
Likelihood-based Density Estimation
using Deep Architectures

by

Priyank Jaini

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Priyank Jaini 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/275766968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Kristian Kersting
Professor
Computer Science Department, TU Darmstadt

Supervisor(s): Pascal Poupart
Professor
School of Computer Science, University of Waterloo

Yaoliang Yu
Assistant Professor
School of Computer Science, University of Waterloo

Internal Member: Peter van Beek
Professor
School of Computer Science, University of Waterloo

Jesse Hoey
Associate Professor
School of Computer Science, University of Waterloo

Internal-External Member: Martin Lysy
Associate Professor
Dept. of Statistics and Actuarial Science, University of Waterloo

iii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

v

Abstract

Multivariate density estimation is a central problem in unsupervised machine learn-
ing that has been studied immensely in both statistics and machine learning. Several
methods have thus been proposed for density estimation including classical techniques like
histograms, kernel density estimation methods, mixture models, and more recently neural
density estimation that leverages the recent advances in deep learning and neural networks
to tractably represent a density function. In today’s age, when large amounts of data are
being generated in almost every field, it is of paramount importance to develop density
estimation methods that are cheap both computationally and in memory cost. The main
contribution of this thesis is in providing a principled study of parametric density estima-
tion methods using mixture models and triangular maps for neural density estimation.

The first part of the thesis focuses on the compact representation of mixture models
using deep architectures like latent tree models, hidden Markov models, tensorial mixture
models, hierarchical tensor formats and sum-product networks. It provides a unifying view
of possible representations of mixture models using such deep architectures. The unifying
view allows us to prove exponential separation between deep mixture models and mixture
models represented using shallow architectures, demonstrating the benefits of depth in
their representation. In a surprising result thereafter, we prove that a deep mixture model
can be approximated using the conditional gradient algorithm by a shallow architecture of
polynomial size w.r.t. the inverse of the approximation accuracy.

Next, we address the more practical problem of density estimation of mixture models
for streaming data by proposing an online Bayesian Moment Matching algorithm for Gaus-
sian mixture models that can be distributed over several processors for fast computation.
Exact Bayesian learning of mixture models is intractable because the number of terms in
the posterior grows exponentially w.r.t. to the number of observations. We circumvent this
problem by projecting the exact posterior on to a simple family of densities by matching
a set of sufficient moments. Subsequently, we extend this algorithm for sequential data
modeling using transfer learning by learning a hidden Markov model over the observa-
tions with Gaussian mixtures. We apply this algorithm on three diverse applications of
activity recognition based on smartphone sensors, sleep stage classification for predicting
neurological disorders using electroencephalography data and network size prediction for
telecommunication networks.

In the second part, we focus on neural density estimation methods where we provide a
unified framework for estimating densities using monotone and bijective triangular maps
represented using deep neural networks. Using this unified framework we study the limi-
tations and representation power of recent flow based and autoregressive methods. Based

vii

on this framework, we subsequently propose a novel Sum-of-Squares polynomial flow that
is interpretable, universal and easy to train.

viii

Acknowledgements

I wish to thank my supervisors Pascal Poupart and Yaoliang Yu who supported me through-
out my graduate studies and gave me complete freedom to choose my research. When I
first started as a PhD student in 2015, Pascal told me in the first meeting that the plan
for my PhD was to have fun. In that he has succeeded by making research projects and
collaborations fun - I enjoyed every moment of my time as his student and the credit be-
longs to his kind and supportive nature. To Yaoliang, from whom I have easily learned
more than anybody else throughout my graduate studies and for always being supportive,
encouraging, and understanding.

Three cheers to Tom, Sajin, Camila, Chris, and Adrián. A large part of being able
to enjoy my time in Waterloo and success as a graduate student was their presence and
support which made life outside the university enjoyable. I believe finding such a great set
of friends who can transform this (seemingly) long journey into an incredible adventure is
often a die roll in which I certainly rolled a natural 20.

Many of my other friends, colleagues, and the wonderful and supportive staff at the
university who made my time there comfortable and enjoyable.

And finally, to my family. Most of my achievements and success is due to their constant
support and selfless love. No amount of gratitude can do justice to their contributions and
support during this thesis and beyond, but I’ll take this opportunity to say an insufficient
thank you nevertheless.

ix

Dedication

For my parents and sister.

xi

Table of Contents

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Preliminaries . 4

1.1.1 Density function . 4

1.1.2 Curse of Dimensionality & Common Assumptions 5

1.2 Methods for density estimation . 7

1.2.1 Histograms . 8

1.2.2 Kernel Density Estimation . 8

1.2.3 Mixture Models . 10

1.2.4 Neural Density Estimation . 11

1.3 Contributions . 12

2 Deep Homogeneous Mixture Models 17

2.1 Introduction . 17

2.2 Density Estimation using Mixture Models 18

2.3 Compact Representation of Homogeneous Mixtures 21

2.4 Depth Separation . 29

2.5 Approximate Representation . 35

xiii

2.6 Experiments . 40

2.6.1 Synthetic Data . 40

2.6.2 Image Classification under Missing Data 42

2.7 Connection to Previous Works . 44

2.8 Summary . 47

3 Bayesian Moment Matching 49

3.1 Bayesian Moment Matching for Gaussian Mixture Models 50

3.1.1 Experiments . 54

3.2 Online Bayesian Transfer Learning for Sequential Data Modeling 56

3.2.1 Problem Setup . 58

3.2.2 Source Domain - Training . 60

3.2.3 Target Domain - Learning and Prediction 62

3.2.4 Experiments and Results . 66

3.3 Summary . 74

4 Neural Density Estimation 75

4.1 Introduction . 75

4.2 Density estimation through triangular map 77

4.3 Connection to existing works . 83

4.4 Sum-of-Squares Polynomial Flow . 87

4.5 Experiments . 91

4.5.1 Simulated Experiments . 91

4.5.2 Real-World Datasets . 93

4.6 Summary . 95

5 Conclusion and Discussion 97

References 101

xiv

A More results on comparing different models 119

A.1 Converting an LTM to S3PN . 119

A.2 Example for TMM as an LTM and S3PN 121

A.3 Example for TMM (LTM . 122

APPENDICES 122

xv

List of Figures

2.1 Left: A simple latent class model (special case of LTM). The superscript
2 indicates the number of values the hidden variable H can take. Middle:
The equivalent S3PN, where f ij(xi) = p(Xi = xi|H = j) is from the density
class Fi. Right: The dimension-partition tree in an equivalent HTF+. The
superscript indicates the number of bases, which should be the same for
sibling nodes. 24

2.2 Left: A dimension-partition tree in HTF+. The superscripts indicate the
number of bases. Middle: The equivalent S3PN. The leaf f ij is the j-th basis
of vector space Vi. Right: An “equivalent LTM.” The superscripts indicate
the number of values each hidden variable can take. The two densities of
X3 are equal, i.e. f 3

1 = f 3
2 (hence X3 does not actually depend on H1). . . 24

2.3 Left: A dimension-partition tree in tensor-train. The superscripts indicate
the number of bases, which should remain constant for siblings. Middle:
The equivalent S3PN. The leaf f ij is the j-th basis of vector space Vi. Right:
An equivalent HMM. The superscripts indicate the number of values each
hidden variable can take. 25

2.4 Top : A general HTF representation. The network has cross connections
and calculates all possible multiplications. Bottom : A dHTF with same
bases functions. The dHTF representation allows for local connections. . . 26

2.5 Left: A dimension-partition tree in HTF+. The superscripts indicate the
number of bases. Middle: The equivalent S3PN. The leaf f ij is the j-th basis
of vector space Vi. Right: An equivalent LTM. The superscripts indicate
the number of values each hidden variable can take. 27

xvii

2.6 Left: A dimension-partition tree in HTF. The superscripts indicate the num-
ber of bases, which should remain constant on each level. Middle: The
equivalent S3PN. The leaf f ij is the j-th basis of vector space Vi. Right:
An equivalent TMM. The superscripts indicate the number of values each
hidden variable can take (again, remaining constant on each level). 28

2.7 Left: A dimension-partition tree in HTF+. The superscripts indicate the
number of bases. Middle: The equivalent S3PN. The leaf f ij is the j-th basis
of vector space Vi. Right: An “equivalent LTM.” The superscripts indicate
the number of values each hidden variable can take. The two densities of
X3 are equal, i.e. f 3

1 = f 3
2 (hence X3 does not actually depend on H1). . . 29

2.8 Left: An SPN but which is not an S3PN. The leaf f ij is the j-th basis of
vector space Vi. Right: The equivalent S3PN requires an increase in the size
of the network. 29

2.9 (Left) Convergence to true negative log-likelihood using SPN-CG (Right)
Surface plots for covariance matrices of the components 41

2.10 Depth efficiency and performance of SPN-CG 41

2.11 Performance of SPN-CG on missing data (a) MNIST data with i.i.d missing
pixels (b) MNIST data with rectangles of missing pixels (c) NORB dataset
with i.i.d. missing pixels (d) NORB dataset with rectangles of missing pixels 44

3.1 Transfer Learning architecture . 67

3.2 Performance comparison of online transfer learning algorithm with three
different baseline algorithms - BMM, EM (max. likelihood) and RNNs on
Sleep Stage Classification data using scatter plots of accuracy. 72

4.1 Transformation curves from standard Gaussian to mixture of Gaussians. . 81

4.2 Schematic of SOS flows depicting the conditioner network and relevant trans-
formations. We provide the algorithm in Algorithm 3 and Figure 4.3 shows
the schematic for SOS Flows by stacking multiple blocks of SOS transfor-
mation. 87

4.3 Schematic of SOS flows by stacking multiple blocks of SOS transformation. 90

xviii

4.4 Top: Leftmost is true density p(x1, x2) = N (x2 ; 0, 4)N (x1 ; 0.25x2
2, 1). The

second plot shows the density learnt by SOS flows with 3 blocks and a sum
of 2 polynomials with degree 3 with ordering (x1, x2). Third plot shows the
density learnt by SOS flows with 1 block and a sum of 2 polynomials with
degree 4 and ordering (x1, x2). The last three plots estimate this density
using a Mixture of Gaussian conditionals with varying components given in
parenthesis and ordering (x1, x2). Bottom: Same as Top but with target
density given by p(x1, x2) = N (x2 ; 2, 2)N (x1 ; 0.33x3

1, 1.5). 92

4.5 Top Row: Transformation defined by a deep SOS flow with r = 1 and
blocks =4. The next three plots show SOS flows learning this transformation
with different configurations (deep, wide and, wide-deep). The last plot
shows the transformation learned when a Gaussian mixture model learns
the density (or transformation). Bottom Row: Same as Top Row but the
true transformation was derived by a wide and shallow SOS flow with r = 4
and blocks=1. 93

4.6 Top Row: First plot from the left shows the target density, a mixture
of three component Gaussians with means = (-5, 0, 5), variances = (1,
1, 1) and, weights = (1/3, 1/3, 1/3). The second plot shows the exact
transformation required to transform a standard Gaussian to this mixture.
The next three plots shows the transformation learned by SOS flows with
different configurations (deep, wide and wide-deep, respectively). The last
three plots show the transformation learned by estimating the parameters of
the Gaussian mixture using log-likelihood with exact (3), under-specified (2)
and over-specified (5) number of components respectively. Bottom Row:
Same as Top Row but with target density being a mixture of five Gaussians
with means = (-5, -2, 0, 2, 5), variances = (1.5, 2, 1, 2, 1) and, weights =
0.2 each. 95

A.1 Left shows a latent tree model with three discrete hidden variables H =
{H1, H2, H3} and four observed variables X = {X1, X2, X3, X4}. where
H1, H2 are binary and H3 can take three discrete values. The second figure
shows the equivalent SPN representing the latent tree. 121

A.2 Left: A dimension-partition tree in HTF. The superscripts indicate the num-
ber of bases, which should remain constant on each level. Middle: The
equivalent S3PN. The leaf f ij is the j-th basis of vector space Vi. Right:
An equivalent TMM. The superscripts indicate the number of values each
hidden variable can take (again, remaining constant on each level). 122

xix

A.3 Left: A dimension-partition tree in HTF+. The superscripts indicate the
number of bases. Middle: The equivalent S3PN. The leaf f ij is the j-th basis
of vector space Vi. Right: An equivalent LTM. The superscripts indicate
the number of values each hidden variable can take. 122

xx

List of Tables

3.1 Log-likelihood scores on 10 data sets. The best results among oBMM and
oEM are highlighted in bold font. ↑(or ↓) indicates that the method has
significantly better (or worse) log-likelihoods than Online Bayesian Moment
Matching (oBMM) under Wilcoxon signed rank test with pvalue < 0.05. . 55

3.2 Log-likelihood scores and Avg. running time on 4 large data sets. The best
results among oBMM, oDMM and oEM are highlighted in bold font. The
results for oDMM are only for a single run to demonstrate the savings in
running time. 56

3.3 Average percentage accuracy of prediction for activity recognition on 19 dif-
ferent individuals. The best results among the Baseline, the EM algorithm,
RNN and Transfer Learning algorithm are highlighted in bold font. ↑(or ↓)
indicates that Transfer Learning has significantly better (or worse) accuracy
than the the best algorithm among the baseline, EM and RNN under the
Wilcoxon signed rank test with p-value < 0.05. 70

3.4 Average percentage accuracy of prediction for flow direction prediction for 9
different domains. The best results among the Baseline, the EM algorithm,
RNN and the Transfer Learning algorithm are highlighted in bold font.
↑(or ↓) indicates that transfer learning has significantly better (or worse)
accuracy than the best technique among the baseline algorithm, EM and
RNN under Wilcoxon signed rank test with pvalue < 0.05. 74

xxi

4.1 Various auto-regressive and flow-based methods expressed under a unified
framework. All the conditioners can take inputs x instead of z. The symbol
 is used for weight sharing, � for use of masks for efficient implemen-
tation, � for universality of the method and, ∆ if the method learns a
triangular transformation explicitly (E) or implicitly (I). ? implies that uni-
versality of these methods has neither been proved or disproved although it
can now be analyzed with ease using our framework. Sj(zj;θj) is defined in
eq. (4.19) and P2r+1(zj; aj) is defined in eq. (4.22). 84

4.2 Negative test log-likelihoods for various density estimation models on image
datasets (lower is better). * results/models used multi-scale convolutional
architectures. 94

4.3 Average test log-likelihoods and standard deviation for SOS flows over 10
trials (higher is better). The other methods report the average log-likelihood
and standard deviation over five trials. The numbers in the parenthesis
indicate the number of stacked blocks for the resultant transformation. . . 94

xxii

Chapter 1

Introduction

Density estimation is a fundamental problem in machine learning – where we are interested
to discern meaningful statistical patterns from observed data through the deployment of
learning algorithms – that has been studied widely [Tsybakov, 2009] and is becoming
even more relevant nowadays due to the availability of huge amounts of unlabeled data in
various applications. A density function captures the complete underlying structure of the
statistical properties of the data. A good estimate of the model of the density captures
the essential structure of the data and can be used for several downstream applications
that require the knowledge of the density function like inference, data generation, data
completion, prediction, etc.

In the problem of density estimation, we are given access to a set of data points gen-
erated through a sampling procedure (or true distribution p(·)) and we are interested in
estimating the density function that can explain the data set i.e. given a data set consisting
of observations D = {x1,x2, · · · ,xn}, we want to estimate the probability density function
p̂(·) at any arbitrary point x such that it matches closely with the original density p(x).

While powerful sampling techniques like Markov Chain Monte-Carlo method [Metropo-
lis et al., 1953] facilitate evaluating of probabilities, enables sampling from target density,
compute expectations and be used in constructing tests for model against the actual pro-
cess using two-sample tests, there are many applications where knowing the exact form
of the density is vital. Some examples of these applications include inference in sequen-
tial data modeling for tasks like activity recognition based on smartphone sensors, sleep
stage classification based on electroencephalography(EEG) data for prediction of neuro-
logical disorders, and the prediction of the direction of future packet flows between a pair
servers in telecommunication networks. These applications have been explored in more

1

detail in this thesis in Chapter 3. Additionally, an explicit form of the density is crucial in
other applications like compression, Bayesian inference, maximum likelihood training, and
as sub-component for other models e.g. variational inference and importance sampling.
Other applications that are intimately related with density estimation methods are clus-
tering, classification, estimation of density level-sets and dimension reduction techniques.
I discuss some these applications briefly below.

Compression [Shannon, 1948, MacKay, 2003]:Modelling densities and compressing data
are very closely related as the density at the point indicates the number of bits required
to optimally compress the information up to a desired precision. Formally, paraphrasing
the formulation given by [Shannon, 1948], the information content I(x) in encoding some
message x within a pre-defined precision given by a ball B(x) centered at x is given by:

I(x) = − log

∫
B(x)

p(x)dx ≈ − log p(x)− log |B(x)| (1.1)

Furthermore, a data compression technique specifies a density model. If q(x) is the density
model used by the data compressor and p(x) is the true density, then the expected number
of bits wasted given this data compression method is:

−Ep(x)[− log p(x)− log |B(x)|] + Ep(x)[− log q(x)− log |B(x)|] = KL(p||q) (1.2)

Thus, capturing the density model more accurately leads to better data compression.
Arithemetic codes [MacKay, 2003] are an example of a method that can achieve near
perfect compression. Recently, an invertible neural network called integer discrete flows
[Hoogeboom et al., 2019] was proposed for lossless compression by learning the density
over high-dimensional data. In Chapter 4, I will provide a unified framework for density
estimation using invertible neural networks that helps to approximate a high-dimensional
density arbitrarily well.

Bayesian Inference [Bishop, 2006]: Bayesian inference methods help to encode and
update one’s beliefs about a quantity of interest θ given certain measurements (or observa-
tions) x through density functions using Bayes’ rule. More precisely, if our belief about a
quantity θ is modeled using a density function p(θ) (known as the prior) and the statistical
dependence between θ and x is captured by the conditional density p(x|θ) (known as the
likelihood), then we can evaluate the change in the beliefs θ after making observations x
via Bayes’ rule by:

p(θ|x) ∝ p(θ)p(x|θ) (1.3)

2

The model for the updated beliefs after observing x is called the posterior. In Bayesian
inference it is important to be able to evaluate the density functions representing the prior,
likelihood and the posterior from data.

In practice, certain parametric assumptions are made on the prior and the likelihood
functions to make Bayesian learning amenable since the precise form of the likelihood
function or a reasonable prior are unknown. One of the main challenges of Bayesian
learning is that in many cases the posterior distribution becomes very complex to evaluate
as more information becomes available e.g. for mixture models, the number of terms in
the posterior grows exponentially w.r.t. the data. Therefore, algorithms aim to construct
an approximate posterior distribution by either minimizing some distance metric between
the true posterior and the approximate posterior or by sampling from the true posterior.
In this thesis, I will propose an online and distributed moment matching algorithm for
approximate Bayesian learning for mixture models (and more generally for probabilistic
graphical models) and demonstrate its utility in multiple applications.

Importance Sampling [Kahn and Harris, 1951, Kahn, 1955]: Many applications require
the computation of the expectation of a function of a random variable i.e. E[f(X)]. Usually,
this can be done easily using Monte Carlo methods. However, consider a situation where
the function f(x) is nearly equal to 0 outside some region B but P (X ∈ B) is also very
small. This can easily happen if the set B is in the tail region of the random variable X. An
application of a plain Monte Carlo method in this case will result in a majority of samples
outside the region B where f(x) is close to 0. Such problems routinely arise in areas like
Bayesian inference, financial risk modelling and rare event simulation in insurance, high
energy physics etc.. Thus, to solve this problem, it is required that we are able to sample
from the region of interest B. In importance sampling, samples are generated from this
region by learning a density that over-weights the important region (B here).

Formally, the problem is to evaluate µ = Ep[f(X)] =
∫
D f(x) · p(x)dx where p(x) is a

density over the data-set D ⊆ Rd. Let q(x) be a probability density function on Rd, then

µ =

∫
D

f(x)p(x)

q(x)
q(x)dx = Eq

[f(x)p(x)

q(x)

]
(1.4)

The factor p(x)/q(x) is called the likelihood ratio - this multiplicative adjustment to the
function f compensates for sampling from q instead of p. The density q is called the
proposal (or importance) distribution and p is called the nominal distribution. Hence, the
estimation of q makes this otherwise infeasible problem amenable to Monte-Carlo methods.

3

Other applications [Chacón and Duong, 2018, Jordan et al., 1999, Kingma and Welling,
2014]: Density estimation methods can be employed for tasks of clustering where the
population clusters of the domain X can be defined by the density modes resulting in a neat
clustering strategy that automatically determines the number of clusters unlike hierarchical
clustering or k-means. Similarly, density estimation methods are vital in density level-set
estimation which is useful for visualizing high-density regions, estimating the support of
the variables and useful in detecting outliers.

Several other methods use density estimation as a sub-component e.g. in variational
inference [Jordan et al., 1999], evaluation of the approximate posterior requires a den-
sity model over the parameters of interest whereas variational autoencoders [Kingma and
Welling, 2014] require density functions as components for the prior and the encoder. Fur-
thermore, density models are helpful as objectives for training paradigms or comparison
of different models by evaluating densities on held-out test data-sets. In such scenarios,
a density function is still useful even if the exact density function is not required for the
task.

1.1 Preliminaries

1.1.1 Density function

Let us begin by formally defining a probability density function. Consider a random
variable X ⊆ Rd in a d-dimensional space. Informally, a probability density p(x) at a point
x ∈ Rd can be thought of as the quantitative measure of the number of times samples are
generated in a ball of infinitesimal volume (by some generating mechanism) near the point
x.

Let Bε(x) be a ball of radius ε centered at x. The probability density at x is the ratio
between the probability that a point falls within the ball Bε(x) and the volume of the ball
as the radius of the ball shrinks to 0 i.e.

p(x) = lim
ε→0

Pr
(
z ∈ Bε(x)

)
VBε(x)

(1.5)

Therefore, a probability density function is a function from a d-dimensional space to the
density at a point i.e. p : Rd → R+.

4

I now formally define a probability density function 1 as required in the thesis’ frame-
work: Let F (X ∈ A) = Pr(X ∈ A) be defined on all Lebesgue measurable subsets A of
Rd and be absolutely continuous w.r.t. Lebesgue measure. The function p(·) is called a
density function if p(x) ≥ 0, ∀x ∈ Rd and

∫
Rd
p(x)dx = 1. Furthermore, the relationship

between p(·) and F is given by:
∫
A
p(x)dx = F (X ∈ A) for all Lebesgue measurable sets

A ⊆ Rd.

1.1.2 Curse of Dimensionality & Common Assumptions

High dimensional density estimation is a hard problem due to the curse of dimensionality
which refers to the phenomenon that the amount of data required to generalize accurately
grows exponentially as the number of dimension (or features) grows. Curse of dimension-
ality introduces sparseness in the data i.e. as the number of dimensions grow, the data
available becomes sparse making the accurate estimation of density functions difficult.
Consider the example of two-dimensional space represented by a unit square. The average
of such a feature space is the center of the square and all points within a unit distance lie
in a unit circle. The volume (in this case area) of this unit circle covers most of the area
of the square (≈ 79% area). However, now let the number of dimensions grow to d. The
volume of a unit hyper-cube of dimension d is still 1, however the volume inscribed by a
d-dimensional hyper-sphere of radius r is:

Vd =
π
d
2

Γ
(
d
2

+ 1
)rd (1.6)

Thus, the probability of a point falling inside a ball Br(x) of radius r centered at a point
x such that the ball is completely inside the cube is:

Pr
(
x̃ ∈ Br(x)

)
= Vd =

π
d
2

Γ
(
d
2

+ 1
)rd (1.7)

We require training data points inside such a ball with a small enough radius r to estimate
the density p(x) at a point x. But, no matter how large we make the radius r, Vd approaches
zero as we make the dimensions d larger i.e. to say that even for radii larger than the side
of the cube, almost all such balls will be empty (giving no data points). To put this into

1I will use probability density function and density function interchangeably to mean the same thing
throughout the thesis.

5

perspective: for estimating density with r = 0.01 and d = 10, we will require more than
1016 data-points.

While the curse of dimensionality might seem like an insurmountable problem, in prac-
tice, several generic assumptions are encoded in the models to scale density estimation to
high-dimensions and work around the curse of dimensionality.

Lower dimensionality of data distribution: The first common assumption used is
that the actual data distribution has a lower dimension structure intrinsically i.e. the
density function is truly on a lower dimensional manifold than the dimensions of observa-
tions me make to describe it. Consider the example of natural images where intuitively
the natural scene can only vary in certain semantic and meaningful ways rather than each
pixel varying arbitrarily. Such lower dimension structures is captured in practice by either
using dimensionality reduction techniques that retain maximum information but reduce
the dimensionality of the data or by introducing information bottlenecks in the structure
of the model.

Symmetry, Smoothness, and Independence: We often assume that data in the real
world has symmetries e.g. in an image, a cat moved by a few pixels will still be an image
of a cat (translation symmetry). Reordering a dataset will still describe the same dataset
leading to symmetry in order or in audio streams, playing a piece faster will still describe a
similar audio stream giving scale symmetry. Such symmetries are often encoded in model
designs using for example convolutions and multi-scale architectures. Symmetries can also
be employed for data augmentation.

Furthermore, a very common assumption made in density estimation is the smoothness
of the density function i.e. if ‖x−y‖ is small then the difference of densities at these points
is also small i.e. ‖p(x)− p(y)‖ is also small. Smoothness assumptions help to interpolate
over regions with no training data instead of giving them zero density.

Finally, in some domains we can consider that certain features are independent of
other features. For example, in sequential data modeling one can assume that the current
observations are only dependent on observations until a few seconds ago and not on all the
data stream.

6

1.2 Methods for density estimation

Density estimation is a problem that has been studied widely and for a long time. The
first paper dealing with the problem of statistical density estimation was published more
than 60 years ago [Rosenblatt, 1956] but the earliest paper mentioning the problem of
density estimation was by Fix and Hodges in 1951 [Fix and Hodges, 1951] dealing with
discrimination problems. However, the earliest attempts to estimate the probability density
functions seems to have been undertaken by Karl Pearson in his series of papers [Pearson,
1902a, Pearson, 1902b] published more than a century ago where the system of densities
are modeled as the set of solutions to the equation:

∂p

∂x
=

(x− a0)p

a1 + a2x+ a3x2
(1.8)

where a0, a1, a2, a3 are constants and can be shown to be expressible as the first four
moments of the density p. Therefore, the estimation procedure is to compute the sample
moments from which the estimates of a0, a1, a2, a3 are determined to solve the differential
equation to get the density estimate p̂. Since then several methods have been developed for
density estimation and these can be classified broadly into two groups: Parametric density
estimation and Non-Parametric density estimation.

Parametric Methods: In these methods, prior assumptions are made about the form
of the underlying density function. For example, in a parametric approach one can assume
the form of density to be Gaussian distribution. In this case, density estimation proce-
dure would require to estimate the mean and covariance matrix of the Gaussian. More
flexibility can be conferred on parametric methods by using stronger parametric models
like mixture of Gaussians. Another popular approach is to consider functional forms (e.g.
affine transforms, higher degree polynomials or a deep neural network) on transformations
that map a simple base distribution to a complex target distribution. This approach is
broadly used for neural density estimation.

Non-Parametric Methods: Non-parametric approaches on the other hand do not make
such assumptions about the density function and allow the data to drive the estimation
process more directly. Kernel density estimation method is an example of non-parametric
methods for density estimation. Other examples include histograms and order statistic
density estimation. I will now discuss a few popular approaches for density estimation like
histograms, mixture models, kernel density estimation, and neural density estimation.

7

1.2.1 Histograms

Histograms give an accurate representation of the distribution of numerical data and were
first introduced by Karl Pearson in his work [Pearson, 1894]. Histograms [Pearson, 1894,
Freedman et al., 1998, Scott, 2015] are the simplest form of density estimation method
based on the approach of dividing the domain (or data points) in to bins and counting the
number of samples that are in each bin. The probability density is then obtained as the
fraction of points in a particular bin and the total number of samples and the bin width.
Formally, if the bin width is w and the total number of samples are n, then the density
estimate is given by:

p̂(x) =
nt
n · w

, for xt ≤ x < xt+1 (1.9)

where xt and xt+1 are the end points of the tth bin with width w = xt+1 − xt. Since his-
tograms directly use the data to estimate the density without any parametric assumptions,
they fall under the category of non-parametric density estimation. The width of the bins
w determines the granularity of the estimated density. However, there is a bias-variance
trade-off controlled by the bin width: a histogram with large bin width (i.e. small number
of bins) may underfit whereas a histogram with very fine bin width may not generalize to
unseen data.

Histograms are attractive density estimation methods since they are easy to imple-
ment, provide interpretable and straight-forward results and also result in a valid density
function that integrates to one over the entire domain. However, they suffer from several
drawbacks. Histogram methods result in density functions that are non-smooth: the es-
timated density function has zero derivative almost everywhere except at bin transitions
where the derivative is infinite. Furthermore, these methods are overly sensitive to choice
of bin locations (even if the width is fixed) and can severely affect the resulting estimated
density function. Moreover, the choice of bin location is a free parameter that is inde-
pendent of the underlying data. In practice, histograms are mostly used for visualization
purposes for very low dimensional problems (usually less than five dimensions) when there
is enough data available.

1.2.2 Kernel Density Estimation

Kernel density estimation methods have a rich literature but the first ideas can be traced
back to the work of Fix and Hodges [Fix and Hodges, 1951] followed by the very influential
works of Rosenblatt [Rosenblatt, 1956] and Parzen [Parzen, 1962]. Other influential works

8

include the contributions of H. Akaike collected in the book [Akaike, 1974], [Epanechnikov,
1969], [Wand and Jones, 1994], [Nadaraya, 1964, Watson, 1964] among others. I refer the
readers to the excellent book by A. Tsybakov [Tsybakov, 2009][Chapter 1] for a holistic
history and development of non-parametric methods for density estimation methods. Ker-
nel density estimation intuitively estimates a smooth version of the data distribution. Let
D = {x1,x2, · · · ,xn} ⊆ Rd be a dataset. Then, the empirical distribution (denoted here
by p0(x)) of the data set is:

p0(x) =
1

n

n∑
i=1

δ(x− xi) (1.10)

i.e. an equally weighted mixture of n Dirac delta distributions located at the training
points in the data set D. A smooth version of this empirical distribution can be estimated
and turned into a density function by substituting the Dirac delta function with a density
function Kw(z) called the smoothing kernel given by:

Kw(z) = w−dK̃
(z

w

)
(1.11)

where K̃ is a density function bounded from above and w > 0 is the width of the kernel
such that:

lim
w→0

Kw(z)→ δ(z) (1.12)

Thus, a kernel density estimate can now be defined as:

p̂w(x) =
1

n

n∑
i=1

Kw(x− xi) (1.13)

Similar to histograms, the width parameter w controls the degree of smoothness and bias-
variance trade-off. Kernel density estimation has several advantages mainly because of its
desirable asymptotic properties: kernel density estimators are consistent provided that w
does not shrink too fast compared to n and unbiased if in the limit w → 0. This can be
seen from the following [Tsybakov, 2009]:

Var(p̂w(x)) =
1

n2

n∑
i=1

Varp(Xi)

(
Kw(x−Xi)

)
≤ 1

n
Ep(Z)[Kw(x− Z)]

≤ supZ K̃
2(Z)

nw2d

9

Thus, Var(p̂w(x)) approaches zero if the number of data points n goes to infinity and w

approaches 0 at a rate slower than n−
1
2d .

Unbiasedness can be seen from the fact that p̂w(x) converges to the empirical distribu-
tion p0(x) as w → 0 and the empirical distribution p0(x) is an unbiased estimate of the
true density p(x).

Another advantage of kernel density estimation method and non-parametric methods
in general is that they do not require training. However, these methods suffer from a large
memory and evaluation cost which increases linearly with the size of the data. Parametric
methods on the other hand have a fixed memory and evaluation cost.

1.2.3 Mixture Models

In parametric density estimation, we usually specify a density function q(x;ϕ) with a fixed
number of parameters ϕ. The aim is then to estimate these parameters ϕ such that the
estimate q(x;ϕ) is close to the true density p(x) under a suitable distance metric. A trivial
choice of q(x;ϕ) is a simple parametric family of distributions e.g. Gaussian with mean µ
and covariance Σ. However, such models are restrictive e.g. a single Gaussian distribution
cannot model multi-model density functions.

A natural solution to this is to consider a mixture of density functions as a parametric
model i.e.

f(x;ϕ) =
m∑
j=1

wj q(x;ϕj),
m∑
j=1

wj = 1 and wj ≥ 0, ∀j ∈ [m] (1.14)

In this case, f(x;ϕ) is a mixture model with parameters ϕ = {wj, ϕj}mj=1. Mixture models
are powerful density estimation methods that can approximate any density arbitrarily well
given enough mixture components [McLachlan and Peel, 2004a].

The idea of mixture models and identification of the components of mixtures and its
parameters have been talked about for as far back as 1846 [McLachlan and Peel, 2004a]
although seemingly a common reference is the work of Karl Pearson [Pearson, 1894] who ex-
plicitly addressed the problem of decomposition in characterizing forehead to body length
ratios in female crabs using non-normal attributes whose motivation was the work presented
in [Tarter and Lock, 1893]. Although Pearson’s work was pivotal to address the problem of
distinct sub-populations and using moment matching tools to demonstrate the flexibility
of mixture models, it required solving a ninth-degree polynomial which was computation-
ally infeasible at the time. The advent of modern computers, computational power, and

10

the introduction of techniques like maximum likelihood estimation [Fisher et al., 1920]2

accelerated considerable research in this area. Mixture models have subsequently found
applications in fields like natural language processing, speech synthesis, fisheries research,
agriculture, botany, economics, medicine, genetics, finance, geology etc. [McLachlan and
Peel, 2004a].

A large part of this thesis is devoted to density estimation using mixture models, their
compact representation through deep architectures, associated theoretical properties and
online and distributed estimation of such mixture models. These are discussed in detail in
Chapter 2 and Chapter 3.

1.2.4 Neural Density Estimation

Neural density estimation is a parametric density estimation method that uses a function
f(·) parameterized by a deep neural network to estimate a density function i.e. given an
input x ∈ Rd, the function returns the density at the point x.

I provide a simple example for neural density estimation: Let p(x) be a d-dimensional
density function. The density can be written as a factored product of conditionals and
marginals as follows:

p(x) = p(x1) ·
d∏
i=2

p(xi|x<i), (1.15)

where x<i = {x1, x2, · · · , xi}. Let us model each conditional p(xi|x<i) using an affine
transformation whose parameters are obtained from a feed-forward neural network i.e.

Pr(Xvi < xi|x<i) = σ
(
ai(x<i) · xi + bi(x<i)

)
(1.16)

where σ(·) is the sigmoid function and (ai, bi) = Φi(x<i ; wi) are the coefficients obtained
from a neural network Φi that take as input x<i and parameters wi and returns as outputs
the tuple (ai, bi). Thus, estimating the weights W = {wi}di=1 of the network provides a
density function over the variable X. This formulation was first proposed in the seminal
paper of [Neal, 1992a].

Neural density estimation methods for explicitly representing the density function have
become very popular recently with various advances that use affine transformations as in

2For interested readers, the article by Stephen M. Stigler gives a nice history of the development of
Maximum Likelihood Estimation Method.

11

https://arxiv.org/pdf/0804.2996.pdf

[Kingma et al., 2016, Papamakarios et al., 2017, Dinh et al., 2017, Dinh et al., 2015, Kingma
and Dhariwal, 2018], polynomial transformations as proposed in [Jaini et al., 2019], deep
sigmoidal functions [Huang et al., 2018] and splines [Durkan et al., 2019].

The main challenge in neural density estimation is to design the transformations f(·)
such that evaluation of the density can be done exactly. Furthermore, it is desirable that
the transformation f(·) is such that it is universal i.e. it can approximate any density
function arbitrarily well.

A major contribution of this thesis (in Chapter 4) is providing a unified framework for
neural density estimation using the notion of triangular maps. We use this framework to
provide a modular proof and required conditions for constructing universal neural density
estimation methods. As a consequence of this framework, we unveil a new method called
Sum-of-Squares polynomial flows that we show are universal and interpretable.

1.3 Contributions

I reviewed some popular methods for parametric density estimation like mixture models and
neural density estimation in Section 1.2 which are used widely for problems in unsupervised
machine learning [McLachlan and Peel, 2004a, Oord et al., 2016, Kingma and Dhariwal,
2018]. The major contributions of this thesis is in developing methods for parametric
density estimation.

The first contribution detailed in Chapter 2 addresses the representation, separation,
and approximation properties of mixture models. We prove that several popular unsuper-
vised learning models like latent tree graphical models including special cases like hidden
Markov Models, tensorial mixture models, hierarchical tensor formats and sum-product
networks provide a compact representation of density mixtures. Subsequently, we formally
establish the precise relationships between these models shedding light on their similari-
ties and differences. Based on this connection, we provide a unified treatment of notion
of exponential separation in exact representation size between deep mixture architectures
(or deep mixture model) and shallow mixture architectures. Practically though, an ex-
act representation of deep mixture model is an overkill and it suffices to approximate a
given density mixture with reasonable accuracy. In this spirit, we show a surprising result
that the conditional gradient algorithm can approximate any mixture within ε accuracy
by combining O(1/ε2) “shallow” architectures. We support our theoretical findings with
experiments on synthetic and real datasets confirming the benefits of depth in density
estimation using mixture models.

12

Chapter 2 demonstrates the powerful benefits of representing mixture models using
deep hierarchical architectures. However, a major problem in practice for density esti-
mation using any representation of mixture models is fast and robust estimation of its
parameters that can handle streaming data. Bayesian learning provides a robust frame-
work for parameter estimation that lends itself naturally to both online and distributed
computation. However, exact Bayesian learning of the parameters of a mixture model is
intractable due to exponential increase in the number of mixture terms w.r.t. the data.
In Chapter 3, we propose an online and distributed algorithm called Bayesian Moment
Matching algorithm for Gaussian mixture models that approximates the exact Bayesian
posterior by projecting it on to a family of tractable distributions after each observation
by matching a set of sufficient moments between the exact and the approximate posterior.

Subsequently (also in Chapter 3), we extend this online and distributed Bayesian Mo-
ment Matching algorithm for the task of sequential data modeling using transfer learning
where we consider the problem of inferring a sequence of hidden states associated with
a sequence of observations produced by an individual within a heterogeneous population.
Instead of learning a single sequence model for the population (which does not account
for variations within the population), we learn a set of basis sequence models based on
different individuals. The sequence of hidden states for a new individual is inferred in an
online fashion by estimating a distribution over the basis models that best explain the
sequence of observations of this new individual. We explain this in the context of hidden
Markov models with Gaussian mixture models that are learned based on streaming data
by online Bayesian moment matching algorithm. We apply the resulting transfer learning
algorithm based on Bayesian Moment Matching on three real-world applications including
activity recognition based on smartphone sensors, sleep stage classification based on elec-
troencephalography (EEG) data for prediction of neurological disorders, and the prediction
of the direction of future packet flows between a pair of servers in telecommunication net-
works.

In Chapter 4, we turn our focus to neural density estimation where we propose a
unifying and general framework for estimating complex densities using monotone and bi-
jective triangular transformations. The main idea in this general framework is to specify
one-dimensional transformations that can be equivalently seen as specifying conditional
densities and iteratively extending to higher-dimensions. Using this framework, we study
popular autoregressive and flow based methods and reveal their commonalities and differ-
ences. We further present a unified understanding of the limitations and representation
power of these recent approaches. The framework also allows us to provide a modular proof
that can help in constructing universal flow based methods. This modular proof and tri-
angular based general framework helps us to subsequently uncover a novel Sum-of-Squares

13

flow that is interpretable, universal and easy to train.

I will conclude with some discussion and future directions in Chapter 5.

Most results in this thesis have been published previously: Chapter 2 in [Jaini et al.,
2018] at NeurIPS 2018, Chapter 3 in [Jaini et al., 2017] at ICLR 2017 and [Jaini and
Poupart, 2017] at NeurIPS workshop on Advances in Approximate Bayesian Inference
2017, and Chapter 4 in [Jaini et al., 2019] at ICML 2019. I outline my contributions in
each of these publication below:

• [Jaini et al., 2018] : The co-authors for this paper were Pascal Poupart and Yaoliang
Yu. I, with excellent guidance from Yaoliang Yu, proposed the initial problem, de-
rived the main results of the paper, implemented the SPN-CG algorithm, conducted
all the experiments and wrote the paper. Pascal Poupart was the second supervising
author who helped with pointing out references for connection between SPNs and
Bayesian Networks.

• [Jaini and Poupart, 2017] : Pascal Poupart was the coauthor on this paper and
supervised the project. I proposed the problem, implemented the solution and devised
the Bayesian Moment matching algorithm for Gaussian Mixtures, conducted the
experiments and wrote the paper.

• [Jaini et al., 2017] : This paper had Zhitang Chen, Pablo Carbajal, Edith Law, Laura
Middleton, Kayla Regan, Mike Schaekermann, George Trimponias, James Tung, and
Pascal Poupart as coauthors. The initial problem was proposed by Zhitang Chen
in the context of telecommunications network. I formulated the problem, developed
and implemented the complete transfer learning algorithm using Bayesian Moment
Matching and performed all the experiments. I also extended the application of this
algorithm to other domains to include collaborations with Pablo Carbajal, Laura
Middleton, Kayla Regan, and James Tung for activity recognition and they helped
with the study and collection of data. Mike Schaekermann and Edith Law helped
with the study and data collection for sleep stage classification. George Trimponias
helped with experiments using Recurrent Neural Nets and Pascal Poupart was the
supervising author.

• [Jaini et al., 2019] : The co-authors for this paper were Kira A. Selby and Yaoliang
Yu. Yaoliang and I proposed the problem as an extension to our previous work [Jaini
et al., 2018]. I worked very closely with Yaoliang on this project and with his ex-
pert guidance I was able to make the connection between triangular transformations
and neural density estimation methods, present the unifying framework of triangular

14

transformations for neural density estimation linking it to several previously pro-
posed frameworks, propose the Sum-of-Squares Polynomial (SOS) Flows, provide a
modular proof of universality for SOS flows along with other flow based methods and
write the paper. I also implemented the algorithm for SOS flows and performed the
experiments. The current shortened proof of three lines for universality was possible
due to inputs from Csaba Szepesvári. Kira helped with setting up basic code for SOS
flows and with debugging its PyTorch implementation.

Other relevant publications to the main underlying themes of the thesis that have not
appeared in this thesis are: [Jaini et al., 2016] and [Poupart et al., 2016].

15

Chapter 2

Deep Homogeneous Mixture Models

2.1 Introduction

Many unsupervised and semi-supervised learning algorithms either implicitly (e.g. gen-
erative adversarial networks) or explicitly estimate (some functional of) the underlying
density function. In this chapter, we study the problem of density estimation with an ex-
plicit representation through finite mixture models (FMMs) [McLachlan and Peel, 2004a],
which have endured thorough scientific scrutiny over decades. The popularity of FMMs
is largely due to their simplicity, interpretability, and universality, in the sense that, given
sufficiently many components (satisfying mild conditions), FMMs can approximate any
distribution to an arbitrary level of accuracy [Nguyen and McLachlan, 2016].

Many familiar unsupervised models in machine learning, at their core, provide a com-
pact representation of homogeneous density mixtures. This list includes (but is not limited
to) hidden Markov models (HMM), the recently proposed tensorial mixture models (TMM)
[Sharir et al., 2018], latent tree graphical models (LTM)[Mourad et al., 2013], hierarchical
tensor formats (HTF) [Hackbusch, 2012], and sum-product networks (SPN) [Darwiche,
2003, Poon and Domingos, 2011]. However, despite all being a certain form of FMM, the
precise relationships among these models are not always well-understood. Our first contri-
bution fills this gap: we prove (roughly) that {HMM,TMM} ⊆ LTM ⊆ HTF ⊆ SPN .
Moreover, converting from a lower to an upper class can be achieved in linear time and
without any increase in size. Our results not only clarify the similarities and subtle differ-
ences between these widely-used models, but also pave the way for a unified treatment of
many properties of such models, using tools from linear algebra.

17

We next investigate the consequence of converting a deep mixture model into a shallow
one. We first prove that the (nonnegative) tensor rank exactly characterizes the minimum
size of a shallow SPN (or LTM or HTF due to equivalence) that represents a given homo-
geneous mixture. Then, we show that a generic “deep” SPN (with depth at least 2) can
be exactly represented by a shallow SPN only when the latter contains exponentially many
product nodes. Our result extends significantly those in [Cohen et al., 2016, Sharir et al.,
2018, Delalleau and Bengio, 2011, Martens and Medabalimi, 2014, Cohen and Shashua,
2016] in various aspects, but most saliently from the restrictive full binary tree [Cohen
et al., 2016, Sharir et al., 2018] to any rooted tree. As a consequence, our results imply
that a generic HMM (whose underlying tree is “completely” unbalanced) cannot be exactly
represented by any polynomially-sized shallow SPN, which, to our best knowledge, has not
been shown before.

From a practical point of view, exact representations are an overkill: it suffices to
approximate a given density mixture with reasonable accuracy. Our third contribution
demonstrates that under the `∞ metric, we can approximate any homogeneous density
mixture within ε accuracy by combining O(1/ε2) shallow SPNs. However, our proof re-
quires the knowledge of the target density hence is not practical. Instead, borrowing a
classic idea from [Li and Barron, 2000] we show that minimizing the KL divergence us-
ing the conditional gradient algorithm can also approximate any homogeneous mixture
within ε accuracy by combining O(1/ε2) base SPNs, where the hidden constant decreases
exponentially wrt the depth of the base SPNs. Each iteration of the conditional gradient
algorithm amounts to learning a base SPN hence can be efficiently implemented. We con-
duct thorough experiments on both synthetic and real datasets and confirm the benefits
of depth in density estimation.

2.2 Density Estimation using Mixture Models

Preliminaries

For any natural number d, we denote [d] := {1, . . . , d}. Let Vi, i ∈ [d], be k-dimensional
vector spaces over the real field R, then the tensor product V1 ⊗ · · · ⊗ Vd is the canonical
vector space that linearizes multilinear maps over the product space V1×· · ·×Vd. Perhaps
the simplest way to construct the tensor product is to first formally define rank-1 tensors
as:

{v1 ⊗ · · · ⊗ vd : vi ∈ Vi, i ∈ [d]}, (2.1)

18

and then take the linear span of rank-1 tensors. For each T ∈ V1 ⊗ · · · ⊗ Vd, we define its
rank as

rank(T) := min{r : T =
r∑

γ=1

vγ1 ⊗ · · · ⊗ vγd , vγi ∈ Vi, i ∈ [d], γ ∈ [r]}. (2.2)

Sometimes we will further restrict each factor vγi to some subset Ui ⊆ Vi, leading to a
“larger” notion of rank. For instance, when Vi ≡ Rk, the above definition is called the
CP-rank and if we take Ui = Rk

+, then we get the refined notion of nonnegative rank,
denoted as rank+. Obviously, rank+ ≥ rank (whenever the former is defined).

Usually we can identify a d-order tensor T ∈ V1 ⊗ · · · ⊗ Vd with a multi-dimensional
array

T = [Ti1,...,id]ij∈[ki],j∈[d] ∈
⊗
i

Rki ' Rk1×···×kd , (2.3)

once some bases have been chosen for each Vi. We can extend an inner product to the
tensor product space: provided that some inner product 〈·, ·〉i has been specified on each
Vi, we first define the inner product for rank-1 tensors:

〈u1 ⊗ · · · ⊗ ud,v1 ⊗ · · · ⊗ vd〉 :=
d∏
i=1

〈ui,vi〉i, (2.4)

and then extend multi-linearly.

We give an explicit description of TMM [Sharir et al., 2018] here. For simplicity, let us
assume d = bL for some integers b and L. Then, every d-order tensor T can be represented
recursively as

φ`,tγ =

r`−1∑
j=1

w`,t,γj

b⊗
s=1

φ
`−1,b(t−1)+s
j , ` ∈ [L− 1], γ ∈ [r`], t ∈ [bL−`], (2.5)

T = φL,11 =

rL−1∑
j=1

wL,1,1j

b⊗
s=1

φL−1,s
j , (2.6)

where φ0,i
γ ∈ Vi for all γ ∈ [r0]. Note that the tensor T is completely determined by

{φ0,i
γ : γ ∈ [r0], i ∈ [d]}

⋃
{w`,t,γ ∈ Rr`−1 : ` ∈ [L− 1], γ ∈ [r`], t ∈ [bL−`]} ∪ {wL,1,1 ∈ RrL−1},

(2.7)

19

where the former are the base vectors at the bottom level and the latter are the coefficient
vectors at each intermediate level. Note that the representation (2.5)-(2.6) is not 1-1 (hence
some redundancy). Let TMMb

r (with default TMMr := TMM2
r) be the class of tensors that

can be represented as in (2.5)-(2.6).

A simple counting argument reveals that the coefficient tensors in TMMb
r have d−b

b−1
r2 +

r entries. It is clear that TMMb
r ⊆ TMMb

r+1, and TMMb
1 is exactly the set of rank-1

tensors. As shown in [Hackbusch, 2012], every tensor of rank r can be represented in
TMMb

r. Similarly, every tensor of nonnegative rank r can be represented in TMMb
r, with

all base vectors and coefficient vectors in (2.7) nonnegative. Moreover, we can normalize
the base vectors φ0,i

γ so that they have unit `1 norm.

Problem Set-up

We now introduce our main problem: how to estimate a multivariate density through
an explicit, finite homogeneous mixture. To set up the stage, let x = (x1, . . . , xd), with
xi ∈ Xi where each Xi is a Borel (measurable) subset of the Euclidean space Ei. We equip
a Borel measure µi on Xi. All our subsequent measure-theoretic definitions are w.r.t. the
Borel σ-field of Xi and the measure µi. Let X = X1 × · · · ×Xd and µ = µ1 × · · · × µd be
the product space and product measure, respectively. For each i ∈ [d] := {1, . . . , d}, let
Fi be a class of density functions (w.r.t. µi) of the variable xi, and let Gi = conv(Fi) be
its convex hull. The function class Fi is essentially our basis of densities for the variable
xi. Our setting here follows that in [Martens and Medabalimi, 2014] and includes both
continuous and discrete distributions.

We are interested in constructing a finite density mixture [McLachlan and Peel, 2004a],
using component densities from the basis class F =

⋃d
i=1Fi. We assume that our finite

mixture f is “homogeneous,” i.e.

f(x) =

k1∑
j1=1

k2∑
j2=1

· · ·
kd∑
jd=1

Wj1,j2,...,jd

d∏
i=1

f iji(xi) = 〈W , ~f 1(x1)⊗ · · · ⊗ ~fd(xd)〉, (2.8)

where ~f i := (f i1, . . . , f
i
ki

) ∈ Fkii , W ∈
⊗

iR
ki
+ ' Rk1×···×kd

+ is a d-order density tensor
(nonnegative and sum to 1), and 〈·, ·〉 is the standard inner product on the tensor product
space. We provided basic details about tensors at the beginning of Section 2.2 that will
be sufficient for our exposition and we refer the reader to the excellent book [Hackbusch,
2012] for more in-depth details. By dropping linearly dependent densities in each Fi we
can assume w.l.o.g. the tensor representation W is unique.

20

There are a number of reasons for restricting to homogeneous mixtures: Firstly, this is
the most common choice for estimating a multivariate density function [Tsybakov, 2009].
Secondly, we can always apply the usual “homogenization” trick, i.e., by enlarging the
function class Fi and appending the (improper) density 1 to each Fi. Thirdly, homogeneous
densities are “universal” if each class Fi is, cf. Appendix A of [Sharir et al., 2018]. In other
words, any joint density can be approximated arbitrarily well by a homogeneous density,
provided that each marginal class Fi can approximate any marginal density arbitrarily well
and the size (i.e. ki) tends to ∞. See Section 2.6.1 for some empirical verifications, where
we show that convex combinations of relatively few isotropic Gaussians can approximate
mixtures of Gaussians of full covariance matrices surprisingly well. Lastly, as we argue
below, many known models in machine learning are simply compact representations of
homogeneous mixtures.

2.3 Compact Representation of Homogeneous Mix-

tures

We now recall a few unsupervised learning models in machine learning and show that they
have a compact representation of homogeneous mixtures at their core. We prove the precise
relationship amongst them. Our results clarify the similarity and difference of these recent
developments, and pave the way for a unified treatment of depth separation (Section 2.4)
and model approximation (Section 2.5).

Sum-Product Networks (SPN) [Darwiche, 2003, Poon and Domingos, 2011,
Martens and Medabalimi, 2014] An SPN T is a rooted tree whose leaves are density
functions f ij(xi) over each of the variables x1, . . . , xd and whose internal nodes are either
a sum node or a product node. Each edge (u, v) emanating from a sum node u has an
associated nonnegative weight wuv. The value Tv at a product node v is the product of
the values of its children,

∏
u∈ch(v) Tu. The value Tu at a sum node u is the weighted sum

of the values of its children,
∑

v∈ch(u) wuvTv. The value of an SPN T is the expression

evaluated at the root node, which we denote as T(x). The scope of a node v in an SPN
is the set of all variables that appear in the leaves of the sub-SPN rooted at v. We only
consider decomposable and complete SPNs, i.e., the children of each sum node must have
the same scope and the children of each product node must have disjoint scopes. The main
advantage of a decomposable and complete SPN over a generic graphical model is that
joint, marginal and conditional queries can be answered by two network evaluations and

21

hence, exact inference takes linear time with respect to the size of the network [Darwiche,
2003, Poon and Domingos, 2011, Martens and Medabalimi, 2014]. In comparison, inference
in Bayesian Networks and Markov Networks may take exponential time in terms of the size
of the network. W.l.o.g. we can rearrange an SPN to have alternating sum and product
layers as we prove below.

Theorem 1. Any SPN can be rearranged to have alternating layers of sum and product
nodes without any change in the size of the resultant standard SPN from the original SPN.

Proof. It is straightforward to show that consecutive combination of either sum nodes or
product nodes can be merged into one layer of the corresponding nodes. This can be seen
as follows: consider a sum node v that has m sum nodes as children and denote the set as
ch(v) := {vi}mi=1. Then, the expression fv evaluated at v is

fv(x) =
m∑
i=1

αvifvi(x) (2.9)

However, since each vi ∀i ∈ [m] is also a sum node; denote the children of vi by the set
ch(vi) := {v̂i,j}tij=1 for each i ∈ [m]. Thus,

fvi(x) =

ti∑
j=1

βv̂i,jfv̂i,j (2.10)

Therefore, fv(x) can now be re-written as

fv(x) =
m∑
i=1

αvi

ti∑
j=1

βv̂i,jfv̂i,j (2.11)

=
m∑
i=1

ti∑
j=1

αviβv̂i,jfv̂i,j (2.12)

(2.13)

Define a 1−1 mapping between the tuple (i, j) i ∈ [m], j ∈ [ti] and [K] where K =
∑m

i=1 ti
such that k = j +

∑i−1
l=1 tl, k ∈ [K]. Then, we can re-write the above as

fv(x) =
K∑
k=1

γkfv̂K (2.14)

22

where γk = αviβv̂i,j and fv̂k = fv̂i,j . This shows that two consecutive layers of sum nodes
can be collapsed into one layer of sum nodes while preserving the same size of the network.
This can similarly be shown for consecutive layers of product nodes.

Next, we give the procedure to convert any SPN into an SPN with alternating layers of
sums and products. Perform a top-down pass starting at the root node (W.l.o.g. assume
the root node is a sum node). For every child of the root node, if it is a sum node, merge
the node into the root node. This ensures that after this step the top layer and the next
layer are alternating (including leaf nodes). Proceeding similarly for every node in the
network ensures the final network has alternating layers throughout.

The latent variable semantics [Peharz et al., 2017] as well as SPNs representing a
mixture model over its leaf densities [Poon and Domingos, 2011] is well-known. It is
also informally known that many tractable graphical models can be treated as SPNs,
but precise characterizations are scarce (see [Zhao et al., 2015] which relates SPNs with
Bayesian Networks).

Self-similar SPNs (S3PN) We call an SPN self-similar, if at every sum node, the
sub-tree rooted at each of its (product node) children is the same, except the weights at
corresponding sum nodes and the densities (but not the variables) at corresponding leaf
nodes may differ. This special class of SPNs is exactly equivalent to some recently proposed
unsupervised learning models, as we show below.

Hierarchical Tensor Format (HTF) [Hackbusch, 2012] We showed in (2.8) that
a homogeneous mixture can be identified with a tensor W , whose explicit storage can,
however, be quite challenging since its size is

∏d
i=1 ki. HTF [Hackbusch, 2012] aims at

representing tensors compactly, hence can also be used for representing homogeneous mix-
tures. An HTF consists of a dimension-partition rooted tree (DPT) T, d vector spaces Vi
with bases1 Fi at the d leaf nodes, and at most d − 1 internal nodes which are certain
subspaces of the tensor product of vector spaces at disjoint children nodes. Note that the
dimension of the tensor product U⊗V is the product of the dimensions of U and V. The key
in HTF is to truncate each tensor product with a (much smaller) subspace, hence keeping
the total storage manageable. Moreover, at each internal node v with k children nodes
{vi}, instead of storing its r bases directly, we store r coefficient tensors {wv,γj1,...,jk : γ ∈ [r]}
such that, recursively, the γ-th basis at node v is

∑
j1
· · ·
∑

jk
wv,γj1,...,jkvj1 ⊗ · · · ⊗ vjk , where

{vji} consists of the bases at the i-th child node vi. To our best knowledge, HTFs have not

1More generally frames, in particular, the elements need not be linearly independent.

23

H2

X1 X2 X3 X4

+

×

f 1
1 f 2

1 f 3
1 f 4

1

Pr(H = 1)

×

f 1
2 f 2

2 f 3
2 f 4

2

Pr(H = 2)
{1, 2, 3, 4}1

{1}2 {2}2 {3}2 {4}2

Figure 2.1: Left: A simple latent class model (special case of LTM). The superscript 2
indicates the number of values the hidden variable H can take. Middle: The equivalent
S3PN, where f ij(xi) = p(Xi = xi|H = j) is from the density class Fi. Right: The dimension-
partition tree in an equivalent HTF+. The superscript indicates the number of bases, which
should be the same for sibling nodes.

{1, 2, 3}1

{1, 2}2

{1}1 {2}3

{3}1

+

×

+

×

f 1
1 f 2

1

×

f 1
1 f 2

2

×

f 1
1 f 2

3

+

f 3
1

×

+

f 3
1

+

×

f 1
1 f 2

1

×

f 1
1 f 2

2

×

f 1
1 f 2

3

H2
1

H3
2

X1 X2

X3

Figure 2.2: Left: A dimension-partition tree in HTF+. The superscripts indicate the
number of bases. Middle: The equivalent S3PN. The leaf f ij is the j-th basis of vector
space Vi. Right: An “equivalent LTM.” The superscripts indicate the number of values
each hidden variable can take. The two densities of X3 are equal, i.e. f 3

1 = f 3
2 (hence X3

does not actually depend on H1).

been recognized as SPNs previously, although they have been used in a spectral method
for latent variable models [Song et al., 2013].

To turn an HTF into an SPN, more precisely an S3PN, we start from the root of
the dimension-partition tree T. For each internal node v with say r bases and say k
children nodes {vi}, each of which has ri bases themselves, we create three layers in the
corresponding S3PN: in the first layer we have r sum nodes {Svγ}, each of which is (fully)

connected, with respective weights wv,γj1,...,jk , to the second layer of
∏k

i=1 ri product nodes

{Pvj1,...,jk}, and finally the third layer consists of
∑k

i=1 ri sum nodes {Sviji}. The product node
Pvj1,...,jk is connected to k sum nodes {Sv1j1 , . . . , S

vk
jk
}. Note that the weights wv,γj1,...,jk need

not be positive or sum to 1 in HTF, although for representing a homogeneous mixture
we can make this choice and we call this subclass HTF+. Clearly, our construction is

24

{1, 2, 3, 4}1

{1, 2, 3}2

{1, 2}3

{1}2 {2}2

{3}3

{4}2

+

×

+

×

+

×

f 1
1 f

2
1

×

f 1
2 f

2
2

+

f 3
1

×

+

×

f 1
1 f

2
1

×

f 1
2 f

2
2

+

f 3
2

×

+

×

f 1
1 f

2
1

×

f 1
2 f

2
2

+

f 3
3

+

f 4
1

×

+

f 4
2

+

×

+

f 3
1

+

×

f 1
1 f

2
1

×

f 1
2 f

2
2

×

+

f 3
2

+

×

f 1
1 f

2
1

×

f 1
2 f

2
2

×

+

f 3
3

+

×

f 1
1 f

2
1

×

f 1
2 f

2
2

H2
3

H3
2

H2
1

X1 X2

X3

X4

Figure 2.3: Left: A dimension-partition tree in tensor-train. The superscripts indicate
the number of bases, which should remain constant for siblings. Middle: The equivalent
S3PN. The leaf f ij is the j-th basis of vector space Vi. Right: An equivalent HMM. The
superscripts indicate the number of values each hidden variable can take.

reversible hence we can turn an S3PN into an equivalent HTF+ as well. The construction
takes linear time and there is no increase of representation size. See Figs.2.1 and 2.2 for
simple illustrations2. In summary, HTF is exactly S3PN with arbitrary weights. We also
note that there are other hierarchical tensor representations like tensor-train format that
is already known to be equivalent to HTF [Hackbusch, 2012] hence also to S3PN as we
show in Figure 2.7.

Diagonal HTF (dHTF) [Hackbusch, 2012] For later reference, let us call the subclass
of HTFs whose coefficient tensors wv,γj1,...,jk (that define bases recursively at internal nodes
of the DPT, see above) are diagonal for all v and γ as dHTF, i.e., siblings in the DPT must
have the same number of bases (ri ≡ r) and wv,γj1,...,jk 6= 0 only when j1 = . . . = jk. In neural
network terminology, dHTFs are “locally connected.” Compared to the fully connected
HTF, dHTFs significantly reduce the representation size at the expense of expressiveness as
shown in Figure 2.4. For instance, the

∏k
i=1 ri = rk product nodes in the above conversion

from HTF to S3PN are reduced to merely r product nodes.

Latent Tree Models (LTM) [Mourad et al., 2013, Song et al., 2013, Choi et al.,
2011] An LTM is a rooted tree graphical model with observed variables Xi on the leaves

2All of our illustrations of S3PN in the main text are drawn with some redundant leaves, for the sake of
making the self-similar property apparent. See Appendix A for the reduced (but equivalent) counterparts.

25

+

× × × ×

+ + + +

× × × × × × × × × × × × × × × ×

f 1
1 f 1

2 f 2
1 f 2

2 f 3
1 f 3

2 f 4
1 f 4

2 f 1
3 f 1

4 f 2
3 f 2

4 f 3
3 f 3

4 f 4
3 f 4

4

(a) HTF

+

× ×

+ + + +

× × × × × × × ×

f 1
1 f 1

2 f 2
1 f 2

2 f 3
1 f 3

2 f 4
1 f 4

2 f 1
3 f 1

4 f 2
3 f 2

4 f 3
3 f 3

4 f 4
3 f 4

4

(b) dHTF

Figure 2.4: Top : A general HTF representation. The network has cross connections and
calculates all possible multiplications. Bottom : A dHTF with same bases functions. The
dHTF representation allows for local connections.

and hidden variables Hj on the internal nodes. Note that we allow observed variables Xi

to be either continuous or discrete but the hidden variables Hj can take only finitely many
values. Using conditional independence, the joint density of observed variables is given as

f(x1, . . . , xd) =
∑
h1

· · ·
∑
ht

W(h1, . . . , ht)
d∏
i=1

f ihπi (xi), (2.15)

where Hπi is the parent of Xi. From (2.15) it is clear that an LTM is a homogeneous
density mixture, whose tensor representation is given by the joint densityW of the hidden
variables. What is less known3 is that LTMs are a special subclass of self-similar SPNs.
It may appear that the size of S3PN is larger than that of an equivalent LTM, but this
is because S3PN also encodes the conditional probability tables (CPT) into its structure
whereas LTMs require other means to store CPTs. Note also that to evaluate an LTM, one
usually needs to run a separately designed algorithm (such as message passing), while in
S3PN we evaluate the leaf densities and propagate in linear time to the root. In summary,

3As an evidence, we note that the recent survey [Mourad et al., 2013] on LTMs did not mention SPNs
at all.

26

{1, 2, 3, 4}1

{1, 2}2

{1}2 {2}2

{3, 4}2

{3}3 {4}3

+

×

+

×

f 1
1 f 2

1

×

f 1
2 f 2

2

+

×

f 3
1 f 4

1

×

f 3
2 f 4

2

×

f 3
3 f 4

3

×

+

×

f 1
1 f 2

1

×

f 1
2 f 2

2

+

×

f 3
1 f 4

1

×

f 3
2 f 4

2

×

f 3
3 f 4

3

H2
1

H2
2

X1 X2

H3
3

X3 X4

Figure 2.5: Left: A dimension-partition tree in HTF+. The superscripts indicate the
number of bases. Middle: The equivalent S3PN. The leaf f ij is the j-th basis of vector
space Vi. Right: An equivalent LTM. The superscripts indicate the number of values each
hidden variable can take.

LTM is a subclass of S3PN with CPTs encoded as edge weights and with inference simplified
as network propagation. More precisely, LTM is exactly dHTF+, since conditioned on
the parent, all children nodes must depend on the same realization. An algorithm for
converting LTMs into equivalent S3PNs, along with more examples (Fig. 2.1 and Fig.A.1
in Appendix A.1).

Given an LTM, we can build a corresponding S3PN as follows: starting from the root
of the LTM, for each hidden variable H that takes k possible values {1, . . . , k} and that
has r children nodes {V1, . . . , Vr}, we create a sum node SH with k children product nodes
{PH,1, . . .PH,k}, each of which has r children sum nodes {SV1 , . . . , SVr}. We set the weight
from the sum node SH to its i-th child product node PH,i as Pr(H = i|π(H) = j), if SH
connects to the j-th child product node of the parent hidden variable π(H) (for the root,
the parent is empty). If the child Vt is a hidden variable, we continue the construction
similarly, while if Vt = Xi is an observed variable, then we replace the sum node SVt with
the density f ij(xi), assuming SVt is connected to the j-th child product node of the parent
hidden variable H. Algorithm 4 summarizes this construction, and Figure 2.1 illustrates
the idea using a simple latent class model (LCM) [Mourad et al., 2013]. In Figure A.1 we
give another example to illustrate Algorithm 4.

Tensorial Mixture Models (TMM) [Sharir et al., 2018, Cohen et al., 2016,
Cohen et al., 2017] TMM [Sharir et al., 2018] is a recently proposed subclass of dHTF+

where nodes on the same level of the dimension-partition tree must have the same number
of bases. Clearly, TMM is a strict subclass of LTM since the latter only requires sibling
nodes in the DPT to have the same number of bases. We note that TMM, as defined in

27

{1, 2, 3, 4}1

{1, 2}3

{1}2 {2}2

{3, 4}3

{3}2 {4}2

+

×

+

×

f 1
1 f 2

1

×

f 1
2 f 2

2

+

×

f 3
1 f 4

1

×

f 3
2 f 4

2

×

+

×

f 1
1 f 2

1

×

f 1
2 f 2

2

+

×

f 3
1 f 4

1

×

f 3
2 f 4

2

×

+

×

f 1
1 f 2

1

×

f 1
2 f 2

2

+

×

f 3
1 f 4

1

×

f 3
2 f 4

2

H3
1

H2
2

X1 X2

H2
3

X3 X4

Figure 2.6: Left: A dimension-partition tree in HTF. The superscripts indicate the number
of bases, which should remain constant on each level. Middle: The equivalent S3PN. The
leaf f ij is the j-th basis of vector space Vi. Right: An equivalent TMM. The superscripts
indicate the number of values each hidden variable can take (again, remaining constant on
each level).

[Sharir et al., 2018], also assumes the DPT to be binary and balanced, i.e. each internal
node has exactly two children, although this condition can be easily relaxed. See Figure 2.6
and its reduced form in Appendix A.2 for a simple example. Further, in Figure 2.5, we
give an example of an LTM that is not a TMM.

Hidden Markov Models (HMM) [Baum and Petrie, 1966, Rabiner, 1989]
HMM is a strict subclass of LTM. [Ishteva, 2015] recently observed that HMM is equiva-
lent to the tensor-train format, a special subclass of dHTF+ where the DPT is binary and
completely “imbalanced.” See Figure 2.7 for a simple example. In some sense, TMM and
HMM are the two opposite extremes within dHTF+ (or equivalently LTM).

Further, in Figure 2.8, we give an example of an SPN that is not an S3PN, leading to
the following summary:

Theorem 2. {TMM, HMM} ⊆ LTM = dHTF+ ⊆ HTF+ = S3PN ⊆ SPN, in the sense
that we can convert in linear time from a lower representation class to an upper one,
without any increase in size.

It is important to point out one subtlety here: any (complete and decomposable) SPN,
if expanded at the root, is a homogeneous mixture (cf. (2.8)). Hence, any SPN is even
equivalent to an LCM (i.e. an LTM with one hidden variable taking many values, like
in Figure 2.1), at the expense of potentially increasing the size (significantly). Thus, the
containment in Theorem 2 should be understood under the premise of not increasing the
representation size. It would be interesting to understand if the containment is strict if only
polynomial increase in size is allowed. We provide more comparing examples in Appendix A

28

{1, 2, 3}1

{1, 2}2

{1}1 {2}3

{3}1

+

× ×

+ + f 3
1

× × ×

f 1
1 f 2

1 f 2
2 f 2

3

H2
1

H3
2

X1 X2

X3

Figure 2.7: Left: A dimension-partition tree in HTF+. The superscripts indicate the
number of bases. Middle: The equivalent S3PN. The leaf f ij is the j-th basis of vector
space Vi. Right: An “equivalent LTM.” The superscripts indicate the number of values
each hidden variable can take. The two densities of X3 are equal, i.e. f 3

1 = f 3
2 (hence X3

does not actually depend on H1).

+

×

+

×

f 1
1 f 2

1

×

f 1
2 f 2

2

+

f 3
1 f 3

2

×

+

f 1
3 f 1

4

+

×

f 3
3 f 2

3

×

f 3
4 f 2

4

+

×

+

×

f 1
1 f 2

1

×

f 1
1 f 2

2

+

f 3
1 f 3

2

×

+

f 3
4

+

×

f 1
3 f 2

4

×

f 1
4 f 2

4

×

+

f 3
3

+

×

f 1
3 f 2

3

×

f 1
4 f 2

3

Figure 2.8: Left: An SPN but which is not an S3PN. The leaf f ij is the j-th basis of vector
space Vi. Right: The equivalent S3PN requires an increase in the size of the network.

for different models, and in the next section we discuss the (huge) size consequence from
converting a certain upper representation class to some lower one.

2.4 Depth Separation

In the previous section, we established relationships among different representation schemes
for homogeneous density mixtures. In this section, we prove an exponential separation in
size when converting one representation to another and extend the results in [Delalleau
and Bengio, 2011, Martens and Medabalimi, 2014, Cohen et al., 2016, Sharir et al., 2018].

29

The key is to exploit the equivalence to HTF, which allows us to bound the model size
using linear algebra.

We call a (complete and decomposable) SPN shallow if it has only one sum node,
followed by a layer of product nodes. Using the equivalence in Section 2.3, we know a
shallow SPN (trivially self-similar) is equivalent to an LCM (a latent tree model with one
hidden node taking as many values as the number of product nodes), or an HTF+ whose
DPT has depth 1 (cf. Figure 2.1). Recall that rank+(W) denotes the nonnegative rank of
a tensor and nnz(W) is the number of nonzeros. The leaf nodes in SPN (LTM) or the leaf
bases in HTF are either from F (union of linearly independent component densities) or G
(the convex hull), see the definitions in Section 2.2.

Our first result characterizes the model capacity of shallow SPNs (LCMs):

Theorem 3. If a shallow SPN T, with leaf (input) nodes from G, represents the density
mixture W, then T has at least rank+(W) many product nodes. Conversely, there always
exists a shallow SPN that represents W using rank+(W) product nodes and 1 sum node.

Proof. Suppose the shallow SPN T represents the (homogeneous) mixture density W . If
the hidden layer is all sum nodes, then the output node must be a product node. The
claim trivially holds in this case. If the hidden layer is r product nodes, then the output
node is a sum node, with weight zγ to the γ-th product node. The output of the SPN T,
when expanded at the root, is in the following form:

T(x) =
r∑

γ=1

zγ

d∏
i=1

gγi (xi) =
r∑

γ=1

zγ〈w(γ)
1 ⊗ · · · ⊗w

(γ)
d , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉 (2.16)

= 〈
r∑

γ=1

zγw
(γ)
1 ⊗ · · · ⊗w

(γ)
d , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉 (2.17)

= 〈W , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉. (2.18)

Thus, W =
∑r

γ=1 zγ ·w
(γ)
1 ⊗ · · · ⊗w

(γ)
d , i.e., rank+(W) ≤ r.

Conversely, let r = rank+(W) with the decomposition W =
∑r

γ=1 w
(γ)
1 ⊗ · · · ⊗ w

(γ)
d .

Note that each w
(γ)
i is nonzero, as otherwise we would be able to reduce the rank. We

construct a shallow SPN T to representW as follows: On the first layer we have r product
nodes, with the γ-th one computing

∏d
i=1 g

(γ)
i (xi), where

g
(γ)
i (xi) =

k∑
j=1

w̄
(γ)
ij fi,j(xi), w̄

(γ)
ij =

w
(γ)
ij

‖w(γ)
i ‖1

. (2.19)

30

Note that ‖w(γ)
i ‖1 :=

∑k
j=1 w

(γ)
ij > 0 hence the above is well-defined. Then, we add a sum

node on top of all product nodes, with weight ‖w(γ)‖1 :=
∏d

i=1 ‖w
(γ)
i ‖1 > 0 for the γ-th

product node. The output of the constructed shallow SPN is:

f(x) =
r∑

γ=1

‖w(γ)‖1

d∏
i=1

g
(γ)
i (xi) =

r∑
γ=1

d∏
i=1

k∑
j=1

w
(γ)
ij fi,j(xi) (2.20)

=
r∑

γ=1

〈w(γ)
1 ⊗ · · · ⊗w

(γ)
d , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉 = 〈W , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉. (2.21)

The proof is now complete.

In other words, the nonnegative rank characterizes the smallest size of shallow SPNs
(LCMs) that represent the density mixtureW . Similarly, we can prove the following result
when the leaf nodes are from F instead of the convex hull G.

Theorem 4. If a shallow SPN T, with leaf nodes from F , represents the density mixture
W, then either T has at least nnz(W) product nodes or rank+(W) = 1. Conversely, there
always exists a shallow SPN that represents W using nnz(W) product nodes and 1 sum
node.

Proof. Suppose T has a hidden layer of sum nodes. Because T is standard, the product
output is then a mixture density of the following form:

T(x) =
d∏
i=1

k∑
j=1

wijfi,j(xi) = 〈w1 ⊗ · · · ⊗wd, ~f1 ⊗ · · · ⊗ ~fd〉 = 〈W , ~f1 ⊗ · · · ⊗ ~fd〉. (2.22)

Thus, W = w1 ⊗ · · · ⊗wd has nonnegative rank 1. On the other hand, if T has a hidden
layer of product nodes, then the output of the standard SPN T, when expanded at the
root sum node, is in the following form:

T(x) =
k∑

j1=1

· · ·
k∑

jd=1

zj1,...,jd

d∏
i=1

fi,ji(xi) = 〈W , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉. (2.23)

Thus, W = Z, in particular nnz(W) = nnz(Z), but the latter is exactly the number of
product nodes in T.

The converse part follows by reversing the above argument.

31

Note that we always have rank(W) ≤ rank+(W) ≤ nnz(W), thus the lower bound in
Theorem 4 is stronger than that in Theorem 3. This is not surprising, because an SPN with
leaf nodes from G is the same as an SPN with leaf nodes from F and with an additional
layer of sum nodes appended at the bottom (to perform the convex hull operation). This
difference already indicates that an additional layer of sum nodes at the bottom can strictly
increase the expressive power of SPNs. This distinction between leaf nodes from F or from
G, to our best knowledge, has not been noted before.

The significance of Theorem 3 and Theorem 4 is that they give exact characterizations
of the model size of shallow SPNs, and they pave the way for comparing more interesting
models. For convenience, we state our next result in terms of LTMs, but the consequence
for dHTFs or SPNs should be clear, thanks to the equivalence in Theorem 2.

Theorem 5. Let an LTM T have d observed variables X = {X1, . . . , Xd} with parents
Hi taking ri values respectively. Assuming the CPTs of T are sampled from a continuous
distribution, then almost surely, the tensor representation W for T has rank at least

max
1≤m≤d/2

max
{S1,...,Sm,S̄1,...,S̄m}⊆X

m∏
i=1

min{ri, r̄i, ki, k̄i}, (2.24)

where ki (k̄i) is the number of (linearly independent) component densities that Si (S̄i)
has, and Si (S̄i) are non-siblings.

Proof. We present our proof using the equivalence between LTM and dHTF.

Recall that an HTF consists of a dimension-partition tree (DPT) T whose leaf nodes
{i}, i ∈ [d] represent d vector spaces with bases {vi1, . . . ,viri} respectively. At each in-

ternal node β with bβ children nodes β1, . . . , βbβ , we have rβ coefficient tensors wβ,`[β] ∈
R
rβ1×···×rβbβ , `[β] ∈ [rβ], and rα denotes the number of bases at node α. Any tensor
W living in the space at the root D of T can thus be represented using rD coefficients
{c`[D] : `[D] ∈ [rD]} in the following way (cf. Eq (11.26) of [Hackbusch, 2012] for the
special case when the DPT is binary):

W =

ri∑
`[i]=1
i∈[d]

 rα∑
`[α]=1
α∈T\L

c`[D]

∏
β∈T\L

w
β,`[β]
`[β1],...,`[βbβ]

 d⊗
i=1

vi`[i]. (2.25)

For a dHTF, the coefficient tensors w
β,`[β]
`[β1],...,`[βbβ] are diagonal, so in the summation above we

can only consider sibling nodes once as a group. The key observation is that the right-hand
side of (2.25) is a sum of many rank-1 tensors, hence W is likely to have a large rank.

32

Let {Si, S̄i : i = 1, . . . ,m} ⊆ X := {X1, . . . , Xd}, where Si’s are non-siblings and
S̄i’s are also non-siblings. Set ti = min{rir̄i, ki, k̄i}. For each Si, set its parent say Hi’s
(diagonal) coefficient tensor as follows:

w
Hi,`[Hi]
`[Si]

=

{
1, if `[Hi] = `[Si] = `[S̄i] ≤ ti

0, otherwise
. (2.26)

Similarly for each S̄i. For any remaining internal node β, set its (diagonal) coefficient
tensor as:

w
β,`[β]
`[β1] =

{
1, if `[β] = 1

0, otherwise
. (2.27)

Under the above specification, we have

W ∝
t1∑

j1=1

· · ·
tm∑

jm=1

[
⊗mi=1v

Si
ji

]︸ ︷︷ ︸
aj1,...,jm

⊗[
⊗mi=1v

S̄i
ji

]
︸ ︷︷ ︸

bj1,...,jm

. (2.28)

Since {aj1,...,jm} and {bj1,...,jm} are linearly independent, respectively, through matricization
we know rank(W) ≥

∏
i ti. This shows that there exist coefficient tensors w so that

rank(W) ≥
∏

i ti.

To extend our conclusion from a special realization above to the generic case, let us
note that the determinant of any submatrix of any matricization of W is a polynomial
function of the coefficient tensors w. We have shown above this polynomial is not always
zero, but then it follows immediately that the zero set of this polynomial has measure zero
[Caron and Traynor, 2005], i.e., for a generic realization of the coefficient tensors, we have
rank(W) ≥

∏
i ti.

We constructed an explicit homogeneous mixture in the above proof whose rank is
exponential. A similar construction, in the discrete setting, is given below [Martens and
Medabalimi, 2014]:

Example 1. Let xi ∈ {0, 1}∀i, k = 2 and d = 2m. Choose for all ∀i the basis (unnormal-
ized) densities fi,1(xi) = 1(xi = 1) and fi,2(xi) = 1(xi = 0) (wrt some non-degenerate
counting measure on {0, 1}). Consider the (unnormalized) multivariate density F on
{0, 1}d (wrt the product counting measure):

F (x) =

{
1, if xi = xi+m for all 1 ≤ i ≤ m

0, otherwise
. (2.29)

33

Clearly, F is a density mixture with input nodes from F and the associated tensor W
satisfies rank+(W) > 1. Hence, a standard shallow SPN needs at least nnz(W) = 2d/2

product nodes to represent F , with input nodes from F . The density mixture F is the
so-called equal function in [Martens and Medabalimi, 2014], whose Theorem 24 follows
immediately from our Theorem 4 since nnz(W) ≥ rank(W) for any matricization W of W.

We note that F is also a density mixture with input nodes from G (elements of which
are themselves mixtures of fi,1 and fi,2), and rank+(W) ≥ rank(W) = nnz(W) = 2d/2 ≥
rank+(W). Thus, any standard shallow SPN with input nodes from G still requires 2d/2

product nodes to represent the equal function. In other words, an SPN with an input
layer from F , a layer of sum nodes, a layer of product nodes, and a single sum node
as output, would still require 2d/2 product nodes in order to represent the equal function.
This distinction between input nodes from F and input nodes from G, to our best knowledge,
has not been noted before.

Corollary 6. In addition to the setting in Theorem 5, if each observed variable Xi has b
sibling observed variables and ri ≡ r ≤ k ≡ ki, then the tensor representation W has rank
at least rbd/bc.

Corollary 7. In addition to the setting in Theorem 5, if each observed variable Xi has no
sibling observed variables and ri ≡ r ≤ k ≡ ki, then the tensor representation W has rank
at least rbd/2c.

Combining Corollary 6 with Theorem 4 we conclude that an LTM T with d observed
variables Xi where every b of them share the same hidden parent node is equivalent to an
LCM T′ where the hidden node must take at least rbd/bc many values. Note that T has
Θ(d/b) hidden variables, each of them taking r values, thus the total size of the CPTs of T
is Θ(rd/b) while the total size of that of T′ is rbd/bc, an exponential blow-up. By combining
Corollary 7 with Theorem 4 a similar conclusion can be made for converting an HMM into
a LCM. Of course, interpretation using SPNs is also readily available: Almost all depth-L
S3PNs (L ≥ 2) with weights sampled from a continuous distribution can be written as a
shallow SPN with necessarily exponentially many product nodes.

To our best knowledge, [Delalleau and Bengio, 2011] was the first to construct a poly-
nomial that, while representable by a polynomially-sized depth-log d SPN, would require
exponentially many product nodes if represented by a shallow SPN. However, the deep
SPN given in [Delalleau and Bengio, 2011, Figure 1] is not complete. Recently, [Cohen
et al., 2016] proved that the existence result of [Delalleau and Bengio, 2011] is in fact
generic. However, the results of [Cohen et al., 2016] and subsequent work [Sharir et al.,
2018] are limited to full binary trees. In contrast, our general Theorem 5 holds for any

34

tree, and we allow non-sibling nodes to take different number of values. As a result, we are
able to handle HMMs, the opposite extreme of TMM. Another important point we want
to emphasize is that the exponential separation from a shallow (i.e. depth-1) tree can be
achieved by increasing the depth by merely 1, as opposed to the depth-log d constructions
in [Delalleau and Bengio, 2011, Sharir et al., 2018].

We end this section by making another observation about Theorem 5: It also allows
us to compare the model size of LTMs T1 and T2 where say T1, after removing its root
R, is a subtree of T2. Indeed, in this case we need only define the children nodes of R
as “observed” variables. Then, T1 becomes an LCM and T2 serves as T in Theorem 5,
with observed variables as the children nodes of R. This essentially extends [Cohen et al.,
2016, Theorem 3] from a full binary tree to any tree and allowing non-sibling nodes to take
different number of values.

2.5 Approximate Representation

In the previous section, we proved that homogeneous mixtures representable by “deep”
architectures (such as SPN or LTM) of polynomial size cannot be exactly represented by
a shallow one with sub-exponential size. In this section, we address a more intricate and
relevant question: What if we are only interested in an approximate representation?

To formulate the problem, let g and h be two homogeneous mixtures with tensor rep-
resentation W and Z, respectively. We consider the distance dist(g, h) := ‖W − Z‖ for
some norm ‖ · ‖ specified later. Using the characterization in Theorem 3 we formulate our
approximation problem as follows. Let ∆ be a perturbation tensor with ‖∆‖ ≤ ε. What
is the minimum value for rank+(W + ∆), i.e. the size of a shallow SPN? This motivates
the following definition adapted from [Alon, 2009]:

ε-rank+(W) = min
{

rank+(W + ∆) : ‖∆‖ ≤ ε
}

= min
{

rank+(Z) : ‖Z −W‖ ≤ ε
}
.

(2.30)

In other words, ε-rank+ is precisely the minimum size of a shallow SPN (LCM) that
approximates a specified mixture W with accuracy ε. We can similarly define ε-rank,
where we replace the nonnegative rank with the usual rank in (2.30). Note that the notion
of ε-rank depends on the norm ‖ · ‖.

`1-norm First, we fix the norm ‖ · ‖ to be the usual `1 norm in definition (2.30), and we
use the notation ε-rank1

+ or ε-rank1 to signify this convention. Our next result provides a
new lower bound on the ε-rank, based on matricization.

35

Theorem 8. Fix ε > 0 and let W ∈ Rk1×···×kd. Then,

ε-rank1
+(W) ≥ ε-rank1(W) ≥ min{i ≥ 0 : ε ≥ ‖W‖tr −

i∑
j=1

σi(W)}, (2.31)

where W is any matricization of the tensor W, ‖ · ‖tr is the matrix trace norm (i.e. sum
of singular values), and σi(W) denotes the i-th largest singular value of W .

Proof. Since the nonnegative rank is lower bounded by the rank, which is in turn lower
bounded by the rank of any matricization, we clearly have

ε-rank1
+(W) ≥ ε-rank1(W) ≥ ε-rank1(W), (2.32)

where W is an arbitrary matricization of W (note that matricization does not change the
`1 norm). Moreover, for matrices, ‖ · ‖∞ ≤ ‖ · ‖sp (i.e., maximum singular value) hence
‖ · ‖1 ≥ ‖ · ‖tr, thanks to duality. Therefore,

ε-rank1(W) = min
‖∆‖1≤ε

rank(W + ∆) ≥ min
‖∆‖tr≤ε

rank(W + ∆) = min
‖W−Z‖tr≤ε

rank(Z).

(2.33)

Using say [Yu and Schuurmans, 2012, Theorem 1], we know that at the minimum we can
choose Z to have the same singular vectors as W . It is clear then that Z should match the
singular values of W , from the biggest to smallest, until the trace norm difference between
Z and W falls under ε.

The only prior work to Theorem 8 that we are aware of is [Martens and Medabalimi,
2014, Lemma 28], which only deals with the identity matrix W = I and is loose by a factor
of 2. [Martens and Medabalimi, 2014] went on to construct a density function based on
the equal function (where W = I, cf. Example 1) that cannot be approximated by a
polynomially-sized standard shallow SPN, up to some exponentially small ε. This existence
result is then strengthened by [Cohen et al., 2016], who showed that under the HR model,
for almost every random tensorW , there exists some ε (potentially depending onW), such
that any polynomially-sized standard shallow SPN cannot approximateW under ε. Based
on Theorem 8, we now present a complementary result.

Theorem 9. Fix any ε > 0, and sample each entry of the tensor W ∈ Rk1×···×kd indepen-
dently and identically from a standard Gaussian distribution, then with high probability,

ε-rank1(W) ≥ O(kd/2 − εkd/4). (2.34)

36

Proof. Consider the reshaped matrixW ∈ Rkd/2×kd/2 of the tensorW . Clearly, each entry of
W is again an iid sample from the standard Gaussian distribution. As shown in [Rudelson
and Vershynin, 2008], the smallest singular value of W is Θ(k−d/4), with high probability.
Let r = ε-rank1(W), then according to Theorem 8, we have

ε ≥
kd/2∑
j=r+1

σi(W) ≥ (kd/2 − r)k−d/4. (2.35)

Rearranging we obtain the claimed lower bound.

The failure probability in Theorem 9 depends on d only mildly: up to a small constant
it approaches 0 at the rate ck

d/2
for some constant 0 < c < 1. Moreover, the standard

Gaussian distribution can be replaced with any subgaussian distribution, or more generally
any distribution with a bounded 4-th moment. To see the significance of Theorem 9, let
us note first that we can fix ε beforehand so there is no dependence on the tensor W .
Secondly, Theorem 9 implies that with high probability, for any mixture density f , even if
we contend with a constant approximation accuracy ε = O(1), a standard shallow SPN T
would still need O(kd/2) many product nodes.

`∞-norm Let the norm in the definition (2.30) be the usual `∞ norm, and we signify this
choice with the notation ε-rank∞. In this setting, we can prove the following nearly-tight
bound on the ε-rank.

Theorem 10. Fix ε > 0 and tensor W ∈ Rk1×···×kd. Then, for some (small) constant
c > 0,

ε-rank∞(W) ≤ c‖W‖tr
ε2

, (2.36)

where ‖W‖tr is the tensor trace norm. A similar result holds for ε-rank∞+ (W). The depen-
dence on ε is tight up to a log factor.

Proof. Note that the `∞ norm is dominated by the `2 norm, so ε-rank2 ≥ ε-rank∞. Thus,
given W , we consider the approximation problem:

min
‖Z‖tr≤‖W‖tr

‖Z −W‖2
2. (2.37)

Obviously, the minimum is 0. Moreover, if we run the generalized conditional gradient of
[Frank and Wolfe, 1956] with initialization Z0 = 0, then after t iterations, we have

‖Zt −W‖2
2 ≤

c‖W‖tr

t
, rank(Zt) ≤ t, (2.38)

37

where c is some small universal constant. Here we are exploiting the property that each
iteration of the conditional gradient algorithm only increments the rank by at most 1.
Setting c‖W‖tr/t = ε2 gives us

‖Zt −W‖∞ ≤ ‖Zt −W‖2 ≤ ε, rank(Zt) ≤
c‖W‖tr

ε2
, (2.39)

whence follows ε-rank∞(W) ≤ O(‖W‖tr/ε
2).

The proof for the nonnegative rank is completely similar.

The inverse-square dependence on ε in Theorem 10 is almost tight, as shown below:

Theorem 11 ([Alon, 2009, Theorem 2.1]). Let W be a kd/2×kd/2 matrix with |wi,i| = 1 ∀i
and |wi,j| ≤ ε ∀i 6= j, where k−d/4 ≤ ε ≤ 1

2
. Then, for some absolute positive constant c,

rank(W) ≥ cd log k

ε2 log(1
ε
)

(2.40)

The above theorem, through un-matricization, clearly implies that there exist tensors
W with ε-rank∞(W) lower bounded by cd log k

ε2 log(
1
ε

)
, when ε is not too small.

A few remarks with regard to Theorem 10 are in order. We note first that our proof
actually gives the same upper bound for the epsilon-rank under any `p norm where p ∈
[2,∞]. Using the norm inequality ‖W‖1 ≤ kd/2‖W‖2, we then immediately have from
Theorem 10 that

ε-rank1(W) ≤ c‖W‖trk
d

ε2
. (2.41)

Note however that there is still a factor of kd/4 gap between the upper and lower bounds
in Theorem 9. It might be possible to optimize the lower bound in Theorem 9 through
different matricizations.

There are at least two issues with Theorem 10. First, if we use it to naively bound the
L1 norm difference of the underlying densities, i.e.,

‖g − h‖1 =

∫
|〈W − Z, ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉|dµ(x) ≤ kd‖W − Z‖∞, (2.42)

the big constant kd would pop out in the worse case. More disturbingly, in a practical
application, we usually do not have access to W (which is too large to maintain directly
anyways), hence it is not clear how to attain the bound in Theorem 10 algorithmically.

38

Note that the representative tensorW for a homogeneous density mixture f is nonnega-
tive and sums to 1, in which case ‖W‖tr ≤ ‖W‖1 = 1. Thus, very surprisingly, Theorem 10
confirms that any deep SPN (or any LTM or HTF+) can be approximated by some shallow
SPN with accuracy ε under the `∞ metric and with at most c/ε2 many product nodes. Of
course, this does not contradict with the impossibility results in [Cohen et al., 2016] and
[Martens and Medabalimi, 2014], because the accuracy ε there is exponentially small.

Theorem 10 remains mostly of theoretical interest, though, because (i) a straightforward
application of Theorem 10 leads to a disappointing bound on the total variational distance
between the two homogeneous mixtures f and g, due to scaling by the big constant

∏
i ki;

(ii) in practical applications we do not have access to W so the constructive algorithm in
our proof does not apply.

KL divergence In contrast to the above `∞ approximation, we now give an efficient
algorithm to approximate a homogeneous density mixture h, using a classic idea of [Li and
Barron, 2000]. We propose to estimate h by minimizing the KL divergence over the convex
hull4 of a hypothesis class H:

min
Wg∈conv(H)

KL(h‖g), (2.43)

where KL(h‖g) :=
∫
h(x) log h(x)

g(x)
dµ(x), and Wg is the representative tensor for the

mixture g. Following [Li and Barron, 2000], we apply the conditional gradient algorithm
[Frank and Wolfe, 1956] to solve (4.4): Given gt−1, we find

(ηt, ft)← arg min
η∈[0,1],Wf∈H

KL(h‖(1− η)gt−1 + ηf), gt ← (1− ηt)gt−1 + ηtft. (2.44)

One can also simply set ηt = 2
2+t

, as is common in practice. Note that (2.44) can be
approximately solved based on an iid sample x1, . . . ,xn hence is practical:

max
η∈[0,1],Wf∈H

∑n

i=1
log[(1− η)gt−1(xi) + ηf(xi)]. (2.45)

Using basically the same argument as in [Li and Barron, 2000], the above algorithm
enjoys the following guarantee:

KL(h‖gt) ≤ chδ/t, (2.46)

4This is similar in spirit to [Meila and Jordan, 2000, Anandkumar et al., 2012] which learn mixture of
trees, but the algorithms are quite different.

39

where δ = sup{log 〈W, ~f1⊗···⊗~fd〉
〈Z, ~f1⊗···⊗~fd〉

:W ,Z ∈ H,x ∈ X}, and

ch = min{p ≥ 0 :Wh =
∑p

i=1 λiWi,Wi ∈ H,λ ≥ 0,1>λ = 1} (2.47)

is essentially the rank of the mixture h (with tensor representationWh) w.r.t. the class
H.

The important conclusion we draw from the above bound (2.46) is as follows: First, the
constant ch is no larger than

∏
i ki if H is any of the classes in Theorem 2 (since we only

consider finite homogeneous mixtures h). Second, if the target density h is a small number
of combinations of densities in H, then ch is small and we can approximate h using the
algorithm (2.44) efficiently. Third, ch can be vastly different for different hypothesis classes
H, as shown in Section 2.4. For instance, if h is a generic TMM and H is the shallow class
LCM, then ch is exponential in d, whereas if H is the class TMM, then ch can be as small
as 1. There is a trade-off though, since solving (2.45) for a simpler class (such as LCM) is
easier than a deeper one (such as TMM). We will verify this trade-off in our experiments.

2.6 Experiments

We perform experiments on both synthetic and real world data to reinforce our theoretical
findings. Firstly, we present experiments on synthetic data to demonstrate the expressive
power of an SPN and the algorithm proposed in (2.44)-(2.45) which we call SPN-CG. Next,
we present two sets of experiments on real world datasets and present results for image
classification under missing data.

2.6.1 Synthetic Data

In the first experiment, we generated 2000 samples from a 4 component and two dimen-
sional GMM with full covariance matrices for each component. We estimate this GMM
using SPN-CG. In each iteration, we add an additional SPN from TMM2,2 and learn its pa-
rameters and the mixing weights. We use SGD with weight decay to learn the parameters
in each iteration. This experiment helps us to demonstrate that an SPN with univariate
leaf distributions (thereby resulting in a mixture model with factored distributions) can
estimate a GMM with full covariance matrix. Figure 2.9 shows the convergence of the
model to the true negative log-likelihood on a held-out test set as a function of number of
iterations.

40

Figure 2.9: (Left) Convergence to true negative log-likelihood using SPN-CG (Right) Sur-
face plots for covariance matrices of the components

1 2 3 4
10
20
30
40
50

Ite
ra

tio
ns

GMM : 16 dims, 8 components, full covariance

1 2 3 4
Layers

600

700

800

900

Ru
nn

in
g

tim
e

(s
)

1 2 3 4
0
2
4
6
8

Ite
ra

tio
ns

GMM : 16 dims, 8 components, diagonal covariance

1 2 3 4
Layers

50

60

70

80

Ru
nn

in
g

tim
e

(s
)

1 2 3
0

10
20
30
40

Ite
ra
tio

ns

8 dim GMM from a 4 layered deep SPN

1 2 3
Layers

200

300

400

Ru
nn

in
g
tim

e
(s
)

Figure 2.10: Depth efficiency and performance of SPN-CG

In the next set of experiments, we demonstrate the intermediate depth efficiency. We
generate 20,000 samples from a 16 dimensional GMM under three different settings - (i)
8 component GMM with full covariance matrices, (ii) 8 component GMM with diagonal
covariance matrices and, (iii) GMMs represented by a deep SPN with 4 layers - and esti-
mate each using SPN-CG. We consider layers, L ∈ {1, 2, 3, 4} where L = 1 corresponds to
a shallow network and L = 4 corresponds to a network in TMM (a full binary tree). For
each L, at every iteration of SPN-CG we add a network with L layers. In Figure 2.10,
we plot the number of iterations and the total running time until convergence w.r.t. the
depth for each setting described above. We make the following observations: As the depth
(layer) increases, the number of iterations decreases sharply, since adding a deeper network
effectively is the same as adding exponentially many shallower networks (confirming Sec-
tion 2.4). Moreover, although learning a deeper network in each iteration is more expensive

41

than learning a shallower network, the sharp decrease in iterations full compensates this
overhead and leads to a much reduced total running time. The advantage in using deeper
networks is more pronounced when the data is indeed generated from a deep model.

2.6.2 Image Classification under Missing Data

A natural setting to test the effectiveness of generative models like deep SPNs is for classi-
fication in the regime of missing data. Generative models can cope with missing data natu-
rally through marginalizing the missing values, effectively learning all possible completions
for classification. As stated earlier, SPNs are attractive because inference, marginalization
and evaluating conditionals is tractable and amounts to one pass through the network.
This is in stark contrast with discriminative models that often rely on either data imputa-
tion techniques (which result in sub-optimal classification) or by assuming the distribution
of missing values is same during train and test time; an assumption that is often not valid
in practice.

We perform experiments on MNIST [LeCun et al., 1998] for digit classification and
small NORB [LeCun et al., 2004] for 3D object recognition under the MAR (missing at
random) regime as described in [Sharir et al., 2018] (Section 3). We experiment with two
missing distributions- (i) an i.i.d. mask with a fixed probability of missing each pixel, and
(ii) a mask obtained by the union of rectangles of a certain size, each positioned uniformly
at random in the image. Concretely, let P (X,Y) be the joint distribution over the images
(X ∈ Rd) and labels Y ∈ [M]. Further, let Z be a random binary vector conditioned on
X = x with distribution Q(Z|X = x). To generate images with missing pixels, we sample
z ∈ {0, 1}d and consider the vector x� z. A pixel xi, i ∈ [d] is considered missing if zi = 0
in which case the corresponding coordinate in x�z holds ∗ and it holds xi if zi = 1. In the
MAR setting that we consider for our experiments, Q(Z = z|X = x) is a function of both z
and x but is independent of changes to xi if zi = 0 i.e. Z is independent of missing pixels.
As described in [Sharir et al., 2018], the optimal classification rule in the MAR regime is
h∗(x� z) = P (Y = y|w(x, z)) where w(x, z) is the realization when X coincides with x on
coordinates i for which zi = 1.

Our major goal with these experiments is to test our algorithm SPN-CG for high-
dimensional real world settings and show the efficacy of learning SPNs by increasing their
expressiveness iteratively. Therefore, we directly adapt the experiments as presented in
[Sharir et al., 2018]. Specifically, we adapt the code of HT-TMM for our SPN-CG by
following the details in [Sharir et al., 2018]. In each iteration of our algorithm, we add an
SPN structure exactly similar to HT-TMM. Therefore, the first iteration of our algorithm
(i.e. SPN-CG1) amounts to a structure similar to HT-TMM while additional iterations

42

increase the network capacity. For each iteration, we train the network using an AdamSGD
variant with a base learning rate of 0.03 and momentum parameters β1 = β2 = 0.9. For
each added network structure, we train the model for 22,000 iterations for MNIST and
40,000 for NORB.

We compare our results to the following methods :

1. Data Imputation Methods : Data imputation methods are a common technique
to handle missing data using discriminative classifiers. The algorithm proceeds by
completing missing values via some heuristic and passing the results to a classifier
trained on uncorrupted data. In our approach, we use a ConvNet for prediction. We
tested on the following data imputation methods in our manuscript :

• Zero data imputation : completing all missing values with zeros.

• Mean data imputation : completing all missing values with the mean value over
the dataset

• Generative Stochastic Networks [Bengio et al., 2014]

• Non-linear Independent Components Estimation (NICE) [Dinh et al., 2014]

• Diffusion Probabilistic Models (DPM) [Sohl-Dickstein et al., 2015]

2. LearnSPN [Poon and Domingos, 2011]: We used the original code to learn the struc-
ture augmented with the class variable and learn the joint probability distribution
using CCCP.

For all the algorithms except LearnSPN, we used the modified version of the code
as suggested by [Sharir et al., 2018]. Most of the code can be publicly accessed at :
https://github.com/HUJI-Deep/Generative-ConvACs. We used the original code as
suggested by the authors for LearnSPN. For our algorithm, due to time constraints, we
could only perform three iterations for both NORB and MNIST dataset. We present the
results for these three iterations denoted in the results as SPN-CG1, SPN-CG2 and, SPN-
CG3 (see fig. 2.11a - fig. 2.11d). The results show that SPN-CG performs well in the
regime of missing data for both MNIST and NORB. Furthermore, other generative models
including SPN with structure learning perform comparably only when a few pixels are
missing but perform very poorly as compared to deep mixture models as larger amounts
of data is missing suggesting that the structure of deep mixture models is advantageous.
These experiments on MNIST and NORB help us conclude that deep mixture models
learned using SPN-CG outperform other methods on image classification with missing
pixels. Our results compliment the results in [Sharir et al., 2018] where such experiments
with state of the art results were presented.

43

https://github.com/HUJI-Deep/Generative-ConvACs

0.0 0.25 0.5 0.75 0.9 0.95 0.99
Probability of missing pixels

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ac
cu

ra
cy

MNIST (i.i.d. corruption)

Zero
Mean
GSN
NICE
DPM
NADE
MP-DBM
SPN
Shallow_Net
SPN-CG1
SPN-CG2
SPN-CG3

(a)

(1,7) (2,7) (3,7) (1,11) (2,11) (3,11) (1,15) (2,15) (3,15)
size of missing rectangles

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ac
cu
ra
cy

MNIST (missing rectangles)

Zero
Mean
GSN
NICE
DPM
NADE
SPN
Shallow_Net
SPN-CG1
SPN-CG2
SPN-CG3

(b)

0.0 0.25 0.5 0.75 0.9 0.95 0.99
Probability of missing pixels

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ac
cu
ra
cy

NORB (i.i.d. corruption)

Zero
Mean
NICE
DPM
SPN
Shallow_net
SPN-CG1
SPN-CG2
SPN-CG3

(c)

(1,7) (2,7) (3,7) (1,11) (2,11) (3,11) (1,15) (2,15) (3,15)
size of missing rectangles

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ac
cu
ra
cy

NORB (missing rectangles)

Zero
Mean
NICE
DPM
Shallow_Net
SPN-CG1
SPN-CG2
SPN-CG3

(d)

Figure 2.11: Performance of SPN-CG on missing data (a) MNIST data with i.i.d missing
pixels (b) MNIST data with rectangles of missing pixels (c) NORB dataset with i.i.d.
missing pixels (d) NORB dataset with rectangles of missing pixels

2.7 Connection to Previous Works

The first attempts at rigorously analyzing the effect of depth in a network was in relation
to the computational complexity of Boolean circuits. A classical result is due to [Sipser,
1983] who showed that for every integer I, there are Boolean functions computed by a
circuit with alternating AND and OR gates of polynomial size and depth I; but if the
depth is reduced to I − 1, an exponential sized circuit would be required. A similar result
was proven later by [Hastad, 1986]. Another body of work in similar spirit was by [Yao,
1985, Ajtai, 1983] proving that solving the k-bit parity task by a circuit of depth 2 requires
exponentially many gates. A more recent result is due to [Braverman, 2011] proving that

44

bounded-depth Boolean circuits cannot distinguish some non-uniform input distributions
from the uniform distribution. This work by [Braverman, 2011] solved a longstanding
conjecture in the field.

Classical results for analyzing the expressiveness of neural networks involved results on
universal approximation by [Cybenko, 1989, Barron, 1993, Hornik et al., 1989], and by
[Bartlett, 1998] who studied the networks VC dimension. Although, these early results
provided general theoretical insights, they were restricted to shallow networks. Recently,
several studies have been undertaken to understand the effect of depth on the expressive
capacity of a deep network [Pascanu et al., 2013, Eldan and Shamir, 2016, Telgarsky,
2016, Martens et al., 2013, Lee et al., 2017]. Most of these works provide separation
results between the class of functions that can be efficiently represented by a deep network
and those by shallow networks. However, one major limitation of these works is they
consider pathological hand-coded network weights that exhibit these extremal properties
by design. It is not evident if these classes of networks and the hypothesis function class
they encode resemble networks and functions used in practice. Therefore, fundamental
questions about the expressive power of depth for neural networks used in practice is still
not well understood.

Directly relevant to the contributions in this thesis are recent works in analysing the
effect of depth in Arithmetic Circuits [Darwiche, 2003], Convolutional Arithmetic Circuits
[Cohen et al., 2016] and particularly in Sum-Product Networks [Poon and Domingos, 2011].
The first theoretical results for depth efficiency of SPNs was by [Delalleau and Bengio,
2011]. They constructed two families of functions - F which formed a full binary tree -
and - G which consisted of n nodes in every layer with each node being connected to n− 1
nodes in the previous layer - using an SPN with alternating sum and product layers. Their
results establish that any n-dimensional function f ∈ F can be computed by an SPN of
polynomial size but would require a shallow SPN with Ω(2

√
n) hidden units to exactly

represent f . They further show that for each d ≥ 4 there exists a function gd ∈ G that can
be computed by an SPN of depth d and size O(nd), but would require a Ω(nd) sized shallow
SPN to compute. However, this work has several limitations. Firstly, the separation results
provided are restricted to depth 3 networks and networks in the family G and F ; it is not
clear if a similar separation result holds for intermediate depths. Secondly, as the authors
themselves state, it does not comment on any separation results when a deep SPN is only
to be approximated by a shallow SPN. Thirdly, the specific families of functions F and G
considered by [Delalleau and Bengio, 2011] are not shown to be a relevant and universal
hypothesis class that occurs in practice. Lastly, the SPNs considered in this work are
not valid SPNs i.e. they do not encode a probability density function. Furthermore, the
analysis is limited to only discrete variables with indicator leaf functions.

45

[Martens and Medabalimi, 2014] extended the work in [Delalleau and Bengio, 2011]
by proving that there exist functions that can be efficiently computed by a depth d valid
SPN but would require super-polynomially size for a depth d− 1 SPN. In particular, they
considered the equal function on an array of Boolean variables x = (x1, x2, .., xn) defined
as follows : let A = {1, 2, 3, .., n/2} and B = (n/2+1, n/2+2, ..., n) be the index partition.
Then, equal : {0, 1}n → {0, 1} where equal(x) = 1 when xA = xB (i.e. the first half of
the input is equal to the second half) and 0 otherwise. They proved that a valid shallow
SPN would require 2

n
2 units in the hidden layer to exactly represent equal(x) while an

SPN of depth 4 would require O(n) size. Further, they also proved that a shallow SPN
would still require 2n/2−2 nodes in the hidden layer to approximate equal(x)5. However,
[Martens and Medabalimi, 2014] also restricted their analysis in the paper to only Boolean
variables primarily because they used previous works from circuit complexity on arithmetic
circuits to derive their results. Further, for the separation results, they constructed an
example restricted to Boolean variables and indicator functions in the leaves; the proof
does not generalize to valid SPNs with arbitrary density functions. Most importantly,
they use very specific hand-crafted functions to prove separation results both for exact and
approximate representation with no information on how frequently these functions occur
in practice. Therefore, it might be the case that except for a few hand-crafted pathological
examples, a shallow SPN can efficiently represent all functions derived from a deep SPN.

Recently, [Cohen et al., 2016] proposed a deep network which they called convolu-
tional arithmetic circuits that incorporates locality, sharing and pooling. They went on
to show that this network corresponded to the Hierarchical Tucker Tensor decomposition
[Hackbusch, 2012]. Their main theoretical result showed that except for a negligible set
of measure zero, all functions that can be represented by a deep convolutional arithmetic
circuits of polynomial size, require an exponential sized shallow network to be realized
exactly or approximated. The hypothesis class they considered was universal. However, a
major limitation of their main result is that it is an existence result. That is, they say, for
any deep convolutional arithmetic circuit, there exists an ε such that no shallow network of
polynomial size can approximate the deep network within this ε distance. However, they do
not provide any explicit relation with ε for the approximation. Therefore, a natural ques-
tion to ask is : what is the ε-dependency of the size of a shallow network approximating a
deep network within some ε distance?

5We direct the reader to [Martens and Medabalimi, 2014] for further details on the exact definition of
approximation used and the proof.

46

2.8 Summary

In this chapter, we formally established the relationships among some popular unsuper-
vised learning models, such as latent tree graphical models, hierarchical tensor formats
and sum-product networks, based on which we further provided a unified treatment of
exponential separation in exact representation size between deep architectures and shallow
ones. Surprisingly, for approximate representation, the conditional gradient algorithm can
approximate any homogeneous mixture within accuracy ε by combining O(1/ε2) shallow
models, where the hidden constant may decrease exponentially w.r.t. the depth. Finally,
experiments on both synthetic and real datasets confirmed our theoretical findings.

47

Chapter 3

Bayesian Moment Matching

We saw in Chapter 2 that finite mixture models are a powerful tool for compact, inter-
pretable and flexible representation of density functions in unsupervised learning that have
been used successfully in several applications. However, with huge amounts of data being
generated, there is a need for parameter estimation techniques for these mixture models
that can handle streaming data and distribute the computation over several processors.
Bayes’ theorem provides a natural framework for updating model parameters in an online
manner and compute partial posteriors over several processors [Broderick et al., 2013] that
can be combined into a single exact posterior. In Chapter 1, we saw briefly that Bayesian
learning is a paradigm to update one’s belief about the parameters of interest given a prior
belief system and observed data through density functions using Bayes’ rule. However,
a major challenge in Bayesian learning is that the updated belief (henceforth posterior
distribution) becomes complex with the availability of new observations. This necessitates
the deployment of algorithms that can approximate the true posterior by minimizing some
distance metric between the approximation and the true posterior. This motivates us to
develop online and distributed Bayesian techniques for finite mixture models.

In this chapter, we will first propose an online and distributed parameter estimation
algorithm for Gaussian mixture models called the Bayesian Moment Matching algorithm
(BMM) that approximates the true posterior by matching a set of moments of the true
posterior with the approximate posterior. Subsequently, we will extend this algorithm for
online Bayesian transfer learning for sequential data modeling with applications to diverse
problems like activity recognition, network flow size prediction and sleep stage classification
for predicting neurological disorders.

The results in this chapter appeared in [Jaini and Poupart, 2017] and [Jaini et al.,

49

2017].

3.1 Bayesian Moment Matching for Gaussian Mix-

ture Models

Gaussian Mixture models (GMMs) [Murphy, 2012] are simple, yet expressive distributions
that are often used for soft clustering and data modeling. Traditionally, the parameters of
GMMs are estimated by batch Expectation Maximization (EM) [Dempster et al., 1977].
However, as datasets get larger and do not fit in memory or are continuously streaming,
several online variants of EM have been proposed [Titterington, 1984, Neal and Hinton,
1998, Cappé and Moulines, 2009, Liang and Klein, 2009]. They process the data in one
sweep by updating a sufficient statistics in constant time after each observation, however
this update is approximate and stochastic, which slows down the learning rate. Further-
more it is not clear how to distribute the computation over several processors given the
sequential nature of those updates.

As pointed out by [Broderick et al., 2013], Bayes’ theorem can be applied after each
observation to update the posterior in an online fashion and a dataset can be partitioned
into subsets that are each processed by different processors to compute partial posteriors
that can be combined into a single exact posterior that corresponds to the product of the
partial posteriors divided by their respective priors.

The main issue with parameter estimation using Bayesian learning for Gaussian mixture
models is that the posterior is intractable to compute and represent exactly. Let D =
{x1,x2, · · · ,xn} ⊆ Rd be a set of n data points sampled i.i.d. from a Gaussian mixture
model with K components i.e.

xi ∼
K∑
j=1

wjN (µj,Σj), ∀i ∈ [n] (3.1)

where ∀j ∈ [K], wj > 0 is the weight, µj ∈ Rd is the mean and Σj ∈ Rd×d is the
covariance matrix of the jth component in the mixture model. Let Θ = {θ1, θ2,, θM}
where θi = (wi,µi,Σi), ∀i ∈ [K]. Given D, we wish to estimate Θ in an online fashion. In

50

a Bayesian learning framework, this can be formulated as follows:

pn(Θ) = p(Θ|D)

∝ pn−1(Θ) · p(xn|Θ) = p(Θ|D \ xn) · p(xn|Θ)

∝ p(Θ|D \ xn) ·
K∑
j=1

wjN (xn;µj,Σj)

∝ p(Θ) ·
n∏
i=1

K∑
j=1

wjN (xi;µj,Σj)

Subsequently, a point estimate of Θ can be obtained by Θ̂ = Epn [Θ]. However, notice that
with each new data point xj, the number of terms in the posterior increases by a factor
K due to the summation over the number of components. Hence, after n data points, the
posterior will consist of a mixture of Kn terms, which is intractable.

Algorithm 1 Generic BMM [Omar, 2016, Section 4.2]

F(Φ) := a class of probability densities with hyperparameters Φ
Input: Dataset D = {x1,x2, · · · ,xn}
Output: Estimated parameters Θ̂
Initialize: prior p0(Θ) ∈ F(Φ)
for i = 1 : n do

Compute pn(Θ) using pn−1(Θ) and Pr(xn|Θ)
∀ f ∈ S(F), evaluate Epn [f]

Compute Φ̂ using Epn [f], f ∈ S(F)

Approximate pn(Θ) with p̃n(Θ) ∈ F(Φ̂)

Return : Θ̂ = E[p̃n]

The Bayesian Moment Matching (BMM) algorithm approximates the posterior obtained
after each iteration in a manner that prevents the exponential growth of mixture terms.
This is achieved by approximating the posterior distribution pn(Θ) by another distribution
qn(Θ) which is in the same family of distributions F(Φ) as the prior by matching a set
of sufficient moments S of pn(Θ) with qn(Θ). Algorithm 1 describes a generic procedure
to approximate the posterior pn after each observation with a simpler distribution qn by
moment matching. More precisely, a set of moments sufficient to define qn are matched
with the moments of the exact posterior pn. For every iteration, we first calculate the
posterior distribution pn(Θ|D) using the approximate posterior qn−1(Θ) from the previous

51

step acting as the prior. We then compute the set of moments S(F) that are sufficient to
define a distribution in the family F(Φ). Next, we compute the parameter vector Φ based
on the set of sufficient moments. This determines a specific distribution qn in the family
F that we use to approximate pn.

We now illustrate the BMM algorithm for estimating parameters of a multivariate
Gaussian mixture model.

We choose the prior p0 over the parameters Θ as a product of a Dirichlet distribu-
tion over the weights w = {w1, w2, · · · , wK} and K Normal-Wishart distributions cor-
responding to the parameters (µj,Λ

−1
j), ∀ j ∈ [K] of each Gaussian component i.e.

p0(Θ) = Dir(w|α)
∏K

i=1NW(µi,Λi|δi, κi,Wi, νi) where α = (α1, α2, ..., αK), W is a sym-
metric positive definite matrix, δ ∈ Rd and κ > 0 and ν > d − 1 are real. This prior
distribution forms a conjugate probability pair of the likelihood function.

The posterior p1(Θ|x1) after observing the first data point x1 is given by

p1(Θ|x1) ∝ Dir(w|α) ·
K∏
i=1

NW(µi,Λi|δi, κi,Wi, νi) ·
K∑
j=1

wjN
(
x1;µj,Λ

−1
j

)
(3.2)

∝
K∑
j=1

(
wj ·Dir(w|α)

)(K∏
i=1

NW(µi,Λi|δi, κi,Wi, νi) · N
(
x1;µj,Λ

−1
j

))
(3.3)

For simplification, we evalaute the two expressions in the brackets individually below:

wjDir(w,α) =
Γ(
∑

i αi)∏
i Γ(αi)

wj
∏
i

wαii

=
Γ(
∑

i αi)∏
i Γ(αi)

w
αj+1
j

∏
i 6=j

wαii

=
αj∑
i αi

Dir(w; α̂)

where

α̂i =

{
αi if i 6= j

αi + 1 if i = j

For the second term we note that a product of a Normal-Wishart distribution and
a Gaussian distribution with the same mean and precision matrix is a Normal-Wishart

52

distribution since they form a conjugate pair. Formally,

N
(
x;µ, (κΛ)−1

)
NW(µ,Λ;µ0, κ,W, ν) = c NW(µ,Λ;µ∗0, κ

∗,W∗, ν∗)

where

µ∗0 =
κµ0 + x

κ+ 1

κ∗ = 1 + κ

ν∗ = ν + 1

W∗ = W +
κ

κ+ 1
(µ0 − x)(µ0 − x)T

Therefore, p1(Θ|x1) can now be written as:

p1(Θ|x1) =
1

Z

M∑
j=1

(
cjDir(w|α̂j)NW(µj,Λj|δ̂j, κ̂j,Ŵj, ν̂j)

M∏
i 6=j

NW(µi,Λi|δi, κi,Wi, νi)

)
where α̂j = (α1, α2, .., α̂j, .., αM) and Z is the normalization constant. The equation above
suggests that the posterior is a mixture of product of distributions where each product
component in the summation has the same form as that of the family of distributions of
the prior p0(Θ). It is evident that the terms in the posterior grow by a factor of M for each
iteration, which is problematic. The Bayesian moment matching algorithm approximates
this mixture p1(Θ) with a single product of Dirichlet and Normal-Wishart distributions
p̃1(Θ) by matching all the sufficient moments of p1 with p̃1 which belongs to the same
family of distributions as the prior:

p̃1(Θ) = Dir(w|α1)
M∏
i=1

NW(µi,Λi|δ1
i , κ

1
i ,W

1
i , ν

1
i)

We evaluate the parameters α1, δ1
i , κ

1
i ,W

1
i , ν

1
i ∀i ∈ {1, 2, ..,M} by matching a set of

sufficient moments of P̃1(Θ) with P1(Θ). The set of sufficient moments in this case is
S = {µj,µjµTj ,Λj,Λ

2
jkm
, wj, w

2
j} ∀j ∈ 1, 2, ...,M where Λ2

jkm
is the (k,m)th element of the

matrix Λj. The expressions for sufficient moments are given by E[g] =
∫

Θ
gP1(Θ)d(Θ)

leading to the following equations:

E[wi] =
αi∑
j αj

; E[w2
i] =

(αi)(αi + 1)(∑
j αj

)(
1 +

∑
j αj

)
E[Λ] = νW; V ar(Λij) = ν(W2

ij + WiiWjj)

E[µ] = δ; E[(µ− δ)(µ− δ)T] =
κ+ 1

κ(ν − d− 1)
W−1

53

The set of equations for evaluating the parameters of the approximate posterior p̃1 from
the estimated moments are as follows:

αi = E[wi]
E[wi]− E[w2

i]

E[w2
i]− E[wi]2

δ = E[µ]

Wii =
V ar(Λii)

E[Λii]

Wij =
V ar(Λij)

E[Λij]

ν =
E[Λij]

Wij

κ = 1−
(

(ν − d− 1)E[(µ− δ)(µ− δ)T])W
)−1

A major advantage of Bayes’ theorem is that the computation of the posterior can
be distributed over several machines, each of which processes a subset of the data. It is
also possible to compute the posterior in a distributed manner using Bayesian moment
matching algorithm. For example, let us assume that we have T machines and a data
set with TN data points. Each machine t ∈ [T] can compute the approximate posterior
pt(Θ|x(t−1)N+1:tN) where t ∈ [T] over N data points. These partial posteriors {Pt}Tt=1 can
be combined to obtain a posterior over the entire data set x1:TN [Broderick et al., 2013]
according to the following equation:

P (Θ|x1:TN) = P (Θ)
T∏
t=1

Pt(Θ|x(t−1)N+1:tN)

P (Θ)
(3.4)

Subsequently, the estimate Θ̂ = E[P (Θ|x1:TN)] is obtained over the whole data set.

3.1.1 Experiments

We compared the performance of online Bayesian Moment Matching algorithm (oBMM)
with the online Expectation Maximization algorithm (oEM) described in [Cappé and
Moulines, 2009] and online Variational Bayes (oVB) [Hoffman et al., 2013, Beal, 2003]
by performing experiments on 2 sets of real datasets - 10 moderate-to-small size datasets

54

and 4 large datasets available publicly online at the UCI machine learning repository [Dua
and Graff, 2017] and Function Approximation repository [Guvenir and Uysal, 2000] span-
ning diverse domains.

We measure both - the quality of the algorithms in terms of average log-likelihood
scores on the held-out test datasets and their scalability in terms of running time. We
use the Wilcoxon signed ranked test [Wilcoxon, 1950] to compute the p-value and report
statistical significance with p-value less than 0.05, to test the statistical significance of
the results. We computed the parameters for each algorithm over a range of components
varying from 2 to 10 and report the best performing model. For oEM the step size for the
stochastic approximation in the E-Step was set to (n + 3)−α where 0.5 ≤ α ≤ 1 [Liang
and Klein, 2009] where n is the number of observations. We evaluated the performance
of Distributed Moment Matching (DMM) by dividing the training datasets in to 5 smaller
data sets, and processing each of these small datasets on a different machine. The output
from each machine is collected and combined to give a single estimate for the parameters
of the model learned.

Table 3.1: Log-likelihood scores on 10 data sets. The best results among oBMM and oEM
are highlighted in bold font. ↑(or ↓) indicates that the method has significantly better (or
worse) log-likelihoods than Online Bayesian Moment Matching (oBMM) under Wilcoxon
signed rank test with pvalue < 0.05.

Data set Instances oVB oEM oBMM

Abalone 4177 2.18↓ -2.65 ↓ -1.82
Banknote 1372 9.89 ↓ -9.74 ↓ -9.65
Airfoil 1503 16.71 ↓ -15.86 ↑ -16.53
Arabic 8800 15.42↓ -15.83 ↓ -14.99
Transfusion 748 13.31 ↓ -13.26 ↓ -13.09
CCPP 9568 16.87↓ -16.53 ↓ -16.51
Comp. Activity 8192 -121.55↓ -132.04 ↓ -118.82
Kinematics 8192 10.51 ↓ -10.37 ↓ -10.32
Northridge 2929 19.03↓ -18.31 ↓ -17.97
Plastic 1650 9.39 ↓ -9.47 ↓ -9.01

Table 3.1 shows the average log-likelihood on test sets for oVB, oEM and oBMM.
oBMM outperforms oEM on 9 of the 10 datasets and it outperformed oVB on all datasets.
The results show that for some datasets, oBMM has significantly better log-likelihoods
than both oEM and oVB. Table 3.2 shows the log-likelihood scores and running times of

55

each algorithm on large datasets. In terms of log-likelihood scores, oBMM outperforms
oEM, oVB and oDMM on all 4 datasets. While, the performance of oDMM is expected
to be worse than oBMM, its performance was not significantly worse. This is encouraging
in light of the huge gains in terms of running time of oDMM over oVB, oEM and oBMM.
Table 3.2 shows the performance of each algorithm in terms of running times.

Table 3.2: Log-likelihood scores and Avg. running time on 4 large data sets. The best
results among oBMM, oDMM and oEM are highlighted in bold font. The results for oDMM
are only for a single run to demonstrate the savings in running time.

Data Avg. Log-Likelihood Avg. Running Time (sec)
Data (Attributes) Instances oVB oEM oBMM oDMM oVB oEM oBMM oDMM

Heterogeneity (16) 3930257 -175.3↓ -176.2↓ -174.3 -180.7 87.3 77.3 81.7 17.5
Magic 04 (10) 19000 -32.9↓ -33.4↓ -32.1 -35.4 8.1 7.3 6.8 1.4
Year MSD (91) 515345 -514.6↓ -513.7↓ -506.5 -513.8 473.7 336.5 108.2 21.2
MiniBooNe (50) 130064 -58.6↓ -58.1↓ -54.7 -60.3 57.6 48.6 12.1 2.3

3.2 Online Bayesian Transfer Learning for Sequential

Data Modeling

In the previous section, we introduced a Bayesian Moment Matching algorithm for Gaussian
mixture models. We will now extend the algorithm for domains that generate a sequence of
observations. In several application domains, data instances are produced by a population
of individuals that exhibit a variety of different characteristics. For instance, in activity
recognition, different individuals might walk or run with different gait patterns. Similarly,
in sleep studies, different individuals might exhibit different patterns for the same sleep
stages. In telecommunication networks, software applications might generate packet flows
between two servers according to different patterns. In such scenarios, it is tempting to
treat the population as a homogeneous source of data and to learn a single average model
for the population. However, this average model will perform poorly in recognition tasks
for individuals that differ significantly from the average. Hence, there is a need for transfer
learning techniques that take into account the variations between individuals within a
population.

56

Indeed, there is a large literature on transfer learning [Pan and Yang, 2010, Taylor and
Stone, 2009, Shao et al., 2015, Cook et al., 2013]. Depending on the problem, the input
features, the output labels or the distribution over the features and the labels may be
different for the source and target domains. In this work, we assume that the same input
features are measured and the same output labels are inferred in the source and target
domains. The main problem that we consider is subject variability within a population
of individuals, which means that different individuals exhibit different distributions over
the features and the labels. The problem of subject variability has been studied in several
papers. [Chieu et al., 2006] describe how to augment conditional random fields with a
subject hidden variable to obtain a mixture of conditional random fields that can natu-
rally infer a distribution over the closest subjects in a training population when inferring
the activities of a new individual based on physiological data. [Rashidi and Cook, 2009]
proposed a data mining technique with a similarity measure to facilitate the transfer of ac-
tivity recognition across different people. [Chattopadhyay et al., 2011] describe a similarity
measure with an intrinsic manifold that preserve the topology of surface electromyography
(SEMG) while mitigating distributional differences among individuals. [Zhao et al., 2011]
proposed a transfer learning technique that starts by training a decision tree to recognize
the activities of a user based on smartphone accelerometry. The decision tree is gradually
adjusted to a new user by a clustering technique that successively re-weights the training
data based on the unlabeled data of the new individual. These approaches mitigate subject
variability by various offline transfer learning techniques. In contrast, we propose an online
transfer learning technique aimed at applications which exhibit sequences of observations
that arrive in a streaming fashion and therefore require an online technique that can infer
the hidden state of each observation as it arrives.

We first propose an online Bayesian moment matching technique (§3.1) to estimate the
parameters of a hidden Markov model (HMM) with observation distributions represented
by Gaussian mixture models (GMMs). This approach allows us to learn separate basis
models for different individuals based on streaming data. The second contribution is an
unsupervised online technique that infers a probability distribution over the basis models
that best models the sequence of observations of a new individual. The approach learns
different transition and emission models for each individual in the training population.
Those models are then treated as basis models to speed up the online learning process for
new individuals. More specifically, a weighted combination of the basis models is learned
for each new individual. Furthermore, since the basis models are fixed at classification time
and we only learn the weight of each model, good classification accuracy can be obtained
more quickly as the stream of observations of the new individual are processed. This idea
is related to boosting techniques for transfer learning [Dai et al., 2007, Yao and Doretto,

57

2010, Al-Stouhi and Reddy, 2011] that estimate a weighted combination of base classifiers.
However, we focus on sequence modeling problems where the classes of consecutive data
points are correlated while transfer learning by boosting assumes that the data points
are identically and independently distributed. Finally, we demonstrate the efficacy of this
approach across different real-world applications, which include activity recognition, sleep
classification and the prediction of packet flow direction in telecommunication networks.

3.2.1 Problem Setup

We motivate our problem through an example of activity recognition in which different
individuals will have different gait patterns despite the fact that they are performing the
same activity (e.g. walking, running, standing, etc.). It is therefore problematic to make
predictions in such domains by considering the population to be homogeneous. However,
every population will have individuals resembling each other in some characteristics. This
suggests that we can use individuals in a population to make predictions about similar
individuals by identifying those individuals who closely resemble each other. However,
identifying individuals with similar traits is not straightforward. Alternatively, weights
can be assigned to each individual in a population based on a target individual (individual
on whom predictions are to be made). All those individuals who closely resemble the
target individual will receive higher weights than those with dissimilar traits. Subsequently,
predictions about the behavior of the target individual can be based mostly on the observed
behavior of the similar individuals.

Formally, let X1:T = {X1,X2, · · · ,XT} ⊆ Rd be a sequence of observations for T time-
steps with corresponding hidden state labels given by Y1:T = (Y1, Y2, · · · , YT) such that
∀ t ∈ [T], Yt ∈ [N]. We are given access to a training set of observations from a population
of K different individuals (henceforth referred to as different source domains) where each
source domain consists of a labeled sequence data given by the pair {(Xk

t , Y
k
t)}Tt=1

1. Given
a new individual (called target domain) not present in the source domain, we aim to make
predictions given its observations based on the source domain in an online manner. Our
transfer learning algorithm addresses precisely these issues. It consists of three steps:

Step 1 - Source domain training: We first learn a hidden Markov model (i.e. transi-
tion and emission distributions) for each source domain that best explain the observations

1For simplicity in notations we assume that each source domain has the same number of observations
but this is not a required assumption for the algorithm.

58

of that source domain. In a hidden Markov model (HMM), each observation Xt is associ-
ated with a hidden state Yt. The Markov property states that the current state depends
only on the previous state. HMMs have been widely used in domains involving sequen-
tial data like speech recognition, activity recognition, natural language processing etc. An
HMM is represented by two distributions:

• Transition distribution: The transition distribution models the change in the value
of the hidden state over time. The distribution over the current state Yt given that the
previous state is Yt−1 = j is denoted by θj = Pr(Yt|Yt−1 = j) where θj = {θ1j, ..., θNj},
N is the total number of states and θij = Pr(Yt = i|Yt−1 = j).

• Emission distribution: The emission distribution models the effect of the hidden
state on the observation Xt at any given time t and is given by Pr(Xt|Yt).

We model the emission distribution as a mixture of Gaussians with M components, i.e.,
Pr(Xt|Yt = j) =

∑M
m=1wj,mN

(
Xt;µj,m,Σj,m

)
. The training step therefore involves esti-

mating the parameters of the transition distributions and the parameters of the Gaussian
mixture model for the emission distributions. We estimate these parameters using Bayesian
learning which is done by calculating the posterior over the parameters given a prior dis-
tribution.

Pr
(

Θ,Φ, Yt = j|Xt, Yt−1 = i
)
∝

Emission distribution︷ ︸︸ ︷
Pr(Xt|Yt = j)

Transition Probability︷ ︸︸ ︷
Pr(Yt = j|Yt−1 = i)

Prior for t− 1︷ ︸︸ ︷
Pr(Θ,Φ, Yt−1 = i|X1:t−1)

∀j ∈ [N] where Θ and Φ parametrize the transition and emission distributions respectively.

Step 2 - Target domain learning: In the next step, we learn a model over the target
domain by modeling it as a mixture of the learned source domain models i.e. we model
the hidden Markov model for the target domain as a mixture of transition distributions
and a mixture of emission distributions of the source domain models. At each time step,
we update the target model by updating the weights of these mixture distributions. The
updated weights identify those individuals in the source domain that closely resemble the
target individual. A higher weight for a source domain implies that the corresponding
individual resembles the target individual more closely.

Step 3 - Prediction: Finally, we make predictions about the hidden states for each
observation in the target domain by using the models learned in the source domain and

59

the updated basis weights that are given to each transition and emission distribution of
the source domains.

We now explain each of these steps in more detail.

3.2.2 Source Domain - Training

The first step involves learning a model for each source domain in the training data given
a labeled sequence of data for K different source domains:

Y k
t = hidden state label at time step t for source domain k

Xk
t = feature vector at time step t for source domain k

We define

Θk
ij = Pr(Y k

t = i|Y k
t−1 = j) i.e. the transition probability from state i to state j

and denote the transition matrix for the kth source domain with Θk. The emission distri-
bution is modeled by a mixture of Gaussian with M components, i.e.

Pr(Xk
t |Y k

t = j) =
M∑
m=1

wkj,mN (Xk
t |µkj,m,Σk

j,m), ∀ j ∈ [N], and m ∈ [M]

Let

Φk = {φk1, φk2, ..., φkN} where φkj = {(wkj,1,µkj,1,Σk
j,1),, (wkj,M ,µ

k
j,M ,Σ

k
j,M)}, j ∈ [N], m ∈ [M]

We want to learn the parameters Θk for the transition distribution and Φk for the emission
distribution for each source domain k ∈ [K]. Since, we use a hidden Markov model, the
update equation at each time step for a source domain k is

Pr
(

Θ,Φ, Y k
t = j|Xk

t , Y
k
t−1 = i

)
∝

Emission distribution︷ ︸︸ ︷
Pr(Xk

t |Y k
t = j)

Transition Probability︷ ︸︸ ︷
Pr(Y k

t = j|Y k
t−1 = i)

Prior for t− 1︷ ︸︸ ︷
Pr(Θk,Φk, Y k

t−1 = i|Xk
1:t−1)

∀j ∈ {1, 2, ..., N} (3.5)

The prior over (Θk,Φk) is given by

Pr(Θk,Φk) =
[N∏
i=1

Dir(θki |αki)
][N∏

j=1

Dir(wk
j ;β

k
j)

M∏
u=1

NW(µkj,u,Λ
k
j,u; δ

k
j,u, κ

k
j,u,W

k
j,u, v

k
j,u)
]

(3.6)

60

After substituting the relevant terms in Eq (3.5), we get

Pr
(

Θ,Φ, Y k
t = j|Xk

t , Y
k
t−1 = i

)
∝

M∑
m=1

wkj,mN (Xk
t |µkj,m,Σk

j,m)θkji

[N∏
i=1

Dir(θki |αki)
]

[N∏
j=1

Dir(wk
j ;β

k
j)

M∏
u=1

NW(µkj,u,Λ
k
j,u; δ

k
j,u, κ

k
j,u,W

k
j,u, v

k
j,u)
]
∀j ∈ {1, 2, ..., N} (3.7)

Further, Λk
j,u = (Σk

j,u)
−1. The prior in Eq (3.6) can be understood as having the following

components

• Transition Distribution : Each column of the N × N transition matrix specifies
the probability of making a transition from that column index to another state given
by the row index. We define a Dirichlet distribution as a prior over each column of
the transition matrix. Hence,

∏N
i=1Dir(θ

k
i |αki) is the prior over Θk.

• Emission Distribution : Dir(wk
j ;β

k
j)
∏M

u=1NW(µkj,u,Λ
k
j,u; δ

k
j,u, κ

k
j,u,W

k
j,u, v

k
j,u) de-

fines a prior over a mixture of Gaussians for hidden state j with M components
where the Dirichlet distribution is the prior over the mixture weights and the Normal-
Wishart distribution is the prior over the mean and precision matrix of the mixture
components. We take a product over j to obtain a prior over all emission distribu-
tions.

The posterior distribution (Eq (3.7)) after each observation is a mixture of products of
distributions where each component has the same form as the prior distribution since
Pr(Xk

t |Y k
t = j) is a mixture of Gaussians. Therefore, the number of terms in the posterior

increases exponentially if we perform exact Bayesian learning. To circumvent this, we use
BMM for Gaussian Mixture Models as described in Section 3.1.

The update equation at each time step for a source domain k is

Pr
(

Θ,Φ, Y k
t = j|Xk

t , Y
k
t−1 = i

)
∝

Emission distribution︷ ︸︸ ︷
Pr(Xk

t |Y k
t = j)

Transition Probability︷ ︸︸ ︷
Pr(Y k

t = j|Y k
t−1 = i)

Prior for t− 1︷ ︸︸ ︷
Pr(Θk,Φk, Y k

t−1 = i|Xk
1:t−1)

∀j ∈ {1, 2, ..., N}

61

The posterior after inserting all the relevant terms can be written as -

Pr
(

Θ,Φ, Y k
t = j|Xk

t , Y
k
t−1 = i

)
∝

M∑
m=1

wkj,mN (Xk
t |µkj,m,Σk

j,m)θkji

[N∏
i=1

Dir(θki |αki)
]

[N∏
j=1

Dir(wk
j ;β

k
j)

M∏
u=1

NW(µkj,u,Λ
k
j,u; δ

k
j,u, κ

k
j,u,W

k
j,u, v

k
j,u)
]
∀j ∈ {1, 2, ..., N}

We can re-write this as

Pr
(

Θ,Φ, Y k
t = j|Xk

t , Y
k
t−1 = i

)
=

1

Z

M∑
m=1

N∏
u6=i

M∏
u6=m

N∏
i 6=j

C(i, j, k,m)
[
Dir(θki |α̂

k
i)Dir(θ

k
u|αku)

]
[
Dir(wk

j ; β̂
k

j)Dir(w
k
i ;β

k
i)
][
NW(µkj,m,Λ

k
j,m; δ̂

k

m, κ̂
k
j,m,Ŵ

k

j,m, v̂
k
j,m)NW(µkj,u,Λ

k
j,u; δ

k
j,u, κ

k
j,u,W

k
j,u, v

k
j,u)
]

(3.8)

where Z =
∑

i,j,k,mC(i, j, k,m) is the normalization constant. Eq (3.8) is a mixture of
product of distributions where each component belongs to the same family as the prior
distribution. The set of sufficient moments in this case would be

S =
{
θki , (θ

k
i)

2,wk
j , (w

k
j)

2, µkj,m, µ
k
j,m(µkj,m)T ,Λk

j,m,Λ
k
j,m(Λk

j,m)T | ∀m ∈ [M]
}

Thus, the parameters of the approximate posterior can be evaluated following similar rou-
tine as discussed in Section 3.1. The computational complexity for updating the parameters
in the source domain learning step for each iteration is O(M2N2) for each scalar param-
eters and is O(M2N2d3) for the parameters of the distribution over the precision matrix
because that involves a matrix multiplication step where M is the number of components
in the mixture model for emission distributions, N is the number of hidden states and d
is the number of features in the data.

3.2.3 Target Domain - Learning and Prediction

We next want to predict the hidden states for a target individual as we observe a sequence
of observations in a streaming manner. In the previous step, we learned the transition
and emission distributions individually for K different sources. The transition and emis-
sion distributions learned from the individual sources form a basis for the transition and
emission distributions of the target domain. Specifically, let the transition distribution for

62

the kth source be denoted by G(Θk) and emission distribution be denoted by F(Φk
j) for

a certain hidden state j. Then, the transition and emission distributions for the target
domain is a weighted combination given by

Pr(Yt = j|Yt−1 = i) =
K∑
m=1

λm Pr(Y m
t = j|Y m

t−1 = i) =
K∑
m=1

λmG(Θm
ji) (3.9)

Pr(Xt|Yt = j) =
K∑
k=1

πk Pr(Xk
t |Y k

t = j) =
K∑
k=1

πkF(Φk
j) (3.10)

where λm > 0,∀m ∈ [K], πk > 0 ∀k ∈ [K],
∑

k πk = 1 and
∑

m λm = 1. To learn a
model over the target domain, we need to compute the basis weights λ = (λ1, λ2,, λK)
and π = (π1, π2,, πK). We estimate (λ,π) in an unsupervised manner using BMM. We
define a Dirichlet prior over λ and π, i.e. Pr(λ,π) = Dir(λ;γ)Dir(π;ν). The posterior
after observing a new data point is

Pr
(
λ,π, Yt = j|Xt

)
∝ Pr(Xt|Yt = j)

N∑
i=1

Pr(Yt = j|Yt−1 = i) Pr(λ,π, Yt−1 = i) (3.11)

∝
K∑
k=1

πkF(Φk
j)

N∑
i=1

K∑
m=1

λmG(Θm
ji)Dir(λ;γ)Dir(π;ν) (3.12)

∝
K∑
k,m

N∑
i=1

C(i, j, k,m) Dir(π; ν̂)Dir(λ; γ̂) (3.13)

where F(Φk
j)G(Θm

ji) are known from the source domains, πkDir(π;ν) = akDir(π; ν̂),
λmDir(λ;γ) = bmDir(λ; γ̂) and C(i, j, k,m) = akbmF(Φk

j)G(Θm
ji).

The prior over the weights is

Pr(λ,π) = Dir(λ;γ)Dir(π;ν)

where γ and ν are the hyper-parameters for the Dirichlet distribution. The posterior after

63

each observation is

Pr
(
λ,π, Yt = j|Xt

)
∝ Pr(Xt|Yt = j)

N∑
i=1

Pr(Yt = j|Yt−1 = i) Pr(λ,π, Yt−1) (3.14)

∝
K∑
k=1

πk

M∑
u=1

N (µkj,u,Σ
k
j,u)

N∑
i=1

K∑
m=1

λmθ
m
ijDir(λ;γ)Dir(π;ν) (3.15)

∝
K∑
k,m

N∑
i=1

πkDir(π;ν)︸ ︷︷ ︸
combines

λmDir(λ;γ)︸ ︷︷ ︸
combines

M∑
u=1

N (µkj,u,Σ
k
j,u)θ

m
ij︸ ︷︷ ︸

known

(3.16)

=
1

Z

K∑
k,m

N∑
i=1

C(j, k,m) Dir(π; ν̂)Dir(λ; γ̂) (3.17)

where Z =
∑

i,j,k,mC(i, j, k,m) is the normalization constant. The exact computation
leading to Equation (3.17) is as follows:

λmDir(λ,γ) =
γm∑
i γi

Dir(λ; γ̂) (3.18)

where

γ̂i =

{
γi if i 6= m

γi + 1 if i = m

Therefore C(i,j,k,m) in Eq (3.13) is

C(i, j, k,m) =

(
γm∑
i γi

)(
πk∑
i πi

)
M∑
u=1

N (µkj,u,Σ
k
j,u)θ

m
ij (3.19)

For the moment matching step, the set of sufficient moments is given by

S = {λi, λ2
i , πi, π

2
i | ∀i ∈ {1, 2, .., K}}

64

E[λn] =
1

Z

K∑
k,m

N∑
i=1

∫
λnC(i, j, k,m)Dir(π; ν̂)Dir(λ; γ̂)d(λ)d(π) (3.20)

=
1

Z

K∑
k,m

N∑
i=1

∫
λnC(i, j, k,m)Dir(λ; γ̂)d(λ) (3.21)

=
1

Z

K∑
k,m

N∑
i=1

(
λ̂n∑
u λ̂u

)
C(i, j, k,m) (3.22)

Similarly, the second moment can be evaluated as

E[λ2
n] =

1

Z

K∑
k,m

N∑
i=1

∫
λ2
nC(i, j, k,m)Dir(π; ν̂)Dir(λ; γ̂)d(λ)d(π) (3.23)

=
1

Z

K∑
k,m

N∑
i=1

(
λ̂n(λ̂n + 1)

(
∑

u λ̂u)(1 +
∑

u λ̂u)

)
C(i, j, k,m) (3.24)

Thus, we have approximated the posterior in Eq (3.13) by projecting it onto a tractable
family of distributions with the same set of sufficient moments as the posterior using the
Bayesian Moment Matching approach. The estimate of (λ,π) is the expected value of the
final posterior. which completes the learning stage for the target domain and we proceed
to making predictions based on the observations of the target domain.

Predictions can be made in two different manners

• Online - initialize the prior over λ and π to be uniform. As each new data point
is observed in a sequence, a prediction is made based on the mean of the current
posterior over λ and π and subsequently the posterior is updated based on Eq (3.13).

• Offline - compute the posterior of λ and π based on Eq (3.13) by using the entire
sequence of observations of the target individual. Once, the posterior is computed,
predict the hidden states for each observation in the sequence based on the mean
estimates of the posterior.

The target domain step involved two routines :

65

• Learning step - In this step, the hyper-parameters (γ,ν) over the weights (λ,π)
are updated. The main computation in this step is the calculation of the set of suffi-
cient moments from the updated Bayesian posterior given in Eq. (3.13). Hence, the
computational complexity of the update step in the target domain for each observa-
tion is O(K2N2) where K is the number of source domains and N is the number of
hidden states.

• Prediction step - In the prediction step, a hidden label is assigned to the observa-
tion based on the model obtained from the update step. The main computation is
calculation of the likelihood of each hidden state for the observation. The computa-
tional complexity of the prediction step is hence O(MKN) where M is the number
of components in the mixture model, K is the total number of source domains and
N is the number of hidden states.

In Fig. 3.1, we show the schematic for the proposed online transfer learning algorithm.
The figure shows the learning phase for each source domain where the emission and transi-
tion distributions are learned using Bayesian Moment Matching technique and Algorithm 2
gives the complete algorithm for transfer learning by Bayesian Moment Matching.

3.2.4 Experiments and Results

This section describes experiments on three tasks from different domains - activity recogni-
tion, sleep cycle prediction among healthy individuals and patients suffering from Parkin-
son’s disease and packet flow prediction in telecommunication networks.

Experimental Setup

For each task, we compare our online transfer learning algorithm to EM (trained by maxi-
mum likelihood) and a baseline algorithm (that uses Bayesian moment matching) that both
learn a single HMM with mixtures of Gaussians as emissions by treating the population
as homogeneous. Furthermore, we conduct experiments using recurrent neural networks
(RNNs) due to their popularity in sequence learning.

The baseline algorithm uses Bayesian Moment Matching to learn the parameters of
the HMM. Concretely, we have data collected from several individuals (or sources) in a
population for each task. For transfer learning, we train an HMM with mixture of Gaussian
emission distributions for each source (or individual) except the target individual. For

66

Figure 3.1: Transfer Learning architecture

the target individual, we estimate a posterior over the basis weights in an online and
unsupervised fashion and make online predictions about the hidden states. We compare
the performance of our transfer learning algorithm against the EM and baseline algorithms
that treat the population as homogeneous, i.e., we train an HMM by combining the data
from all the sources except the target individual. Then, using this model, we make online
predictions about the hidden states of the target individual.

We report the results based on leave-one-out cross validation where the data of a differ-
ent individual is left out in each round. For each task, we treat every individual as a target
individual once. For a fair comparison, the HMM model learned for both the baseline
algorithm and the EM algorithm has the same number of components as the HMM model
learned by the online transfer learning algorithm.

Regarding RNNs, we used architectures with as many input nodes as the number of

67

Algorithm 2 Online Transfer Learning by Bayesian Moment Matching

1: Input (Learning): labeled sequence data from multiple domains (individuals)
2: Input (Prediction): unlabeled sequence data from individuals
3: Output: labels for hidden states

Source Domain - learning transition and emission distribution

4: Input: labeled sequence data from K domains
5: specify # of hidden states : nClass
6: specify # of components in GMM : nComponents
7: procedure LearnSourceHMM(data, nClass, nComponents)
8: for k = 1 : K do
9: Let f(Θ,Φ) be a family of probability distributions with parameters γ

10: Initialize a prior Pk
0(Θ,Φ) from f over transition and emission parameters re-

spectively
11: for n = 1 : Dk do . Dk : size of data for kth source domain
12: Compute Pn(Θ,Φ) from Pn−1(Θ,Φ) using Eq. 3.7
13: Using BMM approximate Pn with P̃n(Θ,Φ) = f(Θ,Φ|γ)

14: Return : Θ̂ = EΘ[P̃n(Θ,Φ)]
15: Return : Φ̂ = EΦ[P̃n(Θ,Φ)]

16: Return : emission and transition distributions for each source

Target Domain - learning basis weights for each source domain & prediction

17: Input: unlabeled sequence data
18: procedure PredictTargetDomain(data, sourceDistributions)
19: Let g(λ,π) = Dir(λ;γ)Dir(π;ν) be a family of probability distributions
20: Initialize a prior P0(λ,π) from g with equal weights to each source distribution
21: for n = 1 : D do . D : size of data for target domain
22: Compute Pn(Θ,Φ) from Pn−1(Θ,Φ) using Eq. 3.13
23: Using BMM approximate Pn with P̃n(λ,π) = g(λ,π)

24: Predict : Ŷn = argmaxjPr
(
λ,π, Yn = j|Xn

)
using Eq (3.13)

25: Return : λ̂ = Eλ[P̃n(λ,π)]
26: Return : π̂ = Eπ[P̃n(λ,π)]
27: Return : prediction Ŷn

attributes, one hidden layer consisting of long short term memory (LSTM) units [Hochreiter
and Schmidhuber, 1997] and one softmax output layer with as many nodes as the number

68

of classes. We use the categorical cross-entropy loss as the cost function. We select LSTM
units instead of sigmoid or hyperbolic tangent units due to their popularity and success in
sequence learning [Sutskever et al., 2014].

We perform grid search to select the best hyper-parameters for each setting. For
the training method, we either use Nesterov’s accelerated gradient descent [Nesterov,
1983, Sutskever et al., 2013] with learning rates [0.001,0.01,0.1,0.2] and momentum val-
ues [0,0.2,0.4,0.6,0.8,0.9], or rmsprop [Tieleman and Hinton, 2012] having ε = 10−4 and
decay factor 0.9 (standard values) with learning rates [0.00005,0.0001,0.0002,0.001] and mo-
mentum values [0,0.2,0.4,0.6,0.8,0.9]. The weight decay takes values from [0.001,0.01,0.1],
whereas the number of LSTM units in the hidden layer takes the possible values [2,4,6,9,12].

We experimented with various architectures before we ended up with the aforemen-
tioned values; in particular, architectures with a single hidden layer consistently performed
better than multiple layers, possibly because our datasets are not very complex. We train
the network by backpropagation through time (bptt) truncated to 20 time steps [Williams
and Peng, 1990]. The RNNs are trained for a maximum number of 150 epochs, or un-
til convergence is reached. Our implementation is based on the Theano library [Theano
Development Team, 2016] in Python.

For each task, we run experiments 10 times with each individual taken as target and
the rest acting as source domains for training. We report the average percentage accuracy
and use the Wilcoxon signed rank test [Wilcoxon, 1950] to compute a p-value and report
statistical significance when the p-value is less than 0.05. In the following sections, we
discuss the results for each task in detail.

Activity Recognition

As part of an on-going study to promote physical activity, we collected smartphone data
with 19 participants and tested our transfer learning algorithm to recognize 5 different
kinds of activities: sitting, standing, walking, running and in-a-moving-vehicle. While
APIs already exist to automatically recognize walking, running and in-a-moving-vehicle by
Android and Apple smartphones, sitting and standing are not available in the standard
APIs. Furthermore, our long term goal is to obtain robust recognition algorithms for
older adults and individuals with perturbed gait (e.g., due to a stroke). Labeled data was
obtained by instructing the 19 participants to walk at varying speeds for 4 min, run for
2 min, stand for 2 min, sit for 2 min and ride a moving vehicle to a destination of their
choice. The data collected was segmented in epocs of 1 second where 48 features (means
and standard deviations of the 3D accelerometry in each epoch) were computed by the

69

smartphone. The online transfer learning algorithm learned an HMM over 18 individuals
which acted as basis models for prediction on the 19th individual. In this manner, we ran
experiments for each individual 10 times to get a statistical measure of the results.

Table 3.3: Average percentage accuracy of prediction for activity recognition on 19 different
individuals. The best results among the Baseline, the EM algorithm, RNN and Transfer
Learning algorithm are highlighted in bold font. ↑(or ↓) indicates that Transfer Learning
has significantly better (or worse) accuracy than the the best algorithm among the baseline,
EM and RNN under the Wilcoxon signed rank test with p-value < 0.05.

Target Domain Baseline EM RNN Transfer Learning

Person 1 91.29 83.57 71.15 88.36 ↓
Person 2 81.37 79.87 79.58 87.65↑
Person 3 74.68 75.91 69.56 93.15↑
Person 4 73.39 68.29 74.25 84.70↑
Person 5 95.94 89.59 95.36 99.75↑
Person 6 73.98 69.77 61.71 96.43↑
Person 7 57.62 55.15 69.22 70.75↑
Person 8 91.72 86.05 74.49 97.80↑
Person 9 81.19 78.88 78.72 88.75↑
Person 10 99.12 93.60 92.00 97.35↓
Person 11 76.59 74.67 84.75 88.75↑
Person 12 55.36 59.71 53.63 95.05↑
Person 13 79.66 73.46 65.54 97.60↑
Person 14 92.06 89.11 63.59 93.12↑
Person 15 79.25 72.24 91.08 94.20↑
Person 16 84.08 79.23 74.74 83.51↓
Person 17 93.95 91.03 81.25 97.60↑
Person 18 82.84 74.88 79.45 87.20↑
Person 19 95.97 89.06 95.88 95.06↓

Table (3.3) compares the average percentage accuracy of prediction for activity recog-
nition with 19 different individuals. It demonstrates that the transfer learning algorithm
performed better than the baseline on 15 individuals and in other cases its accuracy was
close to the baseline. Furthermore, it is also worth noting that in most cases, the confu-
sion in the algorithm’s prediction was between the following pairs of classes: In a Moving
Vehicle—Standing and In a Moving Vehicle—Sitting. This is expected because in most
cases the person was either standing/sitting in a bus or sitting in a car. Table (3.3) also

70

demonstrates the superior performance of online transfer learning algorithm as compared
to the EM algorithm. Finally, note the poor performance of RNNs despite the fact that
we fine-tuned the architecture to get the best results. RNNs are in theory very expressive.
However, they are also notoriously difficult to train and fine-tune due to their non-convexity
and vanishing/exploding gradient issues that arise in backpropagation through time. In-
deed, in several cases they even underperform all other methods.

Sleep Stage Classification

Sleep disruption can lead to various health issues. Understanding and analyzing sleep
patterns, therefore, has great potential to significantly improve the quality of life for both
patients and healthy individuals. In both clinical and research settings, the standard tool
for quantifying sleep architecture and physiology is polysomnography (PSG), which is the
measurement of electroencephalography (EEG), electrooculography (EOG), electromyog-
raphy (EMG), electrocardiography (ECG), and respiratory function of an individual during
sleep. The analysis of sleep architecture is of relevance for the diagnosis of several neu-
rological disorders, e.g., Parkinson’s disease [Peeraully et al., 2012], because neurological
anomalies often also reflect in variations of a patient’s sleep patterns.

Typically, PSG data is divided into 30-second epochs and classified into 5 stages of sleep
— wake (W), rapid eye movement sleep (REM) or one of 3 non-REM sleep stages (N1, N2,
and N3) — based on the visual identification of specific signal features on the EEG, EOG,
and EMG channels. Epochs that cannot be distinctly sorted into one of the 5 stages are
labeled as Unknown. While it is a valuable clinical and research tool, visual classification of
EEG data remains time consuming, requiring up to 2 hours for a highly trained technologist
to classify all the epochs within a typical 7-hour PSG recording. Beyond that, inter-scorer
agreement rates remain low around 80 [Rosenberg and Van Hout, 2013]. High annotation
costs and low inter-scorer agreement rates have motivated efforts to develop fully automated
approaches for sleep stage classification [Anderer et al., 2005, Jensen et al., 2010, Mal,
2013, Punjabi et al., 2015]. However, many of these methods result in generic cross-patient
classifiers that fail to reach levels of accuracy and reliability high enough to be adopted in
real-world medical settings.

The polysomnograms (PSGs) we used for our evaluation were obtained at a clinical
neurophysiology laboratory in Toronto (name anonymized) according to the American
Academy of Sleep Medicine guidelines using a Grael HD PSG amplifier (Compumedics,
Victoria, Australia). We selected recordings from 142 patients obtained between 2009 and
2015. Out of these 142 recordings, 91 were from healthy subjects and 51 were from patients
with Parkinson’s disease.

71

Each recording was manually scored by a single registered PSG technologist. Recordings
were first segmented into fixed-sized windows of 30 second epochs. To reduce complexity
and processing time in the feature extraction and manual labeling step, we only retained
EEG channel C4-A1, which is deemed especially important for sleep stage classification [Sil,
2007]. Channel selection and segmentation resulted in a ground truth data set where each
instance was represented by a single-channel time series of 7680 floating point numbers
corresponding to 30 seconds of C4-A1, sampled at 256 Hz. A vector of 26 scalar features
was extracted from each epoch. [Bao et al., 2011] and [Motamedi-Fakhr et al., 2014] give
a detailed listing and explanation of all 26 features.

The online transfer learning algorithm learned an HMM over 50 individuals chosen at
random which acted as basis models for prediction on the target individual. We did not use
all 140 individuals for the basis models because it resulted in sources getting sparse weights
diluting the effect of heterogeneity. We completed the experiments for each individual 10
times in this manner to get a statistical measure of the results.

Fig. (3.2) shows the scatter plots of accuracy for our online transfer learning technique
and the three baseline algorithms - BMM, EM (maximum likelihood) and RNNs - which
treat the data as homogeneous for the sleep stage classification dataset. For each plot, a
point above the dotted line indicates higher accuracy of online transfer learning technique
as compared to the corresponding baseline algorithm for the target patient. The plots show
consistent superior performance of our online transfer learning technique as compared to
both baseline algorithms - BMM and EM for all target patients. The online transfer
learning technique also performs better on a majority of patients (102 out of 142) as
compared to an optimized RNN.

0 20 40 60 80 100

BMM

0

20

40

60

80

100

T
ra

n
s
fe

r
L

e
a

rn
in

g

0 20 40 60 80 100

EM (max. likelihood)

0

20

40

60

80

100

T
ra

n
s
fe

r
L

e
a

rn
in

g

Scatter Plot of accuracy for Sleep Stage Classification

0 20 40 60 80 100

RNN

0

20

40

60

80

100

T
ra

n
s
fe

r
L

e
a

rn
in

g

Figure 3.2: Performance comparison of online transfer learning algorithm with three dif-
ferent baseline algorithms - BMM, EM (max. likelihood) and RNNs on Sleep Stage Clas-
sification data using scatter plots of accuracy.

All the results are statistically significant under the Wilcoxon signed rank test with

72

p-value < 0.05.

Flow Direction Prediction

Accurate prediction of future traffic plays an important role in proactive network control.
Proactive network control means that if we know the future traffic (including directions
and traffic volume), then we have more time to find a better policy for the network routing,
priority scheduling as well as rate control in order to maximize network throughput while
minimizing transmission delay, packet loss rate, etc.

Better understanding the behavior of TCP connections in certain applications can pro-
vide important input to automatic application type detection, especially in those scenarios
where network traffic is encrypted and DPI (Deep Packet Inspection) is nearly impossi-
ble. Different applications can be distinguished by the distinct behavior of their TCP
connections, which are well described by the corresponding HMMs.

We performed our experiments with a publicly available dataset of real traffic from
academic buildings. The dataset consists of packet traces with TCP flows. For our ex-
periments, we only consider three packet sizes and flow size as the features. The hidden
labels are the source of generation of the packet, i.e., Server or Client. We divided the
dataset into 9 domains with each domain consisting of a number of observation sequences.
For the online transfer learning algorithm, we learned an HMM for each of 8 sources that
acted as basis models for prediction on the 9th source. We compared the performance of
the online transfer learning algorithm with EM and the baseline algorithm which treat the
data as homogeneous. Table 3.4 reports the average (of 10 experimental runs) percentage
accuracy for each source. The online transfer learning algorithm performs better than
both the baseline and the EM algorithm. The results are statistically significant under
the Wilcoxon signed rank test with p-value < 0.05. Furthermore, we compare our method
to RNNs. It turns out that RNNs perform well for the task of traffic direction prediction
unlike for instance the activity recognition dataset. The better performance this time may
be due to the simpler structure of the data that consists of a single attribute and a binary
class. This is in sharp contrast to the activity recognition dataset whose instances contain
48 attributes and can belong to 5 classes, and is thus harder to train.

73

Table 3.4: Average percentage accuracy of prediction for flow direction prediction for 9
different domains. The best results among the Baseline, the EM algorithm, RNN and the
Transfer Learning algorithm are highlighted in bold font. ↑(or ↓) indicates that transfer
learning has significantly better (or worse) accuracy than the best technique among the
baseline algorithm, EM and RNN under Wilcoxon signed rank test with pvalue < 0.05.

Target Domain Baseline EM RNN Transfer Learning

Source 1 72.00 54.90 80.00 71.02 ↓
Source 2 85.33 89.10 65.30 86.50↓
Source 3 80.33 81.90 86.50 83.33↑
Source 4 86.50 75.80 86.60 87.17↑
Source 5 87.33 82.80 81.70 86.00↓
Source 6 93.33 78.20 88.90 93.50↑
Source 7 95.17 90.70 93.50 95.33↑
Source 8 89.83 91.14 91.00 91.63↑
Source 9 76.67 75.68 81.98 78.83↑

3.3 Summary

In this chapter, we investigated online algorithms to learn the parameters of Gaussian
Mixture models and their applications to sequential data modeling. We proposed an on-
line Bayesian Moment Matching algorithm for parameter learning and demonstrated its
use in a distributed manner for offline settings. We showed through empirical analysis on
several real-world datasets that the online Bayesian Moment Matching algorithm outper-
forms online EM and online VB. We also demonstrated that distributing the algorithm
over several machines results in faster running times without significantly compromising
accuracy, which is particularly advantageous when running time is a major bottleneck.

Next, we considered domains in which data is produced by a population of individu-
als that exhibit a certain degree of variability. Traditionally, machine learning techniques
ignore this variability and train a single model under the assumption that the popula-
tion is homogeneous. We described the first online transfer learning technique (to our
knowledge) that incrementally determines which source models best explain a streaming
sequence of observations while predicting the corresponding hidden states by adapting the
online Bayesian moment matching algorithm originally developed for mixture models to
hidden Markov models. We confirmed the effectiveness of the approach on three real-world
applications: activity recognition, sleep stage recognition and flow direction prediction.

74

Chapter 4

Neural Density Estimation

We have so far focused on density estimation using finite mixture models. In this chap-
ter, we will focus on another framework for parametric density estimation called neural
density estimation by constructing flexible mappings that can transform a simple prob-
ability density into any desired target density by using the notion of triangular maps.
Triangular map is a recent construct in probability theory that allows one to transform
any source probability density function to any target density function. Based on trian-
gular maps, we propose a general framework for high-dimensional density estimation, by
specifying one-dimensional transformations (or equivalently conditional densities) and ap-
propriate conditioner networks. We will show in detail that this framework (a) reveals
the commonalities and differences of existing autoregressive and flow based methods, (b)
allows a unified understanding of the limitations and representation power of these re-
cent approaches and, (c) motivates us to uncover a new Sum-of-Squares (SOS) flow that
is interpretable, universal, and easy to train. We further demonstrate the benefits (and
short-comings) of such transformations through several synthetic experiments on various
density geometries. Finally, we will compare our method – SOS flows– to other neural
density estimation techniques on a suite of density estimation tasks.

The results in this chapter appeared in [Jaini et al., 2019].

4.1 Introduction

Neural density estimation methods are gaining popularity for the task of multivariate
density estimation in machine learning [Kingma et al., 2016, Dinh et al., 2015, Dinh et al.,

75

2017, Papamakarios et al., 2017, Uria et al., 2016, Huang et al., 2018]. These generative
models provide a tractable way to evaluate the exact density, unlike generative adversarial
nets [Goodfellow et al., 2014] or variational autoencoders [Kingma and Welling, 2014,
Rezende et al., 2014]. Popular methods for neural density estimation are autoregressive
models [Neal, 1992b, Bengio and Bengio, 1999, Larochelle and Murray, 2011, Uria et al.,
2016] and normalizing flows [Rezende and Mohamed, 2015, Tabak and Vanden-Eijnden,
2010, Tabak and Turner, 2013]. These models aim to learn an invertible, bijective and
increasing transformation T that pushes forward a (simple) source probability density (or
measure, in general) to a target density such that computing the inverse T−1 and the
Jacobian |T′| is easy.

In probability theory, it has been rigorously proven that increasing triangular maps
[Bogachev et al., 2005] are universal, i.e. any source density can be transformed into a target
density using an increasing triangular map. Indeed, the Knothe-Rosenblatt transformation
[Villani, 2008, Ch.1,] gives a (heuristic) construction of such a map, which is unique up to
null sets [Bogachev et al., 2005]. Furthermore, by definition the inverse and the Jacobian of
a triangular map can be very efficiently computed through univariate operations. However,
for multivariate densities computing the exact Knothe-Rosenblatt transform itself is not
possible in practice. Thus, a natural question is: Given a pair of densities, how can we
efficiently estimate this unique increasing triangular map?

This chapter is devoted to studying these increasing, bijective, and monotonic triangular
maps, in particular how to estimate them in practice. In §4.2, we precisely formulate
the density estimation problem and propose a general maximum likelihood framework for
estimating densities using triangular maps. We also explore the properties of the triangular
map required to push a source density to a target density.

Subsequently, in §4.3, we trace back the origins of the triangular map and connect it to
many recent works on generative modelling. We relate our study of increasing, bijective,
triangular maps to works on iterative Gaussianization [Chen and Gopinath, 2001, Laparra
et al., 2011] and normalizing flows [Tabak and Vanden-Eijnden, 2010, Tabak and Turner,
2013, Rezende and Mohamed, 2015]. We show that a triangular map can be decomposed
into compositions of one dimensional transformations or equivalently univariate conditional
densities, allowing us to demonstrate that all autoregressive models and normalizing flows
are subsumed in our general density estimation framework. As a by-product, this frame-
work also reveals that autoregressive models and normalizing flows are in fact equivalent.
Using this unified framework, we study the commonalities and differences of the various
aforementioned models. Most importantly, this framework allows us to study the univer-
sality in a much cleaner and more streamlined way. We present a unified understanding
of the limitations and representation power of these approaches, summarized concisely in

76

Table 4.1 below.

In §4.4, by understanding the pivotal properties of triangular maps and using our pro-
posed framework, we uncover a new neural density estimation procedure called the Sum-
of-Squares polynomial flows (SOS flows). We show that SOS flows are akin to higher order
approximation of T depending on the degree of the polynomials used. Subsequently, we
show that SOS flows are universal, i.e. given enough model complexity, they can approxi-
mate any target density. We further show that (a) SOS flows are a strict generalization of
the inverse autoregressive flow (IAF) of [Kingma et al., 2016], (b) they are interpretable;
its coefficients directly control the higher order moments of the target density and, (c)
SOS flows are easy to train; unlike NAFs [Huang et al., 2018] which require non-negative
weights, there are no constraints on the parameters of SOS.

In §4.5, we report our empirical analysis. We performed holistic synthetic experiments
to gain intuitive understanding of triangular maps and SOS flows in particular. Addition-
ally, we compare SOS flows to previous neural density estimation methods on real-world
datasets where it achieved competitive performance.

We summarize the main contributions in this chapter below:

• We study and propose a rigorous framework for using triangular maps for density
estimation

• Using this framework, we study the similarities and differences of existing flow based
and autoregressive models

• We provide a unified understanding of the limitations and representational power of
these methods

• We propose SOS flows that are universal, interpretable, and easy to train.

• We perform several synthetic and real-world experiments to demonstrate the efficacy
of SOS flows.

4.2 Density estimation through triangular map

In this section we set up our main problem, introduce key definitions and notations, and
formulate the general approach to estimate density functions using triangular maps.

77

Let p, q be two probability density1 functions (w.r.t. the Lebesgue measure) over the
source domain Z ⊆ Rd and the target domain X ⊆ Rd, respectively. Our main goal is to
find a deterministic transformation T : Z→ X such that for all (measurable) set B ⊆ X,∫

B

q(x)dx ≈
∫

T−1(B)

p(z)dz. (4.1)

In particular, when T is bijective and differentiable [Rudin, 1987], we have the change-of-
variable formula x = T(z) such that

q(x) = p(z)/|T′(z)| (4.2)

= p(T−1x)/|T′(T−1x)| =: T#p, (4.3)

where |T′(z)| is the (absolute value) of the Jacobian (determinant of the derivative) of T.
In other words, by pushing the source random variable z ∼ p through the map T we can
obtain a new random variable x ∼ q. This “push-forward” idea has played an important
role in optimal transport theory [Villani, 2008] and in recent Monte carlo simulations
[Marzouk et al., 2016, Parno and Marzouk, 2018, Peherstorfer and Marzouk, 2018].

Here, our interest is to learn the target density q through the map T. Let F be a class
of mappings and use the KL divergence2 to measure closeness between densities. We can
formulate the density estimation problem as:

min
T∈F

KL(q‖T#p) ≡ −
∫
q(x) log

p(T−1x)

|T′(T−1x)|
dx. (4.4)

When we only have access to an i.i.d. sample *x1, . . . ,xn+ ∼ q, we can replace the integral
above with empirical averages, which amounts to maximum likelihood estimation:

max
T∈F

1

n

n∑
i=1

[
− log |T′(T−1xi)|+ log p(T−1xi)

]
. (4.5)

Conveniently, we can choose any source density p to facilitate estimation. Typical choices
include the standard normal density on Z = Rd (with zero mean and identity covariance)
and uniform density over the cube Z = [0, 1]d.

Computationally, being able to solve (4.5) efficiently relies on choosing a map T whose

1All of our results can be extended to two probability measures satisfying mild regularity conditions.
For simplicity and concreteness we restrict to probability densities here.

2Other statistical divergences can be used as well.

78

• inverse T−1 is “cheap” to compute;

• Jacobian |T′| is “cheap” to compute.

Fortunately, this is always possible. Following [Bogachev et al., 2005] we call a (vector-
valued) mapping T : Rd → Rd triangular if for all j, its j-th component Tj only depends
on the first j variables x1, . . . , xj. The name “triangular” is derived from the fact that the
derivative of T is a triangular matrix function3. We call T (strictly) increasing if for all
j ∈ [d], Tj is (strictly) increasing w.r.t. the j-th variable xj when other variables are fixed.

Theorem 12 ([Bogachev et al., 2005]). For any two densities p and q over Z = X = Rd,
there exists a unique (up to null sets of p) increasing triangular map T : Z → X so that
q = T#p. The same4 holds over Z = X = [0, 1]d.

Conveniently, to compute the Jacobian of an increasing triangular map we need only
multiply d univariate partial derivatives |T′(x)| =

∏d
j=1

∂Tj
∂xj
. Similarly, inverting an increas-

ing triangular map requires inverting d univariate functions sequentially, each of which can
be efficiently done through say bisection. [Bogachev et al., 2005] further proved that the
change-of-variable formula (4.3) holds for any increasing triangular map T (without any
additional assumption but using the right-side derivative).

Thus, triangular mappings form a very appealing function class for us to learn a target
density as formulated in (4.4) and (4.5). Indeed, [Moselhy and Marzouk, 2012] already
promoted a similar idea for Bayesian posterior inference and [Spantini et al., 2018] related
the sparsity of a triangular map with (conditional) independencies of the target density.
Moreover, many recent generative models in machine learning are precisely special cases
of this approach. Before we discuss these connections, let us give some examples to help
understand Theorem 12.

Example 2. Consider two probability densities p and q on the real line R, with distribution
function F and G, respectively. Then, we can define the increasing map T = G−1 ◦F such
that q = T#p, where G−1 : [0, 1]→ R is the quantile function of q:

G−1(u) := inf{t : G(t) ≥ u}. (4.6)

3The converse is clearly also true if our domain is connected.
4More generally on any open or closed subset of Rd if we interpret the monotonicity of T appropriately

[Alexandrova, 2006].

79

Indeed, it is well-known that F (Z) ∼ uniform if Z ∼ p and G−1(U) ∼ q if U ∼ uniform.
Theorem 12 is a rigorous iteration of this univariate argument by repeatedly conditioning.
Note that the increasing property is essential for claiming the uniqueness of T. Indeed, for
instance, let p be standard normal, then both T = id and T = − id push p to the same
target normal density.

Example 3 (Pushing uniform to normal). Let p be uniform over [0, 1] and q ∼ N (µ, σ2)
be normal distributed. The unique increasing transformation

T (z) = G−1 ◦ F = µ+
√

2σ · erf−1(2z − 1) (4.7)

= µ+
√

2σ ·
∞∑
k=0

πk+1/2ck
2k + 1

(z − 1
2
)2k+1, (4.8)

where erf(t) = 2√
π

∫ t
0
e−s

2
ds is the error function, which was Taylor expanded in the last

equality. The coefficients c0 = 1 and ck =
∑k−1

m=0
cmck−1−m

(m+1)(2m+1)
. We observe that the deriva-

tive of T is an infinite sum of squares of polynomials. In particular, if we truncate at
k = 0, we obtain

T (z) = µ+
√

2πσ(z − 1
2
) +O(z3). (4.9)

Example 4 (Pushing normal to uniform). Similar as above but we now find a map S that
pushes q to p:

S(x) = F−1 ◦G = Φ(x−µ
σ

) (4.10)

=
1

2
+

1√
π

∞∑
k=0

(−1)k

k!(2k + 1)

(
x− µ√

2σ

)2k+1

, (4.11)

where Φ is the cdf of standard normal. As shown by [Medvedev, 2008], S must be the
inverse of the map T in Example 3. We observe that the derivative of S is no longer a sum
of squares of polynomials, but we prove later that it is approximately so. If we truncate at
k = 0, we obtain

S(x) =
1

2
+

1√
2πσ

(x− µ) +O(x3), (4.12)

where the leading term is also the inverse of the leading term of T in (4.9).

We end this section with two important remarks.

80

Figure 4.1: Transformation curves from standard Gaussian to mixture of Gaussians.

Remark 1. So far we have employed the (increasing) triangular map T explicitly to rep-
resent our estimate of the target density. This is advantageous since it allows us to easily
draw samples from the estimated density, and, if needed, it results in the estimated density
formula (4.3) immediately. An alternative would be to parameterize the estimated density
directly and explicitly, such as in mixture models, probabilistic graphic models and sigmoid
belief networks. The two approaches are conceptually equivalent: Thanks to Theorem 12,
we know choosing a family of triangular maps fixes a family of target densities that we can
represent, and conversely, choosing a family of target densities fixes a family of triangular
maps that we can implicitly learn. The advantage of the former approach is that given a
sample from the target density, we can infer the “pre-image” in the source domain while
this information is lost in the second approach.

In Chapters 2 and 3, we studied in detail density estimation via mixture models, par-
ticularly Gaussian mixture models. Here, we briefly make a precise connection between
mixture models and neural density estimation by characterizing the transformation re-
quired to transform a standard normal distribution to mixture of normal distributions in
the univariate case. Example 2 gives the analytic form of the increasing transformation
T that maps any source density to any target density. Using this analytic form, in Fig-
ure 4.1 we show three columns of plots: In the leftmost column, the top plot is the source
distribution (Z ∼ normal(0, 1)) which is standard normal. The bottom plot is the tar-
get distribution for the random variable X which is a Gaussian mixture model with two
components. The means are −10 and 10, the variance is 1 and weights are 0.5 for each
component respectively. The middle plot shows the transformation T required to push
forward a standard normal distribution to the target. In the second column of plots, we
now transform a standard normal distribution to a mixture distribution but with means
as -20 and 20, i.e. the components are more separated than the first plot. Finally, in the
plots given in the rightmost column, we transform a standard normal distribution to a
mixture of three Gaussians with means -20, -5, and 15. The variances are 1 and weights

81

are 1
3

respectively.

We analyse the transformation depicted in these plots using the slope T ′(z) of T at any
point z which is given by:

T ′(z) =
p(z)

q ◦ T (z)
, where x = T (z) (4.13)

=
p ◦ F−1(u)

q ◦G−1(u)
, where u = F (z) (4.14)

i.e. the slope T ′(z) is the ratio of probability density quantiles (pdQs) of the source random
variable and the target random variable.

We make the following observations: In all three plots, we notice that the transformation
admits jumps (close to being vertical) i.e. the slope at these points is large and close to
infinity. This is expected since the regions where the target has almost zero mass but
the source has finite mass would lead to a slope with such behavior. In the plots, this is
the region in between the components where the mass of the target density approaches
zero. Furthermore, the larger this area, the longer is the height of this jump (see plots on
column one and column two). With densities that have two such areas, the transformation
as expected has two jumps (plots on column three). The slope of T on the extremes is a
constant and is equal to the standard deviation of the component on that extreme. This
is because:

lim
z→±∞

T ′(z) = lim
z→±∞

p(z)

q ◦ T (z)
(4.15)

As z →∞, q is approximately equal to the component on the positive extreme of the x-axis.
Therefore, limz→∞ T

′(z) = σ+ where σ+ is the standard deviation of the component on the
positive extreme of the x-axis; similarly, we get limz→−∞ T

′(z) = σ− i.e. T ′(z) is a constant
in almost all the region of zero mass on the left of the component on the negative extreme
and on the right of the positive extreme (verified in Figure 4.1). Therefore, any T that
transforms a standard normal distribution to a mixture of Gaussians will be approximately
piece-wise linear with jumps. The number of linear pieces in this transformation will be
equal to the number of components in the mixture. The slopes of these linear pieces will be
a function of the standard deviations of the mixture components. Additionally, the height
of the jump will be a function of the mixing weights and standard deviation of the mixture
components. The summary of these observations lead to the following remark:

Remark 2. If the target density has disjoint support e.g. mixture of Gaussians (MoGs)
with well-separated components, then the resulting transformation will need to admit sharp

82

jumps for areas of near zero mass. This follows by analyzing the transformation T (z) =
G−1 ◦ F . The slope T ′(z) of T (z) is the ratio of the quantile pdfs of the source density
and the target density. Therefore, in regions of near zero mass for target density, the
transformation will have near infinite slope. We demonstrated this phenomena (see fig. 4.1)
specifically for well-separated MoGs and show that a piece-wise linear function transforms
a standard Gaussian to MoGs. This also opens the possibility to use the number of jumps
of an estimated transformation as the indication of the number of components in the data
density.

4.3 Connection to existing works

The results in Section 4.2 suggest using (4.5) with F being a class of triangular maps
for estimating a probability density q. In this section we put this general approach into
historical perspective, and connect it to the many recent works on generative modelling.
Due to space constraint, we limit our discussion to works that are directly relevant to ours.

Origins of triangular map: [Rosenblatt, 1952], among his contemporary peers, used
the triangular map to transform a continuous multivariate distribution into the uniform
distribution over the cube. Independently, [Knothe, 1957] devised the triangular map to
transform uniform distributions over convex bodies and to prove generalizations of the
Brunn-Minkowski inequality. [Talagrand, 1996], unaware of the previous two results and
in the process of proving some sharp Gaussian concentration inequality, effectively dis-
covered the triangular map that transforms the Gaussian distribution into any continuous
distribution. The work of [Bogachev et al., 2005] rigorously established the existence and
uniqueness of the triangular map and systematically studied some of its key properties.
[Carlier et al., 2010] showed surprisingly that the triangular map is the limit of solutions
to a class of Monge-Kantorovich mass transportation problems under quadratic costs with
diminishing weights. None of these pioneering works considered using triangular maps for
density estimation.

Iterative Gaussianization and Normalizing Flow: In his seminal work, [Huber,
1985] developed the important notion of non-Gaussianality to explain the projection pur-
suit algorithm of [Friedman et al., 1984]. Later, [Chen and Gopinath, 2001], based on
a heuristic argument, discovered the triangular map approach for density estimation but
deemed it impractical because of the seemingly impossible task of estimating too many
conditional densities. Instead, [Chen and Gopinath, 2001] proposed the iterative Gaussian-

83

Table 4.1: Various auto-regressive and flow-based methods expressed under a unified frame-
work. All the conditioners can take inputs x instead of z. The symbol is used for weight
sharing, � for use of masks for efficient implementation, � for universality of the method
and, ∆ if the method learns a triangular transformation explicitly (E) or implicitly (I). ?
implies that universality of these methods has neither been proved or disproved although
it can now be analyzed with ease using our framework. Sj(zj;θj) is defined in eq. (4.19)
and P2r+1(zj; aj) is defined in eq. (4.22).

Model conditioner Cj output Tj
(
zj ;Cj(z1, . . . , zj−1)

)
 � � ∆

Mixture [McLachlan and Peel, 2004b] θj Sj(zj;θj) 7 7 3 I
[Bengio and Bengio, 1999] θj(z<j) Sj(zj;θj) 7 7 ? I

MADE [Germain et al., 2015] θj(z<j) Sj(zj;θj) 3 3 ? I

NICE [Dinh et al., 2015] µj(z<l) zj + µj · 1j 6∈[l] 7 7 ? E

NADE [Uria et al., 2016] θj(z<j) Sj(zj;θj) 3 7 ? I

IAF [Kingma et al., 2016] σj(z<j), µj(z<j) σjzj + (1− σj)µj 3 3 ? E

MAF [Papamakarios et al., 2017] αj(z<j), µj(z<j) zj exp(αj) + µj 3 3 ? E

Real-NVP [Dinh et al., 2017] αj(z<l), µj(z<l) exp(αj · 1j 6∈[l]) · zj + µj · 1j 6∈[l] 7 7 ? E

NAF [Huang et al., 2018] wj(z<j) DNN(zj ; wj) 3 3 3 E

SOS aj(z<j) P2r+1(zj; aj) 3 3 3 E

ization technique, which essentially decomposes5 the triangular map into the composition
of a sequence of alternating diagonal maps Dt and linear maps Lt. The diagonal maps
are estimated using the univariate transform in Example 2 where G is standard normal
and F is a mixture of standard normals. Later, [Laparra et al., 2011] simplified the lin-
ear map into random rotations. Both approaches, however, suffer cubic complexity w.r.t.
dimension due to generating or evaluating the linear map. The recent work of [Tabak
and Vanden-Eijnden, 2010, Tabak and Turner, 2013] coined the name normalizing flow
and further exploited the straightforward but crucial observation that we can approximate
the triangular map through a sequence of “simple” maps such as radial basis functions or
rotations composed with diagonal maps. Similar simple maps have also been explored in
[Ballé et al., 2016]. [Rezende and Mohamed, 2015] designed a “rank-1” (or radial) normal-
izing flow and applied it to variational inference, largely popularizing the idea in generative
modelling. These approaches are not estimating a triangular map per se, but the main
ideas are nevertheless similar.

5This can be made precise, much in the same way as decomposing a triangular matrix into the product
of two rotation matrices and a diagonal matrix, i.e. the so-called Schur decomposition.

84

(Bona fide) Triangular Approach: [Deco and Brauer, 1995] (see also [Redlich, 1993]),
to our best knowledge, is among the first to mention the name “triangular” explicitly in
tasks (nonlinear independent component analysis) related to density estimation. More
recently, [Dinh et al., 2015] recognized the promise of even simple triangular maps in
density estimation. The (increasing) triangular map in [Dinh et al., 2015] consists of two
simple (block) components: T1(x1) = x1 and T2(x1,x2) = x2 + m(x1), where x = (x1,x2)
is a two-block partition and m is a map parameterized by a neural net. The advantage
of this triangular map is its computational convenience: its Jacobian is trivially 1 and
its inversion only requires evaluating m. [Dinh et al., 2015] applied different partitions
of variables, iteratively composed several such simple triangular maps and combined with
a diagonal linear map6. However, these triangular maps appear to be too simple and it
is not clear if through composition they can approximate any increasing triangular map.
In subsequent work, [Dinh et al., 2017] proposed the extension where T1(x1) = x1 but
T2(x1,x2) = x2 � exp(s(x1)) + m(x1), where � denotes the element-wise product. This
map is again increasing triangular. [Moselhy and Marzouk, 2012] employed triangular maps
for Bayesian posterior inference, which was further extended in [Marzouk et al., 2016] for
sampling from an (unknown) target density. One of their formulations is essentially the
same as our eq. (4.4).

Autoregressive Neural Models: A joint probability density function can be factor-
ized into the product of marginal and conditionals:

q(x1, . . . , xd) = q(x1)
∏d

j=2 q(xj|xj−1, . . . , x1). (4.16)

In his seminal work, [Neal, 1992b] proposed to model each (discrete) conditional density by
a simple linear logistic function (with the conditioned variables as inputs). This was later
extended by [Bengio and Bengio, 1999] using a two-layer nonlinear neural net. The recent
work of [Uria et al., 2016] proposed to decouple the hidden layers in [Bengio and Bengio,
1999] and to introduce heavy weight sharing to reduce overfitting and computational com-
plexity. Already in [Bengio and Bengio, 1999], univariate mixture models were mentioned
as a possibility to model each conditional density, which was further substantiated in [Uria
et al., 2016]. More precisely, they model the j-th conditional density as:

q(xj|xj−1, . . . , x1) =
k∑

κ=1

wj,κ N (xj;µj,κ, σj,κ) (4.17)

θj := (wj,κ, µj,κ, σj,κ)
k
κ=1 = Cj(xj−1, . . . , x1), (4.18)

6They also considered a more general coupling that may no longer be triangular.

85

where Cj is the so-called conditioner network that outputs the parameters for the (uni-
variate) mixture distribution in (4.17). According to Example 2 there exists a unique
increasing map Sj(· ;θj) that maps a univariate standard normal random variable zj into
xj that follows (4.17). In other words,

xj = Sj(zj;θj) =: Tj(z1, . . . , zj−1, zj), (4.19)

where the last equality follows from induction, using the fact that θj = Cj(xj−1, . . . , x1).
Thus, as already pointed out in Remark 1, specifying a family of conditional densities as in
(4.17) is equivalent as (implicitly) specifying a family of triangular maps. In particular,
if we use a nonparametric family such as mixture of normals, then the induced triangular
maps can approximate any increasing triangular map. The special case, when k = 1 in
(4.17), was essentially dealt with by [Kingma et al., 2016]: for k = 1 the map Sj(θj) =
µj + σjzj hence the triangular map

Tj(z1, . . . , zj−1, zj) = µj(z<j) + σj(z<j) · zj. (4.20)

Obviously, not every triangular map can be written in the form (4.20), which is affine in zj
when z<j are fixed. To address this issue, [Kingma et al., 2016] composed several triangular
maps in the form of (4.20), hoping this suffices to approximate a generic triangular map. In
contrast, [Huang et al., 2018] proposed to replace the affine form in (4.20) with a univariate
neural net (with zj as input and µj and σj serve as weights). Lastly, based on binary masks,
[Germain et al., 2015] and [Papamakarios et al., 2017] proposed efficient implementations
of the above that compute all parameters in a single pass of the conditioner network. It
should be clear now that (a) autoregressive models implement exactly a triangular map;
(b) specifying the conditional densities directly is equivalent as specifying a triangular map
explicitly.

Other Variants. Recurrent nets have also been used in autoregressive models (effec-
tively triangular maps). For instance, [Oord et al., 2016] used LSTMs to directly specify
the conditional densities while [MacKay et al., 2018] chose to explicitly specify the trian-
gular maps. The two approaches, as alluded above, are equivalent, although one may be
more efficient in certain applications than the other. [Oliva et al., 2018] tried to combine
both while [Kingma and Dhariwal, 2018] used an invertible 1 × 1 convolution. We note
that the work of [Ostrovski et al., 2018] models the conditional quantile function, which is
equivalent to but can sometimes be more convenient than the conditional density.

Non-Triangular Flows. Sylvester Normalizing Flows (SNF) [Berg et al., 2018] and
FFJORD [Grathwohl et al., 2019] are examples of normalizing flows that employ non-
triangular maps. They both propose efficient methods to compute the Jacobian for change

86

C

P(z1; a11) P(z1; a12) P(z1; a1k)

z1

∑
∫∫

+a10

x1

SOS Transformation

a11 a12 a1k

C

P(z2; a21) P(z2; a22) P(z2; a2k)

z2

∑
∫

+a20

x2

z1

a21 a22 a2k

C

· · · · · · P(zd; ad1) P(zd; ad2) P(zd; adk)

zd

∑
∫

+ad0

xd

ad1 ad2 adk

z<d

Figure 4.2: Schematic of SOS flows depicting the conditioner network and relevant trans-
formations. We provide the algorithm in Algorithm 3 and Figure 4.3 shows the schematic
for SOS Flows by stacking multiple blocks of SOS transformation.

of variables. SNF utilizes Sylvester’s determinant theorem for that purpose. FFJORD,
on the other hand, defines a generative model based on continuous-time normalizing flows
proposed by [Chen et al., 2018] and evaluates the log-density efficiently using Hutchinson’s
trace estimator.

4.4 Sum-of-Squares Polynomial Flow

In Section 4.2 we developed a general framework for density estimation using triangular
maps, and in Section 4.3 we showed the many recent generative models are all trying to
estimate a triangular map in one way or another. In this section we give a surprisingly
simple way to parameterize triangular maps, which, when plugged into (4.5), leads to a
new density estimation algorithm that we call sum-of-squares (SOS) polynomial flow.

Our approach is motivated by some classical results on simulating univariate non-normal
distributions. Let z be univariate standard normal. [Fleishman, 1978] proposed to simulate
a non-normal distribution by fitting a degree-3 polynomial:

x = P3(z; a) = a0 + a1z + a2z
2 + a3z

3, (4.21)

where the coefficients {al} are estimated by matching the first 4 moments of x with those of
empirical data. This approach was quite popular in practice because it allows researchers to
precisely control the moments (such as skewness and kurtosis). However, three difficulties
remain: (1) with degree-3 polynomial one can only (approximately) simulate a (very)
strict subset of non-normal distributions. This can be addressed by using polynomials of
higher degrees and better quantile matching techniques [Headrick, 2009]. (2) The estimated

87

coefficients {al} may not guarantee the monotonicity of the polynomial, making inversion
and density evaluation difficult, if not impossible. (3) Extension to the multivariate case
was done through composing a linear map [Vale and Maurelli, 1983], which can be quite
inefficient.

We show that all three difficulties can be overcome using SOS flows. First, let us recall
a classic result in algebra:

Theorem 13. A univariate real polynomial is increasing iff it can be written as:

P2r+1(z; a) = a0 +

∫ z

0

k∑
κ=1

(
r∑
l=0

aκlu
l

)2

du, (4.22)

where a ∈ R1+k(1+r), r ∈ N, and k can be as small as 2.

Note that a univariate increasing polynomial is strictly increasing iff it is not a constant.
Theorem 13 is obtained by integrating a nonnegative polynomial, which is necessarily a
sum-of-squares, see e.g. [Marshall, 2008]. Now, by applying (4.22) to model each con-
ditional density in (4.19) we effectively addressed the last two issues above. Pleasantly,
this approach strictly generalizes the affine triangular map (4.20) of [Kingma et al., 2016],
which amounts to truncating r = 0 in (4.22). However, by using a larger r, we can learn
certain densities more faithfully (especially for capturing higher order statistics), without
significantly increasing the computational complexity. Additionally, implementing (4.22)
in practice is simple: It can be computed exactly since it is an integral of univariate poly-
nomials.

Lastly, we prove that as the degree r increases, we can approximate any triangular map.
We will require the following Lemma for our proof.

Lemma 1 ([Mulansky and Neamtu, 1998]). Let S be a dense subspace of X and let C ⊆ X
be a convex set such that int(C) 6= ∅. Then C ∩ S is dense in C.

Proof. Since the interior int(C) is open and nonempty, and S is dense, we know int(C)∩S
is dense in int(C). (Every open set of int(C) is also an open set of X, hence intersects the
dense set S.) Moreover, since C is convex and int(C) 6= ∅, we know cl(int(C)) = cl(C),
hence cl(int(C) ∩ S) = cl(C), i.e., int(C) ∩ S, whence also the “larger” set C ∩ S, is dense
in C.

Equipped with the Lemma above, we are in a position to state and prove our result for
universal approximation as the degree r increases.

88

Theorem 14. Let C be the space of real univariate continuous functions, equipped with
the topology of compact convergence. Then, the set of increasing polynomials is dense in
the cone of increasing continuous functions.

Proof. Let us define P to be the space of polynomials, and I the space of increasing func-
tions. We need only prove on any compact set K, the set of polynomials of the form (4.22),
i.e. I∩ P thanks to Theorem 13, is dense in C(K)∩ I. By Weierstrass’ theorem we know P
is dense in C(K). Moreover, the convex subset I∩C(K) has nonempty interior (take say a
linear function with positive slope). Applying Lemma 1 above completes the proof 7.

Since the topology of pointwise convergence is weaker than that of compact convergence
(i.e. uniform convergence on every compact set), we immediately know that there exists
a sequence of increasing polynomials of the form (4.22) that converges pointwise to any
given continuous function. This universal property of increasing polynomials allows us to
prove the universality of SOS flows, i.e. the capability of approximating any (continuous)
triangular map.

SOS flow consists of two parts: an increasing (univariate) polynomial P2r+1(zj; aj) of
the form (4.22) for modelling conditional densities and a conditioner network Cj(z1, . . . , zj−1)
for generating the coefficients aj of the polynomial P2r+1(zj; aj). In other words, the tri-
angular map learned using SOS flows has the following form:

∀j, Tj(z1, . . . , zj) = P2r+1

(
zj;Cj(z1, . . . , zj−1)

)
. (4.23)

If we choose a universal conditioner (that can approximate any continuous function), such
as a neural net, then combining with Theorem 13 and Theorem 14 we verify that the
triangular maps in the form of (4.23) can approximate any increasing continuous triangular
map in the pointwise manner. It then follows that the transformed densities will converge
weakly to any desired target density (i.e. in distribution). This solves the first issue
mentioned before Theorem 13. We remark that our universality proof for SOS flows is
significantly shorter and more streamlined than the previous attempt of [Huang et al.,
2018], and it can be seemingly extended to analyze other models summarized in Table 4.1.

As pointed out by [Papamakarios et al., 2017] we can also construct conditioner net-
works Cj that take inputs x1, . . . , xj−1, instead of z1, . . . , zj−1. They are equivalent in
theory but one can be more convenient than the other, depending on the downstream
application. Figure 4.2 illustrates the main components of a single-block SOS flow, where

7We would like to thank Csaba Szepesvári for bringing [Mulansky and Neamtu, 1998] to our attention,
which allowed us to reduce a lengthy proof of Theorem 14 to the current slim one.

89

Conditioner Network

a1 a2 a3 ad

SOS Transformation

Sum-of-Squares Polynomial Flows

z0

z1

SOS
Flows

· · · · · · SOS
Flows

x

Figure 4.3: Schematic of SOS flows by stacking multiple blocks of SOS transformation.

we implement the conditioner network in the same way as in [Papamakarios et al., 2017].
To get a higher degree approximation, we can either increase r or stack a few single-block
SOS flows, as shown in Figure 4.3. The former approach appears to be more general but
also more difficult to train due to the larger number of parameters. Indeed, the effective
number of parameters for SOS flows obtained by stacking L blocks with k polynomials of
degree 2r + 1 is L(1 + k + kr) whereas achieving the same representation with a single
block wide SOS flow would require 1 + k((2r+ 1)L + 1)/2 parameters. In Section 4.5.1 we
perform simulated experiments to compare deep vs. wide SOS flows.

Algorithm 3 Sum-of-Squares Polynomial Flow

1: Input: Dataset D = {x1, · · · ,xN}
2: Output: SOS transformation T = (T1, T2, · · · , Td)
3: specify source distribution : p(z)
4: specify the degree in SOS flow: r
5: specify number of sum terms in SOS flow: k
6: procedure sosFlow(D, p(z), r, k)
7: evaluate aj := C(xi,<j ; w), ∀i ∈ [N]
8: evaluate zi = T−1(xi ; a)
9: evaluate Li = log q(xi) = − log p

(
T−1(xi)

)
+
∑

j log ∂jTj
(
T−1(xi)

)
10: T∗ = arg minT

∑N
i=1 Li

11: Return : T∗

SOS flow is similar to the neural autoregressive flow (NAF) of [Huang et al., 2018] in
the sense that both are capable of approximating any (continuous) triangular map hence
learning any desired target density. However, SOS flow has the following advantages:

• As mentioned before, SOS flow is a strict generalization of the inverse autoregressive
flow (IAF) of [Kingma et al., 2016], which corresponds to setting r = 0.

90

• SOS flow is more interpretable, in the sense that its parameters (i.e. coefficients of
the polynomials) directly control the first few moments of the target density.

• SOS flow may be easier to train, as there is no constraint on its parameters a. In
contrast, NAF needs to make sure the parameters are nonnegative8.

4.5 Experiments

We performed several experiments on both synthetic datasets and real-world datasets to
demonstrate the performance of SOS flows empirically. Through synthetic experiments,
our goal was to study the effect of relative ordering of variables for the conditioner network
while building SOS transformations, its ability to capture multi-modal distributions and
the representational power of deep and wide SOS flows. For the real-world datasets, we
compare SOS flows to other popular autoregressive and flow methods.

4.5.1 Simulated Experiments

We first explore the effect of relative ordering for the conditioner network in building
transformations for SOS flows as well as mixture of Gaussians. For this task, we generated
two sets of 2D densities given by p(x1, x2) = N (x2 ; 0, 4)N (x1 ; 0.25x2

2, 1) and p(x1, x2) =
N (x2 ; 2, 2)N (x1 ; 1/3x3

2, 1.5). However, we trained both SOS flows and GMMs with the
reverse order i.e. (x1, x2) i.e. although in the true density x1 is dependent on x2, for
the transformation we reverse this order to have x2 dependent on x1. For SOS flows we
tested using both deep and wide flows whereas for MoGs we tested with varying number
of components for each conditional distributions. We present the plots in Figure 4.4. The
best performance here is by a deep SOS flow. Furthermore, while a flat SOS flow is able to
achieve almost the same geometrical shape as the target density, its learned density still
differs from the true density. For mixture of Gaussians, a large number of components for
each conditional improved the performance of the resulting model.

We also tested the representational power of deep and wide SOS flows and the results
are given in Figure 4.5. In the first row, the true transformation was simulated by stacking
multiple blocks of SOS transformation. Subsequently, we generated the target density
using this transformation and estimated it using a deep flow, wide flow, wide-deep flow

8A typical remedy is to re-parameterize through an exponential transform, which, however, may lead
to overflows or underflows.

91

Figure 4.4: Top: Leftmost is true density p(x1, x2) = N (x2 ; 0, 4)N (x1 ; 0.25x2
2, 1). The

second plot shows the density learnt by SOS flows with 3 blocks and a sum of 2 polynomials
with degree 3 with ordering (x1, x2). Third plot shows the density learnt by SOS flows
with 1 block and a sum of 2 polynomials with degree 4 and ordering (x1, x2). The last
three plots estimate this density using a Mixture of Gaussian conditionals with varying
components given in parenthesis and ordering (x1, x2). Bottom: Same as Top but with
target density given by p(x1, x2) = N (x2 ; 2, 2)N (x1 ; 0.33x3

1, 1.5).

and mixture of Gaussians. In the second row, we simulated the true transformation using
a single block SOS transformation and performed the same experiment as before. In both
simulations, we tried to break our model by adding random noise to the coefficients of
simulated transformation. As the figure shows, however, both deep and wide variants
performed equally well in terms of representation. As expected however, the training time
for wider flows was significantly longer than that for deeper flows.

Next, in Figure 4.6, we demonstrate the ability of SOS flows to represent transforma-
tions that lead to multi-modal densities by generating data from a mixture of Gaussians
for two cases - well-connected and disjoint support. The true transformation can be com-
puted exactly following Example 2. We show three transformations learned by SOS flows
for each case corresponding to a deep SOS flow, wide SOS flow and wide-deep SOS flow.
As is evident, SOS flows were fairly successful in learning the transformations. We further
estimated the parameters of these simulated densities using Gaussian mixtures trained us-
ing maximum likelihood under three cases - exact (same number of components as target
density), under-specified (lesser number of components) and over-specified. Subsequently,
we plot the resulting transformation in each case following Example 2. While, GMMs with

92

Figure 4.5: Top Row: Transformation defined by a deep SOS flow with r = 1 and
blocks =4. The next three plots show SOS flows learning this transformation with different
configurations (deep, wide and, wide-deep). The last plot shows the transformation learned
when a Gaussian mixture model learns the density (or transformation). Bottom Row:
Same as Top Row but the true transformation was derived by a wide and shallow SOS
flow with r = 4 and blocks=1.

exact components work well as expected, the transformations learned by under-specified
and over-specified models are not as good. This experiment also goes on to show that
using a parameterized density to model conditionals is equivalent to implicitly learning a
transformation.

4.5.2 Real-World Datasets

We also performed density estimation experiments on 5 real world datasets that include
four datasets from the UCI repository and BSDS300. These datasets have been previously
considered for comparison of flows based methods [Huang et al., 2018].

The SOS transformation was trained using maximum likelihood method with source
density as standard normal distribution. We used stochastic gradient descent to train
our models with a batch size of 1000, learning rate = 0.001, number of stacked blocks
= 8, number of polynomials (k) = 5 and, degree of polynomials (r) = 4 with number
of epochs for training = 40. We compare our method to previous works on normalizing
flows and autoregressive models which include MADE-MoG [Germain et al., 2015], MAF
[Papamakarios et al., 2017], MAF-MoG [Papamakarios et al., 2017], TAN [Oliva et al.,
2018] and NAFs [Huang et al., 2018]. In Table 4.3, we report the average log-likelihood

93

Table 4.2: Negative test log-likelihoods for various density estimation models on image
datasets (lower is better). * results/models used multi-scale convolutional architectures.

Method MNIST CIFAR10

Real-NVP 1.06* 3.49*
Glow 1.05* 3.35*

FFJORD 0.99* 3.40*
MADE 2.04 5.67
MAF 1.89 4.31
SOS 1.81 4.18

Table 4.3: Average test log-likelihoods and standard deviation for SOS flows over 10 trials
(higher is better). The other methods report the average log-likelihood and standard
deviation over five trials. The numbers in the parenthesis indicate the number of stacked
blocks for the resultant transformation.

Method Power Gas Hepmass MiniBoone BSDS300

MADE 0.40 ± 0.01 8.47 ± 0.02 -15.15 ± 0.02 -12.24 ± 0.47 153.71 ± 0.28
MAF affine (5) 0.14 ± 0.01 9.07 ± 0.02 -17.70 ± 0.02 -11.75 ± 0.44 155.69 ± 0.28
MAF affine (10) 0.24 ± 0.01 10.08 ± 0.02 -17.73 ± 0.02 -12.24 ± 0.45 154.93 ± 0.28
MAF MoG (5) 0.30 ± 0.01 9.59 ± 0.02 -17.39 ± 0.02 -11.68 ± 0.44 156.36 ± 0.28

TAN 0.60 ± 0.01 12.06 ± 0.02 -13.78 ± 0.02 -11.01 ± 0.48 159.80 ± 0.07
NAF DDSF (5) 0.62 ± 0.01 11.91 ± 0.13 -15.09 ± 0.40 -8.86 ± 0.15 157.73 ± 0.04
NAF DDSF (10) 0.60 ± 0.02 11.96 ± 0.33 -15.32 ± 0.23 -9.01 ± 0.01 157.43 ± 0.30

SOS (7) 0.60 ± 0.01 11.99 ± 0.41 -15.15 ± 0.10 -8.90 ± 0.11 157.48 ± 0.41

94

Figure 4.6: Top Row: First plot from the left shows the target density, a mixture of
three component Gaussians with means = (-5, 0, 5), variances = (1, 1, 1) and, weights
= (1/3, 1/3, 1/3). The second plot shows the exact transformation required to transform
a standard Gaussian to this mixture. The next three plots shows the transformation
learned by SOS flows with different configurations (deep, wide and wide-deep, respectively).
The last three plots show the transformation learned by estimating the parameters of the
Gaussian mixture using log-likelihood with exact (3), under-specified (2) and over-specified
(5) number of components respectively. Bottom Row: Same as Top Row but with target
density being a mixture of five Gaussians with means = (-5, -2, 0, 2, 5), variances = (1.5,
2, 1, 2, 1) and, weights = 0.2 each.

obtained using 10 fold cross-validation on held-out test sets for SOS flows. The performance
reported for other methods are those reported in [Huang et al., 2018]. The results show
that SOS flows are able to achieve competitive performance as compared to other methods.

4.6 Summary

We presented a unified framework for estimating complex densities using monotone and
bijective triangular maps. The main idea is to specify one-dimensional transformations
and then iteratively extend to higher-dimensions using conditioner networks. Under this
framework, we analyzed popular autoregressive and flow based methods, revealed their
similarities and differences, and provided a unified and streamlined approach for under-
standing the representation power of these methods. Along the way we uncovered a new
sum-of-squares polynomial flow that we show is universal, interpretable and easy to train.
We discussed the various advantages of SOS flows for stochastic simulation and density
estimation, and we performed various experiments on simulated data to explore the prop-
erties of SOS flows. Lastly, SOS flows achieved competitive results on real-world datasets.
In the future we plan to carry out the analysis indicated in Table 4.1, and to formally

95

establish the respective advantages between deep and wide SOS flows.

96

Chapter 5

Conclusion and Discussion

In this section, I summarize the contributions made in this thesis and discuss possible
future directions.

In Chapter 2, we formally established the relationships among some popular unsuper-
vised learning models, such as latent tree graphical models, hierarchical tensor formats
and sum-product networks, based on which we further provided a unified treatment of
exponential separation in exact representation size between deep architectures and shallow
ones. Surprisingly, for approximate representation, the conditional gradient algorithm can
approximate any homogeneous mixture within accuracy ε by combining O(1/ε2) shallow
models, where the hidden constant may decrease exponentially wrt the depth. Our experi-
ments on both synthetic and real datasets confirmed our theoretical findings on the benefits
of depth in representing deep mixture models. An interesting direction for future work will
be to formalize Theorem 2 and explicitly characterize the increase in size from one format
to the other. Another direction will be to explore structure learning algorithms for deep
homogeneous mixture models by exploiting the compact representation using higher order
tensors. The problem of structure learning can then be stated as learning a higher order
weight tensor by keeping the leaf distributions fixed in a data driven manner.

We began Chapter 3 by proposing an online Bayesian Moment Matching algorithm
to learn the parameters of Gaussian Mixture models and demonstrated its use in a dis-
tributed manner. We showed through empirical analysis that the online Bayesian Moment
Matching outperforms online EM and online Variational Bayes on real-world datasets and
demonstrated that distributing the algorithm over several machines results in faster run-
ning times without significantly compromising accuracy, which is particularly advantageous
when running time is a major bottleneck. In the future, it will be interesting to undertake

97

a theoretical analysis of the Bayesian Moment Matching algorithm. In particular, it will
be worth exploring the effect of the approximation step and if certain desirable properties
of exact Bayesian learning (see [Doob, 1949]) that lead to its consistency are still preserved
despite the approximation.

Subsequently, in Chapter 3, we considered problems in domains where data is pro-
duced by a population of individuals that exhibit a certain degree of variability. Tra-
ditionally, machine learning techniques ignore this variability and train a single model
under the assumption that the population is homogeneous. While several offline transfer
learning techniques have already been proposed to account for population heterogeneity,
we described an online transfer learning technique (the first to our best knowledge) that
incrementally determines which source models best explain a streaming sequence of obser-
vations while predicting the corresponding hidden states. We achieved this by adapting
the online Bayesian moment matching algorithm to hidden Markov models with Gaussian
mixture emission distributions. Our experimental results confirmed the effectiveness of the
approach in three real-world applications: activity recognition, sleep stage recognition and
flow direction prediction.

In the future, this work could be extended in several directions. Since it is not always
clear how many basis models should be used and that the observation sequences of target
individuals can necessarily be explained by a weighted combination of basis models, it
would be interesting to explore techniques that can automatically determine a good number
of basis models and can generate new basis models on the fly when existing ones are
insufficient. Furthermore, since recurrent neural networks (RNNs) have been shown to
outperform HMMs with GMMs emission distributions in some applications such as speech
recognition [Graves et al., 2013], it would be interesting to generalize our online transfer
learning technique to RNNs.

Finally, in Chapter 4, we turned our focus from mixture models to neural density esti-
mation. We presented a unified framework for estimating complex densities using monotone
and bijective triangular maps. The main idea is to specify one-dimensional transformations
and then iteratively extend to higher-dimensions using conditioner networks. Under this
framework, we analyzed popular autoregressive and flow based methods, revealed their
similarities and differences, and provided a unified and streamlined approach for under-
standing the representation power of these methods. Along the way we uncovered a new
sum-of-squares polynomial flow that we show is universal, interpretable and easy to train.
We performed various experiments on simulated data to explore the properties of SOS
flows. and also showed that SOS flows achieved competitive results on real-world datasets
compared to other flow based methods.

98

This work can be extended in several directions in the future. Firstly, a direct extension
of this work is to carry out the analysis indicated in Table 4.1, and to formally establish the
respective advantages between deep and wide SOS flows. Secondly, it will be interesting to
explore and understand how neural density estimation methods compare to other classical
techniques like Variational inference and identify its advantages and disadvantages over
other methods. Another interesting direction will be in studying flow based methods and
triangular transformations for capturing specific tail behaviour in the target distribution.
Particularly, the main aim will be to characterize the change in tails of the source density
after applying a single block of triangular transformation. This line of work can shed light
on the potential benefits of adapting tails of the source density with potential applications
for fat-tailed variational inference. Additionally, a major problem with neural density es-
timation methods is that they are computationally expensive and are not scalable to very
high dimensions. A potentially impactful direction of work will be to construct sparse tri-
angular transformations that can have applications in Bayesian deep learning and Bayesian
reinforcement learning. Finally, an open research direction for flow based methods is their
efficient extension for discrete random variables.

99

References

[Sil, 2007] (2007). The Visual Scoring of Sleep in Adults. Journal of Clinical Sleep
Medicine, 3(2):121–131. (Cited on page 72.)

[Mal, 2013] (2013). Performance of an Automated Polysomnography Scoring System Ver-
sus Computer-assisted Manual Scoring. Sleep, 36(4):573–582. (Cited on page 71.)

[Ajtai, 1983] Ajtai, M. (1983).
∑1

1-formulae on finite structures. Annals of pure and applied
logic, 24(1):1–48. (Cited on page 44.)

[Akaike, 1974] Akaike, H. (1974). A new look at the statistical model identification. In
Selected Papers of Hirotugu Akaike, pages 215–222. Springer. (Cited on page 9.)

[Al-Stouhi and Reddy, 2011] Al-Stouhi, S. and Reddy, C. K. (2011). Adaptive boosting
for transfer learning using dynamic updates. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 60–75. Springer. (Cited on
page 58.)

[Alexandrova, 2006] Alexandrova, D. (2006). Convergence of Triangular Transformations
of Measures. Theory of Probability & Its Applications, 50(1):113–118. (Cited on page 79.)

[Alon, 2009] Alon, N. (2009). Perturbed identity matrices have high rank: Proof and ap-
plications. Combinatorics, Probability and Computing, 18(1-2):3–15. (Cited on pages 35
and 38.)

[Anandkumar et al., 2012] Anandkumar, A., Hsu, D., Huang, F., and Kakade, S. M.
(2012). Learning mixtures of tree graphical models. In Advances in Neural Information
Processing Systems. (Cited on page 39.)

[Anderer et al., 2005] Anderer, P., Gruber, G., Parapatics, S., Woertz, M., Miazhynskaia,
T., Klosch, G., Saletu, B., Zeitlhofer, J., Barbanoj, M. J., Danker-Hopfe, H., Himanen,

101

https://doi.org/10.1137/S0040585X97981512
https://doi.org/10.1137/S0040585X97981512

S.-L., Kemp, B., Penzel, T., Grozinger, M., Kunz, D., Rappelsberger, P., Schlogl, A., and
Dorffner, G. (2005). An E-health Solution for Automatic Sleep Classification According
to Rechtschaffen and Kales: Validation Study of the Somnolyzer 24 x 7 Utilizing the
Siesta Database. Neuropsychobiology, 51(3):115–133. (Cited on page 71.)

[Ballé et al., 2016] Ballé, J., Laparra, V., and Simoncelli, E. P. (2016). Density modeling of
images using a generalized normalization transformation. In ICLR. (Cited on page 84.)

[Bao et al., 2011] Bao, F. S., Liu, X., and Zhang, C. (2011). PyEEG: An Open Source
Python Module for EEG/MEG Feature Extraction. Computational Intelligence and
Neuroscience, 2011:1–7. (Cited on page 72.)

[Barron, 1993] Barron, A. R. (1993). Universal approximation bounds for superpositions of
a sigmoidal function. IEEE Transactions on Information theory, 39(3):930–945. (Cited
on page 45.)

[Bartlett, 1998] Bartlett, P. L. (1998). The sample complexity of pattern classification
with neural networks: the size of the weights is more important than the size of the
network. IEEE transactions on Information Theory, 44(2):525–536. (Cited on page 45.)

[Baum and Petrie, 1966] Baum, L. E. and Petrie, T. (1966). Statistical inference for prob-
abilistic functions of finite state markov chains. The annals of mathematical statistics,
37(6):1554–1563. (Cited on page 28.)

[Beal, 2003] Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference.
University of London London. (Cited on page 54.)

[Bengio and Bengio, 1999] Bengio, Y. and Bengio, S. (1999). Modeling High-Dimensional
Discrete Data with Multi-Layer Neural Networks. In NeurIPS. (Cited on pages 76, 84,
and 85.)

[Bengio et al., 2014] Bengio, Y., Laufer, E., Alain, G., and Yosinski, J. (2014). Deep
generative stochastic networks trainable by backprop. In International Conference on
Machine Learning, pages 226–234. (Cited on page 43.)

[Berg et al., 2018] Berg, R. v. d., Hasenclever, L., Tomczak, J. M., and Welling, M. (2018).
Sylvester normalizing flows for variational inference. In UAI. (Cited on page 86.)

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
(Cited on page 2.)

102

https://arxiv.org/abs/1511.06281.pdf
https://arxiv.org/abs/1511.06281.pdf
https://papers.nips.cc/paper/1679-modeling-high-dimensional-discrete-data-with-multi-layer-neural-networks
https://papers.nips.cc/paper/1679-modeling-high-dimensional-discrete-data-with-multi-layer-neural-networks
http://auai.org/uai2018/proceedings/papers/156.pdf

[Bogachev et al., 2005] Bogachev, V. I., Kolesnikov, A. V., and Medvedev, K. V. (2005).
Triangular transformations of measures. Sbornik: Mathematics, 196(3):309–335. (Cited
on pages 76, 79, and 83.)

[Braverman, 2011] Braverman, M. (2011). Poly-logarithmic independence fools bounded-
depth boolean circuits. Communications of the ACM, 54(4):108–115. (Cited on pages 44
and 45.)

[Broderick et al., 2013] Broderick, T., Boyd, N., Wibisono, A., Wilson, A. C., and Jordan,
M. I. (2013). Streaming variational bayes. In Advances in Neural Information Processing
Systems, pages 1727–1735. (Cited on pages 49, 50, and 54.)

[Cappé and Moulines, 2009] Cappé, O. and Moulines, E. (2009). On-line expectation–
maximization algorithm for latent data models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 71(3):593–613. (Cited on pages 50 and 54.)

[Carlier et al., 2010] Carlier, G., Galichon, A., and Santambrogio, F. (2010). From
Knothe’s Transport to Brenier’s Map and a Continuation Method for Optimal Trans-
port. SIAM Journal on Mathematical Analysis, 41(6):2554–2576. (Cited on page 83.)

[Caron and Traynor, 2005] Caron, R. and Traynor, T. (2005). The zero set of a polynomial.
Technical report. (Cited on page 33.)

[Chacón and Duong, 2018] Chacón, J. E. and Duong, T. (2018). Multivariate kernel
smoothing and its applications. Chapman and Hall/CRC. (Cited on page 4.)

[Chattopadhyay et al., 2011] Chattopadhyay, R., Krishnan, N. C., and Panchanathan, S.
(2011). Topology preserving domain adaptation for addressing subject based variability
in semg signal. In AAAI Spring Symposium: Computational Physiology, pages 4–9.
(Cited on page 57.)

[Chen and Gopinath, 2001] Chen, S. S. and Gopinath, R. A. (2001). Gaussianization. In
NeurIPS, pages 423–429. (Cited on pages 76 and 83.)

[Chen et al., 2018] Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K.
(2018). Neural ordinary differential equations. In NeurIPS, pages 6572–6583. (Cited on
page 87.)

[Chieu et al., 2006] Chieu, H. L., Lee, W. S., and Kaelbling, L. P. (2006). Activity recog-
nition from physiological data using conditional random fields. (Cited on page 57.)

103

http://iopscience.iop.org/article/10.1070/SM2005v196n03ABEH000882/pdf
https://doi.org/10.1137/080740647
https://doi.org/10.1137/080740647
https://doi.org/10.1137/080740647
https://papers.nips.cc/paper/1856-gaussianization
http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations

[Choi et al., 2011] Choi, M. J., Tan, V. Y. F., Anandkumar, A., and S.Willsky, A. (2011).
Learning latent tree graphical models. Journal of Machine Learning Research, 12:1771–
1812. (Cited on page 25.)

[Cohen et al., 2017] Cohen, N., Sharir, O., Levine, Y., Tamari, R., Yakira, D., and
Shashua, A. (2017). Analysis and design of convolutional networks via hierarchical
tensor decompositions. arXiv:1705.02302v4. (Cited on page 27.)

[Cohen et al., 2016] Cohen, N., Sharir, O., and Shashua, A. (2016). On the expressive
power of deep learning: A tensor analysis. In Conference on Learning Theory, pages
698–728. (Cited on pages 18, 27, 29, 34, 35, 36, 39, 45, and 46.)

[Cohen and Shashua, 2016] Cohen, N. and Shashua, A. (2016). Convolutional rectifier
networks as generalized tensor decompositions. In ICML. (Cited on page 18.)

[Cook et al., 2013] Cook, D., Feuz, K. D., and Krishnan, N. C. (2013). Transfer learning
for activity recognition: A survey. Knowledge and information systems, 36(3):537–556.
(Cited on page 57.)

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal
function. Mathematics of control, signals and systems, 2(4):303–314. (Cited on page 45.)

[Dai et al., 2007] Dai, W., Yang, Q., Xue, G.-R., and Yu, Y. (2007). Boosting for transfer
learning. In Proceedings of the 24th international conference on Machine learning, pages
193–200. ACM. (Cited on page 58.)

[Darwiche, 2003] Darwiche, A. (2003). A differential approach to inference in bayesian
networks. Journal of the ACM (JACM), 50(3):280–305. (Cited on pages 17, 21, 22,
and 45.)

[Deco and Brauer, 1995] Deco, G. and Brauer, W. (1995). Nonlinear higher-order statisti-
cal decorrelation by volume-conserving neural architectures. Neural Networks, 8(4):525–
535. (Cited on page 85.)

[Delalleau and Bengio, 2011] Delalleau, O. and Bengio, Y. (2011). Shallow vs. deep sum-
product networks. In Advances in Neural Information Processing Systems, pages 666–
674. (Cited on pages 18, 29, 34, 35, 45, and 46.)

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum
likelihood from incomplete data via the em algorithm. Journal of the royal statistical
society. Series B (methodological), pages 1–38. (Cited on page 50.)

104

http://www.sciencedirect.com/science/article/pii/089360809400108X
http://www.sciencedirect.com/science/article/pii/089360809400108X

[Dinh et al., 2014] Dinh, L., Krueger, D., and Bengio, Y. (2014). Nice: Non-linear inde-
pendent components estimation. arXiv preprint arXiv:1410.8516. (Cited on page 43.)

[Dinh et al., 2015] Dinh, L., Krueger, D., and Bengio, Y. (2015). NICE: Non-linear in-
dependent components estimation. In ICLR workshop. (Cited on pages 12, 76, 84,
and 85.)

[Dinh et al., 2017] Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation
using Real NVP. In ICLR. (Cited on pages 12, 76, 84, and 85.)

[Doob, 1949] Doob, J. L. (1949). Application of the theory of martingales. Le calcul des
probabilites et ses applications, pages 23–27. (Cited on page 98.)

[Dua and Graff, 2017] Dua, D. and Graff, C. (2017). UCI machine learning repository.
(Cited on page 55.)

[Durkan et al., 2019] Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G. (2019).
Neural spline flows. arXiv preprint arXiv:1906.04032. (Cited on page 12.)

[Eldan and Shamir, 2016] Eldan, R. and Shamir, O. (2016). The power of depth for feed-
forward neural networks. In Conference on Learning Theory, pages 907–940. (Cited on
page 45.)

[Epanechnikov, 1969] Epanechnikov, V. A. (1969). Non-parametric estimation of a mul-
tivariate probability density. Theory of Probability & Its Applications, 14(1):153–158.
(Cited on page 9.)

[Fisher et al., 1920] Fisher, R. A. et al. (1920). 012: A mathematical examination of the
methods of determining the accuracy of an observation by the mean error, and by the
mean square error. (Cited on page 11.)

[Fix and Hodges, 1951] Fix, E. and Hodges, J. L. (1951). Discriminatory analysis.
nonparametric discrimination: consistency properties. International Statistical Re-
view/Revue Internationale de Statistique, 57(3):238–247. (Cited on pages 7 and 8.)

[Fleishman, 1978] Fleishman, A. I. (1978). A method for simulating non-normal distribu-
tions. Psychometrika, 43(4):521–532. (Cited on page 87.)

[Frank and Wolfe, 1956] Frank, M. and Wolfe, P. (1956). An algorithm for quadratic
programming. Naval Research Logistics Quarterly, 3(1-2):95–110. (Cited on pages 37
and 39.)

105

https://arxiv.org/pdf/1410.8516.pdf
https://arxiv.org/pdf/1410.8516.pdf
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
https://doi.org/10.1007/BF02293811
https://doi.org/10.1007/BF02293811

[Freedman et al., 1998] Freedman, D., Pisani, R., and Purves, R. (1998). Statistics (3rd
edn). (Cited on page 8.)

[Friedman et al., 1984] Friedman, J. H., Stuetzle, W., and Schroeder, A. (1984). Pro-
jection Pursuit Density Estimation. Journal of the American Statistical Association,
79(387):599–608. (Cited on page 83.)

[Germain et al., 2015] Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015).
MADE: Masked autoencoder for distribution estimation. In ICML, pages 881–889.
(Cited on pages 84, 86, and 93.)

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets.
In NeurIPS, pages 2672–2680. (Cited on page 76.)

[Grathwohl et al., 2019] Grathwohl, W., Chen, R. T. Q., Betterncourt, J., Sutskever, I.,
and Duvenaud, D. (2019). Ffjord: Free-form continuous dynamics for scalable reversible
generative models. In ICLR. (Cited on page 86.)

[Graves et al., 2013] Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recog-
nition with deep recurrent neural networks. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 6645–6649. IEEE. (Cited on page 98.)

[Guvenir and Uysal, 2000] Guvenir, H. A. and Uysal, I. (2000). Bilkent university function
approximation repository. (Cited on page 55.)

[Hackbusch, 2012] Hackbusch, W. (2012). Tensor Spaces and Numerical Tensor Calculus.
Springer. (Cited on pages 17, 20, 23, 25, 32, and 46.)

[Hastad, 1986] Hastad, J. (1986). Almost optimal lower bounds for small depth circuits.
In Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages
6–20. ACM. (Cited on page 44.)

[Headrick, 2009] Headrick, T. C. (2009). Statistical Simulation Power Method Polynomials
and Other Transformations. CRC Press. (Cited on page 87.)

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural Comp, 9(8):1735–1780. (Cited on page 68.)

[Hoffman et al., 2013] Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013).
Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303–
1347. (Cited on page 54.)

106

https://www.tandfonline.com/doi/pdf/10.1080/01621459.1984.10478086
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1984.10478086
http://proceedings.mlr.press/v37/germain15.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets
https://openreview.net/forum?id=rJxgknCcK7
https://openreview.net/forum?id=rJxgknCcK7
https://www.crcpress.com/Statistical-Simulation-Power-Method-Polynomials-and-Other-Transformations/Headrick/p/book/9781138116283
https://www.crcpress.com/Statistical-Simulation-Power-Method-Polynomials-and-Other-Transformations/Headrick/p/book/9781138116283

[Hoogeboom et al., 2019] Hoogeboom, E., Peters, J. W., Berg, R. v. d., and Welling, M.
(2019). Integer discrete flows and lossless compression. arXiv preprint arXiv:1905.07376.
(Cited on page 2.)

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feed-
forward networks are universal approximators. Neural networks, 2(5):359–366. (Cited
on page 45.)

[Huang et al., 2018] Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A. (2018).
Neural Autoregressive Flows. In ICML. (Cited on pages 12, 76, 77, 84, 86, 89, 90, 93,
and 95.)

[Huber, 1985] Huber, P. J. (1985). Projection Pursuit. The Annals of Statistics, 13(2):435–
475. (Cited on page 83.)

[Ishteva, 2015] Ishteva, M. (2015). Tensors and latent variable models. In The 12th In-
ternational Conference on Latent Variable Analysis and Signal Separation (LVA/ICA),
pages 49–55. (Cited on page 28.)

[Jaini et al., 2017] Jaini, P., Chen, Z., Carbajal, P., Law, E., Middleton, L., Regan, K.,
Schaekermann, M., Trimponias, G., Tung, J., and Poupart, P. (2017). Online bayesian
transfer learning for sequential data modeling. In International Conference on Learning
Representations (ICLR). (Cited on pages 14 and 50.)

[Jaini and Poupart, 2017] Jaini, P. and Poupart, P. (2017). Online and distributed learning
of gaussian mixture models by bayesian moment matching. In Workshop on Advances
in Approximate Bayesian Inference, NIPS. (Cited on pages 14 and 49.)

[Jaini et al., 2018] Jaini, P., Poupart, P., and Yu, Y. (2018). Deep homogeneous mixture
models: representation, separation, and approximation. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pages 7136–7145. (Cited on page 14.)

[Jaini et al., 2016] Jaini, P., Rashwan, A., Zhao, H., Liu, Y., Banijamali, E., Chen, Z.,
and Poupart, P. (2016). Online algorithms for sum-product networks with continuous
variables. In Conference on Probabilistic Graphical Models, pages 228–239. (Cited on
page 15.)

[Jaini et al., 2019] Jaini, P., Selby, K., and Yu, Y. (2019). Sum-of-squares polynomial
flow. In International Conference on Machine Learning (ICML). (Cited on pages 12,
14, and 75.)

107

http://proceedings.mlr.press/v80/huang18d/huang18d.pdf
https://doi.org/10.1214/aos/1176349519

[Jensen et al., 2010] Jensen, P. S., Sorensen, H. B. D., Leonthin, H. L., and Jennum, P.
(2010). Automatic Sleep Scoring in Normals and in Individuals with Neurodegenerative
Disorders According to New International Sleep Scoring Criteria. Journal of Clinical
Neurophysiology: Official Publication of the American Electroencephalographic Society,
27(4):296–302. (Cited on page 71.)

[Jordan et al., 1999] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K.
(1999). An introduction to variational methods for graphical models. Machine learning,
37(2):183–233. (Cited on page 4.)

[Kahn, 1955] Kahn, H. (1955). Use of different monte carlo sampling techniques. (Cited
on page 3.)

[Kahn and Harris, 1951] Kahn, H. and Harris, T. E. (1951). Estimation of particle trans-
mission by random sampling. National Bureau of Standards applied mathematics series,
12:27–30. (Cited on page 3.)

[Kingma and Dhariwal, 2018] Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative
flow with invertible 1x1 convolutions. In NeurIPS. (Cited on pages 12 and 86.)

[Kingma et al., 2016] Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever,
I., and Welling, M. (2016). Improved variational inference with inverse autoregressive
flow. In NeurIPS, pages 4743–4751. (Cited on pages 12, 76, 77, 84, 86, 88, and 90.)

[Kingma and Welling, 2014] Kingma, D. P. and Welling, M. (2014). Auto-encoding varia-
tional Bayes. In ICLR. (Cited on pages 4 and 76.)

[Knothe, 1957] Knothe, H. (1957). Contributions to the theory of convex bodies. The
Michigan Mathematical Journal, 4(1):39–52. (Cited on page 83.)

[Laparra et al., 2011] Laparra, V., Camps-Valls, G., and Malo, J. (2011). Iterative Gaus-
sianization: From ICA to Random Rotations. IEEE Transactions on Neural Networks,
22(4):537–549. (Cited on pages 76 and 84.)

[Larochelle and Murray, 2011] Larochelle, H. and Murray, I. (2011). The neural autore-
gressive distribution estimator. In AISTATS, pages 29–37. (Cited on page 76.)

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324. (Cited on page 42.)

108

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions
https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions
https://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.html
https://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.html
https://openreview.net/forum?id=33X9fd2-9FyZd
https://openreview.net/forum?id=33X9fd2-9FyZd
https://doi.org/10.1307/mmj/1028990175
https://ieeexplore.ieee.org/document/5720319
https://ieeexplore.ieee.org/document/5720319
http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf
http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf

[LeCun et al., 2004] LeCun, Y., Huang, F. J., and Bottou, L. (2004). Learning methods
for generic object recognition with invariance to pose and lighting. In Computer Vision
and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, volume 2, pages II–104. IEEE. (Cited on page 42.)

[Lee et al., 2017] Lee, H., Ge, R., Ma, T., Risteski, A., and Arora, S. (2017). On the
ability of neural nets to express distributions. In Conference on Learning Theory, pages
1271–1296. (Cited on page 45.)

[Li and Barron, 2000] Li, J. Q. and Barron, A. R. (2000). Mixture density estimation. In
Advances in neural information processing systems, pages 279–285. (Cited on pages 18
and 39.)

[Liang and Klein, 2009] Liang, P. and Klein, D. (2009). Online em for unsupervised mod-
els. In Proceedings of human language technologies: The 2009 annual conference of the
North American chapter of the association for computational linguistics, pages 611–619.
Association for Computational Linguistics. (Cited on pages 50 and 55.)

[MacKay, 2003] MacKay, D. J. (2003). Information theory, inference and learning algo-
rithms. Cambridge university press. (Cited on page 2.)

[MacKay et al., 2018] MacKay, M., Vicol, P., Ba, J., and Grosse, R. B. (2018). Reversible
Recurrent Neural Networks. In NeurIPS, pages 9043–9054. (Cited on page 86.)

[Marshall, 2008] Marshall, M. (2008). Positive Polynomials and Sums of Squares. AMS.
(Cited on page 88.)

[Martens et al., 2013] Martens, J., Chattopadhya, A., Pitassi, T., and Zemel, R. (2013).
On the representational efficiency of restricted boltzmann machines. In Advances in
Neural Information Processing Systems, pages 2877–2885. (Cited on page 45.)

[Martens and Medabalimi, 2014] Martens, J. and Medabalimi, V. (2014). On the expres-
sive efficiency of sum product networks. arXiv preprint arXiv:1411.7717. (Cited on
pages 18, 20, 21, 22, 29, 33, 34, 36, 39, and 46.)

[Marzouk et al., 2016] Marzouk, Y., Moselhy, T., Parno, M., and Spantini, A. (2016). Sam-
pling via Measure Transport: An Introduction. In Ghanem, R., Higdon, D., and Owhadi,
H., editors, Handbook of Uncertainty Quantification, pages 1–41. Springer. (Cited on
pages 78 and 85.)

109

http://papers.nips.cc/paper/8117-reversible-recurrent-neural-networks.html
http://papers.nips.cc/paper/8117-reversible-recurrent-neural-networks.html
https://bookstore.ams.org/surv-146
https://doi.org/10.1007/978-3-319-11259-6_23-1
https://doi.org/10.1007/978-3-319-11259-6_23-1

[McLachlan and Peel, 2004a] McLachlan, G. and Peel, D. (2004a). Finite mixture models.
John Wiley & Sons. (Cited on pages 10, 11, 12, 17, and 20.)

[McLachlan and Peel, 2004b] McLachlan, G. and Peel, D. (2004b). Finite mixture models.
John Wiley & Sons. (Cited on page 84.)

[Medvedev, 2008] Medvedev, K. V. (2008). Certain properties of triangular transforma-
tions of measures. Theory of Stochastic Processes, 14(1):95–99. (Cited on page 80.)

[Meila and Jordan, 2000] Meila, M. and Jordan, M. I. (2000). Learning with mixtures of
trees. Journal of Machine Learning Research, 1:1–48. (Cited on page 39.)

[Metropolis et al., 1953] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,
A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines.
The journal of chemical physics, 21(6):1087–1092. (Cited on page 1.)

[Moselhy and Marzouk, 2012] Moselhy, T. A. E. and Marzouk, Y. M. (2012). Bayesian
inference with optimal maps. Journal of Computational Physics, 231(23):7815–7850.
(Cited on pages 79 and 85.)

[Motamedi-Fakhr et al., 2014] Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill,
C. M., and White, P. R. (2014). Signal Processing Techniques Applied to Human Sleep
EEG Signals - A Review. Biomedical Signal Processing and Control, 10:21–33. (Cited
on page 72.)

[Mourad et al., 2013] Mourad, R., Sinoquet, C., Zhang, N. L., Liu, T., and Leray, P.
(2013). A survey on latent tree models and applications. Journal of Artificial Intelligence
Research, 47:157–203. (Cited on pages 17, 25, 26, 27, and 119.)

[Mulansky and Neamtu, 1998] Mulansky, B. and Neamtu, M. (1998). Interpolation and
Approximation from Convex Sets. Journal of Approximation Theory, 92(1):82–100.
(Cited on pages 88 and 89.)

[Murphy, 2012] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT
press. (Cited on page 50.)

[Nadaraya, 1964] Nadaraya, E. A. (1964). On estimating regression. Theory of Probability
& Its Applications, 9(1):141–142. (Cited on page 9.)

[Neal, 1992a] Neal, R. M. (1992a). Connectionist learning of belief networks. Artificial
intelligence, 56(1):71–113. (Cited on page 11.)

110

https://onlinelibrary.wiley.com/doi/book/10.1002/0471721182
http://mi.mathnet.ru/eng/thsp133
http://mi.mathnet.ru/eng/thsp133
https://doi.org/10.1016/j.jcp.2012.07.022
https://doi.org/10.1016/j.jcp.2012.07.022
http://www.sciencedirect.com/science/article/pii/S002190459693107X
http://www.sciencedirect.com/science/article/pii/S002190459693107X

[Neal, 1992b] Neal, R. M. (1992b). Connectionist learning of belief networks. Artificial
Intelligence, 56(1):71–113. (Cited on pages 76 and 85.)

[Neal and Hinton, 1998] Neal, R. M. and Hinton, G. E. (1998). A view of the em algorithm
that justifies incremental, sparse, and other variants. In Learning in graphical models,
pages 355–368. Springer. (Cited on page 50.)

[Nesterov, 1983] Nesterov, Y. (1983). A method of solving a convex programming problem
with convergence rate O(1/sqr(k)). Soviet Mathematics Doklady, 27:372–376. (Cited on
page 69.)

[Nguyen and McLachlan, 2016] Nguyen, H. D. and McLachlan, G. J. (2016). On approx-
imations via convolution-defined mixture models. arXiv preprint arXiv:1611.03974.
(Cited on page 17.)

[Oliva et al., 2018] Oliva, J., Dubey, A., Zaheer, M., Poczos, B., Salakhutdinov, R., Xing,
E., and Schneider, J. (2018). Transformation Autoregressive Networks. In ICML, pages
3898–3907. (Cited on pages 86 and 93.)

[Omar, 2016] Omar, F. (2016). Online bayesian learning in probabilistic graphical models
using moment matching with applications. (Cited on page 51.)

[Oord et al., 2016] Oord, A. V., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel
Recurrent Neural Networks. In ICML, pages 1747–1756. (Cited on pages 12 and 86.)

[Ostrovski et al., 2018] Ostrovski, G., Dabney, W., and Munos, R. (2018). Autoregressive
Quantile Networks for Generative Modeling. In ICML, pages 3936–3945. (Cited on
page 86.)

[Pan and Yang, 2010] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359. (Cited on page 57.)

[Papamakarios et al., 2017] Papamakarios, G., Pavlakou, T., and Murray, I. (2017).
Masked autoregressive flow for density estimation. In NeurIPS, pages 2338–2347. (Cited
on pages 12, 76, 84, 86, 89, 90, and 93.)

[Parno and Marzouk, 2018] Parno, M. and Marzouk, Y. (2018). Transport Map Acceler-
ated Markov Chain Monte Carlo. SIAM/ASA Journal on Uncertainty Quantification,
6(2):645–682. (Cited on page 78.)

[Parzen, 1962] Parzen, E. (1962). On estimation of a probability density function and
mode. The annals of mathematical statistics, 33(3):1065–1076. (Cited on page 8.)

111

https://doi.org/10.1016/0004-3702(92)90065-6
http://proceedings.mlr.press/v80/oliva18a.html
http://proceedings.mlr.press/v48/oord16.html
http://proceedings.mlr.press/v48/oord16.html
http://proceedings.mlr.press/v80/ostrovski18a.html
http://proceedings.mlr.press/v80/ostrovski18a.html
https://papers.nips.cc/paper/6828-masked-autoregressive-flow-for-density-estimation
https://doi.org/10.1137/17M1134640
https://doi.org/10.1137/17M1134640

[Pascanu et al., 2013] Pascanu, R., Montufar, G., and Bengio, Y. (2013). On the number
of response regions of deep feed forward networks with piece-wise linear activations.
arXiv preprint arXiv:1312.6098. (Cited on page 45.)

[Pearson, 1894] Pearson, K. (1894). Contributions to the mathematical theory of evolution.
Philosophical Transactions of the Royal Society of London. A, 185:71–110. (Cited on
pages 8 and 10.)

[Pearson, 1902a] Pearson, K. (1902a). On the systematic fitting of curves to observations
and measurements. Biometrika, 1(3):265–303. (Cited on page 7.)

[Pearson, 1902b] Pearson, K. (1902b). On the systematic fitting of curves to observations
and measurments: Part ii. Biometrika, 2(1):1–23. (Cited on page 7.)

[Peeraully et al., 2012] Peeraully, T., Yong, M.-H., Chokroverty, S., and Tan, E.-K. (2012).
Sleep and Parkinson’s disease: A review of case-control polysomnography studies. Move-
ment Disorders, 27(14):1729–1737. (Cited on page 71.)

[Peharz et al., 2017] Peharz, R., Gens, R., Pernkopf, F., and Domingos, P. (2017). On the
latent variable interpretation in sum-product networks. IEEE transactions on pattern
analysis and machine intelligence, 39(10):2030–2044. (Cited on page 23.)

[Peherstorfer and Marzouk, 2018] Peherstorfer, B. and Marzouk, Y. (2018). A transport-
based multifidelity preconditioner for Markov chain Monte Carlo. (Cited on page 78.)

[Poon and Domingos, 2011] Poon, H. and Domingos, P. (2011). Sum-product networks: A
new deep architecture. In Uncertainty in Artificial Intelligence. UAI. (Cited on pages 17,
21, 22, 23, 43, and 45.)

[Poupart et al., 2016] Poupart, P., Chen, Z., Jaini, P., Fung, F., Susanto, H., Geng, Y.,
Chen, L., Chen, K., and Jin, H. (2016). Online flow size prediction for improved network
routing. In 2016 IEEE 24th International Conference on Network Protocols (ICNP),
pages 1–6. IEEE. (Cited on page 15.)

[Punjabi et al., 2015] Punjabi, N. M., Shifa, N., Dorffner, G., Patil, S., Pien, G., and
Aurora, R. N. (2015). Computer-Assisted Automated Scoring of Polysomnograms Using
the Somnolyzer System. Sleep, 38(10):1555–1566. (Cited on page 71.)

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–286. (Cited on
page 28.)

112

https://arxiv.org/abs/1808.09379
https://arxiv.org/abs/1808.09379

[Rashidi and Cook, 2009] Rashidi, P. and Cook, D. J. (2009). Transferring learned ac-
tivities in smart environments. In Intelligent Environments, pages 185–192. (Cited on
page 57.)

[Redlich, 1993] Redlich, A. N. (1993). Supervised Factorial Learning. Neural Computation,
5(5):750–766. (Cited on page 85.)

[Rezende and Mohamed, 2015] Rezende, D. J. and Mohamed, S. (2015). Variational infer-
ence with normalizing flows. In ICML. (Cited on pages 76 and 84.)

[Rezende et al., 2014] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic
backpropagation and approximate inference in deep generative models. In ICML. (Cited
on page 76.)

[Rosenberg and Van Hout, 2013] Rosenberg, R. S. and Van Hout, S. (2013). The Ameri-
can Academy of Sleep Medicine Inter-scorer Reliability Program: Sleep Stage Scoring.
Journal of Clinical Sleep Medicine. (Cited on page 71.)

[Rosenblatt, 1952] Rosenblatt, M. (1952). Remarks on a Multivariate Transformation. The
Annals of Mathematical Statistics, 23(3):470–472. (Cited on page 83.)

[Rosenblatt, 1956] Rosenblatt, M. (1956). Remarks on some nonparametric estimates of
a density function. The Annals of Mathematical Statistics, pages 832–837. (Cited on
pages 7 and 8.)

[Rudelson and Vershynin, 2008] Rudelson, M. and Vershynin, R. (2008). The least singular
value of a random square matrix is O(n−1/2). C. R. Acad. Sci. Paris, Ser. I, 345:893–896.
(Cited on page 37.)

[Rudin, 1987] Rudin, W. (1987). Real and Complex Analysis. McGraw-Hill, 3rd edition.
(Cited on page 78.)

[Scott, 2015] Scott, D. W. (2015). Multivariate density estimation: theory, practice, and
visualization. John Wiley & Sons. (Cited on page 8.)

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication. Bell
system technical journal, 27(3):379–423. (Cited on page 2.)

[Shao et al., 2015] Shao, L., Zhu, F., and Li, X. (2015). Transfer learning for visual cat-
egorization: A survey. IEEE transactions on neural networks and learning systems,
26(5):1019–1034. (Cited on page 57.)

113

https://doi.org/10.1162/neco.1993.5.5.750
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v32/rezende14.html
http://proceedings.mlr.press/v32/rezende14.html
https://www.jstor.org/stable/2236692
https://www.mheducation.com/highered/product/real-complex-analysis-rudin/M9780070542341.html

[Sharir et al., 2018] Sharir, O., Tamari, R., Cohen, N., and Shashua, A. (2018). Tensorial
mixture models. arXiv:1610.04167v5. (Cited on pages 17, 18, 19, 21, 27, 28, 29, 34, 35,
42, and 43.)

[Sipser, 1983] Sipser, M. (1983). Borel sets and circuit complexity. In Proceedings of the
fifteenth annual ACM symposium on Theory of computing, pages 61–69. ACM. (Cited
on page 44.)

[Sohl-Dickstein et al., 2015] Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and
Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics.
arXiv preprint arXiv:1503.03585. (Cited on page 43.)

[Song et al., 2013] Song, L., Park, H., Ishteva, M., Parikh, A., and Xing, E. (2013). Hi-
erarchical tensor decomposition of latent tree graphical models. In ICML. (Cited on
pages 24 and 25.)

[Spantini et al., 2018] Spantini, A., Bigoni, D., and Marzouk, Y. (2018). Inference via
low-dimensional couplings. Journal of Machine Learning Research, 19:1–71. (Cited on
page 79.)

[Sutskever et al., 2013] Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. (2013).
On the importance of initialization and momentum in deep learning. In Proceedings of
International Conference on Machine Learning (ICML), pages 1139–1147. (Cited on
page 69.)

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence to sequence
learning with neural networks. In NIPS, pages 3104–3112. (Cited on page 69.)

[Tabak and Turner, 2013] Tabak, E. G. and Turner, C. V. (2013). A family of nonparamet-
ric density estimation algorithms. Communications on Pure and Applied Mathematics,
66(2):145–164. (Cited on pages 76 and 84.)

[Tabak and Vanden-Eijnden, 2010] Tabak, E. G. and Vanden-Eijnden, E. (2010). Den-
sity estimation by dual ascent of the log-likelihood. Communications in Mathematical
Sciences, 8(1):217–233. (Cited on pages 76 and 84.)

[Talagrand, 1996] Talagrand, M. (1996). Transportation cost for Gaussian and other prod-
uct measures. Geometric & Functional Analysis, 6(3):587–600. (Cited on page 83.)

[Tarter and Lock, 1893] Tarter, M. E. and Lock, M. D. (1893). Model-free curve estima-
tion, volume 56. CRC Press. (Cited on page 10.)

114

http://jmlr.org/papers/v19/17-747.html
http://jmlr.org/papers/v19/17-747.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21423
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21423
https://projecteuclid.org/euclid.cms/1266935020
https://projecteuclid.org/euclid.cms/1266935020
https://doi.org/10.1007/BF02249265
https://doi.org/10.1007/BF02249265

[Taylor and Stone, 2009] Taylor, M. E. and Stone, P. (2009). Transfer learning for re-
inforcement learning domains: A survey. Journal of Machine Learning Research,
10(Jul):1633–1685. (Cited on page 57.)

[Telgarsky, 2016] Telgarsky, M. (2016). Benefits of depth in neural networks. COLT. (Cited
on page 45.)

[Theano Development Team, 2016] Theano Development Team (2016). Theano: A
Python framework for fast computation of mathematical expressions. arXiv e-prints,
abs/1605.02688. (Cited on page 69.)

[Tieleman and Hinton, 2012] Tieleman, T. and Hinton, G. (2012). Lecture 6.5 - rmsprop,
coursera: Neural networks for machine learning. Technical report. (Cited on page 69.)

[Titterington, 1984] Titterington, D. M. (1984). Recursive parameter estimation using
incomplete data. page 46(2):257267. (Cited on page 50.)

[Tsybakov, 2009] Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation.
Springer. (Cited on pages 1, 9, and 21.)

[Uria et al., 2016] Uria, B., Côté, M.-A., Gregor, K., Murray, I., and Larochelle, H. (2016).
Neural autoregressive distribution estimation. The Journal of Machine Learning Re-
search, 17:7184–7220. (Cited on pages 76, 84, and 85.)

[Vale and Maurelli, 1983] Vale, C. D. and Maurelli, V. A. (1983). Simulating multivariate
nonnormal distributions. Psychometrika, 48(3):465–471. (Cited on page 88.)

[Villani, 2008] Villani, C. (2008). Optimal Transport: Old and New. Springer. (Cited on
pages 76 and 78.)

[Wand and Jones, 1994] Wand, M. P. and Jones, M. C. (1994). Kernel smoothing. Chap-
man and Hall/CRC. (Cited on page 9.)

[Watson, 1964] Watson, G. S. (1964). Smooth regression analysis. Sankhyā: The Indian
Journal of Statistics, Series A, pages 359–372. (Cited on page 9.)

[Wilcoxon, 1950] Wilcoxon, F. (1950). Some rapid approximate statistical procedures.
Annals of the New York Academy of Sciences, pages 808–814. (Cited on pages 55 and 69.)

[Williams and Peng, 1990] Williams, R. and Peng, J. (1990). An efficient gradient-based
algorithm for online training of recurrent network trajectories. Neural Computation,
2(4):490–501. (Cited on page 69.)

115

http://www.jmlr.org/papers/volume17/16-272/16-272.pdf
https://link.springer.com/article/10.1007/BF02293687
https://link.springer.com/article/10.1007/BF02293687
https://www.springer.com/gp/book/9783540710493

[Yao, 1985] Yao, A. C.-C. (1985). Separating the polynomial-time hierarchy by oracles.
In Foundations of Computer Science, 1985., 26th Annual Symposium on, pages 1–10.
IEEE. (Cited on page 44.)

[Yao and Doretto, 2010] Yao, Y. and Doretto, G. (2010). Boosting for transfer learning
with multiple sources. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 1855–1862. IEEE. (Cited on page 58.)

[Yu and Schuurmans, 2012] Yu, Y.-L. and Schuurmans, D. (2012). Rank/norm regular-
ization with closed-form solutions: Application to subspace clustering. arXiv preprint
arXiv:1202.3772. (Cited on page 36.)

[Zhao et al., 2015] Zhao, H., Melibari, M., and Poupart, P. (2015). On the relationship
between sum-product networks and bayesian networks. In International Conference on
Machine Learning, pages 116–124. (Cited on page 23.)

[Zhao et al., 2011] Zhao, Z., Chen, Y., Liu, J., Shen, Z., and Liu, M. (2011). Cross-
people mobile-phone based activity recognition. In Twenty-Second International Joint
Conference on Artificial Intelligence. (Cited on page 57.)

116

APPENDICES

117

Appendix A

More results on comparing different
models

This appendix section provides more details to compliment section 2.4. We provide addi-
tional details and examples to support the arguments that we made in section 2.4.

A.1 Converting an LTM to S3PN

Given an LTM, we can build a corresponding S3PN as follows: starting from the root of
the LTM, for each hidden variable H that takes k possible values {1, . . . , k} and that has
r children nodes {V1, . . . , Vr}, we create a sum node SH with k children product nodes
{PH,1, . . .PH,k}, each of which has r children sum nodes {SV1 , . . . , SVr}. We set the weight
from the sum node SH to its i-th child product node PH,i as Pr(H = i|π(H) = j), if SH
connects to the j-th child product node of the parent hidden variable π(H) (for the root,
the parent is empty). If the child Vt is a hidden variable, we continue the construction
similarly, while if Vt = Xi is an observed variable, then we replace the sum node SVt with
the density f ij(xi), assuming SVt is connected to the j-th child product node of the parent
hidden variable H. Algorithm 4 summarizes this construction, and Figure 2.1 illustrates
the idea using a simple latent class model (LCM) [Mourad et al., 2013].

In Algorithm 4, we describe a procedure to convert a latent tree model (LTM) as
described in (2.15) to a self-similar SPN (S3PN). In Figure A.1 we give another example
to illustrate Algorithm 4.

119

Algorithm 4 Converting an LTM into an S3PN

1: Input : A latent tree model with L levels and (X,H)
2: Output : An equivalent S3PN
3: for l← L to 1 do
4: Hl := {all nodes in current level from left to right order}
5: while Hl 6= ∅ do
6: h = Pop(Hl)
7: if h ∈ X then
8: for j ← 1 to |πh| do
9: create a leaf vj with distribution Pr(h|πh = j)

10: add an edge (vj, p
l−1
j)

11: else
12: if πh 6= ∅ then
13: create |πh| sum nodes i.e. Slh := {sl1, sl2, · · · sl|πh|}
14: for j ← 1 to |πh| do
15: add an edge (slj, p

l−1
j)

16: create |h| product nodes i.e. P l
h := {pl1, pl2, · · · , plh}

17: for i← 1 to |πh| do
18: for j ← 1 to |h| do
19: create an edge (sli, p

l
j) with weight wi,j = Pr(h = j|πh = i)

20: else
21: create one sum node sh
22: create h product nodes i.e. Ph := {p1, p2, · · · , ph}
23: for i← 1 to |h| do
24: add an edge (sh, pi) with weight Pr(h = i)

120

H2
1

H2
2

X1 X2

H3
3

X3 X4

+

× ×

+ + + +

× × × × ×

f 1
1 f 2

1 f 1
2 f 2

2 f 3
1 f 4

1 f 3
2 f 4

2 f 3
3 f 4

3

Figure A.1: Left shows a latent tree model with three discrete hidden variables H =
{H1, H2, H3} and four observed variables X = {X1, X2, X3, X4}. where H1, H2 are bi-
nary and H3 can take three discrete values. The second figure shows the equivalent SPN
representing the latent tree.

In Figure A.1, we consider a latent tree graphical model forming a balanced binary
tree with three binary hidden variables H = {H1, H2, H3} and four observed variables
X = {X1, X2, X3, X4}. The tree has 3 levels and is rooted at H1. The algorithm proceeds
by going through each level one at a time. In the first iteration, it encounters the root
node H1 and creates a corresponding sum node in the SPN. It then creates two (equal to
all possible states of H1) product nodes as children to this sum node. The edge on the
left denotes the edge when H1 = 0 and has weight Pr(H1 = 0) and the edge on the right
denotes edge when H1 = 1 and has weight Pr(H1 = 1). In the next iteration, the algorithm
proceeds to level 2 which has two hidden variables H2 and H3. The algorithm processes
these one at a time. First, it takes H2 and creates two sum nodes corresponding to H2,
one child each for each product node in the previous layer. Next, two product nodes are
created and an edge is created between each of these product nodes and each of the sum
node created before corresponding to H2. The same procedure is then repeated for H3 but
with three edges accounting for the fact that it can take three values. Finally, for each
observed variable, a leaf distribution Pr(X|πX) is induced.

A.2 Example for TMM as an LTM and S3PN

In fig. A.2, we give a representation for fig. 2.6 without redundancy. The figure shows that
a TMM can be represented by an LTM and hence an S3PN.

121

{1, 2, 3, 4}1

{1, 2}3

{1}2 {2}2

{3, 4}3

{3}2 {4}2

+

× × ×

+ + + + + +

× × × ×

f 1
1 f 1

2 f 2
1 f 2

2 f 3
1 f 3

2 f 4
1 f 4

2

H3
1

H2
2

X1 X2

H2
3

X3 X4

Figure A.2: Left: A dimension-partition tree in HTF. The superscripts indicate the number
of bases, which should remain constant on each level. Middle: The equivalent S3PN. The
leaf f ij is the j-th basis of vector space Vi. Right: An equivalent TMM. The superscripts
indicate the number of values each hidden variable can take (again, remaining constant on
each level).

A.3 Example for TMM (LTM

In fig. 2.5 we gave an S3PN that is equivalent to an LTM but not a TMM. It is evident
from the figure that the LTM consists of hidden variables at the same level with different
number of possible states. This arrangement, however, is not allowed in TMM.

A compact representation of fig. 2.5 without redundancy is given in fig. A.3.

{1, 2, 3, 4}1

{1, 2}2

{1}2 {2}2

{3, 4}2

{3}3 {4}3

+

× ×

+ + + +

× × × × ×

f 1
1 f 2

1 f 1
2 f 2

2 f 3
1 f 4

1 f 3
2 f 4

2 f 3
3 f 4

3

H2
1

H2
2

X1 X2

H3
3

X3 X4

Figure A.3: Left: A dimension-partition tree in HTF+. The superscripts indicate the
number of bases. Middle: The equivalent S3PN. The leaf f ij is the j-th basis of vector
space Vi. Right: An equivalent LTM. The superscripts indicate the number of values each
hidden variable can take.

122

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Density function
	Curse of Dimensionality & Common Assumptions

	Methods for density estimation
	Histograms
	Kernel Density Estimation
	Mixture Models
	Neural Density Estimation

	Contributions

	Deep Homogeneous Mixture Models
	Introduction
	Density Estimation using Mixture Models
	Compact Representation of Homogeneous Mixtures
	Depth Separation
	Approximate Representation
	Experiments
	Synthetic Data
	Image Classification under Missing Data

	Connection to Previous Works
	Summary

	Bayesian Moment Matching
	Bayesian Moment Matching for Gaussian Mixture Models
	Experiments

	Online Bayesian Transfer Learning for Sequential Data Modeling
	Problem Setup
	Source Domain - Training
	Target Domain - Learning and Prediction
	Experiments and Results

	Summary

	Neural Density Estimation
	Introduction
	Density estimation through triangular map
	Connection to existing works
	Sum-of-Squares Polynomial Flow
	Experiments
	Simulated Experiments
	Real-World Datasets

	Summary

	Conclusion and Discussion
	References
	More results on comparing different models
	Converting an LTM to S3PN
	Example for TMM as an LTM and S3PN
	Example for TMM LTM

	APPENDICES

