in SEM.

In practice, TEM and STEM are also limited by incoherence786–788 introduced by inelastic scattering, electron energy
spread, and other mechanisms. TEM and STEM are related by an extension of Helmholtz reciprocity789, 790 where the source
plane in a TEM corresponds to the detector plane in a STEM791, as shown in fig. 5. Consequently, TEM coherence is limited
by electron optics between the specimen and image, whereas STEM coherence is limited by the illumination system. For
conventional TEM and STEM imaging, electrons are normally incident on a specimen792. Advantages of STEM imaging can
include higher contrast and resolution than TEM imaging, and lower radiation damage793. Following, STEM is increasing
being favored over TEM for high-resolution studies. However, we caution that definitions of TEM and STEM resolution can be
disparate794.

In addition to conventional imaging, TEM and STEM include a variety of operating modes for different applications.
For example, TEM operating configurations include electron diffraction795; convergent beam electron diffraction796–798

(CBED); tomography799–806; and bright field749, 807–809, dark field749, 809 and annular dark field810 imaging. Similarly, STEM
operating configurations include differential phase contrast811–814; tomography799, 801–803; and bright field815, 816 or dark field817

imaging. Further, electron cameras818, 819 are often supplemented by secondary signal detectors. For example, elemental
composition is often mapped by EDX spectroscopy, electron energy loss spectroscopy820, 821 (EELS) or wavelength dispersive
spectroscopy822, 823 (WDS). Similarly, electron backscatter diffraction824–826 (EBSD) can detect strain827, 828

3.2 Contrast Simulation
The propagation of electron wavefunctions though electron microscopes can be described by wave optics132. Following, the most
popular approach to modelling measurement contrast is multislice simulation829, 830, where an electron wavefunction is itera-
tively perturbed as it travels through a model of a specimen. Multislice software for electron microscopy includes ACEM830–832,
clTEM833, 834, cudaEM835, Dr. Probe836, 837, EMSoft838, 839, JEMS840, JMULTIS841, MULTEM842–844, NCEMSS845, 846, NU-
MIS847, Prismatic848–850, QSTEM851, SimulaTEM852, STEM-CELL853, Tempas854, and xHREM855–860. We find that most
multislice software is a recreation and slight modification of common functionality, possibly due to a publish-or-perish culture
in academia861–863. Bloch-wave simulation830, 864–868 is an alternative to multislice simulation that can reduce computation
time and memory requirements for crystalline materials869.

3.3 Automation
Most modern electron microscopes support Gatan Microscopy Suite (GMS) Software870. GMS enables electron microscopes to
be programmed by DigitalMicrograph Scripting, a propriety Gatan programming language akin to a simplified version of C++.
A variety of DigitalMicrograph scripts, tutorials and related resources are available from Dave Mitchell’s DigitalMicrograph
Scripting Website668, 669, FELMI/ZFE’s Script Database871 and Gatan’s Script library872. Some electron microscopists also
provide DigitalMicrograph scripting resources on their webpages873–875. However, DigitalMicrograph scripts are slow insofar
that they are interpreted at runtime, and there is limited native functionality for parallel and distributed computing. As a result,
extensions to DigitalMicrograph scripting are often developed in other programming languages that offer more functionality.

Historically, most extensions were developed in C++876. This was problematic as there is limited documentation, the
standard approach used outdated C++ software development kits such as Visual Studio 2008, and programming expertise
required to build functions that interface with DigitalMicrograph scripts limits accessibility. To increase accessibility, recent
versions of GMS now support python877. This is convenient as it enables ANNs developed with python to readily interface with
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electron microscopes. For ANNs developed with C++, users have the option to either create C++ bindings for DigitalMicrograph
script or for python. Integrating ANNs developed in other programming languages is more complicated as DigitalMicrograph
provides almost no support. However, that complexity can be avoided by exchanging files from DigitalMicrograph script to
external libraries via a random access memory (RAM) disk878 or secondary storage879.

Increasing accessibility, there are collections of GMS plugins with GUIs for automation and analysis873–875, 880. In addition,
various individual plugins are available881–885. Some plugins are open source, so they can be adapted to interface with ANNs.
However, many high-quality plugins are proprietary and closed source, limiting their use to automation of data collection and
processing. Plugins can also be supplemented by a variety of libraries and interfaces for electron microscopy signal processing.
For example, popular general-purpose software includes ImageJ886, pycroscopy515, 516 and HyperSpy517, 518. In addition, there
are directories for tens of general-purpose and specific electron microscopy programs887–889.

4 Components

Most modern ANNs are configured from a variety of DLF components. To take advantage of hardware accelerators58, most
ANNs are implemented as sequences of parallelizable layers of tensor operations890. Layers are often parallelized across
data and may be parallelized across other dimensions891. This section introduces popular nonlinear activation functions,
normalization layers, convolutional layers, and skip connections. To add insight, we provide comparative discussion and
address some common causes of confusion.

4.1 Nonlinear Activation
DNNs need multiple layers to be universal approximators35–43. Nonlinear activation functions892, 893 are therefore essential to
DNNs as successive linear layers can be contracted to a single layer. Activation functions separate artificial neurons, similar
to biological neurons894. To learn efficiently, most DNNs are tens or hundreds of layers deep45, 895–897. High depth increases
representational capacity45, which can help training by gradient descent as DNNs evolve as linear models898 and nonlinearities
can create suboptimal local minima where data cannot be fit by linear models899. There are infinitely many possible activation
functions. However, most activation functions have low polynomial order, similar to physical Hamiltonians45.

Most ANNs developed for electron microscopy are for image processing, where the most popular nonlinearities are rectifier
linear units900, 901 (ReLUs). The ReLU activation, f (x), of an input, x, and its gradient, ∂x f (x), are

f (x) = max(0,x) (5a) ∂ f (x)
∂x

=

{
0, if x≤ 0
1, if x > 0

(5b)

Popular variants of ReLUs include Leaky ReLU902,

f (x) = max(αx,x) (6a) ∂ f (x)
∂x

=

{
α, if x≤ 0
1, if x > 0

(6b)

where α is a hyperparameter, parametric ReLU20 (PreLU) where α is a learned parameter, dynamic ReLU where α is a learned
function of inputs903, and randomized leaky ReLU904 (RReLU) where α is chosen randomly. Typically, learned PreLU α are
higher the nearer a layer is to ANN inputs. Motivated by limited comparisons that do not show a clear performance difference
between ReLU and leaky ReLU905, some blogs906 argue against using leaky ReLU due to its higher computational requirements
and complexity. However, an in-depth comparison found that leaky ReLU variants consistently slightly outperform ReLU904. In
addition, the non-zero gradient of leaky ReLU for x≤ 0 prevents saturating, or "dying", ReLU907–909, where the zero gradient
of ReLUs stops learning.

There are a variety of other piecewise linear ReLU variants that can improve performance. For example, ReLUh activations
are limited to a threshold910, h, so that

f (x) = min(max(0,x),h) (7a) ∂ f (x)
∂x

=


0, if x≤ 0
1, if 0 < x≤ h
0, if x > h

(7b)
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Thresholds near h = 6 are often effective, so popular choice is ReLU6. Another popular activation is concatenated ReLU911

(CRELU), which is the concatenation of ReLU(x) and ReLU(−x). Other ReLU variants include adaptive convolutional912,
bipolar913, elastic914, and Lipschitz915 ReLUs. However, most ReLU variants are uncommon as they are more complicated
than ReLU and offer small, inconsistent, or unclear performance gains. Moreover, it follows from the universal approximator
theorems35–43 that disparity between ReLU and its variants approaches zero as network depth increases.

In shallow networks, curved activation functions with non-zero Hessians often accelerate convergence and improve
performance. A popular activation is the exponential linear unit916 (ELU),

f (x) =

{
α(exp(x)−1), if x≤ 0
x, if x≥ 0

(8a)
∂ f (x)

∂x
=

{
α exp(x), if x≤ 0
1, if x≥ 0

(8b)

where α is a learned parameter. Further, a scaled ELU917 (SELU),

f (x) =

{
λα(exp(x)−1), if x≤ 0
λx, if x≥ 0

(9a)
∂ f (x)

∂x
=

{
λα exp(x), if x≤ 0
λ , if x≥ 0

(9b)

with fixed α = 1.67326 and scale factor λ = 1.0507 can be used to create self-normalizing neural networks (SNNs). A SNN
cannot be derived from ReLUs or most other activation functions. Activation functions with curvature are especially common
in ANNs with only a couple of layers. For example, activation functions in radial basis function (RBF) networks918–921, which
are efficient universal approximators, are often Gaussians, multiquadratics, inverse multiquadratics, or square-based RBFs922.
Similarly, support vector machines923–925 (SVMs) often use RBFs, or sigmoids,

f (x) =
1

1+ exp(−x)
(10a)

∂ f (x)
∂x

= f (x)(1− f (x)) (10b)

Sigmoids can also be applied to limit the support of outputs. Unscaled, or "logistic", sigmoids are often denoted σ(x) and are
related to tanh by tanh(x) = 2σ(2x)−1. To avoid expensive exp(−x) in the computation of tanh, we recommend K-tanH926,
LeCun tanh927 or piecewise linear approximation928, 929.

The activation functions introduced so far are scalar functions than can be efficiently computed in parallel for each input
element. However, functions of vectors, x = {x1,x2, ...}, are also popular. For example, softmax activation930,

f (x) =
exp(x)

sum(exp(x))
(11a)

f (x)
∂x j

= ∑
i

f (x)i(δi j− f (x) j) (11b)

is often applied before computing cross-entropy losses for classification networks. Similarly, Ln vector normalization,

f (x) =
x
||x||n

(12a) f (x)
∂x j

=
1
||x||n

(
1−

xn
j

||x||nn

)
(12b)

is often applied to n-dimensional vectors to ensure that they lie on a unit n-sphere337. Finally, max pooling931, 932,

f (x) = max(x) (13a) f (x)
∂x j

=

{
1, if j = argmax(x)
0, if j 6= argmax(x)

(13b)

is another popular multivariate activation function that is often used for downsampling. However, max pooling has fallen out
of favor as it is often outperformed by strided convolutional layers933. Other vector activation functions include squashing
nonlinearities for dynamic routing by agreement in capsule networks934 and cosine similarity935.

There is a range of other activation functions that are not detailed here for brevity. Further, finding new activation functions
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is an active area of research936, 937. Notable variants include choosing activation functions from a set before training938, 939

and learning activation functions938, 940–943. Activation functions can also encode probability distributions944–946 or include
noise929. Finally, there are a variety of other deterministic activation functions937, 947. In electron microscopy, most ANNs
enable new or enhance existing applications. Subsequently, we recommend using computationally efficient and established
activation functions unless there is a compelling reason to use a specialized activation function.

4.2 Normalization
Normalization948–950 standardizes signals, which can accelerate convergence by gradient descent and improve performance.
Batch normalization951–956 is the most popular normalization layer in image processing DNNs trained with minibatches of N
examples. Technically, a "batch" is an entire training dataset and a "minibatch" is a subset; however, the "mini" is often omitted
where meaning is clear from context. During training, batch normalization applies a transform,

µB =
1
N

N

∑
i=1

xi , (14)

σ
2
B =

1
N

N

∑
i=1

(xi−µB)
2 , (15)

x̂ =
x−µB

(σ2
B + ε)1/2 , (16)

BatchNorm(x) = γ x̂+β , (17)

where x = {x1, ...,xN} is a batch of layer inputs, γ and β are a learnable scale and shift, and ε is a small constant added for
numerical stability. During inference, batch normalization applies a transform,

BatchNorm(x) =
γ

(Var[x]+ ε)1/2 x+
(

β − γE[x]
(Var[x]+ ε)1/2

)
, (18)

where E[x] and Var[x] are expected batch means and variances. For convenience, E[x] and Var[x] are often estimated with
exponential moving averages that are tracked during training. However, E[x] and Var[x] can also be estimated by propagating
examples through an ANN after training.

Increasing batch size stabilizes learning by averaging destabilizing loss spikes over batches251. Batched learning also
enables more efficient utilization of modern hardware accelerators. For example, larger batch sizes improve utilization of
GPU memory bandwidth and throughput379, 957, 958. Using large batches can also be more efficient than many small batches
when distributing training across multiple CPU clusters or GPUs due to communication overheads. However, the performance
benefits of large batch sizes can come at the cost of lower test accuracy as training with large batches tends to converge to
sharper minima959, 960. As a result, it often best not to use batch sizes higher than N ≈ 32 for image classification961. However,
learning rate scaling529 and layer-wise adaptive learning rates962 can increase accuracy of training with fixed larger batch sizes.
Batch size can also be increased throughout training without compromising accuracy963 to exploit effective learning rates being
inversely proportional to batch size529, 963. Alternatively, accuracy can be improved by creating larger batches from replicated
instances of training inputs with different data augmentations964.

There are a few caveats to batch normalization. Originally, batch normalization was applied before activation952. However,
applying batch normalization after activation often slightly improves performance965, 966. In addition, training can be sensitive to
the often-forgotten ε hyperaparameter967 in eqn. 16. Typically, performance decreases as epsilon is increased above ε ≈ 0.001;
however, there is a sharp increase in performance around ε = 0.01 on ImageNet. Finally, it is often assumed that batches
are representative of the training dataset. This is often approximated by shuffling training data to sample independent and
identically distributed (i.i.d.) samples. However, performance can often be improved by prioritizing sampling968, 969. We
observe that batch normalization is usually effective if batch moments, µB and σB, have similar values for every batch.

Batch normalization is less effective when training batch sizes are small, or do not consist of independent samples. To
improve performance, standard moments in eqn. 16 can be renormalized970 to expected means, µ , and standard deviations, σ ,

x̂← rx̂+d , (19)

r = clip[1/rmax,rmax]

(
σB

σ

)
, (20)

d = clip[−dmax,dmax]

(
µB−µ

σ

)
, (21)
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where gradients are not backpropagated with respect to (w.r.t.) the renormalization parameters, r and d. Moments, µ and σ are
tracked by exponential moving averages and clipping to rmax and dmax improves learning stability. Usually, clipping values
are increased from starting values of rmax = 1 and dmax = 0, which correspond to batch normalization, as training progresses.
Another approach is virtual batch normalization971 (VBN), which estimates µ and σ from a reference batch of samples and
does not require clipping. However, VBN is computationally expensive as it requires computing a second batch of statistics at
every training iteration. Finally, online972 and streaming950 normalization enable training with small batch sizes by replace µB
and σB in eqn. 16 with their exponential moving averages.

There are alternatives to the L2 batch normalization of eqns. 14-18 that standardize to different Euclidean norms. For
example, L1 batch normalization973 computes

s1 =
1
N

N

∑
i=1
|xi−µB| , (22)

x̂ =
x−µB

CL1s1
, (23)

where CL1 = (π/2)1/2. Although the CL1 factor could be learned by ANNs parameters, its inclusion accelerates convergence of
the original implementation of L1 batch normalization973. Another alternative is L∞ batch normalization973, which computes

s∞ = mean(topk(|x−µB|)) , (24)

x̂ =
x−µB

CL∞
s∞

, (25)

where CL∞
is a scale factor, and topk(x) returns the k highest elements of x. Hoffer et al suggest k = 10973. Some L1 batch

normalization proponents claim that L1 batch normalization outperforms951 or achieves similar performance973 to L2 batch
normalization. However, we found that L1 batch normalization often lowers performance in our experiments. Similarly, L∞

batch normalization often lowers performance973. Overall, L1 and L∞ batch normalization do not appear to offer a substantial
advantage over L2 batch normalization.

Figure 7. Visual comparison of various normalization methods highlighting regions that they normalize. Regions can be
normalized across batch, feature and other dimensions, such as height and width.

A variety of layers normalize samples independently, including layer, instance, and group normalization. They are compared
with batch normalization in fig. 7. Layer normalization974, 975 is a transposition of batch normalization that is computed across
feature channels for each training example, instead of across batches. Batch normalization is ineffective in RNNs; however,
layer normalization of input activations often improves accuracy974. Instance normalization976 is an extreme version of layer
normalization that standardizes each feature channel for each training example. Instance normalization was developed for style
transfer and makes ANNs insensitive to input image contrast. Group normalization977 is intermediate to instance and layer
normalization insofar that it standardizes groups of channels for each training example.

The advantages of a set of multiple different normalization layers, Ω, can be combined by switchable normalization978, 979,
which standardizes to

x̂ =

x− ∑
z∈Ω

λ
µ
z µz

∑
z∈Ω

λ σ
z σz

, (26)
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where µz and σz are means and standard deviations computed by normalization layer z. Their respective importance ratios,
λ

µ
z and λ σ

z , are trainable parameters that are softmax activated to sum to unity. Combining batch and instance normalization
statistics980 outperforms batch normalization for a range of computer vision tasks980. However, most layers strongly weighted
either batch or instance normalization, with most preferring batch normalization. Interestingly, combining batch, instance and
layer normalization statistics978, 979 results in instance normalization being used more heavily in earlier layers, whereas layer
normalization was preferred in the later layers, and batch normalization was preferred in the middle. Smaller batch sizes lead to
a preference towards layer normalization and instance normalization. Limitingly, using multiple normalization layers increases
computation. To limit expense, we therefore recommend either defaulting to batch normalization, or progressively using single
instance, batch or layer normalization layers.

A significant limitation of batch normalization is that it is not effective in RNNs. This is a limited issue as most electron
microscopists are developing CNNs for image processing. However, we anticipate that RNNs may become more popular
in electron microscopy following the increasing popularity of reinforcement learning981. In addition to general-purpose
alternatives to batch normalization that are effective in RNNs, such as layer normalization, there are a variety of dedicated
normalization schemes. For example, recurrent batch normalization982, 983 uses distinct normalization layers for each time
step. Alternatively, batch normalized RNNs984 only have normalization layers between their input and hidden states. Finally,
online972 and streaming950 normalization are general-purpose solutions that improve the performance of batch normalization in
RNNs by applying batch normalization based on a stream of past batch statistics.

Normalization can also standardize trainable weights, w. For example, weight normalization985,

WeightNorm(w) =
g
||w||2

w , (27)

decouples the L2 norm, g, of a variable from its direction. Similarly, weight standardization986 subtracts means from variables
and divides them by their standard deviations,

WeightStd(w) =
w−mean(w)

std(w)
, (28)

similar to batch normalization. Weight normalization often outperforms batch normalization at small batch sizes. However,
batch normalization consistently outperforms weight normalization at larger batch sizes used in practice987. Combining weight
normalization with running mean-only batch normalization can accelerate convergence985. However, similar final accuracy can
be achieved without mean-only batch normalization at the cost of slower convergence, or with the use of zero-mean preserving
activation functions913, 973. To achieve similar performance to batch normalization, norm-bounded weight normalization973 can
be applied to DNNs with scale-invariant activation functions, such as ReLU. Norm-bounded weight normalization fixes g at
initialization to avoid learning instability973, 987, and scales outputs with the final DNN layer.

Limitedly, weight normalization encourages the use of a small number of features to inform activations988. To maximize
feature utilization, spectral normalization988,

SpectralNorm(w) =
w

σ(w)
, (29)

divides tensors by their spectral norms, σ(w). Further, spectral normalization limits Lipschitz constants989, which often
improves generative adversarial network990–993 (GAN) training by bounding backpropagated discriminator gradients988. The
spectral norm of v is the maximum value of a diagonal matrix, Σ, in the singular value decomposition994–997 (SVG),

v = UΣV∗ , (30)

where U and V are orthogonal matrices of orthonormal eigenvectors for vvT and vT v, respectively. To minimize computation,
σ(w) is often approximated by the power iteration method998, 999,

v̂← wTû
||wTû||2

, (31)

û← wv̂
||wv̂||2

, (32)

σ(w)' ûT wv̂ , (33)

where one iteration of eqns. 31-32 per training iteration is usually sufficient.
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Parameter normalization can complement or be combined with signal normalization. For example, scale normalization1000,

ScaleNorm(x) =
g
||x||2

x , (34)

learns scales, g, for activations, and is often combined with weight normalization985, 1001 in transformer networks. Similarly,
cosine normalization935,

CosineNorm(x) =
w
||w||2

· x
||x||2

, (35)

computes products of L2 normalized parameters and signals. Both scale and cosine normalization can outperform batch
normalization.

Figure 8. Visualization of convolutional layers. a) Traditional convolutional layer where output channels are sums of biases
and convolutions of weights with input channels. b) Depthwise separable convolutional layer where depthwise convolutions
compute one convolution with weights for each input channels. Output channels are sums of biases and pointwise convolutions
weights with depthwise channels.

4.3 Convolutional Layers
A convolutional neural network1002–1005 (CNNs) is trained to weight convolutional kernels to exploit local correlations, such
as spatial correlations in electron micrographs220. Historically, the development of CNNs was inspired by primate visual
cortices1006, where partially overlapping neurons are only stimulated by visual stimuli within their receptive fields. Based on this
idea, Fukushima published his Neocognitron1007–1010 in 1980. Following, convolutional formulations were published by Atlas
et al in 1988 for a single-layer CNN1011, and LeCun et al in 1998 for a multi-layer CNN1012, 1013. Following, GPUs were applied
to accelerate convolutions in 20101014, leading to a breakthrough in classification performance on ImageNet with AlexNet in
201267. Indeed, the deep learning era is often partitioned into before and after AlexNet17. Deep CNNs are now ubiquitous.
For example, there are review papers on applications of CNNs to action recognition in videos1015, cytometry1016, image and
video compression1017, 1018, image background subtraction1019, image classification262, image style transfer1020, medical image
analysis320–322, 1021–1028, object detection1029, 1030, semantic image segmentation293, 320–322, and text classification1031.

In general, the convolution of two functions, f (t) and g(t), is

( f ∗g)(x) :=
∫

s∈Ω

f (s)g(x− s)ds , (36)

and their cross-correlation is

( f ◦g)(x) :=
∫

s∈Ω

f (s)g(x+ s)ds , (37)

where integrals have unlimited support, Ω. In a CNN, convolutional layers sum convolutions of feature channels with trainable
kernels, as shown in fig. 8. Thus, f (t) and g(t) are discrete functions, and the integrals in eqns. 36-37 can be replaced with
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limited summations. Since cross-correlation is equivalent to convolution if the kernel is flipped in every dimension, and CNN
kernels are trainable, convolution and cross-correlation is often interchangeable in deep learning. For example, a TensorFlow
function named "tf.nn.convolution" computes cross-correlations1032. Nevertheless, the difference between convolution and
cross-correlation could be source of subtle errors if convolutional layers from a DLF are used in an image processing pipeline
with static asymmetric kernels.

Table 3. A 96×96 electron micrograph a) unchanged, and filtered by b) a 5×5 symmetric Gaussian kernel with a 2.5 px
standard deviation, c) a 3×3 horizontal Sobel kernel, and a d) 3×3 vertical Sobel kernel. Intensities in a) and b) are in [0, 1],
whereas intensities in c) and d) are in [-1, 1].

Filters designed by humans1033 are often convolved in image processing pipelines. For example, convolutions of electron
micrographs with Gaussian and Sobel kernels are shown in table 3. Gaussian kernels compute local averages, blurring images
and suppressing high-frequency noise. For example, a 5×5 symmetric Gaussian kernel with a 2.5 px standard deviation is


0.1689
0.2148
0.2326
0.2148
0.1689

[0.1689 0.2148 0.2326 0.2148 0.1689
]
=


0.0285 0.0363 0.0393 0.0363 0.0285
0.0363 0.0461 0.0500 0.0461 0.0363
0.0393 0.0500 0.0541 0.0500 0.0393
0.0363 0.0461 0.0500 0.0461 0.0363
0.0285 0.0363 0.0393 0.0363 0.0285

 . (38)

Alternatives to Gaussian kernels for image smoothing1034 include mean, median and bilaterial filters. Sobel kernels compute
horizontal and vertical spatial gradients that can be used for edge detection1035. For example, 3×3 Sobel kernels are

1
2
1

[1 0 −1
]
=

1 0 −1
2 0 −2
1 0 −1

 (39a)

 1
0
−1

[1 2 1
]
=

 1 2 1
0 0 0
−1 −2 −1

 (39b)

Alternatives to Sobel kernels offer similar utility, and include extended Sobel1036, Scharr1037, 1038, Kayyali1039, Roberts cross1040

and Prewitt1041 kernels. Two-dimensional Gaussian and Sobel kernels are examples of linearly separable, or "flattenable",
kernels, which can be split into two one-dimensional kernels, as shown in eqns. 38-39b. Kernel separation can decrease
computation in convolutional layers by convolving separated kernels in series, and CNNs that only use separable convolutions
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are effective1042–1044. However, serial convolutions decrease parallelization and separable kernels have fewer degrees of
freedom, decreasing representational capacity. Following, separated kernels are usually at least 5×5, and separated 3×3 kernels
are unusual. Even-sized kernels, such as 2×2 and 4×4, are rare as symmetric padding is needed to avoid information erosion
caused by spatial shifts of feature maps1045.

A traditional 2D convolutional layer maps inputs, xinput, with height H, width, W , and depth, D, to

xoutput
ki j = bk +

D

∑
d=1

M

∑
m=1

N

∑
n=1

wdkmnxinput
d(i+m−1)( j+n−1), , i ∈ [1,H−M+1] , j ∈ [1,W −N +1] , (40)

where K output channels are indexed by k ∈ [1,K], is the sum of a bias, b, and convolutions of each input channel with M×N
kernels with weights, w. For clarity, a traditional convolutional layer is visualized in fig. 8a. Convolutional layers for 1D, 3D
and higher-dimensional kernels1046 have a similar form to 2D kernels, where kernels are convolved across each dimension.
Most inputs to convolutional layers are padded1047, 1048 to avoid reducing spatial resolutions by kernel sizes, which could
remove all resolution in deep networks. Padding is computationally inexpensive and eases implementations of ANNs that would
otherwise combine layers with different sizes, such as FractalNet1049, Inception1050–1052, NASNet1053, recursive CNNs1054, 1055,
and ResNet1056. Pre-padding inputs results in higher performance than post-padding outputs1057. Following AlexNet67, most
convolutional layers are padded with zeros for simplicity. Reflection and replication padding achieve similar results to zero
padding1048. However, padding based on partial convolutions1058 consistently outperforms other methods1048.

Convolutional layers are similar to fully connected layers used in multilayer perceptrons1059, 1060 (MLPs). For comparison
with eqn. 40, a fully connected, or "dense", layer in a MLP computes

xoutput
k = bk +

D

∑
d=1

wdkxinput
d , (41)

where every input element is connected to every output element. Convolutional layers reduce computation by making local
connections within receptive fields of convolutional kernels, and by convolving kernels rather than using different weights at
each input position. Intermediately, fully connected layers can be regularized to learn local connections1061. Fully connected
layers are sometimes used at the middle of encoder-decoders1062. However, such fully connected layers can often be replaced
by multiscale atrous, or "holey", convolutions931 in an atrous spatial pyramid pooling294, 295 (ASPP) module to decrease
computation without a significant decrease in performance. Alternatively, weights in fully connected layers can be decomposed
into multiple smaller tensors to decrease computation without significantly decreasing performance1063, 1064.

Convolutional layers can perform a variety of convolutional arithmetic931. For example, strided convolutions1065 usually
skip computation of outputs that are not at multiples of an integer spatial stride. Most strided convolutional layers are applied
throughout CNNs to sequentially decrease spatial extent, and thereby decrease computational requirements. In addition, strided
convolutions are often applied at the start of CNNs527, 1050–1052 where most input features can be resolved at a lower resolution
than the input. For simplicity and computational efficiency, stride is typically constant within a convolutional layer; however,
increasing stride away from the centre of layers can improve performance1066. To increase spatial resolution, convolutional
layers often use reciprocals of integer strides1067. Alternatively, spatial resolution can be increased by combining interpolative
upsampling with an unstrided convolutional layer1068, 1069, which can help to minimize output artefacts.

Convolutional layers couple the computation of spatial and cross-channel convolutions. However, partial decoupling of
spatial and cross-channel convolutions by distributing inputs across multiple convolutional layers and combining outputs
can improve performance. Partial decoupling of convolutions is prevalent in many seminal DNN architectures, including
FractalNet1049, Inception1050–1052, NASNet1053. Taking decoupling to an extreme, depthwise separable convolutions527, 1070, 1071

shown in fig. 8 compute depthwise convolutions,

xdepth
di j =

M

∑
m=1

N

∑
n=1

udmnxinput
d(i+m−1)( j+n−1) , (42)

then compute pointwise 1×1 convolutions for D intermediate channels,

xoutput
ki j = bk +

D

∑
d=1

vpoint
dk xdepth

di j , (43)

where K output channels are indexed by k ∈ [1,K]. Depthwise convolution kernels have weights, u, and the depthwise
layer is often followed by extra batch normalization before pointwise convolution to improve performance and accelerate
convergence1070. Increasing numbers of channels with pointwise convolutions can increase accuracy1070, at the cost of increased
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computation. Pointwise convolutions are a special case of traditional convolutional layers in eqn. 40 and have convolution
kernel weights, v, and add biases, b. Naively, depthwise separable convolutions require fewer weight multiplications than
traditional convolutions1072, 1073. However, extra batch normalization and serialization of one convolutional layer into depthwise
and pointwise convolutional layers mean that depthwise separable convolutions and traditional convolutions have similar
computing times527, 1073.

Most DNNs developed for computer vision use fixed-size inputs. Although fixed input sizes are often regarded as an
artificial constraint, it is similar animalian vision where there is an effectively constant number of retinal rods and cones1074–1076.
Typically, the most practical approach to handle arbitrary image shapes is to train a DNN with crops so that it can be tiled
across images. In some cases, a combination of cropping, padding and interpolative resizing can also be used. To fully
utilize unmodified variable size inputs, a simple is approach to train convolutional layers on variable size inputs. A pooling
layer, such as global average pooling, can then be applied to fix output size before fully connected or other layers that might
require fixed-size inputs. More involved approaches include spatial pyramid pooling1077 or scale RNNs1078. Typical electron
micrographs are much larger than 300×300, which often makes it unfeasible for electron microscopists with a few GPUs to
train high-performance DNNs on full-size images. For comparison, Xception was trained on 300×300 images with 60 K80
GPUs for over one month.

The Fourier transform1079, f̂ (k1, ...,kN), at an N-dimensional Fourier space vector, {k1, ...,kN}, is related to a function,
f (x1, ...,xN), of an N-dimensional signal domain vector, {x1, ...,xN}, by

f̂ (k1, ...,kN) =

(
|b|

(2π)1−a

)N/2 ∞∫
−∞

...

∞∫
−∞

f (x1, ...,xN)exp(+ibk1xi + ...+ ibkNxN)dx1...dxN , (44)

f (x1, ...,xN) =

(
|b|

(2π)1+a

)N/2 ∞∫
−∞

...

∞∫
−∞

f̂ (k1, ...,kN)exp(−ibk1xi− ...− ibkNxN)dk1...dkN , (45)

where π = 3.141..., and i = (−1)1/2 is the imaginary number. Two parameters, a and b, can parameterize popular conventions
that relate the Fourier and inverse Fourier transforms. Mathematica documentation nominates conventions1080 for general
applications (a,b), pure mathematics (1,−1), classical physics (−1,1), modern physics (0,1), systems engineering (1,−1),
and signal processing (0,2π). We observe that most electron microscopists follow the modern physics convention of a = 0 and
b = 1; however, the choice of convention is arbitrary and usually does not matter if it is consistent within a project. For discrete
functions, Fourier integrals are replaced with summations that are limited to the support of the function.

Discrete Fourier transforms of uniformly spaced inputs are often computed with a fast Fourier transform (FFT) algorithm,
which can be parallelized for CPUs1081 or GPUs61, 1082–1084. Typically, the speedup of FFTs on GPUs over CPUs is higher for
larger signals1085, 1086. Most popular FFTs are based on the Cooley-Turkey algorithm1087, 1088, which recursively divides FFTs
into smaller FFTs. We observe that some electron microscopists consider FFTs to be limited to radix-2 signals that can be
recursively halved; however, FFTs can use any combination of factors for the sizes of recursively smaller FFTs. For example,
clFFT1089 FFT algorithms support signal sizes that are any sum of powers of 2, 3, 5, 7, 11 and 13.

Convolution theorems can decrease computation by enabling convolution in the Fourier domain1090. To ease notation, we
denote the Fourier transform of a signal, I, by FT(I), and the inverse Fourier transform by FT−1(I). Following, the convolution
theorems for two signals, I1 and I2, are1091

FT(I1 ∗ I2) = FT(I1) ·FT(I2) , (46)
FT(I1 · I2) = FT(I1)∗FT(I2) , (47)

where the signals can be feature channels and convolutional kernels. Fourier domain convolutions, I1∗I2 =FT−1 (FT(I1) ·FT(I2)),
are increasingly efficient, relative to signal domain convolutions, as kernel and image sizes increase1090. Indeed, Fourier domain
convolutions are exploited to enable faster training with large kernels in Fourier CNNs1090, 1092. However, Fourier CNNs are
rare as most researchers use small 3×3 kernels, following University of Oxford Visual Geometry Group (VGG) CNNs1093.

4.4 Skip Connections
Residual connections1056 add a signal after skipping ANN layers, similar to cortical skip connections1094, 1095. Residuals
improve DNN performance by preserving gradient norms during backpropagation525, 1096 and avoiding bad local minima1097 by
smoothing DNN loss landscapes1098. In practice, residuals enable DNNs to behave like an ensemble of shallow networks1099

that learn to iteratively estimate outputs1100. Mathematically, a residual layer learns parameters, wl , of a perturbative function,
fl(xl ,wl), that maps a signal, xl , at depth l to depth l +1,

xl+1 = xl + fl(xl ,wl) . (48)
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Figure 9. Residual blocks where a) one, b) two, and c) three convolutional layers are skipped. Typically, convolutional layers
are followed by batch normalization then activation.

Residuals were developed for CNNs1056, and examples of residual connections that skip one, two and three convolutional
layers are shown in fig. 9. Nonetheless, residuals are also used in MLPs1101 and RNNs1102–1104. Representational capacity of
perturbative functions increases as the number of skipped layers increases. As result, most residuals skip two or three layers.
Skipping one layer rarely improves performance due to its low representational capacity1056.

There are a range of residual connection variants that can improve performance. For example, highway networks1105, 1106

apply a gating function to skip connections, and dense networks1107–1109 use a high number of residual connections from
multiple layers. Another example is applying a 1×1 convolutional layer to xl before addition527, 1056 where fl(xl ,wl) spatially
resizes or changes numbers of feature channels. However, resizing with norm-preserving convolutional layers1096 before
residual blocks can often improve performance. Finally, long additive1110 residuals that connect DNN inputs to outputs are
often applied to DNNs that learn perturbative functions.

A limitation of preserving signal information with residuals1111, 1112 is that residuals make DNNs learn perturbative functions,
which can limit accuracy of DNNs that learn non-perturbative functions if they do not have many layers. Feature channel
concatenation is an alternative approach that not perturbative, and that supports combination of layers with different numbers
of feature channels. In encoder-decoders, a typical example is concatenating features computed near the start with layers
near the end to help resolve output features294, 295, 297, 305. Concatenation can also combine embeddings of different1113, 1114 or
variants of354 input features by multiple DNNs. Finally, peephole connections in RNNs can improve performance by using
concatenation to combine cell state information with other cell inputs1115, 1116.

5 Architecture

There is a high variety of ANN architectures3–6 that are trained to minimize losses for a range of applications. Many of
the most popular ANNs are also the simplest, and information about them is readily available. For example, encoder-
decoder294–297, 490–492 or classifier262 ANNs usually consist of single feedforward sequences of layers that map inputs to outputs.
This section introduces more advanced ANNs used in electron microscopy, including actor-critics, GANs, RNNs, and VAEs.
These ANNs share weights between layers or consist of multiple subnetworks. Other notable architectures include recursive
CNNs1054, 1055, Network-in-Networks1117 (NiNs), and transformers1118, 1119. Although they will not be detailed here, their
references may be good starting points for research.

Figure 10. Actor-critic architecture. An actor outputs actions based on input states. A critic then evaluates action-state pairs
to predict losses.
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5.1 Actor-Critic
Most ANNs are trained by gradient descent using backpropagated gradients of a differentiable loss function c.f. section 6.1.
However, some losses are not differentiable. Examples include losses of actors directing their vision1120, 1121, and playing
competitive22 or score-based1122, 1123 computer games. To overcome this limitation, a critic1124 can be trained to predict
differentiable losses from action and state information, as shown in fig. 10. If the critic does not depend on states, it is a
surrogate loss function1125, 1126. Surrogates are often fully trained before actor optimization, whereas critics that depend on
actor-state pairs are often trained alongside actors to minimize the impact of catastrophic forgetting1127 by adapting to changing
actor policies and experiences. Alternatively, critics can be trained with features output by intermediate layers of actors to
generate synthetic gradients for backpropagation1128.

Figure 11. Generative adversarial network architecture. A generator learns to produce outputs that look realistic to a
discriminator, which learns to predict whether examples are real or generated.

5.2 Generative Adversarial Network
Generative adversarial networks990–993 (GANs) consist of discriminator and generator subnetworks that play an adversarial
game, as shown in fig. 11. Generators learn to generate outputs that look realistic to a discriminator, whereas the discriminator
learns to predict whether examples are real or generated. Most GANs are developed to generate visual media with realistic
characteristics. For example, partial STEM images infilled with a GAN are less blurry than images infilled with a non-adversarial
generator trained to minimize MSEs192. Alternatively, computationally inexpensive loss functions engineered by humans, such
as SSIM1129 and Sobel losses220, can improve generated output realism. However, it follows from the universal approximator
theorems35–43 that training with ANN discriminators can often yield more realistic outputs.

There are many popular GAN loss functions and regularization mechanisms1130–1134. Originally, GANs were trained to
minimize logarithmic discriminator, D, and generator, G, losses1135,

LD =− logD(x)− log(1−D(G(z))) , (49)
LG = log(1−D(G(z))) , (50)

where z are generator inputs, G(z) are generated outputs, and x are example outputs. Discriminators predict labels, D(x)
and D(G(z)), where target labels are 0 and 1 for generated and real examples, respectively. Limitedly, logarithmic losses
are numerically unstable for D(x)→ 0 or D(G(z))→ 1, as the denominator, f (x), in ∂x log f (x) = ∂x f (x)/ f (x) vanishes. In
addition, discriminators must be limited to D(x) > 0 and D(G(z)) < 1, so that logarithms are not complex. To avoid these
issues, we recommend training discriminators with squared difference losses1136, 1137,

LD = (D(x)−1)2 +D(G(z))2 , (51)

LG = (D(G(z))−1)2 . (52)

Nevertheless, there are a variety of other alternatives to logarithmic loss functions that are also effective1130, 1131.
A variety of methods have been developed to improve GAN training971, 1138. The most common issues are catastrophic

forgetting1127 of previous learning, and mode collapse1139 where generators only output examples for a subset of a target
domain. Mode collapse often follows discriminators becoming Lipschitz discontinuous. Wasserstein GANs1140 avoid mode
collapse by clipping trainable variables, albeit often at the cost of 5-10 discriminator training iterations per generator training
iteration. Alternatively, Lipschitz continuity can be imposed by adding a gradient penalty1141 to GAN losses, such as differences
of L2 norms of discriminator gradients from unity,

x̃ = G(z) , (53)
x̂ = εx+(1− ε)x̃ , (54)

LD = D(x̃)−D(x)+λ (||∂x̂D(x̂)||2−1)2 , (55)
LG =−D(G(z)) , (56)
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where ε ∈ [0,1] is a uniform random variate, λ weights the gradient penalty, and x̃ is an attempt to generate x. However, using
a gradient penalty introduces additional gradient backpropagation that increases discriminator training time. There are also a
variety of computationally inexpensive tricks that can improve training, such as adding noise to labels971, 1051, 1142 or balancing
discriminator and generator learning rates337. These tricks can help to avoid discontinuities in discriminator output distributions
that can lead to mode collapse; however, we observe that these tricks do not reliably stabilize GAN training.

Instead, we observe that spectral normalization988 reliably stabilizes GAN discriminator training in our electron microscopy
research192, 193, 337. Spectral normalization controls Lipschitz constants of discriminators by fixing the spectral norms of their
weights, as introduced in section 4.2. Advantages of spectral normalization include implementations based on the power
iteration method998, 999 being computationally inexpensive, not adding a regularizing loss function that could detrimentally
compete1143, 1144 with discrimination losses, and being effective with one discriminator training iterations per generator training
iteration988, 1145. Spectral normalization is popular in GANs for high-resolution image synthesis, where it is also applied in
generators to stabilize training1146.

There are a variety of GAN architectures1147. For high-resolution image synthesis, computation can be decreased by
training multiple discriminators to examine image patches at different scales192, 1148. For domain translation characterized
by textural differences, a cyclic GAN1149, 1150 consisting of two GANs can map from one domain to the other and vice versa.
Alternatively, two GANs can share intermediate layers to translate inputs via a shared embedding domain1151. Cyclic GANs can
also be combined with a siamese network268–270 for domain translation beyond textural differences1152. Finally, discriminators
can introduce auxiliary losses to train DNNs to generalize to examples from unseen domains1153–1155.

Figure 12. Architectures of recurrent neural networks with a) long short-term memory (LSTM) cells, and b) gated recurrent
units (GRUs).

5.3 Recurrent Neural Network
Recurrent neural networks519–524 reuse an ANN cell to process each step of a sequence. Most RNNs learn to model long-term
dependencies by gradient backpropagation through time1156 (BPTT). Essentially, the ability of RNNs to utilize past experiences
enables them to model partially observed and variable length Markov decision processes1157, 1158 (MDPs). Applications of
RNNs include directing vision1120, 1121, image captioning1159, 1160, language translation1161, medicine73, natural language
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processing1162, 1163, playing computer games22, text classification1031, and traffic forecasting1164. Many RNNs are combined
with CNNs to embed visual media1121 or words1165, 1166, or to process RNN outputs1167, 1168. RNNs can also be combined with
with MLPs1120, or text embeddings1169 such as BERT1169, 1170, continuous bag-of-words1171–1173 (CBOW), doc2vec1174, 1175,
GloVe1176 and word2vec1171, 1177.

The most popular RNNs consist of short-term memory1178–1181 (LSTM) cells and gated recurrent units1179, 1182–1184

(GRUs). LSTMs and GRUs are popular as they solve the vanishing gradient problem525, 1185, 1186 and have consistently high
performance1187–1192. Their architecture is shown in fig. 12. At step t, an LSTM outputs a hidden state, ht , and cell state, Ct ,
given by

ft = σ(w f · [ht−1,xt ]+b f ) , (57)
it = σ(wi · [ht−1,xt ]+bi) , (58)
c̃t = tanh(wC · [ht−1,xt ]+bC) , (59)

Ct = ftCt−1 + itC̃t , (60)
ot = σ(wo · [ht−1,xt ]+bo) , (61)
ht = ot tanh(Ct) , (62)

where Ct−1 is the previous cell state, ht−1 is the previous hidden state, xt is the step input, and σ is a logistic sigmoid function
of eqn. 10a, [x,y] is the concatenation of x and y channels, and (w f ,b f ), (wi,bi), (wC,bC) and (wo,bo) are pairs of weights
and biases. A GRU performs fewer computations than an LSTM and does not have separate cell and hidden states,

zt = σ(wz · [ht−1,xt ]+bz) , (63)
rt = σ(wr · [ht−1,xt ]+br) , (64)

h̃t = tanh(wh · [rtht−1,xt ]+bh) , (65)

ht = (1− zt)ht−1 + zt h̃t , (66)

where (wz,bz), (wr,br), and (wh,bh) are pairs of weights and biases. Minimal gated units (MGUs) can further reduce
computation1193. A large-scale analysis of RNN architectures for language translation found that LSTMs consistently
outperform GRUs1187. GRUs struggle with simple languages that are learnable by LSTMs as the combined hidden and cell
states of GRUs make it more difficult for GRUs to perform unbounded counting1191. However, further investigations found that
GRUs can outperform LSTMs on tasks other than language translation1188, and that GRUs can outperform LSTMs on some
datasets1189, 1190, 1194. Overall, LSTM performance is comparable to that of GRUs.

There are a variety of alternatives to LSTM and GRUs. Examples include continuous time RNNs1195–1199 (CTRNNs),
Elman1200 and Jordan1201 networks, independently RNNs1202 (IndRNNs), Hopfield networks1203, recurrent MLPs1204 (RMLPs).
However, none of the variants offer consistent performance benefits over LSTMs for general sequence modelling. Similarly,
augmenting LSTMs with additional connections, such as peepholes1115, 1116 and projection layers1205, does not consistently
improve performance. For electron microscopy, we recommend defaulting to LSTMs as we observe that their performance
is more consistently high than performance of other RNNs. However, LSTM and GRU performance is often comparable, so
GRUs are also a good choice to reduce computation.

There are a variety of architectures based on RNNs. Popular examples include deep RNNs1206 that stack RNN cells
to increase representational ability, bidirectional RNNs1207–1210 that process sequences both forwards and in reverse to
improve input utilization, and using separate encoder and decoder subnetworks1182, 1211 to embed inputs and generate outputs.
Hierarchical RNNs1212–1216 are more complex models that stack RNNs to efficiently exploit hierarchical sequence information,
and include multiple timescale RNNs1217, 1218 (MTRNNs) that operate at multiple sequence lengthscales. Finally, RNNs can
be augmented with additional functionality to enable new capabilities. For example, attention1159, 1219–1221 mechanisms can
enable more efficient input utilization. Further, creating a neural Turing machine (NTMs) by augmenting a RNN with dynamic
external memory1222, 1223 can make it easier for an agent to solve dynamic graphs.

5.4 Autoencoders
Autoencoders1224–1226 (AEs) learn to efficiently encode inputs, I, without supervision. An AE consists of a encoder, E, and
decoder, D, as shown in fig. 13a. Most encoders and decoders are jointly trained1227 to restore inputs from encodings, E(I), to
minimize a MSE loss,

LAE = MSE(D(E(I)),I) , (67)

by gradient descent. In practice, DNN encoders and decoders yield better compression1225 than linear techniques, such as
principal component analysis1228 (PCA), or shallow ANNs. Indeed, deep AEs can outperform JPEG image compression1229.
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Figure 13. Architectures of autoencoders where an encoder maps an input to a latent space and a decoder learns to reconstruct
the input from the latent space. a) An autoencoder encodes an input in a deterministic latent space, whereas a b) traditional
variational autoencoder encodes an input as means, µ , and standard deviations, σ , of Gaussian multivariates, µ +σ · ε , where ε

is a standard normal multivariate.

Denoising autoencoders1230–1234 (DAEs) are a popular AE variant that can learn to remove artefacts by artificially corrupting
inputs inside encoders. Alternatively, contractive autoencoders1235, 1236 (CAEs) can decrease sensitivity to input values by
adding a loss to minimize gradients w.r.t. inputs. Most DNNs that improve electron micrograph signal-to-noise are DAEs.

In general, semantics of AE outputs are pathological functions of encodings. To generate outputs with well-behaved
semantics, traditional variational autoencoders945, 1237, 1238 (VAEs) learn to encode means, µ , and standard deviations, σ , of
Gaussian multivariates. Meanwhile, decoders learn to reconstruct inputs from sampled multivariates, µ +σ · ε , where ε is a
standard normal multivariate. Traditional VAE architecture is shown in fig. 13b. Usually, VAE encodings are regularized by
adding the Kullback-Leibler (KL) divergence of encodings from standard multinormals to the VAE loss function,

LVAE = MSE(D(µ +σ · ε),I)+ λKL

2Bu

B

∑
i=1

u

∑
j=1

µ
2
i j +σ

2
i j− log(σ2

i j)−1 , (68)

where λKL weights the contribution of the KL divergence loss for a batch size of B, and a latent space with u elements. However,
variants of Gaussian regularization can improve clustering220, and sparse autoencoders1239–1242 (SAEs) that regularize encoding
sparsity can encode more meaningful features. To generate realistic outputs, a VAE can be combined with a GANs to create a
VAE-GAN1243–1245. Adding a loss to minimize differences between gradients of generated and target outputs is computationally
inexpensive alternative that can generate realistic outputs for some applications220.

A popular application of VAEs is data clustering. For example, VAEs can encode hash tables1246–1250 for search engines,
and we use VAEs as the basis of our electron micrograph search engines220. Encoding clusters visualized by tSNE can be
labelled to classify data220, and encoding deviations from clusters can be used for anomaly detection1251–1255. In addition,
learning encodings with well-behaved semantics enables encodings to be used for semantic manipulation1255, 1256. Finally,
VAEs can be used as generative models to create synthetic populations1257, 1258, develop new chemicals1259–1262, and synthesize
underrepresented data to reduce imbalanced learning1263.

6 Optimization

Training, testing, deployment and maintenance of machine learning systems is often time-consuming and expensive1264–1267.
The first step is preparing training data and setting up data pipelines for ANN training and evaluation. Typically, ANN
parameters are randomly initialized for optimization by gradient descent, possibly as part of an automatic machine learning
algorithm. Reinforcement learning is a special optimization case where the loss is a discounted future reward. During training,
ANN components are often regularized to stabilize training, accelerate convergence, or improve performance. Finally, trained
models can be streamlined for efficient deployment. This section introduces each step. We find that electron microscopists
can be apprehensive about robustness and interpretability of ANNs, so we also provide subsections on model evaluation and
interpretation.

6.1 Gradient Descent
Most ANNs are iteratively trained by gradient descent453, 1280–1284, as described by algorithm 1 and shown in fig. 14. To
minimize computation, results at intermediate stages of forward propagation, where inputs are mapped to outputs, are often
stored in memory. Storing the forwards pass in memory enables backpropagation memoization by sequentially computing
gradients w.r.t. trainable parameters. To reduce memory costs for large ANNs, a subset of intermediate forwards pass results can
be saved as starting points to recompute other stages during backpropagation1285, 1286. Alternatively, forward pass computations
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Figure 14. Gradient descent. a) Arrows depict steps across one dimension of a loss landscape as a model is optimized by
gradient descent. In this example, the optimizer traverses a small local minimum; however, it then gets trapped in a larger
sub-optimal local minimum, rather than reaching the global minimum. b) Experimental DNN loss surface for two random
directions in parameter space showing many local minima1098. The plot in part b) is reproduced with permission under an MIT
license1268.

Algorithm 1 Optimization by gradient descent.

Initialize a model, f (x), with trainable parameters, θ 1.
for training step t = 1,T do

Forwards propagate a randomly sampled batch of inputs, x, through the model to compute outputs, y = f (x).
Compute loss, Lt , for outputs.
Use the differentiation chain rule1269 to backpropagate gradients of the loss to trainable parameters, θ t .
Apply an optimizer to the gradients to update θ t−1 to θ t .

end for

can be split across multiple devices1287. Optimization by gradient descent plausibly models learning in some biological
systems1288. However, gradient descent is not generally an accurate model of biological learning1289–1291.

There are many popular gradient descent optimizers for deep learning1280–1282. Update rules for eight popular optimizers are
summarized in fig. 15. Other optimizers include AdaBound1292, AMSBound1292, AMSGrad1293, Lookahead1294, NADAM1295,
Nostalgic Adam1296, Power Gradient Descent1297, RADAM1298, and trainable optimizers1299–1303. Gradient descent is effective
in the high-dimensional optimization spaces of overparameterized ANNs1304 as the probability of getting trapped in a sub-
optimal local minimum decreases as the number of dimensions increases. The simplest optimizer is "vanilla" stochastic gradient
descent (SGD), where a trainable parameter perturbation, ∆θt = θt −θt−1, is the product of a learning rate, η , and derivative
of a loss, Lt , w.r.t. the trainable parameter, ∂θ Lt . However, vanilla SGD convergence is often limited by unstable parameter
oscillations as it a low-order local optimization method1305. Further, vanilla SGD has no mechanism to adapt to varying gradient
sizes, which vary effective learning rates as ∆θ ∝ ∂θ Lt .

To accelerate convergence, many optimizers introduce a momentum term that weights an average of gradients with past
gradients1273, 1306, 1307. Momentum-based optimizers in fig. 15 are momentum, Nesterov momentum1273, 1274, quasi-hyperbolic
momentum1276, AggMo1277, ADAM1279, and AdaMax1279. To standardize effective learning rates for every layer, adaptive
optimizers normalize updates based on an average of past gradient sizes. Adaptive optimizers in fig. 15 are RMSProp1278,
ADAM1279, and AdaMax1279, which usually result in faster convergance and higher accuracy than other optimizers1308, 1309.
However, adaptive optimizers can be outperformed by vanilla SGD due to overfitting1310, so some researchers transition from
adaptive optimization to vanilla SGD as training progresses1292. We recommend adaptive optimization with Nadam1295, which
combines ADAM with Nesterov momentum, as a comparative analysis of select gradient descent optimizers found that it often
achieves higher performance than other popular optimizers1311. Limitingly, most adaptive optimizers slowly adapt to changing
gradient sizes e.g. the recommended value for ADAM β2 is 0.9991279. To prevent learning being destabilized by spikes in
gradient sizes, adaptive optimizers can be combined with adaptive learning rate251, 1292 or gradient1185, 1312, 1313 clipping.

For non-adaptive optimizers, effective learning rates are likely to vary due to varying magnitudes of gradients w.r.t. trainable
parameters. Similarly, learning by biological neurons varies as stimuli usually activate a subset of neurons1314. However, all
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Vanilla SGD1270, 1271 [η ]

θt = θt−1−η∂θ Lt (69)

Momentum1272 [η ,γ]

vt = γvt−1 +η∂θ Lt (70)
θt = θt−1− vt (71)

Nesterov momentum1273–1275 [η ,γ]

φ = θt−1 +ηγvt−1 (72)
vt = γvt−1 +∂θ Lt (73)
θt = φ −ηvt(1+ γ) (74)

Quasi-hyperbolic momentum1276 [η ,β ,ν ]

gt = βgt−1 +(1−β )∂θ Lt (75)
θt = θt−1−η(vgt +(1− v)∂θ Lt) (76)

AggMo1277 [η ,β (1), ...,β (K)]

v(i)t = β
(i)v(i)t−1− (∂θ Lt) (77)

θt = θt−1 +
η

K

K

∑
i=1

v(i)t (78)

RMSProp1278 [η ,β ,ε]

vt = βvt−1 +(1−β )(∂θ Lt)
2 (79)

θt = θt−1−
η

(vt + ε)1/2 ∂θ Lt (80)

ADAM1279 [η ,β1,β2,ε]

mt = β1mt−1 +(1−β1)∂θ Lt (81)

vt = β2vt−1 +(1−β2)(∂θ Lt)
2 (82)

m̂t =
mt

1−β t
1

(83)

v̂t =
vt

1−β t
2

(84)

θt = θt−1−
η

v̂1/2
t + ε

m̂t (85)

AdaMax1279 [η ,β1,β2]

mt = β1mt−1 +(1−β1)∂θ Lt (86)
ut = max(β2ut−1, |∂θ Lt |) (87)

m̂t =
mt

1−β t
1

(88)

θt = θt−1−
η

ut
m̂t (89)

Figure 15. Update rules of various gradient descent optimizers for a trainable parameter, θt , at iteration t, gradients of losses
w.r.t. the parameter, ∂θ Lt , and learning rate, η . Hyperparameters are listed in square brackets.
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neuron outputs are usually computed for ANNs. Thus, not effectively using all weights to inform decisions is computational
inefficient. Further, inefficient weight updates can limit representation capacity, slow convergence, and decrease training stability.
A typical example is effective learning rates varying between layers. Following the chain rule, gradients backpropagated to the
ith layer of a DNN from its start are

∂Lt

∂xi
=

(
L−1

∏
l=i

∂xl+1

∂xl

)
∂Lt

∂xL
, (90)

for a DNN with L layers. Vanishing gradients525, 1185, 1186 occur when many layers have ∂xl+1/∂xl � 1. For example, DNNs
with logistic sigmoid activations often exhibit vanishing gradients as their maximum gradient is 1/4 c.f. eqn. 10b. Similarly,
exploding gradients525, 1185, 1186 occur when many layers have ∂xl+1/∂xl � 1. Adaptive optimizers alleviate vanishing and
exploding gradients by dividing gradients by their expected sizes. Nevertheless, it is essential to combine adaptive optimizers
with appropriate initialization and architecture to avoid numerical instability.

Optimizers have a myriad of hyperparameters to be initialized and varied throughout training to optimize performance1315

c.f. fig. 15. For example, stepwise exponentially decayed learning rates are often theoretically optimal1316. There are also
various heuristics that are often effective, such as using a DEMON decay schedule for an ADAM first moment of the momentum
decay rate1317,

β1 =
1− t/T

(1−βinit)+βinit(1− t/T )
βinit , (91)

where βinit is the initial value of β1, t is the iteration number, and T is the final iteration number. Developers often optimize
ANN hyperparameters by experimenting with a range of heuristic values. Hyperparameter optimization algorithms1318–1323

can automate optimizer hyperparameter selection. However, automatic hyperparameter optimizers may not yield sufficient
performance improvements relative to well-established heuristics to justify their use, especially in initial stages of development.

Alternatives to gradient descent1324 are rarely used for parameter optimization as they are not known to consistently
improve upon gradient descent. For example, simulated annealing1325, 1326 has been applied to CNN training1327, 1328, and
can be augmented with momentum to accelerate convergence in deep learning1329. Simulated annealing can also augment
gradient descent to improve performance1330. Other approaches include evolutionary1331, 1332 and genetic1333, 1334 algorithms,
which can be a competitive alternative to deep reinforcement learning where convergence is slow1335. Indeed, recent genetic
algorithms have outperformed a popular deep reinforcement learning algorithm1336. Another direction is to augment genetic
algorithms with ANNs to accelerate convergence1337–1340. Other alternatives to backpropagation, including direct search1341,
the Moore-Penrose Pseudo Inverse1342; particle swarm optimization1343–1346 (PSO); and echo-state networks1347–1349 (ESNs)
and extreme learning machines1350–1356 (ELMs), where some randomly initialized weights are never updated.

6.2 Reinforcement Learning
Reinforcement learning1357–1363 (RL) is where a machine learning system, or "actor", is trained to perform a sequence of
actions. Applications include autonomous driving1364–1366, communications network control1367, 1368, energy and environmental
management1369, 1370, playing games22–27, 1122, 1371, and robotic manipulation1372, 1373. To optimize a MDP1157, 1158, a discounted
future reward, Qt , at step t in a MDP with T steps is usually calculated from step rewards, rt , with Bellman’s equation,

Qt =
T

∑
t ′=t

γ
t ′−trt ′ , (92)

where γ ∈ [0,1) discounts future step rewards. To be clear, multiplying Qt by −1 yields a loss that can be minimized using the
methods in section 6.1.

In practice, many MDPs are partially observed or have non-differentiable losses that may make it difficult to learn a
good policy from individual observations. However, RNNs can often learn a model of their environments from sequences of
observations1123. Alternatively, FNNs can be trained with groups of observations that contain more information than individual
observations1122, 1371. If losses are not differentiable, an critic can learn to predict differentiable losses for actor training c.f.
section 5.1. Alternatively, actions can be sampled from a differentiable probability distribution1120, 1374 as training losses given
by products of losses and sampling probabilities are differentiable. There are also a variety of alternatives to gradient descent
introduced at the end of section 6.1 that do not require differentiable loss functions.

There are a variety of exploration strategies for RL1375, 1376. Adding Ornstein-Uhlenbeck1377 (OU) noise to actions is
effective for continuous control tasks optimized by deep deterministic policy gradients1122 (DDPG) or recurrent deterministic
policy gradients1123 (RDPG) RL algorithms. Adding Gaussian noise achieves similar performance for optimization by TD31378
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or D4PG1379 RL algorithms. However, a comparison of OU and Gaussian noise across a variety of tasks1380 found that
OU noise usually achieves similar performance to or outperforms Gaussian noise. Similarly, exploration can be induced by
adding noise to ANN parameters1381, 1382. Other approaches to exploration include rewarding actors for increasing action
entropy1382–1384 and intrinsic motivation1385–1387, where ANNs are incentified to explore actions that they are unsure about.

RL algorithms are often partitioned into online learning1388, 1389, where training data is used as it is acquired; and offline
learning1390, 1391, where a static training dataset has already been acquired. However, many algorithms operate in an intermediate
regime, where data collected with an online policy is stored in an experience replay1392–1394 buffer for offline learning. Training
data is often sampled at random from a replay. However, prioritizing the replay of data with high losses969 or data that results in
high policy improvements968 often improves actor performance. A default replay buffer size of around 106 examples is often
used; however, training is sensitive to replay buffer size1395. If the replay is too small, changes in actor policy may destabilize
training; whereas if the replay is too large, convergence may be slowed by delays before the actor learns from policy changes.

6.3 Automatic Machine Learning
There are a variety of automatic machine learning1396–1399 (AutoML) algorithms that can create and optimize ANN architectures
and learning policies for dataset of input and target output pairs. Most AutoML algorithms are based on RL or evolutionary
algorithms. Examples of AutoML algorithms include AdaNet1400, 1401, Auto-DeepLab1402, AutoGAN1403, Auto-Keras1404,
auto-sklearn1405, DARTS+1406, EvoCNN261, Ludwig1407, MENNDL1408, 1409, NASBOT1410, XNAS1411, and others1412–1416.
AutoML is becoming increasingly popular as it can achieve higher performance than human developers1053 and enables human
developer time to be traded for potentially cheaper computer time. Nevertheless, AutoML is currently limited to established
ANN architectures and learning policies. Following, we recommend that researchers either focus on novel ANN architectures
and learning policies or developing ANNs for novel applications.

6.4 Initialization
How ANN trainable parameters are initialized525, 1417 is related to model capacity1418. Further, initializing parameters with
values that are too small or large can cause slow learning or divergence525. Careful initialization can also prevent training by
gradient descent being destabilized by vanishing or exploding gradients525, 1185, 1186, or high variance of length scales across
layers525. Finally, careful initialization can enable momentum to accelerate convergence and improve performance1273. Most
trainable parameters are multiplicative weights or additive biases. Initializing parameters with constant values would result in
every parameter in a layer receiving the same updates by gradient descent, reducing model capacity. Thus, weights are often
randomly initialized. Following, biases are often initialized with constant values due to symmetry breaking by the weights.

Consider the projection of nin inputs, xinput = {xinput
1 , ...,xinput

nin }, to nout outputs, xoutput = {xoutput
1 , ...,xoutput

nout }, by an nin×nout
weight matrix, w. The expected variance of an output element is1417

Var(xoutput) = ninE(xinput)2Var(w)+ninE(w)2Var(xinput)+ninVar(w)Var(xinput) , (93)

where E(x) and Var(x) denote the expected mean and variance of elements of x, respectively. For similar length scales across
layers, Var(xoutput) should be constant. Initially, similar variances can be achieved by normalizing ANN inputs to have zero
mean, so that E(xinput) = 0, and initializing weights so that E(w) = 0 and Var(w) = 1/nin. However, parameters can shift
during training, destabilizing learning. To compensate for parameter shift, popular normalization layers like batch normalization
often impose E(xinput) = 0 and Var(xinput) = 1, relaxing need for E(xinput) = 0 or E(w) = 0. Nevertheless, training will still be
sensitive to the length scale of trainable parameters.

There are a variety of popular weight initializers that adapt weights to ANN architecture. One of the oldest methods is
LeCun initialization917, 927, where weights are initialized with variance,

Var(w) =
1

nin
, (94)

which is argued to produce outputs with similar length scales in the previous paragraph. However, a similar argument can
be made for initializing with Var(w) = 1/nout to produce similar gradients at each layer during the backwards pass1417. As a
compromise, Xavier initialization1419 computes an average,

Var(w) =
2

nin +nout
. (95)

However, adjusting weights for nout is not necessary for adaptive optimizers like ADAM, which divide gradients by their
lengths scales, unless gradients will vanish or explode. Finally, He initialization20 doubles the variance of weights to

Var(w) =
2

nin
, (96)
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and is often used in ReLU networks to compensate for activation functions halving variances of their outputs20, 1417, 1420. Most
trainable parameters are initialized from either a zero-centred Gaussian or uniform distribution. For convenience, the limits of
such a uniform distribution are ±(3Var(w))1/2. Uniform initialization can outperform Gaussian initialization in DNNs due to
Gaussian outliers harming learning1417. However, issues can be avoided by truncating Gaussian initialization, often to two
standard deviations, and rescaling to its original variance.

Some initializers are mainly used for RNNs. For example, orthogonal initialization1421 often improves RNN training1422

by reducing susceptibility to vanishing and exploding gradients. Similarly, identity initialization1423, 1424 can help RNNs to
learn long-term dependencies. In most ANNs, biases are initialized with zeros. However, the forget gates of LSTMs are often
initialized with ones to decrease forgetting at the start of training1188. Finally, the start states of most RNNs are initialized with
zeros or other constants. However, random multivariate or trainable variable start states can improve performance1425.

There are a variety of alternatives to initialization from random multivariates. Weight normalized985 ANNs are a popular
example of data-dependent initialization, where randomly initialized weight magnitudes and biases are chosen to counteract
variances and means of an initial batch of data. Similarly, layer-sequential unit-variance (LSUV) initialization1426 consists of
orthogonal initialization followed by adjusting the magnitudes of weights to counteract variances of an initial batch of data.
Other approaches standardize the norms of backpropagated gradient. For example, random walk initialization1427 (RWI) finds
scales for weights to prevent vanishing or exploding gradients in deep FNNs, albeit with varied success1426. Alternatively,
MetaInit1428 scales the magnitudes of randomly initialized weights to minimize changes in backpropagated gradients per
iteration of gradient descent.

6.5 Regularization
There are a variety of regularization mechanisms1429–1432 that modify learning algorithms to improve ANN performance. One
of the most popular is LX regularization, which decays weights by adding a loss,

LX = λX ∑
i

|θi|X

X
, (97)

weighted by λX to each trainable variable, θi. L2 regularization1433–1435 is preferred1436 for most DNN optimization as
subtraction of its gradient, ∂θiL2 = λ2θi, is equivalent to computationally-efficient multiplicative weight decay. Nevertheless, L1
regularization is better at inducing model sparsity1437 than L2 regularization, and L1 regularization achieves higher performance
in some applications1438. Higher performance can also be achieved by adding both L1 and L2 regularization in elastic nets1439.
LX regularization is most effective at the start of training and becomes less important near convergence1433. Finally, L1 and
L2 regularization are closely related to lasso1440 and ridge1441 regularization, respectively, whereby trainable parameters are
adjusted to limit L1 and L2 penalties.

Gradient clipping1313, 1442–1444 accelerates learning by limiting large gradients, and is most commonly applied to RNNs. A
simple approach is to clip gradient magnitudes to a threshold hyperparameter. However, it is more common to scale gradients,
gi, at layer i if their norm is above a threshold, u, so that1185, 1443

gi←

{
gi, if ||gi||n ≤ u

u
||gi||n

gi, if ||gi||n > u
(98)

where n = 2 is often chosen to minimize computation. Similarly, gradients can be clipped if they are above a global norm,

gnorm =

(
L

∑
i=1
||gi||nn ,

)1/n

(99)

computed with gradients at L layers. Scaling gradient norms is often preferable to clipping to a threshold as scaling is akin
to adapting layer learning rates and does not affect the directions of gradients. Thresholds for gradient clipping are often set
based on average norms of backpropagated gradients during preliminary training1445. However, thresholds can also be set
automatically and adaptively1312, 1313. In addition, adaptive gradient clipping algorithms can skip training iterations if gradient
norms are anomalously high1446, which often indicates an imminent gradient explosion.

Dropout1447–1451 often reduces overfitting by only using a fraction, pi, of layer i outputs during training, and multiplying
all outputs by pi for inference. However, dropout often increases training time, can be sensitive to pi, and sometimes lowers
performance1452. Improvements to dropout at the structural level, such as applying it to convolutional channels, paths, and
layers, rather than random output elements, can improve performance1453. For example, DropBlock1454 improves performance
by dropping contiguous regions of feature maps to prevent dropout being trivially circumvented by using spatially correlated
neighbouring outputs. Similarly, PatchUp1455 swaps or mixes contiguous regions with regions for another sample. Dropout is
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often outperformed by Shakeout1456, 1457, a modification of dropout that randomly enhances or reverses contributions of outputs
to the next layer.

Noise often enhances ANN training by decreasing susceptibility to spurious local minima1458. Adding noise to trainable
parameters can improve generalization1459, 1460, or exploration for RL1381. Parameter noise is usually additive as it does not
change an objective function being learned, whereas multiplicative noise can change the objective1461. In addition, noise can
be added to inputs1230, 1462, hidden layers1134, 1463, generated outputs1464 or target outputs971, 1465. However, adding noise to
signals does not always improve performance1194. Finally, modifying usual gradient noise1466 by adding noise to gradients can
improve performance1467. Typically, additive noise is annealed throughout training, so that that final training is with a noiseless
model that will be used for inference.

There are a variety of regularization mechanism that exploit extra training data. A simple approach is to create extra
training examples by data augmentation1468–1470. Extra training data can also be curated, or simulated for training by domain
adaption1153–1155. Alternatively, semi-supervised learning1471–1476 can generate target outputs for dataset of unpaired inputs to
augment training with a dataset of paired inputs and target outputs. Finally, multitask learning1477–1481 can improve performance
by introducing additional loss functions. For instance, by adding an auxiliary classifier to predict image labels from features
generated by intermediate DNN layers1482–1485. Losses are often manually balanced; however, their gradients can also be
balanced automatically and adaptively1143, 1144.

6.6 Data Pipeline
A data pipeline prepares data to be input to an ANN. Most data parallelize data pipelines across multiple CPU cores1486.
Small datasets can be stored in RAM to decrease data access times, whereas large dataset elements are often loaded from files.
Loaded data can then be preprocessed and augmented1468, 1469, 1487–1489. For electron micrographs, preprocessing often includes
replacing non-finite elements, such as Nan and inf, with finite values; linearly transforming intensities to a common range, such
as [−1,1] or zero mean and unit variance; and performing a random combination of flips and 90◦ to augment data by a factor of
eight66, 192, 193, 220, 337. Preprocessed examples can then be combined into batches. Typically, multiple batches that are ready to
be input are prefetched and stored in RAM to avoid delays due to fluctuating CPU performance.

To efficiently utilize data, training datasets are often reiterated over for multiple training epochs. Usually, training datasets
are reiterated over about 102 times. Increasing epochs can maximize utilization of potentially expensive training data; however,
increasing epochs can lower performance due to overfitting1490, 1491 or be too computationally expensive527. Naively, batches of
data can be randomly sampled with replacement during training by gradient descent. However, convergence can be accelerated
by reinitializing a training dataset at the start of each training epoch and randomly sampling data without replacement1492–1496.
Most modern DLFs, such as TensorFlow, provide efficient and easy-to-use functions to control data sampling1497.

6.7 Model Evaluation
There are a variety of methods for ANN performance evaluation526. However, most ANNs are evaluated by 1-fold validation,
where a dataset is partitioned into training, validation, and test sets. After ANN optimization with a training set, ability to
generalize is measured with a validation set. Multiple validations may be performed for training with early stopping1490, 1491 or
ANN learning policy and architecture selection, so final performance is often measured with a test set to avoid overfitting to the
validation set. Most researchers favor using single training, validation, and test sets to simplify standardization of performance
benchmarks220. However, multiple-fold validation526 or multiple validation sets1498 can improve performance characterization.
Alternatively, models can be bootstrap aggregated1499 (bagged) from multiple models trained on different subsets of training
data. Bagging is usually applied to random forests1500–1502 or other lightweight models, and enables model uncertainly to be
gauged from the variance of model outputs.

For small datasets, model performance is often sensitive to split of data between training and validation sets1503. Increasing
training set size usually increases model accuracy, whereas increasing validation set size decreases performance uncertainty.
Indeed, a scaling law can be used to estimate an optimal tradeoff1504 between training and validation set sizes. However, most
experimenters follow a Pareto1505 splitting heuristic. For example, we often use a 75:15:10 training-validation-test split220.
Heuristic splitting is justified for ANN training with large datasets insofar that sensitivity to splitting ratios decreases with
increasing dataset size2.

6.8 Deployment
If an ANN is deployed1506–1508 on multiple different devices, such as various electron microscopes, a separate model can be
trained for each device391, Alternatively, a single model can be trained and specialized for different devices to decrease training
requirements1509. In addition, ANNs can remotely service requests from cloud containers1510–1512. Integration of multiple
ANNs can be complicated by different servers for different DLFs supporting different backends; however, unified interfaces are
available. For example, GraphPipe1513 provides simple, efficient reference model servers for Tensorflow, Caffe2, and ONNX;
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a minimalist machine learning transport specification based on FlatBuffers1514; and efficient client implementations in Go,
Python, and Java. In 2020, most ANNs developed researchers were not deployed. However, we anticipate that deployment will
become a more prominent consideration as the role of deep learning in electron microscopy matures.

Most ANNs are optimized for inference by minimizing parameters and operations from training time, like MobileNets1070.
However, less essential operations can also be pruned after training1515, 1516. Another approach is quantization, where ANN
bit depths are decreased, often to efficient integer instructions, to increase inference throughput1517, 1518. Quantization often
decreases performance; however, the amount of quantization can be adapted to ANN components to optimize performance-
throughput tradeoffs1519. Alternatively, training can be modified to minimize the impact of quantization on performance1520–1522.
Another approach is to specialize bit manipulation for deep learning. For example, signed brain floating point (bfloat16)
often improves accuracy on TPUs by using an 8 bit mantissa and 7 bit exponent, rather than a usual 5 bit mantissa and 10 bit
exponent1523. Finally, ANNs can be adaptively selected from a set of ANNs based on available resources to balance tradeoff of
performance and inference time1524, similar to image optimization for web applications1525, 1526.

Figure 16. Inputs that maximally activate channels in GoogLeNet1052 after training on ImageNet67. Neurons in layers near
the start have small receptive fields and discern local features. Middle layers discern semantics recognisable by humans, such
as wheels and dogs. Finally, layers at the end of the DNN, near its logits, discern combinations of semantics that are useful for
labelling. This figure is adapted with permission1527 under a Creative Commons 4.069 license.

6.9 Interpretation
We observe that some electron microscopists are apprehensive about working with ANNs due to a lack of interpretability,
irrespective of rigorous ANN validation. We try to address uncertainty by providing loss visualizations in some of our electron
microscopy papers66, 192, 193. However, there are a variety of popular approaches to explainable artificial intelligence1528–1534

(XAI). One of the most popular approaches to XAI is saliency, where gradients of outputs w.r.t. inputs correlate with
their importance. Saliency is often computed by gradient backpropagation1535–1537. For example, with Grad-CAM1538 or
its variants1539–1542. Alternatively, saliency can be predicted by ANNs1030, 1543–1545 or a variety of methods inspired by
Grad-CAM1546–1548. Saliency maps can be exploited to select features1549.
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There are a variety of other approaches to XAI. For example, feature visualization via optimization1527, 1550–1553 can find
inputs that maximally activate neurons, as shown in fig. 16. Another approach is to cluster features, e.g. by tSNE1554, 1555 with
the Barnes-Hut algorithm1556, 1557, and examine corresponding clustering of inputs or outputs220. More simply, researchers can
view raw features and gradients during forward and backward passes of gradient descent, respectively. For example, CNN
explainer1558, 1559 is an interactive visualization tool designed for non-experts to learn and experiment with CNNs. Similarly,
GAN Lab1560 is an interactive visualization tool for GANs.

7 Discussion
We introduced a variety of electron microscopy applications in section 1 that have been enabled or enhanced by deep learning.
However, the greatest benefit of deep learning in electron microscopy may be general-purpose tools that enable researchers to be
more effective. Search engines based on deep learning are almost essential to navigate an ever-increasing number of scientific
publications685. Further, machine learning can enhance communication by filtering spam and phishing attacks1561–1563, and
by summarizing1564–1566 and classifying1031, 1567–1569 scientific documents. In addition, machine learning can be applied to
education to automate and standardize scoring1570–1573, detect plagiarism1574–1576, and identify at-risk students1577.

Creative applications of deep learning1578, 1579 include making new art by style transfer1020, 1149, 1580, 1581, composing
music1582–1584, and storytelling1585, 1586. Similar DNNs can assist programmers1587, 1588. For example, by predictive source
code completion1589–1594, and by generating source code to map inputs to target outputs1595 or from labels describing desired
source code1596. Text generating DNNs can also help write scientific papers. For example, by drafting scientific passages1597

or drafting part of a paper from a list of references1598. Papers generated by early prototypes for automatic scientific paper
generators, such as SciGen1599, are realistic insofar that they have been accepted by scientific venues.

An emerging application of deep learning is mining scientific resources to make new scientific discoveries1600. Artificial
agents are able to effectively distil latent scientific knowledge as they can parallelize examination of huge amounts of data,
whereas information access by humans1601–1603 is limited by human cognition1604. High bandwidth bi-directional brain-
machine interfaces are being developed to overcome limitations of human cognition1605; however, they are in the early stages of
development and we expect that they will depend on substantial advances in machine learning to enhance control of cognition.
Eventually, we expect that ANNs will be used as scientific oracles, where researchers who do not rely on their services will
no longer be able to compete. For example, an ANN trained on a large corpus of scientific literature predicted multiple
advances in materials science before they were reported1606. ANNs are already used for financial asset management1607, 1608

and recruiting1609–1612, so we anticipate that artificial scientific oracle consultation will become an important part of scientific
grant1613, 1614 reviews.

A limitation of deep learning is that it can introduce new issues. For example, DNNs are often susceptible to adversarial
attacks1615–1619, where small perturbations to inputs cause large errors. Nevertheless, training can be modified to improve
robustness to adversarial attacks1620–1623. Another potential issue is architecture-specific systematic errors. For example, CNNs
often exhibit structured systematic error variation66, 192, 193, 1068, 1069, 1624, including higher errors nearer output edges66, 192, 193.
However, structured systematic error variation can be minimized by GANs incentifying the generation of realistic outputs192.
Finally, ANNs can be difficult to use as they often require downloading code with undocumented dependencies, downloading a
pretrained model, and may require hardware accelerators. These issues can be avoided by serving ANNs from cloud containers.
However, it may not be practical for academics to acquire funding to cover cloud service costs.

Perhaps the most important aspect of deep learning in electron microscopy is that it presents new challenges that can lead to
advances in machine learning. Simple benchmarks like CIFAR-10550, 551 and MNIST552 have been solved. Following, more
difficult benchmark like Fashion-MNIST1625 have been introduced. However, they only partially address issues with solved
datasets as they do not present fundamentally new challenges. In contrast, we believe that new problems often invite new
solutions. For example, we developed adaptive learning rate clipping251 to stabilize training of DNNs for partial scanning
transmission electron microscopy192. The challenge was that we wanted to train a large model for high-resolution images;
however, training was unstable if we used small batches needed to fit it in GPU memory. Similar challenges abound and can
lead to advances in both machine learning and electron microscopy.
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