25,957 research outputs found

    Design of Strict Control-Lyapunov Functions for Quantum Systems with QND Measurements

    Full text link
    We consider discrete-time quantum systems subject to Quantum Non-Demolition (QND) measurements and controlled by an adjustable unitary evolution between two successive QND measures. In open-loop, such QND measurements provide a non-deterministic preparation tool exploiting the back-action of the measurement on the quantum state. We propose here a systematic method based on elementary graph theory and inversion of Laplacian matrices to construct strict control-Lyapunov functions. This yields an appropriate feedback law that stabilizes globally the system towards a chosen target state among the open-loop stable ones, and that makes in closed-loop this preparation deterministic. We illustrate such feedback laws through simulations corresponding to an experimental setup with QND photon counting

    Delayed feedback control in quantum transport

    Full text link
    Feedback control in quantum transport has been predicted to give rise to several interesting effects, amongst them quantum state stabilisation and the realisation of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system be affected instantaneously after the measurement of electronic jumps through it. In this contribution I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state-stabilisation and Maxwell's-daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.Comment: 13 pages, 5 figure

    Metastable Quivers in String Compactifications

    Get PDF
    We propose a scenario for dynamical supersymmetry breaking in string compactifications based on geometric engineering of quiver gauge theories. In particular we show that the runaway behavior of fractional branes at del Pezzo singularities can be stabilized by a flux superpotential in compact models. Our construction relies on homological mirror symmetry for orientifolds.Comment: 22 pages, 1 figure; v2: references adde

    Quantum field inspired model of decision making: Asymptotic stabilization of belief state via interaction with surrounding mental environment

    Get PDF
    This paper is devoted to justification of the quantum-like model of the process of decision making based on theory of open quantum systems: decision making as decoher- ence. This process is modeled as interaction of a decision maker, Alice, with a mental (information) environment R surrounding her. Such an interaction generates “dissipation of uncertainty” from Alice’s belief-state ρ ( t ) into R and asymptotic stabilization of ρ ( t ) to a steady belief-state. The latter is treated as the decision state. Mathematically the problem under study is about finding constraints on R guaranteeing such stabilization. We found a partial solution of this problem (in the form of sufficient conditions). We present the corresponding decision making analysis for one class of mental environments, so-called “almost homogeneous environments”, with the illustrative examples: a) behavior of electorate interacting with the mass-media “reservoir”; b) consumers’ persuasion. We also comment on other classes of mental environments

    Stability Conditions, Wall-crossing and weighted Gromov-Witten Invariants

    Full text link
    We extend B. Hassett's theory of weighted stable pointed curves ([Has03]) to weighted stable maps. The space of stability conditions is described explicitly, and the wall-crossing phenomenon studied. This can be considered as a non-linear analog of the theory of stability conditions in abelian and triangulated categories. We introduce virtual fundamental classes and thus obtain weighted Gromov-Witten invariants. We show that by including gravitational descendants, one obtains an \LL-algebra as introduced in [LM04] as a generalization of a cohomological field theory.Comment: 28 pages; v2: references added and updated, addressed referee comments; to appear in Moscow Math Journa

    Strictly contractive quantum channels and physically realizable quantum computers

    Get PDF
    We study the robustness of quantum computers under the influence of errors modelled by strictly contractive channels. A channel TT is defined to be strictly contractive if, for any pair of density operators ρ,σ\rho,\sigma in its domain, ∄Tρ−Tσ∄1≀k∄ρ−σ∄1\| T\rho - T\sigma \|_1 \le k \| \rho-\sigma \|_1 for some 0≀k<10 \le k < 1 (here ∄⋅∄1\| \cdot \|_1 denotes the trace norm). In other words, strictly contractive channels render the states of the computer less distinguishable in the sense of quantum detection theory. Starting from the premise that all experimental procedures can be carried out with finite precision, we argue that there exists a physically meaningful connection between strictly contractive channels and errors in physically realizable quantum computers. We show that, in the absence of error correction, sensitivity of quantum memories and computers to strictly contractive errors grows exponentially with storage time and computation time respectively, and depends only on the constant kk and the measurement precision. We prove that strict contractivity rules out the possibility of perfect error correction, and give an argument that approximate error correction, which covers previous work on fault-tolerant quantum computation as a special case, is possible.Comment: 14 pages; revtex, amsfonts, amssymb; made some changes (recommended by Phys. Rev. A), updated the reference
    • 

    corecore