61 research outputs found

    A survey of stochastic ω regular games

    Get PDF
    We summarize classical and recent results about two-player games played on graphs with ω-regular objectives. These games have applications in the verification and synthesis of reactive systems. Important distinctions are whether a graph game is turn-based or concurrent; deterministic or stochastic; zero-sum or not. We cluster known results and open problems according to these classifications

    The Complexity of Nash Equilibria in Stochastic Multiplayer Games

    Get PDF
    We analyse the computational complexity of finding Nash equilibria in turn-based stochastic multiplayer games with omega-regular objectives. We show that restricting the search space to equilibria whose payoffs fall into a certain interval may lead to undecidability. In particular, we prove that the following problem is undecidable: Given a game G, does there exist a Nash equilibrium of G where Player 0 wins with probability 1? Moreover, this problem remains undecidable when restricted to pure strategies or (pure) strategies with finite memory. One way to obtain a decidable variant of the problem is to restrict the strategies to be positional or stationary. For the complexity of these two problems, we obtain a common lower bound of NP and upper bounds of NP and PSPACE respectively. Finally, we single out a special case of the general problem that, in many cases, admits an efficient solution. In particular, we prove that deciding the existence of an equilibrium in which each player either wins or loses with probability 1 can be done in polynomial time for games where the objective of each player is given by a parity condition with a bounded number of priorities

    The Complexity of Nash Equilibria in Stochastic Multiplayer Games

    Get PDF
    We analyse the computational complexity of finding Nash equilibria in stochastic multiplayer games with ω\omega-regular objectives. We show that restricting the search space to equilibria whose payoffs fall into a certain interval may lead to undecidability. In particular, we prove that the following problem is undecidable: Given a game~G\mathcal{G}, does there exist a pure-strategy Nash equilibrium of~G\mathcal{G} where player 0 wins with probability~11. Moreover, this problem remains undecidable if it is restricted to strategies with (unbounded) finite memory. However, if randomised strategies are allowed, decidability remains an open problem; we can only prove NP-hardness in this case. One way to obtain a provably decidable variant of the problem is to restrict the strategies to be positional or stationary. For the complexity of these two problems, we obtain a common lower bound of NP and upper bounds of NP and PSPACE respectively. Finally, we single out a special case of the general problem that, in many cases, admits an efficient solution. In particular, we prove that deciding the existence of an equilibrium in which each player either wins or loses with probability~11 can be done in polynomial time for games where, for instance, the objective of each player is given by a parity condition with a bounded number of priorities

    Pure Nash Equilibria in Concurrent Deterministic Games

    Full text link
    We study pure-strategy Nash equilibria in multi-player concurrent deterministic games, for a variety of preference relations. We provide a novel construction, called the suspect game, which transforms a multi-player concurrent game into a two-player turn-based game which turns Nash equilibria into winning strategies (for some objective that depends on the preference relations of the players in the original game). We use that transformation to design algorithms for computing Nash equilibria in finite games, which in most cases have optimal worst-case complexity, for large classes of preference relations. This includes the purely qualitative framework, where each player has a single omega-regular objective that she wants to satisfy, but also the larger class of semi-quantitative objectives, where each player has several omega-regular objectives equipped with a preorder (for instance, a player may want to satisfy all her objectives, or to maximise the number of objectives that she achieves.)Comment: 72 page

    A Direct Symbolic Algorithm for Solving Stochastic Rabin Games

    Get PDF

    Fast Symbolic Algorithms for Omega-Regular Games under Strong Transition Fairness

    Get PDF
    We consider fixpoint algorithms for two-player games on graphs with ω\omega-regular winning conditions, where the environment is constrained by a strong transition fairness assumption. Strong transition fairness is a widely occurring special case of strong fairness, which requires that any execution is strongly fair with respect to a specified set of live edges: whenever the source vertex of a live edge is visited infinitely often along a play, the edge itself is traversed infinitely often along the play as well. We show that, surprisingly, strong transition fairness retains the algorithmic characteristics of the fixpoint algorithms for ω\omega-regular games -- the new algorithms can be obtained simply by replacing certain occurrences of the controllable predecessor by a new almost sure predecessor operator. For Rabin games with kk pairs, the complexity of the new algorithm is O(nk+2k!)O(n^{k+2}k!) symbolic steps, which is independent of the number of live edges in the strong transition fairness assumption. Further, we show that GR(1) specifications with strong transition fairness assumptions can be solved with a 3-nested fixpoint algorithm, same as the usual algorithm. In contrast, strong fairness necessarily requires increasing the alternation depth depending on the number of fairness assumptions. We get symbolic algorithms for (generalized) Rabin, parity and GR(1) objectives under strong transition fairness assumptions as well as a direct symbolic algorithm for qualitative winning in stochastic ω\omega-regular games that runs in O(nk+2k!)O(n^{k+2}k!) symbolic steps, improving the state of the art. Finally, we have implemented a BDD-based synthesis engine based on our algorithm. We show on a set of synthetic and real benchmarks that our algorithm is scalable, parallelizable, and outperforms previous algorithms by orders of magnitude

    Symbolic Algorithms for Graphs and Markov Decision Processes with Fairness Objectives

    Get PDF
    Given a model and a specification, the fundamental model-checking problem asks for algorithmic verification of whether the model satisfies the specification. We consider graphs and Markov decision processes (MDPs), which are fundamental models for reactive systems. One of the very basic specifications that arise in verification of reactive systems is the strong fairness (aka Streett) objective. Given different types of requests and corresponding grants, the objective requires that for each type, if the request event happens infinitely often, then the corresponding grant event must also happen infinitely often. All ω\omega-regular objectives can be expressed as Streett objectives and hence they are canonical in verification. To handle the state-space explosion, symbolic algorithms are required that operate on a succinct implicit representation of the system rather than explicitly accessing the system. While explicit algorithms for graphs and MDPs with Streett objectives have been widely studied, there has been no improvement of the basic symbolic algorithms. The worst-case numbers of symbolic steps required for the basic symbolic algorithms are as follows: quadratic for graphs and cubic for MDPs. In this work we present the first sub-quadratic symbolic algorithm for graphs with Streett objectives, and our algorithm is sub-quadratic even for MDPs. Based on our algorithmic insights we present an implementation of the new symbolic approach and show that it improves the existing approach on several academic benchmark examples.Comment: Full version of the paper. To appear in CAV 201

    Simple and tight complexity lower bounds for solving Rabin games

    Full text link
    We give a simple proof that assuming the Exponential Time Hypothesis (ETH), determining the winner of a Rabin game cannot be done in time 2o(klogk)nO(1)2^{o(k \log k)} \cdot n^{O(1)}, where kk is the number of pairs of vertex subsets involved in the winning condition and nn is the vertex count of the game graph. While this result follows from the lower bounds provided by Calude et al [SIAM J. Comp. 2022], our reduction is simpler and arguably provides more insight into the complexity of the problem. In fact, the analogous lower bounds discussed by Calude et al, for solving Muller games and multidimensional parity games, follow as simple corollaries of our approach. Our reduction also highlights the usefulness of a certain pivot problem -- Permutation SAT -- which may be of independent interest.Comment: 10 pages, 5 figures. To appear in SOSA 202

    Synthesising Strategy Improvement and Recursive Algorithms for Solving 2.5 Player Parity Games

    Get PDF
    2.5 player parity games combine the challenges posed by 2.5 player reachability games and the qualitative analysis of parity games. These two types of problems are best approached with different types of algorithms: strategy improvement algorithms for 2.5 player reachability games and recursive algorithms for the qualitative analysis of parity games. We present a method that - in contrast to existing techniques - tackles both aspects with the best suited approach and works exclusively on the 2.5 player game itself. The resulting technique is powerful enough to handle games with several million states
    corecore